selftests/bpf: Make netcnt selftests serial to avoid spurious failures
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
8fb33b60 50 * Since it's analyzing all paths through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 135 * returns either pointer to map value or NULL.
51580e79
AS
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
69c087ba
YS
243static bool bpf_pseudo_func(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247}
248
33ff9823
DB
249struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
435faee1 251 bool raw_mode;
36bbef52 252 bool pkt_access;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
33ff9823
DB
265};
266
8580ac94
AS
267struct btf *btf_vmlinux;
268
cbd35700
AS
269static DEFINE_MUTEX(bpf_verifier_lock);
270
d9762e84
MKL
271static const struct bpf_line_info *
272find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
273{
274 const struct bpf_line_info *linfo;
275 const struct bpf_prog *prog;
276 u32 i, nr_linfo;
277
278 prog = env->prog;
279 nr_linfo = prog->aux->nr_linfo;
280
281 if (!nr_linfo || insn_off >= prog->len)
282 return NULL;
283
284 linfo = prog->aux->linfo;
285 for (i = 1; i < nr_linfo; i++)
286 if (insn_off < linfo[i].insn_off)
287 break;
288
289 return &linfo[i - 1];
290}
291
77d2e05a
MKL
292void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
293 va_list args)
cbd35700 294{
a2a7d570 295 unsigned int n;
cbd35700 296
a2a7d570 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
298
299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
300 "verifier log line truncated - local buffer too short\n");
301
302 n = min(log->len_total - log->len_used - 1, n);
303 log->kbuf[n] = '\0';
304
8580ac94
AS
305 if (log->level == BPF_LOG_KERNEL) {
306 pr_err("BPF:%s\n", log->kbuf);
307 return;
308 }
a2a7d570
JK
309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
310 log->len_used += n;
311 else
312 log->ubuf = NULL;
cbd35700 313}
abe08840 314
6f8a57cc
AN
315static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
316{
317 char zero = 0;
318
319 if (!bpf_verifier_log_needed(log))
320 return;
321
322 log->len_used = new_pos;
323 if (put_user(zero, log->ubuf + new_pos))
324 log->ubuf = NULL;
325}
326
abe08840
JO
327/* log_level controls verbosity level of eBPF verifier.
328 * bpf_verifier_log_write() is used to dump the verification trace to the log,
329 * so the user can figure out what's wrong with the program
430e68d1 330 */
abe08840
JO
331__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
332 const char *fmt, ...)
333{
334 va_list args;
335
77d2e05a
MKL
336 if (!bpf_verifier_log_needed(&env->log))
337 return;
338
abe08840 339 va_start(args, fmt);
77d2e05a 340 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
341 va_end(args);
342}
343EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
344
345__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346{
77d2e05a 347 struct bpf_verifier_env *env = private_data;
abe08840
JO
348 va_list args;
349
77d2e05a
MKL
350 if (!bpf_verifier_log_needed(&env->log))
351 return;
352
abe08840 353 va_start(args, fmt);
77d2e05a 354 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
355 va_end(args);
356}
cbd35700 357
9e15db66
AS
358__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
359 const char *fmt, ...)
360{
361 va_list args;
362
363 if (!bpf_verifier_log_needed(log))
364 return;
365
366 va_start(args, fmt);
367 bpf_verifier_vlog(log, fmt, args);
368 va_end(args);
369}
370
d9762e84
MKL
371static const char *ltrim(const char *s)
372{
373 while (isspace(*s))
374 s++;
375
376 return s;
377}
378
379__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
380 u32 insn_off,
381 const char *prefix_fmt, ...)
382{
383 const struct bpf_line_info *linfo;
384
385 if (!bpf_verifier_log_needed(&env->log))
386 return;
387
388 linfo = find_linfo(env, insn_off);
389 if (!linfo || linfo == env->prev_linfo)
390 return;
391
392 if (prefix_fmt) {
393 va_list args;
394
395 va_start(args, prefix_fmt);
396 bpf_verifier_vlog(&env->log, prefix_fmt, args);
397 va_end(args);
398 }
399
400 verbose(env, "%s\n",
401 ltrim(btf_name_by_offset(env->prog->aux->btf,
402 linfo->line_off)));
403
404 env->prev_linfo = linfo;
405}
406
bc2591d6
YS
407static void verbose_invalid_scalar(struct bpf_verifier_env *env,
408 struct bpf_reg_state *reg,
409 struct tnum *range, const char *ctx,
410 const char *reg_name)
411{
412 char tn_buf[48];
413
414 verbose(env, "At %s the register %s ", ctx, reg_name);
415 if (!tnum_is_unknown(reg->var_off)) {
416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
417 verbose(env, "has value %s", tn_buf);
418 } else {
419 verbose(env, "has unknown scalar value");
420 }
421 tnum_strn(tn_buf, sizeof(tn_buf), *range);
422 verbose(env, " should have been in %s\n", tn_buf);
423}
424
de8f3a83
DB
425static bool type_is_pkt_pointer(enum bpf_reg_type type)
426{
427 return type == PTR_TO_PACKET ||
428 type == PTR_TO_PACKET_META;
429}
430
46f8bc92
MKL
431static bool type_is_sk_pointer(enum bpf_reg_type type)
432{
433 return type == PTR_TO_SOCKET ||
655a51e5 434 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
435 type == PTR_TO_TCP_SOCK ||
436 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
437}
438
cac616db
JF
439static bool reg_type_not_null(enum bpf_reg_type type)
440{
441 return type == PTR_TO_SOCKET ||
442 type == PTR_TO_TCP_SOCK ||
443 type == PTR_TO_MAP_VALUE ||
69c087ba 444 type == PTR_TO_MAP_KEY ||
01c66c48 445 type == PTR_TO_SOCK_COMMON;
cac616db
JF
446}
447
840b9615
JS
448static bool reg_type_may_be_null(enum bpf_reg_type type)
449{
fd978bf7 450 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 451 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 452 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 453 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 454 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
455 type == PTR_TO_MEM_OR_NULL ||
456 type == PTR_TO_RDONLY_BUF_OR_NULL ||
457 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
458}
459
d83525ca
AS
460static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
461{
462 return reg->type == PTR_TO_MAP_VALUE &&
463 map_value_has_spin_lock(reg->map_ptr);
464}
465
cba368c1
MKL
466static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
467{
468 return type == PTR_TO_SOCKET ||
469 type == PTR_TO_SOCKET_OR_NULL ||
470 type == PTR_TO_TCP_SOCK ||
457f4436
AN
471 type == PTR_TO_TCP_SOCK_OR_NULL ||
472 type == PTR_TO_MEM ||
473 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
474}
475
1b986589 476static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 477{
1b986589 478 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
479}
480
fd1b0d60
LB
481static bool arg_type_may_be_null(enum bpf_arg_type type)
482{
483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
484 type == ARG_PTR_TO_MEM_OR_NULL ||
485 type == ARG_PTR_TO_CTX_OR_NULL ||
486 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
488 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
489}
490
fd978bf7
JS
491/* Determine whether the function releases some resources allocated by another
492 * function call. The first reference type argument will be assumed to be
493 * released by release_reference().
494 */
495static bool is_release_function(enum bpf_func_id func_id)
496{
457f4436
AN
497 return func_id == BPF_FUNC_sk_release ||
498 func_id == BPF_FUNC_ringbuf_submit ||
499 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
500}
501
64d85290 502static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
503{
504 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 505 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 506 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
507 func_id == BPF_FUNC_map_lookup_elem ||
508 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
509}
510
511static bool is_acquire_function(enum bpf_func_id func_id,
512 const struct bpf_map *map)
513{
514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
515
516 if (func_id == BPF_FUNC_sk_lookup_tcp ||
517 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
518 func_id == BPF_FUNC_skc_lookup_tcp ||
519 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
520 return true;
521
522 if (func_id == BPF_FUNC_map_lookup_elem &&
523 (map_type == BPF_MAP_TYPE_SOCKMAP ||
524 map_type == BPF_MAP_TYPE_SOCKHASH))
525 return true;
526
527 return false;
46f8bc92
MKL
528}
529
1b986589
MKL
530static bool is_ptr_cast_function(enum bpf_func_id func_id)
531{
532 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
533 func_id == BPF_FUNC_sk_fullsock ||
534 func_id == BPF_FUNC_skc_to_tcp_sock ||
535 func_id == BPF_FUNC_skc_to_tcp6_sock ||
536 func_id == BPF_FUNC_skc_to_udp6_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
538 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
539}
540
39491867
BJ
541static bool is_cmpxchg_insn(const struct bpf_insn *insn)
542{
543 return BPF_CLASS(insn->code) == BPF_STX &&
544 BPF_MODE(insn->code) == BPF_ATOMIC &&
545 insn->imm == BPF_CMPXCHG;
546}
547
17a52670
AS
548/* string representation of 'enum bpf_reg_type' */
549static const char * const reg_type_str[] = {
550 [NOT_INIT] = "?",
f1174f77 551 [SCALAR_VALUE] = "inv",
17a52670
AS
552 [PTR_TO_CTX] = "ctx",
553 [CONST_PTR_TO_MAP] = "map_ptr",
554 [PTR_TO_MAP_VALUE] = "map_value",
555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 556 [PTR_TO_STACK] = "fp",
969bf05e 557 [PTR_TO_PACKET] = "pkt",
de8f3a83 558 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 559 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 560 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
561 [PTR_TO_SOCKET] = "sock",
562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
563 [PTR_TO_SOCK_COMMON] = "sock_common",
564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
565 [PTR_TO_TCP_SOCK] = "tcp_sock",
566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 567 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 568 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 569 [PTR_TO_BTF_ID] = "ptr_",
b121b341 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
572 [PTR_TO_MEM] = "mem",
573 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
574 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
576 [PTR_TO_RDWR_BUF] = "rdwr_buf",
577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
578 [PTR_TO_FUNC] = "func",
579 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
580};
581
8efea21d
EC
582static char slot_type_char[] = {
583 [STACK_INVALID] = '?',
584 [STACK_SPILL] = 'r',
585 [STACK_MISC] = 'm',
586 [STACK_ZERO] = '0',
587};
588
4e92024a
AS
589static void print_liveness(struct bpf_verifier_env *env,
590 enum bpf_reg_liveness live)
591{
9242b5f5 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
593 verbose(env, "_");
594 if (live & REG_LIVE_READ)
595 verbose(env, "r");
596 if (live & REG_LIVE_WRITTEN)
597 verbose(env, "w");
9242b5f5
AS
598 if (live & REG_LIVE_DONE)
599 verbose(env, "D");
4e92024a
AS
600}
601
f4d7e40a
AS
602static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 const struct bpf_reg_state *reg)
604{
605 struct bpf_verifier_state *cur = env->cur_state;
606
607 return cur->frame[reg->frameno];
608}
609
22dc4a0f 610static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 611{
22dc4a0f 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
613}
614
27113c59
MKL
615/* The reg state of a pointer or a bounded scalar was saved when
616 * it was spilled to the stack.
617 */
618static bool is_spilled_reg(const struct bpf_stack_state *stack)
619{
620 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
621}
622
354e8f19
MKL
623static void scrub_spilled_slot(u8 *stype)
624{
625 if (*stype != STACK_INVALID)
626 *stype = STACK_MISC;
627}
628
61bd5218 629static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 630 const struct bpf_func_state *state)
17a52670 631{
f4d7e40a 632 const struct bpf_reg_state *reg;
17a52670
AS
633 enum bpf_reg_type t;
634 int i;
635
f4d7e40a
AS
636 if (state->frameno)
637 verbose(env, " frame%d:", state->frameno);
17a52670 638 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
639 reg = &state->regs[i];
640 t = reg->type;
17a52670
AS
641 if (t == NOT_INIT)
642 continue;
4e92024a
AS
643 verbose(env, " R%d", i);
644 print_liveness(env, reg->live);
645 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
646 if (t == SCALAR_VALUE && reg->precise)
647 verbose(env, "P");
f1174f77
EC
648 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
649 tnum_is_const(reg->var_off)) {
650 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 651 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 652 } else {
eaa6bcb7
HL
653 if (t == PTR_TO_BTF_ID ||
654 t == PTR_TO_BTF_ID_OR_NULL ||
655 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 656 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
657 verbose(env, "(id=%d", reg->id);
658 if (reg_type_may_be_refcounted_or_null(t))
659 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 660 if (t != SCALAR_VALUE)
61bd5218 661 verbose(env, ",off=%d", reg->off);
de8f3a83 662 if (type_is_pkt_pointer(t))
61bd5218 663 verbose(env, ",r=%d", reg->range);
f1174f77 664 else if (t == CONST_PTR_TO_MAP ||
69c087ba 665 t == PTR_TO_MAP_KEY ||
f1174f77
EC
666 t == PTR_TO_MAP_VALUE ||
667 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 668 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
669 reg->map_ptr->key_size,
670 reg->map_ptr->value_size);
7d1238f2
EC
671 if (tnum_is_const(reg->var_off)) {
672 /* Typically an immediate SCALAR_VALUE, but
673 * could be a pointer whose offset is too big
674 * for reg->off
675 */
61bd5218 676 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
677 } else {
678 if (reg->smin_value != reg->umin_value &&
679 reg->smin_value != S64_MIN)
61bd5218 680 verbose(env, ",smin_value=%lld",
7d1238f2
EC
681 (long long)reg->smin_value);
682 if (reg->smax_value != reg->umax_value &&
683 reg->smax_value != S64_MAX)
61bd5218 684 verbose(env, ",smax_value=%lld",
7d1238f2
EC
685 (long long)reg->smax_value);
686 if (reg->umin_value != 0)
61bd5218 687 verbose(env, ",umin_value=%llu",
7d1238f2
EC
688 (unsigned long long)reg->umin_value);
689 if (reg->umax_value != U64_MAX)
61bd5218 690 verbose(env, ",umax_value=%llu",
7d1238f2
EC
691 (unsigned long long)reg->umax_value);
692 if (!tnum_is_unknown(reg->var_off)) {
693 char tn_buf[48];
f1174f77 694
7d1238f2 695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 696 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 697 }
3f50f132
JF
698 if (reg->s32_min_value != reg->smin_value &&
699 reg->s32_min_value != S32_MIN)
700 verbose(env, ",s32_min_value=%d",
701 (int)(reg->s32_min_value));
702 if (reg->s32_max_value != reg->smax_value &&
703 reg->s32_max_value != S32_MAX)
704 verbose(env, ",s32_max_value=%d",
705 (int)(reg->s32_max_value));
706 if (reg->u32_min_value != reg->umin_value &&
707 reg->u32_min_value != U32_MIN)
708 verbose(env, ",u32_min_value=%d",
709 (int)(reg->u32_min_value));
710 if (reg->u32_max_value != reg->umax_value &&
711 reg->u32_max_value != U32_MAX)
712 verbose(env, ",u32_max_value=%d",
713 (int)(reg->u32_max_value));
f1174f77 714 }
61bd5218 715 verbose(env, ")");
f1174f77 716 }
17a52670 717 }
638f5b90 718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
719 char types_buf[BPF_REG_SIZE + 1];
720 bool valid = false;
721 int j;
722
723 for (j = 0; j < BPF_REG_SIZE; j++) {
724 if (state->stack[i].slot_type[j] != STACK_INVALID)
725 valid = true;
726 types_buf[j] = slot_type_char[
727 state->stack[i].slot_type[j]];
728 }
729 types_buf[BPF_REG_SIZE] = 0;
730 if (!valid)
731 continue;
732 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
733 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 734 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
735 reg = &state->stack[i].spilled_ptr;
736 t = reg->type;
737 verbose(env, "=%s", reg_type_str[t]);
738 if (t == SCALAR_VALUE && reg->precise)
739 verbose(env, "P");
740 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
741 verbose(env, "%lld", reg->var_off.value + reg->off);
742 } else {
8efea21d 743 verbose(env, "=%s", types_buf);
b5dc0163 744 }
17a52670 745 }
fd978bf7
JS
746 if (state->acquired_refs && state->refs[0].id) {
747 verbose(env, " refs=%d", state->refs[0].id);
748 for (i = 1; i < state->acquired_refs; i++)
749 if (state->refs[i].id)
750 verbose(env, ",%d", state->refs[i].id);
751 }
bfc6bb74
AS
752 if (state->in_callback_fn)
753 verbose(env, " cb");
754 if (state->in_async_callback_fn)
755 verbose(env, " async_cb");
61bd5218 756 verbose(env, "\n");
17a52670
AS
757}
758
c69431aa
LB
759/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
760 * small to hold src. This is different from krealloc since we don't want to preserve
761 * the contents of dst.
762 *
763 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
764 * not be allocated.
638f5b90 765 */
c69431aa 766static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 767{
c69431aa
LB
768 size_t bytes;
769
770 if (ZERO_OR_NULL_PTR(src))
771 goto out;
772
773 if (unlikely(check_mul_overflow(n, size, &bytes)))
774 return NULL;
775
776 if (ksize(dst) < bytes) {
777 kfree(dst);
778 dst = kmalloc_track_caller(bytes, flags);
779 if (!dst)
780 return NULL;
781 }
782
783 memcpy(dst, src, bytes);
784out:
785 return dst ? dst : ZERO_SIZE_PTR;
786}
787
788/* resize an array from old_n items to new_n items. the array is reallocated if it's too
789 * small to hold new_n items. new items are zeroed out if the array grows.
790 *
791 * Contrary to krealloc_array, does not free arr if new_n is zero.
792 */
793static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
794{
795 if (!new_n || old_n == new_n)
796 goto out;
797
798 arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
799 if (!arr)
800 return NULL;
801
802 if (new_n > old_n)
803 memset(arr + old_n * size, 0, (new_n - old_n) * size);
804
805out:
806 return arr ? arr : ZERO_SIZE_PTR;
807}
808
809static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
810{
811 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
812 sizeof(struct bpf_reference_state), GFP_KERNEL);
813 if (!dst->refs)
814 return -ENOMEM;
815
816 dst->acquired_refs = src->acquired_refs;
817 return 0;
818}
819
820static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
821{
822 size_t n = src->allocated_stack / BPF_REG_SIZE;
823
824 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
825 GFP_KERNEL);
826 if (!dst->stack)
827 return -ENOMEM;
828
829 dst->allocated_stack = src->allocated_stack;
830 return 0;
831}
832
833static int resize_reference_state(struct bpf_func_state *state, size_t n)
834{
835 state->refs = realloc_array(state->refs, state->acquired_refs, n,
836 sizeof(struct bpf_reference_state));
837 if (!state->refs)
838 return -ENOMEM;
839
840 state->acquired_refs = n;
841 return 0;
842}
843
844static int grow_stack_state(struct bpf_func_state *state, int size)
845{
846 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
847
848 if (old_n >= n)
849 return 0;
850
851 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
852 if (!state->stack)
853 return -ENOMEM;
854
855 state->allocated_stack = size;
856 return 0;
fd978bf7
JS
857}
858
859/* Acquire a pointer id from the env and update the state->refs to include
860 * this new pointer reference.
861 * On success, returns a valid pointer id to associate with the register
862 * On failure, returns a negative errno.
638f5b90 863 */
fd978bf7 864static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 865{
fd978bf7
JS
866 struct bpf_func_state *state = cur_func(env);
867 int new_ofs = state->acquired_refs;
868 int id, err;
869
c69431aa 870 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
871 if (err)
872 return err;
873 id = ++env->id_gen;
874 state->refs[new_ofs].id = id;
875 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 876
fd978bf7
JS
877 return id;
878}
879
880/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 881static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
882{
883 int i, last_idx;
884
fd978bf7
JS
885 last_idx = state->acquired_refs - 1;
886 for (i = 0; i < state->acquired_refs; i++) {
887 if (state->refs[i].id == ptr_id) {
888 if (last_idx && i != last_idx)
889 memcpy(&state->refs[i], &state->refs[last_idx],
890 sizeof(*state->refs));
891 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
892 state->acquired_refs--;
638f5b90 893 return 0;
638f5b90 894 }
638f5b90 895 }
46f8bc92 896 return -EINVAL;
fd978bf7
JS
897}
898
f4d7e40a
AS
899static void free_func_state(struct bpf_func_state *state)
900{
5896351e
AS
901 if (!state)
902 return;
fd978bf7 903 kfree(state->refs);
f4d7e40a
AS
904 kfree(state->stack);
905 kfree(state);
906}
907
b5dc0163
AS
908static void clear_jmp_history(struct bpf_verifier_state *state)
909{
910 kfree(state->jmp_history);
911 state->jmp_history = NULL;
912 state->jmp_history_cnt = 0;
913}
914
1969db47
AS
915static void free_verifier_state(struct bpf_verifier_state *state,
916 bool free_self)
638f5b90 917{
f4d7e40a
AS
918 int i;
919
920 for (i = 0; i <= state->curframe; i++) {
921 free_func_state(state->frame[i]);
922 state->frame[i] = NULL;
923 }
b5dc0163 924 clear_jmp_history(state);
1969db47
AS
925 if (free_self)
926 kfree(state);
638f5b90
AS
927}
928
929/* copy verifier state from src to dst growing dst stack space
930 * when necessary to accommodate larger src stack
931 */
f4d7e40a
AS
932static int copy_func_state(struct bpf_func_state *dst,
933 const struct bpf_func_state *src)
638f5b90
AS
934{
935 int err;
936
fd978bf7
JS
937 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
938 err = copy_reference_state(dst, src);
638f5b90
AS
939 if (err)
940 return err;
638f5b90
AS
941 return copy_stack_state(dst, src);
942}
943
f4d7e40a
AS
944static int copy_verifier_state(struct bpf_verifier_state *dst_state,
945 const struct bpf_verifier_state *src)
946{
947 struct bpf_func_state *dst;
948 int i, err;
949
06ab6a50
LB
950 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
951 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
952 GFP_USER);
953 if (!dst_state->jmp_history)
954 return -ENOMEM;
b5dc0163
AS
955 dst_state->jmp_history_cnt = src->jmp_history_cnt;
956
f4d7e40a
AS
957 /* if dst has more stack frames then src frame, free them */
958 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
959 free_func_state(dst_state->frame[i]);
960 dst_state->frame[i] = NULL;
961 }
979d63d5 962 dst_state->speculative = src->speculative;
f4d7e40a 963 dst_state->curframe = src->curframe;
d83525ca 964 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
965 dst_state->branches = src->branches;
966 dst_state->parent = src->parent;
b5dc0163
AS
967 dst_state->first_insn_idx = src->first_insn_idx;
968 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
969 for (i = 0; i <= src->curframe; i++) {
970 dst = dst_state->frame[i];
971 if (!dst) {
972 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
973 if (!dst)
974 return -ENOMEM;
975 dst_state->frame[i] = dst;
976 }
977 err = copy_func_state(dst, src->frame[i]);
978 if (err)
979 return err;
980 }
981 return 0;
982}
983
2589726d
AS
984static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
985{
986 while (st) {
987 u32 br = --st->branches;
988
989 /* WARN_ON(br > 1) technically makes sense here,
990 * but see comment in push_stack(), hence:
991 */
992 WARN_ONCE((int)br < 0,
993 "BUG update_branch_counts:branches_to_explore=%d\n",
994 br);
995 if (br)
996 break;
997 st = st->parent;
998 }
999}
1000
638f5b90 1001static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1002 int *insn_idx, bool pop_log)
638f5b90
AS
1003{
1004 struct bpf_verifier_state *cur = env->cur_state;
1005 struct bpf_verifier_stack_elem *elem, *head = env->head;
1006 int err;
17a52670
AS
1007
1008 if (env->head == NULL)
638f5b90 1009 return -ENOENT;
17a52670 1010
638f5b90
AS
1011 if (cur) {
1012 err = copy_verifier_state(cur, &head->st);
1013 if (err)
1014 return err;
1015 }
6f8a57cc
AN
1016 if (pop_log)
1017 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1018 if (insn_idx)
1019 *insn_idx = head->insn_idx;
17a52670 1020 if (prev_insn_idx)
638f5b90
AS
1021 *prev_insn_idx = head->prev_insn_idx;
1022 elem = head->next;
1969db47 1023 free_verifier_state(&head->st, false);
638f5b90 1024 kfree(head);
17a52670
AS
1025 env->head = elem;
1026 env->stack_size--;
638f5b90 1027 return 0;
17a52670
AS
1028}
1029
58e2af8b 1030static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1031 int insn_idx, int prev_insn_idx,
1032 bool speculative)
17a52670 1033{
638f5b90 1034 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1035 struct bpf_verifier_stack_elem *elem;
638f5b90 1036 int err;
17a52670 1037
638f5b90 1038 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1039 if (!elem)
1040 goto err;
1041
17a52670
AS
1042 elem->insn_idx = insn_idx;
1043 elem->prev_insn_idx = prev_insn_idx;
1044 elem->next = env->head;
6f8a57cc 1045 elem->log_pos = env->log.len_used;
17a52670
AS
1046 env->head = elem;
1047 env->stack_size++;
1969db47
AS
1048 err = copy_verifier_state(&elem->st, cur);
1049 if (err)
1050 goto err;
979d63d5 1051 elem->st.speculative |= speculative;
b285fcb7
AS
1052 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1053 verbose(env, "The sequence of %d jumps is too complex.\n",
1054 env->stack_size);
17a52670
AS
1055 goto err;
1056 }
2589726d
AS
1057 if (elem->st.parent) {
1058 ++elem->st.parent->branches;
1059 /* WARN_ON(branches > 2) technically makes sense here,
1060 * but
1061 * 1. speculative states will bump 'branches' for non-branch
1062 * instructions
1063 * 2. is_state_visited() heuristics may decide not to create
1064 * a new state for a sequence of branches and all such current
1065 * and cloned states will be pointing to a single parent state
1066 * which might have large 'branches' count.
1067 */
1068 }
17a52670
AS
1069 return &elem->st;
1070err:
5896351e
AS
1071 free_verifier_state(env->cur_state, true);
1072 env->cur_state = NULL;
17a52670 1073 /* pop all elements and return */
6f8a57cc 1074 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1075 return NULL;
1076}
1077
1078#define CALLER_SAVED_REGS 6
1079static const int caller_saved[CALLER_SAVED_REGS] = {
1080 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1081};
1082
f54c7898
DB
1083static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1084 struct bpf_reg_state *reg);
f1174f77 1085
e688c3db
AS
1086/* This helper doesn't clear reg->id */
1087static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1088{
b03c9f9f
EC
1089 reg->var_off = tnum_const(imm);
1090 reg->smin_value = (s64)imm;
1091 reg->smax_value = (s64)imm;
1092 reg->umin_value = imm;
1093 reg->umax_value = imm;
3f50f132
JF
1094
1095 reg->s32_min_value = (s32)imm;
1096 reg->s32_max_value = (s32)imm;
1097 reg->u32_min_value = (u32)imm;
1098 reg->u32_max_value = (u32)imm;
1099}
1100
e688c3db
AS
1101/* Mark the unknown part of a register (variable offset or scalar value) as
1102 * known to have the value @imm.
1103 */
1104static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1105{
1106 /* Clear id, off, and union(map_ptr, range) */
1107 memset(((u8 *)reg) + sizeof(reg->type), 0,
1108 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1109 ___mark_reg_known(reg, imm);
1110}
1111
3f50f132
JF
1112static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1113{
1114 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1115 reg->s32_min_value = (s32)imm;
1116 reg->s32_max_value = (s32)imm;
1117 reg->u32_min_value = (u32)imm;
1118 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1119}
1120
f1174f77
EC
1121/* Mark the 'variable offset' part of a register as zero. This should be
1122 * used only on registers holding a pointer type.
1123 */
1124static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1125{
b03c9f9f 1126 __mark_reg_known(reg, 0);
f1174f77 1127}
a9789ef9 1128
cc2b14d5
AS
1129static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1130{
1131 __mark_reg_known(reg, 0);
cc2b14d5
AS
1132 reg->type = SCALAR_VALUE;
1133}
1134
61bd5218
JK
1135static void mark_reg_known_zero(struct bpf_verifier_env *env,
1136 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1137{
1138 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1139 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1140 /* Something bad happened, let's kill all regs */
1141 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1142 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1143 return;
1144 }
1145 __mark_reg_known_zero(regs + regno);
1146}
1147
4ddb7416
DB
1148static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1149{
1150 switch (reg->type) {
1151 case PTR_TO_MAP_VALUE_OR_NULL: {
1152 const struct bpf_map *map = reg->map_ptr;
1153
1154 if (map->inner_map_meta) {
1155 reg->type = CONST_PTR_TO_MAP;
1156 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1157 /* transfer reg's id which is unique for every map_lookup_elem
1158 * as UID of the inner map.
1159 */
1160 reg->map_uid = reg->id;
4ddb7416
DB
1161 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1162 reg->type = PTR_TO_XDP_SOCK;
1163 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1164 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1165 reg->type = PTR_TO_SOCKET;
1166 } else {
1167 reg->type = PTR_TO_MAP_VALUE;
1168 }
1169 break;
1170 }
1171 case PTR_TO_SOCKET_OR_NULL:
1172 reg->type = PTR_TO_SOCKET;
1173 break;
1174 case PTR_TO_SOCK_COMMON_OR_NULL:
1175 reg->type = PTR_TO_SOCK_COMMON;
1176 break;
1177 case PTR_TO_TCP_SOCK_OR_NULL:
1178 reg->type = PTR_TO_TCP_SOCK;
1179 break;
1180 case PTR_TO_BTF_ID_OR_NULL:
1181 reg->type = PTR_TO_BTF_ID;
1182 break;
1183 case PTR_TO_MEM_OR_NULL:
1184 reg->type = PTR_TO_MEM;
1185 break;
1186 case PTR_TO_RDONLY_BUF_OR_NULL:
1187 reg->type = PTR_TO_RDONLY_BUF;
1188 break;
1189 case PTR_TO_RDWR_BUF_OR_NULL:
1190 reg->type = PTR_TO_RDWR_BUF;
1191 break;
1192 default:
33ccec5f 1193 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1194 }
1195}
1196
de8f3a83
DB
1197static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1198{
1199 return type_is_pkt_pointer(reg->type);
1200}
1201
1202static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1203{
1204 return reg_is_pkt_pointer(reg) ||
1205 reg->type == PTR_TO_PACKET_END;
1206}
1207
1208/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1209static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1210 enum bpf_reg_type which)
1211{
1212 /* The register can already have a range from prior markings.
1213 * This is fine as long as it hasn't been advanced from its
1214 * origin.
1215 */
1216 return reg->type == which &&
1217 reg->id == 0 &&
1218 reg->off == 0 &&
1219 tnum_equals_const(reg->var_off, 0);
1220}
1221
3f50f132
JF
1222/* Reset the min/max bounds of a register */
1223static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1224{
1225 reg->smin_value = S64_MIN;
1226 reg->smax_value = S64_MAX;
1227 reg->umin_value = 0;
1228 reg->umax_value = U64_MAX;
1229
1230 reg->s32_min_value = S32_MIN;
1231 reg->s32_max_value = S32_MAX;
1232 reg->u32_min_value = 0;
1233 reg->u32_max_value = U32_MAX;
1234}
1235
1236static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1237{
1238 reg->smin_value = S64_MIN;
1239 reg->smax_value = S64_MAX;
1240 reg->umin_value = 0;
1241 reg->umax_value = U64_MAX;
1242}
1243
1244static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1245{
1246 reg->s32_min_value = S32_MIN;
1247 reg->s32_max_value = S32_MAX;
1248 reg->u32_min_value = 0;
1249 reg->u32_max_value = U32_MAX;
1250}
1251
1252static void __update_reg32_bounds(struct bpf_reg_state *reg)
1253{
1254 struct tnum var32_off = tnum_subreg(reg->var_off);
1255
1256 /* min signed is max(sign bit) | min(other bits) */
1257 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1258 var32_off.value | (var32_off.mask & S32_MIN));
1259 /* max signed is min(sign bit) | max(other bits) */
1260 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1261 var32_off.value | (var32_off.mask & S32_MAX));
1262 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1263 reg->u32_max_value = min(reg->u32_max_value,
1264 (u32)(var32_off.value | var32_off.mask));
1265}
1266
1267static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1268{
1269 /* min signed is max(sign bit) | min(other bits) */
1270 reg->smin_value = max_t(s64, reg->smin_value,
1271 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1272 /* max signed is min(sign bit) | max(other bits) */
1273 reg->smax_value = min_t(s64, reg->smax_value,
1274 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1275 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1276 reg->umax_value = min(reg->umax_value,
1277 reg->var_off.value | reg->var_off.mask);
1278}
1279
3f50f132
JF
1280static void __update_reg_bounds(struct bpf_reg_state *reg)
1281{
1282 __update_reg32_bounds(reg);
1283 __update_reg64_bounds(reg);
1284}
1285
b03c9f9f 1286/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1287static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1288{
1289 /* Learn sign from signed bounds.
1290 * If we cannot cross the sign boundary, then signed and unsigned bounds
1291 * are the same, so combine. This works even in the negative case, e.g.
1292 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1293 */
1294 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1295 reg->s32_min_value = reg->u32_min_value =
1296 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1297 reg->s32_max_value = reg->u32_max_value =
1298 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1299 return;
1300 }
1301 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1302 * boundary, so we must be careful.
1303 */
1304 if ((s32)reg->u32_max_value >= 0) {
1305 /* Positive. We can't learn anything from the smin, but smax
1306 * is positive, hence safe.
1307 */
1308 reg->s32_min_value = reg->u32_min_value;
1309 reg->s32_max_value = reg->u32_max_value =
1310 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1311 } else if ((s32)reg->u32_min_value < 0) {
1312 /* Negative. We can't learn anything from the smax, but smin
1313 * is negative, hence safe.
1314 */
1315 reg->s32_min_value = reg->u32_min_value =
1316 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1317 reg->s32_max_value = reg->u32_max_value;
1318 }
1319}
1320
1321static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1322{
1323 /* Learn sign from signed bounds.
1324 * If we cannot cross the sign boundary, then signed and unsigned bounds
1325 * are the same, so combine. This works even in the negative case, e.g.
1326 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1327 */
1328 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1329 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1330 reg->umin_value);
1331 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1332 reg->umax_value);
1333 return;
1334 }
1335 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1336 * boundary, so we must be careful.
1337 */
1338 if ((s64)reg->umax_value >= 0) {
1339 /* Positive. We can't learn anything from the smin, but smax
1340 * is positive, hence safe.
1341 */
1342 reg->smin_value = reg->umin_value;
1343 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1344 reg->umax_value);
1345 } else if ((s64)reg->umin_value < 0) {
1346 /* Negative. We can't learn anything from the smax, but smin
1347 * is negative, hence safe.
1348 */
1349 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1350 reg->umin_value);
1351 reg->smax_value = reg->umax_value;
1352 }
1353}
1354
3f50f132
JF
1355static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1356{
1357 __reg32_deduce_bounds(reg);
1358 __reg64_deduce_bounds(reg);
1359}
1360
b03c9f9f
EC
1361/* Attempts to improve var_off based on unsigned min/max information */
1362static void __reg_bound_offset(struct bpf_reg_state *reg)
1363{
3f50f132
JF
1364 struct tnum var64_off = tnum_intersect(reg->var_off,
1365 tnum_range(reg->umin_value,
1366 reg->umax_value));
1367 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1368 tnum_range(reg->u32_min_value,
1369 reg->u32_max_value));
1370
1371 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1372}
1373
3f50f132 1374static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1375{
3f50f132
JF
1376 reg->umin_value = reg->u32_min_value;
1377 reg->umax_value = reg->u32_max_value;
1378 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1379 * but must be positive otherwise set to worse case bounds
1380 * and refine later from tnum.
1381 */
3a71dc36 1382 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1383 reg->smax_value = reg->s32_max_value;
1384 else
1385 reg->smax_value = U32_MAX;
3a71dc36
JF
1386 if (reg->s32_min_value >= 0)
1387 reg->smin_value = reg->s32_min_value;
1388 else
1389 reg->smin_value = 0;
3f50f132
JF
1390}
1391
1392static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1393{
1394 /* special case when 64-bit register has upper 32-bit register
1395 * zeroed. Typically happens after zext or <<32, >>32 sequence
1396 * allowing us to use 32-bit bounds directly,
1397 */
1398 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1399 __reg_assign_32_into_64(reg);
1400 } else {
1401 /* Otherwise the best we can do is push lower 32bit known and
1402 * unknown bits into register (var_off set from jmp logic)
1403 * then learn as much as possible from the 64-bit tnum
1404 * known and unknown bits. The previous smin/smax bounds are
1405 * invalid here because of jmp32 compare so mark them unknown
1406 * so they do not impact tnum bounds calculation.
1407 */
1408 __mark_reg64_unbounded(reg);
1409 __update_reg_bounds(reg);
1410 }
1411
1412 /* Intersecting with the old var_off might have improved our bounds
1413 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1414 * then new var_off is (0; 0x7f...fc) which improves our umax.
1415 */
1416 __reg_deduce_bounds(reg);
1417 __reg_bound_offset(reg);
1418 __update_reg_bounds(reg);
1419}
1420
1421static bool __reg64_bound_s32(s64 a)
1422{
388e2c0b 1423 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1424}
1425
1426static bool __reg64_bound_u32(u64 a)
1427{
b9979db8 1428 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1429}
1430
1431static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1432{
1433 __mark_reg32_unbounded(reg);
1434
b0270958 1435 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1436 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1437 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1438 }
10bf4e83 1439 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1440 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1441 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1442 }
3f50f132
JF
1443
1444 /* Intersecting with the old var_off might have improved our bounds
1445 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1446 * then new var_off is (0; 0x7f...fc) which improves our umax.
1447 */
1448 __reg_deduce_bounds(reg);
1449 __reg_bound_offset(reg);
1450 __update_reg_bounds(reg);
b03c9f9f
EC
1451}
1452
f1174f77 1453/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1454static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1455 struct bpf_reg_state *reg)
f1174f77 1456{
a9c676bc
AS
1457 /*
1458 * Clear type, id, off, and union(map_ptr, range) and
1459 * padding between 'type' and union
1460 */
1461 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1462 reg->type = SCALAR_VALUE;
f1174f77 1463 reg->var_off = tnum_unknown;
f4d7e40a 1464 reg->frameno = 0;
2c78ee89 1465 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1466 __mark_reg_unbounded(reg);
f1174f77
EC
1467}
1468
61bd5218
JK
1469static void mark_reg_unknown(struct bpf_verifier_env *env,
1470 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1471{
1472 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1473 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1474 /* Something bad happened, let's kill all regs except FP */
1475 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1476 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1477 return;
1478 }
f54c7898 1479 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1480}
1481
f54c7898
DB
1482static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1483 struct bpf_reg_state *reg)
f1174f77 1484{
f54c7898 1485 __mark_reg_unknown(env, reg);
f1174f77
EC
1486 reg->type = NOT_INIT;
1487}
1488
61bd5218
JK
1489static void mark_reg_not_init(struct bpf_verifier_env *env,
1490 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1491{
1492 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1493 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1494 /* Something bad happened, let's kill all regs except FP */
1495 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1496 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1497 return;
1498 }
f54c7898 1499 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1500}
1501
41c48f3a
AI
1502static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1503 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1504 enum bpf_reg_type reg_type,
1505 struct btf *btf, u32 btf_id)
41c48f3a
AI
1506{
1507 if (reg_type == SCALAR_VALUE) {
1508 mark_reg_unknown(env, regs, regno);
1509 return;
1510 }
1511 mark_reg_known_zero(env, regs, regno);
1512 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1513 regs[regno].btf = btf;
41c48f3a
AI
1514 regs[regno].btf_id = btf_id;
1515}
1516
5327ed3d 1517#define DEF_NOT_SUBREG (0)
61bd5218 1518static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1519 struct bpf_func_state *state)
17a52670 1520{
f4d7e40a 1521 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1522 int i;
1523
dc503a8a 1524 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1525 mark_reg_not_init(env, regs, i);
dc503a8a 1526 regs[i].live = REG_LIVE_NONE;
679c782d 1527 regs[i].parent = NULL;
5327ed3d 1528 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1529 }
17a52670
AS
1530
1531 /* frame pointer */
f1174f77 1532 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1533 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1534 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1535}
1536
f4d7e40a
AS
1537#define BPF_MAIN_FUNC (-1)
1538static void init_func_state(struct bpf_verifier_env *env,
1539 struct bpf_func_state *state,
1540 int callsite, int frameno, int subprogno)
1541{
1542 state->callsite = callsite;
1543 state->frameno = frameno;
1544 state->subprogno = subprogno;
1545 init_reg_state(env, state);
1546}
1547
bfc6bb74
AS
1548/* Similar to push_stack(), but for async callbacks */
1549static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1550 int insn_idx, int prev_insn_idx,
1551 int subprog)
1552{
1553 struct bpf_verifier_stack_elem *elem;
1554 struct bpf_func_state *frame;
1555
1556 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1557 if (!elem)
1558 goto err;
1559
1560 elem->insn_idx = insn_idx;
1561 elem->prev_insn_idx = prev_insn_idx;
1562 elem->next = env->head;
1563 elem->log_pos = env->log.len_used;
1564 env->head = elem;
1565 env->stack_size++;
1566 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1567 verbose(env,
1568 "The sequence of %d jumps is too complex for async cb.\n",
1569 env->stack_size);
1570 goto err;
1571 }
1572 /* Unlike push_stack() do not copy_verifier_state().
1573 * The caller state doesn't matter.
1574 * This is async callback. It starts in a fresh stack.
1575 * Initialize it similar to do_check_common().
1576 */
1577 elem->st.branches = 1;
1578 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1579 if (!frame)
1580 goto err;
1581 init_func_state(env, frame,
1582 BPF_MAIN_FUNC /* callsite */,
1583 0 /* frameno within this callchain */,
1584 subprog /* subprog number within this prog */);
1585 elem->st.frame[0] = frame;
1586 return &elem->st;
1587err:
1588 free_verifier_state(env->cur_state, true);
1589 env->cur_state = NULL;
1590 /* pop all elements and return */
1591 while (!pop_stack(env, NULL, NULL, false));
1592 return NULL;
1593}
1594
1595
17a52670
AS
1596enum reg_arg_type {
1597 SRC_OP, /* register is used as source operand */
1598 DST_OP, /* register is used as destination operand */
1599 DST_OP_NO_MARK /* same as above, check only, don't mark */
1600};
1601
cc8b0b92
AS
1602static int cmp_subprogs(const void *a, const void *b)
1603{
9c8105bd
JW
1604 return ((struct bpf_subprog_info *)a)->start -
1605 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1606}
1607
1608static int find_subprog(struct bpf_verifier_env *env, int off)
1609{
9c8105bd 1610 struct bpf_subprog_info *p;
cc8b0b92 1611
9c8105bd
JW
1612 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1613 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1614 if (!p)
1615 return -ENOENT;
9c8105bd 1616 return p - env->subprog_info;
cc8b0b92
AS
1617
1618}
1619
1620static int add_subprog(struct bpf_verifier_env *env, int off)
1621{
1622 int insn_cnt = env->prog->len;
1623 int ret;
1624
1625 if (off >= insn_cnt || off < 0) {
1626 verbose(env, "call to invalid destination\n");
1627 return -EINVAL;
1628 }
1629 ret = find_subprog(env, off);
1630 if (ret >= 0)
282a0f46 1631 return ret;
4cb3d99c 1632 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1633 verbose(env, "too many subprograms\n");
1634 return -E2BIG;
1635 }
e6ac2450 1636 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1637 env->subprog_info[env->subprog_cnt++].start = off;
1638 sort(env->subprog_info, env->subprog_cnt,
1639 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1640 return env->subprog_cnt - 1;
cc8b0b92
AS
1641}
1642
2357672c
KKD
1643#define MAX_KFUNC_DESCS 256
1644#define MAX_KFUNC_BTFS 256
1645
e6ac2450
MKL
1646struct bpf_kfunc_desc {
1647 struct btf_func_model func_model;
1648 u32 func_id;
1649 s32 imm;
2357672c
KKD
1650 u16 offset;
1651};
1652
1653struct bpf_kfunc_btf {
1654 struct btf *btf;
1655 struct module *module;
1656 u16 offset;
e6ac2450
MKL
1657};
1658
e6ac2450
MKL
1659struct bpf_kfunc_desc_tab {
1660 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1661 u32 nr_descs;
1662};
1663
2357672c
KKD
1664struct bpf_kfunc_btf_tab {
1665 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1666 u32 nr_descs;
1667};
1668
1669static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1670{
1671 const struct bpf_kfunc_desc *d0 = a;
1672 const struct bpf_kfunc_desc *d1 = b;
1673
1674 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1675 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1676}
1677
1678static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1679{
1680 const struct bpf_kfunc_btf *d0 = a;
1681 const struct bpf_kfunc_btf *d1 = b;
1682
1683 return d0->offset - d1->offset;
e6ac2450
MKL
1684}
1685
1686static const struct bpf_kfunc_desc *
2357672c 1687find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1688{
1689 struct bpf_kfunc_desc desc = {
1690 .func_id = func_id,
2357672c 1691 .offset = offset,
e6ac2450
MKL
1692 };
1693 struct bpf_kfunc_desc_tab *tab;
1694
1695 tab = prog->aux->kfunc_tab;
1696 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1697 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1698}
1699
1700static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1701 s16 offset, struct module **btf_modp)
1702{
1703 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1704 struct bpf_kfunc_btf_tab *tab;
1705 struct bpf_kfunc_btf *b;
1706 struct module *mod;
1707 struct btf *btf;
1708 int btf_fd;
1709
1710 tab = env->prog->aux->kfunc_btf_tab;
1711 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1712 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1713 if (!b) {
1714 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1715 verbose(env, "too many different module BTFs\n");
1716 return ERR_PTR(-E2BIG);
1717 }
1718
1719 if (bpfptr_is_null(env->fd_array)) {
1720 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1721 return ERR_PTR(-EPROTO);
1722 }
1723
1724 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1725 offset * sizeof(btf_fd),
1726 sizeof(btf_fd)))
1727 return ERR_PTR(-EFAULT);
1728
1729 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1730 if (IS_ERR(btf)) {
1731 verbose(env, "invalid module BTF fd specified\n");
2357672c 1732 return btf;
588cd7ef 1733 }
2357672c
KKD
1734
1735 if (!btf_is_module(btf)) {
1736 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1737 btf_put(btf);
1738 return ERR_PTR(-EINVAL);
1739 }
1740
1741 mod = btf_try_get_module(btf);
1742 if (!mod) {
1743 btf_put(btf);
1744 return ERR_PTR(-ENXIO);
1745 }
1746
1747 b = &tab->descs[tab->nr_descs++];
1748 b->btf = btf;
1749 b->module = mod;
1750 b->offset = offset;
1751
1752 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1753 kfunc_btf_cmp_by_off, NULL);
1754 }
1755 if (btf_modp)
1756 *btf_modp = b->module;
1757 return b->btf;
e6ac2450
MKL
1758}
1759
2357672c
KKD
1760void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1761{
1762 if (!tab)
1763 return;
1764
1765 while (tab->nr_descs--) {
1766 module_put(tab->descs[tab->nr_descs].module);
1767 btf_put(tab->descs[tab->nr_descs].btf);
1768 }
1769 kfree(tab);
1770}
1771
1772static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1773 u32 func_id, s16 offset,
1774 struct module **btf_modp)
1775{
2357672c
KKD
1776 if (offset) {
1777 if (offset < 0) {
1778 /* In the future, this can be allowed to increase limit
1779 * of fd index into fd_array, interpreted as u16.
1780 */
1781 verbose(env, "negative offset disallowed for kernel module function call\n");
1782 return ERR_PTR(-EINVAL);
1783 }
1784
588cd7ef 1785 return __find_kfunc_desc_btf(env, offset, btf_modp);
2357672c
KKD
1786 }
1787 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
1788}
1789
2357672c 1790static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
1791{
1792 const struct btf_type *func, *func_proto;
2357672c 1793 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
1794 struct bpf_kfunc_desc_tab *tab;
1795 struct bpf_prog_aux *prog_aux;
1796 struct bpf_kfunc_desc *desc;
1797 const char *func_name;
2357672c 1798 struct btf *desc_btf;
e6ac2450
MKL
1799 unsigned long addr;
1800 int err;
1801
1802 prog_aux = env->prog->aux;
1803 tab = prog_aux->kfunc_tab;
2357672c 1804 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
1805 if (!tab) {
1806 if (!btf_vmlinux) {
1807 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1808 return -ENOTSUPP;
1809 }
1810
1811 if (!env->prog->jit_requested) {
1812 verbose(env, "JIT is required for calling kernel function\n");
1813 return -ENOTSUPP;
1814 }
1815
1816 if (!bpf_jit_supports_kfunc_call()) {
1817 verbose(env, "JIT does not support calling kernel function\n");
1818 return -ENOTSUPP;
1819 }
1820
1821 if (!env->prog->gpl_compatible) {
1822 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1823 return -EINVAL;
1824 }
1825
1826 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1827 if (!tab)
1828 return -ENOMEM;
1829 prog_aux->kfunc_tab = tab;
1830 }
1831
a5d82727
KKD
1832 /* func_id == 0 is always invalid, but instead of returning an error, be
1833 * conservative and wait until the code elimination pass before returning
1834 * error, so that invalid calls that get pruned out can be in BPF programs
1835 * loaded from userspace. It is also required that offset be untouched
1836 * for such calls.
1837 */
1838 if (!func_id && !offset)
1839 return 0;
1840
2357672c
KKD
1841 if (!btf_tab && offset) {
1842 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1843 if (!btf_tab)
1844 return -ENOMEM;
1845 prog_aux->kfunc_btf_tab = btf_tab;
1846 }
1847
1848 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1849 if (IS_ERR(desc_btf)) {
1850 verbose(env, "failed to find BTF for kernel function\n");
1851 return PTR_ERR(desc_btf);
1852 }
1853
1854 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
1855 return 0;
1856
1857 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1858 verbose(env, "too many different kernel function calls\n");
1859 return -E2BIG;
1860 }
1861
2357672c 1862 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
1863 if (!func || !btf_type_is_func(func)) {
1864 verbose(env, "kernel btf_id %u is not a function\n",
1865 func_id);
1866 return -EINVAL;
1867 }
2357672c 1868 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
1869 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1870 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1871 func_id);
1872 return -EINVAL;
1873 }
1874
2357672c 1875 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
1876 addr = kallsyms_lookup_name(func_name);
1877 if (!addr) {
1878 verbose(env, "cannot find address for kernel function %s\n",
1879 func_name);
1880 return -EINVAL;
1881 }
1882
1883 desc = &tab->descs[tab->nr_descs++];
1884 desc->func_id = func_id;
3d717fad 1885 desc->imm = BPF_CALL_IMM(addr);
2357672c
KKD
1886 desc->offset = offset;
1887 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
1888 func_proto, func_name,
1889 &desc->func_model);
1890 if (!err)
1891 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 1892 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
1893 return err;
1894}
1895
1896static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1897{
1898 const struct bpf_kfunc_desc *d0 = a;
1899 const struct bpf_kfunc_desc *d1 = b;
1900
1901 if (d0->imm > d1->imm)
1902 return 1;
1903 else if (d0->imm < d1->imm)
1904 return -1;
1905 return 0;
1906}
1907
1908static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1909{
1910 struct bpf_kfunc_desc_tab *tab;
1911
1912 tab = prog->aux->kfunc_tab;
1913 if (!tab)
1914 return;
1915
1916 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1917 kfunc_desc_cmp_by_imm, NULL);
1918}
1919
1920bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1921{
1922 return !!prog->aux->kfunc_tab;
1923}
1924
1925const struct btf_func_model *
1926bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1927 const struct bpf_insn *insn)
1928{
1929 const struct bpf_kfunc_desc desc = {
1930 .imm = insn->imm,
1931 };
1932 const struct bpf_kfunc_desc *res;
1933 struct bpf_kfunc_desc_tab *tab;
1934
1935 tab = prog->aux->kfunc_tab;
1936 res = bsearch(&desc, tab->descs, tab->nr_descs,
1937 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1938
1939 return res ? &res->func_model : NULL;
1940}
1941
1942static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1943{
9c8105bd 1944 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1945 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1946 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1947
f910cefa
JW
1948 /* Add entry function. */
1949 ret = add_subprog(env, 0);
e6ac2450 1950 if (ret)
f910cefa
JW
1951 return ret;
1952
e6ac2450
MKL
1953 for (i = 0; i < insn_cnt; i++, insn++) {
1954 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1955 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1956 continue;
e6ac2450 1957
2c78ee89 1958 if (!env->bpf_capable) {
e6ac2450 1959 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1960 return -EPERM;
1961 }
e6ac2450
MKL
1962
1963 if (bpf_pseudo_func(insn)) {
1964 ret = add_subprog(env, i + insn->imm + 1);
1965 if (ret >= 0)
1966 /* remember subprog */
1967 insn[1].imm = ret;
1968 } else if (bpf_pseudo_call(insn)) {
1969 ret = add_subprog(env, i + insn->imm + 1);
1970 } else {
2357672c 1971 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450
MKL
1972 }
1973
cc8b0b92
AS
1974 if (ret < 0)
1975 return ret;
1976 }
1977
4cb3d99c
JW
1978 /* Add a fake 'exit' subprog which could simplify subprog iteration
1979 * logic. 'subprog_cnt' should not be increased.
1980 */
1981 subprog[env->subprog_cnt].start = insn_cnt;
1982
06ee7115 1983 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1984 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1985 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1986
e6ac2450
MKL
1987 return 0;
1988}
1989
1990static int check_subprogs(struct bpf_verifier_env *env)
1991{
1992 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1993 struct bpf_subprog_info *subprog = env->subprog_info;
1994 struct bpf_insn *insn = env->prog->insnsi;
1995 int insn_cnt = env->prog->len;
1996
cc8b0b92 1997 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1998 subprog_start = subprog[cur_subprog].start;
1999 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2000 for (i = 0; i < insn_cnt; i++) {
2001 u8 code = insn[i].code;
2002
7f6e4312
MF
2003 if (code == (BPF_JMP | BPF_CALL) &&
2004 insn[i].imm == BPF_FUNC_tail_call &&
2005 insn[i].src_reg != BPF_PSEUDO_CALL)
2006 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2007 if (BPF_CLASS(code) == BPF_LD &&
2008 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2009 subprog[cur_subprog].has_ld_abs = true;
092ed096 2010 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2011 goto next;
2012 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2013 goto next;
2014 off = i + insn[i].off + 1;
2015 if (off < subprog_start || off >= subprog_end) {
2016 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2017 return -EINVAL;
2018 }
2019next:
2020 if (i == subprog_end - 1) {
2021 /* to avoid fall-through from one subprog into another
2022 * the last insn of the subprog should be either exit
2023 * or unconditional jump back
2024 */
2025 if (code != (BPF_JMP | BPF_EXIT) &&
2026 code != (BPF_JMP | BPF_JA)) {
2027 verbose(env, "last insn is not an exit or jmp\n");
2028 return -EINVAL;
2029 }
2030 subprog_start = subprog_end;
4cb3d99c
JW
2031 cur_subprog++;
2032 if (cur_subprog < env->subprog_cnt)
9c8105bd 2033 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2034 }
2035 }
2036 return 0;
2037}
2038
679c782d
EC
2039/* Parentage chain of this register (or stack slot) should take care of all
2040 * issues like callee-saved registers, stack slot allocation time, etc.
2041 */
f4d7e40a 2042static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2043 const struct bpf_reg_state *state,
5327ed3d 2044 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2045{
2046 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2047 int cnt = 0;
dc503a8a
EC
2048
2049 while (parent) {
2050 /* if read wasn't screened by an earlier write ... */
679c782d 2051 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2052 break;
9242b5f5
AS
2053 if (parent->live & REG_LIVE_DONE) {
2054 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2055 reg_type_str[parent->type],
2056 parent->var_off.value, parent->off);
2057 return -EFAULT;
2058 }
5327ed3d
JW
2059 /* The first condition is more likely to be true than the
2060 * second, checked it first.
