Merge branch 'clean-up bpftool from legacy support'
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
aef2feda 7#include <linux/bpf-cgroup.h>
51580e79
AS
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/slab.h>
11#include <linux/bpf.h>
838e9690 12#include <linux/btf.h>
58e2af8b 13#include <linux/bpf_verifier.h>
51580e79
AS
14#include <linux/filter.h>
15#include <net/netlink.h>
16#include <linux/file.h>
17#include <linux/vmalloc.h>
ebb676da 18#include <linux/stringify.h>
cc8b0b92
AS
19#include <linux/bsearch.h>
20#include <linux/sort.h>
c195651e 21#include <linux/perf_event.h>
d9762e84 22#include <linux/ctype.h>
6ba43b76 23#include <linux/error-injection.h>
9e4e01df 24#include <linux/bpf_lsm.h>
1e6c62a8 25#include <linux/btf_ids.h>
47e34cb7 26#include <linux/poison.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34 30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 31#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 34#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
35#include <linux/bpf_types.h>
36#undef BPF_PROG_TYPE
37#undef BPF_MAP_TYPE
f2e10bff 38#undef BPF_LINK_TYPE
00176a34
JK
39};
40
51580e79
AS
41/* bpf_check() is a static code analyzer that walks eBPF program
42 * instruction by instruction and updates register/stack state.
43 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
44 *
45 * The first pass is depth-first-search to check that the program is a DAG.
46 * It rejects the following programs:
47 * - larger than BPF_MAXINSNS insns
48 * - if loop is present (detected via back-edge)
49 * - unreachable insns exist (shouldn't be a forest. program = one function)
50 * - out of bounds or malformed jumps
51 * The second pass is all possible path descent from the 1st insn.
8fb33b60 52 * Since it's analyzing all paths through the program, the length of the
eba38a96 53 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
54 * insn is less then 4K, but there are too many branches that change stack/regs.
55 * Number of 'branches to be analyzed' is limited to 1k
56 *
57 * On entry to each instruction, each register has a type, and the instruction
58 * changes the types of the registers depending on instruction semantics.
59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
60 * copied to R1.
61 *
62 * All registers are 64-bit.
63 * R0 - return register
64 * R1-R5 argument passing registers
65 * R6-R9 callee saved registers
66 * R10 - frame pointer read-only
67 *
68 * At the start of BPF program the register R1 contains a pointer to bpf_context
69 * and has type PTR_TO_CTX.
70 *
71 * Verifier tracks arithmetic operations on pointers in case:
72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
74 * 1st insn copies R10 (which has FRAME_PTR) type into R1
75 * and 2nd arithmetic instruction is pattern matched to recognize
76 * that it wants to construct a pointer to some element within stack.
77 * So after 2nd insn, the register R1 has type PTR_TO_STACK
78 * (and -20 constant is saved for further stack bounds checking).
79 * Meaning that this reg is a pointer to stack plus known immediate constant.
80 *
f1174f77 81 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 82 * means the register has some value, but it's not a valid pointer.
f1174f77 83 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
84 *
85 * When verifier sees load or store instructions the type of base register
c64b7983
JS
86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
87 * four pointer types recognized by check_mem_access() function.
51580e79
AS
88 *
89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
90 * and the range of [ptr, ptr + map's value_size) is accessible.
91 *
92 * registers used to pass values to function calls are checked against
93 * function argument constraints.
94 *
95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
96 * It means that the register type passed to this function must be
97 * PTR_TO_STACK and it will be used inside the function as
98 * 'pointer to map element key'
99 *
100 * For example the argument constraints for bpf_map_lookup_elem():
101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
102 * .arg1_type = ARG_CONST_MAP_PTR,
103 * .arg2_type = ARG_PTR_TO_MAP_KEY,
104 *
105 * ret_type says that this function returns 'pointer to map elem value or null'
106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
107 * 2nd argument should be a pointer to stack, which will be used inside
108 * the helper function as a pointer to map element key.
109 *
110 * On the kernel side the helper function looks like:
111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
112 * {
113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
114 * void *key = (void *) (unsigned long) r2;
115 * void *value;
116 *
117 * here kernel can access 'key' and 'map' pointers safely, knowing that
118 * [key, key + map->key_size) bytes are valid and were initialized on
119 * the stack of eBPF program.
120 * }
121 *
122 * Corresponding eBPF program may look like:
123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
127 * here verifier looks at prototype of map_lookup_elem() and sees:
128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
130 *
131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
133 * and were initialized prior to this call.
134 * If it's ok, then verifier allows this BPF_CALL insn and looks at
135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
8fb33b60 137 * returns either pointer to map value or NULL.
51580e79
AS
138 *
139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
140 * insn, the register holding that pointer in the true branch changes state to
141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
142 * branch. See check_cond_jmp_op().
143 *
144 * After the call R0 is set to return type of the function and registers R1-R5
145 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
146 *
147 * The following reference types represent a potential reference to a kernel
148 * resource which, after first being allocated, must be checked and freed by
149 * the BPF program:
150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
151 *
152 * When the verifier sees a helper call return a reference type, it allocates a
153 * pointer id for the reference and stores it in the current function state.
154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
156 * passes through a NULL-check conditional. For the branch wherein the state is
157 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
158 *
159 * For each helper function that allocates a reference, such as
160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
161 * bpf_sk_release(). When a reference type passes into the release function,
162 * the verifier also releases the reference. If any unchecked or unreleased
163 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
164 */
165
17a52670 166/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 167struct bpf_verifier_stack_elem {
17a52670
AS
168 /* verifer state is 'st'
169 * before processing instruction 'insn_idx'
170 * and after processing instruction 'prev_insn_idx'
171 */
58e2af8b 172 struct bpf_verifier_state st;
17a52670
AS
173 int insn_idx;
174 int prev_insn_idx;
58e2af8b 175 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
176 /* length of verifier log at the time this state was pushed on stack */
177 u32 log_pos;
cbd35700
AS
178};
179
b285fcb7 180#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
d2e4c1e6
DB
183#define BPF_MAP_KEY_POISON (1ULL << 63)
184#define BPF_MAP_KEY_SEEN (1ULL << 62)
185
c93552c4
DB
186#define BPF_MAP_PTR_UNPRIV 1UL
187#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
188 POISON_POINTER_DELTA))
189#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
190
bc34dee6
JK
191static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
192static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
193
c93552c4
DB
194static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
197}
198
199static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
200{
d2e4c1e6 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
202}
203
204static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
205 const struct bpf_map *map, bool unpriv)
206{
207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
208 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
209 aux->map_ptr_state = (unsigned long)map |
210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
211}
212
213static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
214{
215 return aux->map_key_state & BPF_MAP_KEY_POISON;
216}
217
218static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
219{
220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
221}
222
223static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
224{
225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
226}
227
228static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
229{
230 bool poisoned = bpf_map_key_poisoned(aux);
231
232 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 234}
fad73a1a 235
23a2d70c
YS
236static bool bpf_pseudo_call(const struct bpf_insn *insn)
237{
238 return insn->code == (BPF_JMP | BPF_CALL) &&
239 insn->src_reg == BPF_PSEUDO_CALL;
240}
241
e6ac2450
MKL
242static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
243{
244 return insn->code == (BPF_JMP | BPF_CALL) &&
245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
246}
247
33ff9823
DB
248struct bpf_call_arg_meta {
249 struct bpf_map *map_ptr;
435faee1 250 bool raw_mode;
36bbef52 251 bool pkt_access;
8f14852e 252 u8 release_regno;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
3e8ce298 258 int map_uid;
d83525ca 259 int func_id;
22dc4a0f 260 struct btf *btf;
eaa6bcb7 261 u32 btf_id;
22dc4a0f 262 struct btf *ret_btf;
eaa6bcb7 263 u32 ret_btf_id;
69c087ba 264 u32 subprogno;
aa3496ac 265 struct btf_field *kptr_field;
97e03f52 266 u8 uninit_dynptr_regno;
33ff9823
DB
267};
268
8580ac94
AS
269struct btf *btf_vmlinux;
270
cbd35700
AS
271static DEFINE_MUTEX(bpf_verifier_lock);
272
d9762e84
MKL
273static const struct bpf_line_info *
274find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
275{
276 const struct bpf_line_info *linfo;
277 const struct bpf_prog *prog;
278 u32 i, nr_linfo;
279
280 prog = env->prog;
281 nr_linfo = prog->aux->nr_linfo;
282
283 if (!nr_linfo || insn_off >= prog->len)
284 return NULL;
285
286 linfo = prog->aux->linfo;
287 for (i = 1; i < nr_linfo; i++)
288 if (insn_off < linfo[i].insn_off)
289 break;
290
291 return &linfo[i - 1];
292}
293
77d2e05a
MKL
294void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
295 va_list args)
cbd35700 296{
a2a7d570 297 unsigned int n;
cbd35700 298
a2a7d570 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
300
301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
302 "verifier log line truncated - local buffer too short\n");
303
8580ac94 304 if (log->level == BPF_LOG_KERNEL) {
436d404c
HT
305 bool newline = n > 0 && log->kbuf[n - 1] == '\n';
306
307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
8580ac94
AS
308 return;
309 }
436d404c
HT
310
311 n = min(log->len_total - log->len_used - 1, n);
312 log->kbuf[n] = '\0';
a2a7d570
JK
313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
314 log->len_used += n;
315 else
316 log->ubuf = NULL;
cbd35700 317}
abe08840 318
6f8a57cc
AN
319static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
320{
321 char zero = 0;
322
323 if (!bpf_verifier_log_needed(log))
324 return;
325
326 log->len_used = new_pos;
327 if (put_user(zero, log->ubuf + new_pos))
328 log->ubuf = NULL;
329}
330
abe08840
JO
331/* log_level controls verbosity level of eBPF verifier.
332 * bpf_verifier_log_write() is used to dump the verification trace to the log,
333 * so the user can figure out what's wrong with the program
430e68d1 334 */
abe08840
JO
335__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
336 const char *fmt, ...)
337{
338 va_list args;
339
77d2e05a
MKL
340 if (!bpf_verifier_log_needed(&env->log))
341 return;
342
abe08840 343 va_start(args, fmt);
77d2e05a 344 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
345 va_end(args);
346}
347EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
348
349__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
350{
77d2e05a 351 struct bpf_verifier_env *env = private_data;
abe08840
JO
352 va_list args;
353
77d2e05a
MKL
354 if (!bpf_verifier_log_needed(&env->log))
355 return;
356
abe08840 357 va_start(args, fmt);
77d2e05a 358 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
359 va_end(args);
360}
cbd35700 361
9e15db66
AS
362__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
363 const char *fmt, ...)
364{
365 va_list args;
366
367 if (!bpf_verifier_log_needed(log))
368 return;
369
370 va_start(args, fmt);
371 bpf_verifier_vlog(log, fmt, args);
372 va_end(args);
373}
84c6ac41 374EXPORT_SYMBOL_GPL(bpf_log);
9e15db66 375
d9762e84
MKL
376static const char *ltrim(const char *s)
377{
378 while (isspace(*s))
379 s++;
380
381 return s;
382}
383
384__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
385 u32 insn_off,
386 const char *prefix_fmt, ...)
387{
388 const struct bpf_line_info *linfo;
389
390 if (!bpf_verifier_log_needed(&env->log))
391 return;
392
393 linfo = find_linfo(env, insn_off);
394 if (!linfo || linfo == env->prev_linfo)
395 return;
396
397 if (prefix_fmt) {
398 va_list args;
399
400 va_start(args, prefix_fmt);
401 bpf_verifier_vlog(&env->log, prefix_fmt, args);
402 va_end(args);
403 }
404
405 verbose(env, "%s\n",
406 ltrim(btf_name_by_offset(env->prog->aux->btf,
407 linfo->line_off)));
408
409 env->prev_linfo = linfo;
410}
411
bc2591d6
YS
412static void verbose_invalid_scalar(struct bpf_verifier_env *env,
413 struct bpf_reg_state *reg,
414 struct tnum *range, const char *ctx,
415 const char *reg_name)
416{
417 char tn_buf[48];
418
419 verbose(env, "At %s the register %s ", ctx, reg_name);
420 if (!tnum_is_unknown(reg->var_off)) {
421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
422 verbose(env, "has value %s", tn_buf);
423 } else {
424 verbose(env, "has unknown scalar value");
425 }
426 tnum_strn(tn_buf, sizeof(tn_buf), *range);
427 verbose(env, " should have been in %s\n", tn_buf);
428}
429
de8f3a83
DB
430static bool type_is_pkt_pointer(enum bpf_reg_type type)
431{
0c9a7a7e 432 type = base_type(type);
de8f3a83
DB
433 return type == PTR_TO_PACKET ||
434 type == PTR_TO_PACKET_META;
435}
436
46f8bc92
MKL
437static bool type_is_sk_pointer(enum bpf_reg_type type)
438{
439 return type == PTR_TO_SOCKET ||
655a51e5 440 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
443}
444
cac616db
JF
445static bool reg_type_not_null(enum bpf_reg_type type)
446{
447 return type == PTR_TO_SOCKET ||
448 type == PTR_TO_TCP_SOCK ||
449 type == PTR_TO_MAP_VALUE ||
69c087ba 450 type == PTR_TO_MAP_KEY ||
01c66c48 451 type == PTR_TO_SOCK_COMMON;
cac616db
JF
452}
453
4e814da0
KKD
454static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
455{
456 struct btf_record *rec = NULL;
457 struct btf_struct_meta *meta;
458
459 if (reg->type == PTR_TO_MAP_VALUE) {
460 rec = reg->map_ptr->record;
461 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
462 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
463 if (meta)
464 rec = meta->record;
465 }
466 return rec;
467}
468
d83525ca
AS
469static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
470{
4e814da0 471 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
cba368c1
MKL
472}
473
20b2aff4
HL
474static bool type_is_rdonly_mem(u32 type)
475{
476 return type & MEM_RDONLY;
cba368c1
MKL
477}
478
48946bd6 479static bool type_may_be_null(u32 type)
fd1b0d60 480{
48946bd6 481 return type & PTR_MAYBE_NULL;
fd1b0d60
LB
482}
483
64d85290
JS
484static bool is_acquire_function(enum bpf_func_id func_id,
485 const struct bpf_map *map)
486{
487 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
488
489 if (func_id == BPF_FUNC_sk_lookup_tcp ||
490 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436 491 func_id == BPF_FUNC_skc_lookup_tcp ||
c0a5a21c
KKD
492 func_id == BPF_FUNC_ringbuf_reserve ||
493 func_id == BPF_FUNC_kptr_xchg)
64d85290
JS
494 return true;
495
496 if (func_id == BPF_FUNC_map_lookup_elem &&
497 (map_type == BPF_MAP_TYPE_SOCKMAP ||
498 map_type == BPF_MAP_TYPE_SOCKHASH))
499 return true;
500
501 return false;
46f8bc92
MKL
502}
503
1b986589
MKL
504static bool is_ptr_cast_function(enum bpf_func_id func_id)
505{
506 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
507 func_id == BPF_FUNC_sk_fullsock ||
508 func_id == BPF_FUNC_skc_to_tcp_sock ||
509 func_id == BPF_FUNC_skc_to_tcp6_sock ||
510 func_id == BPF_FUNC_skc_to_udp6_sock ||
3bc253c2 511 func_id == BPF_FUNC_skc_to_mptcp_sock ||
1df8f55a
MKL
512 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
513 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
514}
515
88374342 516static bool is_dynptr_ref_function(enum bpf_func_id func_id)
b2d8ef19
DM
517{
518 return func_id == BPF_FUNC_dynptr_data;
519}
520
be2ef816
AN
521static bool is_callback_calling_function(enum bpf_func_id func_id)
522{
523 return func_id == BPF_FUNC_for_each_map_elem ||
524 func_id == BPF_FUNC_timer_set_callback ||
525 func_id == BPF_FUNC_find_vma ||
526 func_id == BPF_FUNC_loop ||
527 func_id == BPF_FUNC_user_ringbuf_drain;
528}
529
b2d8ef19
DM
530static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
531 const struct bpf_map *map)
532{
533 int ref_obj_uses = 0;
534
535 if (is_ptr_cast_function(func_id))
536 ref_obj_uses++;
537 if (is_acquire_function(func_id, map))
538 ref_obj_uses++;
88374342 539 if (is_dynptr_ref_function(func_id))
b2d8ef19
DM
540 ref_obj_uses++;
541
542 return ref_obj_uses > 1;
543}
544
39491867
BJ
545static bool is_cmpxchg_insn(const struct bpf_insn *insn)
546{
547 return BPF_CLASS(insn->code) == BPF_STX &&
548 BPF_MODE(insn->code) == BPF_ATOMIC &&
549 insn->imm == BPF_CMPXCHG;
550}
551
c25b2ae1
HL
552/* string representation of 'enum bpf_reg_type'
553 *
554 * Note that reg_type_str() can not appear more than once in a single verbose()
555 * statement.