2061 */
2062 if ((parent->live & REG_LIVE_READ) == flag ||
2063 parent->live & REG_LIVE_READ64)
25af32da
AS
2064 /* The parentage chain never changes and
2065 * this parent was already marked as LIVE_READ.
2066 * There is no need to keep walking the chain again and
2067 * keep re-marking all parents as LIVE_READ.
2068 * This case happens when the same register is read
2069 * multiple times without writes into it in-between.
5327ed3d
JW
2070 * Also, if parent has the stronger REG_LIVE_READ64 set,
2071 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2072 */
2073 break;
dc503a8a 2074 /* ... then we depend on parent's value */
5327ed3d
JW
2075 parent->live |= flag;
2076 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2077 if (flag == REG_LIVE_READ64)
2078 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2079 state = parent;
2080 parent = state->parent;
f4d7e40a 2081 writes = true;
06ee7115 2082 cnt++;
dc503a8a 2083 }
06ee7115
AS
2084
2085 if (env->longest_mark_read_walk < cnt)
2086 env->longest_mark_read_walk = cnt;
f4d7e40a 2087 return 0;
dc503a8a
EC
2088}
2089
5327ed3d
JW
2090/* This function is supposed to be used by the following 32-bit optimization
2091 * code only. It returns TRUE if the source or destination register operates
2092 * on 64-bit, otherwise return FALSE.
2093 */
2094static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2095 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2096{
2097 u8 code, class, op;
2098
2099 code = insn->code;
2100 class = BPF_CLASS(code);
2101 op = BPF_OP(code);
2102 if (class == BPF_JMP) {
2103 /* BPF_EXIT for "main" will reach here. Return TRUE
2104 * conservatively.
2105 */
2106 if (op == BPF_EXIT)
2107 return true;
2108 if (op == BPF_CALL) {
2109 /* BPF to BPF call will reach here because of marking
2110 * caller saved clobber with DST_OP_NO_MARK for which we
2111 * don't care the register def because they are anyway
2112 * marked as NOT_INIT already.
2113 */
2114 if (insn->src_reg == BPF_PSEUDO_CALL)
2115 return false;
2116 /* Helper call will reach here because of arg type
2117 * check, conservatively return TRUE.
2118 */
2119 if (t == SRC_OP)
2120 return true;
2121
2122 return false;
2123 }
2124 }
2125
2126 if (class == BPF_ALU64 || class == BPF_JMP ||
2127 /* BPF_END always use BPF_ALU class. */
2128 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2129 return true;
2130
2131 if (class == BPF_ALU || class == BPF_JMP32)
2132 return false;
2133
2134 if (class == BPF_LDX) {
2135 if (t != SRC_OP)
2136 return BPF_SIZE(code) == BPF_DW;
2137 /* LDX source must be ptr. */
2138 return true;
2139 }
2140
2141 if (class == BPF_STX) {
83a28819
IL
2142 /* BPF_STX (including atomic variants) has multiple source
2143 * operands, one of which is a ptr. Check whether the caller is
2144 * asking about it.
2145 */
2146 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2147 return true;
2148 return BPF_SIZE(code) == BPF_DW;
2149 }
2150
2151 if (class == BPF_LD) {
2152 u8 mode = BPF_MODE(code);
2153
2154 /* LD_IMM64 */
2155 if (mode == BPF_IMM)
2156 return true;
2157
2158 /* Both LD_IND and LD_ABS return 32-bit data. */
2159 if (t != SRC_OP)
2160 return false;
2161
2162 /* Implicit ctx ptr. */
2163 if (regno == BPF_REG_6)
2164 return true;
2165
2166 /* Explicit source could be any width. */
2167 return true;
2168 }
2169
2170 if (class == BPF_ST)
2171 /* The only source register for BPF_ST is a ptr. */
2172 return true;
2173
2174 /* Conservatively return true at default. */
2175 return true;
2176}
2177
83a28819
IL
2178/* Return the regno defined by the insn, or -1. */
2179static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2180{
83a28819
IL
2181 switch (BPF_CLASS(insn->code)) {
2182 case BPF_JMP:
2183 case BPF_JMP32:
2184 case BPF_ST:
2185 return -1;
2186 case BPF_STX:
2187 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2188 (insn->imm & BPF_FETCH)) {
2189 if (insn->imm == BPF_CMPXCHG)
2190 return BPF_REG_0;
2191 else
2192 return insn->src_reg;
2193 } else {
2194 return -1;
2195 }
2196 default:
2197 return insn->dst_reg;
2198 }
b325fbca
JW
2199}
2200
2201/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2202static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2203{
83a28819
IL
2204 int dst_reg = insn_def_regno(insn);
2205
2206 if (dst_reg == -1)
b325fbca
JW
2207 return false;
2208
83a28819 2209 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2210}
2211
5327ed3d
JW
2212static void mark_insn_zext(struct bpf_verifier_env *env,
2213 struct bpf_reg_state *reg)
2214{
2215 s32 def_idx = reg->subreg_def;
2216
2217 if (def_idx == DEF_NOT_SUBREG)
2218 return;
2219
2220 env->insn_aux_data[def_idx - 1].zext_dst = true;
2221 /* The dst will be zero extended, so won't be sub-register anymore. */
2222 reg->subreg_def = DEF_NOT_SUBREG;
2223}
2224
dc503a8a 2225static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2226 enum reg_arg_type t)
2227{
f4d7e40a
AS
2228 struct bpf_verifier_state *vstate = env->cur_state;
2229 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2230 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2231 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2232 bool rw64;
dc503a8a 2233
17a52670 2234 if (regno >= MAX_BPF_REG) {
61bd5218 2235 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2236 return -EINVAL;
2237 }
2238
c342dc10 2239 reg = &regs[regno];
5327ed3d 2240 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2241 if (t == SRC_OP) {
2242 /* check whether register used as source operand can be read */
c342dc10 2243 if (reg->type == NOT_INIT) {
61bd5218 2244 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2245 return -EACCES;
2246 }
679c782d 2247 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2248 if (regno == BPF_REG_FP)
2249 return 0;
2250
5327ed3d
JW
2251 if (rw64)
2252 mark_insn_zext(env, reg);
2253
2254 return mark_reg_read(env, reg, reg->parent,
2255 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2256 } else {
2257 /* check whether register used as dest operand can be written to */
2258 if (regno == BPF_REG_FP) {
61bd5218 2259 verbose(env, "frame pointer is read only\n");
17a52670
AS
2260 return -EACCES;
2261 }
c342dc10 2262 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2263 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2264 if (t == DST_OP)
61bd5218 2265 mark_reg_unknown(env, regs, regno);
17a52670
AS
2266 }
2267 return 0;
2268}
2269
b5dc0163
AS
2270/* for any branch, call, exit record the history of jmps in the given state */
2271static int push_jmp_history(struct bpf_verifier_env *env,
2272 struct bpf_verifier_state *cur)
2273{
2274 u32 cnt = cur->jmp_history_cnt;
2275 struct bpf_idx_pair *p;
2276
2277 cnt++;
2278 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2279 if (!p)
2280 return -ENOMEM;
2281 p[cnt - 1].idx = env->insn_idx;
2282 p[cnt - 1].prev_idx = env->prev_insn_idx;
2283 cur->jmp_history = p;
2284 cur->jmp_history_cnt = cnt;
2285 return 0;
2286}
2287
2288/* Backtrack one insn at a time. If idx is not at the top of recorded
2289 * history then previous instruction came from straight line execution.
2290 */
2291static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2292 u32 *history)
2293{
2294 u32 cnt = *history;
2295
2296 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2297 i = st->jmp_history[cnt - 1].prev_idx;
2298 (*history)--;
2299 } else {
2300 i--;
2301 }
2302 return i;
2303}
2304
e6ac2450
MKL
2305static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2306{
2307 const struct btf_type *func;
2357672c 2308 struct btf *desc_btf;
e6ac2450
MKL
2309
2310 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2311 return NULL;
2312
2357672c
KKD
2313 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2314 if (IS_ERR(desc_btf))
2315 return "<error>";
2316
2317 func = btf_type_by_id(desc_btf, insn->imm);
2318 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2319}
2320
b5dc0163
AS
2321/* For given verifier state backtrack_insn() is called from the last insn to
2322 * the first insn. Its purpose is to compute a bitmask of registers and
2323 * stack slots that needs precision in the parent verifier state.
2324 */
2325static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2326 u32 *reg_mask, u64 *stack_mask)
2327{
2328 const struct bpf_insn_cbs cbs = {
e6ac2450 2329 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2330 .cb_print = verbose,
2331 .private_data = env,
2332 };
2333 struct bpf_insn *insn = env->prog->insnsi + idx;
2334 u8 class = BPF_CLASS(insn->code);
2335 u8 opcode = BPF_OP(insn->code);
2336 u8 mode = BPF_MODE(insn->code);
2337 u32 dreg = 1u << insn->dst_reg;
2338 u32 sreg = 1u << insn->src_reg;
2339 u32 spi;
2340
2341 if (insn->code == 0)
2342 return 0;
2343 if (env->log.level & BPF_LOG_LEVEL) {
2344 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2345 verbose(env, "%d: ", idx);
2346 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2347 }
2348
2349 if (class == BPF_ALU || class == BPF_ALU64) {
2350 if (!(*reg_mask & dreg))
2351 return 0;
2352 if (opcode == BPF_MOV) {
2353 if (BPF_SRC(insn->code) == BPF_X) {
2354 /* dreg = sreg
2355 * dreg needs precision after this insn
2356 * sreg needs precision before this insn
2357 */
2358 *reg_mask &= ~dreg;
2359 *reg_mask |= sreg;
2360 } else {
2361 /* dreg = K
2362 * dreg needs precision after this insn.
2363 * Corresponding register is already marked
2364 * as precise=true in this verifier state.
2365 * No further markings in parent are necessary
2366 */
2367 *reg_mask &= ~dreg;
2368 }
2369 } else {
2370 if (BPF_SRC(insn->code) == BPF_X) {
2371 /* dreg += sreg
2372 * both dreg and sreg need precision
2373 * before this insn
2374 */
2375 *reg_mask |= sreg;
2376 } /* else dreg += K
2377 * dreg still needs precision before this insn
2378 */
2379 }
2380 } else if (class == BPF_LDX) {
2381 if (!(*reg_mask & dreg))
2382 return 0;
2383 *reg_mask &= ~dreg;
2384
2385 /* scalars can only be spilled into stack w/o losing precision.
2386 * Load from any other memory can be zero extended.
2387 * The desire to keep that precision is already indicated
2388 * by 'precise' mark in corresponding register of this state.
2389 * No further tracking necessary.
2390 */
2391 if (insn->src_reg != BPF_REG_FP)
2392 return 0;
2393 if (BPF_SIZE(insn->code) != BPF_DW)
2394 return 0;
2395
2396 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2397 * that [fp - off] slot contains scalar that needs to be
2398 * tracked with precision
2399 */
2400 spi = (-insn->off - 1) / BPF_REG_SIZE;
2401 if (spi >= 64) {
2402 verbose(env, "BUG spi %d\n", spi);
2403 WARN_ONCE(1, "verifier backtracking bug");
2404 return -EFAULT;
2405 }
2406 *stack_mask |= 1ull << spi;
b3b50f05 2407 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2408 if (*reg_mask & dreg)
b3b50f05 2409 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2410 * to access memory. It means backtracking
2411 * encountered a case of pointer subtraction.
2412 */
2413 return -ENOTSUPP;
2414 /* scalars can only be spilled into stack */
2415 if (insn->dst_reg != BPF_REG_FP)
2416 return 0;
2417 if (BPF_SIZE(insn->code) != BPF_DW)
2418 return 0;
2419 spi = (-insn->off - 1) / BPF_REG_SIZE;
2420 if (spi >= 64) {
2421 verbose(env, "BUG spi %d\n", spi);
2422 WARN_ONCE(1, "verifier backtracking bug");
2423 return -EFAULT;
2424 }
2425 if (!(*stack_mask & (1ull << spi)))
2426 return 0;
2427 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2428 if (class == BPF_STX)
2429 *reg_mask |= sreg;
b5dc0163
AS
2430 } else if (class == BPF_JMP || class == BPF_JMP32) {
2431 if (opcode == BPF_CALL) {
2432 if (insn->src_reg == BPF_PSEUDO_CALL)
2433 return -ENOTSUPP;
2434 /* regular helper call sets R0 */
2435 *reg_mask &= ~1;
2436 if (*reg_mask & 0x3f) {
2437 /* if backtracing was looking for registers R1-R5
2438 * they should have been found already.
2439 */
2440 verbose(env, "BUG regs %x\n", *reg_mask);
2441 WARN_ONCE(1, "verifier backtracking bug");
2442 return -EFAULT;
2443 }
2444 } else if (opcode == BPF_EXIT) {
2445 return -ENOTSUPP;
2446 }
2447 } else if (class == BPF_LD) {
2448 if (!(*reg_mask & dreg))
2449 return 0;
2450 *reg_mask &= ~dreg;
2451 /* It's ld_imm64 or ld_abs or ld_ind.
2452 * For ld_imm64 no further tracking of precision
2453 * into parent is necessary
2454 */
2455 if (mode == BPF_IND || mode == BPF_ABS)
2456 /* to be analyzed */
2457 return -ENOTSUPP;
b5dc0163
AS
2458 }
2459 return 0;
2460}
2461
2462/* the scalar precision tracking algorithm:
2463 * . at the start all registers have precise=false.
2464 * . scalar ranges are tracked as normal through alu and jmp insns.
2465 * . once precise value of the scalar register is used in:
2466 * . ptr + scalar alu
2467 * . if (scalar cond K|scalar)
2468 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2469 * backtrack through the verifier states and mark all registers and
2470 * stack slots with spilled constants that these scalar regisers
2471 * should be precise.
2472 * . during state pruning two registers (or spilled stack slots)
2473 * are equivalent if both are not precise.
2474 *
2475 * Note the verifier cannot simply walk register parentage chain,
2476 * since many different registers and stack slots could have been
2477 * used to compute single precise scalar.
2478 *
2479 * The approach of starting with precise=true for all registers and then
2480 * backtrack to mark a register as not precise when the verifier detects
2481 * that program doesn't care about specific value (e.g., when helper
2482 * takes register as ARG_ANYTHING parameter) is not safe.
2483 *
2484 * It's ok to walk single parentage chain of the verifier states.
2485 * It's possible that this backtracking will go all the way till 1st insn.
2486 * All other branches will be explored for needing precision later.
2487 *
2488 * The backtracking needs to deal with cases like:
2489 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2490 * r9 -= r8
2491 * r5 = r9
2492 * if r5 > 0x79f goto pc+7
2493 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2494 * r5 += 1
2495 * ...
2496 * call bpf_perf_event_output#25
2497 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2498 *
2499 * and this case:
2500 * r6 = 1
2501 * call foo // uses callee's r6 inside to compute r0
2502 * r0 += r6
2503 * if r0 == 0 goto
2504 *
2505 * to track above reg_mask/stack_mask needs to be independent for each frame.
2506 *
2507 * Also if parent's curframe > frame where backtracking started,
2508 * the verifier need to mark registers in both frames, otherwise callees
2509 * may incorrectly prune callers. This is similar to
2510 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2511 *
2512 * For now backtracking falls back into conservative marking.
2513 */
2514static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2515 struct bpf_verifier_state *st)
2516{
2517 struct bpf_func_state *func;
2518 struct bpf_reg_state *reg;
2519 int i, j;
2520
2521 /* big hammer: mark all scalars precise in this path.
2522 * pop_stack may still get !precise scalars.
2523 */
2524 for (; st; st = st->parent)
2525 for (i = 0; i <= st->curframe; i++) {
2526 func = st->frame[i];
2527 for (j = 0; j < BPF_REG_FP; j++) {
2528 reg = &func->regs[j];
2529 if (reg->type != SCALAR_VALUE)
2530 continue;
2531 reg->precise = true;
2532 }
2533 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2534 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2535 continue;
2536 reg = &func->stack[j].spilled_ptr;
2537 if (reg->type != SCALAR_VALUE)
2538 continue;
2539 reg->precise = true;
2540 }
2541 }
2542}
2543
a3ce685d
AS
2544static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2545 int spi)
b5dc0163
AS
2546{
2547 struct bpf_verifier_state *st = env->cur_state;
2548 int first_idx = st->first_insn_idx;
2549 int last_idx = env->insn_idx;
2550 struct bpf_func_state *func;
2551 struct bpf_reg_state *reg;
a3ce685d
AS
2552 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2553 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2554 bool skip_first = true;
a3ce685d 2555 bool new_marks = false;
b5dc0163
AS
2556 int i, err;
2557
2c78ee89 2558 if (!env->bpf_capable)
b5dc0163
AS
2559 return 0;
2560
2561 func = st->frame[st->curframe];
a3ce685d
AS
2562 if (regno >= 0) {
2563 reg = &func->regs[regno];
2564 if (reg->type != SCALAR_VALUE) {
2565 WARN_ONCE(1, "backtracing misuse");
2566 return -EFAULT;
2567 }
2568 if (!reg->precise)
2569 new_marks = true;
2570 else
2571 reg_mask = 0;
2572 reg->precise = true;
b5dc0163 2573 }
b5dc0163 2574
a3ce685d 2575 while (spi >= 0) {
27113c59 2576 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2577 stack_mask = 0;
2578 break;
2579 }
2580 reg = &func->stack[spi].spilled_ptr;
2581 if (reg->type != SCALAR_VALUE) {
2582 stack_mask = 0;
2583 break;
2584 }
2585 if (!reg->precise)
2586 new_marks = true;
2587 else
2588 stack_mask = 0;
2589 reg->precise = true;
2590 break;
2591 }
2592
2593 if (!new_marks)
2594 return 0;
2595 if (!reg_mask && !stack_mask)
2596 return 0;
b5dc0163
AS
2597 for (;;) {
2598 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2599 u32 history = st->jmp_history_cnt;
2600
2601 if (env->log.level & BPF_LOG_LEVEL)
2602 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2603 for (i = last_idx;;) {
2604 if (skip_first) {
2605 err = 0;
2606 skip_first = false;
2607 } else {
2608 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2609 }
2610 if (err == -ENOTSUPP) {
2611 mark_all_scalars_precise(env, st);
2612 return 0;
2613 } else if (err) {
2614 return err;
2615 }
2616 if (!reg_mask && !stack_mask)
2617 /* Found assignment(s) into tracked register in this state.
2618 * Since this state is already marked, just return.
2619 * Nothing to be tracked further in the parent state.
2620 */
2621 return 0;
2622 if (i == first_idx)
2623 break;
2624 i = get_prev_insn_idx(st, i, &history);
2625 if (i >= env->prog->len) {
2626 /* This can happen if backtracking reached insn 0
2627 * and there are still reg_mask or stack_mask
2628 * to backtrack.
2629 * It means the backtracking missed the spot where
2630 * particular register was initialized with a constant.
2631 */
2632 verbose(env, "BUG backtracking idx %d\n", i);
2633 WARN_ONCE(1, "verifier backtracking bug");
2634 return -EFAULT;
2635 }
2636 }
2637 st = st->parent;
2638 if (!st)
2639 break;
2640
a3ce685d 2641 new_marks = false;
b5dc0163
AS
2642 func = st->frame[st->curframe];
2643 bitmap_from_u64(mask, reg_mask);
2644 for_each_set_bit(i, mask, 32) {
2645 reg = &func->regs[i];
a3ce685d
AS
2646 if (reg->type != SCALAR_VALUE) {
2647 reg_mask &= ~(1u << i);
b5dc0163 2648 continue;
a3ce685d 2649 }
b5dc0163
AS
2650 if (!reg->precise)
2651 new_marks = true;
2652 reg->precise = true;
2653 }
2654
2655 bitmap_from_u64(mask, stack_mask);
2656 for_each_set_bit(i, mask, 64) {
2657 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2658 /* the sequence of instructions:
2659 * 2: (bf) r3 = r10
2660 * 3: (7b) *(u64 *)(r3 -8) = r0
2661 * 4: (79) r4 = *(u64 *)(r10 -8)
2662 * doesn't contain jmps. It's backtracked
2663 * as a single block.
2664 * During backtracking insn 3 is not recognized as
2665 * stack access, so at the end of backtracking
2666 * stack slot fp-8 is still marked in stack_mask.
2667 * However the parent state may not have accessed
2668 * fp-8 and it's "unallocated" stack space.
2669 * In such case fallback to conservative.
b5dc0163 2670 */
2339cd6c
AS
2671 mark_all_scalars_precise(env, st);
2672 return 0;
b5dc0163
AS
2673 }
2674
27113c59 2675 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 2676 stack_mask &= ~(1ull << i);
b5dc0163 2677 continue;
a3ce685d 2678 }
b5dc0163 2679 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2680 if (reg->type != SCALAR_VALUE) {
2681 stack_mask &= ~(1ull << i);
b5dc0163 2682 continue;
a3ce685d 2683 }
b5dc0163
AS
2684 if (!reg->precise)
2685 new_marks = true;
2686 reg->precise = true;
2687 }
2688 if (env->log.level & BPF_LOG_LEVEL) {
2689 print_verifier_state(env, func);
2690 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2691 new_marks ? "didn't have" : "already had",
2692 reg_mask, stack_mask);
2693 }
2694
a3ce685d
AS
2695 if (!reg_mask && !stack_mask)
2696 break;
b5dc0163
AS
2697 if (!new_marks)
2698 break;
2699
2700 last_idx = st->last_insn_idx;
2701 first_idx = st->first_insn_idx;
2702 }
2703 return 0;
2704}
2705
a3ce685d
AS
2706static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2707{
2708 return __mark_chain_precision(env, regno, -1);
2709}
2710
2711static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2712{
2713 return __mark_chain_precision(env, -1, spi);
2714}
b5dc0163 2715
1be7f75d
AS
2716static bool is_spillable_regtype(enum bpf_reg_type type)
2717{
2718 switch (type) {
2719 case PTR_TO_MAP_VALUE:
2720 case PTR_TO_MAP_VALUE_OR_NULL:
2721 case PTR_TO_STACK:
2722 case PTR_TO_CTX:
969bf05e 2723 case PTR_TO_PACKET:
de8f3a83 2724 case PTR_TO_PACKET_META:
969bf05e 2725 case PTR_TO_PACKET_END:
d58e468b 2726 case PTR_TO_FLOW_KEYS:
1be7f75d 2727 case CONST_PTR_TO_MAP:
c64b7983
JS
2728 case PTR_TO_SOCKET:
2729 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2730 case PTR_TO_SOCK_COMMON:
2731 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2732 case PTR_TO_TCP_SOCK:
2733 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2734 case PTR_TO_XDP_SOCK:
65726b5b 2735 case PTR_TO_BTF_ID:
b121b341 2736 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2737 case PTR_TO_RDONLY_BUF:
2738 case PTR_TO_RDONLY_BUF_OR_NULL:
2739 case PTR_TO_RDWR_BUF:
2740 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2741 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2742 case PTR_TO_MEM:
2743 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2744 case PTR_TO_FUNC:
2745 case PTR_TO_MAP_KEY:
1be7f75d
AS
2746 return true;
2747 default:
2748 return false;
2749 }
2750}
2751
cc2b14d5
AS
2752/* Does this register contain a constant zero? */
2753static bool register_is_null(struct bpf_reg_state *reg)
2754{
2755 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2756}
2757
f7cf25b2
AS
2758static bool register_is_const(struct bpf_reg_state *reg)
2759{
2760 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2761}
2762
5689d49b
YS
2763static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2764{
2765 return tnum_is_unknown(reg->var_off) &&
2766 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2767 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2768 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2769 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2770}
2771
2772static bool register_is_bounded(struct bpf_reg_state *reg)
2773{
2774 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2775}
2776
6e7e63cb
JH
2777static bool __is_pointer_value(bool allow_ptr_leaks,
2778 const struct bpf_reg_state *reg)
2779{
2780 if (allow_ptr_leaks)
2781 return false;
2782
2783 return reg->type != SCALAR_VALUE;
2784}
2785
f7cf25b2 2786static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
2787 int spi, struct bpf_reg_state *reg,
2788 int size)
f7cf25b2
AS
2789{
2790 int i;
2791
2792 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
2793 if (size == BPF_REG_SIZE)
2794 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 2795
354e8f19
MKL
2796 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2797 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 2798
354e8f19
MKL
2799 /* size < 8 bytes spill */
2800 for (; i; i--)
2801 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
2802}
2803
01f810ac 2804/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2805 * stack boundary and alignment are checked in check_mem_access()
2806 */
01f810ac
AM
2807static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2808 /* stack frame we're writing to */
2809 struct bpf_func_state *state,
2810 int off, int size, int value_regno,
2811 int insn_idx)
17a52670 2812{
f4d7e40a 2813 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2814 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2815 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2816 struct bpf_reg_state *reg = NULL;
638f5b90 2817
c69431aa 2818 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
2819 if (err)
2820 return err;
9c399760
AS
2821 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2822 * so it's aligned access and [off, off + size) are within stack limits
2823 */
638f5b90
AS
2824 if (!env->allow_ptr_leaks &&
2825 state->stack[spi].slot_type[0] == STACK_SPILL &&
2826 size != BPF_REG_SIZE) {
2827 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2828 return -EACCES;
2829 }
17a52670 2830
f4d7e40a 2831 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2832 if (value_regno >= 0)
2833 reg = &cur->regs[value_regno];
2039f26f
DB
2834 if (!env->bypass_spec_v4) {
2835 bool sanitize = reg && is_spillable_regtype(reg->type);
2836
2837 for (i = 0; i < size; i++) {
2838 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2839 sanitize = true;
2840 break;
2841 }
2842 }
2843
2844 if (sanitize)
2845 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2846 }
17a52670 2847
354e8f19 2848 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 2849 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2850 if (dst_reg != BPF_REG_FP) {
2851 /* The backtracking logic can only recognize explicit
2852 * stack slot address like [fp - 8]. Other spill of
8fb33b60 2853 * scalar via different register has to be conservative.
b5dc0163
AS
2854 * Backtrack from here and mark all registers as precise
2855 * that contributed into 'reg' being a constant.
2856 */
2857 err = mark_chain_precision(env, value_regno);
2858 if (err)
2859 return err;
2860 }
354e8f19 2861 save_register_state(state, spi, reg, size);
f7cf25b2 2862 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2863 /* register containing pointer is being spilled into stack */
9c399760 2864 if (size != BPF_REG_SIZE) {
f7cf25b2 2865 verbose_linfo(env, insn_idx, "; ");
61bd5218 2866 verbose(env, "invalid size of register spill\n");
17a52670
AS
2867 return -EACCES;
2868 }
f7cf25b2 2869 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2870 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2871 return -EINVAL;
2872 }
354e8f19 2873 save_register_state(state, spi, reg, size);
9c399760 2874 } else {
cc2b14d5
AS
2875 u8 type = STACK_MISC;
2876
679c782d
EC
2877 /* regular write of data into stack destroys any spilled ptr */
2878 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 2879 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 2880 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 2881 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 2882 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 2883
cc2b14d5
AS
2884 /* only mark the slot as written if all 8 bytes were written
2885 * otherwise read propagation may incorrectly stop too soon
2886 * when stack slots are partially written.
2887 * This heuristic means that read propagation will be
2888 * conservative, since it will add reg_live_read marks
2889 * to stack slots all the way to first state when programs
2890 * writes+reads less than 8 bytes
2891 */
2892 if (size == BPF_REG_SIZE)
2893 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2894
2895 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2896 if (reg && register_is_null(reg)) {
2897 /* backtracking doesn't work for STACK_ZERO yet. */
2898 err = mark_chain_precision(env, value_regno);
2899 if (err)
2900 return err;
cc2b14d5 2901 type = STACK_ZERO;
b5dc0163 2902 }
cc2b14d5 2903
0bae2d4d 2904 /* Mark slots affected by this stack write. */
9c399760 2905 for (i = 0; i < size; i++)
638f5b90 2906 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2907 type;
17a52670
AS
2908 }
2909 return 0;
2910}
2911
01f810ac
AM
2912/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2913 * known to contain a variable offset.
2914 * This function checks whether the write is permitted and conservatively
2915 * tracks the effects of the write, considering that each stack slot in the
2916 * dynamic range is potentially written to.
2917 *
2918 * 'off' includes 'regno->off'.
2919 * 'value_regno' can be -1, meaning that an unknown value is being written to
2920 * the stack.
2921 *
2922 * Spilled pointers in range are not marked as written because we don't know
2923 * what's going to be actually written. This means that read propagation for
2924 * future reads cannot be terminated by this write.
2925 *
2926 * For privileged programs, uninitialized stack slots are considered
2927 * initialized by this write (even though we don't know exactly what offsets
2928 * are going to be written to). The idea is that we don't want the verifier to
2929 * reject future reads that access slots written to through variable offsets.
2930 */
2931static int check_stack_write_var_off(struct bpf_verifier_env *env,
2932 /* func where register points to */
2933 struct bpf_func_state *state,
2934 int ptr_regno, int off, int size,
2935 int value_regno, int insn_idx)
2936{
2937 struct bpf_func_state *cur; /* state of the current function */
2938 int min_off, max_off;
2939 int i, err;
2940 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2941 bool writing_zero = false;
2942 /* set if the fact that we're writing a zero is used to let any
2943 * stack slots remain STACK_ZERO
2944 */
2945 bool zero_used = false;
2946
2947 cur = env->cur_state->frame[env->cur_state->curframe];
2948 ptr_reg = &cur->regs[ptr_regno];
2949 min_off = ptr_reg->smin_value + off;
2950 max_off = ptr_reg->smax_value + off + size;
2951 if (value_regno >= 0)
2952 value_reg = &cur->regs[value_regno];
2953 if (value_reg && register_is_null(value_reg))
2954 writing_zero = true;
2955
c69431aa 2956 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
2957 if (err)
2958 return err;
2959
2960
2961 /* Variable offset writes destroy any spilled pointers in range. */
2962 for (i = min_off; i < max_off; i++) {
2963 u8 new_type, *stype;
2964 int slot, spi;
2965
2966 slot = -i - 1;
2967 spi = slot / BPF_REG_SIZE;
2968 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2969
2970 if (!env->allow_ptr_leaks
2971 && *stype != NOT_INIT
2972 && *stype != SCALAR_VALUE) {
2973 /* Reject the write if there's are spilled pointers in
2974 * range. If we didn't reject here, the ptr status
2975 * would be erased below (even though not all slots are
2976 * actually overwritten), possibly opening the door to
2977 * leaks.
2978 */
2979 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2980 insn_idx, i);
2981 return -EINVAL;
2982 }
2983
2984 /* Erase all spilled pointers. */
2985 state->stack[spi].spilled_ptr.type = NOT_INIT;
2986
2987 /* Update the slot type. */
2988 new_type = STACK_MISC;
2989 if (writing_zero && *stype == STACK_ZERO) {
2990 new_type = STACK_ZERO;
2991 zero_used = true;
2992 }
2993 /* If the slot is STACK_INVALID, we check whether it's OK to
2994 * pretend that it will be initialized by this write. The slot
2995 * might not actually be written to, and so if we mark it as
2996 * initialized future reads might leak uninitialized memory.
2997 * For privileged programs, we will accept such reads to slots
2998 * that may or may not be written because, if we're reject
2999 * them, the error would be too confusing.
3000 */
3001 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3002 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3003 insn_idx, i);
3004 return -EINVAL;
3005 }
3006 *stype = new_type;
3007 }
3008 if (zero_used) {
3009 /* backtracking doesn't work for STACK_ZERO yet. */
3010 err = mark_chain_precision(env, value_regno);
3011 if (err)
3012 return err;
3013 }
3014 return 0;
3015}
3016
3017/* When register 'dst_regno' is assigned some values from stack[min_off,
3018 * max_off), we set the register's type according to the types of the
3019 * respective stack slots. If all the stack values are known to be zeros, then
3020 * so is the destination reg. Otherwise, the register is considered to be
3021 * SCALAR. This function does not deal with register filling; the caller must
3022 * ensure that all spilled registers in the stack range have been marked as
3023 * read.
3024 */
3025static void mark_reg_stack_read(struct bpf_verifier_env *env,
3026 /* func where src register points to */
3027 struct bpf_func_state *ptr_state,
3028 int min_off, int max_off, int dst_regno)
3029{
3030 struct bpf_verifier_state *vstate = env->cur_state;
3031 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3032 int i, slot, spi;
3033 u8 *stype;
3034 int zeros = 0;
3035
3036 for (i = min_off; i < max_off; i++) {
3037 slot = -i - 1;
3038 spi = slot / BPF_REG_SIZE;
3039 stype = ptr_state->stack[spi].slot_type;
3040 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3041 break;
3042 zeros++;
3043 }
3044 if (zeros == max_off - min_off) {
3045 /* any access_size read into register is zero extended,
3046 * so the whole register == const_zero
3047 */
3048 __mark_reg_const_zero(&state->regs[dst_regno]);
3049 /* backtracking doesn't support STACK_ZERO yet,
3050 * so mark it precise here, so that later
3051 * backtracking can stop here.
3052 * Backtracking may not need this if this register
3053 * doesn't participate in pointer adjustment.
3054 * Forward propagation of precise flag is not
3055 * necessary either. This mark is only to stop
3056 * backtracking. Any register that contributed
3057 * to const 0 was marked precise before spill.
3058 */
3059 state->regs[dst_regno].precise = true;
3060 } else {
3061 /* have read misc data from the stack */
3062 mark_reg_unknown(env, state->regs, dst_regno);
3063 }
3064 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3065}
3066
3067/* Read the stack at 'off' and put the results into the register indicated by
3068 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3069 * spilled reg.
3070 *
3071 * 'dst_regno' can be -1, meaning that the read value is not going to a
3072 * register.
3073 *
3074 * The access is assumed to be within the current stack bounds.
3075 */
3076static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3077 /* func where src register points to */
3078 struct bpf_func_state *reg_state,
3079 int off, int size, int dst_regno)
17a52670 3080{
f4d7e40a
AS
3081 struct bpf_verifier_state *vstate = env->cur_state;
3082 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3083 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3084 struct bpf_reg_state *reg;
354e8f19 3085 u8 *stype, type;
17a52670 3086
f4d7e40a 3087 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3088 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3089
27113c59 3090 if (is_spilled_reg(&reg_state->stack[spi])) {
9c399760 3091 if (size != BPF_REG_SIZE) {
354e8f19
MKL
3092 u8 scalar_size = 0;
3093
f7cf25b2
AS
3094 if (reg->type != SCALAR_VALUE) {
3095 verbose_linfo(env, env->insn_idx, "; ");
3096 verbose(env, "invalid size of register fill\n");
3097 return -EACCES;
3098 }
354e8f19
MKL
3099
3100 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3101 if (dst_regno < 0)
3102 return 0;
3103
3104 for (i = BPF_REG_SIZE; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3105 scalar_size++;
3106
3107 if (!(off % BPF_REG_SIZE) && size == scalar_size) {
3108 /* The earlier check_reg_arg() has decided the
3109 * subreg_def for this insn. Save it first.
3110 */
3111 s32 subreg_def = state->regs[dst_regno].subreg_def;
3112
3113 state->regs[dst_regno] = *reg;
3114 state->regs[dst_regno].subreg_def = subreg_def;
3115 } else {
3116 for (i = 0; i < size; i++) {
3117 type = stype[(slot - i) % BPF_REG_SIZE];
3118 if (type == STACK_SPILL)
3119 continue;
3120 if (type == STACK_MISC)
3121 continue;
3122 verbose(env, "invalid read from stack off %d+%d size %d\n",
3123 off, i, size);
3124 return -EACCES;
3125 }
01f810ac 3126 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3127 }
354e8f19 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3129 return 0;
17a52670 3130 }
9c399760 3131 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 3132 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 3133 verbose(env, "corrupted spill memory\n");
17a52670
AS
3134 return -EACCES;
3135 }
3136 }
3137
01f810ac 3138 if (dst_regno >= 0) {
17a52670 3139 /* restore register state from stack */
01f810ac 3140 state->regs[dst_regno] = *reg;
2f18f62e
AS
3141 /* mark reg as written since spilled pointer state likely
3142 * has its liveness marks cleared by is_state_visited()
3143 * which resets stack/reg liveness for state transitions
3144 */
01f810ac 3145 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3146 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3147 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3148 * it is acceptable to use this value as a SCALAR_VALUE
3149 * (e.g. for XADD).
3150 * We must not allow unprivileged callers to do that
3151 * with spilled pointers.
3152 */
3153 verbose(env, "leaking pointer from stack off %d\n",
3154 off);
3155 return -EACCES;
dc503a8a 3156 }
f7cf25b2 3157 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3158 } else {
3159 for (i = 0; i < size; i++) {
01f810ac
AM
3160 type = stype[(slot - i) % BPF_REG_SIZE];
3161 if (type == STACK_MISC)
cc2b14d5 3162 continue;
01f810ac 3163 if (type == STACK_ZERO)
cc2b14d5 3164 continue;
cc2b14d5
AS
3165 verbose(env, "invalid read from stack off %d+%d size %d\n",
3166 off, i, size);
3167 return -EACCES;
3168 }
f7cf25b2 3169 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3170 if (dst_regno >= 0)
3171 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3172 }
f7cf25b2 3173 return 0;
17a52670
AS
3174}
3175
01f810ac
AM
3176enum stack_access_src {
3177 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3178 ACCESS_HELPER = 2, /* the access is performed by a helper */
3179};
3180
3181static int check_stack_range_initialized(struct bpf_verifier_env *env,
3182 int regno, int off, int access_size,
3183 bool zero_size_allowed,
3184 enum stack_access_src type,
3185 struct bpf_call_arg_meta *meta);
3186
3187static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3188{
3189 return cur_regs(env) + regno;
3190}
3191
3192/* Read the stack at 'ptr_regno + off' and put the result into the register
3193 * 'dst_regno'.
3194 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3195 * but not its variable offset.
3196 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3197 *
3198 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3199 * filling registers (i.e. reads of spilled register cannot be detected when
3200 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3201 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3202 * offset; for a fixed offset check_stack_read_fixed_off should be used
3203 * instead.
3204 */
3205static int check_stack_read_var_off(struct bpf_verifier_env *env,
3206 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3207{
01f810ac
AM
3208 /* The state of the source register. */
3209 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3210 struct bpf_func_state *ptr_state = func(env, reg);
3211 int err;
3212 int min_off, max_off;
3213
3214 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3215 */
01f810ac
AM
3216 err = check_stack_range_initialized(env, ptr_regno, off, size,
3217 false, ACCESS_DIRECT, NULL);
3218 if (err)
3219 return err;
3220
3221 min_off = reg->smin_value + off;
3222 max_off = reg->smax_value + off;
3223 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3224 return 0;
3225}
3226
3227/* check_stack_read dispatches to check_stack_read_fixed_off or
3228 * check_stack_read_var_off.
3229 *
3230 * The caller must ensure that the offset falls within the allocated stack
3231 * bounds.
3232 *
3233 * 'dst_regno' is a register which will receive the value from the stack. It
3234 * can be -1, meaning that the read value is not going to a register.
3235 */
3236static int check_stack_read(struct bpf_verifier_env *env,
3237 int ptr_regno, int off, int size,
3238 int dst_regno)
3239{
3240 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3241 struct bpf_func_state *state = func(env, reg);
3242 int err;
3243 /* Some accesses are only permitted with a static offset. */
3244 bool var_off = !tnum_is_const(reg->var_off);
3245
3246 /* The offset is required to be static when reads don't go to a
3247 * register, in order to not leak pointers (see
3248 * check_stack_read_fixed_off).
3249 */
3250 if (dst_regno < 0 && var_off) {
e4298d25
DB
3251 char tn_buf[48];
3252
3253 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3254 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3255 tn_buf, off, size);
3256 return -EACCES;
3257 }
01f810ac
AM
3258 /* Variable offset is prohibited for unprivileged mode for simplicity
3259 * since it requires corresponding support in Spectre masking for stack
3260 * ALU. See also retrieve_ptr_limit().
3261 */
3262 if (!env->bypass_spec_v1 && var_off) {
3263 char tn_buf[48];
e4298d25 3264
01f810ac
AM
3265 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3266 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3267 ptr_regno, tn_buf);
e4298d25
DB
3268 return -EACCES;
3269 }
3270
01f810ac
AM
3271 if (!var_off) {
3272 off += reg->var_off.value;
3273 err = check_stack_read_fixed_off(env, state, off, size,
3274 dst_regno);
3275 } else {
3276 /* Variable offset stack reads need more conservative handling
3277 * than fixed offset ones. Note that dst_regno >= 0 on this
3278 * branch.
3279 */
3280 err = check_stack_read_var_off(env, ptr_regno, off, size,
3281 dst_regno);
3282 }
3283 return err;
3284}
3285
3286
3287/* check_stack_write dispatches to check_stack_write_fixed_off or
3288 * check_stack_write_var_off.
3289 *
3290 * 'ptr_regno' is the register used as a pointer into the stack.
3291 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3292 * 'value_regno' is the register whose value we're writing to the stack. It can
3293 * be -1, meaning that we're not writing from a register.
3294 *
3295 * The caller must ensure that the offset falls within the maximum stack size.
3296 */
3297static int check_stack_write(struct bpf_verifier_env *env,
3298 int ptr_regno, int off, int size,
3299 int value_regno, int insn_idx)
3300{
3301 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3302 struct bpf_func_state *state = func(env, reg);
3303 int err;
3304
3305 if (tnum_is_const(reg->var_off)) {
3306 off += reg->var_off.value;
3307 err = check_stack_write_fixed_off(env, state, off, size,
3308 value_regno, insn_idx);
3309 } else {
3310 /* Variable offset stack reads need more conservative handling
3311 * than fixed offset ones.
3312 */
3313 err = check_stack_write_var_off(env, state,
3314 ptr_regno, off, size,
3315 value_regno, insn_idx);
3316 }
3317 return err;
e4298d25
DB
3318}
3319
591fe988
DB
3320static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3321 int off, int size, enum bpf_access_type type)
3322{
3323 struct bpf_reg_state *regs = cur_regs(env);
3324 struct bpf_map *map = regs[regno].map_ptr;
3325 u32 cap = bpf_map_flags_to_cap(map);
3326
3327 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3328 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3329 map->value_size, off, size);
3330 return -EACCES;
3331 }
3332
3333 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3334 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3335 map->value_size, off, size);
3336 return -EACCES;
3337 }
3338
3339 return 0;
3340}
3341
457f4436
AN
3342/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3343static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3344 int off, int size, u32 mem_size,
3345 bool zero_size_allowed)
17a52670 3346{
457f4436
AN
3347 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3348 struct bpf_reg_state *reg;
3349
3350 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3351 return 0;
17a52670 3352
457f4436
AN
3353 reg = &cur_regs(env)[regno];
3354 switch (reg->type) {
69c087ba
YS
3355 case PTR_TO_MAP_KEY:
3356 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3357 mem_size, off, size);
3358 break;
457f4436 3359 case PTR_TO_MAP_VALUE:
61bd5218 3360 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3361 mem_size, off, size);
3362 break;
3363 case PTR_TO_PACKET:
3364 case PTR_TO_PACKET_META:
3365 case PTR_TO_PACKET_END:
3366 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3367 off, size, regno, reg->id, off, mem_size);
3368 break;
3369 case PTR_TO_MEM:
3370 default:
3371 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3372 mem_size, off, size);
17a52670 3373 }
457f4436
AN
3374
3375 return -EACCES;
17a52670
AS
3376}
3377
457f4436
AN
3378/* check read/write into a memory region with possible variable offset */
3379static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3380 int off, int size, u32 mem_size,
3381 bool zero_size_allowed)
dbcfe5f7 3382{
f4d7e40a
AS
3383 struct bpf_verifier_state *vstate = env->cur_state;
3384 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3385 struct bpf_reg_state *reg = &state->regs[regno];
3386 int err;
3387
457f4436 3388 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3389 * need to try adding each of min_value and max_value to off
3390 * to make sure our theoretical access will be safe.
dbcfe5f7 3391 */
06ee7115 3392 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3393 print_verifier_state(env, state);
b7137c4e 3394
dbcfe5f7
GB
3395 /* The minimum value is only important with signed
3396 * comparisons where we can't assume the floor of a
3397 * value is 0. If we are using signed variables for our
3398 * index'es we need to make sure that whatever we use
3399 * will have a set floor within our range.
3400 */
b7137c4e
DB
3401 if (reg->smin_value < 0 &&
3402 (reg->smin_value == S64_MIN ||
3403 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3404 reg->smin_value + off < 0)) {
61bd5218 3405 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3406 regno);
3407 return -EACCES;
3408 }
457f4436
AN
3409 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3410 mem_size, zero_size_allowed);
dbcfe5f7 3411 if (err) {
457f4436 3412 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3413 regno);
dbcfe5f7
GB
3414 return err;
3415 }
3416
b03c9f9f
EC
3417 /* If we haven't set a max value then we need to bail since we can't be
3418 * sure we won't do bad things.
3419 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3420 */
b03c9f9f 3421 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3422 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3423 regno);
3424 return -EACCES;
3425 }
457f4436
AN
3426 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3427 mem_size, zero_size_allowed);
3428 if (err) {
3429 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3430 regno);
457f4436
AN
3431 return err;
3432 }
3433
3434 return 0;
3435}
d83525ca 3436
457f4436
AN
3437/* check read/write into a map element with possible variable offset */
3438static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3439 int off, int size, bool zero_size_allowed)
3440{
3441 struct bpf_verifier_state *vstate = env->cur_state;
3442 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3443 struct bpf_reg_state *reg = &state->regs[regno];
3444 struct bpf_map *map = reg->map_ptr;
3445 int err;
3446
3447 err = check_mem_region_access(env, regno, off, size, map->value_size,
3448 zero_size_allowed);
3449 if (err)
3450 return err;
3451
3452 if (map_value_has_spin_lock(map)) {
3453 u32 lock = map->spin_lock_off;
d83525ca
AS
3454
3455 /* if any part of struct bpf_spin_lock can be touched by
3456 * load/store reject this program.
3457 * To check that [x1, x2) overlaps with [y1, y2)
3458 * it is sufficient to check x1 < y2 && y1 < x2.
3459 */
3460 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3461 lock < reg->umax_value + off + size) {
3462 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3463 return -EACCES;
3464 }
3465 }
68134668
AS
3466 if (map_value_has_timer(map)) {
3467 u32 t = map->timer_off;
3468
3469 if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3470 t < reg->umax_value + off + size) {
3471 verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3472 return -EACCES;
3473 }
3474 }
f1174f77 3475 return err;
dbcfe5f7
GB
3476}
3477
969bf05e
AS
3478#define MAX_PACKET_OFF 0xffff
3479
7e40781c
UP
3480static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3481{
3aac1ead 3482 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3483}
3484
58e2af8b 3485static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3486 const struct bpf_call_arg_meta *meta,
3487 enum bpf_access_type t)
4acf6c0b 3488{
7e40781c
UP
3489 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3490
3491 switch (prog_type) {
5d66fa7d 3492 /* Program types only with direct read access go here! */
3a0af8fd
TG
3493 case BPF_PROG_TYPE_LWT_IN:
3494 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3495 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3496 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3497 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3498 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3499 if (t == BPF_WRITE)
3500 return false;
8731745e 3501 fallthrough;
5d66fa7d
DB
3502
3503 /* Program types with direct read + write access go here! */
36bbef52
DB
3504 case BPF_PROG_TYPE_SCHED_CLS:
3505 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3506 case BPF_PROG_TYPE_XDP:
3a0af8fd 3507 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3508 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3509 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3510 if (meta)
3511 return meta->pkt_access;
3512
3513 env->seen_direct_write = true;
4acf6c0b 3514 return true;
0d01da6a
SF
3515
3516 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3517 if (t == BPF_WRITE)
3518 env->seen_direct_write = true;
3519
3520 return true;
3521
4acf6c0b
BB
3522 default:
3523 return false;
3524 }
3525}
3526
f1174f77 3527static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3528 int size, bool zero_size_allowed)
f1174f77 3529{
638f5b90 3530 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3531 struct bpf_reg_state *reg = &regs[regno];
3532 int err;
3533
3534 /* We may have added a variable offset to the packet pointer; but any
3535 * reg->range we have comes after that. We are only checking the fixed
3536 * offset.
3537 */
3538
3539 /* We don't allow negative numbers, because we aren't tracking enough
3540 * detail to prove they're safe.
3541 */
b03c9f9f 3542 if (reg->smin_value < 0) {
61bd5218 3543 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3544 regno);
3545 return -EACCES;
3546 }
6d94e741
AS
3547
3548 err = reg->range < 0 ? -EINVAL :
3549 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3550 zero_size_allowed);
f1174f77 3551 if (err) {
61bd5218 3552 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3553 return err;
3554 }
e647815a 3555
457f4436 3556 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3557 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3558 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3559 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3560 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3561 */
3562 env->prog->aux->max_pkt_offset =
3563 max_t(u32, env->prog->aux->max_pkt_offset,
3564 off + reg->umax_value + size - 1);
3565
f1174f77
EC
3566 return err;
3567}
3568
3569/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3570static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3571 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3572 struct btf **btf, u32 *btf_id)
17a52670 3573{
f96da094
DB
3574 struct bpf_insn_access_aux info = {
3575 .reg_type = *reg_type,
9e15db66 3576 .log = &env->log,
f96da094 3577 };
31fd8581 3578
4f9218aa 3579 if (env->ops->is_valid_access &&
5e43f899 3580 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3581 /* A non zero info.ctx_field_size indicates that this field is a
3582 * candidate for later verifier transformation to load the whole
3583 * field and then apply a mask when accessed with a narrower
3584 * access than actual ctx access size. A zero info.ctx_field_size
3585 * will only allow for whole field access and rejects any other
3586 * type of narrower access.
31fd8581 3587 */
23994631 3588 *reg_type = info.reg_type;
31fd8581 3589
22dc4a0f
AN
3590 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3591 *btf = info.btf;
9e15db66 3592 *btf_id = info.btf_id;
22dc4a0f 3593 } else {
9e15db66 3594 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3595 }
32bbe007
AS
3596 /* remember the offset of last byte accessed in ctx */
3597 if (env->prog->aux->max_ctx_offset < off + size)
3598 env->prog->aux->max_ctx_offset = off + size;
17a52670 3599 return 0;
32bbe007 3600 }
17a52670 3601
61bd5218 3602 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3603 return -EACCES;
3604}
3605
d58e468b
PP
3606static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3607 int size)
3608{
3609 if (size < 0 || off < 0 ||
3610 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3611 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3612 off, size);
3613 return -EACCES;
3614 }
3615 return 0;
3616}
3617
5f456649
MKL
3618static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3619 u32 regno, int off, int size,
3620 enum bpf_access_type t)
c64b7983
JS
3621{
3622 struct bpf_reg_state *regs = cur_regs(env);
3623 struct bpf_reg_state *reg = &regs[regno];
5f456649 3624 struct bpf_insn_access_aux info = {};
46f8bc92 3625 bool valid;
c64b7983
JS
3626
3627 if (reg->smin_value < 0) {
3628 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3629 regno);
3630 return -EACCES;
3631 }
3632
46f8bc92
MKL
3633 switch (reg->type) {
3634 case PTR_TO_SOCK_COMMON:
3635 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3636 break;
3637 case PTR_TO_SOCKET:
3638 valid = bpf_sock_is_valid_access(off, size, t, &info);
3639 break;
655a51e5
MKL
3640 case PTR_TO_TCP_SOCK:
3641 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3642 break;
fada7fdc
JL
3643 case PTR_TO_XDP_SOCK:
3644 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3645 break;
46f8bc92
MKL
3646 default:
3647 valid = false;
c64b7983
JS
3648 }
3649
5f456649 3650
46f8bc92
MKL
3651 if (valid) {
3652 env->insn_aux_data[insn_idx].ctx_field_size =
3653 info.ctx_field_size;
3654 return 0;
3655 }
3656
3657 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3658 regno, reg_type_str[reg->type], off, size);
3659
3660 return -EACCES;
c64b7983
JS
3661}
3662
4cabc5b1
DB
3663static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3664{
2a159c6f 3665 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3666}
3667
f37a8cb8
DB
3668static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3669{
2a159c6f 3670 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3671
46f8bc92
MKL
3672 return reg->type == PTR_TO_CTX;
3673}
3674
3675static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3676{
3677 const struct bpf_reg_state *reg = reg_state(env, regno);
3678
3679 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3680}
3681
ca369602
DB
3682static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3683{
2a159c6f 3684 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3685
3686 return type_is_pkt_pointer(reg->type);
3687}
3688
4b5defde
DB
3689static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3690{
3691 const struct bpf_reg_state *reg = reg_state(env, regno);
3692
3693 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3694 return reg->type == PTR_TO_FLOW_KEYS;
3695}
3696
61bd5218
JK
3697static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3698 const struct bpf_reg_state *reg,
d1174416 3699 int off, int size, bool strict)
969bf05e 3700{
f1174f77 3701 struct tnum reg_off;
e07b98d9 3702 int ip_align;
d1174416
DM
3703
3704 /* Byte size accesses are always allowed. */
3705 if (!strict || size == 1)
3706 return 0;
3707
e4eda884
DM
3708 /* For platforms that do not have a Kconfig enabling
3709 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3710 * NET_IP_ALIGN is universally set to '2'. And on platforms
3711 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3712 * to this code only in strict mode where we want to emulate
3713 * the NET_IP_ALIGN==2 checking. Therefore use an
3714 * unconditional IP align value of '2'.
e07b98d9 3715 */
e4eda884 3716 ip_align = 2;
f1174f77
EC
3717
3718 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3719 if (!tnum_is_aligned(reg_off, size)) {
3720 char tn_buf[48];
3721
3722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3723 verbose(env,
3724 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3725 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3726 return -EACCES;
3727 }
79adffcd 3728
969bf05e
AS
3729 return 0;
3730}
3731
61bd5218
JK
3732static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3733 const struct bpf_reg_state *reg,
f1174f77
EC
3734 const char *pointer_desc,
3735 int off, int size, bool strict)
79adffcd 3736{
f1174f77
EC
3737 struct tnum reg_off;
3738
3739 /* Byte size accesses are always allowed. */
3740 if (!strict || size == 1)
3741 return 0;
3742
3743 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3744 if (!tnum_is_aligned(reg_off, size)) {
3745 char tn_buf[48];
3746
3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3748 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3749 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3750 return -EACCES;
3751 }
3752
969bf05e
AS
3753 return 0;
3754}
3755
e07b98d9 3756static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3757 const struct bpf_reg_state *reg, int off,
3758 int size, bool strict_alignment_once)
79adffcd 3759{
ca369602 3760 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3761 const char *pointer_desc = "";
d1174416 3762
79adffcd
DB
3763 switch (reg->type) {
3764 case PTR_TO_PACKET:
de8f3a83
DB
3765 case PTR_TO_PACKET_META:
3766 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3767 * right in front, treat it the very same way.
3768 */
61bd5218 3769 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3770 case PTR_TO_FLOW_KEYS:
3771 pointer_desc = "flow keys ";
3772 break;
69c087ba
YS
3773 case PTR_TO_MAP_KEY:
3774 pointer_desc = "key ";
3775 break;
f1174f77
EC
3776 case PTR_TO_MAP_VALUE:
3777 pointer_desc = "value ";
3778 break;
3779 case PTR_TO_CTX:
3780 pointer_desc = "context ";
3781 break;
3782 case PTR_TO_STACK:
3783 pointer_desc = "stack ";
01f810ac
AM
3784 /* The stack spill tracking logic in check_stack_write_fixed_off()
3785 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3786 * aligned.