556 */
557static const char *reg_type_str(struct bpf_verifier_env *env,
558 enum bpf_reg_type type)
559{
ef66c547 560 char postfix[16] = {0}, prefix[64] = {0};
c25b2ae1
HL
561 static const char * const str[] = {
562 [NOT_INIT] = "?",
7df5072c 563 [SCALAR_VALUE] = "scalar",
c25b2ae1
HL
564 [PTR_TO_CTX] = "ctx",
565 [CONST_PTR_TO_MAP] = "map_ptr",
566 [PTR_TO_MAP_VALUE] = "map_value",
567 [PTR_TO_STACK] = "fp",
568 [PTR_TO_PACKET] = "pkt",
569 [PTR_TO_PACKET_META] = "pkt_meta",
570 [PTR_TO_PACKET_END] = "pkt_end",
571 [PTR_TO_FLOW_KEYS] = "flow_keys",
572 [PTR_TO_SOCKET] = "sock",
573 [PTR_TO_SOCK_COMMON] = "sock_common",
574 [PTR_TO_TCP_SOCK] = "tcp_sock",
575 [PTR_TO_TP_BUFFER] = "tp_buffer",
576 [PTR_TO_XDP_SOCK] = "xdp_sock",
577 [PTR_TO_BTF_ID] = "ptr_",
c25b2ae1 578 [PTR_TO_MEM] = "mem",
20b2aff4 579 [PTR_TO_BUF] = "buf",
c25b2ae1
HL
580 [PTR_TO_FUNC] = "func",
581 [PTR_TO_MAP_KEY] = "map_key",
20571567 582 [PTR_TO_DYNPTR] = "dynptr_ptr",
c25b2ae1
HL
583 };
584
585 if (type & PTR_MAYBE_NULL) {
5844101a 586 if (base_type(type) == PTR_TO_BTF_ID)
c25b2ae1
HL
587 strncpy(postfix, "or_null_", 16);
588 else
589 strncpy(postfix, "_or_null", 16);
590 }
591
3f00c523 592 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s",
ef66c547
DV
593 type & MEM_RDONLY ? "rdonly_" : "",
594 type & MEM_RINGBUF ? "ringbuf_" : "",
595 type & MEM_USER ? "user_" : "",
596 type & MEM_PERCPU ? "percpu_" : "",
3f00c523
DV
597 type & PTR_UNTRUSTED ? "untrusted_" : "",
598 type & PTR_TRUSTED ? "trusted_" : ""
ef66c547 599 );
20b2aff4
HL
600
601 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
602 prefix, str[base_type(type)], postfix);
c25b2ae1
HL
603 return env->type_str_buf;
604}
17a52670 605
8efea21d
EC
606static char slot_type_char[] = {
607 [STACK_INVALID] = '?',
608 [STACK_SPILL] = 'r',
609 [STACK_MISC] = 'm',
610 [STACK_ZERO] = '0',
97e03f52 611 [STACK_DYNPTR] = 'd',
8efea21d
EC
612};
613
4e92024a
AS
614static void print_liveness(struct bpf_verifier_env *env,
615 enum bpf_reg_liveness live)
616{
9242b5f5 617 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
618 verbose(env, "_");
619 if (live & REG_LIVE_READ)
620 verbose(env, "r");
621 if (live & REG_LIVE_WRITTEN)
622 verbose(env, "w");
9242b5f5
AS
623 if (live & REG_LIVE_DONE)
624 verbose(env, "D");
4e92024a
AS
625}
626
97e03f52
JK
627static int get_spi(s32 off)
628{
629 return (-off - 1) / BPF_REG_SIZE;
630}
631
632static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
633{
634 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
635
636 /* We need to check that slots between [spi - nr_slots + 1, spi] are
637 * within [0, allocated_stack).
638 *
639 * Please note that the spi grows downwards. For example, a dynptr
640 * takes the size of two stack slots; the first slot will be at
641 * spi and the second slot will be at spi - 1.
642 */
643 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
644}
645
f4d7e40a
AS
646static struct bpf_func_state *func(struct bpf_verifier_env *env,
647 const struct bpf_reg_state *reg)
648{
649 struct bpf_verifier_state *cur = env->cur_state;
650
651 return cur->frame[reg->frameno];
652}
653
22dc4a0f 654static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 655{
22dc4a0f 656 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
657}
658
0f55f9ed
CL
659static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
660{
661 env->scratched_regs |= 1U << regno;
662}
663
664static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
665{
343e5375 666 env->scratched_stack_slots |= 1ULL << spi;
0f55f9ed
CL
667}
668
669static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
670{
671 return (env->scratched_regs >> regno) & 1;
672}
673
674static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
675{
676 return (env->scratched_stack_slots >> regno) & 1;
677}
678
679static bool verifier_state_scratched(const struct bpf_verifier_env *env)
680{
681 return env->scratched_regs || env->scratched_stack_slots;
682}
683
684static void mark_verifier_state_clean(struct bpf_verifier_env *env)
685{
686 env->scratched_regs = 0U;
343e5375 687 env->scratched_stack_slots = 0ULL;
0f55f9ed
CL
688}
689
690/* Used for printing the entire verifier state. */
691static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
692{
693 env->scratched_regs = ~0U;
343e5375 694 env->scratched_stack_slots = ~0ULL;
0f55f9ed
CL
695}
696
97e03f52
JK
697static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
698{
699 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
700 case DYNPTR_TYPE_LOCAL:
701 return BPF_DYNPTR_TYPE_LOCAL;
bc34dee6
JK
702 case DYNPTR_TYPE_RINGBUF:
703 return BPF_DYNPTR_TYPE_RINGBUF;
97e03f52
JK
704 default:
705 return BPF_DYNPTR_TYPE_INVALID;
706 }
707}
708
bc34dee6
JK
709static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
710{
711 return type == BPF_DYNPTR_TYPE_RINGBUF;
712}
713
97e03f52
JK
714static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
715 enum bpf_arg_type arg_type, int insn_idx)
716{
717 struct bpf_func_state *state = func(env, reg);
718 enum bpf_dynptr_type type;
bc34dee6 719 int spi, i, id;
97e03f52
JK
720
721 spi = get_spi(reg->off);
722
723 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
724 return -EINVAL;
725
726 for (i = 0; i < BPF_REG_SIZE; i++) {
727 state->stack[spi].slot_type[i] = STACK_DYNPTR;
728 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
729 }
730
731 type = arg_to_dynptr_type(arg_type);
732 if (type == BPF_DYNPTR_TYPE_INVALID)
733 return -EINVAL;
734
735 state->stack[spi].spilled_ptr.dynptr.first_slot = true;
736 state->stack[spi].spilled_ptr.dynptr.type = type;
737 state->stack[spi - 1].spilled_ptr.dynptr.type = type;
738
bc34dee6
JK
739 if (dynptr_type_refcounted(type)) {
740 /* The id is used to track proper releasing */
741 id = acquire_reference_state(env, insn_idx);
742 if (id < 0)
743 return id;
744
745 state->stack[spi].spilled_ptr.id = id;
746 state->stack[spi - 1].spilled_ptr.id = id;
747 }
748
97e03f52
JK
749 return 0;
750}
751
752static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
753{
754 struct bpf_func_state *state = func(env, reg);
755 int spi, i;
756
757 spi = get_spi(reg->off);
758
759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
760 return -EINVAL;
761
762 for (i = 0; i < BPF_REG_SIZE; i++) {
763 state->stack[spi].slot_type[i] = STACK_INVALID;
764 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
765 }
766
bc34dee6
JK
767 /* Invalidate any slices associated with this dynptr */
768 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
769 release_reference(env, state->stack[spi].spilled_ptr.id);
770 state->stack[spi].spilled_ptr.id = 0;
771 state->stack[spi - 1].spilled_ptr.id = 0;
772 }
773
97e03f52
JK
774 state->stack[spi].spilled_ptr.dynptr.first_slot = false;
775 state->stack[spi].spilled_ptr.dynptr.type = 0;
776 state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
777
778 return 0;
779}
780
781static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
782{
783 struct bpf_func_state *state = func(env, reg);
784 int spi = get_spi(reg->off);
785 int i;
786
787 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
788 return true;
789
790 for (i = 0; i < BPF_REG_SIZE; i++) {
791 if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
792 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
793 return false;
794 }
795
796 return true;
797}
798
b8d31762
RS
799bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env,
800 struct bpf_reg_state *reg)
97e03f52
JK
801{
802 struct bpf_func_state *state = func(env, reg);
803 int spi = get_spi(reg->off);
804 int i;
805
806 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
807 !state->stack[spi].spilled_ptr.dynptr.first_slot)
808 return false;
809
810 for (i = 0; i < BPF_REG_SIZE; i++) {
811 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
812 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
813 return false;
814 }
815
e9e315b4
RS
816 return true;
817}
818
b8d31762
RS
819bool is_dynptr_type_expected(struct bpf_verifier_env *env,
820 struct bpf_reg_state *reg,
821 enum bpf_arg_type arg_type)
e9e315b4
RS
822{
823 struct bpf_func_state *state = func(env, reg);
824 enum bpf_dynptr_type dynptr_type;
825 int spi = get_spi(reg->off);
826
97e03f52
JK
827 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
828 if (arg_type == ARG_PTR_TO_DYNPTR)
829 return true;
830
e9e315b4
RS
831 dynptr_type = arg_to_dynptr_type(arg_type);
832
833 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
97e03f52
JK
834}
835
27113c59
MKL
836/* The reg state of a pointer or a bounded scalar was saved when
837 * it was spilled to the stack.
838 */
839static bool is_spilled_reg(const struct bpf_stack_state *stack)
840{
841 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
842}
843
354e8f19
MKL
844static void scrub_spilled_slot(u8 *stype)
845{
846 if (*stype != STACK_INVALID)
847 *stype = STACK_MISC;
848}
849
61bd5218 850static void print_verifier_state(struct bpf_verifier_env *env,
0f55f9ed
CL
851 const struct bpf_func_state *state,
852 bool print_all)
17a52670 853{
f4d7e40a 854 const struct bpf_reg_state *reg;
17a52670
AS
855 enum bpf_reg_type t;
856 int i;
857
f4d7e40a
AS
858 if (state->frameno)
859 verbose(env, " frame%d:", state->frameno);
17a52670 860 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
861 reg = &state->regs[i];
862 t = reg->type;
17a52670
AS
863 if (t == NOT_INIT)
864 continue;
0f55f9ed
CL
865 if (!print_all && !reg_scratched(env, i))
866 continue;
4e92024a
AS
867 verbose(env, " R%d", i);
868 print_liveness(env, reg->live);
7df5072c 869 verbose(env, "=");
b5dc0163
AS
870 if (t == SCALAR_VALUE && reg->precise)
871 verbose(env, "P");
f1174f77
EC
872 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
873 tnum_is_const(reg->var_off)) {
874 /* reg->off should be 0 for SCALAR_VALUE */
7df5072c 875 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
61bd5218 876 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 877 } else {
7df5072c
ML
878 const char *sep = "";
879
880 verbose(env, "%s", reg_type_str(env, t));
5844101a 881 if (base_type(t) == PTR_TO_BTF_ID)
22dc4a0f 882 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
7df5072c
ML
883 verbose(env, "(");
884/*
885 * _a stands for append, was shortened to avoid multiline statements below.
886 * This macro is used to output a comma separated list of attributes.
887 */
888#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
889
890 if (reg->id)
891 verbose_a("id=%d", reg->id);
a28ace78 892 if (reg->ref_obj_id)
7df5072c 893 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
f1174f77 894 if (t != SCALAR_VALUE)
7df5072c 895 verbose_a("off=%d", reg->off);
de8f3a83 896 if (type_is_pkt_pointer(t))
7df5072c 897 verbose_a("r=%d", reg->range);
c25b2ae1
HL
898 else if (base_type(t) == CONST_PTR_TO_MAP ||
899 base_type(t) == PTR_TO_MAP_KEY ||
900 base_type(t) == PTR_TO_MAP_VALUE)
7df5072c
ML
901 verbose_a("ks=%d,vs=%d",
902 reg->map_ptr->key_size,
903 reg->map_ptr->value_size);
7d1238f2
EC
904 if (tnum_is_const(reg->var_off)) {
905 /* Typically an immediate SCALAR_VALUE, but
906 * could be a pointer whose offset is too big
907 * for reg->off
908 */
7df5072c 909 verbose_a("imm=%llx", reg->var_off.value);
7d1238f2
EC
910 } else {
911 if (reg->smin_value != reg->umin_value &&
912 reg->smin_value != S64_MIN)
7df5072c 913 verbose_a("smin=%lld", (long long)reg->smin_value);
7d1238f2
EC
914 if (reg->smax_value != reg->umax_value &&
915 reg->smax_value != S64_MAX)
7df5072c 916 verbose_a("smax=%lld", (long long)reg->smax_value);
7d1238f2 917 if (reg->umin_value != 0)
7df5072c 918 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
7d1238f2 919 if (reg->umax_value != U64_MAX)
7df5072c 920 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
7d1238f2
EC
921 if (!tnum_is_unknown(reg->var_off)) {
922 char tn_buf[48];
f1174f77 923
7d1238f2 924 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7df5072c 925 verbose_a("var_off=%s", tn_buf);
7d1238f2 926 }
3f50f132
JF
927 if (reg->s32_min_value != reg->smin_value &&
928 reg->s32_min_value != S32_MIN)
7df5072c 929 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
3f50f132
JF
930 if (reg->s32_max_value != reg->smax_value &&
931 reg->s32_max_value != S32_MAX)
7df5072c 932 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
3f50f132
JF
933 if (reg->u32_min_value != reg->umin_value &&
934 reg->u32_min_value != U32_MIN)
7df5072c 935 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
3f50f132
JF
936 if (reg->u32_max_value != reg->umax_value &&
937 reg->u32_max_value != U32_MAX)
7df5072c 938 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
f1174f77 939 }
7df5072c
ML
940#undef verbose_a
941
61bd5218 942 verbose(env, ")");
f1174f77 943 }
17a52670 944 }
638f5b90 945 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
946 char types_buf[BPF_REG_SIZE + 1];
947 bool valid = false;
948 int j;
949
950 for (j = 0; j < BPF_REG_SIZE; j++) {
951 if (state->stack[i].slot_type[j] != STACK_INVALID)
952 valid = true;
953 types_buf[j] = slot_type_char[
954 state->stack[i].slot_type[j]];
955 }
956 types_buf[BPF_REG_SIZE] = 0;
957 if (!valid)
958 continue;
0f55f9ed
CL
959 if (!print_all && !stack_slot_scratched(env, i))
960 continue;
8efea21d
EC
961 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
962 print_liveness(env, state->stack[i].spilled_ptr.live);
27113c59 963 if (is_spilled_reg(&state->stack[i])) {
b5dc0163
AS
964 reg = &state->stack[i].spilled_ptr;
965 t = reg->type;
7df5072c 966 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
b5dc0163
AS
967 if (t == SCALAR_VALUE && reg->precise)
968 verbose(env, "P");
969 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
970 verbose(env, "%lld", reg->var_off.value + reg->off);
971 } else {
8efea21d 972 verbose(env, "=%s", types_buf);
b5dc0163 973 }
17a52670 974 }
fd978bf7
JS
975 if (state->acquired_refs && state->refs[0].id) {
976 verbose(env, " refs=%d", state->refs[0].id);
977 for (i = 1; i < state->acquired_refs; i++)
978 if (state->refs[i].id)
979 verbose(env, ",%d", state->refs[i].id);
980 }
bfc6bb74
AS
981 if (state->in_callback_fn)
982 verbose(env, " cb");
983 if (state->in_async_callback_fn)
984 verbose(env, " async_cb");
61bd5218 985 verbose(env, "\n");
0f55f9ed 986 mark_verifier_state_clean(env);
17a52670
AS
987}
988
2e576648
CL
989static inline u32 vlog_alignment(u32 pos)
990{
991 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
992 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
993}
994
995static void print_insn_state(struct bpf_verifier_env *env,
996 const struct bpf_func_state *state)
997{
998 if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
999 /* remove new line character */
1000 bpf_vlog_reset(&env->log, env->prev_log_len - 1);
1001 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
1002 } else {
1003 verbose(env, "%d:", env->insn_idx);
1004 }
1005 print_verifier_state(env, state, false);
17a52670
AS
1006}
1007
c69431aa
LB
1008/* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1009 * small to hold src. This is different from krealloc since we don't want to preserve
1010 * the contents of dst.