3787 */
3788 strict = true;
f1174f77 3789 break;
c64b7983
JS
3790 case PTR_TO_SOCKET:
3791 pointer_desc = "sock ";
3792 break;
46f8bc92
MKL
3793 case PTR_TO_SOCK_COMMON:
3794 pointer_desc = "sock_common ";
3795 break;
655a51e5
MKL
3796 case PTR_TO_TCP_SOCK:
3797 pointer_desc = "tcp_sock ";
3798 break;
fada7fdc
JL
3799 case PTR_TO_XDP_SOCK:
3800 pointer_desc = "xdp_sock ";
3801 break;
79adffcd 3802 default:
f1174f77 3803 break;
79adffcd 3804 }
61bd5218
JK
3805 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3806 strict);
79adffcd
DB
3807}
3808
f4d7e40a
AS
3809static int update_stack_depth(struct bpf_verifier_env *env,
3810 const struct bpf_func_state *func,
3811 int off)
3812{
9c8105bd 3813 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3814
3815 if (stack >= -off)
3816 return 0;
3817
3818 /* update known max for given subprogram */
9c8105bd 3819 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3820 return 0;
3821}
f4d7e40a 3822
70a87ffe
AS
3823/* starting from main bpf function walk all instructions of the function
3824 * and recursively walk all callees that given function can call.
3825 * Ignore jump and exit insns.
3826 * Since recursion is prevented by check_cfg() this algorithm
3827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3828 */
3829static int check_max_stack_depth(struct bpf_verifier_env *env)
3830{
9c8105bd
JW
3831 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3832 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3833 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3834 bool tail_call_reachable = false;
70a87ffe
AS
3835 int ret_insn[MAX_CALL_FRAMES];
3836 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3837 int j;
f4d7e40a 3838
70a87ffe 3839process_func:
7f6e4312
MF
3840 /* protect against potential stack overflow that might happen when
3841 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3842 * depth for such case down to 256 so that the worst case scenario
3843 * would result in 8k stack size (32 which is tailcall limit * 256 =
3844 * 8k).
3845 *
3846 * To get the idea what might happen, see an example:
3847 * func1 -> sub rsp, 128
3848 * subfunc1 -> sub rsp, 256
3849 * tailcall1 -> add rsp, 256
3850 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3851 * subfunc2 -> sub rsp, 64
3852 * subfunc22 -> sub rsp, 128
3853 * tailcall2 -> add rsp, 128
3854 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3855 *
3856 * tailcall will unwind the current stack frame but it will not get rid
3857 * of caller's stack as shown on the example above.
3858 */
3859 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3860 verbose(env,
3861 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3862 depth);
3863 return -EACCES;
3864 }
70a87ffe
AS
3865 /* round up to 32-bytes, since this is granularity
3866 * of interpreter stack size
3867 */
9c8105bd 3868 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3869 if (depth > MAX_BPF_STACK) {
f4d7e40a 3870 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3871 frame + 1, depth);
f4d7e40a
AS
3872 return -EACCES;
3873 }
70a87ffe 3874continue_func:
4cb3d99c 3875 subprog_end = subprog[idx + 1].start;
70a87ffe 3876 for (; i < subprog_end; i++) {
7ddc80a4
AS
3877 int next_insn;
3878
69c087ba 3879 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3880 continue;
3881 /* remember insn and function to return to */
3882 ret_insn[frame] = i + 1;
9c8105bd 3883 ret_prog[frame] = idx;
70a87ffe
AS
3884
3885 /* find the callee */
7ddc80a4
AS
3886 next_insn = i + insn[i].imm + 1;
3887 idx = find_subprog(env, next_insn);
9c8105bd 3888 if (idx < 0) {
70a87ffe 3889 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 3890 next_insn);
70a87ffe
AS
3891 return -EFAULT;
3892 }
7ddc80a4
AS
3893 if (subprog[idx].is_async_cb) {
3894 if (subprog[idx].has_tail_call) {
3895 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3896 return -EFAULT;
3897 }
3898 /* async callbacks don't increase bpf prog stack size */
3899 continue;
3900 }
3901 i = next_insn;
ebf7d1f5
MF
3902
3903 if (subprog[idx].has_tail_call)
3904 tail_call_reachable = true;
3905
70a87ffe
AS
3906 frame++;
3907 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3908 verbose(env, "the call stack of %d frames is too deep !\n",
3909 frame);
3910 return -E2BIG;
70a87ffe
AS
3911 }
3912 goto process_func;
3913 }
ebf7d1f5
MF
3914 /* if tail call got detected across bpf2bpf calls then mark each of the
3915 * currently present subprog frames as tail call reachable subprogs;
3916 * this info will be utilized by JIT so that we will be preserving the
3917 * tail call counter throughout bpf2bpf calls combined with tailcalls
3918 */
3919 if (tail_call_reachable)
3920 for (j = 0; j < frame; j++)
3921 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
3922 if (subprog[0].tail_call_reachable)
3923 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 3924
70a87ffe
AS
3925 /* end of for() loop means the last insn of the 'subprog'
3926 * was reached. Doesn't matter whether it was JA or EXIT
3927 */
3928 if (frame == 0)
3929 return 0;
9c8105bd 3930 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3931 frame--;
3932 i = ret_insn[frame];
9c8105bd 3933 idx = ret_prog[frame];
70a87ffe 3934 goto continue_func;
f4d7e40a
AS
3935}
3936
19d28fbd 3937#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3938static int get_callee_stack_depth(struct bpf_verifier_env *env,
3939 const struct bpf_insn *insn, int idx)
3940{
3941 int start = idx + insn->imm + 1, subprog;
3942
3943 subprog = find_subprog(env, start);
3944 if (subprog < 0) {
3945 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3946 start);
3947 return -EFAULT;
3948 }
9c8105bd 3949 return env->subprog_info[subprog].stack_depth;
1ea47e01 3950}
19d28fbd 3951#endif
1ea47e01 3952
51c39bb1
AS
3953int check_ctx_reg(struct bpf_verifier_env *env,
3954 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3955{
3956 /* Access to ctx or passing it to a helper is only allowed in
3957 * its original, unmodified form.
3958 */
3959
3960 if (reg->off) {
3961 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3962 regno, reg->off);
3963 return -EACCES;
3964 }
3965
3966 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3967 char tn_buf[48];
3968
3969 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3970 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3971 return -EACCES;
3972 }
3973
3974 return 0;
3975}
3976
afbf21dc
YS
3977static int __check_buffer_access(struct bpf_verifier_env *env,
3978 const char *buf_info,
3979 const struct bpf_reg_state *reg,
3980 int regno, int off, int size)
9df1c28b
MM
3981{
3982 if (off < 0) {
3983 verbose(env,
4fc00b79 3984 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3985 regno, buf_info, off, size);
9df1c28b
MM
3986 return -EACCES;
3987 }
3988 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3989 char tn_buf[48];
3990
3991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3992 verbose(env,
4fc00b79 3993 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3994 regno, off, tn_buf);
3995 return -EACCES;
3996 }
afbf21dc
YS
3997
3998 return 0;
3999}
4000
4001static int check_tp_buffer_access(struct bpf_verifier_env *env,
4002 const struct bpf_reg_state *reg,
4003 int regno, int off, int size)
4004{
4005 int err;
4006
4007 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4008 if (err)
4009 return err;
4010
9df1c28b
MM
4011 if (off + size > env->prog->aux->max_tp_access)
4012 env->prog->aux->max_tp_access = off + size;
4013
4014 return 0;
4015}
4016
afbf21dc
YS
4017static int check_buffer_access(struct bpf_verifier_env *env,
4018 const struct bpf_reg_state *reg,
4019 int regno, int off, int size,
4020 bool zero_size_allowed,
4021 const char *buf_info,
4022 u32 *max_access)
4023{
4024 int err;
4025
4026 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4027 if (err)
4028 return err;
4029
4030 if (off + size > *max_access)
4031 *max_access = off + size;
4032
4033 return 0;
4034}
4035
3f50f132
JF
4036/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4037static void zext_32_to_64(struct bpf_reg_state *reg)
4038{
4039 reg->var_off = tnum_subreg(reg->var_off);
4040 __reg_assign_32_into_64(reg);
4041}
9df1c28b 4042
0c17d1d2
JH
4043/* truncate register to smaller size (in bytes)
4044 * must be called with size < BPF_REG_SIZE
4045 */
4046static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4047{
4048 u64 mask;
4049
4050 /* clear high bits in bit representation */
4051 reg->var_off = tnum_cast(reg->var_off, size);
4052
4053 /* fix arithmetic bounds */
4054 mask = ((u64)1 << (size * 8)) - 1;
4055 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4056 reg->umin_value &= mask;
4057 reg->umax_value &= mask;
4058 } else {
4059 reg->umin_value = 0;
4060 reg->umax_value = mask;
4061 }
4062 reg->smin_value = reg->umin_value;
4063 reg->smax_value = reg->umax_value;
3f50f132
JF
4064
4065 /* If size is smaller than 32bit register the 32bit register
4066 * values are also truncated so we push 64-bit bounds into
4067 * 32-bit bounds. Above were truncated < 32-bits already.
4068 */
4069 if (size >= 4)
4070 return;
4071 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4072}
4073
a23740ec
AN
4074static bool bpf_map_is_rdonly(const struct bpf_map *map)
4075{
4076 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
4077}
4078
4079static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4080{
4081 void *ptr;
4082 u64 addr;
4083 int err;
4084
4085 err = map->ops->map_direct_value_addr(map, &addr, off);
4086 if (err)
4087 return err;
2dedd7d2 4088 ptr = (void *)(long)addr + off;
a23740ec
AN
4089
4090 switch (size) {
4091 case sizeof(u8):
4092 *val = (u64)*(u8 *)ptr;
4093 break;
4094 case sizeof(u16):
4095 *val = (u64)*(u16 *)ptr;
4096 break;
4097 case sizeof(u32):
4098 *val = (u64)*(u32 *)ptr;
4099 break;
4100 case sizeof(u64):
4101 *val = *(u64 *)ptr;
4102 break;
4103 default:
4104 return -EINVAL;
4105 }
4106 return 0;
4107}
4108
9e15db66
AS
4109static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4110 struct bpf_reg_state *regs,
4111 int regno, int off, int size,
4112 enum bpf_access_type atype,
4113 int value_regno)
4114{
4115 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4116 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4117 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
4118 u32 btf_id;
4119 int ret;
4120
9e15db66
AS
4121 if (off < 0) {
4122 verbose(env,
4123 "R%d is ptr_%s invalid negative access: off=%d\n",
4124 regno, tname, off);
4125 return -EACCES;
4126 }
4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4128 char tn_buf[48];
4129
4130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4131 verbose(env,
4132 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4133 regno, tname, off, tn_buf);
4134 return -EACCES;
4135 }
4136
27ae7997 4137 if (env->ops->btf_struct_access) {
22dc4a0f
AN
4138 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4139 off, size, atype, &btf_id);
27ae7997
MKL
4140 } else {
4141 if (atype != BPF_READ) {
4142 verbose(env, "only read is supported\n");
4143 return -EACCES;
4144 }
4145
22dc4a0f
AN
4146 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4147 atype, &btf_id);
27ae7997
MKL
4148 }
4149
9e15db66
AS
4150 if (ret < 0)
4151 return ret;
4152
41c48f3a 4153 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 4154 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
4155
4156 return 0;
4157}
4158
4159static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4160 struct bpf_reg_state *regs,
4161 int regno, int off, int size,
4162 enum bpf_access_type atype,
4163 int value_regno)
4164{
4165 struct bpf_reg_state *reg = regs + regno;
4166 struct bpf_map *map = reg->map_ptr;
4167 const struct btf_type *t;
4168 const char *tname;
4169 u32 btf_id;
4170 int ret;
4171
4172 if (!btf_vmlinux) {
4173 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4174 return -ENOTSUPP;
4175 }
4176
4177 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4178 verbose(env, "map_ptr access not supported for map type %d\n",
4179 map->map_type);
4180 return -ENOTSUPP;
4181 }
4182
4183 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4184 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4185
4186 if (!env->allow_ptr_to_map_access) {
4187 verbose(env,
4188 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4189 tname);
4190 return -EPERM;
9e15db66 4191 }
27ae7997 4192
41c48f3a
AI
4193 if (off < 0) {
4194 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4195 regno, tname, off);
4196 return -EACCES;
4197 }
4198
4199 if (atype != BPF_READ) {
4200 verbose(env, "only read from %s is supported\n", tname);
4201 return -EACCES;
4202 }
4203
22dc4a0f 4204 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
4205 if (ret < 0)
4206 return ret;
4207
4208 if (value_regno >= 0)
22dc4a0f 4209 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 4210
9e15db66
AS
4211 return 0;
4212}
4213
01f810ac
AM
4214/* Check that the stack access at the given offset is within bounds. The
4215 * maximum valid offset is -1.
4216 *
4217 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4218 * -state->allocated_stack for reads.
4219 */
4220static int check_stack_slot_within_bounds(int off,
4221 struct bpf_func_state *state,
4222 enum bpf_access_type t)
4223{
4224 int min_valid_off;
4225
4226 if (t == BPF_WRITE)
4227 min_valid_off = -MAX_BPF_STACK;
4228 else
4229 min_valid_off = -state->allocated_stack;
4230
4231 if (off < min_valid_off || off > -1)
4232 return -EACCES;
4233 return 0;
4234}
4235
4236/* Check that the stack access at 'regno + off' falls within the maximum stack
4237 * bounds.
4238 *
4239 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4240 */
4241static int check_stack_access_within_bounds(
4242 struct bpf_verifier_env *env,
4243 int regno, int off, int access_size,
4244 enum stack_access_src src, enum bpf_access_type type)
4245{
4246 struct bpf_reg_state *regs = cur_regs(env);
4247 struct bpf_reg_state *reg = regs + regno;
4248 struct bpf_func_state *state = func(env, reg);
4249 int min_off, max_off;
4250 int err;
4251 char *err_extra;
4252
4253 if (src == ACCESS_HELPER)
4254 /* We don't know if helpers are reading or writing (or both). */
4255 err_extra = " indirect access to";
4256 else if (type == BPF_READ)
4257 err_extra = " read from";
4258 else
4259 err_extra = " write to";
4260
4261 if (tnum_is_const(reg->var_off)) {
4262 min_off = reg->var_off.value + off;
4263 if (access_size > 0)
4264 max_off = min_off + access_size - 1;
4265 else
4266 max_off = min_off;
4267 } else {
4268 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4269 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4270 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4271 err_extra, regno);
4272 return -EACCES;
4273 }
4274 min_off = reg->smin_value + off;
4275 if (access_size > 0)
4276 max_off = reg->smax_value + off + access_size - 1;
4277 else
4278 max_off = min_off;
4279 }
4280
4281 err = check_stack_slot_within_bounds(min_off, state, type);
4282 if (!err)
4283 err = check_stack_slot_within_bounds(max_off, state, type);
4284
4285 if (err) {
4286 if (tnum_is_const(reg->var_off)) {
4287 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4288 err_extra, regno, off, access_size);
4289 } else {
4290 char tn_buf[48];
4291
4292 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4293 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4294 err_extra, regno, tn_buf, access_size);
4295 }
4296 }
4297 return err;
4298}
41c48f3a 4299
17a52670
AS
4300/* check whether memory at (regno + off) is accessible for t = (read | write)
4301 * if t==write, value_regno is a register which value is stored into memory
4302 * if t==read, value_regno is a register which will receive the value from memory
4303 * if t==write && value_regno==-1, some unknown value is stored into memory
4304 * if t==read && value_regno==-1, don't care what we read from memory
4305 */
ca369602
DB
4306static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4307 int off, int bpf_size, enum bpf_access_type t,
4308 int value_regno, bool strict_alignment_once)
17a52670 4309{
638f5b90
AS
4310 struct bpf_reg_state *regs = cur_regs(env);
4311 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4312 struct bpf_func_state *state;
17a52670
AS
4313 int size, err = 0;
4314
4315 size = bpf_size_to_bytes(bpf_size);
4316 if (size < 0)
4317 return size;
4318
f1174f77 4319 /* alignment checks will add in reg->off themselves */
ca369602 4320 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4321 if (err)
4322 return err;
17a52670 4323
f1174f77
EC
4324 /* for access checks, reg->off is just part of off */
4325 off += reg->off;
4326
69c087ba
YS
4327 if (reg->type == PTR_TO_MAP_KEY) {
4328 if (t == BPF_WRITE) {
4329 verbose(env, "write to change key R%d not allowed\n", regno);
4330 return -EACCES;
4331 }
4332
4333 err = check_mem_region_access(env, regno, off, size,
4334 reg->map_ptr->key_size, false);
4335 if (err)
4336 return err;
4337 if (value_regno >= 0)
4338 mark_reg_unknown(env, regs, value_regno);
4339 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4340 if (t == BPF_WRITE && value_regno >= 0 &&
4341 is_pointer_value(env, value_regno)) {
61bd5218 4342 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4343 return -EACCES;
4344 }
591fe988
DB
4345 err = check_map_access_type(env, regno, off, size, t);
4346 if (err)
4347 return err;
9fd29c08 4348 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4349 if (!err && t == BPF_READ && value_regno >= 0) {
4350 struct bpf_map *map = reg->map_ptr;
4351
4352 /* if map is read-only, track its contents as scalars */
4353 if (tnum_is_const(reg->var_off) &&
4354 bpf_map_is_rdonly(map) &&
4355 map->ops->map_direct_value_addr) {
4356 int map_off = off + reg->var_off.value;
4357 u64 val = 0;
4358
4359 err = bpf_map_direct_read(map, map_off, size,
4360 &val);
4361 if (err)
4362 return err;
4363
4364 regs[value_regno].type = SCALAR_VALUE;
4365 __mark_reg_known(&regs[value_regno], val);
4366 } else {
4367 mark_reg_unknown(env, regs, value_regno);
4368 }
4369 }
457f4436
AN
4370 } else if (reg->type == PTR_TO_MEM) {
4371 if (t == BPF_WRITE && value_regno >= 0 &&
4372 is_pointer_value(env, value_regno)) {
4373 verbose(env, "R%d leaks addr into mem\n", value_regno);
4374 return -EACCES;
4375 }
4376 err = check_mem_region_access(env, regno, off, size,
4377 reg->mem_size, false);
4378 if (!err && t == BPF_READ && value_regno >= 0)
4379 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4380 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4381 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4382 struct btf *btf = NULL;
9e15db66 4383 u32 btf_id = 0;
19de99f7 4384
1be7f75d
AS
4385 if (t == BPF_WRITE && value_regno >= 0 &&
4386 is_pointer_value(env, value_regno)) {
61bd5218 4387 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4388 return -EACCES;
4389 }
f1174f77 4390
58990d1f
DB
4391 err = check_ctx_reg(env, reg, regno);
4392 if (err < 0)
4393 return err;
4394
22dc4a0f 4395 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4396 if (err)
4397 verbose_linfo(env, insn_idx, "; ");
969bf05e 4398 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4399 /* ctx access returns either a scalar, or a
de8f3a83
DB
4400 * PTR_TO_PACKET[_META,_END]. In the latter
4401 * case, we know the offset is zero.
f1174f77 4402 */
46f8bc92 4403 if (reg_type == SCALAR_VALUE) {
638f5b90 4404 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4405 } else {
638f5b90 4406 mark_reg_known_zero(env, regs,
61bd5218 4407 value_regno);
46f8bc92
MKL
4408 if (reg_type_may_be_null(reg_type))
4409 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4410 /* A load of ctx field could have different
4411 * actual load size with the one encoded in the
4412 * insn. When the dst is PTR, it is for sure not
4413 * a sub-register.
4414 */
4415 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4416 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4417 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4418 regs[value_regno].btf = btf;
9e15db66 4419 regs[value_regno].btf_id = btf_id;
22dc4a0f 4420 }
46f8bc92 4421 }
638f5b90 4422 regs[value_regno].type = reg_type;
969bf05e 4423 }
17a52670 4424
f1174f77 4425 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4426 /* Basic bounds checks. */
4427 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4428 if (err)
4429 return err;
8726679a 4430
f4d7e40a
AS
4431 state = func(env, reg);
4432 err = update_stack_depth(env, state, off);
4433 if (err)
4434 return err;
8726679a 4435
01f810ac
AM
4436 if (t == BPF_READ)
4437 err = check_stack_read(env, regno, off, size,
61bd5218 4438 value_regno);
01f810ac
AM
4439 else
4440 err = check_stack_write(env, regno, off, size,
4441 value_regno, insn_idx);
de8f3a83 4442 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4443 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4444 verbose(env, "cannot write into packet\n");
969bf05e
AS
4445 return -EACCES;
4446 }
4acf6c0b
BB
4447 if (t == BPF_WRITE && value_regno >= 0 &&
4448 is_pointer_value(env, value_regno)) {
61bd5218
JK
4449 verbose(env, "R%d leaks addr into packet\n",
4450 value_regno);
4acf6c0b
BB
4451 return -EACCES;
4452 }
9fd29c08 4453 err = check_packet_access(env, regno, off, size, false);
969bf05e 4454 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4455 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4456 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4457 if (t == BPF_WRITE && value_regno >= 0 &&
4458 is_pointer_value(env, value_regno)) {
4459 verbose(env, "R%d leaks addr into flow keys\n",
4460 value_regno);
4461 return -EACCES;
4462 }
4463
4464 err = check_flow_keys_access(env, off, size);
4465 if (!err && t == BPF_READ && value_regno >= 0)
4466 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4467 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4468 if (t == BPF_WRITE) {
46f8bc92
MKL
4469 verbose(env, "R%d cannot write into %s\n",
4470 regno, reg_type_str[reg->type]);
c64b7983
JS
4471 return -EACCES;
4472 }
5f456649 4473 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4474 if (!err && value_regno >= 0)
4475 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4476 } else if (reg->type == PTR_TO_TP_BUFFER) {
4477 err = check_tp_buffer_access(env, reg, regno, off, size);
4478 if (!err && t == BPF_READ && value_regno >= 0)
4479 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4480 } else if (reg->type == PTR_TO_BTF_ID) {
4481 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4482 value_regno);
41c48f3a
AI
4483 } else if (reg->type == CONST_PTR_TO_MAP) {
4484 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4485 value_regno);
afbf21dc
YS
4486 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4487 if (t == BPF_WRITE) {
4488 verbose(env, "R%d cannot write into %s\n",
4489 regno, reg_type_str[reg->type]);
4490 return -EACCES;
4491 }
f6dfbe31
CIK
4492 err = check_buffer_access(env, reg, regno, off, size, false,
4493 "rdonly",
afbf21dc
YS
4494 &env->prog->aux->max_rdonly_access);
4495 if (!err && value_regno >= 0)
4496 mark_reg_unknown(env, regs, value_regno);
4497 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4498 err = check_buffer_access(env, reg, regno, off, size, false,
4499 "rdwr",
afbf21dc
YS
4500 &env->prog->aux->max_rdwr_access);
4501 if (!err && t == BPF_READ && value_regno >= 0)
4502 mark_reg_unknown(env, regs, value_regno);
17a52670 4503 } else {
61bd5218
JK
4504 verbose(env, "R%d invalid mem access '%s'\n", regno,
4505 reg_type_str[reg->type]);
17a52670
AS
4506 return -EACCES;
4507 }
969bf05e 4508
f1174f77 4509 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4510 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4511 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4512 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4513 }
17a52670
AS
4514 return err;
4515}
4516
91c960b0 4517static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4518{
5ffa2550 4519 int load_reg;
17a52670
AS
4520 int err;
4521
5ca419f2
BJ
4522 switch (insn->imm) {
4523 case BPF_ADD:
4524 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4525 case BPF_AND:
4526 case BPF_AND | BPF_FETCH:
4527 case BPF_OR:
4528 case BPF_OR | BPF_FETCH:
4529 case BPF_XOR:
4530 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4531 case BPF_XCHG:
4532 case BPF_CMPXCHG:
5ca419f2
BJ
4533 break;
4534 default:
91c960b0
BJ
4535 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4536 return -EINVAL;
4537 }
4538
4539 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4540 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4541 return -EINVAL;
4542 }
4543
4544 /* check src1 operand */
dc503a8a 4545 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4546 if (err)
4547 return err;
4548
4549 /* check src2 operand */
dc503a8a 4550 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4551 if (err)
4552 return err;
4553
5ffa2550
BJ
4554 if (insn->imm == BPF_CMPXCHG) {
4555 /* Check comparison of R0 with memory location */
4556 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4557 if (err)
4558 return err;
4559 }
4560
6bdf6abc 4561 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4562 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4563 return -EACCES;
4564 }
4565
ca369602 4566 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4567 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4568 is_flow_key_reg(env, insn->dst_reg) ||
4569 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4570 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4571 insn->dst_reg,
4572 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4573 return -EACCES;
4574 }
4575
37086bfd
BJ
4576 if (insn->imm & BPF_FETCH) {
4577 if (insn->imm == BPF_CMPXCHG)
4578 load_reg = BPF_REG_0;
4579 else
4580 load_reg = insn->src_reg;
4581
4582 /* check and record load of old value */
4583 err = check_reg_arg(env, load_reg, DST_OP);
4584 if (err)
4585 return err;
4586 } else {
4587 /* This instruction accesses a memory location but doesn't
4588 * actually load it into a register.
4589 */
4590 load_reg = -1;
4591 }
4592
91c960b0 4593 /* check whether we can read the memory */
31fd8581 4594 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4595 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4596 if (err)
4597 return err;
4598
91c960b0 4599 /* check whether we can write into the same memory */
5ca419f2
BJ
4600 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4601 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4602 if (err)
4603 return err;
4604
5ca419f2 4605 return 0;
17a52670
AS
4606}
4607
01f810ac
AM
4608/* When register 'regno' is used to read the stack (either directly or through
4609 * a helper function) make sure that it's within stack boundary and, depending
4610 * on the access type, that all elements of the stack are initialized.
4611 *
4612 * 'off' includes 'regno->off', but not its dynamic part (if any).
4613 *
4614 * All registers that have been spilled on the stack in the slots within the
4615 * read offsets are marked as read.
4616 */
4617static int check_stack_range_initialized(
4618 struct bpf_verifier_env *env, int regno, int off,
4619 int access_size, bool zero_size_allowed,
4620 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4621{
4622 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4623 struct bpf_func_state *state = func(env, reg);
4624 int err, min_off, max_off, i, j, slot, spi;
4625 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4626 enum bpf_access_type bounds_check_type;
4627 /* Some accesses can write anything into the stack, others are
4628 * read-only.
4629 */
4630 bool clobber = false;
2011fccf 4631
01f810ac
AM
4632 if (access_size == 0 && !zero_size_allowed) {
4633 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4634 return -EACCES;
4635 }
2011fccf 4636
01f810ac
AM
4637 if (type == ACCESS_HELPER) {
4638 /* The bounds checks for writes are more permissive than for
4639 * reads. However, if raw_mode is not set, we'll do extra
4640 * checks below.
4641 */
4642 bounds_check_type = BPF_WRITE;
4643 clobber = true;
4644 } else {
4645 bounds_check_type = BPF_READ;
4646 }
4647 err = check_stack_access_within_bounds(env, regno, off, access_size,
4648 type, bounds_check_type);
4649 if (err)
4650 return err;
4651
17a52670 4652
2011fccf 4653 if (tnum_is_const(reg->var_off)) {
01f810ac 4654 min_off = max_off = reg->var_off.value + off;
2011fccf 4655 } else {
088ec26d
AI
4656 /* Variable offset is prohibited for unprivileged mode for
4657 * simplicity since it requires corresponding support in
4658 * Spectre masking for stack ALU.
4659 * See also retrieve_ptr_limit().
4660 */
2c78ee89 4661 if (!env->bypass_spec_v1) {
088ec26d 4662 char tn_buf[48];
f1174f77 4663
088ec26d 4664 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4665 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4666 regno, err_extra, tn_buf);
088ec26d
AI
4667 return -EACCES;
4668 }
f2bcd05e
AI
4669 /* Only initialized buffer on stack is allowed to be accessed
4670 * with variable offset. With uninitialized buffer it's hard to
4671 * guarantee that whole memory is marked as initialized on
4672 * helper return since specific bounds are unknown what may
4673 * cause uninitialized stack leaking.
4674 */
4675 if (meta && meta->raw_mode)
4676 meta = NULL;
4677
01f810ac
AM
4678 min_off = reg->smin_value + off;
4679 max_off = reg->smax_value + off;
17a52670
AS
4680 }
4681
435faee1
DB
4682 if (meta && meta->raw_mode) {
4683 meta->access_size = access_size;
4684 meta->regno = regno;
4685 return 0;
4686 }
4687
2011fccf 4688 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4689 u8 *stype;
4690
2011fccf 4691 slot = -i - 1;
638f5b90 4692 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4693 if (state->allocated_stack <= slot)
4694 goto err;
4695 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4696 if (*stype == STACK_MISC)
4697 goto mark;
4698 if (*stype == STACK_ZERO) {
01f810ac
AM
4699 if (clobber) {
4700 /* helper can write anything into the stack */
4701 *stype = STACK_MISC;
4702 }
cc2b14d5 4703 goto mark;
17a52670 4704 }
1d68f22b 4705
27113c59 4706 if (is_spilled_reg(&state->stack[spi]) &&
1d68f22b
YS
4707 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4708 goto mark;
4709
27113c59 4710 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
4711 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4712 env->allow_ptr_leaks)) {
01f810ac
AM
4713 if (clobber) {
4714 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4715 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 4716 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 4717 }
f7cf25b2
AS
4718 goto mark;
4719 }
4720
cc2b14d5 4721err:
2011fccf 4722 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4723 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4724 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4725 } else {
4726 char tn_buf[48];
4727
4728 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4729 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4730 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4731 }
cc2b14d5
AS
4732 return -EACCES;
4733mark:
4734 /* reading any byte out of 8-byte 'spill_slot' will cause
4735 * the whole slot to be marked as 'read'
4736 */
679c782d 4737 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4738 state->stack[spi].spilled_ptr.parent,
4739 REG_LIVE_READ64);
17a52670 4740 }
2011fccf 4741 return update_stack_depth(env, state, min_off);
17a52670
AS
4742}
4743
06c1c049
GB
4744static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4745 int access_size, bool zero_size_allowed,
4746 struct bpf_call_arg_meta *meta)
4747{
638f5b90 4748 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4749
f1174f77 4750 switch (reg->type) {
06c1c049 4751 case PTR_TO_PACKET:
de8f3a83 4752 case PTR_TO_PACKET_META:
9fd29c08
YS
4753 return check_packet_access(env, regno, reg->off, access_size,
4754 zero_size_allowed);
69c087ba
YS
4755 case PTR_TO_MAP_KEY:
4756 return check_mem_region_access(env, regno, reg->off, access_size,
4757 reg->map_ptr->key_size, false);
06c1c049 4758 case PTR_TO_MAP_VALUE:
591fe988
DB
4759 if (check_map_access_type(env, regno, reg->off, access_size,
4760 meta && meta->raw_mode ? BPF_WRITE :
4761 BPF_READ))
4762 return -EACCES;
9fd29c08
YS
4763 return check_map_access(env, regno, reg->off, access_size,
4764 zero_size_allowed);
457f4436
AN
4765 case PTR_TO_MEM:
4766 return check_mem_region_access(env, regno, reg->off,
4767 access_size, reg->mem_size,
4768 zero_size_allowed);
afbf21dc
YS
4769 case PTR_TO_RDONLY_BUF:
4770 if (meta && meta->raw_mode)
4771 return -EACCES;
4772 return check_buffer_access(env, reg, regno, reg->off,
4773 access_size, zero_size_allowed,
4774 "rdonly",
4775 &env->prog->aux->max_rdonly_access);
4776 case PTR_TO_RDWR_BUF:
4777 return check_buffer_access(env, reg, regno, reg->off,
4778 access_size, zero_size_allowed,
4779 "rdwr",
4780 &env->prog->aux->max_rdwr_access);
0d004c02 4781 case PTR_TO_STACK:
01f810ac
AM
4782 return check_stack_range_initialized(
4783 env,
4784 regno, reg->off, access_size,
4785 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4786 default: /* scalar_value or invalid ptr */
4787 /* Allow zero-byte read from NULL, regardless of pointer type */
4788 if (zero_size_allowed && access_size == 0 &&
4789 register_is_null(reg))
4790 return 0;
4791
4792 verbose(env, "R%d type=%s expected=%s\n", regno,
4793 reg_type_str[reg->type],
4794 reg_type_str[PTR_TO_STACK]);
4795 return -EACCES;
06c1c049
GB
4796 }
4797}
4798
e5069b9c
DB
4799int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4800 u32 regno, u32 mem_size)
4801{
4802 if (register_is_null(reg))
4803 return 0;
4804
4805 if (reg_type_may_be_null(reg->type)) {
4806 /* Assuming that the register contains a value check if the memory
4807 * access is safe. Temporarily save and restore the register's state as
4808 * the conversion shouldn't be visible to a caller.
4809 */
4810 const struct bpf_reg_state saved_reg = *reg;
4811 int rv;
4812
4813 mark_ptr_not_null_reg(reg);
4814 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4815 *reg = saved_reg;
4816 return rv;
4817 }
4818
4819 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4820}
4821
d83525ca
AS
4822/* Implementation details:
4823 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4824 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4825 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4826 * value_or_null->value transition, since the verifier only cares about
4827 * the range of access to valid map value pointer and doesn't care about actual
4828 * address of the map element.
4829 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4830 * reg->id > 0 after value_or_null->value transition. By doing so
4831 * two bpf_map_lookups will be considered two different pointers that
4832 * point to different bpf_spin_locks.
4833 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4834 * dead-locks.
4835 * Since only one bpf_spin_lock is allowed the checks are simpler than
4836 * reg_is_refcounted() logic. The verifier needs to remember only
4837 * one spin_lock instead of array of acquired_refs.
4838 * cur_state->active_spin_lock remembers which map value element got locked
4839 * and clears it after bpf_spin_unlock.
4840 */
4841static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4842 bool is_lock)
4843{
4844 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4845 struct bpf_verifier_state *cur = env->cur_state;
4846 bool is_const = tnum_is_const(reg->var_off);
4847 struct bpf_map *map = reg->map_ptr;
4848 u64 val = reg->var_off.value;
4849
d83525ca
AS
4850 if (!is_const) {
4851 verbose(env,
4852 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4853 regno);
4854 return -EINVAL;
4855 }
4856 if (!map->btf) {
4857 verbose(env,
4858 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4859 map->name);
4860 return -EINVAL;
4861 }
4862 if (!map_value_has_spin_lock(map)) {
4863 if (map->spin_lock_off == -E2BIG)
4864 verbose(env,
4865 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4866 map->name);
4867 else if (map->spin_lock_off == -ENOENT)
4868 verbose(env,
4869 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4870 map->name);
4871 else
4872 verbose(env,
4873 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4874 map->name);
4875 return -EINVAL;
4876 }
4877 if (map->spin_lock_off != val + reg->off) {
4878 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4879 val + reg->off);
4880 return -EINVAL;
4881 }
4882 if (is_lock) {
4883 if (cur->active_spin_lock) {
4884 verbose(env,
4885 "Locking two bpf_spin_locks are not allowed\n");
4886 return -EINVAL;
4887 }
4888 cur->active_spin_lock = reg->id;
4889 } else {
4890 if (!cur->active_spin_lock) {
4891 verbose(env, "bpf_spin_unlock without taking a lock\n");
4892 return -EINVAL;
4893 }
4894 if (cur->active_spin_lock != reg->id) {
4895 verbose(env, "bpf_spin_unlock of different lock\n");
4896 return -EINVAL;
4897 }
4898 cur->active_spin_lock = 0;
4899 }
4900 return 0;
4901}
4902
b00628b1
AS
4903static int process_timer_func(struct bpf_verifier_env *env, int regno,
4904 struct bpf_call_arg_meta *meta)
4905{
4906 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4907 bool is_const = tnum_is_const(reg->var_off);
4908 struct bpf_map *map = reg->map_ptr;
4909 u64 val = reg->var_off.value;
4910
4911 if (!is_const) {
4912 verbose(env,
4913 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4914 regno);
4915 return -EINVAL;
4916 }
4917 if (!map->btf) {
4918 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4919 map->name);
4920 return -EINVAL;
4921 }
68134668
AS
4922 if (!map_value_has_timer(map)) {
4923 if (map->timer_off == -E2BIG)
4924 verbose(env,
4925 "map '%s' has more than one 'struct bpf_timer'\n",
4926 map->name);
4927 else if (map->timer_off == -ENOENT)
4928 verbose(env,
4929 "map '%s' doesn't have 'struct bpf_timer'\n",
4930 map->name);
4931 else
4932 verbose(env,
4933 "map '%s' is not a struct type or bpf_timer is mangled\n",
4934 map->name);
4935 return -EINVAL;
4936 }
4937 if (map->timer_off != val + reg->off) {
4938 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4939 val + reg->off, map->timer_off);
b00628b1
AS
4940 return -EINVAL;
4941 }
4942 if (meta->map_ptr) {
4943 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4944 return -EFAULT;
4945 }
3e8ce298 4946 meta->map_uid = reg->map_uid;
b00628b1
AS
4947 meta->map_ptr = map;
4948 return 0;
4949}
4950
90133415
DB
4951static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4952{
4953 return type == ARG_PTR_TO_MEM ||
4954 type == ARG_PTR_TO_MEM_OR_NULL ||
4955 type == ARG_PTR_TO_UNINIT_MEM;
4956}
4957
4958static bool arg_type_is_mem_size(enum bpf_arg_type type)
4959{
4960 return type == ARG_CONST_SIZE ||
4961 type == ARG_CONST_SIZE_OR_ZERO;
4962}
4963
457f4436
AN
4964static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4965{
4966 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4967}
4968
57c3bb72
AI
4969static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4970{
4971 return type == ARG_PTR_TO_INT ||
4972 type == ARG_PTR_TO_LONG;
4973}
4974
4975static int int_ptr_type_to_size(enum bpf_arg_type type)
4976{
4977 if (type == ARG_PTR_TO_INT)
4978 return sizeof(u32);
4979 else if (type == ARG_PTR_TO_LONG)
4980 return sizeof(u64);
4981
4982 return -EINVAL;
4983}
4984
912f442c
LB
4985static int resolve_map_arg_type(struct bpf_verifier_env *env,
4986 const struct bpf_call_arg_meta *meta,
4987 enum bpf_arg_type *arg_type)
4988{
4989 if (!meta->map_ptr) {
4990 /* kernel subsystem misconfigured verifier */
4991 verbose(env, "invalid map_ptr to access map->type\n");
4992 return -EACCES;
4993 }
4994
4995 switch (meta->map_ptr->map_type) {
4996 case BPF_MAP_TYPE_SOCKMAP:
4997 case BPF_MAP_TYPE_SOCKHASH:
4998 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 4999 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5000 } else {
5001 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5002 return -EINVAL;
5003 }
5004 break;
9330986c
JK
5005 case BPF_MAP_TYPE_BLOOM_FILTER:
5006 if (meta->func_id == BPF_FUNC_map_peek_elem)
5007 *arg_type = ARG_PTR_TO_MAP_VALUE;
5008 break;
912f442c
LB
5009 default:
5010 break;
5011 }
5012 return 0;
5013}
5014
f79e7ea5
LB
5015struct bpf_reg_types {
5016 const enum bpf_reg_type types[10];
1df8f55a 5017 u32 *btf_id;
f79e7ea5
LB
5018};
5019
5020static const struct bpf_reg_types map_key_value_types = {
5021 .types = {
5022 PTR_TO_STACK,
5023 PTR_TO_PACKET,
5024 PTR_TO_PACKET_META,
69c087ba 5025 PTR_TO_MAP_KEY,
f79e7ea5
LB
5026 PTR_TO_MAP_VALUE,
5027 },
5028};
5029
5030static const struct bpf_reg_types sock_types = {
5031 .types = {
5032 PTR_TO_SOCK_COMMON,
5033 PTR_TO_SOCKET,
5034 PTR_TO_TCP_SOCK,
5035 PTR_TO_XDP_SOCK,
5036 },
5037};
5038
49a2a4d4 5039#ifdef CONFIG_NET
1df8f55a
MKL
5040static const struct bpf_reg_types btf_id_sock_common_types = {
5041 .types = {
5042 PTR_TO_SOCK_COMMON,
5043 PTR_TO_SOCKET,
5044 PTR_TO_TCP_SOCK,
5045 PTR_TO_XDP_SOCK,
5046 PTR_TO_BTF_ID,
5047 },
5048 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5049};
49a2a4d4 5050#endif
1df8f55a 5051
f79e7ea5
LB
5052static const struct bpf_reg_types mem_types = {
5053 .types = {
5054 PTR_TO_STACK,
5055 PTR_TO_PACKET,
5056 PTR_TO_PACKET_META,
69c087ba 5057 PTR_TO_MAP_KEY,
f79e7ea5
LB
5058 PTR_TO_MAP_VALUE,
5059 PTR_TO_MEM,
5060 PTR_TO_RDONLY_BUF,
5061 PTR_TO_RDWR_BUF,
5062 },
5063};
5064
5065static const struct bpf_reg_types int_ptr_types = {
5066 .types = {
5067 PTR_TO_STACK,
5068 PTR_TO_PACKET,
5069 PTR_TO_PACKET_META,
69c087ba 5070 PTR_TO_MAP_KEY,
f79e7ea5
LB
5071 PTR_TO_MAP_VALUE,
5072 },
5073};
5074
5075static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5076static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5077static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5078static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5079static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5080static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5081static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 5082static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
5083static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5084static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5085static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5086static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 5087
0789e13b 5088static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
5089 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
5090 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
5091 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
5092 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
5093 [ARG_CONST_SIZE] = &scalar_types,
5094 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5095 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5096 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5097 [ARG_PTR_TO_CTX] = &context_types,
5098 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
5099 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5100#ifdef CONFIG_NET
1df8f55a 5101 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5102#endif
f79e7ea5
LB
5103 [ARG_PTR_TO_SOCKET] = &fullsock_types,
5104 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
5105 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5106 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5107 [ARG_PTR_TO_MEM] = &mem_types,
5108 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
5109 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
5110 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
5111 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
5112 [ARG_PTR_TO_INT] = &int_ptr_types,
5113 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5114 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
5115 [ARG_PTR_TO_FUNC] = &func_ptr_types,
5116 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 5117 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5118 [ARG_PTR_TO_TIMER] = &timer_types,
f79e7ea5
LB
5119};
5120
5121static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
5122 enum bpf_arg_type arg_type,
5123 const u32 *arg_btf_id)
f79e7ea5
LB
5124{
5125 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5126 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5127 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5128 int i, j;
5129
a968d5e2
MKL
5130 compatible = compatible_reg_types[arg_type];
5131 if (!compatible) {
5132 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5133 return -EFAULT;
5134 }
5135
f79e7ea5
LB
5136 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5137 expected = compatible->types[i];
5138 if (expected == NOT_INIT)
5139 break;
5140
5141 if (type == expected)
a968d5e2 5142 goto found;
f79e7ea5
LB
5143 }
5144
5145 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5146 for (j = 0; j + 1 < i; j++)
5147 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5148 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5149 return -EACCES;
a968d5e2
MKL
5150
5151found:
5152 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
5153 if (!arg_btf_id) {
5154 if (!compatible->btf_id) {
5155 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5156 return -EFAULT;
5157 }
5158 arg_btf_id = compatible->btf_id;
5159 }
5160
22dc4a0f
AN
5161 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5162 btf_vmlinux, *arg_btf_id)) {
a968d5e2 5163 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
5164 regno, kernel_type_name(reg->btf, reg->btf_id),
5165 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
5166 return -EACCES;
5167 }
5168
5169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5170 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5171 regno);
5172 return -EACCES;
5173 }
5174 }
5175
5176 return 0;
f79e7ea5
LB
5177}
5178
af7ec138
YS
5179static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5180 struct bpf_call_arg_meta *meta,
5181 const struct bpf_func_proto *fn)
17a52670 5182{
af7ec138 5183 u32 regno = BPF_REG_1 + arg;
638f5b90 5184 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 5185 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 5186 enum bpf_reg_type type = reg->type;
17a52670
AS
5187 int err = 0;
5188
80f1d68c 5189 if (arg_type == ARG_DONTCARE)
17a52670
AS
5190 return 0;
5191
dc503a8a
EC
5192 err = check_reg_arg(env, regno, SRC_OP);
5193 if (err)
5194 return err;
17a52670 5195
1be7f75d
AS
5196 if (arg_type == ARG_ANYTHING) {
5197 if (is_pointer_value(env, regno)) {
61bd5218
JK
5198 verbose(env, "R%d leaks addr into helper function\n",
5199 regno);
1be7f75d
AS
5200 return -EACCES;
5201 }
80f1d68c 5202 return 0;
1be7f75d 5203 }
80f1d68c 5204
de8f3a83 5205 if (type_is_pkt_pointer(type) &&
3a0af8fd 5206 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 5207 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
5208 return -EACCES;
5209 }
5210
912f442c
LB
5211 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5212 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5213 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5214 err = resolve_map_arg_type(env, meta, &arg_type);
5215 if (err)
5216 return err;
5217 }
5218
fd1b0d60
LB
5219 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5220 /* A NULL register has a SCALAR_VALUE type, so skip
5221 * type checking.
5222 */
5223 goto skip_type_check;
5224
a968d5e2 5225 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
5226 if (err)
5227 return err;
5228
a968d5e2 5229 if (type == PTR_TO_CTX) {
feec7040
LB
5230 err = check_ctx_reg(env, reg, regno);
5231 if (err < 0)
5232 return err;
d7b9454a
LB
5233 }
5234
fd1b0d60 5235skip_type_check:
02f7c958 5236 if (reg->ref_obj_id) {
457f4436
AN
5237 if (meta->ref_obj_id) {
5238 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5239 regno, reg->ref_obj_id,
5240 meta->ref_obj_id);
5241 return -EFAULT;
5242 }
5243 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
5244 }
5245
17a52670
AS
5246 if (arg_type == ARG_CONST_MAP_PTR) {
5247 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
5248 if (meta->map_ptr) {
5249 /* Use map_uid (which is unique id of inner map) to reject:
5250 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5251 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5252 * if (inner_map1 && inner_map2) {
5253 * timer = bpf_map_lookup_elem(inner_map1);
5254 * if (timer)
5255 * // mismatch would have been allowed
5256 * bpf_timer_init(timer, inner_map2);
5257 * }
5258 *
5259 * Comparing map_ptr is enough to distinguish normal and outer maps.
5260 */
5261 if (meta->map_ptr != reg->map_ptr ||
5262 meta->map_uid != reg->map_uid) {
5263 verbose(env,
5264 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5265 meta->map_uid, reg->map_uid);
5266 return -EINVAL;
5267 }
b00628b1 5268 }
33ff9823 5269 meta->map_ptr = reg->map_ptr;
3e8ce298 5270 meta->map_uid = reg->map_uid;
17a52670
AS
5271 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5272 /* bpf_map_xxx(..., map_ptr, ..., key) call:
5273 * check that [key, key + map->key_size) are within
5274 * stack limits and initialized
5275 */
33ff9823 5276 if (!meta->map_ptr) {
17a52670
AS
5277 /* in function declaration map_ptr must come before
5278 * map_key, so that it's verified and known before
5279 * we have to check map_key here. Otherwise it means
5280 * that kernel subsystem misconfigured verifier
5281 */
61bd5218 5282 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
5283 return -EACCES;
5284 }
d71962f3
PC
5285 err = check_helper_mem_access(env, regno,
5286 meta->map_ptr->key_size, false,
5287 NULL);
2ea864c5 5288 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
5289 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5290 !register_is_null(reg)) ||
2ea864c5 5291 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
5292 /* bpf_map_xxx(..., map_ptr, ..., value) call:
5293 * check [value, value + map->value_size) validity
5294 */
33ff9823 5295 if (!meta->map_ptr) {
17a52670 5296 /* kernel subsystem misconfigured verifier */
61bd5218 5297 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
5298 return -EACCES;
5299 }
2ea864c5 5300 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
5301 err = check_helper_mem_access(env, regno,
5302 meta->map_ptr->value_size, false,
2ea864c5 5303 meta);
eaa6bcb7
HL
5304 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5305 if (!reg->btf_id) {
5306 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5307 return -EACCES;
5308 }
22dc4a0f 5309 meta->ret_btf = reg->btf;
eaa6bcb7 5310 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
5311 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5312 if (meta->func_id == BPF_FUNC_spin_lock) {
5313 if (process_spin_lock(env, regno, true))
5314 return -EACCES;
5315 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
5316 if (process_spin_lock(env, regno, false))
5317 return -EACCES;
5318 } else {
5319 verbose(env, "verifier internal error\n");
5320 return -EFAULT;
5321 }
b00628b1
AS
5322 } else if (arg_type == ARG_PTR_TO_TIMER) {
5323 if (process_timer_func(env, regno, meta))
5324 return -EACCES;
69c087ba
YS
5325 } else if (arg_type == ARG_PTR_TO_FUNC) {
5326 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5327 } else if (arg_type_is_mem_ptr(arg_type)) {
5328 /* The access to this pointer is only checked when we hit the
5329 * next is_mem_size argument below.
5330 */
5331 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5332 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5333 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5334
10060503
JF
5335 /* This is used to refine r0 return value bounds for helpers
5336 * that enforce this value as an upper bound on return values.
5337 * See do_refine_retval_range() for helpers that can refine
5338 * the return value. C type of helper is u32 so we pull register
5339 * bound from umax_value however, if negative verifier errors
5340 * out. Only upper bounds can be learned because retval is an
5341 * int type and negative retvals are allowed.
849fa506 5342 */
10060503 5343 meta->msize_max_value = reg->umax_value;
849fa506 5344
f1174f77
EC
5345 /* The register is SCALAR_VALUE; the access check
5346 * happens using its boundaries.
06c1c049 5347 */
f1174f77 5348 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5349 /* For unprivileged variable accesses, disable raw
5350 * mode so that the program is required to
5351 * initialize all the memory that the helper could
5352 * just partially fill up.
5353 */
5354 meta = NULL;
5355
b03c9f9f 5356 if (reg->smin_value < 0) {
61bd5218 5357 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5358 regno);
5359 return -EACCES;
5360 }
06c1c049 5361
b03c9f9f 5362 if (reg->umin_value == 0) {
f1174f77
EC
5363 err = check_helper_mem_access(env, regno - 1, 0,
5364 zero_size_allowed,
5365 meta);
06c1c049
GB
5366 if (err)
5367 return err;
06c1c049 5368 }
f1174f77 5369
b03c9f9f 5370 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5371 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5372 regno);
5373 return -EACCES;
5374 }
5375 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5376 reg->umax_value,
f1174f77 5377 zero_size_allowed, meta);
b5dc0163
AS
5378 if (!err)
5379 err = mark_chain_precision(env, regno);
457f4436
AN
5380 } else if (arg_type_is_alloc_size(arg_type)) {
5381 if (!tnum_is_const(reg->var_off)) {
28a8add6 5382 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5383 regno);
5384 return -EACCES;
5385 }
5386 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5387 } else if (arg_type_is_int_ptr(arg_type)) {
5388 int size = int_ptr_type_to_size(arg_type);
5389
5390 err = check_helper_mem_access(env, regno, size, false, meta);
5391 if (err)
5392 return err;
5393 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5394 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5395 struct bpf_map *map = reg->map_ptr;
5396 int map_off;
5397 u64 map_addr;
5398 char *str_ptr;
5399
a8fad73e 5400 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
5401 verbose(env, "R%d does not point to a readonly map'\n", regno);
5402 return -EACCES;
5403 }
5404
5405 if (!tnum_is_const(reg->var_off)) {
5406 verbose(env, "R%d is not a constant address'\n", regno);
5407 return -EACCES;
5408 }
5409
5410 if (!map->ops->map_direct_value_addr) {
5411 verbose(env, "no direct value access support for this map type\n");
5412 return -EACCES;
5413 }
5414
5415 err = check_map_access(env, regno, reg->off,
5416 map->value_size - reg->off, false);
5417 if (err)
5418 return err;
5419
5420 map_off = reg->off + reg->var_off.value;
5421 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5422 if (err) {
5423 verbose(env, "direct value access on string failed\n");
5424 return err;
5425 }
5426
5427 str_ptr = (char *)(long)(map_addr);
5428 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5429 verbose(env, "string is not zero-terminated\n");
5430 return -EINVAL;
5431 }
17a52670
AS
5432 }
5433
5434 return err;
5435}
5436
0126240f
LB
5437static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5438{
5439 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5440 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5441
5442 if (func_id != BPF_FUNC_map_update_elem)
5443 return false;
5444
5445 /* It's not possible to get access to a locked struct sock in these
5446 * contexts, so updating is safe.
5447 */
5448 switch (type) {
5449 case BPF_PROG_TYPE_TRACING:
5450 if (eatype == BPF_TRACE_ITER)
5451 return true;
5452 break;
5453 case BPF_PROG_TYPE_SOCKET_FILTER:
5454 case BPF_PROG_TYPE_SCHED_CLS:
5455 case BPF_PROG_TYPE_SCHED_ACT:
5456 case BPF_PROG_TYPE_XDP:
5457 case BPF_PROG_TYPE_SK_REUSEPORT:
5458 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5459 case BPF_PROG_TYPE_SK_LOOKUP:
5460 return true;
5461 default:
5462 break;
5463 }
5464
5465 verbose(env, "cannot update sockmap in this context\n");
5466 return false;
5467}
5468
e411901c
MF
5469static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5470{
5471 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5472}
5473
61bd5218
JK
5474static int check_map_func_compatibility(struct bpf_verifier_env *env,
5475 struct bpf_map *map, int func_id)
35578d79 5476{
35578d79
KX
5477 if (!map)
5478 return 0;
5479
6aff67c8
AS
5480 /* We need a two way check, first is from map perspective ... */
5481 switch (map->map_type) {
5482 case BPF_MAP_TYPE_PROG_ARRAY:
5483 if (func_id != BPF_FUNC_tail_call)
5484 goto error;
5485 break;
5486 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5487 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5488 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5489 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5490 func_id != BPF_FUNC_perf_event_read_value &&
5491 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5492 goto error;
5493 break;
457f4436
AN
5494 case BPF_MAP_TYPE_RINGBUF:
5495 if (func_id != BPF_FUNC_ringbuf_output &&
5496 func_id != BPF_FUNC_ringbuf_reserve &&
457f4436
AN
5497 func_id != BPF_FUNC_ringbuf_query)
5498 goto error;
5499 break;
6aff67c8
AS
5500 case BPF_MAP_TYPE_STACK_TRACE:
5501 if (func_id != BPF_FUNC_get_stackid)
5502 goto error;
5503 break;
4ed8ec52 5504 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5505 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5506 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5507 goto error;
5508 break;
cd339431 5509 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5510 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5511 if (func_id != BPF_FUNC_get_local_storage)
5512 goto error;
5513 break;
546ac1ff 5514 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5515 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5516 if (func_id != BPF_FUNC_redirect_map &&
5517 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5518 goto error;
5519 break;
fbfc504a
BT
5520 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5521 * appear.
5522 */
6710e112
JDB
5523 case BPF_MAP_TYPE_CPUMAP:
5524 if (func_id != BPF_FUNC_redirect_map)
5525 goto error;
5526 break;
fada7fdc
JL
5527 case BPF_MAP_TYPE_XSKMAP:
5528 if (func_id != BPF_FUNC_redirect_map &&
5529 func_id != BPF_FUNC_map_lookup_elem)
5530 goto error;
5531 break;
56f668df 5532 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5533 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5534 if (func_id != BPF_FUNC_map_lookup_elem)
5535 goto error;
16a43625 5536 break;
174a79ff
JF
5537 case BPF_MAP_TYPE_SOCKMAP:
5538 if (func_id != BPF_FUNC_sk_redirect_map &&
5539 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5540 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5541 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5542 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5543 func_id != BPF_FUNC_map_lookup_elem &&
5544 !may_update_sockmap(env, func_id))
174a79ff
JF
5545 goto error;
5546 break;
81110384
JF
5547 case BPF_MAP_TYPE_SOCKHASH:
5548 if (func_id != BPF_FUNC_sk_redirect_hash &&
5549 func_id != BPF_FUNC_sock_hash_update &&
5550 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5551 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5552 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5553 func_id != BPF_FUNC_map_lookup_elem &&
5554 !may_update_sockmap(env, func_id))
81110384
JF
5555 goto error;
5556 break;
2dbb9b9e
MKL
5557 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5558 if (func_id != BPF_FUNC_sk_select_reuseport)
5559 goto error;
5560 break;
f1a2e44a
MV
5561 case BPF_MAP_TYPE_QUEUE:
5562 case BPF_MAP_TYPE_STACK:
5563 if (func_id != BPF_FUNC_map_peek_elem &&
5564 func_id != BPF_FUNC_map_pop_elem &&
5565 func_id != BPF_FUNC_map_push_elem)
5566 goto error;
5567 break;
6ac99e8f
MKL
5568 case BPF_MAP_TYPE_SK_STORAGE:
5569 if (func_id != BPF_FUNC_sk_storage_get &&
5570 func_id != BPF_FUNC_sk_storage_delete)
5571 goto error;
5572 break;
8ea63684
KS
5573 case BPF_MAP_TYPE_INODE_STORAGE:
5574 if (func_id != BPF_FUNC_inode_storage_get &&
5575 func_id != BPF_FUNC_inode_storage_delete)
5576 goto error;
5577 break;
4cf1bc1f
KS
5578 case BPF_MAP_TYPE_TASK_STORAGE:
5579 if (func_id != BPF_FUNC_task_storage_get &&
5580 func_id != BPF_FUNC_task_storage_delete)
5581 goto error;
5582 break;
9330986c
JK
5583 case BPF_MAP_TYPE_BLOOM_FILTER:
5584 if (func_id != BPF_FUNC_map_peek_elem &&
5585 func_id != BPF_FUNC_map_push_elem)
5586 goto error;
5587 break;
6aff67c8
AS
5588 default:
5589 break;
5590 }
5591
5592 /* ... and second from the function itself. */
5593 switch (func_id) {
5594 case BPF_FUNC_tail_call:
5595 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5596 goto error;
e411901c
MF
5597 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5598 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5599 return -EINVAL;
5600 }
6aff67c8
AS
5601 break;
5602 case BPF_FUNC_perf_event_read:
5603 case BPF_FUNC_perf_event_output:
908432ca 5604 case BPF_FUNC_perf_event_read_value:
a7658e1a 5605 case BPF_FUNC_skb_output:
d831ee84 5606 case BPF_FUNC_xdp_output:
6aff67c8
AS
5607 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5608 goto error;
5609 break;
5b029a32
DB
5610 case BPF_FUNC_ringbuf_output:
5611 case BPF_FUNC_ringbuf_reserve:
5612 case BPF_FUNC_ringbuf_query:
5613 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5614 goto error;
5615 break;
6aff67c8
AS
5616 case BPF_FUNC_get_stackid:
5617 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5618 goto error;
5619 break;
60d20f91 5620 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5621 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5622 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5623 goto error;
5624 break;
97f91a7c 5625 case BPF_FUNC_redirect_map:
9c270af3 5626 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5627 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5628 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5629 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5630 goto error;
5631 break;
174a79ff 5632 case BPF_FUNC_sk_redirect_map:
4f738adb 5633 case BPF_FUNC_msg_redirect_map:
81110384 5634 case BPF_FUNC_sock_map_update:
174a79ff
JF
5635 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5636 goto error;
5637 break;
81110384
JF
5638 case BPF_FUNC_sk_redirect_hash:
5639 case BPF_FUNC_msg_redirect_hash:
5640 case BPF_FUNC_sock_hash_update:
5641 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5642 goto error;
5643 break;
cd339431 5644 case BPF_FUNC_get_local_storage:
b741f163
RG
5645 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5646 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5647 goto error;
5648 break;
2dbb9b9e 5649 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5650 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5651 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5652 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5653 goto error;
5654 break;
f1a2e44a 5655 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
5656 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5657 map->map_type != BPF_MAP_TYPE_STACK)
5658 goto error;
5659 break;
9330986c
JK
5660 case BPF_FUNC_map_peek_elem:
5661 case BPF_FUNC_map_push_elem:
5662 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5663 map->map_type != BPF_MAP_TYPE_STACK &&
5664 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5665 goto error;
5666 break;
6ac99e8f
MKL
5667 case BPF_FUNC_sk_storage_get:
5668 case BPF_FUNC_sk_storage_delete:
5669 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5670 goto error;
5671 break;
8ea63684
KS
5672 case BPF_FUNC_inode_storage_get:
5673 case BPF_FUNC_inode_storage_delete:
5674 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5675 goto error;
5676 break;
4cf1bc1f
KS
5677 case BPF_FUNC_task_storage_get:
5678 case BPF_FUNC_task_storage_delete:
5679 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5680 goto error;
5681 break;
6aff67c8
AS
5682 default:
5683 break;
35578d79
KX
5684 }
5685
5686 return 0;
6aff67c8 5687error:
61bd5218 5688 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5689 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5690 return -EINVAL;
35578d79
KX
5691}
5692
90133415 5693static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5694{
5695 int count = 0;
5696
39f19ebb 5697 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5698 count++;
39f19ebb 5699 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5700 count++;
39f19ebb 5701 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5702 count++;
39f19ebb 5703 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5704 count++;
39f19ebb 5705 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5706 count++;
5707
90133415
DB
5708 /* We only support one arg being in raw mode at the moment,
5709 * which is sufficient for the helper functions we have
5710 * right now.
5711 */
5712 return count <= 1;
5713}
5714
5715static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5716 enum bpf_arg_type arg_next)
5717{
5718 return (arg_type_is_mem_ptr(arg_curr) &&
5719 !arg_type_is_mem_size(arg_next)) ||
5720 (!arg_type_is_mem_ptr(arg_curr) &&
5721 arg_type_is_mem_size(arg_next));
5722}
5723
5724static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5725{
5726 /* bpf_xxx(..., buf, len) call will access 'len'
5727 * bytes from memory 'buf'. Both arg types need
5728 * to be paired, so make sure there's no buggy
5729 * helper function specification.
5730 */
5731 if (arg_type_is_mem_size(fn->arg1_type) ||
5732 arg_type_is_mem_ptr(fn->arg5_type) ||
5733 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5734 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5735 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5736 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5737 return false;
5738
5739 return true;
5740}
5741
1b986589 5742static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5743{
5744 int count = 0;
5745
1b986589 5746 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5747 count++;
1b986589 5748 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5749 count++;
1b986589 5750 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5751 count++;
1b986589 5752 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5753 count++;
1b986589 5754 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5755 count++;
5756
1b986589
MKL
5757 /* A reference acquiring function cannot acquire
5758 * another refcounted ptr.
5759 */
64d85290 5760 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5761 return false;
5762
fd978bf7
JS
5763 /* We only support one arg being unreferenced at the moment,
5764 * which is sufficient for the helper functions we have right now.
5765 */
5766 return count <= 1;
5767}
5768
9436ef6e
LB
5769static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5770{
5771 int i;
5772
1df8f55a 5773 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5774 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5775 return false;
5776
1df8f55a
MKL
5777 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5778 return false;
5779 }
5780
9436ef6e
LB
5781 return true;
5782}
5783
1b986589 5784static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5785{
5786 return check_raw_mode_ok(fn) &&
fd978bf7 5787 check_arg_pair_ok(fn) &&
9436ef6e 5788 check_btf_id_ok(fn) &&
1b986589 5789 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5790}
5791
de8f3a83
DB
5792/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5793 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5794 */
f4d7e40a
AS
5795static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5796 struct bpf_func_state *state)
969bf05e 5797{
58e2af8b 5798 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5799 int i;
5800
5801 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5802 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5803 mark_reg_unknown(env, regs, i);
969bf05e 5804
f3709f69
JS
5805 bpf_for_each_spilled_reg(i, state, reg) {
5806 if (!reg)
969bf05e 5807 continue;
de8f3a83 5808 if (reg_is_pkt_pointer_any(reg))
f54c7898 5809 __mark_reg_unknown(env, reg);
969bf05e
AS
5810 }
5811}
5812
f4d7e40a
AS
5813static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5814{
5815 struct bpf_verifier_state *vstate = env->cur_state;
5816 int i;
5817
5818 for (i = 0; i <= vstate->curframe; i++)
5819 __clear_all_pkt_pointers(env, vstate->frame[i]);
5820}
5821
6d94e741
AS
5822enum {
5823 AT_PKT_END = -1,
5824 BEYOND_PKT_END = -2,
5825};
5826
5827static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5828{
5829 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5830 struct bpf_reg_state *reg = &state->regs[regn];
5831
5832 if (reg->type != PTR_TO_PACKET)
5833 /* PTR_TO_PACKET_META is not supported yet */
5834 return;
5835
5836 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5837 * How far beyond pkt_end it goes is unknown.
5838 * if (!range_open) it's the case of pkt >= pkt_end
5839 * if (range_open) it's the case of pkt > pkt_end
5840 * hence this pointer is at least 1 byte bigger than pkt_end
5841 */
5842 if (range_open)
5843 reg->range = BEYOND_PKT_END;
5844 else
5845 reg->range = AT_PKT_END;
5846}
5847
fd978bf7 5848static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5849 struct bpf_func_state *state,
5850 int ref_obj_id)
fd978bf7
JS
5851{
5852 struct bpf_reg_state *regs = state->regs, *reg;
5853 int i;
5854
5855 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5856 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5857 mark_reg_unknown(env, regs, i);
5858
5859 bpf_for_each_spilled_reg(i, state, reg) {
5860 if (!reg)
5861 continue;
1b986589 5862 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5863 __mark_reg_unknown(env, reg);
fd978bf7
JS
5864 }
5865}
5866
5867/* The pointer with the specified id has released its reference to kernel
5868 * resources. Identify all copies of the same pointer and clear the reference.
5869 */
5870static int release_reference(struct bpf_verifier_env *env,
1b986589 5871 int ref_obj_id)
fd978bf7
JS
5872{
5873 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5874 int err;
fd978bf7
JS
5875 int i;
5876
1b986589
MKL
5877 err = release_reference_state(cur_func(env), ref_obj_id);
5878 if (err)
5879 return err;
5880
fd978bf7 5881 for (i = 0; i <= vstate->curframe; i++)
1b986589 5882 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5883
1b986589 5884 return 0;
fd978bf7
JS
5885}
5886
51c39bb1
AS
5887static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5888 struct bpf_reg_state *regs)
5889{
5890 int i;
5891
5892 /* after the call registers r0 - r5 were scratched */
5893 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5894 mark_reg_not_init(env, regs, caller_saved[i]);
5895 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5896 }
5897}
5898
14351375
YS
5899typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5900 struct bpf_func_state *caller,
5901 struct bpf_func_state *callee,
5902 int insn_idx);
5903
5904static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5905 int *insn_idx, int subprog,
5906 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5907{
5908 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5909 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5910 struct bpf_func_state *caller, *callee;
14351375 5911 int err;
51c39bb1 5912 bool is_global = false;
f4d7e40a 5913
aada9ce6 5914 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5915 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5916 state->curframe + 2);
f4d7e40a
AS
5917 return -E2BIG;
5918 }
5919
f4d7e40a
AS
5920 caller = state->frame[state->curframe];
5921 if (state->frame[state->curframe + 1]) {
5922 verbose(env, "verifier bug. Frame %d already allocated\n",
5923 state->curframe + 1);
5924 return -EFAULT;
5925 }
5926
51c39bb1
AS
5927 func_info_aux = env->prog->aux->func_info_aux;
5928 if (func_info_aux)
5929 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5930 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5931 if (err == -EFAULT)
5932 return err;
5933 if (is_global) {
5934 if (err) {
5935 verbose(env, "Caller passes invalid args into func#%d\n",
5936 subprog);
5937 return err;
5938 } else {
5939 if (env->log.level & BPF_LOG_LEVEL)
5940 verbose(env,
5941 "Func#%d is global and valid. Skipping.\n",
5942 subprog);
5943 clear_caller_saved_regs(env, caller->regs);
5944
45159b27 5945 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5946 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5947 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5948
5949 /* continue with next insn after call */
5950 return 0;
5951 }
5952 }
5953
bfc6bb74
AS
5954 if (insn->code == (BPF_JMP | BPF_CALL) &&
5955 insn->imm == BPF_FUNC_timer_set_callback) {
5956 struct bpf_verifier_state *async_cb;
5957
5958 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 5959 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
5960 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5961 *insn_idx, subprog);
5962 if (!async_cb)
5963 return -EFAULT;
5964 callee = async_cb->frame[0];
5965 callee->async_entry_cnt = caller->async_entry_cnt + 1;
5966
5967 /* Convert bpf_timer_set_callback() args into timer callback args */
5968 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5969 if (err)
5970 return err;
5971
5972 clear_caller_saved_regs(env, caller->regs);
5973 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5974 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5975 /* continue with next insn after call */
5976 return 0;
5977 }
5978
f4d7e40a
AS
5979 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5980 if (!callee)
5981 return -ENOMEM;
5982 state->frame[state->curframe + 1] = callee;
5983
5984 /* callee cannot access r0, r6 - r9 for reading and has to write
5985 * into its own stack before reading from it.
5986 * callee can read/write into caller's stack
5987 */
5988 init_func_state(env, callee,
5989 /* remember the callsite, it will be used by bpf_exit */
5990 *insn_idx /* callsite */,
5991 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5992 subprog /* subprog number within this prog */);
f4d7e40a 5993
fd978bf7 5994 /* Transfer references to the callee */
c69431aa 5995 err = copy_reference_state(callee, caller);
fd978bf7
JS
5996 if (err)
5997 return err;
5998
14351375
YS
5999 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6000 if (err)
6001 return err;
f4d7e40a 6002
51c39bb1 6003 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6004
6005 /* only increment it after check_reg_arg() finished */
6006 state->curframe++;
6007
6008 /* and go analyze first insn of the callee */
14351375 6009 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6010
06ee7115 6011 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6012 verbose(env, "caller:\n");
6013 print_verifier_state(env, caller);
6014 verbose(env, "callee:\n");
6015 print_verifier_state(env, callee);
6016 }
6017 return 0;
6018}
6019
314ee05e
YS
6020int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6021 struct bpf_func_state *caller,
6022 struct bpf_func_state *callee)
6023{
6024 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6025 * void *callback_ctx, u64 flags);
6026 * callback_fn(struct bpf_map *map, void *key, void *value,
6027 * void *callback_ctx);
6028 */
6029 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6030
6031 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6032 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6033 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6034
6035 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6036 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6037 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6038
6039 /* pointer to stack or null */
6040 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6041
6042 /* unused */
6043 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6044 return 0;
6045}
6046
14351375
YS
6047static int set_callee_state(struct bpf_verifier_env *env,
6048 struct bpf_func_state *caller,
6049 struct bpf_func_state *callee, int insn_idx)
6050{
6051 int i;
6052
6053 /* copy r1 - r5 args that callee can access. The copy includes parent
6054 * pointers, which connects us up to the liveness chain
6055 */
6056 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6057 callee->regs[i] = caller->regs[i];
6058 return 0;
6059}
6060
6061static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6062 int *insn_idx)
6063{
6064 int subprog, target_insn;
6065
6066 target_insn = *insn_idx + insn->imm + 1;
6067 subprog = find_subprog(env, target_insn);
6068 if (subprog < 0) {
6069 verbose(env, "verifier bug. No program starts at insn %d\n",
6070 target_insn);
6071 return -EFAULT;
6072 }
6073
6074 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6075}
6076
69c087ba
YS
6077static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6078 struct bpf_func_state *caller,
6079 struct bpf_func_state *callee,
6080 int insn_idx)
6081{
6082 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6083 struct bpf_map *map;
6084 int err;
6085
6086 if (bpf_map_ptr_poisoned(insn_aux)) {
6087 verbose(env, "tail_call abusing map_ptr\n");
6088 return -EINVAL;
6089 }
6090
6091 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6092 if (!map->ops->map_set_for_each_callback_args ||
6093 !map->ops->map_for_each_callback) {
6094 verbose(env, "callback function not allowed for map\n");
6095 return -ENOTSUPP;
6096 }
6097
6098 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6099 if (err)
6100 return err;
6101
6102 callee->in_callback_fn = true;
6103 return 0;
6104}
6105
b00628b1
AS
6106static int set_timer_callback_state(struct bpf_verifier_env *env,
6107 struct bpf_func_state *caller,
6108 struct bpf_func_state *callee,
6109 int insn_idx)
6110{
6111 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6112
6113 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6114 * callback_fn(struct bpf_map *map, void *key, void *value);
6115 */
6116 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6117 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6118 callee->regs[BPF_REG_1].map_ptr = map_ptr;
6119
6120 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6121 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6122 callee->regs[BPF_REG_2].map_ptr = map_ptr;
6123
6124 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6125 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6126 callee->regs[BPF_REG_3].map_ptr = map_ptr;
6127
6128 /* unused */
6129 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6130 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 6131 callee->in_async_callback_fn = true;
b00628b1
AS
6132 return 0;
6133}
6134
f4d7e40a
AS
6135static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6136{
6137 struct bpf_verifier_state *state = env->cur_state;
6138 struct bpf_func_state *caller, *callee;
6139 struct bpf_reg_state *r0;
fd978bf7 6140 int err;
f4d7e40a
AS
6141
6142 callee = state->frame[state->curframe];
6143 r0 = &callee->regs[BPF_REG_0];
6144 if (r0->type == PTR_TO_STACK) {
6145 /* technically it's ok to return caller's stack pointer
6146 * (or caller's caller's pointer) back to the caller,
6147 * since these pointers are valid. Only current stack
6148 * pointer will be invalid as soon as function exits,
6149 * but let's be conservative
6150 */
6151 verbose(env, "cannot return stack pointer to the caller\n");
6152 return -EINVAL;
6153 }
6154
6155 state->curframe--;
6156 caller = state->frame[state->curframe];
69c087ba
YS
6157 if (callee->in_callback_fn) {
6158 /* enforce R0 return value range [0, 1]. */
6159 struct tnum range = tnum_range(0, 1);
6160
6161 if (r0->type != SCALAR_VALUE) {
6162 verbose(env, "R0 not a scalar value\n");
6163 return -EACCES;
6164 }
6165 if (!tnum_in(range, r0->var_off)) {
6166 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6167 return -EINVAL;
6168 }
6169 } else {
6170 /* return to the caller whatever r0 had in the callee */
6171 caller->regs[BPF_REG_0] = *r0;
6172 }
f4d7e40a 6173
fd978bf7 6174 /* Transfer references to the caller */
c69431aa 6175 err = copy_reference_state(caller, callee);
fd978bf7
JS
6176 if (err)
6177 return err;
6178
f4d7e40a 6179 *insn_idx = callee->callsite + 1;
06ee7115 6180 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
6181 verbose(env, "returning from callee:\n");
6182 print_verifier_state(env, callee);
6183 verbose(env, "to caller at %d:\n", *insn_idx);
6184 print_verifier_state(env, caller);
6185 }
6186 /* clear everything in the callee */
6187 free_func_state(callee);
6188 state->frame[state->curframe + 1] = NULL;
6189 return 0;
6190}
6191
849fa506
YS
6192static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6193 int func_id,
6194 struct bpf_call_arg_meta *meta)
6195{
6196 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6197
6198 if (ret_type != RET_INTEGER ||
6199 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 6200 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
6201 func_id != BPF_FUNC_probe_read_str &&
6202 func_id != BPF_FUNC_probe_read_kernel_str &&
6203 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
6204 return;
6205
10060503 6206 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 6207 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
6208 ret_reg->smin_value = -MAX_ERRNO;
6209 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
6210 __reg_deduce_bounds(ret_reg);
6211 __reg_bound_offset(ret_reg);
10060503 6212 __update_reg_bounds(ret_reg);
849fa506
YS
6213}
6214
c93552c4
DB
6215static int
6216record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6217 int func_id, int insn_idx)
6218{
6219 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 6220 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
6221
6222 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
6223 func_id != BPF_FUNC_map_lookup_elem &&
6224 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
6225 func_id != BPF_FUNC_map_delete_elem &&
6226 func_id != BPF_FUNC_map_push_elem &&
6227 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 6228 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
6229 func_id != BPF_FUNC_for_each_map_elem &&
6230 func_id != BPF_FUNC_redirect_map)
c93552c4 6231 return 0;
09772d92 6232
591fe988 6233 if (map == NULL) {
c93552c4
DB
6234 verbose(env, "kernel subsystem misconfigured verifier\n");
6235 return -EINVAL;
6236 }
6237
591fe988
DB
6238 /* In case of read-only, some additional restrictions
6239 * need to be applied in order to prevent altering the
6240 * state of the map from program side.
6241 */
6242 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6243 (func_id == BPF_FUNC_map_delete_elem ||
6244 func_id == BPF_FUNC_map_update_elem ||
6245 func_id == BPF_FUNC_map_push_elem ||
6246 func_id == BPF_FUNC_map_pop_elem)) {
6247 verbose(env, "write into map forbidden\n");
6248 return -EACCES;
6249 }
6250
d2e4c1e6 6251 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 6252 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 6253 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 6254 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 6255 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 6256 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
6257 return 0;
6258}
6259
d2e4c1e6
DB
6260static int
6261record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6262 int func_id, int insn_idx)
6263{
6264 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6265 struct bpf_reg_state *regs = cur_regs(env), *reg;
6266 struct bpf_map *map = meta->map_ptr;
6267 struct tnum range;
6268 u64 val;
cc52d914 6269 int err;
d2e4c1e6
DB
6270
6271 if (func_id != BPF_FUNC_tail_call)
6272 return 0;
6273 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6274 verbose(env, "kernel subsystem misconfigured verifier\n");
6275 return -EINVAL;
6276 }
6277
6278 range = tnum_range(0, map->max_entries - 1);
6279 reg = &regs[BPF_REG_3];
6280
6281 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6282 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6283 return 0;
6284 }
6285
cc52d914
DB
6286 err = mark_chain_precision(env, BPF_REG_3);
6287 if (err)
6288 return err;
6289
d2e4c1e6
DB
6290 val = reg->var_off.value;
6291 if (bpf_map_key_unseen(aux))
6292 bpf_map_key_store(aux, val);
6293 else if (!bpf_map_key_poisoned(aux) &&
6294 bpf_map_key_immediate(aux) != val)
6295 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6296 return 0;
6297}
6298
fd978bf7
JS
6299static int check_reference_leak(struct bpf_verifier_env *env)
6300{
6301 struct bpf_func_state *state = cur_func(env);
6302 int i;
6303
6304 for (i = 0; i < state->acquired_refs; i++) {
6305 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6306 state->refs[i].id, state->refs[i].insn_idx);
6307 }
6308 return state->acquired_refs ? -EINVAL : 0;
6309}
6310
7b15523a
FR
6311static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6312 struct bpf_reg_state *regs)
6313{
6314 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6315 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6316 struct bpf_map *fmt_map = fmt_reg->map_ptr;
6317 int err, fmt_map_off, num_args;
6318 u64 fmt_addr;
6319 char *fmt;
6320
6321 /* data must be an array of u64 */
6322 if (data_len_reg->var_off.value % 8)
6323 return -EINVAL;
6324 num_args = data_len_reg->var_off.value / 8;
6325
6326 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6327 * and map_direct_value_addr is set.
6328 */
6329 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6330 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6331 fmt_map_off);
8e8ee109
FR
6332 if (err) {
6333 verbose(env, "verifier bug\n");
6334 return -EFAULT;
6335 }
7b15523a
FR
6336 fmt = (char *)(long)fmt_addr + fmt_map_off;
6337
6338 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6339 * can focus on validating the format specifiers.
6340 */
48cac3f4 6341 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
6342 if (err < 0)
6343 verbose(env, "Invalid format string\n");
6344
6345 return err;
6346}
6347
9b99edca
JO
6348static int check_get_func_ip(struct bpf_verifier_env *env)
6349{
6350 enum bpf_attach_type eatype = env->prog->expected_attach_type;
6351 enum bpf_prog_type type = resolve_prog_type(env->prog);
6352 int func_id = BPF_FUNC_get_func_ip;
6353
6354 if (type == BPF_PROG_TYPE_TRACING) {
6355 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6356 eatype != BPF_MODIFY_RETURN) {
6357 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6358 func_id_name(func_id), func_id);
6359 return -ENOTSUPP;
6360 }
6361 return 0;
9ffd9f3f
JO
6362 } else if (type == BPF_PROG_TYPE_KPROBE) {
6363 return 0;
9b99edca
JO
6364 }
6365
6366 verbose(env, "func %s#%d not supported for program type %d\n",
6367 func_id_name(func_id), func_id, type);
6368 return -ENOTSUPP;
6369}
6370
69c087ba
YS
6371static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6372 int *insn_idx_p)
17a52670 6373{
17a52670 6374 const struct bpf_func_proto *fn = NULL;
638f5b90 6375 struct bpf_reg_state *regs;
33ff9823 6376 struct bpf_call_arg_meta meta;
69c087ba 6377 int insn_idx = *insn_idx_p;
969bf05e 6378 bool changes_data;
69c087ba 6379 int i, err, func_id;
17a52670
AS
6380
6381 /* find function prototype */
69c087ba 6382 func_id = insn->imm;
17a52670 6383 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
6384 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6385 func_id);
17a52670
AS
6386 return -EINVAL;
6387 }
6388
00176a34 6389 if (env->ops->get_func_proto)
5e43f899 6390 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 6391 if (!fn) {
61bd5218
JK
6392 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6393 func_id);
17a52670
AS
6394 return -EINVAL;
6395 }
6396
6397 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 6398 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 6399 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
6400 return -EINVAL;
6401 }
6402
eae2e83e
JO
6403 if (fn->allowed && !fn->allowed(env->prog)) {
6404 verbose(env, "helper call is not allowed in probe\n");
6405 return -EINVAL;
6406 }
6407
04514d13 6408 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 6409 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
6410 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6411 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6412 func_id_name(func_id), func_id);
6413 return -EINVAL;
6414 }
969bf05e 6415
33ff9823 6416 memset(&meta, 0, sizeof(meta));
36bbef52 6417 meta.pkt_access = fn->pkt_access;
33ff9823 6418
1b986589 6419 err = check_func_proto(fn, func_id);
435faee1 6420 if (err) {
61bd5218 6421 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6422 func_id_name(func_id), func_id);
435faee1
DB
6423 return err;
6424 }
6425
d83525ca 6426 meta.func_id = func_id;
17a52670 6427 /* check args */
523a4cf4 6428 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6429 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6430 if (err)
6431 return err;
6432 }
17a52670 6433
c93552c4
DB
6434 err = record_func_map(env, &meta, func_id, insn_idx);
6435 if (err)
6436 return err;
6437
d2e4c1e6
DB
6438 err = record_func_key(env, &meta, func_id, insn_idx);
6439 if (err)
6440 return err;
6441
435faee1
DB
6442 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6443 * is inferred from register state.
6444 */
6445 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6446 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6447 BPF_WRITE, -1, false);
435faee1
DB
6448 if (err)
6449 return err;
6450 }
6451
fd978bf7
JS
6452 if (func_id == BPF_FUNC_tail_call) {
6453 err = check_reference_leak(env);
6454 if (err) {
6455 verbose(env, "tail_call would lead to reference leak\n");
6456 return err;
6457 }
6458 } else if (is_release_function(func_id)) {
1b986589 6459 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6460 if (err) {
6461 verbose(env, "func %s#%d reference has not been acquired before\n",
6462 func_id_name(func_id), func_id);
fd978bf7 6463 return err;
46f8bc92 6464 }
fd978bf7
JS
6465 }
6466
638f5b90 6467 regs = cur_regs(env);
cd339431
RG
6468
6469 /* check that flags argument in get_local_storage(map, flags) is 0,
6470 * this is required because get_local_storage() can't return an error.
6471 */
6472 if (func_id == BPF_FUNC_get_local_storage &&
6473 !register_is_null(&regs[BPF_REG_2])) {
6474 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6475 return -EINVAL;
6476 }
6477
69c087ba
YS
6478 if (func_id == BPF_FUNC_for_each_map_elem) {
6479 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6480 set_map_elem_callback_state);
6481 if (err < 0)
6482 return -EINVAL;
6483 }
6484
b00628b1
AS
6485 if (func_id == BPF_FUNC_timer_set_callback) {
6486 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6487 set_timer_callback_state);
6488 if (err < 0)
6489 return -EINVAL;
6490 }
6491
7b15523a
FR
6492 if (func_id == BPF_FUNC_snprintf) {
6493 err = check_bpf_snprintf_call(env, regs);
6494 if (err < 0)
6495 return err;
6496 }
6497
17a52670 6498 /* reset caller saved regs */
dc503a8a 6499 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6500 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6501 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6502 }
17a52670 6503
5327ed3d
JW
6504 /* helper call returns 64-bit value. */
6505 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6506
dc503a8a 6507 /* update return register (already marked as written above) */
17a52670 6508 if (fn->ret_type == RET_INTEGER) {
f1174f77 6509 /* sets type to SCALAR_VALUE */
61bd5218 6510 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6511 } else if (fn->ret_type == RET_VOID) {
6512 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6513 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6514 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6515 /* There is no offset yet applied, variable or fixed */
61bd5218 6516 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6517 /* remember map_ptr, so that check_map_access()
6518 * can check 'value_size' boundary of memory access
6519 * to map element returned from bpf_map_lookup_elem()
6520 */
33ff9823 6521 if (meta.map_ptr == NULL) {
61bd5218
JK
6522 verbose(env,
6523 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6524 return -EINVAL;
6525 }
33ff9823 6526 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 6527 regs[BPF_REG_0].map_uid = meta.map_uid;
4d31f301
DB
6528 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6529 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6530 if (map_value_has_spin_lock(meta.map_ptr))
6531 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6532 } else {
6533 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6534 }
c64b7983
JS
6535 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6536 mark_reg_known_zero(env, regs, BPF_REG_0);
6537 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6538 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6539 mark_reg_known_zero(env, regs, BPF_REG_0);
6540 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6541 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6542 mark_reg_known_zero(env, regs, BPF_REG_0);
6543 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6544 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6545 mark_reg_known_zero(env, regs, BPF_REG_0);
6546 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6547 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6548 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6549 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6550 const struct btf_type *t;
6551
6552 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6553 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6554 if (!btf_type_is_struct(t)) {
6555 u32 tsize;
6556 const struct btf_type *ret;
6557 const char *tname;
6558
6559 /* resolve the type size of ksym. */
22dc4a0f 6560 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6561 if (IS_ERR(ret)) {
22dc4a0f 6562 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6563 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6564 tname, PTR_ERR(ret));
6565 return -EINVAL;
6566 }
63d9b80d
HL
6567 regs[BPF_REG_0].type =
6568 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6569 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6570 regs[BPF_REG_0].mem_size = tsize;
6571 } else {
63d9b80d
HL
6572 regs[BPF_REG_0].type =
6573 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6574 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6575 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6576 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6577 }
3ca1032a
KS
6578 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6579 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6580 int ret_btf_id;
6581
6582 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6583 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6584 PTR_TO_BTF_ID :
6585 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6586 ret_btf_id = *fn->ret_btf_id;
6587 if (ret_btf_id == 0) {
6588 verbose(env, "invalid return type %d of func %s#%d\n",
6589 fn->ret_type, func_id_name(func_id), func_id);
6590 return -EINVAL;
6591 }
22dc4a0f
AN
6592 /* current BPF helper definitions are only coming from
6593 * built-in code with type IDs from vmlinux BTF
6594 */
6595 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6596 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6597 } else {
61bd5218 6598 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6599 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6600 return -EINVAL;
6601 }
04fd61ab 6602
93c230e3
MKL
6603 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6604 regs[BPF_REG_0].id = ++env->id_gen;
6605
0f3adc28 6606 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6607 /* For release_reference() */
6608 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6609 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6610 int id = acquire_reference_state(env, insn_idx);
6611
6612 if (id < 0)
6613 return id;
6614 /* For mark_ptr_or_null_reg() */
6615 regs[BPF_REG_0].id = id;
6616 /* For release_reference() */
6617 regs[BPF_REG_0].ref_obj_id = id;
6618 }
1b986589 6619
849fa506
YS
6620 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6621
61bd5218 6622 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6623 if (err)
6624 return err;
04fd61ab 6625
fa28dcb8
SL
6626 if ((func_id == BPF_FUNC_get_stack ||
6627 func_id == BPF_FUNC_get_task_stack) &&
6628 !env->prog->has_callchain_buf) {
c195651e
YS
6629 const char *err_str;
6630
6631#ifdef CONFIG_PERF_EVENTS
6632 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6633 err_str = "cannot get callchain buffer for func %s#%d\n";
6634#else
6635 err = -ENOTSUPP;
6636 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6637#endif
6638 if (err) {
6639 verbose(env, err_str, func_id_name(func_id), func_id);
6640 return err;
6641 }
6642
6643 env->prog->has_callchain_buf = true;
6644 }
6645
5d99cb2c
SL
6646 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6647 env->prog->call_get_stack = true;
6648
9b99edca
JO
6649 if (func_id == BPF_FUNC_get_func_ip) {
6650 if (check_get_func_ip(env))
6651 return -ENOTSUPP;
6652 env->prog->call_get_func_ip = true;
6653 }
6654
969bf05e
AS
6655 if (changes_data)
6656 clear_all_pkt_pointers(env);
6657 return 0;
6658}
6659
e6ac2450
MKL
6660/* mark_btf_func_reg_size() is used when the reg size is determined by
6661 * the BTF func_proto's return value size and argument.
6662 */
6663static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6664 size_t reg_size)
6665{
6666 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6667
6668 if (regno == BPF_REG_0) {
6669 /* Function return value */
6670 reg->live |= REG_LIVE_WRITTEN;
6671 reg->subreg_def = reg_size == sizeof(u64) ?
6672 DEF_NOT_SUBREG : env->insn_idx + 1;
6673 } else {
6674 /* Function argument */
6675 if (reg_size == sizeof(u64)) {
6676 mark_insn_zext(env, reg);
6677 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6678 } else {
6679 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6680 }
6681 }
6682}
6683
6684static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6685{
6686 const struct btf_type *t, *func, *func_proto, *ptr_type;
6687 struct bpf_reg_state *regs = cur_regs(env);
6688 const char *func_name, *ptr_type_name;
6689 u32 i, nargs, func_id, ptr_type_id;
2357672c 6690 struct module *btf_mod = NULL;
e6ac2450 6691 const struct btf_param *args;
2357672c 6692 struct btf *desc_btf;
e6ac2450
MKL
6693 int err;
6694
a5d82727
KKD
6695 /* skip for now, but return error when we find this in fixup_kfunc_call */
6696 if (!insn->imm)
6697 return 0;
6698
2357672c
KKD
6699 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6700 if (IS_ERR(desc_btf))
6701 return PTR_ERR(desc_btf);
6702
e6ac2450 6703 func_id = insn->imm;
2357672c
KKD
6704 func = btf_type_by_id(desc_btf, func_id);
6705 func_name = btf_name_by_offset(desc_btf, func->name_off);
6706 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
6707
6708 if (!env->ops->check_kfunc_call ||
2357672c 6709 !env->ops->check_kfunc_call(func_id, btf_mod)) {
e6ac2450
MKL
6710 verbose(env, "calling kernel function %s is not allowed\n",
6711 func_name);
6712 return -EACCES;
6713 }
6714
6715 /* Check the arguments */
2357672c 6716 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
e6ac2450
MKL
6717 if (err)
6718 return err;
6719
6720 for (i = 0; i < CALLER_SAVED_REGS; i++)
6721 mark_reg_not_init(env, regs, caller_saved[i]);
6722
6723 /* Check return type */
2357672c 6724 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
e6ac2450
MKL
6725 if (btf_type_is_scalar(t)) {
6726 mark_reg_unknown(env, regs, BPF_REG_0);
6727 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6728 } else if (btf_type_is_ptr(t)) {
2357672c 6729 ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
e6ac2450
MKL
6730 &ptr_type_id);
6731 if (!btf_type_is_struct(ptr_type)) {
2357672c 6732 ptr_type_name = btf_name_by_offset(desc_btf,
e6ac2450
MKL
6733 ptr_type->name_off);
6734 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6735 func_name, btf_type_str(ptr_type),
6736 ptr_type_name);
6737 return -EINVAL;
6738 }
6739 mark_reg_known_zero(env, regs, BPF_REG_0);
2357672c 6740 regs[BPF_REG_0].btf = desc_btf;
e6ac2450
MKL
6741 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6742 regs[BPF_REG_0].btf_id = ptr_type_id;
6743 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6744 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6745
6746 nargs = btf_type_vlen(func_proto);
6747 args = (const struct btf_param *)(func_proto + 1);
6748 for (i = 0; i < nargs; i++) {
6749 u32 regno = i + 1;
6750
2357672c 6751 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
6752 if (btf_type_is_ptr(t))
6753 mark_btf_func_reg_size(env, regno, sizeof(void *));
6754 else
6755 /* scalar. ensured by btf_check_kfunc_arg_match() */
6756 mark_btf_func_reg_size(env, regno, t->size);
6757 }
6758
6759 return 0;
6760}
6761
b03c9f9f
EC
6762static bool signed_add_overflows(s64 a, s64 b)
6763{
6764 /* Do the add in u64, where overflow is well-defined */
6765 s64 res = (s64)((u64)a + (u64)b);
6766
6767 if (b < 0)
6768 return res > a;
6769 return res < a;
6770}
6771
bc895e8b 6772static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6773{
6774 /* Do the add in u32, where overflow is well-defined */
6775 s32 res = (s32)((u32)a + (u32)b);
6776
6777 if (b < 0)
6778 return res > a;
6779 return res < a;
6780}
6781
bc895e8b 6782static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6783{
6784 /* Do the sub in u64, where overflow is well-defined */
6785 s64 res = (s64)((u64)a - (u64)b);
6786
6787 if (b < 0)
6788 return res < a;
6789 return res > a;
969bf05e
AS
6790}
6791
3f50f132
JF
6792static bool signed_sub32_overflows(s32 a, s32 b)
6793{
bc895e8b 6794 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6795 s32 res = (s32)((u32)a - (u32)b);
6796
6797 if (b < 0)
6798 return res < a;
6799 return res > a;
6800}
6801
bb7f0f98
AS
6802static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6803 const struct bpf_reg_state *reg,
6804 enum bpf_reg_type type)
6805{
6806 bool known = tnum_is_const(reg->var_off);
6807 s64 val = reg->var_off.value;
6808 s64 smin = reg->smin_value;
6809
6810 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6811 verbose(env, "math between %s pointer and %lld is not allowed\n",
6812 reg_type_str[type], val);
6813 return false;
6814 }
6815
6816 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6817 verbose(env, "%s pointer offset %d is not allowed\n",
6818 reg_type_str[type], reg->off);
6819 return false;
6820 }
6821
6822 if (smin == S64_MIN) {
6823 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6824 reg_type_str[type]);
6825 return false;
6826 }
6827
6828 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6829 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6830 smin, reg_type_str[type]);
6831 return false;
6832 }
6833
6834 return true;
6835}
6836
979d63d5
DB
6837static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6838{
6839 return &env->insn_aux_data[env->insn_idx];
6840}
6841
a6aaece0
DB
6842enum {
6843 REASON_BOUNDS = -1,
6844 REASON_TYPE = -2,
6845 REASON_PATHS = -3,
6846 REASON_LIMIT = -4,
6847 REASON_STACK = -5,
6848};
6849
979d63d5 6850static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 6851 u32 *alu_limit, bool mask_to_left)
979d63d5 6852{
7fedb63a 6853 u32 max = 0, ptr_limit = 0;
979d63d5
DB
6854
6855 switch (ptr_reg->type) {
6856 case PTR_TO_STACK:
1b1597e6 6857 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
6858 * left direction, see BPF_REG_FP. Also, unknown scalar
6859 * offset where we would need to deal with min/max bounds is
6860 * currently prohibited for unprivileged.
1b1597e6
PK
6861 */
6862 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 6863 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 6864 break;
979d63d5 6865 case PTR_TO_MAP_VALUE:
1b1597e6 6866 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
6867 ptr_limit = (mask_to_left ?
6868 ptr_reg->smin_value :
6869 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 6870 break;
979d63d5 6871 default:
a6aaece0 6872 return REASON_TYPE;
979d63d5 6873 }
b658bbb8
DB
6874
6875 if (ptr_limit >= max)
a6aaece0 6876 return REASON_LIMIT;
b658bbb8
DB
6877 *alu_limit = ptr_limit;
6878 return 0;
979d63d5
DB
6879}
6880
d3bd7413
DB
6881static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6882 const struct bpf_insn *insn)
6883{
2c78ee89 6884 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6885}
6886
6887static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6888 u32 alu_state, u32 alu_limit)
6889{
6890 /* If we arrived here from different branches with different
6891 * state or limits to sanitize, then this won't work.
6892 */
6893 if (aux->alu_state &&
6894 (aux->alu_state != alu_state ||
6895 aux->alu_limit != alu_limit))
a6aaece0 6896 return REASON_PATHS;
d3bd7413 6897
e6ac5933 6898 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6899 aux->alu_state = alu_state;
6900 aux->alu_limit = alu_limit;
6901 return 0;
6902}
6903
6904static int sanitize_val_alu(struct bpf_verifier_env *env,
6905 struct bpf_insn *insn)
6906{
6907 struct bpf_insn_aux_data *aux = cur_aux(env);
6908
6909 if (can_skip_alu_sanitation(env, insn))
6910 return 0;
6911
6912 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6913}
6914
f5288193
DB
6915static bool sanitize_needed(u8 opcode)
6916{
6917 return opcode == BPF_ADD || opcode == BPF_SUB;
6918}
6919
3d0220f6
DB
6920struct bpf_sanitize_info {
6921 struct bpf_insn_aux_data aux;
bb01a1bb 6922 bool mask_to_left;
3d0220f6
DB
6923};
6924
9183671a
DB
6925static struct bpf_verifier_state *
6926sanitize_speculative_path(struct bpf_verifier_env *env,
6927 const struct bpf_insn *insn,
6928 u32 next_idx, u32 curr_idx)
6929{
6930 struct bpf_verifier_state *branch;
6931 struct bpf_reg_state *regs;
6932
6933 branch = push_stack(env, next_idx, curr_idx, true);
6934 if (branch && insn) {
6935 regs = branch->frame[branch->curframe]->regs;
6936 if (BPF_SRC(insn->code) == BPF_K) {
6937 mark_reg_unknown(env, regs, insn->dst_reg);
6938 } else if (BPF_SRC(insn->code) == BPF_X) {
6939 mark_reg_unknown(env, regs, insn->dst_reg);
6940 mark_reg_unknown(env, regs, insn->src_reg);
6941 }
6942 }
6943 return branch;
6944}
6945
979d63d5
DB
6946static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6947 struct bpf_insn *insn,
6948 const struct bpf_reg_state *ptr_reg,
6f55b2f2 6949 const struct bpf_reg_state *off_reg,
979d63d5 6950 struct bpf_reg_state *dst_reg,
3d0220f6 6951 struct bpf_sanitize_info *info,
7fedb63a 6952 const bool commit_window)
979d63d5 6953{
3d0220f6 6954 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 6955 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 6956 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 6957 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
6958 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6959 u8 opcode = BPF_OP(insn->code);
6960 u32 alu_state, alu_limit;
6961 struct bpf_reg_state tmp;
6962 bool ret;
f232326f 6963 int err;
979d63d5 6964
d3bd7413 6965 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6966 return 0;
6967
6968 /* We already marked aux for masking from non-speculative
6969 * paths, thus we got here in the first place. We only care
6970 * to explore bad access from here.
6971 */
6972 if (vstate->speculative)
6973 goto do_sim;
6974
bb01a1bb
DB
6975 if (!commit_window) {
6976 if (!tnum_is_const(off_reg->var_off) &&
6977 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6978 return REASON_BOUNDS;
6979
6980 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6981 (opcode == BPF_SUB && !off_is_neg);
6982 }
6983
6984 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
6985 if (err < 0)
6986 return err;
6987
7fedb63a
DB
6988 if (commit_window) {
6989 /* In commit phase we narrow the masking window based on
6990 * the observed pointer move after the simulated operation.
6991 */
3d0220f6
DB
6992 alu_state = info->aux.alu_state;
6993 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
6994 } else {
6995 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 6996 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
6997 alu_state |= ptr_is_dst_reg ?
6998 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
6999
7000 /* Limit pruning on unknown scalars to enable deep search for
7001 * potential masking differences from other program paths.
7002 */
7003 if (!off_is_imm)
7004 env->explore_alu_limits = true;
7fedb63a
DB
7005 }
7006
f232326f
PK
7007 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7008 if (err < 0)
7009 return err;
979d63d5 7010do_sim:
7fedb63a
DB
7011 /* If we're in commit phase, we're done here given we already
7012 * pushed the truncated dst_reg into the speculative verification
7013 * stack.
a7036191
DB
7014 *
7015 * Also, when register is a known constant, we rewrite register-based
7016 * operation to immediate-based, and thus do not need masking (and as
7017 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 7018 */
a7036191 7019 if (commit_window || off_is_imm)
7fedb63a
DB
7020 return 0;
7021
979d63d5
DB
7022 /* Simulate and find potential out-of-bounds access under
7023 * speculative execution from truncation as a result of
7024 * masking when off was not within expected range. If off
7025 * sits in dst, then we temporarily need to move ptr there
7026 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7027 * for cases where we use K-based arithmetic in one direction
7028 * and truncated reg-based in the other in order to explore
7029 * bad access.
7030 */
7031 if (!ptr_is_dst_reg) {
7032 tmp = *dst_reg;
7033 *dst_reg = *ptr_reg;
7034 }
9183671a
DB
7035 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7036 env->insn_idx);
0803278b 7037 if (!ptr_is_dst_reg && ret)
979d63d5 7038 *dst_reg = tmp;
a6aaece0
DB
7039 return !ret ? REASON_STACK : 0;
7040}
7041
fe9a5ca7
DB
7042static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7043{
7044 struct bpf_verifier_state *vstate = env->cur_state;
7045
7046 /* If we simulate paths under speculation, we don't update the
7047 * insn as 'seen' such that when we verify unreachable paths in
7048 * the non-speculative domain, sanitize_dead_code() can still
7049 * rewrite/sanitize them.
7050 */
7051 if (!vstate->speculative)
7052 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7053}
7054
a6aaece0
DB
7055static int sanitize_err(struct bpf_verifier_env *env,
7056 const struct bpf_insn *insn, int reason,
7057 const struct bpf_reg_state *off_reg,
7058 const struct bpf_reg_state *dst_reg)
7059{
7060 static const char *err = "pointer arithmetic with it prohibited for !root";
7061 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7062 u32 dst = insn->dst_reg, src = insn->src_reg;
7063
7064 switch (reason) {
7065 case REASON_BOUNDS:
7066 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7067 off_reg == dst_reg ? dst : src, err);
7068 break;
7069 case REASON_TYPE:
7070 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7071 off_reg == dst_reg ? src : dst, err);
7072 break;
7073 case REASON_PATHS:
7074 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7075 dst, op, err);
7076 break;
7077 case REASON_LIMIT:
7078 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7079 dst, op, err);
7080 break;
7081 case REASON_STACK:
7082 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7083 dst, err);
7084 break;
7085 default:
7086 verbose(env, "verifier internal error: unknown reason (%d)\n",
7087 reason);
7088 break;
7089 }
7090
7091 return -EACCES;
979d63d5
DB
7092}
7093
01f810ac
AM
7094/* check that stack access falls within stack limits and that 'reg' doesn't
7095 * have a variable offset.
7096 *
7097 * Variable offset is prohibited for unprivileged mode for simplicity since it
7098 * requires corresponding support in Spectre masking for stack ALU. See also
7099 * retrieve_ptr_limit().
7100 *
7101 *
7102 * 'off' includes 'reg->off'.
7103 */
7104static int check_stack_access_for_ptr_arithmetic(
7105 struct bpf_verifier_env *env,
7106 int regno,
7107 const struct bpf_reg_state *reg,
7108 int off)
7109{
7110 if (!tnum_is_const(reg->var_off)) {
7111 char tn_buf[48];
7112
7113 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7114 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7115 regno, tn_buf, off);
7116 return -EACCES;
7117 }
7118
7119 if (off >= 0 || off < -MAX_BPF_STACK) {
7120 verbose(env, "R%d stack pointer arithmetic goes out of range, "
7121 "prohibited for !root; off=%d\n", regno, off);
7122 return -EACCES;
7123 }
7124
7125 return 0;
7126}
7127
073815b7
DB
7128static int sanitize_check_bounds(struct bpf_verifier_env *env,
7129 const struct bpf_insn *insn,
7130 const struct bpf_reg_state *dst_reg)
7131{
7132 u32 dst = insn->dst_reg;
7133
7134 /* For unprivileged we require that resulting offset must be in bounds
7135 * in order to be able to sanitize access later on.
7136 */
7137 if (env->bypass_spec_v1)
7138 return 0;
7139
7140 switch (dst_reg->type) {
7141 case PTR_TO_STACK:
7142 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7143 dst_reg->off + dst_reg->var_off.value))
7144 return -EACCES;
7145 break;
7146 case PTR_TO_MAP_VALUE:
7147 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7148 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7149 "prohibited for !root\n", dst);
7150 return -EACCES;
7151 }
7152 break;
7153 default:
7154 break;
7155 }
7156
7157 return 0;
7158}
01f810ac 7159
f1174f77 7160/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
7161 * Caller should also handle BPF_MOV case separately.
7162 * If we return -EACCES, caller may want to try again treating pointer as a
7163 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
7164 */
7165static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7166 struct bpf_insn *insn,
7167 const struct bpf_reg_state *ptr_reg,
7168 const struct bpf_reg_state *off_reg)
969bf05e 7169{
f4d7e40a
AS
7170 struct bpf_verifier_state *vstate = env->cur_state;
7171 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7172 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 7173 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
7174 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7175 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7176 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7177 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 7178 struct bpf_sanitize_info info = {};
969bf05e 7179 u8 opcode = BPF_OP(insn->code);
24c109bb 7180 u32 dst = insn->dst_reg;
979d63d5 7181 int ret;
969bf05e 7182
f1174f77 7183 dst_reg = &regs[dst];
969bf05e 7184
6f16101e
DB
7185 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7186 smin_val > smax_val || umin_val > umax_val) {
7187 /* Taint dst register if offset had invalid bounds derived from
7188 * e.g. dead branches.
7189 */
f54c7898 7190 __mark_reg_unknown(env, dst_reg);
6f16101e 7191 return 0;
f1174f77
EC
7192 }
7193
7194 if (BPF_CLASS(insn->code) != BPF_ALU64) {
7195 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
7196 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7197 __mark_reg_unknown(env, dst_reg);
7198 return 0;
7199 }
7200
82abbf8d
AS
7201 verbose(env,
7202 "R%d 32-bit pointer arithmetic prohibited\n",
7203 dst);
f1174f77 7204 return -EACCES;
969bf05e
AS
7205 }
7206
aad2eeaf
JS
7207 switch (ptr_reg->type) {
7208 case PTR_TO_MAP_VALUE_OR_NULL:
7209 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7210 dst, reg_type_str[ptr_reg->type]);
f1174f77 7211 return -EACCES;
aad2eeaf 7212 case CONST_PTR_TO_MAP:
7c696732
YS
7213 /* smin_val represents the known value */
7214 if (known && smin_val == 0 && opcode == BPF_ADD)
7215 break;
8731745e 7216 fallthrough;
aad2eeaf 7217 case PTR_TO_PACKET_END:
c64b7983
JS
7218 case PTR_TO_SOCKET:
7219 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7220 case PTR_TO_SOCK_COMMON:
7221 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7222 case PTR_TO_TCP_SOCK:
7223 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7224 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
7225 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7226 dst, reg_type_str[ptr_reg->type]);
f1174f77 7227 return -EACCES;
aad2eeaf
JS
7228 default:
7229 break;
f1174f77
EC
7230 }
7231
7232 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7233 * The id may be overwritten later if we create a new variable offset.
969bf05e 7234 */
f1174f77
EC
7235 dst_reg->type = ptr_reg->type;
7236 dst_reg->id = ptr_reg->id;
969bf05e 7237
bb7f0f98
AS
7238 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7239 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7240 return -EINVAL;
7241
3f50f132
JF
7242 /* pointer types do not carry 32-bit bounds at the moment. */
7243 __mark_reg32_unbounded(dst_reg);
7244
7fedb63a
DB
7245 if (sanitize_needed(opcode)) {
7246 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 7247 &info, false);
a6aaece0
DB
7248 if (ret < 0)
7249 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 7250 }
a6aaece0 7251
f1174f77
EC
7252 switch (opcode) {
7253 case BPF_ADD:
7254 /* We can take a fixed offset as long as it doesn't overflow
7255 * the s32 'off' field
969bf05e 7256 */
b03c9f9f
EC
7257 if (known && (ptr_reg->off + smin_val ==
7258 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 7259 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
7260 dst_reg->smin_value = smin_ptr;
7261 dst_reg->smax_value = smax_ptr;
7262 dst_reg->umin_value = umin_ptr;
7263 dst_reg->umax_value = umax_ptr;
f1174f77 7264 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 7265 dst_reg->off = ptr_reg->off + smin_val;
0962590e 7266 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7267 break;
7268 }
f1174f77
EC
7269 /* A new variable offset is created. Note that off_reg->off
7270 * == 0, since it's a scalar.
7271 * dst_reg gets the pointer type and since some positive
7272 * integer value was added to the pointer, give it a new 'id'
7273 * if it's a PTR_TO_PACKET.
7274 * this creates a new 'base' pointer, off_reg (variable) gets
7275 * added into the variable offset, and we copy the fixed offset
7276 * from ptr_reg.
969bf05e 7277 */
b03c9f9f
EC
7278 if (signed_add_overflows(smin_ptr, smin_val) ||
7279 signed_add_overflows(smax_ptr, smax_val)) {
7280 dst_reg->smin_value = S64_MIN;
7281 dst_reg->smax_value = S64_MAX;
7282 } else {
7283 dst_reg->smin_value = smin_ptr + smin_val;
7284 dst_reg->smax_value = smax_ptr + smax_val;
7285 }
7286 if (umin_ptr + umin_val < umin_ptr ||
7287 umax_ptr + umax_val < umax_ptr) {
7288 dst_reg->umin_value = 0;
7289 dst_reg->umax_value = U64_MAX;
7290 } else {
7291 dst_reg->umin_value = umin_ptr + umin_val;
7292 dst_reg->umax_value = umax_ptr + umax_val;
7293 }
f1174f77
EC
7294 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7295 dst_reg->off = ptr_reg->off;
0962590e 7296 dst_reg->raw = ptr_reg->raw;
de8f3a83 7297 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7298 dst_reg->id = ++env->id_gen;
7299 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 7300 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
7301 }
7302 break;
7303 case BPF_SUB:
7304 if (dst_reg == off_reg) {
7305 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
7306 verbose(env, "R%d tried to subtract pointer from scalar\n",
7307 dst);
f1174f77
EC
7308 return -EACCES;
7309 }
7310 /* We don't allow subtraction from FP, because (according to
7311 * test_verifier.c test "invalid fp arithmetic", JITs might not
7312 * be able to deal with it.
969bf05e 7313 */
f1174f77 7314 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
7315 verbose(env, "R%d subtraction from stack pointer prohibited\n",
7316 dst);
f1174f77
EC
7317 return -EACCES;
7318 }
b03c9f9f
EC
7319 if (known && (ptr_reg->off - smin_val ==
7320 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 7321 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
7322 dst_reg->smin_value = smin_ptr;
7323 dst_reg->smax_value = smax_ptr;
7324 dst_reg->umin_value = umin_ptr;
7325 dst_reg->umax_value = umax_ptr;
f1174f77
EC
7326 dst_reg->var_off = ptr_reg->var_off;
7327 dst_reg->id = ptr_reg->id;
b03c9f9f 7328 dst_reg->off = ptr_reg->off - smin_val;
0962590e 7329 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
7330 break;
7331 }
f1174f77
EC
7332 /* A new variable offset is created. If the subtrahend is known
7333 * nonnegative, then any reg->range we had before is still good.