1011 *
1012 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1013 * not be allocated.
638f5b90 1014 */
c69431aa 1015static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
638f5b90 1016{
c69431aa
LB
1017 size_t bytes;
1018
1019 if (ZERO_OR_NULL_PTR(src))
1020 goto out;
1021
1022 if (unlikely(check_mul_overflow(n, size, &bytes)))
1023 return NULL;
1024
1025 if (ksize(dst) < bytes) {
1026 kfree(dst);
1027 dst = kmalloc_track_caller(bytes, flags);
1028 if (!dst)
1029 return NULL;
1030 }
1031
1032 memcpy(dst, src, bytes);
1033out:
1034 return dst ? dst : ZERO_SIZE_PTR;
1035}
1036
1037/* resize an array from old_n items to new_n items. the array is reallocated if it's too
1038 * small to hold new_n items. new items are zeroed out if the array grows.
1039 *
1040 * Contrary to krealloc_array, does not free arr if new_n is zero.
1041 */
1042static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1043{
42378a9c
KC
1044 void *new_arr;
1045
c69431aa
LB
1046 if (!new_n || old_n == new_n)
1047 goto out;
1048
42378a9c
KC
1049 new_arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1050 if (!new_arr) {
1051 kfree(arr);
c69431aa 1052 return NULL;
42378a9c
KC
1053 }
1054 arr = new_arr;
c69431aa
LB
1055
1056 if (new_n > old_n)
1057 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1058
1059out:
1060 return arr ? arr : ZERO_SIZE_PTR;
1061}
1062
1063static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1064{
1065 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1066 sizeof(struct bpf_reference_state), GFP_KERNEL);
1067 if (!dst->refs)
1068 return -ENOMEM;
1069
1070 dst->acquired_refs = src->acquired_refs;
1071 return 0;
1072}
1073
1074static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1075{
1076 size_t n = src->allocated_stack / BPF_REG_SIZE;
1077
1078 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1079 GFP_KERNEL);
1080 if (!dst->stack)
1081 return -ENOMEM;
1082
1083 dst->allocated_stack = src->allocated_stack;
1084 return 0;
1085}
1086
1087static int resize_reference_state(struct bpf_func_state *state, size_t n)
1088{
1089 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1090 sizeof(struct bpf_reference_state));
1091 if (!state->refs)
1092 return -ENOMEM;
1093
1094 state->acquired_refs = n;
1095 return 0;
1096}
1097
1098static int grow_stack_state(struct bpf_func_state *state, int size)
1099{
1100 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1101
1102 if (old_n >= n)
1103 return 0;
1104
1105 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1106 if (!state->stack)
1107 return -ENOMEM;
1108
1109 state->allocated_stack = size;
1110 return 0;
fd978bf7
JS
1111}
1112
1113/* Acquire a pointer id from the env and update the state->refs to include
1114 * this new pointer reference.
1115 * On success, returns a valid pointer id to associate with the register
1116 * On failure, returns a negative errno.
638f5b90 1117 */
fd978bf7 1118static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 1119{
fd978bf7
JS
1120 struct bpf_func_state *state = cur_func(env);
1121 int new_ofs = state->acquired_refs;
1122 int id, err;
1123
c69431aa 1124 err = resize_reference_state(state, state->acquired_refs + 1);
fd978bf7
JS
1125 if (err)
1126 return err;
1127 id = ++env->id_gen;
1128 state->refs[new_ofs].id = id;
1129 state->refs[new_ofs].insn_idx = insn_idx;
9d9d00ac 1130 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
638f5b90 1131
fd978bf7
JS
1132 return id;
1133}
1134
1135/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 1136static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
1137{
1138 int i, last_idx;
1139
fd978bf7
JS
1140 last_idx = state->acquired_refs - 1;
1141 for (i = 0; i < state->acquired_refs; i++) {
1142 if (state->refs[i].id == ptr_id) {
9d9d00ac
KKD
1143 /* Cannot release caller references in callbacks */
1144 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1145 return -EINVAL;
fd978bf7
JS
1146 if (last_idx && i != last_idx)
1147 memcpy(&state->refs[i], &state->refs[last_idx],
1148 sizeof(*state->refs));
1149 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1150 state->acquired_refs--;
638f5b90 1151 return 0;
638f5b90 1152 }
638f5b90 1153 }
46f8bc92 1154 return -EINVAL;
fd978bf7
JS
1155}
1156
f4d7e40a
AS
1157static void free_func_state(struct bpf_func_state *state)
1158{
5896351e
AS
1159 if (!state)
1160 return;
fd978bf7 1161 kfree(state->refs);
f4d7e40a
AS
1162 kfree(state->stack);
1163 kfree(state);
1164}
1165
b5dc0163
AS
1166static void clear_jmp_history(struct bpf_verifier_state *state)
1167{
1168 kfree(state->jmp_history);
1169 state->jmp_history = NULL;
1170 state->jmp_history_cnt = 0;
1171}
1172
1969db47
AS
1173static void free_verifier_state(struct bpf_verifier_state *state,
1174 bool free_self)
638f5b90 1175{
f4d7e40a
AS
1176 int i;
1177
1178 for (i = 0; i <= state->curframe; i++) {
1179 free_func_state(state->frame[i]);
1180 state->frame[i] = NULL;
1181 }
b5dc0163 1182 clear_jmp_history(state);
1969db47
AS
1183 if (free_self)
1184 kfree(state);
638f5b90
AS
1185}
1186
1187/* copy verifier state from src to dst growing dst stack space
1188 * when necessary to accommodate larger src stack
1189 */
f4d7e40a
AS
1190static int copy_func_state(struct bpf_func_state *dst,
1191 const struct bpf_func_state *src)
638f5b90
AS
1192{
1193 int err;
1194
fd978bf7
JS
1195 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1196 err = copy_reference_state(dst, src);
638f5b90
AS
1197 if (err)
1198 return err;
638f5b90
AS
1199 return copy_stack_state(dst, src);
1200}
1201
f4d7e40a
AS
1202static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1203 const struct bpf_verifier_state *src)
1204{
1205 struct bpf_func_state *dst;
1206 int i, err;
1207
06ab6a50
LB
1208 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1209 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1210 GFP_USER);
1211 if (!dst_state->jmp_history)
1212 return -ENOMEM;
b5dc0163
AS
1213 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1214
f4d7e40a
AS
1215 /* if dst has more stack frames then src frame, free them */
1216 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1217 free_func_state(dst_state->frame[i]);
1218 dst_state->frame[i] = NULL;
1219 }
979d63d5 1220 dst_state->speculative = src->speculative;
f4d7e40a 1221 dst_state->curframe = src->curframe;
d0d78c1d
KKD
1222 dst_state->active_lock.ptr = src->active_lock.ptr;
1223 dst_state->active_lock.id = src->active_lock.id;
2589726d
AS
1224 dst_state->branches = src->branches;
1225 dst_state->parent = src->parent;
b5dc0163
AS
1226 dst_state->first_insn_idx = src->first_insn_idx;
1227 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
1228 for (i = 0; i <= src->curframe; i++) {
1229 dst = dst_state->frame[i];
1230 if (!dst) {
1231 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1232 if (!dst)
1233 return -ENOMEM;
1234 dst_state->frame[i] = dst;
1235 }
1236 err = copy_func_state(dst, src->frame[i]);
1237 if (err)
1238 return err;
1239 }
1240 return 0;
1241}
1242
2589726d
AS
1243static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1244{
1245 while (st) {
1246 u32 br = --st->branches;
1247
1248 /* WARN_ON(br > 1) technically makes sense here,
1249 * but see comment in push_stack(), hence:
1250 */
1251 WARN_ONCE((int)br < 0,
1252 "BUG update_branch_counts:branches_to_explore=%d\n",
1253 br);
1254 if (br)
1255 break;
1256 st = st->parent;
1257 }
1258}
1259
638f5b90 1260static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 1261 int *insn_idx, bool pop_log)
638f5b90
AS
1262{
1263 struct bpf_verifier_state *cur = env->cur_state;
1264 struct bpf_verifier_stack_elem *elem, *head = env->head;
1265 int err;
17a52670
AS
1266
1267 if (env->head == NULL)
638f5b90 1268 return -ENOENT;
17a52670 1269
638f5b90
AS
1270 if (cur) {
1271 err = copy_verifier_state(cur, &head->st);
1272 if (err)
1273 return err;
1274 }
6f8a57cc
AN
1275 if (pop_log)
1276 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
1277 if (insn_idx)
1278 *insn_idx = head->insn_idx;
17a52670 1279 if (prev_insn_idx)
638f5b90
AS
1280 *prev_insn_idx = head->prev_insn_idx;
1281 elem = head->next;
1969db47 1282 free_verifier_state(&head->st, false);
638f5b90 1283 kfree(head);
17a52670
AS
1284 env->head = elem;
1285 env->stack_size--;
638f5b90 1286 return 0;
17a52670
AS
1287}
1288
58e2af8b 1289static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1290 int insn_idx, int prev_insn_idx,
1291 bool speculative)
17a52670 1292{
638f5b90 1293 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1294 struct bpf_verifier_stack_elem *elem;
638f5b90 1295 int err;
17a52670 1296
638f5b90 1297 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1298 if (!elem)
1299 goto err;
1300
17a52670
AS
1301 elem->insn_idx = insn_idx;
1302 elem->prev_insn_idx = prev_insn_idx;
1303 elem->next = env->head;
6f8a57cc 1304 elem->log_pos = env->log.len_used;
17a52670
AS
1305 env->head = elem;
1306 env->stack_size++;
1969db47
AS
1307 err = copy_verifier_state(&elem->st, cur);
1308 if (err)
1309 goto err;
979d63d5 1310 elem->st.speculative |= speculative;
b285fcb7
AS
1311 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1312 verbose(env, "The sequence of %d jumps is too complex.\n",
1313 env->stack_size);
17a52670
AS
1314 goto err;
1315 }
2589726d
AS
1316 if (elem->st.parent) {
1317 ++elem->st.parent->branches;
1318 /* WARN_ON(branches > 2) technically makes sense here,
1319 * but
1320 * 1. speculative states will bump 'branches' for non-branch
1321 * instructions
1322 * 2. is_state_visited() heuristics may decide not to create
1323 * a new state for a sequence of branches and all such current
1324 * and cloned states will be pointing to a single parent state
1325 * which might have large 'branches' count.
1326 */
1327 }
17a52670
AS
1328 return &elem->st;
1329err:
5896351e
AS
1330 free_verifier_state(env->cur_state, true);
1331 env->cur_state = NULL;
17a52670 1332 /* pop all elements and return */
6f8a57cc 1333 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1334 return NULL;
1335}
1336
1337#define CALLER_SAVED_REGS 6
1338static const int caller_saved[CALLER_SAVED_REGS] = {
1339 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1340};
1341
f54c7898
DB
1342static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1343 struct bpf_reg_state *reg);
f1174f77 1344
e688c3db
AS
1345/* This helper doesn't clear reg->id */
1346static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1347{
b03c9f9f
EC
1348 reg->var_off = tnum_const(imm);
1349 reg->smin_value = (s64)imm;
1350 reg->smax_value = (s64)imm;
1351 reg->umin_value = imm;
1352 reg->umax_value = imm;
3f50f132
JF
1353
1354 reg->s32_min_value = (s32)imm;
1355 reg->s32_max_value = (s32)imm;
1356 reg->u32_min_value = (u32)imm;
1357 reg->u32_max_value = (u32)imm;
1358}
1359
e688c3db
AS
1360/* Mark the unknown part of a register (variable offset or scalar value) as
1361 * known to have the value @imm.
1362 */
1363static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1364{
1365 /* Clear id, off, and union(map_ptr, range) */
1366 memset(((u8 *)reg) + sizeof(reg->type), 0,
1367 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1368 ___mark_reg_known(reg, imm);
1369}
1370
3f50f132
JF
1371static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1372{
1373 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1374 reg->s32_min_value = (s32)imm;
1375 reg->s32_max_value = (s32)imm;
1376 reg->u32_min_value = (u32)imm;
1377 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1378}
1379
f1174f77
EC
1380/* Mark the 'variable offset' part of a register as zero. This should be
1381 * used only on registers holding a pointer type.
1382 */
1383static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1384{
b03c9f9f 1385 __mark_reg_known(reg, 0);
f1174f77 1386}
a9789ef9 1387
cc2b14d5
AS
1388static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1389{
1390 __mark_reg_known(reg, 0);
cc2b14d5
AS
1391 reg->type = SCALAR_VALUE;
1392}
1393
61bd5218
JK
1394static void mark_reg_known_zero(struct bpf_verifier_env *env,
1395 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1396{
1397 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1398 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1399 /* Something bad happened, let's kill all regs */
1400 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1401 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1402 return;
1403 }
1404 __mark_reg_known_zero(regs + regno);
1405}
1406
4ddb7416
DB
1407static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1408{
c25b2ae1 1409 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
4ddb7416
DB
1410 const struct bpf_map *map = reg->map_ptr;
1411
1412 if (map->inner_map_meta) {
1413 reg->type = CONST_PTR_TO_MAP;
1414 reg->map_ptr = map->inner_map_meta;
3e8ce298
AS
1415 /* transfer reg's id which is unique for every map_lookup_elem
1416 * as UID of the inner map.