969bf05e 7334 */
b03c9f9f
EC
7335 if (signed_sub_overflows(smin_ptr, smax_val) ||
7336 signed_sub_overflows(smax_ptr, smin_val)) {
7337 /* Overflow possible, we know nothing */
7338 dst_reg->smin_value = S64_MIN;
7339 dst_reg->smax_value = S64_MAX;
7340 } else {
7341 dst_reg->smin_value = smin_ptr - smax_val;
7342 dst_reg->smax_value = smax_ptr - smin_val;
7343 }
7344 if (umin_ptr < umax_val) {
7345 /* Overflow possible, we know nothing */
7346 dst_reg->umin_value = 0;
7347 dst_reg->umax_value = U64_MAX;
7348 } else {
7349 /* Cannot overflow (as long as bounds are consistent) */
7350 dst_reg->umin_value = umin_ptr - umax_val;
7351 dst_reg->umax_value = umax_ptr - umin_val;
7352 }
f1174f77
EC
7353 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7354 dst_reg->off = ptr_reg->off;
0962590e 7355 dst_reg->raw = ptr_reg->raw;
de8f3a83 7356 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
7357 dst_reg->id = ++env->id_gen;
7358 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 7359 if (smin_val < 0)
22dc4a0f 7360 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 7361 }
f1174f77
EC
7362 break;
7363 case BPF_AND:
7364 case BPF_OR:
7365 case BPF_XOR:
82abbf8d
AS
7366 /* bitwise ops on pointers are troublesome, prohibit. */
7367 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7368 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
7369 return -EACCES;
7370 default:
7371 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
7372 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7373 dst, bpf_alu_string[opcode >> 4]);
f1174f77 7374 return -EACCES;
43188702
JF
7375 }
7376
bb7f0f98
AS
7377 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7378 return -EINVAL;
7379
b03c9f9f
EC
7380 __update_reg_bounds(dst_reg);
7381 __reg_deduce_bounds(dst_reg);
7382 __reg_bound_offset(dst_reg);
0d6303db 7383
073815b7
DB
7384 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7385 return -EACCES;
7fedb63a
DB
7386 if (sanitize_needed(opcode)) {
7387 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 7388 &info, true);
7fedb63a
DB
7389 if (ret < 0)
7390 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
7391 }
7392
43188702
JF
7393 return 0;
7394}
7395
3f50f132
JF
7396static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7397 struct bpf_reg_state *src_reg)
7398{
7399 s32 smin_val = src_reg->s32_min_value;
7400 s32 smax_val = src_reg->s32_max_value;
7401 u32 umin_val = src_reg->u32_min_value;
7402 u32 umax_val = src_reg->u32_max_value;
7403
7404 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7405 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7406 dst_reg->s32_min_value = S32_MIN;
7407 dst_reg->s32_max_value = S32_MAX;
7408 } else {
7409 dst_reg->s32_min_value += smin_val;
7410 dst_reg->s32_max_value += smax_val;
7411 }
7412 if (dst_reg->u32_min_value + umin_val < umin_val ||
7413 dst_reg->u32_max_value + umax_val < umax_val) {
7414 dst_reg->u32_min_value = 0;
7415 dst_reg->u32_max_value = U32_MAX;
7416 } else {
7417 dst_reg->u32_min_value += umin_val;
7418 dst_reg->u32_max_value += umax_val;
7419 }
7420}
7421
07cd2631
JF
7422static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7423 struct bpf_reg_state *src_reg)
7424{
7425 s64 smin_val = src_reg->smin_value;
7426 s64 smax_val = src_reg->smax_value;
7427 u64 umin_val = src_reg->umin_value;
7428 u64 umax_val = src_reg->umax_value;
7429
7430 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7431 signed_add_overflows(dst_reg->smax_value, smax_val)) {
7432 dst_reg->smin_value = S64_MIN;
7433 dst_reg->smax_value = S64_MAX;
7434 } else {
7435 dst_reg->smin_value += smin_val;
7436 dst_reg->smax_value += smax_val;
7437 }
7438 if (dst_reg->umin_value + umin_val < umin_val ||
7439 dst_reg->umax_value + umax_val < umax_val) {
7440 dst_reg->umin_value = 0;
7441 dst_reg->umax_value = U64_MAX;
7442 } else {
7443 dst_reg->umin_value += umin_val;
7444 dst_reg->umax_value += umax_val;
7445 }
3f50f132
JF
7446}
7447
7448static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7449 struct bpf_reg_state *src_reg)
7450{
7451 s32 smin_val = src_reg->s32_min_value;
7452 s32 smax_val = src_reg->s32_max_value;
7453 u32 umin_val = src_reg->u32_min_value;
7454 u32 umax_val = src_reg->u32_max_value;
7455
7456 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7457 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7458 /* Overflow possible, we know nothing */
7459 dst_reg->s32_min_value = S32_MIN;
7460 dst_reg->s32_max_value = S32_MAX;
7461 } else {
7462 dst_reg->s32_min_value -= smax_val;
7463 dst_reg->s32_max_value -= smin_val;
7464 }
7465 if (dst_reg->u32_min_value < umax_val) {
7466 /* Overflow possible, we know nothing */
7467 dst_reg->u32_min_value = 0;
7468 dst_reg->u32_max_value = U32_MAX;
7469 } else {
7470 /* Cannot overflow (as long as bounds are consistent) */
7471 dst_reg->u32_min_value -= umax_val;
7472 dst_reg->u32_max_value -= umin_val;
7473 }
07cd2631
JF
7474}
7475
7476static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7477 struct bpf_reg_state *src_reg)
7478{
7479 s64 smin_val = src_reg->smin_value;
7480 s64 smax_val = src_reg->smax_value;
7481 u64 umin_val = src_reg->umin_value;
7482 u64 umax_val = src_reg->umax_value;
7483
7484 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7485 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7486 /* Overflow possible, we know nothing */
7487 dst_reg->smin_value = S64_MIN;
7488 dst_reg->smax_value = S64_MAX;
7489 } else {
7490 dst_reg->smin_value -= smax_val;
7491 dst_reg->smax_value -= smin_val;
7492 }
7493 if (dst_reg->umin_value < umax_val) {
7494 /* Overflow possible, we know nothing */
7495 dst_reg->umin_value = 0;
7496 dst_reg->umax_value = U64_MAX;
7497 } else {
7498 /* Cannot overflow (as long as bounds are consistent) */
7499 dst_reg->umin_value -= umax_val;
7500 dst_reg->umax_value -= umin_val;
7501 }
3f50f132
JF
7502}
7503
7504static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7505 struct bpf_reg_state *src_reg)
7506{
7507 s32 smin_val = src_reg->s32_min_value;
7508 u32 umin_val = src_reg->u32_min_value;
7509 u32 umax_val = src_reg->u32_max_value;
7510
7511 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7512 /* Ain't nobody got time to multiply that sign */
7513 __mark_reg32_unbounded(dst_reg);
7514 return;
7515 }
7516 /* Both values are positive, so we can work with unsigned and
7517 * copy the result to signed (unless it exceeds S32_MAX).
7518 */
7519 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7520 /* Potential overflow, we know nothing */
7521 __mark_reg32_unbounded(dst_reg);
7522 return;
7523 }
7524 dst_reg->u32_min_value *= umin_val;
7525 dst_reg->u32_max_value *= umax_val;
7526 if (dst_reg->u32_max_value > S32_MAX) {
7527 /* Overflow possible, we know nothing */
7528 dst_reg->s32_min_value = S32_MIN;
7529 dst_reg->s32_max_value = S32_MAX;
7530 } else {
7531 dst_reg->s32_min_value = dst_reg->u32_min_value;
7532 dst_reg->s32_max_value = dst_reg->u32_max_value;
7533 }
07cd2631
JF
7534}
7535
7536static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7537 struct bpf_reg_state *src_reg)
7538{
7539 s64 smin_val = src_reg->smin_value;
7540 u64 umin_val = src_reg->umin_value;
7541 u64 umax_val = src_reg->umax_value;
7542
07cd2631
JF
7543 if (smin_val < 0 || dst_reg->smin_value < 0) {
7544 /* Ain't nobody got time to multiply that sign */
3f50f132 7545 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7546 return;
7547 }
7548 /* Both values are positive, so we can work with unsigned and
7549 * copy the result to signed (unless it exceeds S64_MAX).
7550 */
7551 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7552 /* Potential overflow, we know nothing */
3f50f132 7553 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
7554 return;
7555 }
7556 dst_reg->umin_value *= umin_val;
7557 dst_reg->umax_value *= umax_val;
7558 if (dst_reg->umax_value > S64_MAX) {
7559 /* Overflow possible, we know nothing */
7560 dst_reg->smin_value = S64_MIN;
7561 dst_reg->smax_value = S64_MAX;
7562 } else {
7563 dst_reg->smin_value = dst_reg->umin_value;
7564 dst_reg->smax_value = dst_reg->umax_value;
7565 }
7566}
7567
3f50f132
JF
7568static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7569 struct bpf_reg_state *src_reg)
7570{
7571 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7572 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7573 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7574 s32 smin_val = src_reg->s32_min_value;
7575 u32 umax_val = src_reg->u32_max_value;
7576
049c4e13
DB
7577 if (src_known && dst_known) {
7578 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7579 return;
049c4e13 7580 }
3f50f132
JF
7581
7582 /* We get our minimum from the var_off, since that's inherently
7583 * bitwise. Our maximum is the minimum of the operands' maxima.
7584 */
7585 dst_reg->u32_min_value = var32_off.value;
7586 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7587 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7588 /* Lose signed bounds when ANDing negative numbers,
7589 * ain't nobody got time for that.
7590 */
7591 dst_reg->s32_min_value = S32_MIN;
7592 dst_reg->s32_max_value = S32_MAX;
7593 } else {
7594 /* ANDing two positives gives a positive, so safe to
7595 * cast result into s64.
7596 */
7597 dst_reg->s32_min_value = dst_reg->u32_min_value;
7598 dst_reg->s32_max_value = dst_reg->u32_max_value;
7599 }
3f50f132
JF
7600}
7601
07cd2631
JF
7602static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7603 struct bpf_reg_state *src_reg)
7604{
3f50f132
JF
7605 bool src_known = tnum_is_const(src_reg->var_off);
7606 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7607 s64 smin_val = src_reg->smin_value;
7608 u64 umax_val = src_reg->umax_value;
7609
3f50f132 7610 if (src_known && dst_known) {
4fbb38a3 7611 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7612 return;
7613 }
7614
07cd2631
JF
7615 /* We get our minimum from the var_off, since that's inherently
7616 * bitwise. Our maximum is the minimum of the operands' maxima.
7617 */
07cd2631
JF
7618 dst_reg->umin_value = dst_reg->var_off.value;
7619 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7620 if (dst_reg->smin_value < 0 || smin_val < 0) {
7621 /* Lose signed bounds when ANDing negative numbers,
7622 * ain't nobody got time for that.
7623 */
7624 dst_reg->smin_value = S64_MIN;
7625 dst_reg->smax_value = S64_MAX;
7626 } else {
7627 /* ANDing two positives gives a positive, so safe to
7628 * cast result into s64.
7629 */
7630 dst_reg->smin_value = dst_reg->umin_value;
7631 dst_reg->smax_value = dst_reg->umax_value;
7632 }
7633 /* We may learn something more from the var_off */
7634 __update_reg_bounds(dst_reg);
7635}
7636
3f50f132
JF
7637static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7638 struct bpf_reg_state *src_reg)
7639{
7640 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7641 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7642 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7643 s32 smin_val = src_reg->s32_min_value;
7644 u32 umin_val = src_reg->u32_min_value;
3f50f132 7645
049c4e13
DB
7646 if (src_known && dst_known) {
7647 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 7648 return;
049c4e13 7649 }
3f50f132
JF
7650
7651 /* We get our maximum from the var_off, and our minimum is the
7652 * maximum of the operands' minima
7653 */
7654 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7655 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7656 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7657 /* Lose signed bounds when ORing negative numbers,
7658 * ain't nobody got time for that.
7659 */
7660 dst_reg->s32_min_value = S32_MIN;
7661 dst_reg->s32_max_value = S32_MAX;
7662 } else {
7663 /* ORing two positives gives a positive, so safe to
7664 * cast result into s64.
7665 */
5b9fbeb7
DB
7666 dst_reg->s32_min_value = dst_reg->u32_min_value;
7667 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7668 }
7669}
7670
07cd2631
JF
7671static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7672 struct bpf_reg_state *src_reg)
7673{
3f50f132
JF
7674 bool src_known = tnum_is_const(src_reg->var_off);
7675 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7676 s64 smin_val = src_reg->smin_value;
7677 u64 umin_val = src_reg->umin_value;
7678
3f50f132 7679 if (src_known && dst_known) {
4fbb38a3 7680 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7681 return;
7682 }
7683
07cd2631
JF
7684 /* We get our maximum from the var_off, and our minimum is the
7685 * maximum of the operands' minima
7686 */
07cd2631
JF
7687 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7688 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7689 if (dst_reg->smin_value < 0 || smin_val < 0) {
7690 /* Lose signed bounds when ORing negative numbers,
7691 * ain't nobody got time for that.
7692 */
7693 dst_reg->smin_value = S64_MIN;
7694 dst_reg->smax_value = S64_MAX;
7695 } else {
7696 /* ORing two positives gives a positive, so safe to
7697 * cast result into s64.
7698 */
7699 dst_reg->smin_value = dst_reg->umin_value;
7700 dst_reg->smax_value = dst_reg->umax_value;
7701 }
7702 /* We may learn something more from the var_off */
7703 __update_reg_bounds(dst_reg);
7704}
7705
2921c90d
YS
7706static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7707 struct bpf_reg_state *src_reg)
7708{
7709 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7710 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7711 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7712 s32 smin_val = src_reg->s32_min_value;
7713
049c4e13
DB
7714 if (src_known && dst_known) {
7715 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 7716 return;
049c4e13 7717 }
2921c90d
YS
7718
7719 /* We get both minimum and maximum from the var32_off. */
7720 dst_reg->u32_min_value = var32_off.value;
7721 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7722
7723 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7724 /* XORing two positive sign numbers gives a positive,
7725 * so safe to cast u32 result into s32.
7726 */
7727 dst_reg->s32_min_value = dst_reg->u32_min_value;
7728 dst_reg->s32_max_value = dst_reg->u32_max_value;
7729 } else {
7730 dst_reg->s32_min_value = S32_MIN;
7731 dst_reg->s32_max_value = S32_MAX;
7732 }
7733}
7734
7735static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7736 struct bpf_reg_state *src_reg)
7737{
7738 bool src_known = tnum_is_const(src_reg->var_off);
7739 bool dst_known = tnum_is_const(dst_reg->var_off);
7740 s64 smin_val = src_reg->smin_value;
7741
7742 if (src_known && dst_known) {
7743 /* dst_reg->var_off.value has been updated earlier */
7744 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7745 return;
7746 }
7747
7748 /* We get both minimum and maximum from the var_off. */
7749 dst_reg->umin_value = dst_reg->var_off.value;
7750 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7751
7752 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7753 /* XORing two positive sign numbers gives a positive,
7754 * so safe to cast u64 result into s64.
7755 */
7756 dst_reg->smin_value = dst_reg->umin_value;
7757 dst_reg->smax_value = dst_reg->umax_value;
7758 } else {
7759 dst_reg->smin_value = S64_MIN;
7760 dst_reg->smax_value = S64_MAX;
7761 }
7762
7763 __update_reg_bounds(dst_reg);
7764}
7765
3f50f132
JF
7766static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7767 u64 umin_val, u64 umax_val)
07cd2631 7768{
07cd2631
JF
7769 /* We lose all sign bit information (except what we can pick
7770 * up from var_off)
7771 */
3f50f132
JF
7772 dst_reg->s32_min_value = S32_MIN;
7773 dst_reg->s32_max_value = S32_MAX;
7774 /* If we might shift our top bit out, then we know nothing */
7775 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7776 dst_reg->u32_min_value = 0;
7777 dst_reg->u32_max_value = U32_MAX;
7778 } else {
7779 dst_reg->u32_min_value <<= umin_val;
7780 dst_reg->u32_max_value <<= umax_val;
7781 }
7782}
7783
7784static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7785 struct bpf_reg_state *src_reg)
7786{
7787 u32 umax_val = src_reg->u32_max_value;
7788 u32 umin_val = src_reg->u32_min_value;
7789 /* u32 alu operation will zext upper bits */
7790 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7791
7792 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7793 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7794 /* Not required but being careful mark reg64 bounds as unknown so
7795 * that we are forced to pick them up from tnum and zext later and
7796 * if some path skips this step we are still safe.
7797 */
7798 __mark_reg64_unbounded(dst_reg);
7799 __update_reg32_bounds(dst_reg);
7800}
7801
7802static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7803 u64 umin_val, u64 umax_val)
7804{
7805 /* Special case <<32 because it is a common compiler pattern to sign
7806 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7807 * positive we know this shift will also be positive so we can track
7808 * bounds correctly. Otherwise we lose all sign bit information except
7809 * what we can pick up from var_off. Perhaps we can generalize this
7810 * later to shifts of any length.
7811 */
7812 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7813 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7814 else
7815 dst_reg->smax_value = S64_MAX;
7816
7817 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7818 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7819 else
7820 dst_reg->smin_value = S64_MIN;
7821
07cd2631
JF
7822 /* If we might shift our top bit out, then we know nothing */
7823 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7824 dst_reg->umin_value = 0;
7825 dst_reg->umax_value = U64_MAX;
7826 } else {
7827 dst_reg->umin_value <<= umin_val;
7828 dst_reg->umax_value <<= umax_val;
7829 }
3f50f132
JF
7830}
7831
7832static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7833 struct bpf_reg_state *src_reg)
7834{
7835 u64 umax_val = src_reg->umax_value;
7836 u64 umin_val = src_reg->umin_value;
7837
7838 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7839 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7840 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7841
07cd2631
JF
7842 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7843 /* We may learn something more from the var_off */
7844 __update_reg_bounds(dst_reg);
7845}
7846
3f50f132
JF
7847static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7848 struct bpf_reg_state *src_reg)
7849{
7850 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7851 u32 umax_val = src_reg->u32_max_value;
7852 u32 umin_val = src_reg->u32_min_value;
7853
7854 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7855 * be negative, then either:
7856 * 1) src_reg might be zero, so the sign bit of the result is
7857 * unknown, so we lose our signed bounds
7858 * 2) it's known negative, thus the unsigned bounds capture the
7859 * signed bounds
7860 * 3) the signed bounds cross zero, so they tell us nothing
7861 * about the result
7862 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7863 * unsigned bounds capture the signed bounds.
3f50f132
JF
7864 * Thus, in all cases it suffices to blow away our signed bounds
7865 * and rely on inferring new ones from the unsigned bounds and
7866 * var_off of the result.
7867 */
7868 dst_reg->s32_min_value = S32_MIN;
7869 dst_reg->s32_max_value = S32_MAX;
7870
7871 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7872 dst_reg->u32_min_value >>= umax_val;
7873 dst_reg->u32_max_value >>= umin_val;
7874
7875 __mark_reg64_unbounded(dst_reg);
7876 __update_reg32_bounds(dst_reg);
7877}
7878
07cd2631
JF
7879static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7880 struct bpf_reg_state *src_reg)
7881{
7882 u64 umax_val = src_reg->umax_value;
7883 u64 umin_val = src_reg->umin_value;
7884
7885 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7886 * be negative, then either:
7887 * 1) src_reg might be zero, so the sign bit of the result is
7888 * unknown, so we lose our signed bounds
7889 * 2) it's known negative, thus the unsigned bounds capture the
7890 * signed bounds
7891 * 3) the signed bounds cross zero, so they tell us nothing
7892 * about the result
7893 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7894 * unsigned bounds capture the signed bounds.
07cd2631
JF
7895 * Thus, in all cases it suffices to blow away our signed bounds
7896 * and rely on inferring new ones from the unsigned bounds and
7897 * var_off of the result.
7898 */
7899 dst_reg->smin_value = S64_MIN;
7900 dst_reg->smax_value = S64_MAX;
7901 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7902 dst_reg->umin_value >>= umax_val;
7903 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7904
7905 /* Its not easy to operate on alu32 bounds here because it depends
7906 * on bits being shifted in. Take easy way out and mark unbounded
7907 * so we can recalculate later from tnum.
7908 */
7909 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7910 __update_reg_bounds(dst_reg);
7911}
7912
3f50f132
JF
7913static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7914 struct bpf_reg_state *src_reg)
07cd2631 7915{
3f50f132 7916 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7917
7918 /* Upon reaching here, src_known is true and
7919 * umax_val is equal to umin_val.
7920 */
3f50f132
JF
7921 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7922 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7923
3f50f132
JF
7924 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7925
7926 /* blow away the dst_reg umin_value/umax_value and rely on
7927 * dst_reg var_off to refine the result.
7928 */
7929 dst_reg->u32_min_value = 0;
7930 dst_reg->u32_max_value = U32_MAX;
7931
7932 __mark_reg64_unbounded(dst_reg);
7933 __update_reg32_bounds(dst_reg);
7934}
7935
7936static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7937 struct bpf_reg_state *src_reg)
7938{
7939 u64 umin_val = src_reg->umin_value;
7940
7941 /* Upon reaching here, src_known is true and umax_val is equal
7942 * to umin_val.
7943 */
7944 dst_reg->smin_value >>= umin_val;
7945 dst_reg->smax_value >>= umin_val;
7946
7947 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7948
7949 /* blow away the dst_reg umin_value/umax_value and rely on
7950 * dst_reg var_off to refine the result.
7951 */
7952 dst_reg->umin_value = 0;
7953 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7954
7955 /* Its not easy to operate on alu32 bounds here because it depends
7956 * on bits being shifted in from upper 32-bits. Take easy way out
7957 * and mark unbounded so we can recalculate later from tnum.
7958 */
7959 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7960 __update_reg_bounds(dst_reg);
7961}
7962
468f6eaf
JH
7963/* WARNING: This function does calculations on 64-bit values, but the actual
7964 * execution may occur on 32-bit values. Therefore, things like bitshifts
7965 * need extra checks in the 32-bit case.
7966 */
f1174f77
EC
7967static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7968 struct bpf_insn *insn,
7969 struct bpf_reg_state *dst_reg,
7970 struct bpf_reg_state src_reg)
969bf05e 7971{
638f5b90 7972 struct bpf_reg_state *regs = cur_regs(env);
48461135 7973 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7974 bool src_known;
b03c9f9f
EC
7975 s64 smin_val, smax_val;
7976 u64 umin_val, umax_val;
3f50f132
JF
7977 s32 s32_min_val, s32_max_val;
7978 u32 u32_min_val, u32_max_val;
468f6eaf 7979 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 7980 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 7981 int ret;
b799207e 7982
b03c9f9f
EC
7983 smin_val = src_reg.smin_value;
7984 smax_val = src_reg.smax_value;
7985 umin_val = src_reg.umin_value;
7986 umax_val = src_reg.umax_value;
f23cc643 7987
3f50f132
JF
7988 s32_min_val = src_reg.s32_min_value;
7989 s32_max_val = src_reg.s32_max_value;
7990 u32_min_val = src_reg.u32_min_value;
7991 u32_max_val = src_reg.u32_max_value;
7992
7993 if (alu32) {
7994 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7995 if ((src_known &&
7996 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7997 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7998 /* Taint dst register if offset had invalid bounds
7999 * derived from e.g. dead branches.
8000 */
8001 __mark_reg_unknown(env, dst_reg);
8002 return 0;
8003 }
8004 } else {
8005 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
8006 if ((src_known &&
8007 (smin_val != smax_val || umin_val != umax_val)) ||
8008 smin_val > smax_val || umin_val > umax_val) {
8009 /* Taint dst register if offset had invalid bounds
8010 * derived from e.g. dead branches.
8011 */
8012 __mark_reg_unknown(env, dst_reg);
8013 return 0;
8014 }
6f16101e
DB
8015 }
8016
bb7f0f98
AS
8017 if (!src_known &&
8018 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 8019 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
8020 return 0;
8021 }
8022
f5288193
DB
8023 if (sanitize_needed(opcode)) {
8024 ret = sanitize_val_alu(env, insn);
8025 if (ret < 0)
8026 return sanitize_err(env, insn, ret, NULL, NULL);
8027 }
8028
3f50f132
JF
8029 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8030 * There are two classes of instructions: The first class we track both
8031 * alu32 and alu64 sign/unsigned bounds independently this provides the
8032 * greatest amount of precision when alu operations are mixed with jmp32
8033 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8034 * and BPF_OR. This is possible because these ops have fairly easy to
8035 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8036 * See alu32 verifier tests for examples. The second class of
8037 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8038 * with regards to tracking sign/unsigned bounds because the bits may
8039 * cross subreg boundaries in the alu64 case. When this happens we mark
8040 * the reg unbounded in the subreg bound space and use the resulting
8041 * tnum to calculate an approximation of the sign/unsigned bounds.
8042 */
48461135
JB
8043 switch (opcode) {
8044 case BPF_ADD:
3f50f132 8045 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 8046 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 8047 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
8048 break;
8049 case BPF_SUB:
3f50f132 8050 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 8051 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 8052 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
8053 break;
8054 case BPF_MUL:
3f50f132
JF
8055 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8056 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 8057 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
8058 break;
8059 case BPF_AND:
3f50f132
JF
8060 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8061 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 8062 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
8063 break;
8064 case BPF_OR:
3f50f132
JF
8065 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8066 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 8067 scalar_min_max_or(dst_reg, &src_reg);
48461135 8068 break;
2921c90d
YS
8069 case BPF_XOR:
8070 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8071 scalar32_min_max_xor(dst_reg, &src_reg);
8072 scalar_min_max_xor(dst_reg, &src_reg);
8073 break;
48461135 8074 case BPF_LSH:
468f6eaf
JH
8075 if (umax_val >= insn_bitness) {
8076 /* Shifts greater than 31 or 63 are undefined.
8077 * This includes shifts by a negative number.
b03c9f9f 8078 */
61bd5218 8079 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8080 break;
8081 }
3f50f132
JF
8082 if (alu32)
8083 scalar32_min_max_lsh(dst_reg, &src_reg);
8084 else
8085 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
8086 break;
8087 case BPF_RSH:
468f6eaf
JH
8088 if (umax_val >= insn_bitness) {
8089 /* Shifts greater than 31 or 63 are undefined.
8090 * This includes shifts by a negative number.
b03c9f9f 8091 */
61bd5218 8092 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
8093 break;
8094 }
3f50f132
JF
8095 if (alu32)
8096 scalar32_min_max_rsh(dst_reg, &src_reg);
8097 else
8098 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 8099 break;
9cbe1f5a
YS
8100 case BPF_ARSH:
8101 if (umax_val >= insn_bitness) {
8102 /* Shifts greater than 31 or 63 are undefined.
8103 * This includes shifts by a negative number.
8104 */
8105 mark_reg_unknown(env, regs, insn->dst_reg);
8106 break;
8107 }
3f50f132
JF
8108 if (alu32)
8109 scalar32_min_max_arsh(dst_reg, &src_reg);
8110 else
8111 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 8112 break;
48461135 8113 default:
61bd5218 8114 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
8115 break;
8116 }
8117
3f50f132
JF
8118 /* ALU32 ops are zero extended into 64bit register */
8119 if (alu32)
8120 zext_32_to_64(dst_reg);
468f6eaf 8121
294f2fc6 8122 __update_reg_bounds(dst_reg);
b03c9f9f
EC
8123 __reg_deduce_bounds(dst_reg);
8124 __reg_bound_offset(dst_reg);
f1174f77
EC
8125 return 0;
8126}
8127
8128/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8129 * and var_off.
8130 */
8131static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8132 struct bpf_insn *insn)
8133{
f4d7e40a
AS
8134 struct bpf_verifier_state *vstate = env->cur_state;
8135 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8136 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
8137 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8138 u8 opcode = BPF_OP(insn->code);
b5dc0163 8139 int err;
f1174f77
EC
8140
8141 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
8142 src_reg = NULL;
8143 if (dst_reg->type != SCALAR_VALUE)
8144 ptr_reg = dst_reg;
75748837
AS
8145 else
8146 /* Make sure ID is cleared otherwise dst_reg min/max could be
8147 * incorrectly propagated into other registers by find_equal_scalars()
8148 */
8149 dst_reg->id = 0;
f1174f77
EC
8150 if (BPF_SRC(insn->code) == BPF_X) {
8151 src_reg = &regs[insn->src_reg];
f1174f77
EC
8152 if (src_reg->type != SCALAR_VALUE) {
8153 if (dst_reg->type != SCALAR_VALUE) {
8154 /* Combining two pointers by any ALU op yields
82abbf8d
AS
8155 * an arbitrary scalar. Disallow all math except
8156 * pointer subtraction
f1174f77 8157 */
dd066823 8158 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
8159 mark_reg_unknown(env, regs, insn->dst_reg);
8160 return 0;
f1174f77 8161 }
82abbf8d
AS
8162 verbose(env, "R%d pointer %s pointer prohibited\n",
8163 insn->dst_reg,
8164 bpf_alu_string[opcode >> 4]);
8165 return -EACCES;
f1174f77
EC
8166 } else {
8167 /* scalar += pointer
8168 * This is legal, but we have to reverse our
8169 * src/dest handling in computing the range
8170 */
b5dc0163
AS
8171 err = mark_chain_precision(env, insn->dst_reg);
8172 if (err)
8173 return err;
82abbf8d
AS
8174 return adjust_ptr_min_max_vals(env, insn,
8175 src_reg, dst_reg);
f1174f77
EC
8176 }
8177 } else if (ptr_reg) {
8178 /* pointer += scalar */
b5dc0163
AS
8179 err = mark_chain_precision(env, insn->src_reg);
8180 if (err)
8181 return err;
82abbf8d
AS
8182 return adjust_ptr_min_max_vals(env, insn,
8183 dst_reg, src_reg);
f1174f77
EC
8184 }
8185 } else {
8186 /* Pretend the src is a reg with a known value, since we only
8187 * need to be able to read from this state.
8188 */
8189 off_reg.type = SCALAR_VALUE;
b03c9f9f 8190 __mark_reg_known(&off_reg, insn->imm);
f1174f77 8191 src_reg = &off_reg;
82abbf8d
AS
8192 if (ptr_reg) /* pointer += K */
8193 return adjust_ptr_min_max_vals(env, insn,
8194 ptr_reg, src_reg);
f1174f77
EC
8195 }
8196
8197 /* Got here implies adding two SCALAR_VALUEs */
8198 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 8199 print_verifier_state(env, state);
61bd5218 8200 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
8201 return -EINVAL;
8202 }
8203 if (WARN_ON(!src_reg)) {
f4d7e40a 8204 print_verifier_state(env, state);
61bd5218 8205 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
8206 return -EINVAL;
8207 }
8208 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
8209}
8210
17a52670 8211/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 8212static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8213{
638f5b90 8214 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
8215 u8 opcode = BPF_OP(insn->code);
8216 int err;
8217
8218 if (opcode == BPF_END || opcode == BPF_NEG) {
8219 if (opcode == BPF_NEG) {
8220 if (BPF_SRC(insn->code) != 0 ||
8221 insn->src_reg != BPF_REG_0 ||
8222 insn->off != 0 || insn->imm != 0) {
61bd5218 8223 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
8224 return -EINVAL;
8225 }
8226 } else {
8227 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
8228 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8229 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 8230 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
8231 return -EINVAL;
8232 }
8233 }
8234
8235 /* check src operand */
dc503a8a 8236 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8237 if (err)
8238 return err;
8239
1be7f75d 8240 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 8241 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
8242 insn->dst_reg);
8243 return -EACCES;
8244 }
8245
17a52670 8246 /* check dest operand */
dc503a8a 8247 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8248 if (err)
8249 return err;
8250
8251 } else if (opcode == BPF_MOV) {
8252
8253 if (BPF_SRC(insn->code) == BPF_X) {
8254 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8255 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8256 return -EINVAL;
8257 }
8258
8259 /* check src operand */
dc503a8a 8260 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8261 if (err)
8262 return err;
8263 } else {
8264 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8265 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
8266 return -EINVAL;
8267 }
8268 }
8269
fbeb1603
AF
8270 /* check dest operand, mark as required later */
8271 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
8272 if (err)
8273 return err;
8274
8275 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
8276 struct bpf_reg_state *src_reg = regs + insn->src_reg;
8277 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8278
17a52670
AS
8279 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8280 /* case: R1 = R2
8281 * copy register state to dest reg
8282 */
75748837
AS
8283 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8284 /* Assign src and dst registers the same ID
8285 * that will be used by find_equal_scalars()
8286 * to propagate min/max range.
8287 */
8288 src_reg->id = ++env->id_gen;
e434b8cd
JW
8289 *dst_reg = *src_reg;
8290 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8291 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 8292 } else {
f1174f77 8293 /* R1 = (u32) R2 */
1be7f75d 8294 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
8295 verbose(env,
8296 "R%d partial copy of pointer\n",
1be7f75d
AS
8297 insn->src_reg);
8298 return -EACCES;
e434b8cd
JW
8299 } else if (src_reg->type == SCALAR_VALUE) {
8300 *dst_reg = *src_reg;
75748837
AS
8301 /* Make sure ID is cleared otherwise
8302 * dst_reg min/max could be incorrectly
8303 * propagated into src_reg by find_equal_scalars()
8304 */
8305 dst_reg->id = 0;
e434b8cd 8306 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 8307 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
8308 } else {
8309 mark_reg_unknown(env, regs,
8310 insn->dst_reg);
1be7f75d 8311 }
3f50f132 8312 zext_32_to_64(dst_reg);
17a52670
AS
8313 }
8314 } else {
8315 /* case: R = imm
8316 * remember the value we stored into this reg
8317 */
fbeb1603
AF
8318 /* clear any state __mark_reg_known doesn't set */
8319 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 8320 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
8321 if (BPF_CLASS(insn->code) == BPF_ALU64) {
8322 __mark_reg_known(regs + insn->dst_reg,
8323 insn->imm);
8324 } else {
8325 __mark_reg_known(regs + insn->dst_reg,
8326 (u32)insn->imm);
8327 }
17a52670
AS
8328 }
8329
8330 } else if (opcode > BPF_END) {
61bd5218 8331 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
8332 return -EINVAL;
8333
8334 } else { /* all other ALU ops: and, sub, xor, add, ... */
8335
17a52670
AS
8336 if (BPF_SRC(insn->code) == BPF_X) {
8337 if (insn->imm != 0 || insn->off != 0) {
61bd5218 8338 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8339 return -EINVAL;
8340 }
8341 /* check src1 operand */
dc503a8a 8342 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8343 if (err)
8344 return err;
8345 } else {
8346 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 8347 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
8348 return -EINVAL;
8349 }
8350 }
8351
8352 /* check src2 operand */
dc503a8a 8353 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8354 if (err)
8355 return err;
8356
8357 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8358 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 8359 verbose(env, "div by zero\n");
17a52670
AS
8360 return -EINVAL;
8361 }
8362
229394e8
RV
8363 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8364 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8365 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8366
8367 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 8368 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
8369 return -EINVAL;
8370 }
8371 }
8372
1a0dc1ac 8373 /* check dest operand */
dc503a8a 8374 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
8375 if (err)
8376 return err;
8377
f1174f77 8378 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
8379 }
8380
8381 return 0;
8382}
8383
c6a9efa1
PC
8384static void __find_good_pkt_pointers(struct bpf_func_state *state,
8385 struct bpf_reg_state *dst_reg,
6d94e741 8386 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
8387{
8388 struct bpf_reg_state *reg;
8389 int i;
8390
8391 for (i = 0; i < MAX_BPF_REG; i++) {
8392 reg = &state->regs[i];
8393 if (reg->type == type && reg->id == dst_reg->id)
8394 /* keep the maximum range already checked */
8395 reg->range = max(reg->range, new_range);
8396 }
8397
8398 bpf_for_each_spilled_reg(i, state, reg) {
8399 if (!reg)
8400 continue;
8401 if (reg->type == type && reg->id == dst_reg->id)
8402 reg->range = max(reg->range, new_range);
8403 }
8404}
8405
f4d7e40a 8406static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 8407 struct bpf_reg_state *dst_reg,
f8ddadc4 8408 enum bpf_reg_type type,
fb2a311a 8409 bool range_right_open)
969bf05e 8410{
6d94e741 8411 int new_range, i;
2d2be8ca 8412
fb2a311a
DB
8413 if (dst_reg->off < 0 ||
8414 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
8415 /* This doesn't give us any range */
8416 return;
8417
b03c9f9f
EC
8418 if (dst_reg->umax_value > MAX_PACKET_OFF ||
8419 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
8420 /* Risk of overflow. For instance, ptr + (1<<63) may be less
8421 * than pkt_end, but that's because it's also less than pkt.
8422 */
8423 return;
8424
fb2a311a
DB
8425 new_range = dst_reg->off;
8426 if (range_right_open)
8427 new_range--;
8428
8429 /* Examples for register markings:
2d2be8ca 8430 *
fb2a311a 8431 * pkt_data in dst register:
2d2be8ca
DB
8432 *
8433 * r2 = r3;
8434 * r2 += 8;
8435 * if (r2 > pkt_end) goto <handle exception>
8436 * <access okay>
8437 *
b4e432f1
DB
8438 * r2 = r3;
8439 * r2 += 8;
8440 * if (r2 < pkt_end) goto <access okay>
8441 * <handle exception>
8442 *
2d2be8ca
DB
8443 * Where:
8444 * r2 == dst_reg, pkt_end == src_reg
8445 * r2=pkt(id=n,off=8,r=0)
8446 * r3=pkt(id=n,off=0,r=0)
8447 *
fb2a311a 8448 * pkt_data in src register:
2d2be8ca
DB
8449 *
8450 * r2 = r3;
8451 * r2 += 8;
8452 * if (pkt_end >= r2) goto <access okay>
8453 * <handle exception>
8454 *
b4e432f1
DB
8455 * r2 = r3;
8456 * r2 += 8;
8457 * if (pkt_end <= r2) goto <handle exception>
8458 * <access okay>
8459 *
2d2be8ca
DB
8460 * Where:
8461 * pkt_end == dst_reg, r2 == src_reg
8462 * r2=pkt(id=n,off=8,r=0)
8463 * r3=pkt(id=n,off=0,r=0)
8464 *
8465 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
8466 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8467 * and [r3, r3 + 8-1) respectively is safe to access depending on
8468 * the check.
969bf05e 8469 */
2d2be8ca 8470
f1174f77
EC
8471 /* If our ids match, then we must have the same max_value. And we
8472 * don't care about the other reg's fixed offset, since if it's too big
8473 * the range won't allow anything.
8474 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8475 */
c6a9efa1
PC
8476 for (i = 0; i <= vstate->curframe; i++)
8477 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8478 new_range);
969bf05e
AS
8479}
8480
3f50f132 8481static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 8482{
3f50f132
JF
8483 struct tnum subreg = tnum_subreg(reg->var_off);
8484 s32 sval = (s32)val;
a72dafaf 8485
3f50f132
JF
8486 switch (opcode) {
8487 case BPF_JEQ:
8488 if (tnum_is_const(subreg))
8489 return !!tnum_equals_const(subreg, val);
8490 break;
8491 case BPF_JNE:
8492 if (tnum_is_const(subreg))
8493 return !tnum_equals_const(subreg, val);
8494 break;
8495 case BPF_JSET:
8496 if ((~subreg.mask & subreg.value) & val)
8497 return 1;
8498 if (!((subreg.mask | subreg.value) & val))
8499 return 0;
8500 break;
8501 case BPF_JGT:
8502 if (reg->u32_min_value > val)
8503 return 1;
8504 else if (reg->u32_max_value <= val)
8505 return 0;
8506 break;
8507 case BPF_JSGT:
8508 if (reg->s32_min_value > sval)
8509 return 1;
ee114dd6 8510 else if (reg->s32_max_value <= sval)
3f50f132
JF
8511 return 0;
8512 break;
8513 case BPF_JLT:
8514 if (reg->u32_max_value < val)
8515 return 1;
8516 else if (reg->u32_min_value >= val)
8517 return 0;
8518 break;
8519 case BPF_JSLT:
8520 if (reg->s32_max_value < sval)
8521 return 1;
8522 else if (reg->s32_min_value >= sval)
8523 return 0;
8524 break;
8525 case BPF_JGE:
8526 if (reg->u32_min_value >= val)
8527 return 1;
8528 else if (reg->u32_max_value < val)
8529 return 0;
8530 break;
8531 case BPF_JSGE:
8532 if (reg->s32_min_value >= sval)
8533 return 1;
8534 else if (reg->s32_max_value < sval)
8535 return 0;
8536 break;
8537 case BPF_JLE:
8538 if (reg->u32_max_value <= val)
8539 return 1;
8540 else if (reg->u32_min_value > val)
8541 return 0;
8542 break;
8543 case BPF_JSLE:
8544 if (reg->s32_max_value <= sval)
8545 return 1;
8546 else if (reg->s32_min_value > sval)
8547 return 0;
8548 break;
8549 }
4f7b3e82 8550
3f50f132
JF
8551 return -1;
8552}
092ed096 8553
3f50f132
JF
8554
8555static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8556{
8557 s64 sval = (s64)val;
a72dafaf 8558
4f7b3e82
AS
8559 switch (opcode) {
8560 case BPF_JEQ:
8561 if (tnum_is_const(reg->var_off))
8562 return !!tnum_equals_const(reg->var_off, val);
8563 break;
8564 case BPF_JNE:
8565 if (tnum_is_const(reg->var_off))
8566 return !tnum_equals_const(reg->var_off, val);
8567 break;
960ea056
JK
8568 case BPF_JSET:
8569 if ((~reg->var_off.mask & reg->var_off.value) & val)
8570 return 1;
8571 if (!((reg->var_off.mask | reg->var_off.value) & val))
8572 return 0;
8573 break;
4f7b3e82
AS
8574 case BPF_JGT:
8575 if (reg->umin_value > val)
8576 return 1;
8577 else if (reg->umax_value <= val)
8578 return 0;
8579 break;
8580 case BPF_JSGT:
a72dafaf 8581 if (reg->smin_value > sval)
4f7b3e82 8582 return 1;
ee114dd6 8583 else if (reg->smax_value <= sval)
4f7b3e82
AS
8584 return 0;
8585 break;
8586 case BPF_JLT:
8587 if (reg->umax_value < val)
8588 return 1;
8589 else if (reg->umin_value >= val)
8590 return 0;
8591 break;
8592 case BPF_JSLT:
a72dafaf 8593 if (reg->smax_value < sval)
4f7b3e82 8594 return 1;
a72dafaf 8595 else if (reg->smin_value >= sval)
4f7b3e82
AS
8596 return 0;
8597 break;
8598 case BPF_JGE:
8599 if (reg->umin_value >= val)
8600 return 1;
8601 else if (reg->umax_value < val)
8602 return 0;
8603 break;
8604 case BPF_JSGE:
a72dafaf 8605 if (reg->smin_value >= sval)
4f7b3e82 8606 return 1;
a72dafaf 8607 else if (reg->smax_value < sval)
4f7b3e82
AS
8608 return 0;
8609 break;
8610 case BPF_JLE:
8611 if (reg->umax_value <= val)
8612 return 1;
8613 else if (reg->umin_value > val)
8614 return 0;
8615 break;
8616 case BPF_JSLE:
a72dafaf 8617 if (reg->smax_value <= sval)
4f7b3e82 8618 return 1;
a72dafaf 8619 else if (reg->smin_value > sval)
4f7b3e82
AS
8620 return 0;
8621 break;
8622 }
8623
8624 return -1;
8625}
8626
3f50f132
JF
8627/* compute branch direction of the expression "if (reg opcode val) goto target;"
8628 * and return:
8629 * 1 - branch will be taken and "goto target" will be executed
8630 * 0 - branch will not be taken and fall-through to next insn
8631 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8632 * range [0,10]
604dca5e 8633 */
3f50f132
JF
8634static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8635 bool is_jmp32)
604dca5e 8636{
cac616db
JF
8637 if (__is_pointer_value(false, reg)) {
8638 if (!reg_type_not_null(reg->type))
8639 return -1;
8640
8641 /* If pointer is valid tests against zero will fail so we can
8642 * use this to direct branch taken.
8643 */
8644 if (val != 0)
8645 return -1;
8646
8647 switch (opcode) {
8648 case BPF_JEQ:
8649 return 0;
8650 case BPF_JNE:
8651 return 1;
8652 default:
8653 return -1;
8654 }
8655 }
604dca5e 8656
3f50f132
JF
8657 if (is_jmp32)
8658 return is_branch32_taken(reg, val, opcode);
8659 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8660}
8661
6d94e741
AS
8662static int flip_opcode(u32 opcode)
8663{
8664 /* How can we transform "a <op> b" into "b <op> a"? */
8665 static const u8 opcode_flip[16] = {
8666 /* these stay the same */
8667 [BPF_JEQ >> 4] = BPF_JEQ,
8668 [BPF_JNE >> 4] = BPF_JNE,
8669 [BPF_JSET >> 4] = BPF_JSET,
8670 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8671 [BPF_JGE >> 4] = BPF_JLE,
8672 [BPF_JGT >> 4] = BPF_JLT,
8673 [BPF_JLE >> 4] = BPF_JGE,
8674 [BPF_JLT >> 4] = BPF_JGT,
8675 [BPF_JSGE >> 4] = BPF_JSLE,
8676 [BPF_JSGT >> 4] = BPF_JSLT,
8677 [BPF_JSLE >> 4] = BPF_JSGE,
8678 [BPF_JSLT >> 4] = BPF_JSGT
8679 };
8680 return opcode_flip[opcode >> 4];
8681}
8682
8683static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8684 struct bpf_reg_state *src_reg,
8685 u8 opcode)
8686{
8687 struct bpf_reg_state *pkt;
8688
8689 if (src_reg->type == PTR_TO_PACKET_END) {
8690 pkt = dst_reg;
8691 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8692 pkt = src_reg;
8693 opcode = flip_opcode(opcode);
8694 } else {
8695 return -1;
8696 }
8697
8698 if (pkt->range >= 0)
8699 return -1;
8700
8701 switch (opcode) {
8702 case BPF_JLE:
8703 /* pkt <= pkt_end */
8704 fallthrough;
8705 case BPF_JGT:
8706 /* pkt > pkt_end */
8707 if (pkt->range == BEYOND_PKT_END)
8708 /* pkt has at last one extra byte beyond pkt_end */
8709 return opcode == BPF_JGT;
8710 break;
8711 case BPF_JLT:
8712 /* pkt < pkt_end */
8713 fallthrough;
8714 case BPF_JGE:
8715 /* pkt >= pkt_end */
8716 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8717 return opcode == BPF_JGE;
8718 break;
8719 }
8720 return -1;
8721}
8722
48461135
JB
8723/* Adjusts the register min/max values in the case that the dst_reg is the
8724 * variable register that we are working on, and src_reg is a constant or we're
8725 * simply doing a BPF_K check.
f1174f77 8726 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8727 */
8728static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8729 struct bpf_reg_state *false_reg,
8730 u64 val, u32 val32,
092ed096 8731 u8 opcode, bool is_jmp32)
48461135 8732{
3f50f132
JF
8733 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8734 struct tnum false_64off = false_reg->var_off;
8735 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8736 struct tnum true_64off = true_reg->var_off;
8737 s64 sval = (s64)val;
8738 s32 sval32 = (s32)val32;
a72dafaf 8739
f1174f77
EC
8740 /* If the dst_reg is a pointer, we can't learn anything about its
8741 * variable offset from the compare (unless src_reg were a pointer into
8742 * the same object, but we don't bother with that.
8743 * Since false_reg and true_reg have the same type by construction, we
8744 * only need to check one of them for pointerness.
8745 */
8746 if (__is_pointer_value(false, false_reg))
8747 return;
4cabc5b1 8748
48461135
JB
8749 switch (opcode) {
8750 case BPF_JEQ:
48461135 8751 case BPF_JNE:
a72dafaf
JW
8752 {
8753 struct bpf_reg_state *reg =
8754 opcode == BPF_JEQ ? true_reg : false_reg;
8755
e688c3db
AS
8756 /* JEQ/JNE comparison doesn't change the register equivalence.
8757 * r1 = r2;
8758 * if (r1 == 42) goto label;
8759 * ...
8760 * label: // here both r1 and r2 are known to be 42.
8761 *
8762 * Hence when marking register as known preserve it's ID.
48461135 8763 */
3f50f132
JF
8764 if (is_jmp32)
8765 __mark_reg32_known(reg, val32);
8766 else
e688c3db 8767 ___mark_reg_known(reg, val);
48461135 8768 break;
a72dafaf 8769 }
960ea056 8770 case BPF_JSET:
3f50f132
JF
8771 if (is_jmp32) {
8772 false_32off = tnum_and(false_32off, tnum_const(~val32));
8773 if (is_power_of_2(val32))
8774 true_32off = tnum_or(true_32off,
8775 tnum_const(val32));
8776 } else {
8777 false_64off = tnum_and(false_64off, tnum_const(~val));
8778 if (is_power_of_2(val))
8779 true_64off = tnum_or(true_64off,
8780 tnum_const(val));
8781 }
960ea056 8782 break;
48461135 8783 case BPF_JGE:
a72dafaf
JW
8784 case BPF_JGT:
8785 {
3f50f132
JF
8786 if (is_jmp32) {
8787 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8788 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8789
8790 false_reg->u32_max_value = min(false_reg->u32_max_value,
8791 false_umax);
8792 true_reg->u32_min_value = max(true_reg->u32_min_value,
8793 true_umin);
8794 } else {
8795 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8796 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8797
8798 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8799 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8800 }
b03c9f9f 8801 break;
a72dafaf 8802 }
48461135 8803 case BPF_JSGE:
a72dafaf
JW
8804 case BPF_JSGT:
8805 {
3f50f132
JF
8806 if (is_jmp32) {
8807 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8808 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8809
3f50f132
JF
8810 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8811 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8812 } else {
8813 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8814 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8815
8816 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8817 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8818 }
48461135 8819 break;
a72dafaf 8820 }
b4e432f1 8821 case BPF_JLE:
a72dafaf
JW
8822 case BPF_JLT:
8823 {
3f50f132
JF
8824 if (is_jmp32) {
8825 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8826 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8827
8828 false_reg->u32_min_value = max(false_reg->u32_min_value,
8829 false_umin);
8830 true_reg->u32_max_value = min(true_reg->u32_max_value,
8831 true_umax);
8832 } else {
8833 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8834 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8835
8836 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8837 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8838 }
b4e432f1 8839 break;
a72dafaf 8840 }
b4e432f1 8841 case BPF_JSLE:
a72dafaf
JW
8842 case BPF_JSLT:
8843 {
3f50f132
JF
8844 if (is_jmp32) {
8845 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8846 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8847
3f50f132
JF
8848 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8849 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8850 } else {
8851 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8852 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8853
8854 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8855 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8856 }
b4e432f1 8857 break;
a72dafaf 8858 }
48461135 8859 default:
0fc31b10 8860 return;
48461135
JB
8861 }
8862
3f50f132
JF
8863 if (is_jmp32) {
8864 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8865 tnum_subreg(false_32off));
8866 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8867 tnum_subreg(true_32off));
8868 __reg_combine_32_into_64(false_reg);
8869 __reg_combine_32_into_64(true_reg);
8870 } else {
8871 false_reg->var_off = false_64off;
8872 true_reg->var_off = true_64off;
8873 __reg_combine_64_into_32(false_reg);
8874 __reg_combine_64_into_32(true_reg);
8875 }
48461135
JB
8876}
8877
f1174f77
EC
8878/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8879 * the variable reg.
48461135
JB
8880 */
8881static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8882 struct bpf_reg_state *false_reg,
8883 u64 val, u32 val32,
092ed096 8884 u8 opcode, bool is_jmp32)
48461135 8885{
6d94e741 8886 opcode = flip_opcode(opcode);
0fc31b10
JH
8887 /* This uses zero as "not present in table"; luckily the zero opcode,
8888 * BPF_JA, can't get here.
b03c9f9f 8889 */
0fc31b10 8890 if (opcode)
3f50f132 8891 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8892}
8893
8894/* Regs are known to be equal, so intersect their min/max/var_off */
8895static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8896 struct bpf_reg_state *dst_reg)
8897{
b03c9f9f
EC
8898 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8899 dst_reg->umin_value);
8900 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8901 dst_reg->umax_value);
8902 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8903 dst_reg->smin_value);
8904 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8905 dst_reg->smax_value);
f1174f77
EC
8906 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8907 dst_reg->var_off);
b03c9f9f
EC
8908 /* We might have learned new bounds from the var_off. */
8909 __update_reg_bounds(src_reg);
8910 __update_reg_bounds(dst_reg);
8911 /* We might have learned something about the sign bit. */
8912 __reg_deduce_bounds(src_reg);
8913 __reg_deduce_bounds(dst_reg);
8914 /* We might have learned some bits from the bounds. */
8915 __reg_bound_offset(src_reg);
8916 __reg_bound_offset(dst_reg);
8917 /* Intersecting with the old var_off might have improved our bounds
8918 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8919 * then new var_off is (0; 0x7f...fc) which improves our umax.
8920 */
8921 __update_reg_bounds(src_reg);
8922 __update_reg_bounds(dst_reg);
f1174f77
EC
8923}
8924
8925static void reg_combine_min_max(struct bpf_reg_state *true_src,
8926 struct bpf_reg_state *true_dst,
8927 struct bpf_reg_state *false_src,
8928 struct bpf_reg_state *false_dst,
8929 u8 opcode)
8930{
8931 switch (opcode) {
8932 case BPF_JEQ:
8933 __reg_combine_min_max(true_src, true_dst);
8934 break;
8935 case BPF_JNE:
8936 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8937 break;
4cabc5b1 8938 }
48461135
JB
8939}
8940
fd978bf7
JS
8941static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8942 struct bpf_reg_state *reg, u32 id,
840b9615 8943 bool is_null)
57a09bf0 8944{
93c230e3
MKL
8945 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8946 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8947 /* Old offset (both fixed and variable parts) should
8948 * have been known-zero, because we don't allow pointer
8949 * arithmetic on pointers that might be NULL.
8950 */
b03c9f9f
EC
8951 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8952 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8953 reg->off)) {
b03c9f9f
EC
8954 __mark_reg_known_zero(reg);
8955 reg->off = 0;
f1174f77
EC
8956 }
8957 if (is_null) {
8958 reg->type = SCALAR_VALUE;
1b986589
MKL
8959 /* We don't need id and ref_obj_id from this point
8960 * onwards anymore, thus we should better reset it,
8961 * so that state pruning has chances to take effect.
8962 */
8963 reg->id = 0;
8964 reg->ref_obj_id = 0;
4ddb7416
DB
8965
8966 return;
8967 }
8968
8969 mark_ptr_not_null_reg(reg);
8970
8971 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8972 /* For not-NULL ptr, reg->ref_obj_id will be reset
8973 * in release_reg_references().
8974 *
8975 * reg->id is still used by spin_lock ptr. Other
8976 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8977 */
8978 reg->id = 0;
56f668df 8979 }
57a09bf0
TG
8980 }
8981}
8982
c6a9efa1
PC
8983static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8984 bool is_null)
8985{
8986 struct bpf_reg_state *reg;
8987 int i;
8988
8989 for (i = 0; i < MAX_BPF_REG; i++)
8990 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8991
8992 bpf_for_each_spilled_reg(i, state, reg) {
8993 if (!reg)
8994 continue;
8995 mark_ptr_or_null_reg(state, reg, id, is_null);
8996 }
8997}
8998
57a09bf0
TG
8999/* The logic is similar to find_good_pkt_pointers(), both could eventually
9000 * be folded together at some point.
9001 */
840b9615
JS
9002static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9003 bool is_null)
57a09bf0 9004{
f4d7e40a 9005 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 9006 struct bpf_reg_state *regs = state->regs;
1b986589 9007 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 9008 u32 id = regs[regno].id;
c6a9efa1 9009 int i;
57a09bf0 9010
1b986589
MKL
9011 if (ref_obj_id && ref_obj_id == id && is_null)
9012 /* regs[regno] is in the " == NULL" branch.
9013 * No one could have freed the reference state before
9014 * doing the NULL check.
9015 */
9016 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 9017
c6a9efa1
PC
9018 for (i = 0; i <= vstate->curframe; i++)
9019 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
9020}
9021
5beca081
DB
9022static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9023 struct bpf_reg_state *dst_reg,
9024 struct bpf_reg_state *src_reg,
9025 struct bpf_verifier_state *this_branch,
9026 struct bpf_verifier_state *other_branch)
9027{
9028 if (BPF_SRC(insn->code) != BPF_X)
9029 return false;
9030
092ed096
JW
9031 /* Pointers are always 64-bit. */
9032 if (BPF_CLASS(insn->code) == BPF_JMP32)
9033 return false;
9034
5beca081
DB
9035 switch (BPF_OP(insn->code)) {
9036 case BPF_JGT:
9037 if ((dst_reg->type == PTR_TO_PACKET &&
9038 src_reg->type == PTR_TO_PACKET_END) ||
9039 (dst_reg->type == PTR_TO_PACKET_META &&
9040 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9041 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9042 find_good_pkt_pointers(this_branch, dst_reg,
9043 dst_reg->type, false);
6d94e741 9044 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
9045 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9046 src_reg->type == PTR_TO_PACKET) ||
9047 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9048 src_reg->type == PTR_TO_PACKET_META)) {
9049 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
9050 find_good_pkt_pointers(other_branch, src_reg,
9051 src_reg->type, true);
6d94e741 9052 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
9053 } else {
9054 return false;
9055 }
9056 break;
9057 case BPF_JLT:
9058 if ((dst_reg->type == PTR_TO_PACKET &&
9059 src_reg->type == PTR_TO_PACKET_END) ||
9060 (dst_reg->type == PTR_TO_PACKET_META &&
9061 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9062 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9063 find_good_pkt_pointers(other_branch, dst_reg,
9064 dst_reg->type, true);
6d94e741 9065 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
9066 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9067 src_reg->type == PTR_TO_PACKET) ||
9068 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9069 src_reg->type == PTR_TO_PACKET_META)) {
9070 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
9071 find_good_pkt_pointers(this_branch, src_reg,
9072 src_reg->type, false);
6d94e741 9073 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
9074 } else {
9075 return false;
9076 }
9077 break;
9078 case BPF_JGE:
9079 if ((dst_reg->type == PTR_TO_PACKET &&
9080 src_reg->type == PTR_TO_PACKET_END) ||
9081 (dst_reg->type == PTR_TO_PACKET_META &&
9082 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9083 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9084 find_good_pkt_pointers(this_branch, dst_reg,
9085 dst_reg->type, true);
6d94e741 9086 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
9087 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9088 src_reg->type == PTR_TO_PACKET) ||
9089 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9090 src_reg->type == PTR_TO_PACKET_META)) {
9091 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9092 find_good_pkt_pointers(other_branch, src_reg,
9093 src_reg->type, false);
6d94e741 9094 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
9095 } else {
9096 return false;
9097 }
9098 break;
9099 case BPF_JLE:
9100 if ((dst_reg->type == PTR_TO_PACKET &&
9101 src_reg->type == PTR_TO_PACKET_END) ||
9102 (dst_reg->type == PTR_TO_PACKET_META &&
9103 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9104 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9105 find_good_pkt_pointers(other_branch, dst_reg,
9106 dst_reg->type, false);
6d94e741 9107 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
9108 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
9109 src_reg->type == PTR_TO_PACKET) ||
9110 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9111 src_reg->type == PTR_TO_PACKET_META)) {
9112 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9113 find_good_pkt_pointers(this_branch, src_reg,
9114 src_reg->type, true);
6d94e741 9115 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
9116 } else {
9117 return false;
9118 }
9119 break;
9120 default:
9121 return false;
9122 }
9123
9124 return true;
9125}
9126
75748837
AS
9127static void find_equal_scalars(struct bpf_verifier_state *vstate,
9128 struct bpf_reg_state *known_reg)
9129{
9130 struct bpf_func_state *state;
9131 struct bpf_reg_state *reg;
9132 int i, j;
9133
9134 for (i = 0; i <= vstate->curframe; i++) {
9135 state = vstate->frame[i];
9136 for (j = 0; j < MAX_BPF_REG; j++) {
9137 reg = &state->regs[j];
9138 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9139 *reg = *known_reg;
9140 }
9141
9142 bpf_for_each_spilled_reg(j, state, reg) {
9143 if (!reg)
9144 continue;
9145 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9146 *reg = *known_reg;
9147 }
9148 }
9149}
9150
58e2af8b 9151static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
9152 struct bpf_insn *insn, int *insn_idx)
9153{
f4d7e40a
AS
9154 struct bpf_verifier_state *this_branch = env->cur_state;
9155 struct bpf_verifier_state *other_branch;
9156 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 9157 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 9158 u8 opcode = BPF_OP(insn->code);
092ed096 9159 bool is_jmp32;
fb8d251e 9160 int pred = -1;
17a52670
AS
9161 int err;
9162
092ed096
JW
9163 /* Only conditional jumps are expected to reach here. */
9164 if (opcode == BPF_JA || opcode > BPF_JSLE) {
9165 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
9166 return -EINVAL;
9167 }
9168
9169 if (BPF_SRC(insn->code) == BPF_X) {
9170 if (insn->imm != 0) {
092ed096 9171 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9172 return -EINVAL;
9173 }
9174
9175 /* check src1 operand */
dc503a8a 9176 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
9177 if (err)
9178 return err;
1be7f75d
AS
9179
9180 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 9181 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
9182 insn->src_reg);
9183 return -EACCES;
9184 }
fb8d251e 9185 src_reg = &regs[insn->src_reg];
17a52670
AS
9186 } else {
9187 if (insn->src_reg != BPF_REG_0) {
092ed096 9188 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
9189 return -EINVAL;
9190 }
9191 }
9192
9193 /* check src2 operand */
dc503a8a 9194 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
9195 if (err)
9196 return err;
9197
1a0dc1ac 9198 dst_reg = &regs[insn->dst_reg];
092ed096 9199 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 9200
3f50f132
JF
9201 if (BPF_SRC(insn->code) == BPF_K) {
9202 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9203 } else if (src_reg->type == SCALAR_VALUE &&
9204 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9205 pred = is_branch_taken(dst_reg,
9206 tnum_subreg(src_reg->var_off).value,
9207 opcode,
9208 is_jmp32);
9209 } else if (src_reg->type == SCALAR_VALUE &&
9210 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9211 pred = is_branch_taken(dst_reg,
9212 src_reg->var_off.value,
9213 opcode,
9214 is_jmp32);
6d94e741
AS
9215 } else if (reg_is_pkt_pointer_any(dst_reg) &&
9216 reg_is_pkt_pointer_any(src_reg) &&
9217 !is_jmp32) {
9218 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
9219 }
9220
b5dc0163 9221 if (pred >= 0) {
cac616db
JF
9222 /* If we get here with a dst_reg pointer type it is because
9223 * above is_branch_taken() special cased the 0 comparison.
9224 */
9225 if (!__is_pointer_value(false, dst_reg))
9226 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
9227 if (BPF_SRC(insn->code) == BPF_X && !err &&
9228 !__is_pointer_value(false, src_reg))
b5dc0163
AS
9229 err = mark_chain_precision(env, insn->src_reg);
9230 if (err)
9231 return err;
9232 }
9183671a 9233
fb8d251e 9234 if (pred == 1) {
9183671a
DB
9235 /* Only follow the goto, ignore fall-through. If needed, push
9236 * the fall-through branch for simulation under speculative
9237 * execution.
9238 */
9239 if (!env->bypass_spec_v1 &&
9240 !sanitize_speculative_path(env, insn, *insn_idx + 1,
9241 *insn_idx))
9242 return -EFAULT;
fb8d251e
AS
9243 *insn_idx += insn->off;
9244 return 0;
9245 } else if (pred == 0) {
9183671a
DB
9246 /* Only follow the fall-through branch, since that's where the
9247 * program will go. If needed, push the goto branch for
9248 * simulation under speculative execution.
fb8d251e 9249 */
9183671a
DB
9250 if (!env->bypass_spec_v1 &&
9251 !sanitize_speculative_path(env, insn,
9252 *insn_idx + insn->off + 1,
9253 *insn_idx))
9254 return -EFAULT;
fb8d251e 9255 return 0;
17a52670
AS
9256 }
9257
979d63d5
DB
9258 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9259 false);
17a52670
AS
9260 if (!other_branch)
9261 return -EFAULT;
f4d7e40a 9262 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 9263
48461135
JB
9264 /* detect if we are comparing against a constant value so we can adjust
9265 * our min/max values for our dst register.
f1174f77
EC
9266 * this is only legit if both are scalars (or pointers to the same
9267 * object, I suppose, but we don't support that right now), because
9268 * otherwise the different base pointers mean the offsets aren't
9269 * comparable.
48461135
JB
9270 */
9271 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 9272 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 9273
f1174f77 9274 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
9275 src_reg->type == SCALAR_VALUE) {
9276 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
9277 (is_jmp32 &&
9278 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 9279 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 9280 dst_reg,
3f50f132
JF
9281 src_reg->var_off.value,
9282 tnum_subreg(src_reg->var_off).value,
092ed096
JW
9283 opcode, is_jmp32);
9284 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
9285 (is_jmp32 &&
9286 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 9287 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 9288 src_reg,
3f50f132
JF
9289 dst_reg->var_off.value,
9290 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
9291 opcode, is_jmp32);
9292 else if (!is_jmp32 &&
9293 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 9294 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
9295 reg_combine_min_max(&other_branch_regs[insn->src_reg],
9296 &other_branch_regs[insn->dst_reg],
092ed096 9297 src_reg, dst_reg, opcode);
e688c3db
AS
9298 if (src_reg->id &&
9299 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
9300 find_equal_scalars(this_branch, src_reg);
9301 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9302 }
9303
f1174f77
EC
9304 }
9305 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 9306 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
9307 dst_reg, insn->imm, (u32)insn->imm,
9308 opcode, is_jmp32);
48461135
JB
9309 }
9310
e688c3db
AS
9311 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9312 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
9313 find_equal_scalars(this_branch, dst_reg);
9314 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9315 }
9316
092ed096
JW
9317 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9318 * NOTE: these optimizations below are related with pointer comparison
9319 * which will never be JMP32.
9320 */
9321 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 9322 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
9323 reg_type_may_be_null(dst_reg->type)) {
9324 /* Mark all identical registers in each branch as either
57a09bf0
TG
9325 * safe or unknown depending R == 0 or R != 0 conditional.
9326 */
840b9615
JS
9327 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9328 opcode == BPF_JNE);
9329 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9330 opcode == BPF_JEQ);
5beca081
DB
9331 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9332 this_branch, other_branch) &&
9333 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
9334 verbose(env, "R%d pointer comparison prohibited\n",
9335 insn->dst_reg);
1be7f75d 9336 return -EACCES;
17a52670 9337 }
06ee7115 9338 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 9339 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
9340 return 0;
9341}
9342
17a52670 9343/* verify BPF_LD_IMM64 instruction */
58e2af8b 9344static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 9345{
d8eca5bb 9346 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 9347 struct bpf_reg_state *regs = cur_regs(env);
4976b718 9348 struct bpf_reg_state *dst_reg;
d8eca5bb 9349 struct bpf_map *map;
17a52670
AS
9350 int err;
9351
9352 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 9353 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
9354 return -EINVAL;
9355 }
9356 if (insn->off != 0) {
61bd5218 9357 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
9358 return -EINVAL;
9359 }
9360
dc503a8a 9361 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
9362 if (err)
9363 return err;
9364
4976b718 9365 dst_reg = &regs[insn->dst_reg];
6b173873 9366 if (insn->src_reg == 0) {
6b173873
JK
9367 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9368
4976b718 9369 dst_reg->type = SCALAR_VALUE;
b03c9f9f 9370 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 9371 return 0;
6b173873 9372 }
17a52670 9373
4976b718
HL
9374 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9375 mark_reg_known_zero(env, regs, insn->dst_reg);
9376
9377 dst_reg->type = aux->btf_var.reg_type;
9378 switch (dst_reg->type) {
9379 case PTR_TO_MEM:
9380 dst_reg->mem_size = aux->btf_var.mem_size;
9381 break;
9382 case PTR_TO_BTF_ID:
eaa6bcb7 9383 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 9384 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
9385 dst_reg->btf_id = aux->btf_var.btf_id;
9386 break;
9387 default:
9388 verbose(env, "bpf verifier is misconfigured\n");
9389 return -EFAULT;
9390 }
9391 return 0;
9392 }
9393
69c087ba
YS
9394 if (insn->src_reg == BPF_PSEUDO_FUNC) {
9395 struct bpf_prog_aux *aux = env->prog->aux;
9396 u32 subprogno = insn[1].imm;
9397
9398 if (!aux->func_info) {
9399 verbose(env, "missing btf func_info\n");
9400 return -EINVAL;
9401 }
9402 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9403 verbose(env, "callback function not static\n");
9404 return -EINVAL;
9405 }
9406
9407 dst_reg->type = PTR_TO_FUNC;
9408 dst_reg->subprogno = subprogno;
9409 return 0;
9410 }
9411
d8eca5bb
DB
9412 map = env->used_maps[aux->map_index];
9413 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 9414 dst_reg->map_ptr = map;
d8eca5bb 9415
387544bf
AS
9416 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9417 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
9418 dst_reg->type = PTR_TO_MAP_VALUE;
9419 dst_reg->off = aux->map_off;
d8eca5bb 9420 if (map_value_has_spin_lock(map))
4976b718 9421 dst_reg->id = ++env->id_gen;
387544bf
AS
9422 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9423 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 9424 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
9425 } else {
9426 verbose(env, "bpf verifier is misconfigured\n");
9427 return -EINVAL;
9428 }
17a52670 9429
17a52670
AS
9430 return 0;
9431}
9432
96be4325
DB
9433static bool may_access_skb(enum bpf_prog_type type)
9434{
9435 switch (type) {
9436 case BPF_PROG_TYPE_SOCKET_FILTER:
9437 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 9438 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
9439 return true;
9440 default:
9441 return false;
9442 }
9443}
9444
ddd872bc
AS
9445/* verify safety of LD_ABS|LD_IND instructions:
9446 * - they can only appear in the programs where ctx == skb
9447 * - since they are wrappers of function calls, they scratch R1-R5 registers,
9448 * preserve R6-R9, and store return value into R0
9449 *
9450 * Implicit input:
9451 * ctx == skb == R6 == CTX
9452 *
9453 * Explicit input:
9454 * SRC == any register
9455 * IMM == 32-bit immediate
9456 *
9457 * Output:
9458 * R0 - 8/16/32-bit skb data converted to cpu endianness
9459 */
58e2af8b 9460static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 9461{
638f5b90 9462 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 9463 static const int ctx_reg = BPF_REG_6;
ddd872bc 9464 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
9465 int i, err;
9466
7e40781c 9467 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 9468 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
9469 return -EINVAL;
9470 }
9471
e0cea7ce
DB
9472 if (!env->ops->gen_ld_abs) {
9473 verbose(env, "bpf verifier is misconfigured\n");
9474 return -EINVAL;
9475 }
9476
ddd872bc 9477 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 9478 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 9479 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 9480 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
9481 return -EINVAL;
9482 }
9483
9484 /* check whether implicit source operand (register R6) is readable */
6d4f151a 9485 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
9486 if (err)
9487 return err;
9488
fd978bf7
JS
9489 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9490 * gen_ld_abs() may terminate the program at runtime, leading to
9491 * reference leak.
9492 */
9493 err = check_reference_leak(env);
9494 if (err) {
9495 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9496 return err;
9497 }
9498
d83525ca
AS
9499 if (env->cur_state->active_spin_lock) {
9500 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9501 return -EINVAL;
9502 }
9503
6d4f151a 9504 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
9505 verbose(env,
9506 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
9507 return -EINVAL;
9508 }
9509
9510 if (mode == BPF_IND) {
9511 /* check explicit source operand */
dc503a8a 9512 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
9513 if (err)
9514 return err;
9515 }
9516
6d4f151a
DB
9517 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9518 if (err < 0)
9519 return err;
9520
ddd872bc 9521 /* reset caller saved regs to unreadable */
dc503a8a 9522 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 9523 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
9524 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9525 }
ddd872bc
AS
9526
9527 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
9528 * the value fetched from the packet.
9529 * Already marked as written above.
ddd872bc 9530 */
61bd5218 9531 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
9532 /* ld_abs load up to 32-bit skb data. */
9533 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
9534 return 0;
9535}
9536
390ee7e2
AS
9537static int check_return_code(struct bpf_verifier_env *env)
9538{
5cf1e914 9539 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 9540 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
9541 struct bpf_reg_state *reg;
9542 struct tnum range = tnum_range(0, 1);
7e40781c 9543 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 9544 int err;
bfc6bb74
AS
9545 struct bpf_func_state *frame = env->cur_state->frame[0];
9546 const bool is_subprog = frame->subprogno;
27ae7997 9547
9e4e01df 9548 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
9549 if (!is_subprog &&
9550 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 9551 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
9552 !prog->aux->attach_func_proto->type)
9553 return 0;
9554
8fb33b60 9555 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
9556 * to return the value from eBPF program.
9557 * Make sure that it's readable at this time
9558 * of bpf_exit, which means that program wrote
9559 * something into it earlier
9560 */
9561 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9562 if (err)
9563 return err;
9564
9565 if (is_pointer_value(env, BPF_REG_0)) {
9566 verbose(env, "R0 leaks addr as return value\n");
9567 return -EACCES;
9568 }
390ee7e2 9569
f782e2c3 9570 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
9571
9572 if (frame->in_async_callback_fn) {
9573 /* enforce return zero from async callbacks like timer */
9574 if (reg->type != SCALAR_VALUE) {
9575 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9576 reg_type_str[reg->type]);
9577 return -EINVAL;
9578 }
9579
9580 if (!tnum_in(tnum_const(0), reg->var_off)) {
9581 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9582 return -EINVAL;
9583 }
9584 return 0;
9585 }
9586
f782e2c3
DB
9587 if (is_subprog) {
9588 if (reg->type != SCALAR_VALUE) {
9589 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9590 reg_type_str[reg->type]);
9591 return -EINVAL;
9592 }
9593 return 0;
9594 }
9595
7e40781c 9596 switch (prog_type) {
983695fa
DB
9597 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9598 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
9599 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9600 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9601 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9602 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9603 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9604 range = tnum_range(1, 1);
77241217
SF
9605 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9606 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9607 range = tnum_range(0, 3);
ed4ed404 9608 break;
390ee7e2 9609 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9610 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9611 range = tnum_range(0, 3);
9612 enforce_attach_type_range = tnum_range(2, 3);
9613 }
ed4ed404 9614 break;
390ee7e2
AS
9615 case BPF_PROG_TYPE_CGROUP_SOCK:
9616 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9617 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9618 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9619 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9620 break;
15ab09bd
AS
9621 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9622 if (!env->prog->aux->attach_btf_id)
9623 return 0;
9624 range = tnum_const(0);
9625 break;
15d83c4d 9626 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9627 switch (env->prog->expected_attach_type) {
9628 case BPF_TRACE_FENTRY:
9629 case BPF_TRACE_FEXIT:
9630 range = tnum_const(0);
9631 break;
9632 case BPF_TRACE_RAW_TP:
9633 case BPF_MODIFY_RETURN:
15d83c4d 9634 return 0;
2ec0616e
DB
9635 case BPF_TRACE_ITER:
9636 break;
e92888c7
YS
9637 default:
9638 return -ENOTSUPP;
9639 }
15d83c4d 9640 break;
e9ddbb77
JS
9641 case BPF_PROG_TYPE_SK_LOOKUP:
9642 range = tnum_range(SK_DROP, SK_PASS);
9643 break;
e92888c7
YS
9644 case BPF_PROG_TYPE_EXT:
9645 /* freplace program can return anything as its return value
9646 * depends on the to-be-replaced kernel func or bpf program.
9647 */
390ee7e2
AS
9648 default:
9649 return 0;
9650 }
9651
390ee7e2 9652 if (reg->type != SCALAR_VALUE) {
61bd5218 9653 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9654 reg_type_str[reg->type]);
9655 return -EINVAL;
9656 }
9657
9658 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9659 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9660 return -EINVAL;
9661 }
5cf1e914 9662
9663 if (!tnum_is_unknown(enforce_attach_type_range) &&
9664 tnum_in(enforce_attach_type_range, reg->var_off))
9665 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9666 return 0;
9667}
9668
475fb78f
AS
9669/* non-recursive DFS pseudo code
9670 * 1 procedure DFS-iterative(G,v):
9671 * 2 label v as discovered
9672 * 3 let S be a stack
9673 * 4 S.push(v)
9674 * 5 while S is not empty
9675 * 6 t <- S.pop()
9676 * 7 if t is what we're looking for:
9677 * 8 return t
9678 * 9 for all edges e in G.adjacentEdges(t) do
9679 * 10 if edge e is already labelled
9680 * 11 continue with the next edge
9681 * 12 w <- G.adjacentVertex(t,e)
9682 * 13 if vertex w is not discovered and not explored
9683 * 14 label e as tree-edge
9684 * 15 label w as discovered
9685 * 16 S.push(w)
9686 * 17 continue at 5
9687 * 18 else if vertex w is discovered
9688 * 19 label e as back-edge
9689 * 20 else
9690 * 21 // vertex w is explored
9691 * 22 label e as forward- or cross-edge
9692 * 23 label t as explored
9693 * 24 S.pop()
9694 *
9695 * convention:
9696 * 0x10 - discovered
9697 * 0x11 - discovered and fall-through edge labelled
9698 * 0x12 - discovered and fall-through and branch edges labelled
9699 * 0x20 - explored
9700 */
9701
9702enum {
9703 DISCOVERED = 0x10,
9704 EXPLORED = 0x20,
9705 FALLTHROUGH = 1,
9706 BRANCH = 2,
9707};
9708
dc2a4ebc
AS
9709static u32 state_htab_size(struct bpf_verifier_env *env)
9710{
9711 return env->prog->len;
9712}
9713
5d839021
AS
9714static struct bpf_verifier_state_list **explored_state(
9715 struct bpf_verifier_env *env,
9716 int idx)
9717{
dc2a4ebc
AS
9718 struct bpf_verifier_state *cur = env->cur_state;
9719 struct bpf_func_state *state = cur->frame[cur->curframe];
9720
9721 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9722}
9723
9724static void init_explored_state(struct bpf_verifier_env *env, int idx)
9725{
a8f500af 9726 env->insn_aux_data[idx].prune_point = true;
5d839021 9727}
f1bca824 9728
59e2e27d
WAF
9729enum {
9730 DONE_EXPLORING = 0,
9731 KEEP_EXPLORING = 1,
9732};
9733
475fb78f
AS
9734/* t, w, e - match pseudo-code above:
9735 * t - index of current instruction
9736 * w - next instruction
9737 * e - edge
9738 */
2589726d
AS
9739static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9740 bool loop_ok)
475fb78f 9741{
7df737e9
AS
9742 int *insn_stack = env->cfg.insn_stack;
9743 int *insn_state = env->cfg.insn_state;
9744
475fb78f 9745 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9746 return DONE_EXPLORING;
475fb78f
AS
9747
9748 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9749 return DONE_EXPLORING;
475fb78f
AS
9750
9751 if (w < 0 || w >= env->prog->len) {
d9762e84 9752 verbose_linfo(env, t, "%d: ", t);
61bd5218 9753 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9754 return -EINVAL;
9755 }
9756
f1bca824
AS
9757 if (e == BRANCH)
9758 /* mark branch target for state pruning */
5d839021 9759 init_explored_state(env, w);
f1bca824 9760
475fb78f
AS
9761 if (insn_state[w] == 0) {
9762 /* tree-edge */
9763 insn_state[t] = DISCOVERED | e;
9764 insn_state[w] = DISCOVERED;
7df737e9 9765 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9766 return -E2BIG;
7df737e9 9767 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9768 return KEEP_EXPLORING;
475fb78f 9769 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9770 if (loop_ok && env->bpf_capable)
59e2e27d 9771 return DONE_EXPLORING;
d9762e84
MKL
9772 verbose_linfo(env, t, "%d: ", t);
9773 verbose_linfo(env, w, "%d: ", w);
61bd5218 9774 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9775 return -EINVAL;
9776 } else if (insn_state[w] == EXPLORED) {
9777 /* forward- or cross-edge */
9778 insn_state[t] = DISCOVERED | e;
9779 } else {
61bd5218 9780 verbose(env, "insn state internal bug\n");
475fb78f
AS
9781 return -EFAULT;
9782 }
59e2e27d
WAF
9783 return DONE_EXPLORING;
9784}
9785
efdb22de
YS
9786static int visit_func_call_insn(int t, int insn_cnt,
9787 struct bpf_insn *insns,
9788 struct bpf_verifier_env *env,
9789 bool visit_callee)
9790{
9791 int ret;
9792
9793 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9794 if (ret)
9795 return ret;
9796
9797 if (t + 1 < insn_cnt)
9798 init_explored_state(env, t + 1);
9799 if (visit_callee) {
9800 init_explored_state(env, t);
86fc6ee6
AS
9801 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9802 /* It's ok to allow recursion from CFG point of
9803 * view. __check_func_call() will do the actual
9804 * check.
9805 */
9806 bpf_pseudo_func(insns + t));
efdb22de
YS
9807 }
9808 return ret;
9809}
9810
59e2e27d
WAF
9811/* Visits the instruction at index t and returns one of the following:
9812 * < 0 - an error occurred
9813 * DONE_EXPLORING - the instruction was fully explored
9814 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9815 */
9816static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9817{
9818 struct bpf_insn *insns = env->prog->insnsi;
9819 int ret;
9820
69c087ba
YS
9821 if (bpf_pseudo_func(insns + t))
9822 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9823
59e2e27d
WAF
9824 /* All non-branch instructions have a single fall-through edge. */
9825 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9826 BPF_CLASS(insns[t].code) != BPF_JMP32)
9827 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9828
9829 switch (BPF_OP(insns[t].code)) {
9830 case BPF_EXIT:
9831 return DONE_EXPLORING;
9832
9833 case BPF_CALL:
bfc6bb74
AS
9834 if (insns[t].imm == BPF_FUNC_timer_set_callback)
9835 /* Mark this call insn to trigger is_state_visited() check
9836 * before call itself is processed by __check_func_call().
9837 * Otherwise new async state will be pushed for further
9838 * exploration.
9839 */
9840 init_explored_state(env, t);
efdb22de
YS
9841 return visit_func_call_insn(t, insn_cnt, insns, env,
9842 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9843
9844 case BPF_JA:
9845 if (BPF_SRC(insns[t].code) != BPF_K)
9846 return -EINVAL;
9847
9848 /* unconditional jump with single edge */
9849 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9850 true);
9851 if (ret)
9852 return ret;
9853
9854 /* unconditional jmp is not a good pruning point,
9855 * but it's marked, since backtracking needs
9856 * to record jmp history in is_state_visited().
9857 */
9858 init_explored_state(env, t + insns[t].off + 1);
9859 /* tell verifier to check for equivalent states
9860 * after every call and jump
9861 */
9862 if (t + 1 < insn_cnt)
9863 init_explored_state(env, t + 1);
9864
9865 return ret;
9866
9867 default:
9868 /* conditional jump with two edges */
9869 init_explored_state(env, t);
9870 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9871 if (ret)
9872 return ret;
9873
9874 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9875 }
475fb78f
AS
9876}
9877
9878/* non-recursive depth-first-search to detect loops in BPF program
9879 * loop == back-edge in directed graph
9880 */
58e2af8b 9881static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9882{
475fb78f 9883 int insn_cnt = env->prog->len;
7df737e9 9884 int *insn_stack, *insn_state;
475fb78f 9885 int ret = 0;
59e2e27d 9886 int i;
475fb78f 9887
7df737e9 9888 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9889 if (!insn_state)
9890 return -ENOMEM;
9891
7df737e9 9892 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9893 if (!insn_stack) {
71dde681 9894 kvfree(insn_state);
475fb78f
AS
9895 return -ENOMEM;
9896 }
9897
9898 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9899 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9900 env->cfg.cur_stack = 1;
475fb78f 9901
59e2e27d
WAF
9902 while (env->cfg.cur_stack > 0) {
9903 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9904
59e2e27d
WAF
9905 ret = visit_insn(t, insn_cnt, env);
9906 switch (ret) {
9907 case DONE_EXPLORING:
9908 insn_state[t] = EXPLORED;
9909 env->cfg.cur_stack--;
9910 break;
9911 case KEEP_EXPLORING:
9912 break;
9913 default:
9914 if (ret > 0) {
9915 verbose(env, "visit_insn internal bug\n");
9916 ret = -EFAULT;
475fb78f 9917 }
475fb78f 9918 goto err_free;
59e2e27d 9919 }
475fb78f
AS
9920 }
9921
59e2e27d 9922 if (env->cfg.cur_stack < 0) {
61bd5218 9923 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9924 ret = -EFAULT;
9925 goto err_free;
9926 }
475fb78f 9927
475fb78f
AS
9928 for (i = 0; i < insn_cnt; i++) {
9929 if (insn_state[i] != EXPLORED) {
61bd5218 9930 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9931 ret = -EINVAL;
9932 goto err_free;
9933 }
9934 }
9935 ret = 0; /* cfg looks good */
9936
9937err_free:
71dde681
AS
9938 kvfree(insn_state);
9939 kvfree(insn_stack);
7df737e9 9940 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9941 return ret;
9942}
9943
09b28d76
AS
9944static int check_abnormal_return(struct bpf_verifier_env *env)
9945{
9946 int i;
9947
9948 for (i = 1; i < env->subprog_cnt; i++) {
9949 if (env->subprog_info[i].has_ld_abs) {
9950 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9951 return -EINVAL;
9952 }
9953 if (env->subprog_info[i].has_tail_call) {
9954 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9955 return -EINVAL;
9956 }
9957 }
9958 return 0;
9959}
9960
838e9690
YS
9961/* The minimum supported BTF func info size */
9962#define MIN_BPF_FUNCINFO_SIZE 8
9963#define MAX_FUNCINFO_REC_SIZE 252
9964
c454a46b
MKL
9965static int check_btf_func(struct bpf_verifier_env *env,
9966 const union bpf_attr *attr,
af2ac3e1 9967 bpfptr_t uattr)
838e9690 9968{
09b28d76 9969 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9970 u32 i, nfuncs, urec_size, min_size;
838e9690 9971 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9972 struct bpf_func_info *krecord;
8c1b6e69 9973 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9974 struct bpf_prog *prog;
9975 const struct btf *btf;
af2ac3e1 9976 bpfptr_t urecord;
d0b2818e 9977 u32 prev_offset = 0;
09b28d76 9978 bool scalar_return;
e7ed83d6 9979 int ret = -ENOMEM;
838e9690
YS
9980
9981 nfuncs = attr->func_info_cnt;
09b28d76
AS
9982 if (!nfuncs) {
9983 if (check_abnormal_return(env))
9984 return -EINVAL;
838e9690 9985 return 0;
09b28d76 9986 }
838e9690
YS
9987
9988 if (nfuncs != env->subprog_cnt) {
9989 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9990 return -EINVAL;
9991 }
9992
9993 urec_size = attr->func_info_rec_size;
9994 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9995 urec_size > MAX_FUNCINFO_REC_SIZE ||
9996 urec_size % sizeof(u32)) {
9997 verbose(env, "invalid func info rec size %u\n", urec_size);
9998 return -EINVAL;
9999 }
10000
c454a46b
MKL
10001 prog = env->prog;
10002 btf = prog->aux->btf;
838e9690 10003
af2ac3e1 10004 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
10005 min_size = min_t(u32, krec_size, urec_size);
10006
ba64e7d8 10007 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
10008 if (!krecord)
10009 return -ENOMEM;
8c1b6e69
AS
10010 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10011 if (!info_aux)
10012 goto err_free;
ba64e7d8 10013
838e9690
YS
10014 for (i = 0; i < nfuncs; i++) {
10015 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10016 if (ret) {
10017 if (ret == -E2BIG) {
10018 verbose(env, "nonzero tailing record in func info");
10019 /* set the size kernel expects so loader can zero
10020 * out the rest of the record.
10021 */
af2ac3e1
AS
10022 if (copy_to_bpfptr_offset(uattr,
10023 offsetof(union bpf_attr, func_info_rec_size),
10024 &min_size, sizeof(min_size)))
838e9690
YS
10025 ret = -EFAULT;
10026 }
c454a46b 10027 goto err_free;
838e9690
YS
10028 }
10029
af2ac3e1 10030 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 10031 ret = -EFAULT;
c454a46b 10032 goto err_free;
838e9690
YS
10033 }
10034
d30d42e0 10035 /* check insn_off */
09b28d76 10036 ret = -EINVAL;
838e9690 10037 if (i == 0) {
d30d42e0 10038 if (krecord[i].insn_off) {
838e9690 10039 verbose(env,
d30d42e0
MKL
10040 "nonzero insn_off %u for the first func info record",
10041 krecord[i].insn_off);
c454a46b 10042 goto err_free;
838e9690 10043 }
d30d42e0 10044 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
10045 verbose(env,
10046 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 10047 krecord[i].insn_off, prev_offset);
c454a46b 10048 goto err_free;
838e9690
YS
10049 }
10050
d30d42e0 10051 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 10052 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 10053 goto err_free;
838e9690
YS
10054 }
10055
10056 /* check type_id */
ba64e7d8 10057 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 10058 if (!type || !btf_type_is_func(type)) {
838e9690 10059 verbose(env, "invalid type id %d in func info",
ba64e7d8 10060 krecord[i].type_id);
c454a46b 10061 goto err_free;
838e9690 10062 }
51c39bb1 10063 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
10064
10065 func_proto = btf_type_by_id(btf, type->type);
10066 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10067 /* btf_func_check() already verified it during BTF load */
10068 goto err_free;
10069 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10070 scalar_return =
10071 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10072 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10073 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10074 goto err_free;
10075 }
10076 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10077 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10078 goto err_free;
10079 }
10080
d30d42e0 10081 prev_offset = krecord[i].insn_off;
af2ac3e1 10082 bpfptr_add(&urecord, urec_size);
838e9690
YS
10083 }
10084
ba64e7d8
YS
10085 prog->aux->func_info = krecord;
10086 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 10087 prog->aux->func_info_aux = info_aux;
838e9690
YS
10088 return 0;
10089
c454a46b 10090err_free:
ba64e7d8 10091 kvfree(krecord);
8c1b6e69 10092 kfree(info_aux);
838e9690
YS
10093 return ret;
10094}
10095
ba64e7d8
YS
10096static void adjust_btf_func(struct bpf_verifier_env *env)
10097{
8c1b6e69 10098 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
10099 int i;
10100
8c1b6e69 10101 if (!aux->func_info)
ba64e7d8
YS
10102 return;
10103
10104 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 10105 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
10106}
10107
c454a46b
MKL
10108#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
10109 sizeof(((struct bpf_line_info *)(0))->line_col))
10110#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
10111
10112static int check_btf_line(struct bpf_verifier_env *env,
10113 const union bpf_attr *attr,
af2ac3e1 10114 bpfptr_t uattr)
c454a46b
MKL
10115{
10116 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10117 struct bpf_subprog_info *sub;
10118 struct bpf_line_info *linfo;
10119 struct bpf_prog *prog;
10120 const struct btf *btf;
af2ac3e1 10121 bpfptr_t ulinfo;
c454a46b
MKL
10122 int err;
10123
10124 nr_linfo = attr->line_info_cnt;
10125 if (!nr_linfo)
10126 return 0;
0e6491b5
BC
10127 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10128 return -EINVAL;
c454a46b
MKL
10129
10130 rec_size = attr->line_info_rec_size;
10131 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10132 rec_size > MAX_LINEINFO_REC_SIZE ||
10133 rec_size & (sizeof(u32) - 1))
10134 return -EINVAL;
10135
10136 /* Need to zero it in case the userspace may
10137 * pass in a smaller bpf_line_info object.
10138 */
10139 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10140 GFP_KERNEL | __GFP_NOWARN);
10141 if (!linfo)
10142 return -ENOMEM;
10143
10144 prog = env->prog;
10145 btf = prog->aux->btf;
10146
10147 s = 0;
10148 sub = env->subprog_info;
af2ac3e1 10149 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
10150 expected_size = sizeof(struct bpf_line_info);
10151 ncopy = min_t(u32, expected_size, rec_size);
10152 for (i = 0; i < nr_linfo; i++) {
10153 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10154 if (err) {
10155 if (err == -E2BIG) {
10156 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
10157 if (copy_to_bpfptr_offset(uattr,
10158 offsetof(union bpf_attr, line_info_rec_size),
10159 &expected_size, sizeof(expected_size)))
c454a46b
MKL
10160 err = -EFAULT;
10161 }
10162 goto err_free;
10163 }
10164
af2ac3e1 10165 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
10166 err = -EFAULT;
10167 goto err_free;
10168 }
10169
10170 /*
10171 * Check insn_off to ensure
10172 * 1) strictly increasing AND
10173 * 2) bounded by prog->len
10174 *
10175 * The linfo[0].insn_off == 0 check logically falls into
10176 * the later "missing bpf_line_info for func..." case
10177 * because the first linfo[0].insn_off must be the
10178 * first sub also and the first sub must have
10179 * subprog_info[0].start == 0.
10180 */
10181 if ((i && linfo[i].insn_off <= prev_offset) ||
10182 linfo[i].insn_off >= prog->len) {
10183 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10184 i, linfo[i].insn_off, prev_offset,
10185 prog->len);
10186 err = -EINVAL;
10187 goto err_free;
10188 }
10189
fdbaa0be
MKL
10190 if (!prog->insnsi[linfo[i].insn_off].code) {
10191 verbose(env,
10192 "Invalid insn code at line_info[%u].insn_off\n",
10193 i);
10194 err = -EINVAL;
10195 goto err_free;
10196 }
10197
23127b33
MKL
10198 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10199 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
10200 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10201 err = -EINVAL;
10202 goto err_free;
10203 }
10204
10205 if (s != env->subprog_cnt) {
10206 if (linfo[i].insn_off == sub[s].start) {
10207 sub[s].linfo_idx = i;
10208 s++;
10209 } else if (sub[s].start < linfo[i].insn_off) {
10210 verbose(env, "missing bpf_line_info for func#%u\n", s);
10211 err = -EINVAL;
10212 goto err_free;
10213 }
10214 }
10215
10216 prev_offset = linfo[i].insn_off;
af2ac3e1 10217 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
10218 }
10219
10220 if (s != env->subprog_cnt) {
10221 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10222 env->subprog_cnt - s, s);
10223 err = -EINVAL;
10224 goto err_free;
10225 }
10226
10227 prog->aux->linfo = linfo;
10228 prog->aux->nr_linfo = nr_linfo;
10229
10230 return 0;
10231
10232err_free:
10233 kvfree(linfo);
10234 return err;
10235}
10236
10237static int check_btf_info(struct bpf_verifier_env *env,
10238 const union bpf_attr *attr,
af2ac3e1 10239 bpfptr_t uattr)
c454a46b
MKL
10240{
10241 struct btf *btf;
10242 int err;
10243
09b28d76
AS
10244 if (!attr->func_info_cnt && !attr->line_info_cnt) {
10245 if (check_abnormal_return(env))
10246 return -EINVAL;
c454a46b 10247 return 0;
09b28d76 10248 }
c454a46b
MKL
10249
10250 btf = btf_get_by_fd(attr->prog_btf_fd);
10251 if (IS_ERR(btf))
10252 return PTR_ERR(btf);
350a5c4d
AS
10253 if (btf_is_kernel(btf)) {
10254 btf_put(btf);
10255 return -EACCES;
10256 }
c454a46b
MKL
10257 env->prog->aux->btf = btf;
10258
10259 err = check_btf_func(env, attr, uattr);
10260 if (err)
10261 return err;
10262
10263 err = check_btf_line(env, attr, uattr);
10264 if (err)
10265 return err;
10266
10267 return 0;
ba64e7d8
YS
10268}
10269
f1174f77
EC
10270/* check %cur's range satisfies %old's */
10271static bool range_within(struct bpf_reg_state *old,
10272 struct bpf_reg_state *cur)
10273{
b03c9f9f
EC
10274 return old->umin_value <= cur->umin_value &&
10275 old->umax_value >= cur->umax_value &&
10276 old->smin_value <= cur->smin_value &&
fd675184
DB
10277 old->smax_value >= cur->smax_value &&
10278 old->u32_min_value <= cur->u32_min_value &&
10279 old->u32_max_value >= cur->u32_max_value &&
10280 old->s32_min_value <= cur->s32_min_value &&
10281 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
10282}
10283
f1174f77
EC
10284/* If in the old state two registers had the same id, then they need to have
10285 * the same id in the new state as well. But that id could be different from
10286 * the old state, so we need to track the mapping from old to new ids.
10287 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10288 * regs with old id 5 must also have new id 9 for the new state to be safe. But
10289 * regs with a different old id could still have new id 9, we don't care about
10290 * that.
10291 * So we look through our idmap to see if this old id has been seen before. If
10292 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 10293 */
c9e73e3d 10294static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 10295{
f1174f77 10296 unsigned int i;
969bf05e 10297
c9e73e3d 10298 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
10299 if (!idmap[i].old) {
10300 /* Reached an empty slot; haven't seen this id before */
10301 idmap[i].old = old_id;
10302 idmap[i].cur = cur_id;
10303 return true;
10304 }
10305 if (idmap[i].old == old_id)
10306 return idmap[i].cur == cur_id;
10307 }
10308 /* We ran out of idmap slots, which should be impossible */
10309 WARN_ON_ONCE(1);
10310 return false;
10311}
10312
9242b5f5
AS
10313static void clean_func_state(struct bpf_verifier_env *env,
10314 struct bpf_func_state *st)
10315{
10316 enum bpf_reg_liveness live;
10317 int i, j;
10318
10319 for (i = 0; i < BPF_REG_FP; i++) {
10320 live = st->regs[i].live;
10321 /* liveness must not touch this register anymore */
10322 st->regs[i].live |= REG_LIVE_DONE;
10323 if (!(live & REG_LIVE_READ))
10324 /* since the register is unused, clear its state
10325 * to make further comparison simpler
10326 */
f54c7898 10327 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
10328 }
10329
10330 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10331 live = st->stack[i].spilled_ptr.live;
10332 /* liveness must not touch this stack slot anymore */
10333 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10334 if (!(live & REG_LIVE_READ)) {
f54c7898 10335 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
10336 for (j = 0; j < BPF_REG_SIZE; j++)
10337 st->stack[i].slot_type[j] = STACK_INVALID;
10338 }
10339 }
10340}
10341
10342static void clean_verifier_state(struct bpf_verifier_env *env,
10343 struct bpf_verifier_state *st)
10344{
10345 int i;
10346
10347 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10348 /* all regs in this state in all frames were already marked */
10349 return;
10350
10351 for (i = 0; i <= st->curframe; i++)
10352 clean_func_state(env, st->frame[i]);
10353}
10354
10355/* the parentage chains form a tree.
10356 * the verifier states are added to state lists at given insn and
10357 * pushed into state stack for future exploration.
10358 * when the verifier reaches bpf_exit insn some of the verifer states
10359 * stored in the state lists have their final liveness state already,
10360 * but a lot of states will get revised from liveness point of view when
10361 * the verifier explores other branches.
10362 * Example:
10363 * 1: r0 = 1
10364 * 2: if r1 == 100 goto pc+1
10365 * 3: r0 = 2
10366 * 4: exit
10367 * when the verifier reaches exit insn the register r0 in the state list of
10368 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10369 * of insn 2 and goes exploring further. At the insn 4 it will walk the
10370 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10371 *
10372 * Since the verifier pushes the branch states as it sees them while exploring
10373 * the program the condition of walking the branch instruction for the second
10374 * time means that all states below this branch were already explored and
8fb33b60 10375 * their final liveness marks are already propagated.
9242b5f5
AS
10376 * Hence when the verifier completes the search of state list in is_state_visited()
10377 * we can call this clean_live_states() function to mark all liveness states
10378 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10379 * will not be used.
10380 * This function also clears the registers and stack for states that !READ
10381 * to simplify state merging.
10382 *
10383 * Important note here that walking the same branch instruction in the callee
10384 * doesn't meant that the states are DONE. The verifier has to compare
10385 * the callsites
10386 */
10387static void clean_live_states(struct bpf_verifier_env *env, int insn,
10388 struct bpf_verifier_state *cur)
10389{
10390 struct bpf_verifier_state_list *sl;
10391 int i;
10392
5d839021 10393 sl = *explored_state(env, insn);
a8f500af 10394 while (sl) {
2589726d
AS
10395 if (sl->state.branches)
10396 goto next;
dc2a4ebc
AS
10397 if (sl->state.insn_idx != insn ||
10398 sl->state.curframe != cur->curframe)
9242b5f5
AS
10399 goto next;
10400 for (i = 0; i <= cur->curframe; i++)
10401 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10402 goto next;
10403 clean_verifier_state(env, &sl->state);
10404next:
10405 sl = sl->next;
10406 }
10407}
10408
f1174f77 10409/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
10410static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10411 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 10412{
f4d7e40a
AS
10413 bool equal;
10414
dc503a8a
EC
10415 if (!(rold->live & REG_LIVE_READ))
10416 /* explored state didn't use this */
10417 return true;
10418
679c782d 10419 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
10420
10421 if (rold->type == PTR_TO_STACK)
10422 /* two stack pointers are equal only if they're pointing to
10423 * the same stack frame, since fp-8 in foo != fp-8 in bar
10424 */
10425 return equal && rold->frameno == rcur->frameno;
10426
10427 if (equal)
969bf05e
AS
10428 return true;
10429
f1174f77
EC
10430 if (rold->type == NOT_INIT)
10431 /* explored state can't have used this */
969bf05e 10432 return true;
f1174f77
EC
10433 if (rcur->type == NOT_INIT)
10434 return false;
10435 switch (rold->type) {
10436 case SCALAR_VALUE:
e042aa53
DB
10437 if (env->explore_alu_limits)
10438 return false;
f1174f77 10439 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
10440 if (!rold->precise && !rcur->precise)
10441 return true;
f1174f77
EC
10442 /* new val must satisfy old val knowledge */
10443 return range_within(rold, rcur) &&
10444 tnum_in(rold->var_off, rcur->var_off);
10445 } else {
179d1c56
JH
10446 /* We're trying to use a pointer in place of a scalar.
10447 * Even if the scalar was unbounded, this could lead to
10448 * pointer leaks because scalars are allowed to leak
10449 * while pointers are not. We could make this safe in
10450 * special cases if root is calling us, but it's
10451 * probably not worth the hassle.
f1174f77 10452 */
179d1c56 10453 return false;
f1174f77 10454 }
69c087ba 10455 case PTR_TO_MAP_KEY:
f1174f77 10456 case PTR_TO_MAP_VALUE:
1b688a19
EC
10457 /* If the new min/max/var_off satisfy the old ones and
10458 * everything else matches, we are OK.
d83525ca
AS
10459 * 'id' is not compared, since it's only used for maps with
10460 * bpf_spin_lock inside map element and in such cases if
10461 * the rest of the prog is valid for one map element then
10462 * it's valid for all map elements regardless of the key
10463 * used in bpf_map_lookup()
1b688a19
EC
10464 */
10465 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10466 range_within(rold, rcur) &&
10467 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
10468 case PTR_TO_MAP_VALUE_OR_NULL:
10469 /* a PTR_TO_MAP_VALUE could be safe to use as a
10470 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10471 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10472 * checked, doing so could have affected others with the same
10473 * id, and we can't check for that because we lost the id when
10474 * we converted to a PTR_TO_MAP_VALUE.
10475 */
10476 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10477 return false;
10478 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10479 return false;
10480 /* Check our ids match any regs they're supposed to */
10481 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 10482 case PTR_TO_PACKET_META:
f1174f77 10483 case PTR_TO_PACKET:
de8f3a83 10484 if (rcur->type != rold->type)
f1174f77
EC
10485 return false;
10486 /* We must have at least as much range as the old ptr
10487 * did, so that any accesses which were safe before are
10488 * still safe. This is true even if old range < old off,
10489 * since someone could have accessed through (ptr - k), or
10490 * even done ptr -= k in a register, to get a safe access.
10491 */
10492 if (rold->range > rcur->range)
10493 return false;
10494 /* If the offsets don't match, we can't trust our alignment;
10495 * nor can we be sure that we won't fall out of range.
10496 */
10497 if (rold->off != rcur->off)
10498 return false;
10499 /* id relations must be preserved */
10500 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10501 return false;
10502 /* new val must satisfy old val knowledge */
10503 return range_within(rold, rcur) &&
10504 tnum_in(rold->var_off, rcur->var_off);
10505 case PTR_TO_CTX:
10506 case CONST_PTR_TO_MAP:
f1174f77 10507 case PTR_TO_PACKET_END:
d58e468b 10508 case PTR_TO_FLOW_KEYS:
c64b7983
JS
10509 case PTR_TO_SOCKET:
10510 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10511 case PTR_TO_SOCK_COMMON:
10512 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10513 case PTR_TO_TCP_SOCK:
10514 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10515 case PTR_TO_XDP_SOCK:
f1174f77
EC
10516 /* Only valid matches are exact, which memcmp() above
10517 * would have accepted
10518 */
10519 default:
10520 /* Don't know what's going on, just say it's not safe */
10521 return false;
10522 }
969bf05e 10523
f1174f77
EC
10524 /* Shouldn't get here; if we do, say it's not safe */
10525 WARN_ON_ONCE(1);
969bf05e
AS
10526 return false;
10527}
10528
e042aa53
DB
10529static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10530 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
10531{
10532 int i, spi;
10533
638f5b90
AS
10534 /* walk slots of the explored stack and ignore any additional
10535 * slots in the current stack, since explored(safe) state
10536 * didn't use them
10537 */
10538 for (i = 0; i < old->allocated_stack; i++) {
10539 spi = i / BPF_REG_SIZE;
10540
b233920c
AS
10541 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10542 i += BPF_REG_SIZE - 1;
cc2b14d5 10543 /* explored state didn't use this */
fd05e57b 10544 continue;
b233920c 10545 }
cc2b14d5 10546
638f5b90
AS
10547 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10548 continue;
19e2dbb7
AS
10549
10550 /* explored stack has more populated slots than current stack
10551 * and these slots were used
10552 */
10553 if (i >= cur->allocated_stack)
10554 return false;
10555
cc2b14d5
AS
10556 /* if old state was safe with misc data in the stack
10557 * it will be safe with zero-initialized stack.
10558 * The opposite is not true
10559 */
10560 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10561 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10562 continue;
638f5b90
AS
10563 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10564 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10565 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 10566 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
10567 * this verifier states are not equivalent,
10568 * return false to continue verification of this path
10569 */
10570 return false;
27113c59 10571 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 10572 continue;
27113c59 10573 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 10574 continue;
e042aa53
DB
10575 if (!regsafe(env, &old->stack[spi].spilled_ptr,
10576 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
10577 /* when explored and current stack slot are both storing
10578 * spilled registers, check that stored pointers types
10579 * are the same as well.
10580 * Ex: explored safe path could have stored
10581 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10582 * but current path has stored:
10583 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10584 * such verifier states are not equivalent.
10585 * return false to continue verification of this path
10586 */
10587 return false;
10588 }
10589 return true;
10590}
10591
fd978bf7
JS
10592static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10593{
10594 if (old->acquired_refs != cur->acquired_refs)
10595 return false;
10596 return !memcmp(old->refs, cur->refs,
10597 sizeof(*old->refs) * old->acquired_refs);
10598}
10599
f1bca824
AS
10600/* compare two verifier states
10601 *
10602 * all states stored in state_list are known to be valid, since
10603 * verifier reached 'bpf_exit' instruction through them
10604 *
10605 * this function is called when verifier exploring different branches of
10606 * execution popped from the state stack. If it sees an old state that has
10607 * more strict register state and more strict stack state then this execution
10608 * branch doesn't need to be explored further, since verifier already
10609 * concluded that more strict state leads to valid finish.
10610 *
10611 * Therefore two states are equivalent if register state is more conservative
10612 * and explored stack state is more conservative than the current one.
10613 * Example:
10614 * explored current
10615 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10616 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10617 *
10618 * In other words if current stack state (one being explored) has more
10619 * valid slots than old one that already passed validation, it means
10620 * the verifier can stop exploring and conclude that current state is valid too
10621 *
10622 * Similarly with registers. If explored state has register type as invalid
10623 * whereas register type in current state is meaningful, it means that
10624 * the current state will reach 'bpf_exit' instruction safely
10625 */
c9e73e3d 10626static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 10627 struct bpf_func_state *cur)
f1bca824
AS
10628{
10629 int i;
10630
c9e73e3d
LB
10631 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10632 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
10633 if (!regsafe(env, &old->regs[i], &cur->regs[i],
10634 env->idmap_scratch))
c9e73e3d 10635 return false;
f1bca824 10636
e042aa53 10637 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 10638 return false;
fd978bf7
JS
10639
10640 if (!refsafe(old, cur))
c9e73e3d
LB
10641 return false;
10642
10643 return true;
f1bca824
AS
10644}
10645
f4d7e40a
AS
10646static bool states_equal(struct bpf_verifier_env *env,
10647 struct bpf_verifier_state *old,
10648 struct bpf_verifier_state *cur)
10649{
10650 int i;
10651
10652 if (old->curframe != cur->curframe)
10653 return false;
10654
979d63d5
DB
10655 /* Verification state from speculative execution simulation
10656 * must never prune a non-speculative execution one.
10657 */
10658 if (old->speculative && !cur->speculative)
10659 return false;
10660
d83525ca
AS
10661 if (old->active_spin_lock != cur->active_spin_lock)
10662 return false;
10663
f4d7e40a
AS
10664 /* for states to be equal callsites have to be the same
10665 * and all frame states need to be equivalent
10666 */
10667 for (i = 0; i <= old->curframe; i++) {
10668 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10669 return false;
c9e73e3d 10670 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
10671 return false;
10672 }
10673 return true;
10674}
10675
5327ed3d
JW
10676/* Return 0 if no propagation happened. Return negative error code if error
10677 * happened. Otherwise, return the propagated bit.
10678 */
55e7f3b5
JW
10679static int propagate_liveness_reg(struct bpf_verifier_env *env,
10680 struct bpf_reg_state *reg,
10681 struct bpf_reg_state *parent_reg)
10682{
5327ed3d
JW
10683 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10684 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10685 int err;
10686
5327ed3d
JW
10687 /* When comes here, read flags of PARENT_REG or REG could be any of
10688 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10689 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10690 */
10691 if (parent_flag == REG_LIVE_READ64 ||
10692 /* Or if there is no read flag from REG. */
10693 !flag ||
10694 /* Or if the read flag from REG is the same as PARENT_REG. */
10695 parent_flag == flag)
55e7f3b5
JW
10696 return 0;
10697
5327ed3d 10698 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10699 if (err)
10700 return err;
10701
5327ed3d 10702 return flag;
55e7f3b5
JW
10703}
10704
8e9cd9ce 10705/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10706 * straight-line code between a state and its parent. When we arrive at an
10707 * equivalent state (jump target or such) we didn't arrive by the straight-line
10708 * code, so read marks in the state must propagate to the parent regardless
10709 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10710 * in mark_reg_read() is for.