1417 */
db559117 1418 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
34d11a44 1419 reg->map_uid = reg->id;
4ddb7416
DB
1420 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1421 reg->type = PTR_TO_XDP_SOCK;
1422 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1423 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1424 reg->type = PTR_TO_SOCKET;
1425 } else {
1426 reg->type = PTR_TO_MAP_VALUE;
1427 }
c25b2ae1 1428 return;
4ddb7416 1429 }
c25b2ae1
HL
1430
1431 reg->type &= ~PTR_MAYBE_NULL;
4ddb7416
DB
1432}
1433
de8f3a83
DB
1434static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1435{
1436 return type_is_pkt_pointer(reg->type);
1437}
1438
1439static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1440{
1441 return reg_is_pkt_pointer(reg) ||
1442 reg->type == PTR_TO_PACKET_END;
1443}
1444
1445/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1446static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1447 enum bpf_reg_type which)
1448{
1449 /* The register can already have a range from prior markings.
1450 * This is fine as long as it hasn't been advanced from its
1451 * origin.
1452 */
1453 return reg->type == which &&
1454 reg->id == 0 &&
1455 reg->off == 0 &&
1456 tnum_equals_const(reg->var_off, 0);
1457}
1458
3f50f132
JF
1459/* Reset the min/max bounds of a register */
1460static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1461{
1462 reg->smin_value = S64_MIN;
1463 reg->smax_value = S64_MAX;
1464 reg->umin_value = 0;
1465 reg->umax_value = U64_MAX;
1466
1467 reg->s32_min_value = S32_MIN;
1468 reg->s32_max_value = S32_MAX;
1469 reg->u32_min_value = 0;
1470 reg->u32_max_value = U32_MAX;
1471}
1472
1473static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1474{
1475 reg->smin_value = S64_MIN;
1476 reg->smax_value = S64_MAX;
1477 reg->umin_value = 0;
1478 reg->umax_value = U64_MAX;
1479}
1480
1481static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1482{
1483 reg->s32_min_value = S32_MIN;
1484 reg->s32_max_value = S32_MAX;
1485 reg->u32_min_value = 0;
1486 reg->u32_max_value = U32_MAX;
1487}
1488
1489static void __update_reg32_bounds(struct bpf_reg_state *reg)
1490{
1491 struct tnum var32_off = tnum_subreg(reg->var_off);
1492
1493 /* min signed is max(sign bit) | min(other bits) */
1494 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1495 var32_off.value | (var32_off.mask & S32_MIN));
1496 /* max signed is min(sign bit) | max(other bits) */
1497 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1498 var32_off.value | (var32_off.mask & S32_MAX));
1499 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1500 reg->u32_max_value = min(reg->u32_max_value,
1501 (u32)(var32_off.value | var32_off.mask));
1502}
1503
1504static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1505{
1506 /* min signed is max(sign bit) | min(other bits) */
1507 reg->smin_value = max_t(s64, reg->smin_value,
1508 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1509 /* max signed is min(sign bit) | max(other bits) */
1510 reg->smax_value = min_t(s64, reg->smax_value,
1511 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1512 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1513 reg->umax_value = min(reg->umax_value,
1514 reg->var_off.value | reg->var_off.mask);
1515}
1516
3f50f132
JF
1517static void __update_reg_bounds(struct bpf_reg_state *reg)
1518{
1519 __update_reg32_bounds(reg);
1520 __update_reg64_bounds(reg);
1521}
1522
b03c9f9f 1523/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1524static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1525{
1526 /* Learn sign from signed bounds.
1527 * If we cannot cross the sign boundary, then signed and unsigned bounds
1528 * are the same, so combine. This works even in the negative case, e.g.
1529 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1530 */
1531 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1532 reg->s32_min_value = reg->u32_min_value =
1533 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1534 reg->s32_max_value = reg->u32_max_value =
1535 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1536 return;
1537 }
1538 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1539 * boundary, so we must be careful.
1540 */
1541 if ((s32)reg->u32_max_value >= 0) {
1542 /* Positive. We can't learn anything from the smin, but smax
1543 * is positive, hence safe.
1544 */
1545 reg->s32_min_value = reg->u32_min_value;
1546 reg->s32_max_value = reg->u32_max_value =
1547 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1548 } else if ((s32)reg->u32_min_value < 0) {
1549 /* Negative. We can't learn anything from the smax, but smin
1550 * is negative, hence safe.
1551 */
1552 reg->s32_min_value = reg->u32_min_value =
1553 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1554 reg->s32_max_value = reg->u32_max_value;
1555 }
1556}
1557
1558static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1559{
1560 /* Learn sign from signed bounds.
1561 * If we cannot cross the sign boundary, then signed and unsigned bounds
1562 * are the same, so combine. This works even in the negative case, e.g.
1563 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1564 */
1565 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1566 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1567 reg->umin_value);
1568 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1569 reg->umax_value);
1570 return;
1571 }
1572 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1573 * boundary, so we must be careful.
1574 */
1575 if ((s64)reg->umax_value >= 0) {
1576 /* Positive. We can't learn anything from the smin, but smax
1577 * is positive, hence safe.
1578 */
1579 reg->smin_value = reg->umin_value;
1580 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1581 reg->umax_value);
1582 } else if ((s64)reg->umin_value < 0) {
1583 /* Negative. We can't learn anything from the smax, but smin
1584 * is negative, hence safe.
1585 */
1586 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1587 reg->umin_value);
1588 reg->smax_value = reg->umax_value;
1589 }
1590}
1591
3f50f132
JF
1592static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1593{
1594 __reg32_deduce_bounds(reg);
1595 __reg64_deduce_bounds(reg);
1596}
1597
b03c9f9f
EC
1598/* Attempts to improve var_off based on unsigned min/max information */
1599static void __reg_bound_offset(struct bpf_reg_state *reg)
1600{
3f50f132
JF
1601 struct tnum var64_off = tnum_intersect(reg->var_off,
1602 tnum_range(reg->umin_value,
1603 reg->umax_value));
1604 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1605 tnum_range(reg->u32_min_value,
1606 reg->u32_max_value));
1607
1608 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1609}
1610
3844d153
DB
1611static void reg_bounds_sync(struct bpf_reg_state *reg)
1612{
1613 /* We might have learned new bounds from the var_off. */
1614 __update_reg_bounds(reg);
1615 /* We might have learned something about the sign bit. */
1616 __reg_deduce_bounds(reg);
1617 /* We might have learned some bits from the bounds. */
1618 __reg_bound_offset(reg);
1619 /* Intersecting with the old var_off might have improved our bounds
1620 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1621 * then new var_off is (0; 0x7f...fc) which improves our umax.
1622 */
1623 __update_reg_bounds(reg);
1624}
1625
e572ff80
DB
1626static bool __reg32_bound_s64(s32 a)
1627{
1628 return a >= 0 && a <= S32_MAX;
1629}
1630
3f50f132 1631static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1632{
3f50f132
JF
1633 reg->umin_value = reg->u32_min_value;
1634 reg->umax_value = reg->u32_max_value;
e572ff80
DB
1635
1636 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1637 * be positive otherwise set to worse case bounds and refine later
1638 * from tnum.
3f50f132 1639 */
e572ff80
DB
1640 if (__reg32_bound_s64(reg->s32_min_value) &&
1641 __reg32_bound_s64(reg->s32_max_value)) {
3a71dc36 1642 reg->smin_value = reg->s32_min_value;
e572ff80
DB
1643 reg->smax_value = reg->s32_max_value;
1644 } else {
3a71dc36 1645 reg->smin_value = 0;
e572ff80
DB
1646 reg->smax_value = U32_MAX;
1647 }
3f50f132
JF
1648}
1649
1650static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1651{
1652 /* special case when 64-bit register has upper 32-bit register
1653 * zeroed. Typically happens after zext or <<32, >>32 sequence
1654 * allowing us to use 32-bit bounds directly,
1655 */
1656 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1657 __reg_assign_32_into_64(reg);
1658 } else {
1659 /* Otherwise the best we can do is push lower 32bit known and
1660 * unknown bits into register (var_off set from jmp logic)
1661 * then learn as much as possible from the 64-bit tnum
1662 * known and unknown bits. The previous smin/smax bounds are
1663 * invalid here because of jmp32 compare so mark them unknown
1664 * so they do not impact tnum bounds calculation.
1665 */
1666 __mark_reg64_unbounded(reg);
3f50f132 1667 }
3844d153 1668 reg_bounds_sync(reg);
3f50f132
JF
1669}
1670
1671static bool __reg64_bound_s32(s64 a)
1672{
388e2c0b 1673 return a >= S32_MIN && a <= S32_MAX;
3f50f132
JF
1674}
1675
1676static bool __reg64_bound_u32(u64 a)
1677{
b9979db8 1678 return a >= U32_MIN && a <= U32_MAX;
3f50f132
JF
1679}
1680
1681static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1682{
1683 __mark_reg32_unbounded(reg);
b0270958 1684 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1685 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1686 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1687 }
10bf4e83 1688 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
3f50f132 1689 reg->u32_min_value = (u32)reg->umin_value;
3f50f132 1690 reg->u32_max_value = (u32)reg->umax_value;
10bf4e83 1691 }
3844d153 1692 reg_bounds_sync(reg);
b03c9f9f
EC
1693}
1694
f1174f77 1695/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1696static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1697 struct bpf_reg_state *reg)
f1174f77 1698{
a9c676bc
AS
1699 /*
1700 * Clear type, id, off, and union(map_ptr, range) and
1701 * padding between 'type' and union
1702 */
1703 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1704 reg->type = SCALAR_VALUE;
f1174f77 1705 reg->var_off = tnum_unknown;
f4d7e40a 1706 reg->frameno = 0;
be2ef816 1707 reg->precise = !env->bpf_capable;
b03c9f9f 1708 __mark_reg_unbounded(reg);
f1174f77
EC
1709}
1710
61bd5218
JK
1711static void mark_reg_unknown(struct bpf_verifier_env *env,
1712 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1713{
1714 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1715 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1716 /* Something bad happened, let's kill all regs except FP */
1717 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1718 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1719 return;
1720 }
f54c7898 1721 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1722}
1723
f54c7898
DB
1724static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1725 struct bpf_reg_state *reg)
f1174f77 1726{
f54c7898 1727 __mark_reg_unknown(env, reg);
f1174f77
EC
1728 reg->type = NOT_INIT;
1729}
1730
61bd5218
JK
1731static void mark_reg_not_init(struct bpf_verifier_env *env,
1732 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1733{
1734 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1735 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1736 /* Something bad happened, let's kill all regs except FP */
1737 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1738 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1739 return;
1740 }
f54c7898 1741 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1742}
1743
41c48f3a
AI
1744static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1745 struct bpf_reg_state *regs, u32 regno,
22dc4a0f 1746 enum bpf_reg_type reg_type,
c6f1bfe8
YS
1747 struct btf *btf, u32 btf_id,
1748 enum bpf_type_flag flag)
41c48f3a
AI
1749{
1750 if (reg_type == SCALAR_VALUE) {
1751 mark_reg_unknown(env, regs, regno);
1752 return;
1753 }
1754 mark_reg_known_zero(env, regs, regno);
c6f1bfe8 1755 regs[regno].type = PTR_TO_BTF_ID | flag;
22dc4a0f 1756 regs[regno].btf = btf;
41c48f3a
AI
1757 regs[regno].btf_id = btf_id;
1758}
1759
5327ed3d 1760#define DEF_NOT_SUBREG (0)
61bd5218 1761static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1762 struct bpf_func_state *state)
17a52670 1763{
f4d7e40a 1764 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1765 int i;
1766
dc503a8a 1767 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1768 mark_reg_not_init(env, regs, i);
dc503a8a 1769 regs[i].live = REG_LIVE_NONE;
679c782d 1770 regs[i].parent = NULL;
5327ed3d 1771 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1772 }
17a52670
AS
1773
1774 /* frame pointer */
f1174f77 1775 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1776 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1777 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1778}
1779
f4d7e40a
AS
1780#define BPF_MAIN_FUNC (-1)
1781static void init_func_state(struct bpf_verifier_env *env,
1782 struct bpf_func_state *state,
1783 int callsite, int frameno, int subprogno)
1784{
1785 state->callsite = callsite;
1786 state->frameno = frameno;
1787 state->subprogno = subprogno;
1bfe26fb 1788 state->callback_ret_range = tnum_range(0, 0);
f4d7e40a 1789 init_reg_state(env, state);
0f55f9ed 1790 mark_verifier_state_scratched(env);
f4d7e40a
AS
1791}
1792
bfc6bb74
AS
1793/* Similar to push_stack(), but for async callbacks */
1794static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1795 int insn_idx, int prev_insn_idx,
1796 int subprog)
1797{
1798 struct bpf_verifier_stack_elem *elem;
1799 struct bpf_func_state *frame;
1800
1801 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1802 if (!elem)
1803 goto err;
1804
1805 elem->insn_idx = insn_idx;
1806 elem->prev_insn_idx = prev_insn_idx;
1807 elem->next = env->head;
1808 elem->log_pos = env->log.len_used;
1809 env->head = elem;
1810 env->stack_size++;
1811 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1812 verbose(env,
1813 "The sequence of %d jumps is too complex for async cb.\n",
1814 env->stack_size);
1815 goto err;
1816 }
1817 /* Unlike push_stack() do not copy_verifier_state().
1818 * The caller state doesn't matter.
1819 * This is async callback. It starts in a fresh stack.
1820 * Initialize it similar to do_check_common().
1821 */
1822 elem->st.branches = 1;
1823 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1824 if (!frame)
1825 goto err;
1826 init_func_state(env, frame,
1827 BPF_MAIN_FUNC /* callsite */,
1828 0 /* frameno within this callchain */,
1829 subprog /* subprog number within this prog */);
1830 elem->st.frame[0] = frame;
1831 return &elem->st;
1832err:
1833 free_verifier_state(env->cur_state, true);
1834 env->cur_state = NULL;
1835 /* pop all elements and return */
1836 while (!pop_stack(env, NULL, NULL, false));
1837 return NULL;
1838}
1839
1840
17a52670
AS
1841enum reg_arg_type {
1842 SRC_OP, /* register is used as source operand */
1843 DST_OP, /* register is used as destination operand */
1844 DST_OP_NO_MARK /* same as above, check only, don't mark */
1845};
1846
cc8b0b92
AS
1847static int cmp_subprogs(const void *a, const void *b)
1848{
9c8105bd
JW
1849 return ((struct bpf_subprog_info *)a)->start -
1850 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1851}
1852
1853static int find_subprog(struct bpf_verifier_env *env, int off)
1854{
9c8105bd 1855 struct bpf_subprog_info *p;
cc8b0b92 1856
9c8105bd
JW
1857 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1858 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1859 if (!p)
1860 return -ENOENT;
9c8105bd 1861 return p - env->subprog_info;
cc8b0b92
AS
1862
1863}
1864
1865static int add_subprog(struct bpf_verifier_env *env, int off)
1866{
1867 int insn_cnt = env->prog->len;
1868 int ret;
1869
1870 if (off >= insn_cnt || off < 0) {
1871 verbose(env, "call to invalid destination\n");
1872 return -EINVAL;
1873 }
1874 ret = find_subprog(env, off);
1875 if (ret >= 0)
282a0f46 1876 return ret;
4cb3d99c 1877 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1878 verbose(env, "too many subprograms\n");
1879 return -E2BIG;
1880 }
e6ac2450 1881 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1882 env->subprog_info[env->subprog_cnt++].start = off;
1883 sort(env->subprog_info, env->subprog_cnt,
1884 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1885 return env->subprog_cnt - 1;
cc8b0b92
AS
1886}
1887
2357672c
KKD
1888#define MAX_KFUNC_DESCS 256
1889#define MAX_KFUNC_BTFS 256
1890
e6ac2450
MKL
1891struct bpf_kfunc_desc {
1892 struct btf_func_model func_model;
1893 u32 func_id;
1894 s32 imm;
2357672c
KKD
1895 u16 offset;
1896};
1897
1898struct bpf_kfunc_btf {
1899 struct btf *btf;
1900 struct module *module;
1901 u16 offset;
e6ac2450
MKL
1902};
1903
e6ac2450
MKL
1904struct bpf_kfunc_desc_tab {
1905 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1906 u32 nr_descs;
1907};
1908
2357672c
KKD
1909struct bpf_kfunc_btf_tab {
1910 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1911 u32 nr_descs;
1912};
1913
1914static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
e6ac2450
MKL
1915{
1916 const struct bpf_kfunc_desc *d0 = a;
1917 const struct bpf_kfunc_desc *d1 = b;
1918
1919 /* func_id is not greater than BTF_MAX_TYPE */
2357672c
KKD
1920 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1921}
1922
1923static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1924{
1925 const struct bpf_kfunc_btf *d0 = a;
1926 const struct bpf_kfunc_btf *d1 = b;
1927
1928 return d0->offset - d1->offset;
e6ac2450
MKL
1929}
1930
1931static const struct bpf_kfunc_desc *
2357672c 1932find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
e6ac2450
MKL
1933{
1934 struct bpf_kfunc_desc desc = {
1935 .func_id = func_id,
2357672c 1936 .offset = offset,
e6ac2450
MKL
1937 };
1938 struct bpf_kfunc_desc_tab *tab;
1939
1940 tab = prog->aux->kfunc_tab;
1941 return bsearch(&desc, tab->descs, tab->nr_descs,
2357672c
KKD
1942 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1943}
1944
1945static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
b202d844 1946 s16 offset)
2357672c
KKD
1947{
1948 struct bpf_kfunc_btf kf_btf = { .offset = offset };
1949 struct bpf_kfunc_btf_tab *tab;
1950 struct bpf_kfunc_btf *b;
1951 struct module *mod;
1952 struct btf *btf;
1953 int btf_fd;
1954
1955 tab = env->prog->aux->kfunc_btf_tab;
1956 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1957 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1958 if (!b) {
1959 if (tab->nr_descs == MAX_KFUNC_BTFS) {
1960 verbose(env, "too many different module BTFs\n");
1961 return ERR_PTR(-E2BIG);
1962 }
1963
1964 if (bpfptr_is_null(env->fd_array)) {
1965 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1966 return ERR_PTR(-EPROTO);
1967 }
1968
1969 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1970 offset * sizeof(btf_fd),
1971 sizeof(btf_fd)))
1972 return ERR_PTR(-EFAULT);
1973
1974 btf = btf_get_by_fd(btf_fd);
588cd7ef
KKD
1975 if (IS_ERR(btf)) {
1976 verbose(env, "invalid module BTF fd specified\n");
2357672c 1977 return btf;
588cd7ef 1978 }
2357672c
KKD
1979
1980 if (!btf_is_module(btf)) {
1981 verbose(env, "BTF fd for kfunc is not a module BTF\n");
1982 btf_put(btf);
1983 return ERR_PTR(-EINVAL);
1984 }
1985
1986 mod = btf_try_get_module(btf);
1987 if (!mod) {
1988 btf_put(btf);
1989 return ERR_PTR(-ENXIO);
1990 }
1991
1992 b = &tab->descs[tab->nr_descs++];
1993 b->btf = btf;
1994 b->module = mod;
1995 b->offset = offset;
1996
1997 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1998 kfunc_btf_cmp_by_off, NULL);
1999 }
2357672c 2000 return b->btf;
e6ac2450
MKL
2001}
2002
2357672c
KKD
2003void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2004{
2005 if (!tab)
2006 return;
2007
2008 while (tab->nr_descs--) {
2009 module_put(tab->descs[tab->nr_descs].module);
2010 btf_put(tab->descs[tab->nr_descs].btf);
2011 }
2012 kfree(tab);
2013}
2014
43bf0878 2015static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2357672c 2016{
2357672c
KKD
2017 if (offset) {
2018 if (offset < 0) {
2019 /* In the future, this can be allowed to increase limit
2020 * of fd index into fd_array, interpreted as u16.
2021 */
2022 verbose(env, "negative offset disallowed for kernel module function call\n");
2023 return ERR_PTR(-EINVAL);
2024 }
2025
b202d844 2026 return __find_kfunc_desc_btf(env, offset);
2357672c
KKD
2027 }
2028 return btf_vmlinux ?: ERR_PTR(-ENOENT);
e6ac2450
MKL
2029}
2030
2357672c 2031static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
e6ac2450
MKL
2032{
2033 const struct btf_type *func, *func_proto;
2357672c 2034 struct bpf_kfunc_btf_tab *btf_tab;
e6ac2450
MKL
2035 struct bpf_kfunc_desc_tab *tab;
2036 struct bpf_prog_aux *prog_aux;
2037 struct bpf_kfunc_desc *desc;
2038 const char *func_name;
2357672c 2039 struct btf *desc_btf;
8cbf062a 2040 unsigned long call_imm;
e6ac2450
MKL
2041 unsigned long addr;
2042 int err;
2043
2044 prog_aux = env->prog->aux;
2045 tab = prog_aux->kfunc_tab;
2357672c 2046 btf_tab = prog_aux->kfunc_btf_tab;
e6ac2450
MKL
2047 if (!tab) {
2048 if (!btf_vmlinux) {
2049 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2050 return -ENOTSUPP;
2051 }
2052
2053 if (!env->prog->jit_requested) {
2054 verbose(env, "JIT is required for calling kernel function\n");
2055 return -ENOTSUPP;
2056 }
2057
2058 if (!bpf_jit_supports_kfunc_call()) {
2059 verbose(env, "JIT does not support calling kernel function\n");
2060 return -ENOTSUPP;
2061 }
2062
2063 if (!env->prog->gpl_compatible) {
2064 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2065 return -EINVAL;
2066 }
2067
2068 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2069 if (!tab)
2070 return -ENOMEM;
2071 prog_aux->kfunc_tab = tab;
2072 }
2073
a5d82727
KKD
2074 /* func_id == 0 is always invalid, but instead of returning an error, be
2075 * conservative and wait until the code elimination pass before returning
2076 * error, so that invalid calls that get pruned out can be in BPF programs
2077 * loaded from userspace. It is also required that offset be untouched
2078 * for such calls.
2079 */
2080 if (!func_id && !offset)
2081 return 0;
2082
2357672c
KKD
2083 if (!btf_tab && offset) {
2084 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2085 if (!btf_tab)
2086 return -ENOMEM;
2087 prog_aux->kfunc_btf_tab = btf_tab;
2088 }
2089
43bf0878 2090 desc_btf = find_kfunc_desc_btf(env, offset);
2357672c
KKD
2091 if (IS_ERR(desc_btf)) {
2092 verbose(env, "failed to find BTF for kernel function\n");
2093 return PTR_ERR(desc_btf);
2094 }
2095
2096 if (find_kfunc_desc(env->prog, func_id, offset))
e6ac2450
MKL
2097 return 0;
2098
2099 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2100 verbose(env, "too many different kernel function calls\n");
2101 return -E2BIG;
2102 }
2103
2357672c 2104 func = btf_type_by_id(desc_btf, func_id);
e6ac2450
MKL
2105 if (!func || !btf_type_is_func(func)) {
2106 verbose(env, "kernel btf_id %u is not a function\n",
2107 func_id);
2108 return -EINVAL;
2109 }
2357672c 2110 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450
MKL
2111 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2112 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2113 func_id);
2114 return -EINVAL;
2115 }
2116
2357672c 2117 func_name = btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2118 addr = kallsyms_lookup_name(func_name);
2119 if (!addr) {
2120 verbose(env, "cannot find address for kernel function %s\n",
2121 func_name);
2122 return -EINVAL;
2123 }
2124
8cbf062a
HT
2125 call_imm = BPF_CALL_IMM(addr);
2126 /* Check whether or not the relative offset overflows desc->imm */
2127 if ((unsigned long)(s32)call_imm != call_imm) {
2128 verbose(env, "address of kernel function %s is out of range\n",
2129 func_name);
2130 return -EINVAL;
2131 }
2132
e6ac2450
MKL
2133 desc = &tab->descs[tab->nr_descs++];
2134 desc->func_id = func_id;
8cbf062a 2135 desc->imm = call_imm;
2357672c
KKD
2136 desc->offset = offset;
2137 err = btf_distill_func_proto(&env->log, desc_btf,
e6ac2450
MKL
2138 func_proto, func_name,
2139 &desc->func_model);
2140 if (!err)
2141 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2357672c 2142 kfunc_desc_cmp_by_id_off, NULL);
e6ac2450
MKL
2143 return err;
2144}
2145
2146static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2147{
2148 const struct bpf_kfunc_desc *d0 = a;
2149 const struct bpf_kfunc_desc *d1 = b;
2150
2151 if (d0->imm > d1->imm)
2152 return 1;
2153 else if (d0->imm < d1->imm)
2154 return -1;
2155 return 0;
2156}
2157
2158static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2159{
2160 struct bpf_kfunc_desc_tab *tab;
2161
2162 tab = prog->aux->kfunc_tab;
2163 if (!tab)
2164 return;
2165
2166 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2167 kfunc_desc_cmp_by_imm, NULL);
2168}
2169
2170bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2171{
2172 return !!prog->aux->kfunc_tab;
2173}
2174
2175const struct btf_func_model *
2176bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2177 const struct bpf_insn *insn)
2178{
2179 const struct bpf_kfunc_desc desc = {
2180 .imm = insn->imm,
2181 };
2182 const struct bpf_kfunc_desc *res;
2183 struct bpf_kfunc_desc_tab *tab;
2184
2185 tab = prog->aux->kfunc_tab;
2186 res = bsearch(&desc, tab->descs, tab->nr_descs,
2187 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2188
2189 return res ? &res->func_model : NULL;
2190}
2191
2192static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 2193{
9c8105bd 2194 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 2195 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 2196 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 2197
f910cefa
JW
2198 /* Add entry function. */
2199 ret = add_subprog(env, 0);
e6ac2450 2200 if (ret)
f910cefa
JW
2201 return ret;
2202
e6ac2450
MKL
2203 for (i = 0; i < insn_cnt; i++, insn++) {
2204 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2205 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 2206 continue;
e6ac2450 2207
2c78ee89 2208 if (!env->bpf_capable) {
e6ac2450 2209 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
2210 return -EPERM;
2211 }
e6ac2450 2212
3990ed4c 2213 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
e6ac2450 2214 ret = add_subprog(env, i + insn->imm + 1);
3990ed4c 2215 else
2357672c 2216 ret = add_kfunc_call(env, insn->imm, insn->off);
e6ac2450 2217
cc8b0b92
AS
2218 if (ret < 0)
2219 return ret;
2220 }
2221
4cb3d99c
JW
2222 /* Add a fake 'exit' subprog which could simplify subprog iteration
2223 * logic. 'subprog_cnt' should not be increased.
2224 */
2225 subprog[env->subprog_cnt].start = insn_cnt;
2226
06ee7115 2227 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 2228 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 2229 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 2230
e6ac2450
MKL
2231 return 0;
2232}
2233
2234static int check_subprogs(struct bpf_verifier_env *env)
2235{
2236 int i, subprog_start, subprog_end, off, cur_subprog = 0;
2237 struct bpf_subprog_info *subprog = env->subprog_info;
2238 struct bpf_insn *insn = env->prog->insnsi;
2239 int insn_cnt = env->prog->len;
2240
cc8b0b92 2241 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
2242 subprog_start = subprog[cur_subprog].start;
2243 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2244 for (i = 0; i < insn_cnt; i++) {
2245 u8 code = insn[i].code;
2246
7f6e4312
MF
2247 if (code == (BPF_JMP | BPF_CALL) &&
2248 insn[i].imm == BPF_FUNC_tail_call &&
2249 insn[i].src_reg != BPF_PSEUDO_CALL)
2250 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
2251 if (BPF_CLASS(code) == BPF_LD &&
2252 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2253 subprog[cur_subprog].has_ld_abs = true;
092ed096 2254 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
2255 goto next;
2256 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2257 goto next;
2258 off = i + insn[i].off + 1;
2259 if (off < subprog_start || off >= subprog_end) {
2260 verbose(env, "jump out of range from insn %d to %d\n", i, off);
2261 return -EINVAL;
2262 }
2263next:
2264 if (i == subprog_end - 1) {
2265 /* to avoid fall-through from one subprog into another
2266 * the last insn of the subprog should be either exit
2267 * or unconditional jump back
2268 */
2269 if (code != (BPF_JMP | BPF_EXIT) &&
2270 code != (BPF_JMP | BPF_JA)) {
2271 verbose(env, "last insn is not an exit or jmp\n");
2272 return -EINVAL;
2273 }
2274 subprog_start = subprog_end;
4cb3d99c
JW
2275 cur_subprog++;
2276 if (cur_subprog < env->subprog_cnt)
9c8105bd 2277 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
2278 }
2279 }
2280 return 0;
2281}
2282
679c782d
EC
2283/* Parentage chain of this register (or stack slot) should take care of all
2284 * issues like callee-saved registers, stack slot allocation time, etc.
2285 */
f4d7e40a 2286static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 2287 const struct bpf_reg_state *state,
5327ed3d 2288 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
2289{
2290 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 2291 int cnt = 0;
dc503a8a
EC
2292
2293 while (parent) {
2294 /* if read wasn't screened by an earlier write ... */
679c782d 2295 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 2296 break;
9242b5f5
AS
2297 if (parent->live & REG_LIVE_DONE) {
2298 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
c25b2ae1 2299 reg_type_str(env, parent->type),
9242b5f5
AS
2300 parent->var_off.value, parent->off);
2301 return -EFAULT;
2302 }
5327ed3d
JW
2303 /* The first condition is more likely to be true than the
2304 * second, checked it first.
2305 */
2306 if ((parent->live & REG_LIVE_READ) == flag ||
2307 parent->live & REG_LIVE_READ64)
25af32da
AS
2308 /* The parentage chain never changes and
2309 * this parent was already marked as LIVE_READ.
2310 * There is no need to keep walking the chain again and
2311 * keep re-marking all parents as LIVE_READ.
2312 * This case happens when the same register is read
2313 * multiple times without writes into it in-between.
5327ed3d
JW
2314 * Also, if parent has the stronger REG_LIVE_READ64 set,
2315 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
2316 */
2317 break;
dc503a8a 2318 /* ... then we depend on parent's value */
5327ed3d
JW
2319 parent->live |= flag;
2320 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2321 if (flag == REG_LIVE_READ64)
2322 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
2323 state = parent;
2324 parent = state->parent;
f4d7e40a 2325 writes = true;
06ee7115 2326 cnt++;
dc503a8a 2327 }
06ee7115
AS
2328
2329 if (env->longest_mark_read_walk < cnt)
2330 env->longest_mark_read_walk = cnt;
f4d7e40a 2331 return 0;
dc503a8a
EC
2332}
2333
5327ed3d
JW
2334/* This function is supposed to be used by the following 32-bit optimization
2335 * code only. It returns TRUE if the source or destination register operates
2336 * on 64-bit, otherwise return FALSE.