8e9cd9ce 10711 */
f4d7e40a
AS
10712static int propagate_liveness(struct bpf_verifier_env *env,
10713 const struct bpf_verifier_state *vstate,
10714 struct bpf_verifier_state *vparent)
dc503a8a 10715{
3f8cafa4 10716 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10717 struct bpf_func_state *state, *parent;
3f8cafa4 10718 int i, frame, err = 0;
dc503a8a 10719
f4d7e40a
AS
10720 if (vparent->curframe != vstate->curframe) {
10721 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10722 vparent->curframe, vstate->curframe);
10723 return -EFAULT;
10724 }
dc503a8a
EC
10725 /* Propagate read liveness of registers... */
10726 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10727 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10728 parent = vparent->frame[frame];
10729 state = vstate->frame[frame];
10730 parent_reg = parent->regs;
10731 state_reg = state->regs;
83d16312
JK
10732 /* We don't need to worry about FP liveness, it's read-only */
10733 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10734 err = propagate_liveness_reg(env, &state_reg[i],
10735 &parent_reg[i]);
5327ed3d 10736 if (err < 0)
3f8cafa4 10737 return err;
5327ed3d
JW
10738 if (err == REG_LIVE_READ64)
10739 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10740 }
f4d7e40a 10741
1b04aee7 10742 /* Propagate stack slots. */
f4d7e40a
AS
10743 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10744 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10745 parent_reg = &parent->stack[i].spilled_ptr;
10746 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10747 err = propagate_liveness_reg(env, state_reg,
10748 parent_reg);
5327ed3d 10749 if (err < 0)
3f8cafa4 10750 return err;
dc503a8a
EC
10751 }
10752 }
5327ed3d 10753 return 0;
dc503a8a
EC
10754}
10755
a3ce685d
AS
10756/* find precise scalars in the previous equivalent state and
10757 * propagate them into the current state
10758 */
10759static int propagate_precision(struct bpf_verifier_env *env,
10760 const struct bpf_verifier_state *old)
10761{
10762 struct bpf_reg_state *state_reg;
10763 struct bpf_func_state *state;
10764 int i, err = 0;
10765
10766 state = old->frame[old->curframe];
10767 state_reg = state->regs;
10768 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10769 if (state_reg->type != SCALAR_VALUE ||
10770 !state_reg->precise)
10771 continue;
10772 if (env->log.level & BPF_LOG_LEVEL2)
10773 verbose(env, "propagating r%d\n", i);
10774 err = mark_chain_precision(env, i);
10775 if (err < 0)
10776 return err;
10777 }
10778
10779 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
27113c59 10780 if (!is_spilled_reg(&state->stack[i]))
a3ce685d
AS
10781 continue;
10782 state_reg = &state->stack[i].spilled_ptr;
10783 if (state_reg->type != SCALAR_VALUE ||
10784 !state_reg->precise)
10785 continue;
10786 if (env->log.level & BPF_LOG_LEVEL2)
10787 verbose(env, "propagating fp%d\n",
10788 (-i - 1) * BPF_REG_SIZE);
10789 err = mark_chain_precision_stack(env, i);
10790 if (err < 0)
10791 return err;
10792 }
10793 return 0;
10794}
10795
2589726d
AS
10796static bool states_maybe_looping(struct bpf_verifier_state *old,
10797 struct bpf_verifier_state *cur)
10798{
10799 struct bpf_func_state *fold, *fcur;
10800 int i, fr = cur->curframe;
10801
10802 if (old->curframe != fr)
10803 return false;
10804
10805 fold = old->frame[fr];
10806 fcur = cur->frame[fr];
10807 for (i = 0; i < MAX_BPF_REG; i++)
10808 if (memcmp(&fold->regs[i], &fcur->regs[i],
10809 offsetof(struct bpf_reg_state, parent)))
10810 return false;
10811 return true;
10812}
10813
10814
58e2af8b 10815static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10816{
58e2af8b 10817 struct bpf_verifier_state_list *new_sl;
9f4686c4 10818 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10819 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10820 int i, j, err, states_cnt = 0;
10d274e8 10821 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10822
b5dc0163 10823 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10824 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10825 /* this 'insn_idx' instruction wasn't marked, so we will not
10826 * be doing state search here
10827 */
10828 return 0;
10829
2589726d
AS
10830 /* bpf progs typically have pruning point every 4 instructions
10831 * http://vger.kernel.org/bpfconf2019.html#session-1
10832 * Do not add new state for future pruning if the verifier hasn't seen
10833 * at least 2 jumps and at least 8 instructions.
10834 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10835 * In tests that amounts to up to 50% reduction into total verifier
10836 * memory consumption and 20% verifier time speedup.
10837 */
10838 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10839 env->insn_processed - env->prev_insn_processed >= 8)
10840 add_new_state = true;
10841
a8f500af
AS
10842 pprev = explored_state(env, insn_idx);
10843 sl = *pprev;
10844
9242b5f5
AS
10845 clean_live_states(env, insn_idx, cur);
10846
a8f500af 10847 while (sl) {
dc2a4ebc
AS
10848 states_cnt++;
10849 if (sl->state.insn_idx != insn_idx)
10850 goto next;
bfc6bb74 10851
2589726d 10852 if (sl->state.branches) {
bfc6bb74
AS
10853 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10854
10855 if (frame->in_async_callback_fn &&
10856 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10857 /* Different async_entry_cnt means that the verifier is
10858 * processing another entry into async callback.
10859 * Seeing the same state is not an indication of infinite
10860 * loop or infinite recursion.
10861 * But finding the same state doesn't mean that it's safe
10862 * to stop processing the current state. The previous state
10863 * hasn't yet reached bpf_exit, since state.branches > 0.
10864 * Checking in_async_callback_fn alone is not enough either.
10865 * Since the verifier still needs to catch infinite loops
10866 * inside async callbacks.
10867 */
10868 } else if (states_maybe_looping(&sl->state, cur) &&
10869 states_equal(env, &sl->state, cur)) {
2589726d
AS
10870 verbose_linfo(env, insn_idx, "; ");
10871 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10872 return -EINVAL;
10873 }
10874 /* if the verifier is processing a loop, avoid adding new state
10875 * too often, since different loop iterations have distinct
10876 * states and may not help future pruning.
10877 * This threshold shouldn't be too low to make sure that
10878 * a loop with large bound will be rejected quickly.
10879 * The most abusive loop will be:
10880 * r1 += 1
10881 * if r1 < 1000000 goto pc-2
10882 * 1M insn_procssed limit / 100 == 10k peak states.
10883 * This threshold shouldn't be too high either, since states
10884 * at the end of the loop are likely to be useful in pruning.
10885 */
10886 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10887 env->insn_processed - env->prev_insn_processed < 100)
10888 add_new_state = false;
10889 goto miss;
10890 }
638f5b90 10891 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10892 sl->hit_cnt++;
f1bca824 10893 /* reached equivalent register/stack state,
dc503a8a
EC
10894 * prune the search.
10895 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10896 * If we have any write marks in env->cur_state, they
10897 * will prevent corresponding reads in the continuation
10898 * from reaching our parent (an explored_state). Our
10899 * own state will get the read marks recorded, but
10900 * they'll be immediately forgotten as we're pruning
10901 * this state and will pop a new one.
f1bca824 10902 */
f4d7e40a 10903 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10904
10905 /* if previous state reached the exit with precision and
10906 * current state is equivalent to it (except precsion marks)
10907 * the precision needs to be propagated back in
10908 * the current state.
10909 */
10910 err = err ? : push_jmp_history(env, cur);
10911 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10912 if (err)
10913 return err;
f1bca824 10914 return 1;
dc503a8a 10915 }
2589726d
AS
10916miss:
10917 /* when new state is not going to be added do not increase miss count.
10918 * Otherwise several loop iterations will remove the state
10919 * recorded earlier. The goal of these heuristics is to have
10920 * states from some iterations of the loop (some in the beginning
10921 * and some at the end) to help pruning.
10922 */
10923 if (add_new_state)
10924 sl->miss_cnt++;
9f4686c4
AS
10925 /* heuristic to determine whether this state is beneficial
10926 * to keep checking from state equivalence point of view.
10927 * Higher numbers increase max_states_per_insn and verification time,
10928 * but do not meaningfully decrease insn_processed.
10929 */
10930 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10931 /* the state is unlikely to be useful. Remove it to
10932 * speed up verification
10933 */
10934 *pprev = sl->next;
10935 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10936 u32 br = sl->state.branches;
10937
10938 WARN_ONCE(br,
10939 "BUG live_done but branches_to_explore %d\n",
10940 br);
9f4686c4
AS
10941 free_verifier_state(&sl->state, false);
10942 kfree(sl);
10943 env->peak_states--;
10944 } else {
10945 /* cannot free this state, since parentage chain may
10946 * walk it later. Add it for free_list instead to
10947 * be freed at the end of verification
10948 */
10949 sl->next = env->free_list;
10950 env->free_list = sl;
10951 }
10952 sl = *pprev;
10953 continue;
10954 }
dc2a4ebc 10955next:
9f4686c4
AS
10956 pprev = &sl->next;
10957 sl = *pprev;
f1bca824
AS
10958 }
10959
06ee7115
AS
10960 if (env->max_states_per_insn < states_cnt)
10961 env->max_states_per_insn = states_cnt;
10962
2c78ee89 10963 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10964 return push_jmp_history(env, cur);
ceefbc96 10965
2589726d 10966 if (!add_new_state)
b5dc0163 10967 return push_jmp_history(env, cur);
ceefbc96 10968
2589726d
AS
10969 /* There were no equivalent states, remember the current one.
10970 * Technically the current state is not proven to be safe yet,
f4d7e40a 10971 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10972 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10973 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10974 * again on the way to bpf_exit.
10975 * When looping the sl->state.branches will be > 0 and this state
10976 * will not be considered for equivalence until branches == 0.
f1bca824 10977 */
638f5b90 10978 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10979 if (!new_sl)
10980 return -ENOMEM;
06ee7115
AS
10981 env->total_states++;
10982 env->peak_states++;
2589726d
AS
10983 env->prev_jmps_processed = env->jmps_processed;
10984 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10985
10986 /* add new state to the head of linked list */
679c782d
EC
10987 new = &new_sl->state;
10988 err = copy_verifier_state(new, cur);
1969db47 10989 if (err) {
679c782d 10990 free_verifier_state(new, false);
1969db47
AS
10991 kfree(new_sl);
10992 return err;
10993 }
dc2a4ebc 10994 new->insn_idx = insn_idx;
2589726d
AS
10995 WARN_ONCE(new->branches != 1,
10996 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10997
2589726d 10998 cur->parent = new;
b5dc0163
AS
10999 cur->first_insn_idx = insn_idx;
11000 clear_jmp_history(cur);
5d839021
AS
11001 new_sl->next = *explored_state(env, insn_idx);
11002 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
11003 /* connect new state to parentage chain. Current frame needs all
11004 * registers connected. Only r6 - r9 of the callers are alive (pushed
11005 * to the stack implicitly by JITs) so in callers' frames connect just
11006 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11007 * the state of the call instruction (with WRITTEN set), and r0 comes
11008 * from callee with its full parentage chain, anyway.
11009 */
8e9cd9ce
EC
11010 /* clear write marks in current state: the writes we did are not writes
11011 * our child did, so they don't screen off its reads from us.
11012 * (There are no read marks in current state, because reads always mark
11013 * their parent and current state never has children yet. Only
11014 * explored_states can get read marks.)
11015 */
eea1c227
AS
11016 for (j = 0; j <= cur->curframe; j++) {
11017 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11018 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11019 for (i = 0; i < BPF_REG_FP; i++)
11020 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11021 }
f4d7e40a
AS
11022
11023 /* all stack frames are accessible from callee, clear them all */
11024 for (j = 0; j <= cur->curframe; j++) {
11025 struct bpf_func_state *frame = cur->frame[j];
679c782d 11026 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 11027
679c782d 11028 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 11029 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
11030 frame->stack[i].spilled_ptr.parent =
11031 &newframe->stack[i].spilled_ptr;
11032 }
f4d7e40a 11033 }
f1bca824
AS
11034 return 0;
11035}
11036
c64b7983
JS
11037/* Return true if it's OK to have the same insn return a different type. */
11038static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11039{
11040 switch (type) {
11041 case PTR_TO_CTX:
11042 case PTR_TO_SOCKET:
11043 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
11044 case PTR_TO_SOCK_COMMON:
11045 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
11046 case PTR_TO_TCP_SOCK:
11047 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 11048 case PTR_TO_XDP_SOCK:
2a02759e 11049 case PTR_TO_BTF_ID:
b121b341 11050 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
11051 return false;
11052 default:
11053 return true;
11054 }
11055}
11056
11057/* If an instruction was previously used with particular pointer types, then we
11058 * need to be careful to avoid cases such as the below, where it may be ok
11059 * for one branch accessing the pointer, but not ok for the other branch:
11060 *
11061 * R1 = sock_ptr
11062 * goto X;
11063 * ...
11064 * R1 = some_other_valid_ptr;
11065 * goto X;
11066 * ...
11067 * R2 = *(u32 *)(R1 + 0);
11068 */
11069static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11070{
11071 return src != prev && (!reg_type_mismatch_ok(src) ||
11072 !reg_type_mismatch_ok(prev));
11073}
11074
58e2af8b 11075static int do_check(struct bpf_verifier_env *env)
17a52670 11076{
6f8a57cc 11077 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 11078 struct bpf_verifier_state *state = env->cur_state;
17a52670 11079 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 11080 struct bpf_reg_state *regs;
06ee7115 11081 int insn_cnt = env->prog->len;
17a52670 11082 bool do_print_state = false;
b5dc0163 11083 int prev_insn_idx = -1;
17a52670 11084
17a52670
AS
11085 for (;;) {
11086 struct bpf_insn *insn;
11087 u8 class;
11088 int err;
11089
b5dc0163 11090 env->prev_insn_idx = prev_insn_idx;
c08435ec 11091 if (env->insn_idx >= insn_cnt) {
61bd5218 11092 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 11093 env->insn_idx, insn_cnt);
17a52670
AS
11094 return -EFAULT;
11095 }
11096
c08435ec 11097 insn = &insns[env->insn_idx];
17a52670
AS
11098 class = BPF_CLASS(insn->code);
11099
06ee7115 11100 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
11101 verbose(env,
11102 "BPF program is too large. Processed %d insn\n",
06ee7115 11103 env->insn_processed);
17a52670
AS
11104 return -E2BIG;
11105 }
11106
c08435ec 11107 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
11108 if (err < 0)
11109 return err;
11110 if (err == 1) {
11111 /* found equivalent state, can prune the search */
06ee7115 11112 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 11113 if (do_print_state)
979d63d5
DB
11114 verbose(env, "\nfrom %d to %d%s: safe\n",
11115 env->prev_insn_idx, env->insn_idx,
11116 env->cur_state->speculative ?
11117 " (speculative execution)" : "");
f1bca824 11118 else
c08435ec 11119 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
11120 }
11121 goto process_bpf_exit;
11122 }
11123
c3494801
AS
11124 if (signal_pending(current))
11125 return -EAGAIN;
11126
3c2ce60b
DB
11127 if (need_resched())
11128 cond_resched();
11129
06ee7115
AS
11130 if (env->log.level & BPF_LOG_LEVEL2 ||
11131 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11132 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 11133 verbose(env, "%d:", env->insn_idx);
c5fc9692 11134 else
979d63d5
DB
11135 verbose(env, "\nfrom %d to %d%s:",
11136 env->prev_insn_idx, env->insn_idx,
11137 env->cur_state->speculative ?
11138 " (speculative execution)" : "");
f4d7e40a 11139 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
11140 do_print_state = false;
11141 }
11142
06ee7115 11143 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 11144 const struct bpf_insn_cbs cbs = {
e6ac2450 11145 .cb_call = disasm_kfunc_name,
7105e828 11146 .cb_print = verbose,
abe08840 11147 .private_data = env,
7105e828
DB
11148 };
11149
c08435ec
DB
11150 verbose_linfo(env, env->insn_idx, "; ");
11151 verbose(env, "%d: ", env->insn_idx);
abe08840 11152 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
11153 }
11154
cae1927c 11155 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
11156 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11157 env->prev_insn_idx);
cae1927c
JK
11158 if (err)
11159 return err;
11160 }
13a27dfc 11161
638f5b90 11162 regs = cur_regs(env);
fe9a5ca7 11163 sanitize_mark_insn_seen(env);
b5dc0163 11164 prev_insn_idx = env->insn_idx;
fd978bf7 11165
17a52670 11166 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 11167 err = check_alu_op(env, insn);
17a52670
AS
11168 if (err)
11169 return err;
11170
11171 } else if (class == BPF_LDX) {
3df126f3 11172 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
11173
11174 /* check for reserved fields is already done */
11175
17a52670 11176 /* check src operand */
dc503a8a 11177 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11178 if (err)
11179 return err;
11180
dc503a8a 11181 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
11182 if (err)
11183 return err;
11184
725f9dcd
AS
11185 src_reg_type = regs[insn->src_reg].type;
11186
17a52670
AS
11187 /* check that memory (src_reg + off) is readable,
11188 * the state of dst_reg will be updated by this func
11189 */
c08435ec
DB
11190 err = check_mem_access(env, env->insn_idx, insn->src_reg,
11191 insn->off, BPF_SIZE(insn->code),
11192 BPF_READ, insn->dst_reg, false);
17a52670
AS
11193 if (err)
11194 return err;
11195
c08435ec 11196 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11197
11198 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
11199 /* saw a valid insn
11200 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 11201 * save type to validate intersecting paths
9bac3d6d 11202 */
3df126f3 11203 *prev_src_type = src_reg_type;
9bac3d6d 11204
c64b7983 11205 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
11206 /* ABuser program is trying to use the same insn
11207 * dst_reg = *(u32*) (src_reg + off)
11208 * with different pointer types:
11209 * src_reg == ctx in one branch and
11210 * src_reg == stack|map in some other branch.
11211 * Reject it.
11212 */
61bd5218 11213 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
11214 return -EINVAL;
11215 }
11216
17a52670 11217 } else if (class == BPF_STX) {
3df126f3 11218 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 11219
91c960b0
BJ
11220 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11221 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
11222 if (err)
11223 return err;
c08435ec 11224 env->insn_idx++;
17a52670
AS
11225 continue;
11226 }
11227
5ca419f2
BJ
11228 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11229 verbose(env, "BPF_STX uses reserved fields\n");
11230 return -EINVAL;
11231 }
11232
17a52670 11233 /* check src1 operand */
dc503a8a 11234 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11235 if (err)
11236 return err;
11237 /* check src2 operand */
dc503a8a 11238 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11239 if (err)
11240 return err;
11241
d691f9e8
AS
11242 dst_reg_type = regs[insn->dst_reg].type;
11243
17a52670 11244 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11245 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11246 insn->off, BPF_SIZE(insn->code),
11247 BPF_WRITE, insn->src_reg, false);
17a52670
AS
11248 if (err)
11249 return err;
11250
c08435ec 11251 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
11252
11253 if (*prev_dst_type == NOT_INIT) {
11254 *prev_dst_type = dst_reg_type;
c64b7983 11255 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 11256 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
11257 return -EINVAL;
11258 }
11259
17a52670
AS
11260 } else if (class == BPF_ST) {
11261 if (BPF_MODE(insn->code) != BPF_MEM ||
11262 insn->src_reg != BPF_REG_0) {
61bd5218 11263 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
11264 return -EINVAL;
11265 }
11266 /* check src operand */
dc503a8a 11267 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11268 if (err)
11269 return err;
11270
f37a8cb8 11271 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 11272 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
11273 insn->dst_reg,
11274 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
11275 return -EACCES;
11276 }
11277
17a52670 11278 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
11279 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11280 insn->off, BPF_SIZE(insn->code),
11281 BPF_WRITE, -1, false);
17a52670
AS
11282 if (err)
11283 return err;
11284
092ed096 11285 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
11286 u8 opcode = BPF_OP(insn->code);
11287
2589726d 11288 env->jmps_processed++;
17a52670
AS
11289 if (opcode == BPF_CALL) {
11290 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
11291 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11292 && insn->off != 0) ||
f4d7e40a 11293 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
11294 insn->src_reg != BPF_PSEUDO_CALL &&
11295 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
11296 insn->dst_reg != BPF_REG_0 ||
11297 class == BPF_JMP32) {
61bd5218 11298 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
11299 return -EINVAL;
11300 }
11301
d83525ca
AS
11302 if (env->cur_state->active_spin_lock &&
11303 (insn->src_reg == BPF_PSEUDO_CALL ||
11304 insn->imm != BPF_FUNC_spin_unlock)) {
11305 verbose(env, "function calls are not allowed while holding a lock\n");
11306 return -EINVAL;
11307 }
f4d7e40a 11308 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 11309 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
11310 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11311 err = check_kfunc_call(env, insn);
f4d7e40a 11312 else
69c087ba 11313 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
11314 if (err)
11315 return err;
17a52670
AS
11316 } else if (opcode == BPF_JA) {
11317 if (BPF_SRC(insn->code) != BPF_K ||
11318 insn->imm != 0 ||
11319 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11320 insn->dst_reg != BPF_REG_0 ||
11321 class == BPF_JMP32) {
61bd5218 11322 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
11323 return -EINVAL;
11324 }
11325
c08435ec 11326 env->insn_idx += insn->off + 1;
17a52670
AS
11327 continue;
11328
11329 } else if (opcode == BPF_EXIT) {
11330 if (BPF_SRC(insn->code) != BPF_K ||
11331 insn->imm != 0 ||
11332 insn->src_reg != BPF_REG_0 ||
092ed096
JW
11333 insn->dst_reg != BPF_REG_0 ||
11334 class == BPF_JMP32) {
61bd5218 11335 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
11336 return -EINVAL;
11337 }
11338
d83525ca
AS
11339 if (env->cur_state->active_spin_lock) {
11340 verbose(env, "bpf_spin_unlock is missing\n");
11341 return -EINVAL;
11342 }
11343
f4d7e40a
AS
11344 if (state->curframe) {
11345 /* exit from nested function */
c08435ec 11346 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
11347 if (err)
11348 return err;
11349 do_print_state = true;
11350 continue;
11351 }
11352
fd978bf7
JS
11353 err = check_reference_leak(env);
11354 if (err)
11355 return err;
11356
390ee7e2
AS
11357 err = check_return_code(env);
11358 if (err)
11359 return err;
f1bca824 11360process_bpf_exit:
2589726d 11361 update_branch_counts(env, env->cur_state);
b5dc0163 11362 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 11363 &env->insn_idx, pop_log);
638f5b90
AS
11364 if (err < 0) {
11365 if (err != -ENOENT)
11366 return err;
17a52670
AS
11367 break;
11368 } else {
11369 do_print_state = true;
11370 continue;
11371 }
11372 } else {
c08435ec 11373 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
11374 if (err)
11375 return err;
11376 }
11377 } else if (class == BPF_LD) {
11378 u8 mode = BPF_MODE(insn->code);
11379
11380 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
11381 err = check_ld_abs(env, insn);
11382 if (err)
11383 return err;
11384
17a52670
AS
11385 } else if (mode == BPF_IMM) {
11386 err = check_ld_imm(env, insn);
11387 if (err)
11388 return err;
11389
c08435ec 11390 env->insn_idx++;
fe9a5ca7 11391 sanitize_mark_insn_seen(env);
17a52670 11392 } else {
61bd5218 11393 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
11394 return -EINVAL;
11395 }
11396 } else {
61bd5218 11397 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
11398 return -EINVAL;
11399 }
11400
c08435ec 11401 env->insn_idx++;
17a52670
AS
11402 }
11403
11404 return 0;
11405}
11406
541c3bad
AN
11407static int find_btf_percpu_datasec(struct btf *btf)
11408{
11409 const struct btf_type *t;
11410 const char *tname;
11411 int i, n;
11412
11413 /*
11414 * Both vmlinux and module each have their own ".data..percpu"
11415 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11416 * types to look at only module's own BTF types.
11417 */
11418 n = btf_nr_types(btf);
11419 if (btf_is_module(btf))
11420 i = btf_nr_types(btf_vmlinux);
11421 else
11422 i = 1;
11423
11424 for(; i < n; i++) {
11425 t = btf_type_by_id(btf, i);
11426 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11427 continue;
11428
11429 tname = btf_name_by_offset(btf, t->name_off);
11430 if (!strcmp(tname, ".data..percpu"))
11431 return i;
11432 }
11433
11434 return -ENOENT;
11435}
11436
4976b718
HL
11437/* replace pseudo btf_id with kernel symbol address */
11438static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11439 struct bpf_insn *insn,
11440 struct bpf_insn_aux_data *aux)
11441{
eaa6bcb7
HL
11442 const struct btf_var_secinfo *vsi;
11443 const struct btf_type *datasec;
541c3bad 11444 struct btf_mod_pair *btf_mod;
4976b718
HL
11445 const struct btf_type *t;
11446 const char *sym_name;
eaa6bcb7 11447 bool percpu = false;
f16e6313 11448 u32 type, id = insn->imm;
541c3bad 11449 struct btf *btf;
f16e6313 11450 s32 datasec_id;
4976b718 11451 u64 addr;
541c3bad 11452 int i, btf_fd, err;
4976b718 11453
541c3bad
AN
11454 btf_fd = insn[1].imm;
11455 if (btf_fd) {
11456 btf = btf_get_by_fd(btf_fd);
11457 if (IS_ERR(btf)) {
11458 verbose(env, "invalid module BTF object FD specified.\n");
11459 return -EINVAL;
11460 }
11461 } else {
11462 if (!btf_vmlinux) {
11463 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11464 return -EINVAL;
11465 }
11466 btf = btf_vmlinux;
11467 btf_get(btf);
4976b718
HL
11468 }
11469
541c3bad 11470 t = btf_type_by_id(btf, id);
4976b718
HL
11471 if (!t) {
11472 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
11473 err = -ENOENT;
11474 goto err_put;
4976b718
HL
11475 }
11476
11477 if (!btf_type_is_var(t)) {
541c3bad
AN
11478 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11479 err = -EINVAL;
11480 goto err_put;
4976b718
HL
11481 }
11482
541c3bad 11483 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11484 addr = kallsyms_lookup_name(sym_name);
11485 if (!addr) {
11486 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11487 sym_name);
541c3bad
AN
11488 err = -ENOENT;
11489 goto err_put;
4976b718
HL
11490 }
11491
541c3bad 11492 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 11493 if (datasec_id > 0) {
541c3bad 11494 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
11495 for_each_vsi(i, datasec, vsi) {
11496 if (vsi->type == id) {
11497 percpu = true;
11498 break;
11499 }
11500 }
11501 }
11502
4976b718
HL
11503 insn[0].imm = (u32)addr;
11504 insn[1].imm = addr >> 32;
11505
11506 type = t->type;
541c3bad 11507 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
11508 if (percpu) {
11509 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 11510 aux->btf_var.btf = btf;
eaa6bcb7
HL
11511 aux->btf_var.btf_id = type;
11512 } else if (!btf_type_is_struct(t)) {
4976b718
HL
11513 const struct btf_type *ret;
11514 const char *tname;
11515 u32 tsize;
11516
11517 /* resolve the type size of ksym. */
541c3bad 11518 ret = btf_resolve_size(btf, t, &tsize);
4976b718 11519 if (IS_ERR(ret)) {
541c3bad 11520 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
11521 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11522 tname, PTR_ERR(ret));
541c3bad
AN
11523 err = -EINVAL;
11524 goto err_put;
4976b718
HL
11525 }
11526 aux->btf_var.reg_type = PTR_TO_MEM;
11527 aux->btf_var.mem_size = tsize;
11528 } else {
11529 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 11530 aux->btf_var.btf = btf;
4976b718
HL
11531 aux->btf_var.btf_id = type;
11532 }
541c3bad
AN
11533
11534 /* check whether we recorded this BTF (and maybe module) already */
11535 for (i = 0; i < env->used_btf_cnt; i++) {
11536 if (env->used_btfs[i].btf == btf) {
11537 btf_put(btf);
11538 return 0;
11539 }
11540 }
11541
11542 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11543 err = -E2BIG;
11544 goto err_put;
11545 }
11546
11547 btf_mod = &env->used_btfs[env->used_btf_cnt];
11548 btf_mod->btf = btf;
11549 btf_mod->module = NULL;
11550
11551 /* if we reference variables from kernel module, bump its refcount */
11552 if (btf_is_module(btf)) {
11553 btf_mod->module = btf_try_get_module(btf);
11554 if (!btf_mod->module) {
11555 err = -ENXIO;
11556 goto err_put;
11557 }
11558 }
11559
11560 env->used_btf_cnt++;
11561
4976b718 11562 return 0;
541c3bad
AN
11563err_put:
11564 btf_put(btf);
11565 return err;
4976b718
HL
11566}
11567
56f668df
MKL
11568static int check_map_prealloc(struct bpf_map *map)
11569{
11570 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
11571 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11572 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
11573 !(map->map_flags & BPF_F_NO_PREALLOC);
11574}
11575
d83525ca
AS
11576static bool is_tracing_prog_type(enum bpf_prog_type type)
11577{
11578 switch (type) {
11579 case BPF_PROG_TYPE_KPROBE:
11580 case BPF_PROG_TYPE_TRACEPOINT:
11581 case BPF_PROG_TYPE_PERF_EVENT:
11582 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11583 return true;
11584 default:
11585 return false;
11586 }
11587}
11588
94dacdbd
TG
11589static bool is_preallocated_map(struct bpf_map *map)
11590{
11591 if (!check_map_prealloc(map))
11592 return false;
11593 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11594 return false;
11595 return true;
11596}
11597
61bd5218
JK
11598static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11599 struct bpf_map *map,
fdc15d38
AS
11600 struct bpf_prog *prog)
11601
11602{
7e40781c 11603 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
11604 /*
11605 * Validate that trace type programs use preallocated hash maps.
11606 *
11607 * For programs attached to PERF events this is mandatory as the
11608 * perf NMI can hit any arbitrary code sequence.
11609 *
11610 * All other trace types using preallocated hash maps are unsafe as
11611 * well because tracepoint or kprobes can be inside locked regions
11612 * of the memory allocator or at a place where a recursion into the
11613 * memory allocator would see inconsistent state.
11614 *
2ed905c5
TG
11615 * On RT enabled kernels run-time allocation of all trace type
11616 * programs is strictly prohibited due to lock type constraints. On
11617 * !RT kernels it is allowed for backwards compatibility reasons for
11618 * now, but warnings are emitted so developers are made aware of
11619 * the unsafety and can fix their programs before this is enforced.
56f668df 11620 */
7e40781c
UP
11621 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11622 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11623 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11624 return -EINVAL;
11625 }
2ed905c5
TG
11626 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11627 verbose(env, "trace type programs can only use preallocated hash map\n");
11628 return -EINVAL;
11629 }
94dacdbd
TG
11630 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11631 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11632 }
a3884572 11633
9e7a4d98
KS
11634 if (map_value_has_spin_lock(map)) {
11635 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11636 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11637 return -EINVAL;
11638 }
11639
11640 if (is_tracing_prog_type(prog_type)) {
11641 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11642 return -EINVAL;
11643 }
11644
11645 if (prog->aux->sleepable) {
11646 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11647 return -EINVAL;
11648 }
d83525ca
AS
11649 }
11650
a3884572 11651 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11652 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11653 verbose(env, "offload device mismatch between prog and map\n");
11654 return -EINVAL;
11655 }
11656
85d33df3
MKL
11657 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11658 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11659 return -EINVAL;
11660 }
11661
1e6c62a8
AS
11662 if (prog->aux->sleepable)
11663 switch (map->map_type) {
11664 case BPF_MAP_TYPE_HASH:
11665 case BPF_MAP_TYPE_LRU_HASH:
11666 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11667 case BPF_MAP_TYPE_PERCPU_HASH:
11668 case BPF_MAP_TYPE_PERCPU_ARRAY:
11669 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11670 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11671 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11672 if (!is_preallocated_map(map)) {
11673 verbose(env,
638e4b82 11674 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11675 return -EINVAL;
11676 }
11677 break;
ba90c2cc
KS
11678 case BPF_MAP_TYPE_RINGBUF:
11679 break;
1e6c62a8
AS
11680 default:
11681 verbose(env,
ba90c2cc 11682 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11683 return -EINVAL;
11684 }
11685
fdc15d38
AS
11686 return 0;
11687}
11688
b741f163
RG
11689static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11690{
11691 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11692 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11693}
11694
4976b718
HL
11695/* find and rewrite pseudo imm in ld_imm64 instructions:
11696 *
11697 * 1. if it accesses map FD, replace it with actual map pointer.
11698 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11699 *
11700 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11701 */
4976b718 11702static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11703{
11704 struct bpf_insn *insn = env->prog->insnsi;
11705 int insn_cnt = env->prog->len;
fdc15d38 11706 int i, j, err;
0246e64d 11707
f1f7714e 11708 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11709 if (err)
11710 return err;
11711
0246e64d 11712 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11713 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11714 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11715 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11716 return -EINVAL;
11717 }
11718
0246e64d 11719 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11720 struct bpf_insn_aux_data *aux;
0246e64d
AS
11721 struct bpf_map *map;
11722 struct fd f;
d8eca5bb 11723 u64 addr;
387544bf 11724 u32 fd;
0246e64d
AS
11725
11726 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11727 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11728 insn[1].off != 0) {
61bd5218 11729 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11730 return -EINVAL;
11731 }
11732
d8eca5bb 11733 if (insn[0].src_reg == 0)
0246e64d
AS
11734 /* valid generic load 64-bit imm */
11735 goto next_insn;
11736
4976b718
HL
11737 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11738 aux = &env->insn_aux_data[i];
11739 err = check_pseudo_btf_id(env, insn, aux);
11740 if (err)
11741 return err;
11742 goto next_insn;
11743 }
11744
69c087ba
YS
11745 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11746 aux = &env->insn_aux_data[i];
11747 aux->ptr_type = PTR_TO_FUNC;
11748 goto next_insn;
11749 }
11750
d8eca5bb
DB
11751 /* In final convert_pseudo_ld_imm64() step, this is
11752 * converted into regular 64-bit imm load insn.
11753 */
387544bf
AS
11754 switch (insn[0].src_reg) {
11755 case BPF_PSEUDO_MAP_VALUE:
11756 case BPF_PSEUDO_MAP_IDX_VALUE:
11757 break;
11758 case BPF_PSEUDO_MAP_FD:
11759 case BPF_PSEUDO_MAP_IDX:
11760 if (insn[1].imm == 0)
11761 break;
11762 fallthrough;
11763 default:
11764 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11765 return -EINVAL;
11766 }
11767
387544bf
AS
11768 switch (insn[0].src_reg) {
11769 case BPF_PSEUDO_MAP_IDX_VALUE:
11770 case BPF_PSEUDO_MAP_IDX:
11771 if (bpfptr_is_null(env->fd_array)) {
11772 verbose(env, "fd_idx without fd_array is invalid\n");
11773 return -EPROTO;
11774 }
11775 if (copy_from_bpfptr_offset(&fd, env->fd_array,
11776 insn[0].imm * sizeof(fd),
11777 sizeof(fd)))
11778 return -EFAULT;
11779 break;
11780 default:
11781 fd = insn[0].imm;
11782 break;
11783 }
11784
11785 f = fdget(fd);
c2101297 11786 map = __bpf_map_get(f);
0246e64d 11787 if (IS_ERR(map)) {
61bd5218 11788 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11789 insn[0].imm);
0246e64d
AS
11790 return PTR_ERR(map);
11791 }
11792
61bd5218 11793 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11794 if (err) {
11795 fdput(f);
11796 return err;
11797 }
11798
d8eca5bb 11799 aux = &env->insn_aux_data[i];
387544bf
AS
11800 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11801 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
11802 addr = (unsigned long)map;
11803 } else {
11804 u32 off = insn[1].imm;
11805
11806 if (off >= BPF_MAX_VAR_OFF) {
11807 verbose(env, "direct value offset of %u is not allowed\n", off);
11808 fdput(f);
11809 return -EINVAL;
11810 }
11811
11812 if (!map->ops->map_direct_value_addr) {
11813 verbose(env, "no direct value access support for this map type\n");
11814 fdput(f);
11815 return -EINVAL;
11816 }
11817
11818 err = map->ops->map_direct_value_addr(map, &addr, off);
11819 if (err) {
11820 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11821 map->value_size, off);
11822 fdput(f);
11823 return err;
11824 }
11825
11826 aux->map_off = off;
11827 addr += off;
11828 }
11829
11830 insn[0].imm = (u32)addr;
11831 insn[1].imm = addr >> 32;
0246e64d
AS
11832
11833 /* check whether we recorded this map already */
d8eca5bb 11834 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11835 if (env->used_maps[j] == map) {
d8eca5bb 11836 aux->map_index = j;
0246e64d
AS
11837 fdput(f);
11838 goto next_insn;
11839 }
d8eca5bb 11840 }
0246e64d
AS
11841
11842 if (env->used_map_cnt >= MAX_USED_MAPS) {
11843 fdput(f);
11844 return -E2BIG;
11845 }
11846
0246e64d
AS
11847 /* hold the map. If the program is rejected by verifier,
11848 * the map will be released by release_maps() or it
11849 * will be used by the valid program until it's unloaded
ab7f5bf0 11850 * and all maps are released in free_used_maps()
0246e64d 11851 */
1e0bd5a0 11852 bpf_map_inc(map);
d8eca5bb
DB
11853
11854 aux->map_index = env->used_map_cnt;
92117d84
AS
11855 env->used_maps[env->used_map_cnt++] = map;
11856
b741f163 11857 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11858 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11859 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11860 fdput(f);
11861 return -EBUSY;
11862 }
11863
0246e64d
AS
11864 fdput(f);
11865next_insn:
11866 insn++;
11867 i++;
5e581dad
DB
11868 continue;
11869 }
11870
11871 /* Basic sanity check before we invest more work here. */
11872 if (!bpf_opcode_in_insntable(insn->code)) {
11873 verbose(env, "unknown opcode %02x\n", insn->code);
11874 return -EINVAL;
0246e64d
AS
11875 }
11876 }
11877
11878 /* now all pseudo BPF_LD_IMM64 instructions load valid
11879 * 'struct bpf_map *' into a register instead of user map_fd.
11880 * These pointers will be used later by verifier to validate map access.
11881 */
11882 return 0;
11883}
11884
11885/* drop refcnt of maps used by the rejected program */
58e2af8b 11886static void release_maps(struct bpf_verifier_env *env)
0246e64d 11887{
a2ea0746
DB
11888 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11889 env->used_map_cnt);
0246e64d
AS
11890}
11891
541c3bad
AN
11892/* drop refcnt of maps used by the rejected program */
11893static void release_btfs(struct bpf_verifier_env *env)
11894{
11895 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11896 env->used_btf_cnt);
11897}
11898
0246e64d 11899/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11900static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11901{
11902 struct bpf_insn *insn = env->prog->insnsi;
11903 int insn_cnt = env->prog->len;
11904 int i;
11905
69c087ba
YS
11906 for (i = 0; i < insn_cnt; i++, insn++) {
11907 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11908 continue;
11909 if (insn->src_reg == BPF_PSEUDO_FUNC)
11910 continue;
11911 insn->src_reg = 0;
11912 }
0246e64d
AS
11913}
11914
8041902d
AS
11915/* single env->prog->insni[off] instruction was replaced with the range
11916 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11917 * [0, off) and [off, end) to new locations, so the patched range stays zero
11918 */
75f0fc7b
HF
11919static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11920 struct bpf_insn_aux_data *new_data,
11921 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 11922{
75f0fc7b 11923 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 11924 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 11925 u32 old_seen = old_data[off].seen;
b325fbca 11926 u32 prog_len;
c131187d 11927 int i;
8041902d 11928
b325fbca
JW
11929 /* aux info at OFF always needs adjustment, no matter fast path
11930 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11931 * original insn at old prog.
11932 */
11933 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11934
8041902d 11935 if (cnt == 1)
75f0fc7b 11936 return;
b325fbca 11937 prog_len = new_prog->len;
75f0fc7b 11938
8041902d
AS
11939 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11940 memcpy(new_data + off + cnt - 1, old_data + off,
11941 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11942 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
11943 /* Expand insni[off]'s seen count to the patched range. */
11944 new_data[i].seen = old_seen;
b325fbca
JW
11945 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11946 }
8041902d
AS
11947 env->insn_aux_data = new_data;
11948 vfree(old_data);
8041902d
AS
11949}
11950
cc8b0b92
AS
11951static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11952{
11953 int i;
11954
11955 if (len == 1)
11956 return;
4cb3d99c
JW
11957 /* NOTE: fake 'exit' subprog should be updated as well. */
11958 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11959 if (env->subprog_info[i].start <= off)
cc8b0b92 11960 continue;
9c8105bd 11961 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11962 }
11963}
11964
7506d211 11965static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
11966{
11967 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11968 int i, sz = prog->aux->size_poke_tab;
11969 struct bpf_jit_poke_descriptor *desc;
11970
11971 for (i = 0; i < sz; i++) {
11972 desc = &tab[i];
7506d211
JF
11973 if (desc->insn_idx <= off)
11974 continue;
a748c697
MF
11975 desc->insn_idx += len - 1;
11976 }
11977}
11978
8041902d
AS
11979static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11980 const struct bpf_insn *patch, u32 len)
11981{
11982 struct bpf_prog *new_prog;
75f0fc7b
HF
11983 struct bpf_insn_aux_data *new_data = NULL;
11984
11985 if (len > 1) {
11986 new_data = vzalloc(array_size(env->prog->len + len - 1,
11987 sizeof(struct bpf_insn_aux_data)));
11988 if (!new_data)
11989 return NULL;
11990 }
8041902d
AS
11991
11992 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11993 if (IS_ERR(new_prog)) {
11994 if (PTR_ERR(new_prog) == -ERANGE)
11995 verbose(env,
11996 "insn %d cannot be patched due to 16-bit range\n",
11997 env->insn_aux_data[off].orig_idx);
75f0fc7b 11998 vfree(new_data);
8041902d 11999 return NULL;
4f73379e 12000 }
75f0fc7b 12001 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 12002 adjust_subprog_starts(env, off, len);
7506d211 12003 adjust_poke_descs(new_prog, off, len);
8041902d
AS
12004 return new_prog;
12005}
12006
52875a04
JK
12007static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12008 u32 off, u32 cnt)
12009{
12010 int i, j;
12011
12012 /* find first prog starting at or after off (first to remove) */
12013 for (i = 0; i < env->subprog_cnt; i++)
12014 if (env->subprog_info[i].start >= off)
12015 break;
12016 /* find first prog starting at or after off + cnt (first to stay) */
12017 for (j = i; j < env->subprog_cnt; j++)
12018 if (env->subprog_info[j].start >= off + cnt)
12019 break;
12020 /* if j doesn't start exactly at off + cnt, we are just removing
12021 * the front of previous prog
12022 */
12023 if (env->subprog_info[j].start != off + cnt)
12024 j--;
12025
12026 if (j > i) {
12027 struct bpf_prog_aux *aux = env->prog->aux;
12028 int move;
12029
12030 /* move fake 'exit' subprog as well */
12031 move = env->subprog_cnt + 1 - j;
12032
12033 memmove(env->subprog_info + i,
12034 env->subprog_info + j,
12035 sizeof(*env->subprog_info) * move);
12036 env->subprog_cnt -= j - i;
12037
12038 /* remove func_info */
12039 if (aux->func_info) {
12040 move = aux->func_info_cnt - j;
12041
12042 memmove(aux->func_info + i,
12043 aux->func_info + j,
12044 sizeof(*aux->func_info) * move);
12045 aux->func_info_cnt -= j - i;
12046 /* func_info->insn_off is set after all code rewrites,
12047 * in adjust_btf_func() - no need to adjust
12048 */
12049 }
12050 } else {
12051 /* convert i from "first prog to remove" to "first to adjust" */
12052 if (env->subprog_info[i].start == off)
12053 i++;
12054 }
12055
12056 /* update fake 'exit' subprog as well */
12057 for (; i <= env->subprog_cnt; i++)
12058 env->subprog_info[i].start -= cnt;
12059
12060 return 0;
12061}
12062
12063static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12064 u32 cnt)
12065{
12066 struct bpf_prog *prog = env->prog;
12067 u32 i, l_off, l_cnt, nr_linfo;
12068 struct bpf_line_info *linfo;
12069
12070 nr_linfo = prog->aux->nr_linfo;
12071 if (!nr_linfo)
12072 return 0;
12073
12074 linfo = prog->aux->linfo;
12075
12076 /* find first line info to remove, count lines to be removed */
12077 for (i = 0; i < nr_linfo; i++)
12078 if (linfo[i].insn_off >= off)
12079 break;
12080
12081 l_off = i;
12082 l_cnt = 0;
12083 for (; i < nr_linfo; i++)
12084 if (linfo[i].insn_off < off + cnt)
12085 l_cnt++;
12086 else
12087 break;
12088
12089 /* First live insn doesn't match first live linfo, it needs to "inherit"
12090 * last removed linfo. prog is already modified, so prog->len == off
12091 * means no live instructions after (tail of the program was removed).
12092 */
12093 if (prog->len != off && l_cnt &&
12094 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12095 l_cnt--;
12096 linfo[--i].insn_off = off + cnt;
12097 }
12098
12099 /* remove the line info which refer to the removed instructions */
12100 if (l_cnt) {
12101 memmove(linfo + l_off, linfo + i,
12102 sizeof(*linfo) * (nr_linfo - i));
12103
12104 prog->aux->nr_linfo -= l_cnt;
12105 nr_linfo = prog->aux->nr_linfo;
12106 }
12107
12108 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
12109 for (i = l_off; i < nr_linfo; i++)
12110 linfo[i].insn_off -= cnt;
12111
12112 /* fix up all subprogs (incl. 'exit') which start >= off */
12113 for (i = 0; i <= env->subprog_cnt; i++)
12114 if (env->subprog_info[i].linfo_idx > l_off) {
12115 /* program may have started in the removed region but
12116 * may not be fully removed
12117 */
12118 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12119 env->subprog_info[i].linfo_idx -= l_cnt;
12120 else
12121 env->subprog_info[i].linfo_idx = l_off;
12122 }
12123
12124 return 0;
12125}
12126
12127static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12128{
12129 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12130 unsigned int orig_prog_len = env->prog->len;
12131 int err;
12132
08ca90af
JK
12133 if (bpf_prog_is_dev_bound(env->prog->aux))
12134 bpf_prog_offload_remove_insns(env, off, cnt);
12135
52875a04
JK
12136 err = bpf_remove_insns(env->prog, off, cnt);
12137 if (err)
12138 return err;
12139
12140 err = adjust_subprog_starts_after_remove(env, off, cnt);
12141 if (err)
12142 return err;
12143
12144 err = bpf_adj_linfo_after_remove(env, off, cnt);
12145 if (err)
12146 return err;
12147
12148 memmove(aux_data + off, aux_data + off + cnt,
12149 sizeof(*aux_data) * (orig_prog_len - off - cnt));
12150
12151 return 0;
12152}
12153
2a5418a1
DB
12154/* The verifier does more data flow analysis than llvm and will not
12155 * explore branches that are dead at run time. Malicious programs can
12156 * have dead code too. Therefore replace all dead at-run-time code
12157 * with 'ja -1'.
12158 *
12159 * Just nops are not optimal, e.g. if they would sit at the end of the
12160 * program and through another bug we would manage to jump there, then
12161 * we'd execute beyond program memory otherwise. Returning exception
12162 * code also wouldn't work since we can have subprogs where the dead
12163 * code could be located.
c131187d
AS
12164 */
12165static void sanitize_dead_code(struct bpf_verifier_env *env)
12166{
12167 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 12168 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
12169 struct bpf_insn *insn = env->prog->insnsi;
12170 const int insn_cnt = env->prog->len;
12171 int i;
12172
12173 for (i = 0; i < insn_cnt; i++) {
12174 if (aux_data[i].seen)
12175 continue;
2a5418a1 12176 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 12177 aux_data[i].zext_dst = false;
c131187d
AS
12178 }
12179}
12180
e2ae4ca2
JK
12181static bool insn_is_cond_jump(u8 code)
12182{
12183 u8 op;
12184
092ed096
JW
12185 if (BPF_CLASS(code) == BPF_JMP32)
12186 return true;
12187
e2ae4ca2
JK
12188 if (BPF_CLASS(code) != BPF_JMP)
12189 return false;
12190
12191 op = BPF_OP(code);
12192 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12193}
12194
12195static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12196{
12197 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12198 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12199 struct bpf_insn *insn = env->prog->insnsi;
12200 const int insn_cnt = env->prog->len;
12201 int i;
12202
12203 for (i = 0; i < insn_cnt; i++, insn++) {
12204 if (!insn_is_cond_jump(insn->code))
12205 continue;
12206
12207 if (!aux_data[i + 1].seen)
12208 ja.off = insn->off;
12209 else if (!aux_data[i + 1 + insn->off].seen)
12210 ja.off = 0;
12211 else
12212 continue;
12213
08ca90af
JK
12214 if (bpf_prog_is_dev_bound(env->prog->aux))
12215 bpf_prog_offload_replace_insn(env, i, &ja);
12216
e2ae4ca2
JK
12217 memcpy(insn, &ja, sizeof(ja));
12218 }
12219}
12220
52875a04
JK
12221static int opt_remove_dead_code(struct bpf_verifier_env *env)
12222{
12223 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12224 int insn_cnt = env->prog->len;
12225 int i, err;
12226
12227 for (i = 0; i < insn_cnt; i++) {
12228 int j;
12229
12230 j = 0;
12231 while (i + j < insn_cnt && !aux_data[i + j].seen)
12232 j++;
12233 if (!j)
12234 continue;
12235
12236 err = verifier_remove_insns(env, i, j);
12237 if (err)
12238 return err;
12239 insn_cnt = env->prog->len;
12240 }
12241
12242 return 0;
12243}
12244
a1b14abc
JK
12245static int opt_remove_nops(struct bpf_verifier_env *env)
12246{
12247 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12248 struct bpf_insn *insn = env->prog->insnsi;
12249 int insn_cnt = env->prog->len;
12250 int i, err;
12251
12252 for (i = 0; i < insn_cnt; i++) {
12253 if (memcmp(&insn[i], &ja, sizeof(ja)))
12254 continue;
12255
12256 err = verifier_remove_insns(env, i, 1);
12257 if (err)
12258 return err;
12259 insn_cnt--;
12260 i--;
12261 }
12262
12263 return 0;
12264}
12265
d6c2308c
JW
12266static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12267 const union bpf_attr *attr)
a4b1d3c1 12268{
d6c2308c 12269 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 12270 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 12271 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 12272 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 12273 struct bpf_prog *new_prog;
d6c2308c 12274 bool rnd_hi32;
a4b1d3c1 12275
d6c2308c 12276 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 12277 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
12278 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12279 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12280 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
12281 for (i = 0; i < len; i++) {
12282 int adj_idx = i + delta;
12283 struct bpf_insn insn;
83a28819 12284 int load_reg;
a4b1d3c1 12285
d6c2308c 12286 insn = insns[adj_idx];
83a28819 12287 load_reg = insn_def_regno(&insn);
d6c2308c
JW
12288 if (!aux[adj_idx].zext_dst) {
12289 u8 code, class;
12290 u32 imm_rnd;
12291
12292 if (!rnd_hi32)
12293 continue;
12294
12295 code = insn.code;
12296 class = BPF_CLASS(code);
83a28819 12297 if (load_reg == -1)
d6c2308c
JW
12298 continue;
12299
12300 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
12301 * BPF_STX + SRC_OP, so it is safe to pass NULL
12302 * here.
d6c2308c 12303 */
83a28819 12304 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
12305 if (class == BPF_LD &&
12306 BPF_MODE(code) == BPF_IMM)
12307 i++;
12308 continue;
12309 }
12310
12311 /* ctx load could be transformed into wider load. */
12312 if (class == BPF_LDX &&
12313 aux[adj_idx].ptr_type == PTR_TO_CTX)
12314 continue;
12315
12316 imm_rnd = get_random_int();
12317 rnd_hi32_patch[0] = insn;
12318 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 12319 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
12320 patch = rnd_hi32_patch;
12321 patch_len = 4;
12322 goto apply_patch_buffer;
12323 }
12324
39491867
BJ
12325 /* Add in an zero-extend instruction if a) the JIT has requested
12326 * it or b) it's a CMPXCHG.
12327 *
12328 * The latter is because: BPF_CMPXCHG always loads a value into
12329 * R0, therefore always zero-extends. However some archs'
12330 * equivalent instruction only does this load when the
12331 * comparison is successful. This detail of CMPXCHG is
12332 * orthogonal to the general zero-extension behaviour of the
12333 * CPU, so it's treated independently of bpf_jit_needs_zext.
12334 */
12335 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
12336 continue;
12337
83a28819
IL
12338 if (WARN_ON(load_reg == -1)) {
12339 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12340 return -EFAULT;
b2e37a71
IL
12341 }
12342
a4b1d3c1 12343 zext_patch[0] = insn;
b2e37a71
IL
12344 zext_patch[1].dst_reg = load_reg;
12345 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
12346 patch = zext_patch;
12347 patch_len = 2;
12348apply_patch_buffer:
12349 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
12350 if (!new_prog)
12351 return -ENOMEM;
12352 env->prog = new_prog;
12353 insns = new_prog->insnsi;
12354 aux = env->insn_aux_data;
d6c2308c 12355 delta += patch_len - 1;
a4b1d3c1
JW
12356 }
12357
12358 return 0;
12359}
12360
c64b7983
JS
12361/* convert load instructions that access fields of a context type into a
12362 * sequence of instructions that access fields of the underlying structure:
12363 * struct __sk_buff -> struct sk_buff
12364 * struct bpf_sock_ops -> struct sock
9bac3d6d 12365 */
58e2af8b 12366static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 12367{
00176a34 12368 const struct bpf_verifier_ops *ops = env->ops;
f96da094 12369 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 12370 const int insn_cnt = env->prog->len;
36bbef52 12371 struct bpf_insn insn_buf[16], *insn;
46f53a65 12372 u32 target_size, size_default, off;
9bac3d6d 12373 struct bpf_prog *new_prog;
d691f9e8 12374 enum bpf_access_type type;
f96da094 12375 bool is_narrower_load;
9bac3d6d 12376
b09928b9
DB
12377 if (ops->gen_prologue || env->seen_direct_write) {
12378 if (!ops->gen_prologue) {
12379 verbose(env, "bpf verifier is misconfigured\n");
12380 return -EINVAL;
12381 }
36bbef52
DB
12382 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12383 env->prog);
12384 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 12385 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
12386 return -EINVAL;
12387 } else if (cnt) {
8041902d 12388 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
12389 if (!new_prog)
12390 return -ENOMEM;
8041902d 12391
36bbef52 12392 env->prog = new_prog;
3df126f3 12393 delta += cnt - 1;
36bbef52
DB
12394 }
12395 }
12396
c64b7983 12397 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
12398 return 0;
12399
3df126f3 12400 insn = env->prog->insnsi + delta;
36bbef52 12401
9bac3d6d 12402 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 12403 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 12404 bool ctx_access;
c64b7983 12405
62c7989b
DB
12406 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12407 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12408 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 12409 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 12410 type = BPF_READ;
2039f26f
DB
12411 ctx_access = true;
12412 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12413 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12414 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12415 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12416 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12417 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12418 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12419 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 12420 type = BPF_WRITE;
2039f26f
DB
12421 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12422 } else {
9bac3d6d 12423 continue;
2039f26f 12424 }
9bac3d6d 12425
af86ca4e 12426 if (type == BPF_WRITE &&
2039f26f 12427 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 12428 struct bpf_insn patch[] = {
af86ca4e 12429 *insn,
2039f26f 12430 BPF_ST_NOSPEC(),
af86ca4e
AS
12431 };
12432
12433 cnt = ARRAY_SIZE(patch);
12434 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12435 if (!new_prog)
12436 return -ENOMEM;
12437
12438 delta += cnt - 1;
12439 env->prog = new_prog;
12440 insn = new_prog->insnsi + i + delta;
12441 continue;
12442 }
12443
2039f26f
DB
12444 if (!ctx_access)
12445 continue;
12446
c64b7983
JS
12447 switch (env->insn_aux_data[i + delta].ptr_type) {
12448 case PTR_TO_CTX:
12449 if (!ops->convert_ctx_access)
12450 continue;
12451 convert_ctx_access = ops->convert_ctx_access;
12452 break;
12453 case PTR_TO_SOCKET:
46f8bc92 12454 case PTR_TO_SOCK_COMMON:
c64b7983
JS
12455 convert_ctx_access = bpf_sock_convert_ctx_access;
12456 break;
655a51e5
MKL
12457 case PTR_TO_TCP_SOCK:
12458 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12459 break;
fada7fdc
JL
12460 case PTR_TO_XDP_SOCK:
12461 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12462 break;
2a02759e 12463 case PTR_TO_BTF_ID:
27ae7997
MKL
12464 if (type == BPF_READ) {
12465 insn->code = BPF_LDX | BPF_PROBE_MEM |
12466 BPF_SIZE((insn)->code);
12467 env->prog->aux->num_exentries++;
7e40781c 12468 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
12469 verbose(env, "Writes through BTF pointers are not allowed\n");
12470 return -EINVAL;
12471 }
2a02759e 12472 continue;
c64b7983 12473 default:
9bac3d6d 12474 continue;
c64b7983 12475 }
9bac3d6d 12476
31fd8581 12477 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 12478 size = BPF_LDST_BYTES(insn);
31fd8581
YS
12479
12480 /* If the read access is a narrower load of the field,
12481 * convert to a 4/8-byte load, to minimum program type specific
12482 * convert_ctx_access changes. If conversion is successful,
12483 * we will apply proper mask to the result.