2337 */
2338static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2339 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2340{
2341 u8 code, class, op;
2342
2343 code = insn->code;
2344 class = BPF_CLASS(code);
2345 op = BPF_OP(code);
2346 if (class == BPF_JMP) {
2347 /* BPF_EXIT for "main" will reach here. Return TRUE
2348 * conservatively.
2349 */
2350 if (op == BPF_EXIT)
2351 return true;
2352 if (op == BPF_CALL) {
2353 /* BPF to BPF call will reach here because of marking
2354 * caller saved clobber with DST_OP_NO_MARK for which we
2355 * don't care the register def because they are anyway
2356 * marked as NOT_INIT already.
2357 */
2358 if (insn->src_reg == BPF_PSEUDO_CALL)
2359 return false;
2360 /* Helper call will reach here because of arg type
2361 * check, conservatively return TRUE.
2362 */
2363 if (t == SRC_OP)
2364 return true;
2365
2366 return false;
2367 }
2368 }
2369
2370 if (class == BPF_ALU64 || class == BPF_JMP ||
2371 /* BPF_END always use BPF_ALU class. */
2372 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2373 return true;
2374
2375 if (class == BPF_ALU || class == BPF_JMP32)
2376 return false;
2377
2378 if (class == BPF_LDX) {
2379 if (t != SRC_OP)
2380 return BPF_SIZE(code) == BPF_DW;
2381 /* LDX source must be ptr. */
2382 return true;
2383 }
2384
2385 if (class == BPF_STX) {
83a28819
IL
2386 /* BPF_STX (including atomic variants) has multiple source
2387 * operands, one of which is a ptr. Check whether the caller is
2388 * asking about it.
2389 */
2390 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
2391 return true;
2392 return BPF_SIZE(code) == BPF_DW;
2393 }
2394
2395 if (class == BPF_LD) {
2396 u8 mode = BPF_MODE(code);
2397
2398 /* LD_IMM64 */
2399 if (mode == BPF_IMM)
2400 return true;
2401
2402 /* Both LD_IND and LD_ABS return 32-bit data. */
2403 if (t != SRC_OP)
2404 return false;
2405
2406 /* Implicit ctx ptr. */
2407 if (regno == BPF_REG_6)
2408 return true;
2409
2410 /* Explicit source could be any width. */
2411 return true;
2412 }
2413
2414 if (class == BPF_ST)
2415 /* The only source register for BPF_ST is a ptr. */
2416 return true;
2417
2418 /* Conservatively return true at default. */
2419 return true;
2420}
2421
83a28819
IL
2422/* Return the regno defined by the insn, or -1. */
2423static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 2424{
83a28819
IL
2425 switch (BPF_CLASS(insn->code)) {
2426 case BPF_JMP:
2427 case BPF_JMP32:
2428 case BPF_ST:
2429 return -1;
2430 case BPF_STX:
2431 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2432 (insn->imm & BPF_FETCH)) {
2433 if (insn->imm == BPF_CMPXCHG)
2434 return BPF_REG_0;
2435 else
2436 return insn->src_reg;
2437 } else {
2438 return -1;
2439 }
2440 default:
2441 return insn->dst_reg;
2442 }
b325fbca
JW
2443}
2444
2445/* Return TRUE if INSN has defined any 32-bit value explicitly. */
2446static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2447{
83a28819
IL
2448 int dst_reg = insn_def_regno(insn);
2449
2450 if (dst_reg == -1)
b325fbca
JW
2451 return false;
2452
83a28819 2453 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
2454}
2455
5327ed3d
JW
2456static void mark_insn_zext(struct bpf_verifier_env *env,
2457 struct bpf_reg_state *reg)
2458{
2459 s32 def_idx = reg->subreg_def;
2460
2461 if (def_idx == DEF_NOT_SUBREG)
2462 return;
2463
2464 env->insn_aux_data[def_idx - 1].zext_dst = true;
2465 /* The dst will be zero extended, so won't be sub-register anymore. */
2466 reg->subreg_def = DEF_NOT_SUBREG;
2467}
2468
dc503a8a 2469static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2470 enum reg_arg_type t)
2471{
f4d7e40a
AS
2472 struct bpf_verifier_state *vstate = env->cur_state;
2473 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2474 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2475 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2476 bool rw64;
dc503a8a 2477
17a52670 2478 if (regno >= MAX_BPF_REG) {
61bd5218 2479 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2480 return -EINVAL;
2481 }
2482
0f55f9ed
CL
2483 mark_reg_scratched(env, regno);
2484
c342dc10 2485 reg = &regs[regno];
5327ed3d 2486 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2487 if (t == SRC_OP) {
2488 /* check whether register used as source operand can be read */
c342dc10 2489 if (reg->type == NOT_INIT) {
61bd5218 2490 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2491 return -EACCES;
2492 }
679c782d 2493 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2494 if (regno == BPF_REG_FP)
2495 return 0;
2496
5327ed3d
JW
2497 if (rw64)
2498 mark_insn_zext(env, reg);
2499
2500 return mark_reg_read(env, reg, reg->parent,
2501 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2502 } else {
2503 /* check whether register used as dest operand can be written to */
2504 if (regno == BPF_REG_FP) {
61bd5218 2505 verbose(env, "frame pointer is read only\n");
17a52670
AS
2506 return -EACCES;
2507 }
c342dc10 2508 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2509 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2510 if (t == DST_OP)
61bd5218 2511 mark_reg_unknown(env, regs, regno);
17a52670
AS
2512 }
2513 return 0;
2514}
2515
b5dc0163
AS
2516/* for any branch, call, exit record the history of jmps in the given state */
2517static int push_jmp_history(struct bpf_verifier_env *env,
2518 struct bpf_verifier_state *cur)
2519{
2520 u32 cnt = cur->jmp_history_cnt;
2521 struct bpf_idx_pair *p;
2522
2523 cnt++;
2524 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2525 if (!p)
2526 return -ENOMEM;
2527 p[cnt - 1].idx = env->insn_idx;
2528 p[cnt - 1].prev_idx = env->prev_insn_idx;
2529 cur->jmp_history = p;
2530 cur->jmp_history_cnt = cnt;
2531 return 0;
2532}
2533
2534/* Backtrack one insn at a time. If idx is not at the top of recorded
2535 * history then previous instruction came from straight line execution.
2536 */
2537static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2538 u32 *history)
2539{
2540 u32 cnt = *history;
2541
2542 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2543 i = st->jmp_history[cnt - 1].prev_idx;
2544 (*history)--;
2545 } else {
2546 i--;
2547 }
2548 return i;
2549}
2550
e6ac2450
MKL
2551static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2552{
2553 const struct btf_type *func;
2357672c 2554 struct btf *desc_btf;
e6ac2450
MKL
2555
2556 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2557 return NULL;
2558
43bf0878 2559 desc_btf = find_kfunc_desc_btf(data, insn->off);
2357672c
KKD
2560 if (IS_ERR(desc_btf))
2561 return "<error>";
2562
2563 func = btf_type_by_id(desc_btf, insn->imm);
2564 return btf_name_by_offset(desc_btf, func->name_off);
e6ac2450
MKL
2565}
2566
b5dc0163
AS
2567/* For given verifier state backtrack_insn() is called from the last insn to
2568 * the first insn. Its purpose is to compute a bitmask of registers and
2569 * stack slots that needs precision in the parent verifier state.
2570 */
2571static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2572 u32 *reg_mask, u64 *stack_mask)
2573{
2574 const struct bpf_insn_cbs cbs = {
e6ac2450 2575 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2576 .cb_print = verbose,
2577 .private_data = env,
2578 };
2579 struct bpf_insn *insn = env->prog->insnsi + idx;
2580 u8 class = BPF_CLASS(insn->code);
2581 u8 opcode = BPF_OP(insn->code);
2582 u8 mode = BPF_MODE(insn->code);
2583 u32 dreg = 1u << insn->dst_reg;
2584 u32 sreg = 1u << insn->src_reg;
2585 u32 spi;
2586
2587 if (insn->code == 0)
2588 return 0;
496f3324 2589 if (env->log.level & BPF_LOG_LEVEL2) {
b5dc0163
AS
2590 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2591 verbose(env, "%d: ", idx);
2592 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2593 }
2594
2595 if (class == BPF_ALU || class == BPF_ALU64) {
2596 if (!(*reg_mask & dreg))
2597 return 0;
2598 if (opcode == BPF_MOV) {
2599 if (BPF_SRC(insn->code) == BPF_X) {
2600 /* dreg = sreg
2601 * dreg needs precision after this insn
2602 * sreg needs precision before this insn
2603 */
2604 *reg_mask &= ~dreg;
2605 *reg_mask |= sreg;
2606 } else {
2607 /* dreg = K
2608 * dreg needs precision after this insn.
2609 * Corresponding register is already marked
2610 * as precise=true in this verifier state.
2611 * No further markings in parent are necessary
2612 */
2613 *reg_mask &= ~dreg;
2614 }
2615 } else {
2616 if (BPF_SRC(insn->code) == BPF_X) {
2617 /* dreg += sreg
2618 * both dreg and sreg need precision
2619 * before this insn
2620 */
2621 *reg_mask |= sreg;
2622 } /* else dreg += K
2623 * dreg still needs precision before this insn
2624 */
2625 }
2626 } else if (class == BPF_LDX) {
2627 if (!(*reg_mask & dreg))
2628 return 0;
2629 *reg_mask &= ~dreg;
2630
2631 /* scalars can only be spilled into stack w/o losing precision.
2632 * Load from any other memory can be zero extended.
2633 * The desire to keep that precision is already indicated
2634 * by 'precise' mark in corresponding register of this state.
2635 * No further tracking necessary.
2636 */
2637 if (insn->src_reg != BPF_REG_FP)
2638 return 0;
b5dc0163
AS
2639
2640 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2641 * that [fp - off] slot contains scalar that needs to be
2642 * tracked with precision
2643 */
2644 spi = (-insn->off - 1) / BPF_REG_SIZE;
2645 if (spi >= 64) {
2646 verbose(env, "BUG spi %d\n", spi);
2647 WARN_ONCE(1, "verifier backtracking bug");
2648 return -EFAULT;
2649 }
2650 *stack_mask |= 1ull << spi;
b3b50f05 2651 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2652 if (*reg_mask & dreg)
b3b50f05 2653 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2654 * to access memory. It means backtracking
2655 * encountered a case of pointer subtraction.
2656 */
2657 return -ENOTSUPP;
2658 /* scalars can only be spilled into stack */
2659 if (insn->dst_reg != BPF_REG_FP)
2660 return 0;
b5dc0163
AS
2661 spi = (-insn->off - 1) / BPF_REG_SIZE;
2662 if (spi >= 64) {
2663 verbose(env, "BUG spi %d\n", spi);
2664 WARN_ONCE(1, "verifier backtracking bug");
2665 return -EFAULT;
2666 }
2667 if (!(*stack_mask & (1ull << spi)))
2668 return 0;
2669 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2670 if (class == BPF_STX)
2671 *reg_mask |= sreg;
b5dc0163
AS
2672 } else if (class == BPF_JMP || class == BPF_JMP32) {
2673 if (opcode == BPF_CALL) {
2674 if (insn->src_reg == BPF_PSEUDO_CALL)
2675 return -ENOTSUPP;
be2ef816
AN
2676 /* BPF helpers that invoke callback subprogs are
2677 * equivalent to BPF_PSEUDO_CALL above
2678 */
2679 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm))
2680 return -ENOTSUPP;
b5dc0163
AS
2681 /* regular helper call sets R0 */
2682 *reg_mask &= ~1;
2683 if (*reg_mask & 0x3f) {
2684 /* if backtracing was looking for registers R1-R5
2685 * they should have been found already.
2686 */
2687 verbose(env, "BUG regs %x\n", *reg_mask);
2688 WARN_ONCE(1, "verifier backtracking bug");
2689 return -EFAULT;
2690 }
2691 } else if (opcode == BPF_EXIT) {
2692 return -ENOTSUPP;
2693 }
2694 } else if (class == BPF_LD) {
2695 if (!(*reg_mask & dreg))
2696 return 0;
2697 *reg_mask &= ~dreg;
2698 /* It's ld_imm64 or ld_abs or ld_ind.
2699 * For ld_imm64 no further tracking of precision
2700 * into parent is necessary
2701 */
2702 if (mode == BPF_IND || mode == BPF_ABS)
2703 /* to be analyzed */
2704 return -ENOTSUPP;
b5dc0163
AS
2705 }
2706 return 0;
2707}
2708
2709/* the scalar precision tracking algorithm:
2710 * . at the start all registers have precise=false.
2711 * . scalar ranges are tracked as normal through alu and jmp insns.
2712 * . once precise value of the scalar register is used in:
2713 * . ptr + scalar alu
2714 * . if (scalar cond K|scalar)
2715 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2716 * backtrack through the verifier states and mark all registers and
2717 * stack slots with spilled constants that these scalar regisers
2718 * should be precise.
2719 * . during state pruning two registers (or spilled stack slots)
2720 * are equivalent if both are not precise.
2721 *
2722 * Note the verifier cannot simply walk register parentage chain,
2723 * since many different registers and stack slots could have been
2724 * used to compute single precise scalar.
2725 *
2726 * The approach of starting with precise=true for all registers and then
2727 * backtrack to mark a register as not precise when the verifier detects
2728 * that program doesn't care about specific value (e.g., when helper
2729 * takes register as ARG_ANYTHING parameter) is not safe.
2730 *
2731 * It's ok to walk single parentage chain of the verifier states.
2732 * It's possible that this backtracking will go all the way till 1st insn.
2733 * All other branches will be explored for needing precision later.
2734 *
2735 * The backtracking needs to deal with cases like:
2736 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2737 * r9 -= r8
2738 * r5 = r9
2739 * if r5 > 0x79f goto pc+7
2740 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2741 * r5 += 1
2742 * ...
2743 * call bpf_perf_event_output#25
2744 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2745 *
2746 * and this case:
2747 * r6 = 1
2748 * call foo // uses callee's r6 inside to compute r0
2749 * r0 += r6
2750 * if r0 == 0 goto
2751 *
2752 * to track above reg_mask/stack_mask needs to be independent for each frame.
2753 *
2754 * Also if parent's curframe > frame where backtracking started,
2755 * the verifier need to mark registers in both frames, otherwise callees
2756 * may incorrectly prune callers. This is similar to
2757 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2758 *
2759 * For now backtracking falls back into conservative marking.
2760 */
2761static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2762 struct bpf_verifier_state *st)
2763{
2764 struct bpf_func_state *func;
2765 struct bpf_reg_state *reg;
2766 int i, j;
2767
2768 /* big hammer: mark all scalars precise in this path.