12484 */
f96da094 12485 is_narrower_load = size < ctx_field_size;
46f53a65
AI
12486 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12487 off = insn->off;
31fd8581 12488 if (is_narrower_load) {
f96da094
DB
12489 u8 size_code;
12490
12491 if (type == BPF_WRITE) {
61bd5218 12492 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
12493 return -EINVAL;
12494 }
31fd8581 12495
f96da094 12496 size_code = BPF_H;
31fd8581
YS
12497 if (ctx_field_size == 4)
12498 size_code = BPF_W;
12499 else if (ctx_field_size == 8)
12500 size_code = BPF_DW;
f96da094 12501
bc23105c 12502 insn->off = off & ~(size_default - 1);
31fd8581
YS
12503 insn->code = BPF_LDX | BPF_MEM | size_code;
12504 }
f96da094
DB
12505
12506 target_size = 0;
c64b7983
JS
12507 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12508 &target_size);
f96da094
DB
12509 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12510 (ctx_field_size && !target_size)) {
61bd5218 12511 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
12512 return -EINVAL;
12513 }
f96da094
DB
12514
12515 if (is_narrower_load && size < target_size) {
d895a0f1
IL
12516 u8 shift = bpf_ctx_narrow_access_offset(
12517 off, size, size_default) * 8;
d7af7e49
AI
12518 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12519 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12520 return -EINVAL;
12521 }
46f53a65
AI
12522 if (ctx_field_size <= 4) {
12523 if (shift)
12524 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12525 insn->dst_reg,
12526 shift);
31fd8581 12527 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 12528 (1 << size * 8) - 1);
46f53a65
AI
12529 } else {
12530 if (shift)
12531 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12532 insn->dst_reg,
12533 shift);
31fd8581 12534 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 12535 (1ULL << size * 8) - 1);
46f53a65 12536 }
31fd8581 12537 }
9bac3d6d 12538
8041902d 12539 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
12540 if (!new_prog)
12541 return -ENOMEM;
12542
3df126f3 12543 delta += cnt - 1;
9bac3d6d
AS
12544
12545 /* keep walking new program and skip insns we just inserted */
12546 env->prog = new_prog;
3df126f3 12547 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
12548 }
12549
12550 return 0;
12551}
12552
1c2a088a
AS
12553static int jit_subprogs(struct bpf_verifier_env *env)
12554{
12555 struct bpf_prog *prog = env->prog, **func, *tmp;
12556 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 12557 struct bpf_map *map_ptr;
7105e828 12558 struct bpf_insn *insn;
1c2a088a 12559 void *old_bpf_func;
c4c0bdc0 12560 int err, num_exentries;
1c2a088a 12561
f910cefa 12562 if (env->subprog_cnt <= 1)
1c2a088a
AS
12563 return 0;
12564
7105e828 12565 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12566 if (bpf_pseudo_func(insn)) {
12567 env->insn_aux_data[i].call_imm = insn->imm;
12568 /* subprog is encoded in insn[1].imm */
12569 continue;
12570 }
12571
23a2d70c 12572 if (!bpf_pseudo_call(insn))
1c2a088a 12573 continue;
c7a89784
DB
12574 /* Upon error here we cannot fall back to interpreter but
12575 * need a hard reject of the program. Thus -EFAULT is
12576 * propagated in any case.
12577 */
1c2a088a
AS
12578 subprog = find_subprog(env, i + insn->imm + 1);
12579 if (subprog < 0) {
12580 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12581 i + insn->imm + 1);
12582 return -EFAULT;
12583 }
12584 /* temporarily remember subprog id inside insn instead of
12585 * aux_data, since next loop will split up all insns into funcs
12586 */
f910cefa 12587 insn->off = subprog;
1c2a088a
AS
12588 /* remember original imm in case JIT fails and fallback
12589 * to interpreter will be needed
12590 */
12591 env->insn_aux_data[i].call_imm = insn->imm;
12592 /* point imm to __bpf_call_base+1 from JITs point of view */
12593 insn->imm = 1;
12594 }
12595
c454a46b
MKL
12596 err = bpf_prog_alloc_jited_linfo(prog);
12597 if (err)
12598 goto out_undo_insn;
12599
12600 err = -ENOMEM;
6396bb22 12601 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 12602 if (!func)
c7a89784 12603 goto out_undo_insn;
1c2a088a 12604
f910cefa 12605 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 12606 subprog_start = subprog_end;
4cb3d99c 12607 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
12608
12609 len = subprog_end - subprog_start;
fb7dd8bc 12610 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
12611 * hence main prog stats include the runtime of subprogs.
12612 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 12613 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
12614 */
12615 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
12616 if (!func[i])
12617 goto out_free;
12618 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12619 len * sizeof(struct bpf_insn));
4f74d809 12620 func[i]->type = prog->type;
1c2a088a 12621 func[i]->len = len;
4f74d809
DB
12622 if (bpf_prog_calc_tag(func[i]))
12623 goto out_free;
1c2a088a 12624 func[i]->is_func = 1;
ba64e7d8 12625 func[i]->aux->func_idx = i;
f263a814 12626 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
12627 func[i]->aux->btf = prog->aux->btf;
12628 func[i]->aux->func_info = prog->aux->func_info;
f263a814
JF
12629 func[i]->aux->poke_tab = prog->aux->poke_tab;
12630 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 12631
a748c697 12632 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 12633 struct bpf_jit_poke_descriptor *poke;
a748c697 12634
f263a814
JF
12635 poke = &prog->aux->poke_tab[j];
12636 if (poke->insn_idx < subprog_end &&
12637 poke->insn_idx >= subprog_start)
12638 poke->aux = func[i]->aux;
a748c697
MF
12639 }
12640
1c2a088a
AS
12641 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12642 * Long term would need debug info to populate names
12643 */
12644 func[i]->aux->name[0] = 'F';
9c8105bd 12645 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12646 func[i]->jit_requested = 1;
e6ac2450 12647 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 12648 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
12649 func[i]->aux->linfo = prog->aux->linfo;
12650 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12651 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12652 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12653 num_exentries = 0;
12654 insn = func[i]->insnsi;
12655 for (j = 0; j < func[i]->len; j++, insn++) {
12656 if (BPF_CLASS(insn->code) == BPF_LDX &&
12657 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12658 num_exentries++;
12659 }
12660 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12661 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12662 func[i] = bpf_int_jit_compile(func[i]);
12663 if (!func[i]->jited) {
12664 err = -ENOTSUPP;
12665 goto out_free;
12666 }
12667 cond_resched();
12668 }
a748c697 12669
1c2a088a
AS
12670 /* at this point all bpf functions were successfully JITed
12671 * now populate all bpf_calls with correct addresses and
12672 * run last pass of JIT
12673 */
f910cefa 12674 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12675 insn = func[i]->insnsi;
12676 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba
YS
12677 if (bpf_pseudo_func(insn)) {
12678 subprog = insn[1].imm;
12679 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12680 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12681 continue;
12682 }
23a2d70c 12683 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12684 continue;
12685 subprog = insn->off;
3d717fad 12686 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 12687 }
2162fed4
SD
12688
12689 /* we use the aux data to keep a list of the start addresses
12690 * of the JITed images for each function in the program
12691 *
12692 * for some architectures, such as powerpc64, the imm field
12693 * might not be large enough to hold the offset of the start
12694 * address of the callee's JITed image from __bpf_call_base
12695 *
12696 * in such cases, we can lookup the start address of a callee
12697 * by using its subprog id, available from the off field of
12698 * the call instruction, as an index for this list
12699 */
12700 func[i]->aux->func = func;
12701 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12702 }
f910cefa 12703 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12704 old_bpf_func = func[i]->bpf_func;
12705 tmp = bpf_int_jit_compile(func[i]);
12706 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12707 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12708 err = -ENOTSUPP;
1c2a088a
AS
12709 goto out_free;
12710 }
12711 cond_resched();
12712 }
12713
12714 /* finally lock prog and jit images for all functions and
12715 * populate kallsysm
12716 */
f910cefa 12717 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12718 bpf_prog_lock_ro(func[i]);
12719 bpf_prog_kallsyms_add(func[i]);
12720 }
7105e828
DB
12721
12722 /* Last step: make now unused interpreter insns from main
12723 * prog consistent for later dump requests, so they can
12724 * later look the same as if they were interpreted only.
12725 */
12726 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12727 if (bpf_pseudo_func(insn)) {
12728 insn[0].imm = env->insn_aux_data[i].call_imm;
12729 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12730 continue;
12731 }
23a2d70c 12732 if (!bpf_pseudo_call(insn))
7105e828
DB
12733 continue;
12734 insn->off = env->insn_aux_data[i].call_imm;
12735 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12736 insn->imm = subprog;
7105e828
DB
12737 }
12738
1c2a088a
AS
12739 prog->jited = 1;
12740 prog->bpf_func = func[0]->bpf_func;
12741 prog->aux->func = func;
f910cefa 12742 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12743 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12744 return 0;
12745out_free:
f263a814
JF
12746 /* We failed JIT'ing, so at this point we need to unregister poke
12747 * descriptors from subprogs, so that kernel is not attempting to
12748 * patch it anymore as we're freeing the subprog JIT memory.
12749 */
12750 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12751 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12752 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12753 }
12754 /* At this point we're guaranteed that poke descriptors are not
12755 * live anymore. We can just unlink its descriptor table as it's
12756 * released with the main prog.
12757 */
a748c697
MF
12758 for (i = 0; i < env->subprog_cnt; i++) {
12759 if (!func[i])
12760 continue;
f263a814 12761 func[i]->aux->poke_tab = NULL;
a748c697
MF
12762 bpf_jit_free(func[i]);
12763 }
1c2a088a 12764 kfree(func);
c7a89784 12765out_undo_insn:
1c2a088a
AS
12766 /* cleanup main prog to be interpreted */
12767 prog->jit_requested = 0;
12768 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12769 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12770 continue;
12771 insn->off = 0;
12772 insn->imm = env->insn_aux_data[i].call_imm;
12773 }
e16301fb 12774 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12775 return err;
12776}
12777
1ea47e01
AS
12778static int fixup_call_args(struct bpf_verifier_env *env)
12779{
19d28fbd 12780#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12781 struct bpf_prog *prog = env->prog;
12782 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12783 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12784 int i, depth;
19d28fbd 12785#endif
e4052d06 12786 int err = 0;
1ea47e01 12787
e4052d06
QM
12788 if (env->prog->jit_requested &&
12789 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12790 err = jit_subprogs(env);
12791 if (err == 0)
1c2a088a 12792 return 0;
c7a89784
DB
12793 if (err == -EFAULT)
12794 return err;
19d28fbd
DM
12795 }
12796#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12797 if (has_kfunc_call) {
12798 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12799 return -EINVAL;
12800 }
e411901c
MF
12801 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12802 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12803 * have to be rejected, since interpreter doesn't support them yet.
12804 */
12805 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12806 return -EINVAL;
12807 }
1ea47e01 12808 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12809 if (bpf_pseudo_func(insn)) {
12810 /* When JIT fails the progs with callback calls
12811 * have to be rejected, since interpreter doesn't support them yet.
12812 */
12813 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12814 return -EINVAL;
12815 }
12816
23a2d70c 12817 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12818 continue;
12819 depth = get_callee_stack_depth(env, insn, i);
12820 if (depth < 0)
12821 return depth;
12822 bpf_patch_call_args(insn, depth);
12823 }
19d28fbd
DM
12824 err = 0;
12825#endif
12826 return err;
1ea47e01
AS
12827}
12828
e6ac2450
MKL
12829static int fixup_kfunc_call(struct bpf_verifier_env *env,
12830 struct bpf_insn *insn)
12831{
12832 const struct bpf_kfunc_desc *desc;
12833
a5d82727
KKD
12834 if (!insn->imm) {
12835 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12836 return -EINVAL;
12837 }
12838
e6ac2450
MKL
12839 /* insn->imm has the btf func_id. Replace it with
12840 * an address (relative to __bpf_base_call).
12841 */
2357672c 12842 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
12843 if (!desc) {
12844 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12845 insn->imm);
12846 return -EFAULT;
12847 }
12848
12849 insn->imm = desc->imm;
12850
12851 return 0;
12852}
12853
e6ac5933
BJ
12854/* Do various post-verification rewrites in a single program pass.
12855 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12856 */
e6ac5933 12857static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12858{
79741b3b 12859 struct bpf_prog *prog = env->prog;
d2e4c1e6 12860 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9b99edca 12861 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 12862 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12863 const struct bpf_func_proto *fn;
79741b3b 12864 const int insn_cnt = prog->len;
09772d92 12865 const struct bpf_map_ops *ops;
c93552c4 12866 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12867 struct bpf_insn insn_buf[16];
12868 struct bpf_prog *new_prog;
12869 struct bpf_map *map_ptr;
d2e4c1e6 12870 int i, ret, cnt, delta = 0;
e245c5c6 12871
79741b3b 12872 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12873 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12874 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12875 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12876 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12877 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12878 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12879 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12880 struct bpf_insn *patchlet;
12881 struct bpf_insn chk_and_div[] = {
9b00f1b7 12882 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12883 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12884 BPF_JNE | BPF_K, insn->src_reg,
12885 0, 2, 0),
f6b1b3bf
DB
12886 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12887 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12888 *insn,
12889 };
e88b2c6e 12890 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12891 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12892 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12893 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12894 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12895 *insn,
9b00f1b7
DB
12896 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12897 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12898 };
f6b1b3bf 12899
e88b2c6e
DB
12900 patchlet = isdiv ? chk_and_div : chk_and_mod;
12901 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12902 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12903
12904 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12905 if (!new_prog)
12906 return -ENOMEM;
12907
12908 delta += cnt - 1;
12909 env->prog = prog = new_prog;
12910 insn = new_prog->insnsi + i + delta;
12911 continue;
12912 }
12913
e6ac5933 12914 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12915 if (BPF_CLASS(insn->code) == BPF_LD &&
12916 (BPF_MODE(insn->code) == BPF_ABS ||
12917 BPF_MODE(insn->code) == BPF_IND)) {
12918 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12919 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12920 verbose(env, "bpf verifier is misconfigured\n");
12921 return -EINVAL;
12922 }
12923
12924 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12925 if (!new_prog)
12926 return -ENOMEM;
12927
12928 delta += cnt - 1;
12929 env->prog = prog = new_prog;
12930 insn = new_prog->insnsi + i + delta;
12931 continue;
12932 }
12933
e6ac5933 12934 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12935 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12936 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12937 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12938 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 12939 struct bpf_insn *patch = &insn_buf[0];
801c6058 12940 bool issrc, isneg, isimm;
979d63d5
DB
12941 u32 off_reg;
12942
12943 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12944 if (!aux->alu_state ||
12945 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12946 continue;
12947
12948 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12949 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12950 BPF_ALU_SANITIZE_SRC;
801c6058 12951 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
12952
12953 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
12954 if (isimm) {
12955 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12956 } else {
12957 if (isneg)
12958 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12959 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12960 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12961 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12962 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12963 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12964 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12965 }
b9b34ddb
DB
12966 if (!issrc)
12967 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12968 insn->src_reg = BPF_REG_AX;
979d63d5
DB
12969 if (isneg)
12970 insn->code = insn->code == code_add ?
12971 code_sub : code_add;
12972 *patch++ = *insn;
801c6058 12973 if (issrc && isneg && !isimm)
979d63d5
DB
12974 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12975 cnt = patch - insn_buf;
12976
12977 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12978 if (!new_prog)
12979 return -ENOMEM;
12980
12981 delta += cnt - 1;
12982 env->prog = prog = new_prog;
12983 insn = new_prog->insnsi + i + delta;
12984 continue;
12985 }
12986
79741b3b
AS
12987 if (insn->code != (BPF_JMP | BPF_CALL))
12988 continue;
cc8b0b92
AS
12989 if (insn->src_reg == BPF_PSEUDO_CALL)
12990 continue;
e6ac2450
MKL
12991 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12992 ret = fixup_kfunc_call(env, insn);
12993 if (ret)
12994 return ret;
12995 continue;
12996 }
e245c5c6 12997
79741b3b
AS
12998 if (insn->imm == BPF_FUNC_get_route_realm)
12999 prog->dst_needed = 1;
13000 if (insn->imm == BPF_FUNC_get_prandom_u32)
13001 bpf_user_rnd_init_once();
9802d865
JB
13002 if (insn->imm == BPF_FUNC_override_return)
13003 prog->kprobe_override = 1;
79741b3b 13004 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
13005 /* If we tail call into other programs, we
13006 * cannot make any assumptions since they can
13007 * be replaced dynamically during runtime in
13008 * the program array.
13009 */
13010 prog->cb_access = 1;
e411901c
MF
13011 if (!allow_tail_call_in_subprogs(env))
13012 prog->aux->stack_depth = MAX_BPF_STACK;
13013 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 13014
79741b3b 13015 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 13016 * conditional branch in the interpreter for every normal
79741b3b
AS
13017 * call and to prevent accidental JITing by JIT compiler
13018 * that doesn't support bpf_tail_call yet
e245c5c6 13019 */
79741b3b 13020 insn->imm = 0;
71189fa9 13021 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 13022
c93552c4 13023 aux = &env->insn_aux_data[i + delta];
2c78ee89 13024 if (env->bpf_capable && !expect_blinding &&
cc52d914 13025 prog->jit_requested &&
d2e4c1e6
DB
13026 !bpf_map_key_poisoned(aux) &&
13027 !bpf_map_ptr_poisoned(aux) &&
13028 !bpf_map_ptr_unpriv(aux)) {
13029 struct bpf_jit_poke_descriptor desc = {
13030 .reason = BPF_POKE_REASON_TAIL_CALL,
13031 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13032 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 13033 .insn_idx = i + delta,
d2e4c1e6
DB
13034 };
13035
13036 ret = bpf_jit_add_poke_descriptor(prog, &desc);
13037 if (ret < 0) {
13038 verbose(env, "adding tail call poke descriptor failed\n");
13039 return ret;
13040 }
13041
13042 insn->imm = ret + 1;
13043 continue;
13044 }
13045
c93552c4
DB
13046 if (!bpf_map_ptr_unpriv(aux))
13047 continue;
13048
b2157399
AS
13049 /* instead of changing every JIT dealing with tail_call
13050 * emit two extra insns:
13051 * if (index >= max_entries) goto out;
13052 * index &= array->index_mask;
13053 * to avoid out-of-bounds cpu speculation
13054 */
c93552c4 13055 if (bpf_map_ptr_poisoned(aux)) {
40950343 13056 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
13057 return -EINVAL;
13058 }
c93552c4 13059
d2e4c1e6 13060 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
13061 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13062 map_ptr->max_entries, 2);
13063 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13064 container_of(map_ptr,
13065 struct bpf_array,
13066 map)->index_mask);
13067 insn_buf[2] = *insn;
13068 cnt = 3;
13069 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13070 if (!new_prog)
13071 return -ENOMEM;
13072
13073 delta += cnt - 1;
13074 env->prog = prog = new_prog;
13075 insn = new_prog->insnsi + i + delta;
79741b3b
AS
13076 continue;
13077 }
e245c5c6 13078
b00628b1
AS
13079 if (insn->imm == BPF_FUNC_timer_set_callback) {
13080 /* The verifier will process callback_fn as many times as necessary
13081 * with different maps and the register states prepared by
13082 * set_timer_callback_state will be accurate.
13083 *
13084 * The following use case is valid:
13085 * map1 is shared by prog1, prog2, prog3.
13086 * prog1 calls bpf_timer_init for some map1 elements
13087 * prog2 calls bpf_timer_set_callback for some map1 elements.
13088 * Those that were not bpf_timer_init-ed will return -EINVAL.
13089 * prog3 calls bpf_timer_start for some map1 elements.
13090 * Those that were not both bpf_timer_init-ed and
13091 * bpf_timer_set_callback-ed will return -EINVAL.
13092 */
13093 struct bpf_insn ld_addrs[2] = {
13094 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13095 };
13096
13097 insn_buf[0] = ld_addrs[0];
13098 insn_buf[1] = ld_addrs[1];
13099 insn_buf[2] = *insn;
13100 cnt = 3;
13101
13102 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13103 if (!new_prog)
13104 return -ENOMEM;
13105
13106 delta += cnt - 1;
13107 env->prog = prog = new_prog;
13108 insn = new_prog->insnsi + i + delta;
13109 goto patch_call_imm;
13110 }
13111
89c63074 13112 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
13113 * and other inlining handlers are currently limited to 64 bit
13114 * only.
89c63074 13115 */
60b58afc 13116 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
13117 (insn->imm == BPF_FUNC_map_lookup_elem ||
13118 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
13119 insn->imm == BPF_FUNC_map_delete_elem ||
13120 insn->imm == BPF_FUNC_map_push_elem ||
13121 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 13122 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c
AI
13123 insn->imm == BPF_FUNC_redirect_map ||
13124 insn->imm == BPF_FUNC_for_each_map_elem)) {
c93552c4
DB
13125 aux = &env->insn_aux_data[i + delta];
13126 if (bpf_map_ptr_poisoned(aux))
13127 goto patch_call_imm;
13128
d2e4c1e6 13129 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
13130 ops = map_ptr->ops;
13131 if (insn->imm == BPF_FUNC_map_lookup_elem &&
13132 ops->map_gen_lookup) {
13133 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
13134 if (cnt == -EOPNOTSUPP)
13135 goto patch_map_ops_generic;
13136 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
13137 verbose(env, "bpf verifier is misconfigured\n");
13138 return -EINVAL;
13139 }
81ed18ab 13140
09772d92
DB
13141 new_prog = bpf_patch_insn_data(env, i + delta,
13142 insn_buf, cnt);
13143 if (!new_prog)
13144 return -ENOMEM;
81ed18ab 13145
09772d92
DB
13146 delta += cnt - 1;
13147 env->prog = prog = new_prog;
13148 insn = new_prog->insnsi + i + delta;
13149 continue;
13150 }
81ed18ab 13151
09772d92
DB
13152 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13153 (void *(*)(struct bpf_map *map, void *key))NULL));
13154 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13155 (int (*)(struct bpf_map *map, void *key))NULL));
13156 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13157 (int (*)(struct bpf_map *map, void *key, void *value,
13158 u64 flags))NULL));
84430d42
DB
13159 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13160 (int (*)(struct bpf_map *map, void *value,
13161 u64 flags))NULL));
13162 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13163 (int (*)(struct bpf_map *map, void *value))NULL));
13164 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13165 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
13166 BUILD_BUG_ON(!__same_type(ops->map_redirect,
13167 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
0640c77c
AI
13168 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13169 (int (*)(struct bpf_map *map,
13170 bpf_callback_t callback_fn,
13171 void *callback_ctx,
13172 u64 flags))NULL));
e6a4750f 13173
4a8f87e6 13174patch_map_ops_generic:
09772d92
DB
13175 switch (insn->imm) {
13176 case BPF_FUNC_map_lookup_elem:
3d717fad 13177 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
13178 continue;
13179 case BPF_FUNC_map_update_elem:
3d717fad 13180 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
13181 continue;
13182 case BPF_FUNC_map_delete_elem:
3d717fad 13183 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 13184 continue;
84430d42 13185 case BPF_FUNC_map_push_elem:
3d717fad 13186 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
13187 continue;
13188 case BPF_FUNC_map_pop_elem:
3d717fad 13189 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
13190 continue;
13191 case BPF_FUNC_map_peek_elem:
3d717fad 13192 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 13193 continue;
e6a4750f 13194 case BPF_FUNC_redirect_map:
3d717fad 13195 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 13196 continue;
0640c77c
AI
13197 case BPF_FUNC_for_each_map_elem:
13198 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 13199 continue;
09772d92 13200 }
81ed18ab 13201
09772d92 13202 goto patch_call_imm;
81ed18ab
AS
13203 }
13204
e6ac5933 13205 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
13206 if (prog->jit_requested && BITS_PER_LONG == 64 &&
13207 insn->imm == BPF_FUNC_jiffies64) {
13208 struct bpf_insn ld_jiffies_addr[2] = {
13209 BPF_LD_IMM64(BPF_REG_0,
13210 (unsigned long)&jiffies),
13211 };
13212
13213 insn_buf[0] = ld_jiffies_addr[0];
13214 insn_buf[1] = ld_jiffies_addr[1];
13215 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13216 BPF_REG_0, 0);
13217 cnt = 3;
13218
13219 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13220 cnt);
13221 if (!new_prog)
13222 return -ENOMEM;
13223
13224 delta += cnt - 1;
13225 env->prog = prog = new_prog;
13226 insn = new_prog->insnsi + i + delta;
13227 continue;
13228 }
13229
9b99edca
JO
13230 /* Implement bpf_get_func_ip inline. */
13231 if (prog_type == BPF_PROG_TYPE_TRACING &&
13232 insn->imm == BPF_FUNC_get_func_ip) {
13233 /* Load IP address from ctx - 8 */
13234 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13235
13236 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13237 if (!new_prog)
13238 return -ENOMEM;
13239
13240 env->prog = prog = new_prog;
13241 insn = new_prog->insnsi + i + delta;
13242 continue;
13243 }
13244
81ed18ab 13245patch_call_imm:
5e43f899 13246 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
13247 /* all functions that have prototype and verifier allowed
13248 * programs to call them, must be real in-kernel functions
13249 */
13250 if (!fn->func) {
61bd5218
JK
13251 verbose(env,
13252 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
13253 func_id_name(insn->imm), insn->imm);
13254 return -EFAULT;
e245c5c6 13255 }
79741b3b 13256 insn->imm = fn->func - __bpf_call_base;
e245c5c6 13257 }
e245c5c6 13258
d2e4c1e6
DB
13259 /* Since poke tab is now finalized, publish aux to tracker. */
13260 for (i = 0; i < prog->aux->size_poke_tab; i++) {
13261 map_ptr = prog->aux->poke_tab[i].tail_call.map;
13262 if (!map_ptr->ops->map_poke_track ||
13263 !map_ptr->ops->map_poke_untrack ||
13264 !map_ptr->ops->map_poke_run) {
13265 verbose(env, "bpf verifier is misconfigured\n");
13266 return -EINVAL;
13267 }
13268
13269 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13270 if (ret < 0) {
13271 verbose(env, "tracking tail call prog failed\n");
13272 return ret;
13273 }
13274 }
13275
e6ac2450
MKL
13276 sort_kfunc_descs_by_imm(env->prog);
13277
79741b3b
AS
13278 return 0;
13279}
e245c5c6 13280
58e2af8b 13281static void free_states(struct bpf_verifier_env *env)
f1bca824 13282{
58e2af8b 13283 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
13284 int i;
13285
9f4686c4
AS
13286 sl = env->free_list;
13287 while (sl) {
13288 sln = sl->next;
13289 free_verifier_state(&sl->state, false);
13290 kfree(sl);
13291 sl = sln;
13292 }
51c39bb1 13293 env->free_list = NULL;
9f4686c4 13294
f1bca824
AS
13295 if (!env->explored_states)
13296 return;
13297
dc2a4ebc 13298 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
13299 sl = env->explored_states[i];
13300
a8f500af
AS
13301 while (sl) {
13302 sln = sl->next;
13303 free_verifier_state(&sl->state, false);
13304 kfree(sl);
13305 sl = sln;
13306 }
51c39bb1 13307 env->explored_states[i] = NULL;
f1bca824 13308 }
51c39bb1 13309}
f1bca824 13310
51c39bb1
AS
13311static int do_check_common(struct bpf_verifier_env *env, int subprog)
13312{
6f8a57cc 13313 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
13314 struct bpf_verifier_state *state;
13315 struct bpf_reg_state *regs;
13316 int ret, i;
13317
13318 env->prev_linfo = NULL;
13319 env->pass_cnt++;
13320
13321 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13322 if (!state)
13323 return -ENOMEM;
13324 state->curframe = 0;
13325 state->speculative = false;
13326 state->branches = 1;
13327 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13328 if (!state->frame[0]) {
13329 kfree(state);
13330 return -ENOMEM;
13331 }
13332 env->cur_state = state;
13333 init_func_state(env, state->frame[0],
13334 BPF_MAIN_FUNC /* callsite */,
13335 0 /* frameno */,
13336 subprog);
13337
13338 regs = state->frame[state->curframe]->regs;
be8704ff 13339 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
13340 ret = btf_prepare_func_args(env, subprog, regs);
13341 if (ret)
13342 goto out;
13343 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13344 if (regs[i].type == PTR_TO_CTX)
13345 mark_reg_known_zero(env, regs, i);
13346 else if (regs[i].type == SCALAR_VALUE)
13347 mark_reg_unknown(env, regs, i);
e5069b9c
DB
13348 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13349 const u32 mem_size = regs[i].mem_size;
13350
13351 mark_reg_known_zero(env, regs, i);
13352 regs[i].mem_size = mem_size;
13353 regs[i].id = ++env->id_gen;
13354 }
51c39bb1
AS
13355 }
13356 } else {
13357 /* 1st arg to a function */
13358 regs[BPF_REG_1].type = PTR_TO_CTX;
13359 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 13360 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
13361 if (ret == -EFAULT)
13362 /* unlikely verifier bug. abort.
13363 * ret == 0 and ret < 0 are sadly acceptable for
13364 * main() function due to backward compatibility.
13365 * Like socket filter program may be written as:
13366 * int bpf_prog(struct pt_regs *ctx)
13367 * and never dereference that ctx in the program.
13368 * 'struct pt_regs' is a type mismatch for socket
13369 * filter that should be using 'struct __sk_buff'.
13370 */
13371 goto out;
13372 }
13373
13374 ret = do_check(env);
13375out:
f59bbfc2
AS
13376 /* check for NULL is necessary, since cur_state can be freed inside
13377 * do_check() under memory pressure.
13378 */
13379 if (env->cur_state) {
13380 free_verifier_state(env->cur_state, true);
13381 env->cur_state = NULL;
13382 }
6f8a57cc
AN
13383 while (!pop_stack(env, NULL, NULL, false));
13384 if (!ret && pop_log)
13385 bpf_vlog_reset(&env->log, 0);
51c39bb1 13386 free_states(env);
51c39bb1
AS
13387 return ret;
13388}
13389
13390/* Verify all global functions in a BPF program one by one based on their BTF.
13391 * All global functions must pass verification. Otherwise the whole program is rejected.
13392 * Consider:
13393 * int bar(int);
13394 * int foo(int f)
13395 * {
13396 * return bar(f);
13397 * }
13398 * int bar(int b)
13399 * {
13400 * ...
13401 * }
13402 * foo() will be verified first for R1=any_scalar_value. During verification it
13403 * will be assumed that bar() already verified successfully and call to bar()
13404 * from foo() will be checked for type match only. Later bar() will be verified
13405 * independently to check that it's safe for R1=any_scalar_value.
13406 */
13407static int do_check_subprogs(struct bpf_verifier_env *env)
13408{
13409 struct bpf_prog_aux *aux = env->prog->aux;
13410 int i, ret;
13411
13412 if (!aux->func_info)
13413 return 0;
13414
13415 for (i = 1; i < env->subprog_cnt; i++) {
13416 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13417 continue;
13418 env->insn_idx = env->subprog_info[i].start;
13419 WARN_ON_ONCE(env->insn_idx == 0);
13420 ret = do_check_common(env, i);
13421 if (ret) {
13422 return ret;
13423 } else if (env->log.level & BPF_LOG_LEVEL) {
13424 verbose(env,
13425 "Func#%d is safe for any args that match its prototype\n",
13426 i);
13427 }
13428 }
13429 return 0;
13430}
13431
13432static int do_check_main(struct bpf_verifier_env *env)
13433{
13434 int ret;
13435
13436 env->insn_idx = 0;
13437 ret = do_check_common(env, 0);
13438 if (!ret)
13439 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13440 return ret;
13441}
13442
13443
06ee7115
AS
13444static void print_verification_stats(struct bpf_verifier_env *env)
13445{
13446 int i;
13447
13448 if (env->log.level & BPF_LOG_STATS) {
13449 verbose(env, "verification time %lld usec\n",
13450 div_u64(env->verification_time, 1000));
13451 verbose(env, "stack depth ");
13452 for (i = 0; i < env->subprog_cnt; i++) {
13453 u32 depth = env->subprog_info[i].stack_depth;
13454
13455 verbose(env, "%d", depth);
13456 if (i + 1 < env->subprog_cnt)
13457 verbose(env, "+");
13458 }
13459 verbose(env, "\n");
13460 }
13461 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13462 "total_states %d peak_states %d mark_read %d\n",
13463 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13464 env->max_states_per_insn, env->total_states,
13465 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
13466}
13467
27ae7997
MKL
13468static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13469{
13470 const struct btf_type *t, *func_proto;
13471 const struct bpf_struct_ops *st_ops;
13472 const struct btf_member *member;
13473 struct bpf_prog *prog = env->prog;
13474 u32 btf_id, member_idx;
13475 const char *mname;
13476
12aa8a94
THJ
13477 if (!prog->gpl_compatible) {
13478 verbose(env, "struct ops programs must have a GPL compatible license\n");
13479 return -EINVAL;
13480 }
13481
27ae7997
MKL
13482 btf_id = prog->aux->attach_btf_id;
13483 st_ops = bpf_struct_ops_find(btf_id);
13484 if (!st_ops) {
13485 verbose(env, "attach_btf_id %u is not a supported struct\n",
13486 btf_id);
13487 return -ENOTSUPP;
13488 }
13489
13490 t = st_ops->type;
13491 member_idx = prog->expected_attach_type;
13492 if (member_idx >= btf_type_vlen(t)) {
13493 verbose(env, "attach to invalid member idx %u of struct %s\n",
13494 member_idx, st_ops->name);
13495 return -EINVAL;
13496 }
13497
13498 member = &btf_type_member(t)[member_idx];
13499 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13500 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13501 NULL);
13502 if (!func_proto) {
13503 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13504 mname, member_idx, st_ops->name);
13505 return -EINVAL;
13506 }
13507
13508 if (st_ops->check_member) {
13509 int err = st_ops->check_member(t, member);
13510
13511 if (err) {
13512 verbose(env, "attach to unsupported member %s of struct %s\n",
13513 mname, st_ops->name);
13514 return err;
13515 }
13516 }
13517
13518 prog->aux->attach_func_proto = func_proto;
13519 prog->aux->attach_func_name = mname;
13520 env->ops = st_ops->verifier_ops;
13521
13522 return 0;
13523}
6ba43b76
KS
13524#define SECURITY_PREFIX "security_"
13525
f7b12b6f 13526static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 13527{
69191754 13528 if (within_error_injection_list(addr) ||
f7b12b6f 13529 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 13530 return 0;
6ba43b76 13531
6ba43b76
KS
13532 return -EINVAL;
13533}
27ae7997 13534
1e6c62a8
AS
13535/* list of non-sleepable functions that are otherwise on
13536 * ALLOW_ERROR_INJECTION list
13537 */
13538BTF_SET_START(btf_non_sleepable_error_inject)
13539/* Three functions below can be called from sleepable and non-sleepable context.
13540 * Assume non-sleepable from bpf safety point of view.
13541 */
9dd3d069 13542BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
13543BTF_ID(func, should_fail_alloc_page)
13544BTF_ID(func, should_failslab)
13545BTF_SET_END(btf_non_sleepable_error_inject)
13546
13547static int check_non_sleepable_error_inject(u32 btf_id)
13548{
13549 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13550}
13551
f7b12b6f
THJ
13552int bpf_check_attach_target(struct bpf_verifier_log *log,
13553 const struct bpf_prog *prog,
13554 const struct bpf_prog *tgt_prog,
13555 u32 btf_id,
13556 struct bpf_attach_target_info *tgt_info)
38207291 13557{
be8704ff 13558 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 13559 const char prefix[] = "btf_trace_";
5b92a28a 13560 int ret = 0, subprog = -1, i;
38207291 13561 const struct btf_type *t;
5b92a28a 13562 bool conservative = true;
38207291 13563 const char *tname;
5b92a28a 13564 struct btf *btf;
f7b12b6f 13565 long addr = 0;
38207291 13566
f1b9509c 13567 if (!btf_id) {
efc68158 13568 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
13569 return -EINVAL;
13570 }
22dc4a0f 13571 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 13572 if (!btf) {
efc68158 13573 bpf_log(log,
5b92a28a
AS
13574 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13575 return -EINVAL;
13576 }
13577 t = btf_type_by_id(btf, btf_id);
f1b9509c 13578 if (!t) {
efc68158 13579 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
13580 return -EINVAL;
13581 }
5b92a28a 13582 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 13583 if (!tname) {
efc68158 13584 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
13585 return -EINVAL;
13586 }
5b92a28a
AS
13587 if (tgt_prog) {
13588 struct bpf_prog_aux *aux = tgt_prog->aux;
13589
13590 for (i = 0; i < aux->func_info_cnt; i++)
13591 if (aux->func_info[i].type_id == btf_id) {
13592 subprog = i;
13593 break;
13594 }
13595 if (subprog == -1) {
efc68158 13596 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
13597 return -EINVAL;
13598 }
13599 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
13600 if (prog_extension) {
13601 if (conservative) {
efc68158 13602 bpf_log(log,
be8704ff
AS
13603 "Cannot replace static functions\n");
13604 return -EINVAL;
13605 }
13606 if (!prog->jit_requested) {
efc68158 13607 bpf_log(log,
be8704ff
AS
13608 "Extension programs should be JITed\n");
13609 return -EINVAL;
13610 }
be8704ff
AS
13611 }
13612 if (!tgt_prog->jited) {
efc68158 13613 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
13614 return -EINVAL;
13615 }
13616 if (tgt_prog->type == prog->type) {
13617 /* Cannot fentry/fexit another fentry/fexit program.
13618 * Cannot attach program extension to another extension.
13619 * It's ok to attach fentry/fexit to extension program.
13620 */
efc68158 13621 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
13622 return -EINVAL;
13623 }
13624 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13625 prog_extension &&
13626 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13627 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13628 /* Program extensions can extend all program types
13629 * except fentry/fexit. The reason is the following.
13630 * The fentry/fexit programs are used for performance
13631 * analysis, stats and can be attached to any program
13632 * type except themselves. When extension program is
13633 * replacing XDP function it is necessary to allow
13634 * performance analysis of all functions. Both original
13635 * XDP program and its program extension. Hence
13636 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13637 * allowed. If extending of fentry/fexit was allowed it
13638 * would be possible to create long call chain
13639 * fentry->extension->fentry->extension beyond
13640 * reasonable stack size. Hence extending fentry is not
13641 * allowed.
13642 */
efc68158 13643 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
13644 return -EINVAL;
13645 }
5b92a28a 13646 } else {
be8704ff 13647 if (prog_extension) {
efc68158 13648 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
13649 return -EINVAL;
13650 }
5b92a28a 13651 }
f1b9509c
AS
13652
13653 switch (prog->expected_attach_type) {
13654 case BPF_TRACE_RAW_TP:
5b92a28a 13655 if (tgt_prog) {
efc68158 13656 bpf_log(log,
5b92a28a
AS
13657 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13658 return -EINVAL;
13659 }
38207291 13660 if (!btf_type_is_typedef(t)) {
efc68158 13661 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
13662 btf_id);
13663 return -EINVAL;
13664 }
f1b9509c 13665 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 13666 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
13667 btf_id, tname);
13668 return -EINVAL;
13669 }
13670 tname += sizeof(prefix) - 1;
5b92a28a 13671 t = btf_type_by_id(btf, t->type);
38207291
MKL
13672 if (!btf_type_is_ptr(t))
13673 /* should never happen in valid vmlinux build */
13674 return -EINVAL;
5b92a28a 13675 t = btf_type_by_id(btf, t->type);
38207291
MKL
13676 if (!btf_type_is_func_proto(t))
13677 /* should never happen in valid vmlinux build */
13678 return -EINVAL;
13679
f7b12b6f 13680 break;
15d83c4d
YS
13681 case BPF_TRACE_ITER:
13682 if (!btf_type_is_func(t)) {
efc68158 13683 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13684 btf_id);
13685 return -EINVAL;
13686 }
13687 t = btf_type_by_id(btf, t->type);
13688 if (!btf_type_is_func_proto(t))
13689 return -EINVAL;
f7b12b6f
THJ
13690 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13691 if (ret)
13692 return ret;
13693 break;
be8704ff
AS
13694 default:
13695 if (!prog_extension)
13696 return -EINVAL;
df561f66 13697 fallthrough;
ae240823 13698 case BPF_MODIFY_RETURN:
9e4e01df 13699 case BPF_LSM_MAC:
fec56f58
AS
13700 case BPF_TRACE_FENTRY:
13701 case BPF_TRACE_FEXIT:
13702 if (!btf_type_is_func(t)) {
efc68158 13703 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13704 btf_id);
13705 return -EINVAL;
13706 }
be8704ff 13707 if (prog_extension &&
efc68158 13708 btf_check_type_match(log, prog, btf, t))
be8704ff 13709 return -EINVAL;
5b92a28a 13710 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13711 if (!btf_type_is_func_proto(t))
13712 return -EINVAL;
f7b12b6f 13713
4a1e7c0c
THJ
13714 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13715 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13716 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13717 return -EINVAL;
13718
f7b12b6f 13719 if (tgt_prog && conservative)
5b92a28a 13720 t = NULL;
f7b12b6f
THJ
13721
13722 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13723 if (ret < 0)
f7b12b6f
THJ
13724 return ret;
13725
5b92a28a 13726 if (tgt_prog) {
e9eeec58
YS
13727 if (subprog == 0)
13728 addr = (long) tgt_prog->bpf_func;
13729 else
13730 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13731 } else {
13732 addr = kallsyms_lookup_name(tname);
13733 if (!addr) {
efc68158 13734 bpf_log(log,
5b92a28a
AS
13735 "The address of function %s cannot be found\n",
13736 tname);
f7b12b6f 13737 return -ENOENT;
5b92a28a 13738 }
fec56f58 13739 }
18644cec 13740
1e6c62a8
AS
13741 if (prog->aux->sleepable) {
13742 ret = -EINVAL;
13743 switch (prog->type) {
13744 case BPF_PROG_TYPE_TRACING:
13745 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13746 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13747 */
13748 if (!check_non_sleepable_error_inject(btf_id) &&
13749 within_error_injection_list(addr))
13750 ret = 0;
13751 break;
13752 case BPF_PROG_TYPE_LSM:
13753 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13754 * Only some of them are sleepable.
13755 */
423f1610 13756 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13757 ret = 0;
13758 break;
13759 default:
13760 break;
13761 }
f7b12b6f
THJ
13762 if (ret) {
13763 bpf_log(log, "%s is not sleepable\n", tname);
13764 return ret;
13765 }
1e6c62a8 13766 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13767 if (tgt_prog) {
efc68158 13768 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13769 return -EINVAL;
13770 }
13771 ret = check_attach_modify_return(addr, tname);
13772 if (ret) {
13773 bpf_log(log, "%s() is not modifiable\n", tname);
13774 return ret;
1af9270e 13775 }
18644cec 13776 }
f7b12b6f
THJ
13777
13778 break;
13779 }
13780 tgt_info->tgt_addr = addr;
13781 tgt_info->tgt_name = tname;
13782 tgt_info->tgt_type = t;
13783 return 0;
13784}
13785
35e3815f
JO
13786BTF_SET_START(btf_id_deny)
13787BTF_ID_UNUSED
13788#ifdef CONFIG_SMP
13789BTF_ID(func, migrate_disable)
13790BTF_ID(func, migrate_enable)
13791#endif
13792#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13793BTF_ID(func, rcu_read_unlock_strict)
13794#endif
13795BTF_SET_END(btf_id_deny)
13796
f7b12b6f
THJ
13797static int check_attach_btf_id(struct bpf_verifier_env *env)
13798{
13799 struct bpf_prog *prog = env->prog;
3aac1ead 13800 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13801 struct bpf_attach_target_info tgt_info = {};
13802 u32 btf_id = prog->aux->attach_btf_id;
13803 struct bpf_trampoline *tr;
13804 int ret;
13805 u64 key;
13806
79a7f8bd
AS
13807 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13808 if (prog->aux->sleepable)
13809 /* attach_btf_id checked to be zero already */
13810 return 0;
13811 verbose(env, "Syscall programs can only be sleepable\n");
13812 return -EINVAL;
13813 }
13814
f7b12b6f
THJ
13815 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13816 prog->type != BPF_PROG_TYPE_LSM) {
13817 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13818 return -EINVAL;
13819 }
13820
13821 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13822 return check_struct_ops_btf_id(env);
13823
13824 if (prog->type != BPF_PROG_TYPE_TRACING &&
13825 prog->type != BPF_PROG_TYPE_LSM &&
13826 prog->type != BPF_PROG_TYPE_EXT)
13827 return 0;
13828
13829 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13830 if (ret)
fec56f58 13831 return ret;
f7b12b6f
THJ
13832
13833 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13834 /* to make freplace equivalent to their targets, they need to
13835 * inherit env->ops and expected_attach_type for the rest of the
13836 * verification
13837 */
f7b12b6f
THJ
13838 env->ops = bpf_verifier_ops[tgt_prog->type];
13839 prog->expected_attach_type = tgt_prog->expected_attach_type;
13840 }
13841
13842 /* store info about the attachment target that will be used later */
13843 prog->aux->attach_func_proto = tgt_info.tgt_type;
13844 prog->aux->attach_func_name = tgt_info.tgt_name;
13845
4a1e7c0c
THJ
13846 if (tgt_prog) {
13847 prog->aux->saved_dst_prog_type = tgt_prog->type;
13848 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13849 }
13850
f7b12b6f
THJ
13851 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13852 prog->aux->attach_btf_trace = true;
13853 return 0;
13854 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13855 if (!bpf_iter_prog_supported(prog))
13856 return -EINVAL;
13857 return 0;
13858 }
13859
13860 if (prog->type == BPF_PROG_TYPE_LSM) {
13861 ret = bpf_lsm_verify_prog(&env->log, prog);
13862 if (ret < 0)
13863 return ret;
35e3815f
JO
13864 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13865 btf_id_set_contains(&btf_id_deny, btf_id)) {
13866 return -EINVAL;
38207291 13867 }
f7b12b6f 13868
22dc4a0f 13869 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13870 tr = bpf_trampoline_get(key, &tgt_info);
13871 if (!tr)
13872 return -ENOMEM;
13873
3aac1ead 13874 prog->aux->dst_trampoline = tr;
f7b12b6f 13875 return 0;
38207291
MKL
13876}
13877
76654e67
AM
13878struct btf *bpf_get_btf_vmlinux(void)
13879{
13880 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13881 mutex_lock(&bpf_verifier_lock);
13882 if (!btf_vmlinux)
13883 btf_vmlinux = btf_parse_vmlinux();
13884 mutex_unlock(&bpf_verifier_lock);
13885 }
13886 return btf_vmlinux;
13887}
13888
af2ac3e1 13889int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 13890{
06ee7115 13891 u64 start_time = ktime_get_ns();
58e2af8b 13892 struct bpf_verifier_env *env;
b9193c1b 13893 struct bpf_verifier_log *log;
9e4c24e7 13894 int i, len, ret = -EINVAL;
e2ae4ca2 13895 bool is_priv;
51580e79 13896
eba0c929
AB
13897 /* no program is valid */
13898 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13899 return -EINVAL;
13900
58e2af8b 13901 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13902 * allocate/free it every time bpf_check() is called
13903 */
58e2af8b 13904 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13905 if (!env)
13906 return -ENOMEM;
61bd5218 13907 log = &env->log;
cbd35700 13908
9e4c24e7 13909 len = (*prog)->len;
fad953ce 13910 env->insn_aux_data =
9e4c24e7 13911 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13912 ret = -ENOMEM;
13913 if (!env->insn_aux_data)
13914 goto err_free_env;
9e4c24e7
JK
13915 for (i = 0; i < len; i++)
13916 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13917 env->prog = *prog;
00176a34 13918 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 13919 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 13920 is_priv = bpf_capable();
0246e64d 13921
76654e67 13922 bpf_get_btf_vmlinux();
8580ac94 13923
cbd35700 13924 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13925 if (!is_priv)
13926 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13927
13928 if (attr->log_level || attr->log_buf || attr->log_size) {
13929 /* user requested verbose verifier output
13930 * and supplied buffer to store the verification trace
13931 */
e7bf8249
JK
13932 log->level = attr->log_level;
13933 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13934 log->len_total = attr->log_size;
cbd35700
AS
13935
13936 ret = -EINVAL;
e7bf8249 13937 /* log attributes have to be sane */
7a9f5c65 13938 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13939 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13940 goto err_unlock;
cbd35700 13941 }
1ad2f583 13942
8580ac94
AS
13943 if (IS_ERR(btf_vmlinux)) {
13944 /* Either gcc or pahole or kernel are broken. */
13945 verbose(env, "in-kernel BTF is malformed\n");
13946 ret = PTR_ERR(btf_vmlinux);
38207291 13947 goto skip_full_check;
8580ac94
AS
13948 }
13949
1ad2f583
DB
13950 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13951 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13952 env->strict_alignment = true;
e9ee9efc
DM
13953 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13954 env->strict_alignment = false;
cbd35700 13955
2c78ee89 13956 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13957 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13958 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13959 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13960 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13961 env->bpf_capable = bpf_capable();
e2ae4ca2 13962
10d274e8
AS
13963 if (is_priv)
13964 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13965
dc2a4ebc 13966 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13967 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13968 GFP_USER);
13969 ret = -ENOMEM;
13970 if (!env->explored_states)
13971 goto skip_full_check;
13972
e6ac2450
MKL
13973 ret = add_subprog_and_kfunc(env);
13974 if (ret < 0)
13975 goto skip_full_check;
13976
d9762e84 13977 ret = check_subprogs(env);
475fb78f
AS
13978 if (ret < 0)
13979 goto skip_full_check;
13980
c454a46b 13981 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13982 if (ret < 0)
13983 goto skip_full_check;
13984
be8704ff
AS
13985 ret = check_attach_btf_id(env);
13986 if (ret)
13987 goto skip_full_check;
13988
4976b718
HL
13989 ret = resolve_pseudo_ldimm64(env);
13990 if (ret < 0)
13991 goto skip_full_check;
13992
ceb11679
YZ
13993 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13994 ret = bpf_prog_offload_verifier_prep(env->prog);
13995 if (ret)
13996 goto skip_full_check;
13997 }
13998
d9762e84
MKL
13999 ret = check_cfg(env);
14000 if (ret < 0)
14001 goto skip_full_check;
14002
51c39bb1
AS
14003 ret = do_check_subprogs(env);
14004 ret = ret ?: do_check_main(env);
cbd35700 14005
c941ce9c
QM
14006 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14007 ret = bpf_prog_offload_finalize(env);
14008
0246e64d 14009skip_full_check:
51c39bb1 14010 kvfree(env->explored_states);
0246e64d 14011
c131187d 14012 if (ret == 0)
9b38c405 14013 ret = check_max_stack_depth(env);
c131187d 14014
9b38c405 14015 /* instruction rewrites happen after this point */
e2ae4ca2
JK
14016 if (is_priv) {
14017 if (ret == 0)
14018 opt_hard_wire_dead_code_branches(env);
52875a04
JK
14019 if (ret == 0)
14020 ret = opt_remove_dead_code(env);
a1b14abc
JK
14021 if (ret == 0)
14022 ret = opt_remove_nops(env);
52875a04
JK
14023 } else {
14024 if (ret == 0)
14025 sanitize_dead_code(env);
e2ae4ca2
JK
14026 }
14027
9bac3d6d
AS
14028 if (ret == 0)
14029 /* program is valid, convert *(u32*)(ctx + off) accesses */
14030 ret = convert_ctx_accesses(env);
14031
e245c5c6 14032 if (ret == 0)
e6ac5933 14033 ret = do_misc_fixups(env);
e245c5c6 14034
a4b1d3c1
JW
14035 /* do 32-bit optimization after insn patching has done so those patched
14036 * insns could be handled correctly.
14037 */
d6c2308c
JW
14038 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14039 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14040 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14041 : false;
a4b1d3c1
JW
14042 }
14043
1ea47e01
AS
14044 if (ret == 0)
14045 ret = fixup_call_args(env);
14046
06ee7115
AS
14047 env->verification_time = ktime_get_ns() - start_time;
14048 print_verification_stats(env);
aba64c7d 14049 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 14050
a2a7d570 14051 if (log->level && bpf_verifier_log_full(log))
cbd35700 14052 ret = -ENOSPC;
a2a7d570 14053 if (log->level && !log->ubuf) {
cbd35700 14054 ret = -EFAULT;
a2a7d570 14055 goto err_release_maps;
cbd35700
AS
14056 }
14057
541c3bad
AN
14058 if (ret)
14059 goto err_release_maps;
14060
14061 if (env->used_map_cnt) {
0246e64d 14062 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
14063 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14064 sizeof(env->used_maps[0]),
14065 GFP_KERNEL);
0246e64d 14066
9bac3d6d 14067 if (!env->prog->aux->used_maps) {
0246e64d 14068 ret = -ENOMEM;
a2a7d570 14069 goto err_release_maps;
0246e64d
AS
14070 }
14071
9bac3d6d 14072 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 14073 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 14074 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
14075 }
14076 if (env->used_btf_cnt) {
14077 /* if program passed verifier, update used_btfs in bpf_prog_aux */
14078 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14079 sizeof(env->used_btfs[0]),
14080 GFP_KERNEL);
14081 if (!env->prog->aux->used_btfs) {
14082 ret = -ENOMEM;
14083 goto err_release_maps;
14084 }
0246e64d 14085
541c3bad
AN
14086 memcpy(env->prog->aux->used_btfs, env->used_btfs,
14087 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14088 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14089 }
14090 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
14091 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
14092 * bpf_ld_imm64 instructions
14093 */
14094 convert_pseudo_ld_imm64(env);
14095 }
cbd35700 14096
541c3bad 14097 adjust_btf_func(env);
ba64e7d8 14098
a2a7d570 14099err_release_maps:
9bac3d6d 14100 if (!env->prog->aux->used_maps)
0246e64d 14101 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 14102 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
14103 */
14104 release_maps(env);
541c3bad
AN
14105 if (!env->prog->aux->used_btfs)
14106 release_btfs(env);
03f87c0b
THJ
14107
14108 /* extension progs temporarily inherit the attach_type of their targets
14109 for verification purposes, so set it back to zero before returning
14110 */
14111 if (env->prog->type == BPF_PROG_TYPE_EXT)
14112 env->prog->expected_attach_type = 0;
14113
9bac3d6d 14114 *prog = env->prog;
3df126f3 14115err_unlock:
45a73c17
AS
14116 if (!is_priv)
14117 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
14118 vfree(env->insn_aux_data);
14119err_free_env:
14120 kfree(env);
51580e79
AS
14121 return ret;
14122}