2769 * pop_stack may still get !precise scalars.
f63181b6
AN
2770 * We also skip current state and go straight to first parent state,
2771 * because precision markings in current non-checkpointed state are
2772 * not needed. See why in the comment in __mark_chain_precision below.
b5dc0163 2773 */
f63181b6 2774 for (st = st->parent; st; st = st->parent) {
b5dc0163
AS
2775 for (i = 0; i <= st->curframe; i++) {
2776 func = st->frame[i];
2777 for (j = 0; j < BPF_REG_FP; j++) {
2778 reg = &func->regs[j];
2779 if (reg->type != SCALAR_VALUE)
2780 continue;
2781 reg->precise = true;
2782 }
2783 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
27113c59 2784 if (!is_spilled_reg(&func->stack[j]))
b5dc0163
AS
2785 continue;
2786 reg = &func->stack[j].spilled_ptr;
2787 if (reg->type != SCALAR_VALUE)
2788 continue;
2789 reg->precise = true;
2790 }
2791 }
f63181b6 2792 }
b5dc0163
AS
2793}
2794
7a830b53
AN
2795static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2796{
2797 struct bpf_func_state *func;
2798 struct bpf_reg_state *reg;
2799 int i, j;
2800
2801 for (i = 0; i <= st->curframe; i++) {
2802 func = st->frame[i];
2803 for (j = 0; j < BPF_REG_FP; j++) {
2804 reg = &func->regs[j];
2805 if (reg->type != SCALAR_VALUE)
2806 continue;
2807 reg->precise = false;
2808 }
2809 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2810 if (!is_spilled_reg(&func->stack[j]))
2811 continue;
2812 reg = &func->stack[j].spilled_ptr;
2813 if (reg->type != SCALAR_VALUE)
2814 continue;
2815 reg->precise = false;
2816 }
2817 }
2818}
2819
f63181b6
AN
2820/*
2821 * __mark_chain_precision() backtracks BPF program instruction sequence and
2822 * chain of verifier states making sure that register *regno* (if regno >= 0)
2823 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
2824 * SCALARS, as well as any other registers and slots that contribute to
2825 * a tracked state of given registers/stack slots, depending on specific BPF
2826 * assembly instructions (see backtrack_insns() for exact instruction handling
2827 * logic). This backtracking relies on recorded jmp_history and is able to
2828 * traverse entire chain of parent states. This process ends only when all the
2829 * necessary registers/slots and their transitive dependencies are marked as
2830 * precise.
2831 *
2832 * One important and subtle aspect is that precise marks *do not matter* in
2833 * the currently verified state (current state). It is important to understand
2834 * why this is the case.
2835 *
2836 * First, note that current state is the state that is not yet "checkpointed",
2837 * i.e., it is not yet put into env->explored_states, and it has no children
2838 * states as well. It's ephemeral, and can end up either a) being discarded if
2839 * compatible explored state is found at some point or BPF_EXIT instruction is
2840 * reached or b) checkpointed and put into env->explored_states, branching out
2841 * into one or more children states.
2842 *
2843 * In the former case, precise markings in current state are completely
2844 * ignored by state comparison code (see regsafe() for details). Only
2845 * checkpointed ("old") state precise markings are important, and if old
2846 * state's register/slot is precise, regsafe() assumes current state's
2847 * register/slot as precise and checks value ranges exactly and precisely. If
2848 * states turn out to be compatible, current state's necessary precise
2849 * markings and any required parent states' precise markings are enforced
2850 * after the fact with propagate_precision() logic, after the fact. But it's
2851 * important to realize that in this case, even after marking current state
2852 * registers/slots as precise, we immediately discard current state. So what
2853 * actually matters is any of the precise markings propagated into current
2854 * state's parent states, which are always checkpointed (due to b) case above).
2855 * As such, for scenario a) it doesn't matter if current state has precise
2856 * markings set or not.
2857 *
2858 * Now, for the scenario b), checkpointing and forking into child(ren)
2859 * state(s). Note that before current state gets to checkpointing step, any
2860 * processed instruction always assumes precise SCALAR register/slot
2861 * knowledge: if precise value or range is useful to prune jump branch, BPF
2862 * verifier takes this opportunity enthusiastically. Similarly, when
2863 * register's value is used to calculate offset or memory address, exact
2864 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
2865 * what we mentioned above about state comparison ignoring precise markings
2866 * during state comparison, BPF verifier ignores and also assumes precise
2867 * markings *at will* during instruction verification process. But as verifier
2868 * assumes precision, it also propagates any precision dependencies across
2869 * parent states, which are not yet finalized, so can be further restricted
2870 * based on new knowledge gained from restrictions enforced by their children
2871 * states. This is so that once those parent states are finalized, i.e., when
2872 * they have no more active children state, state comparison logic in
2873 * is_state_visited() would enforce strict and precise SCALAR ranges, if
2874 * required for correctness.
2875 *
2876 * To build a bit more intuition, note also that once a state is checkpointed,
2877 * the path we took to get to that state is not important. This is crucial
2878 * property for state pruning. When state is checkpointed and finalized at
2879 * some instruction index, it can be correctly and safely used to "short
2880 * circuit" any *compatible* state that reaches exactly the same instruction
2881 * index. I.e., if we jumped to that instruction from a completely different
2882 * code path than original finalized state was derived from, it doesn't
2883 * matter, current state can be discarded because from that instruction
2884 * forward having a compatible state will ensure we will safely reach the
2885 * exit. States describe preconditions for further exploration, but completely
2886 * forget the history of how we got here.
2887 *
2888 * This also means that even if we needed precise SCALAR range to get to
2889 * finalized state, but from that point forward *that same* SCALAR register is
2890 * never used in a precise context (i.e., it's precise value is not needed for
2891 * correctness), it's correct and safe to mark such register as "imprecise"
2892 * (i.e., precise marking set to false). This is what we rely on when we do
2893 * not set precise marking in current state. If no child state requires
2894 * precision for any given SCALAR register, it's safe to dictate that it can
2895 * be imprecise. If any child state does require this register to be precise,
2896 * we'll mark it precise later retroactively during precise markings
2897 * propagation from child state to parent states.
7a830b53
AN
2898 *
2899 * Skipping precise marking setting in current state is a mild version of
2900 * relying on the above observation. But we can utilize this property even
2901 * more aggressively by proactively forgetting any precise marking in the
2902 * current state (which we inherited from the parent state), right before we
2903 * checkpoint it and branch off into new child state. This is done by
2904 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
2905 * finalized states which help in short circuiting more future states.
f63181b6 2906 */
529409ea 2907static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
a3ce685d 2908 int spi)
b5dc0163
AS
2909{
2910 struct bpf_verifier_state *st = env->cur_state;
2911 int first_idx = st->first_insn_idx;
2912 int last_idx = env->insn_idx;
2913 struct bpf_func_state *func;
2914 struct bpf_reg_state *reg;
a3ce685d
AS
2915 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2916 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2917 bool skip_first = true;
a3ce685d 2918 bool new_marks = false;
b5dc0163
AS
2919 int i, err;
2920
2c78ee89 2921 if (!env->bpf_capable)
b5dc0163
AS
2922 return 0;
2923
f63181b6
AN
2924 /* Do sanity checks against current state of register and/or stack
2925 * slot, but don't set precise flag in current state, as precision
2926 * tracking in the current state is unnecessary.
2927 */
529409ea 2928 func = st->frame[frame];
a3ce685d
AS
2929 if (regno >= 0) {
2930 reg = &func->regs[regno];
2931 if (reg->type != SCALAR_VALUE) {
2932 WARN_ONCE(1, "backtracing misuse");
2933 return -EFAULT;
2934 }
f63181b6 2935 new_marks = true;
b5dc0163 2936 }
b5dc0163 2937
a3ce685d 2938 while (spi >= 0) {
27113c59 2939 if (!is_spilled_reg(&func->stack[spi])) {
a3ce685d
AS
2940 stack_mask = 0;
2941 break;
2942 }
2943 reg = &func->stack[spi].spilled_ptr;
2944 if (reg->type != SCALAR_VALUE) {
2945 stack_mask = 0;
2946 break;
2947 }
f63181b6 2948 new_marks = true;
a3ce685d
AS
2949 break;
2950 }
2951
2952 if (!new_marks)
2953 return 0;
2954 if (!reg_mask && !stack_mask)
2955 return 0;
be2ef816 2956
b5dc0163
AS
2957 for (;;) {
2958 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2959 u32 history = st->jmp_history_cnt;
2960
496f3324 2961 if (env->log.level & BPF_LOG_LEVEL2)
b5dc0163 2962 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
be2ef816
AN
2963
2964 if (last_idx < 0) {
2965 /* we are at the entry into subprog, which
2966 * is expected for global funcs, but only if
2967 * requested precise registers are R1-R5
2968 * (which are global func's input arguments)
2969 */
2970 if (st->curframe == 0 &&
2971 st->frame[0]->subprogno > 0 &&
2972 st->frame[0]->callsite == BPF_MAIN_FUNC &&
2973 stack_mask == 0 && (reg_mask & ~0x3e) == 0) {
2974 bitmap_from_u64(mask, reg_mask);
2975 for_each_set_bit(i, mask, 32) {
2976 reg = &st->frame[0]->regs[i];
2977 if (reg->type != SCALAR_VALUE) {
2978 reg_mask &= ~(1u << i);
2979 continue;
2980 }
2981 reg->precise = true;
2982 }
2983 return 0;
2984 }
2985
2986 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n",
2987 st->frame[0]->subprogno, reg_mask, stack_mask);
2988 WARN_ONCE(1, "verifier backtracking bug");
2989 return -EFAULT;
2990 }
2991
b5dc0163
AS
2992 for (i = last_idx;;) {
2993 if (skip_first) {
2994 err = 0;
2995 skip_first = false;
2996 } else {
2997 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2998 }
2999 if (err == -ENOTSUPP) {
3000 mark_all_scalars_precise(env, st);
3001 return 0;
3002 } else if (err) {
3003 return err;
3004 }
3005 if (!reg_mask && !stack_mask)
3006 /* Found assignment(s) into tracked register in this state.
3007 * Since this state is already marked, just return.
3008 * Nothing to be tracked further in the parent state.
3009 */
3010 return 0;
3011 if (i == first_idx)
3012 break;
3013 i = get_prev_insn_idx(st, i, &history);
3014 if (i >= env->prog->len) {
3015 /* This can happen if backtracking reached insn 0
3016 * and there are still reg_mask or stack_mask
3017 * to backtrack.
3018 * It means the backtracking missed the spot where
3019 * particular register was initialized with a constant.
3020 */
3021 verbose(env, "BUG backtracking idx %d\n", i);
3022 WARN_ONCE(1, "verifier backtracking bug");
3023 return -EFAULT;
3024 }
3025 }
3026 st = st->parent;
3027 if (!st)
3028 break;
3029
a3ce685d 3030 new_marks = false;
529409ea 3031 func = st->frame[frame];
b5dc0163
AS
3032 bitmap_from_u64(mask, reg_mask);
3033 for_each_set_bit(i, mask, 32) {
3034 reg = &func->regs[i];
a3ce685d
AS
3035 if (reg->type != SCALAR_VALUE) {
3036 reg_mask &= ~(1u << i);
b5dc0163 3037 continue;
a3ce685d 3038 }
b5dc0163
AS
3039 if (!reg->precise)
3040 new_marks = true;
3041 reg->precise = true;
3042 }
3043
3044 bitmap_from_u64(mask, stack_mask);
3045 for_each_set_bit(i, mask, 64) {
3046 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
3047 /* the sequence of instructions:
3048 * 2: (bf) r3 = r10
3049 * 3: (7b) *(u64 *)(r3 -8) = r0
3050 * 4: (79) r4 = *(u64 *)(r10 -8)
3051 * doesn't contain jmps. It's backtracked
3052 * as a single block.
3053 * During backtracking insn 3 is not recognized as
3054 * stack access, so at the end of backtracking
3055 * stack slot fp-8 is still marked in stack_mask.
3056 * However the parent state may not have accessed
3057 * fp-8 and it's "unallocated" stack space.
3058 * In such case fallback to conservative.
b5dc0163 3059 */
2339cd6c
AS
3060 mark_all_scalars_precise(env, st);
3061 return 0;
b5dc0163
AS
3062 }
3063
27113c59 3064 if (!is_spilled_reg(&func->stack[i])) {
a3ce685d 3065 stack_mask &= ~(1ull << i);
b5dc0163 3066 continue;
a3ce685d 3067 }
b5dc0163 3068 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
3069 if (reg->type != SCALAR_VALUE) {
3070 stack_mask &= ~(1ull << i);
b5dc0163 3071 continue;
a3ce685d 3072 }
b5dc0163
AS
3073 if (!reg->precise)
3074 new_marks = true;
3075 reg->precise = true;
3076 }
496f3324 3077 if (env->log.level & BPF_LOG_LEVEL2) {
2e576648 3078 verbose(env, "parent %s regs=%x stack=%llx marks:",
b5dc0163
AS
3079 new_marks ? "didn't have" : "already had",
3080 reg_mask, stack_mask);
2e576648 3081 print_verifier_state(env, func, true);
b5dc0163
AS
3082 }
3083
a3ce685d
AS
3084 if (!reg_mask && !stack_mask)
3085 break;
b5dc0163
AS
3086 if (!new_marks)
3087 break;
3088
3089 last_idx = st->last_insn_idx;
3090 first_idx = st->first_insn_idx;
3091 }
3092 return 0;
3093}
3094
eb1f7f71 3095int mark_chain_precision(struct bpf_verifier_env *env, int regno)
a3ce685d 3096{
529409ea 3097 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
a3ce685d
AS
3098}
3099
529409ea 3100static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
a3ce685d 3101{
529409ea 3102 return __mark_chain_precision(env, frame, regno, -1);
a3ce685d
AS
3103}
3104
529409ea 3105static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
a3ce685d 3106{
529409ea 3107 return __mark_chain_precision(env, frame, -1, spi);
a3ce685d 3108}
b5dc0163 3109
1be7f75d
AS
3110static bool is_spillable_regtype(enum bpf_reg_type type)
3111{
c25b2ae1 3112 switch (base_type(type)) {
1be7f75d 3113 case PTR_TO_MAP_VALUE:
1be7f75d
AS
3114 case PTR_TO_STACK:
3115 case PTR_TO_CTX:
969bf05e 3116 case PTR_TO_PACKET:
de8f3a83 3117 case PTR_TO_PACKET_META:
969bf05e 3118 case PTR_TO_PACKET_END:
d58e468b 3119 case PTR_TO_FLOW_KEYS:
1be7f75d 3120 case CONST_PTR_TO_MAP:
c64b7983 3121 case PTR_TO_SOCKET:
46f8bc92 3122 case PTR_TO_SOCK_COMMON:
655a51e5 3123 case PTR_TO_TCP_SOCK:
fada7fdc 3124 case PTR_TO_XDP_SOCK:
65726b5b 3125 case PTR_TO_BTF_ID:
20b2aff4 3126 case PTR_TO_BUF:
744ea4e3 3127 case PTR_TO_MEM:
69c087ba
YS
3128 case PTR_TO_FUNC:
3129 case PTR_TO_MAP_KEY:
1be7f75d
AS
3130 return true;
3131 default:
3132 return false;
3133 }
3134}
3135
cc2b14d5
AS
3136/* Does this register contain a constant zero? */
3137static bool register_is_null(struct bpf_reg_state *reg)
3138{
3139 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
3140}
3141
f7cf25b2
AS
3142static bool register_is_const(struct bpf_reg_state *reg)
3143{
3144 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
3145}
3146
5689d49b
YS
3147static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
3148{
3149 return tnum_is_unknown(reg->var_off) &&
3150 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
3151 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
3152 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
3153 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
3154}
3155
3156static bool register_is_bounded(struct bpf_reg_state *reg)
3157{
3158 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
3159}
3160
6e7e63cb
JH
3161static bool __is_pointer_value(bool allow_ptr_leaks,
3162 const struct bpf_reg_state *reg)
3163{
3164 if (allow_ptr_leaks)
3165 return false;
3166
3167 return reg->type != SCALAR_VALUE;
3168}
3169
f7cf25b2 3170static void save_register_state(struct bpf_func_state *state,
354e8f19
MKL
3171 int spi, struct bpf_reg_state *reg,
3172 int size)
f7cf25b2
AS
3173{
3174 int i;
3175
3176 state->stack[spi].spilled_ptr = *reg;
354e8f19
MKL
3177 if (size == BPF_REG_SIZE)
3178 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
f7cf25b2 3179
354e8f19
MKL
3180 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
3181 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
f7cf25b2 3182
354e8f19
MKL
3183 /* size < 8 bytes spill */
3184 for (; i; i--)
3185 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
f7cf25b2
AS
3186}
3187
01f810ac 3188/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
3189 * stack boundary and alignment are checked in check_mem_access()
3190 */
01f810ac
AM
3191static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
3192 /* stack frame we're writing to */
3193 struct bpf_func_state *state,
3194 int off, int size, int value_regno,
3195 int insn_idx)
17a52670 3196{
f4d7e40a 3197 struct bpf_func_state *cur; /* state of the current function */
638f5b90 3198 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 3199 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 3200 struct bpf_reg_state *reg = NULL;
638f5b90 3201
c69431aa 3202 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
638f5b90
AS
3203 if (err)
3204 return err;
9c399760
AS
3205 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3206 * so it's aligned access and [off, off + size) are within stack limits
3207 */
638f5b90
AS
3208 if (!env->allow_ptr_leaks &&
3209 state->stack[spi].slot_type[0] == STACK_SPILL &&
3210 size != BPF_REG_SIZE) {
3211 verbose(env, "attempt to corrupt spilled pointer on stack\n");
3212 return -EACCES;
3213 }
17a52670 3214
f4d7e40a 3215 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
3216 if (value_regno >= 0)
3217 reg = &cur->regs[value_regno];
2039f26f
DB
3218 if (!env->bypass_spec_v4) {
3219 bool sanitize = reg && is_spillable_regtype(reg->type);
3220
3221 for (i = 0; i < size; i++) {
3222 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3223 sanitize = true;
3224 break;
3225 }
3226 }
3227
3228 if (sanitize)
3229 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3230 }
17a52670 3231
0f55f9ed 3232 mark_stack_slot_scratched(env, spi);
354e8f19 3233 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2c78ee89 3234 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
3235 if (dst_reg != BPF_REG_FP) {
3236 /* The backtracking logic can only recognize explicit
3237 * stack slot address like [fp - 8]. Other spill of
8fb33b60 3238 * scalar via different register has to be conservative.
b5dc0163
AS
3239 * Backtrack from here and mark all registers as precise
3240 * that contributed into 'reg' being a constant.
3241 */
3242 err = mark_chain_precision(env, value_regno);
3243 if (err)
3244 return err;
3245 }
354e8f19 3246 save_register_state(state, spi, reg, size);
f7cf25b2 3247 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 3248 /* register containing pointer is being spilled into stack */
9c399760 3249 if (size != BPF_REG_SIZE) {
f7cf25b2 3250 verbose_linfo(env, insn_idx, "; ");
61bd5218 3251 verbose(env, "invalid size of register spill\n");
17a52670
AS
3252 return -EACCES;
3253 }
f7cf25b2 3254 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
3255 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3256 return -EINVAL;
3257 }
354e8f19 3258 save_register_state(state, spi, reg, size);
9c399760 3259 } else {
cc2b14d5
AS
3260 u8 type = STACK_MISC;
3261
679c782d
EC
3262 /* regular write of data into stack destroys any spilled ptr */
3263 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d 3264 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
27113c59 3265 if (is_spilled_reg(&state->stack[spi]))
0bae2d4d 3266 for (i = 0; i < BPF_REG_SIZE; i++)
354e8f19 3267 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
9c399760 3268
cc2b14d5
AS
3269 /* only mark the slot as written if all 8 bytes were written
3270 * otherwise read propagation may incorrectly stop too soon
3271 * when stack slots are partially written.
3272 * This heuristic means that read propagation will be
3273 * conservative, since it will add reg_live_read marks
3274 * to stack slots all the way to first state when programs
3275 * writes+reads less than 8 bytes
3276 */
3277 if (size == BPF_REG_SIZE)
3278 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3279
3280 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
3281 if (reg && register_is_null(reg)) {
3282 /* backtracking doesn't work for STACK_ZERO yet. */
3283 err = mark_chain_precision(env, value_regno);
3284 if (err)
3285 return err;
cc2b14d5 3286 type = STACK_ZERO;
b5dc0163 3287 }
cc2b14d5 3288
0bae2d4d 3289 /* Mark slots affected by this stack write. */
9c399760 3290 for (i = 0; i < size; i++)
638f5b90 3291 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 3292 type;
17a52670
AS
3293 }
3294 return 0;
3295}
3296
01f810ac
AM
3297/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3298 * known to contain a variable offset.
3299 * This function checks whether the write is permitted and conservatively
3300 * tracks the effects of the write, considering that each stack slot in the
3301 * dynamic range is potentially written to.
3302 *
3303 * 'off' includes 'regno->off'.
3304 * 'value_regno' can be -1, meaning that an unknown value is being written to
3305 * the stack.
3306 *
3307 * Spilled pointers in range are not marked as written because we don't know
3308 * what's going to be actually written. This means that read propagation for
3309 * future reads cannot be terminated by this write.
3310 *
3311 * For privileged programs, uninitialized stack slots are considered
3312 * initialized by this write (even though we don't know exactly what offsets
3313 * are going to be written to). The idea is that we don't want the verifier to
3314 * reject future reads that access slots written to through variable offsets.
3315 */
3316static int check_stack_write_var_off(struct bpf_verifier_env *env,
3317 /* func where register points to */
3318 struct bpf_func_state *state,
3319 int ptr_regno, int off, int size,
3320 int value_regno, int insn_idx)
3321{
3322 struct bpf_func_state *cur; /* state of the current function */
3323 int min_off, max_off;
3324 int i, err;
3325 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3326 bool writing_zero = false;
3327 /* set if the fact that we're writing a zero is used to let any
3328 * stack slots remain STACK_ZERO
3329 */
3330 bool zero_used = false;
3331
3332 cur = env->cur_state->frame[env->cur_state->curframe];
3333 ptr_reg = &cur->regs[ptr_regno];
3334 min_off = ptr_reg->smin_value + off;
3335 max_off = ptr_reg->smax_value + off + size;
3336 if (value_regno >= 0)
3337 value_reg = &cur->regs[value_regno];
3338 if (value_reg && register_is_null(value_reg))
3339 writing_zero = true;
3340
c69431aa 3341 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
01f810ac
AM
3342 if (err)
3343 return err;
3344
3345
3346 /* Variable offset writes destroy any spilled pointers in range. */
3347 for (i = min_off; i < max_off; i++) {
3348 u8 new_type, *stype;
3349 int slot, spi;
3350
3351 slot = -i - 1;
3352 spi = slot / BPF_REG_SIZE;
3353 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
0f55f9ed 3354 mark_stack_slot_scratched(env, spi);
01f810ac 3355
f5e477a8
KKD
3356 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
3357 /* Reject the write if range we may write to has not
3358 * been initialized beforehand. If we didn't reject
3359 * here, the ptr status would be erased below (even
3360 * though not all slots are actually overwritten),
3361 * possibly opening the door to leaks.
3362 *
3363 * We do however catch STACK_INVALID case below, and
3364 * only allow reading possibly uninitialized memory
3365 * later for CAP_PERFMON, as the write may not happen to
3366 * that slot.
01f810ac
AM
3367 */
3368 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3369 insn_idx, i);
3370 return -EINVAL;
3371 }
3372
3373 /* Erase all spilled pointers. */
3374 state->stack[spi].spilled_ptr.type = NOT_INIT;
3375
3376 /* Update the slot type. */
3377 new_type = STACK_MISC;
3378 if (writing_zero && *stype == STACK_ZERO) {
3379 new_type = STACK_ZERO;
3380 zero_used = true;
3381 }
3382 /* If the slot is STACK_INVALID, we check whether it's OK to
3383 * pretend that it will be initialized by this write. The slot
3384 * might not actually be written to, and so if we mark it as
3385 * initialized future reads might leak uninitialized memory.
3386 * For privileged programs, we will accept such reads to slots
3387 * that may or may not be written because, if we're reject
3388 * them, the error would be too confusing.
3389 */
3390 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3391 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3392 insn_idx, i);
3393 return -EINVAL;
3394 }
3395 *stype = new_type;
3396 }
3397 if (zero_used) {
3398 /* backtracking doesn't work for STACK_ZERO yet. */
3399 err = mark_chain_precision(env, value_regno);
3400 if (err)
3401 return err;
3402 }
3403 return 0;
3404}
3405
3406/* When register 'dst_regno' is assigned some values from stack[min_off,
3407 * max_off), we set the register's type according to the types of the
3408 * respective stack slots. If all the stack values are known to be zeros, then
3409 * so is the destination reg. Otherwise, the register is considered to be
3410 * SCALAR. This function does not deal with register filling; the caller must
3411 * ensure that all spilled registers in the stack range have been marked as
3412 * read.
3413 */
3414static void mark_reg_stack_read(struct bpf_verifier_env *env,
3415 /* func where src register points to */
3416 struct bpf_func_state *ptr_state,
3417 int min_off, int max_off, int dst_regno)
3418{
3419 struct bpf_verifier_state *vstate = env->cur_state;
3420 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3421 int i, slot, spi;
3422 u8 *stype;
3423 int zeros = 0;
3424
3425 for (i = min_off; i < max_off; i++) {
3426 slot = -i - 1;
3427 spi = slot / BPF_REG_SIZE;
3428 stype = ptr_state->stack[spi].slot_type;
3429 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3430 break;
3431 zeros++;
3432 }
3433 if (zeros == max_off - min_off) {
3434 /* any access_size read into register is zero extended,
3435 * so the whole register == const_zero
3436 */
3437 __mark_reg_const_zero(&state->regs[dst_regno]);
3438 /* backtracking doesn't support STACK_ZERO yet,
3439 * so mark it precise here, so that later
3440 * backtracking can stop here.
3441 * Backtracking may not need this if this register
3442 * doesn't participate in pointer adjustment.
3443 * Forward propagation of precise flag is not
3444 * necessary either. This mark is only to stop
3445 * backtracking. Any register that contributed
3446 * to const 0 was marked precise before spill.
3447 */
3448 state->regs[dst_regno].precise = true;
3449 } else {
3450 /* have read misc data from the stack */
3451 mark_reg_unknown(env, state->regs, dst_regno);
3452 }
3453 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3454}
3455
3456/* Read the stack at 'off' and put the results into the register indicated by
3457 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3458 * spilled reg.
3459 *
3460 * 'dst_regno' can be -1, meaning that the read value is not going to a
3461 * register.
3462 *
3463 * The access is assumed to be within the current stack bounds.
3464 */
3465static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3466 /* func where src register points to */
3467 struct bpf_func_state *reg_state,
3468 int off, int size, int dst_regno)
17a52670 3469{
f4d7e40a
AS
3470 struct bpf_verifier_state *vstate = env->cur_state;
3471 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 3472 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 3473 struct bpf_reg_state *reg;
354e8f19 3474 u8 *stype, type;
17a52670 3475
f4d7e40a 3476 stype = reg_state->stack[spi].slot_type;
f7cf25b2 3477 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 3478
27113c59 3479 if (is_spilled_reg(&reg_state->stack[spi])) {
f30d4968
MKL
3480 u8 spill_size = 1;
3481
3482 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3483 spill_size++;
354e8f19 3484
f30d4968 3485 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
f7cf25b2
AS
3486 if (reg->type != SCALAR_VALUE) {
3487 verbose_linfo(env, env->insn_idx, "; ");
3488 verbose(env, "invalid size of register fill\n");
3489 return -EACCES;
3490 }
354e8f19
MKL
3491
3492 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3493 if (dst_regno < 0)
3494 return 0;
3495
f30d4968 3496 if (!(off % BPF_REG_SIZE) && size == spill_size) {
354e8f19
MKL
3497 /* The earlier check_reg_arg() has decided the
3498 * subreg_def for this insn. Save it first.
3499 */
3500 s32 subreg_def = state->regs[dst_regno].subreg_def;
3501
3502 state->regs[dst_regno] = *reg;
3503 state->regs[dst_regno].subreg_def = subreg_def;
3504 } else {
3505 for (i = 0; i < size; i++) {
3506 type = stype[(slot - i) % BPF_REG_SIZE];
3507 if (type == STACK_SPILL)
3508 continue;
3509 if (type == STACK_MISC)
3510 continue;
3511 verbose(env, "invalid read from stack off %d+%d size %d\n",
3512 off, i, size);
3513 return -EACCES;
3514 }
01f810ac 3515 mark_reg_unknown(env, state->regs, dst_regno);
f7cf25b2 3516 }
354e8f19 3517 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2 3518 return 0;
17a52670 3519 }
17a52670 3520
01f810ac 3521 if (dst_regno >= 0) {
17a52670 3522 /* restore register state from stack */
01f810ac 3523 state->regs[dst_regno] = *reg;
2f18f62e
AS
3524 /* mark reg as written since spilled pointer state likely
3525 * has its liveness marks cleared by is_state_visited()
3526 * which resets stack/reg liveness for state transitions
3527 */
01f810ac 3528 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 3529 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 3530 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
3531 * it is acceptable to use this value as a SCALAR_VALUE
3532 * (e.g. for XADD).
3533 * We must not allow unprivileged callers to do that
3534 * with spilled pointers.
3535 */
3536 verbose(env, "leaking pointer from stack off %d\n",
3537 off);
3538 return -EACCES;
dc503a8a 3539 }
f7cf25b2 3540 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670
AS
3541 } else {
3542 for (i = 0; i < size; i++) {
01f810ac
AM
3543 type = stype[(slot - i) % BPF_REG_SIZE];
3544 if (type == STACK_MISC)
cc2b14d5 3545 continue;
01f810ac 3546 if (type == STACK_ZERO)
cc2b14d5 3547 continue;
cc2b14d5
AS
3548 verbose(env, "invalid read from stack off %d+%d size %d\n",
3549 off, i, size);
3550 return -EACCES;
3551 }
f7cf25b2 3552 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
3553 if (dst_regno >= 0)
3554 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 3555 }
f7cf25b2 3556 return 0;
17a52670
AS
3557}
3558
61df10c7 3559enum bpf_access_src {
01f810ac
AM
3560 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
3561 ACCESS_HELPER = 2, /* the access is performed by a helper */
3562};
3563
3564static int check_stack_range_initialized(struct bpf_verifier_env *env,
3565 int regno, int off, int access_size,
3566 bool zero_size_allowed,
61df10c7 3567 enum bpf_access_src type,
01f810ac
AM
3568 struct bpf_call_arg_meta *meta);
3569
3570static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3571{
3572 return cur_regs(env) + regno;
3573}
3574
3575/* Read the stack at 'ptr_regno + off' and put the result into the register
3576 * 'dst_regno'.
3577 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3578 * but not its variable offset.
3579 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3580 *
3581 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3582 * filling registers (i.e. reads of spilled register cannot be detected when
3583 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3584 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3585 * offset; for a fixed offset check_stack_read_fixed_off should be used
3586 * instead.
3587 */
3588static int check_stack_read_var_off(struct bpf_verifier_env *env,
3589 int ptr_regno, int off, int size, int dst_regno)
e4298d25 3590{
01f810ac
AM
3591 /* The state of the source register. */
3592 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3593 struct bpf_func_state *ptr_state = func(env, reg);
3594 int err;
3595 int min_off, max_off;
3596
3597 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 3598 */
01f810ac
AM
3599 err = check_stack_range_initialized(env, ptr_regno, off, size,
3600 false, ACCESS_DIRECT, NULL);
3601 if (err)
3602 return err;
3603
3604 min_off = reg->smin_value + off;
3605 max_off = reg->smax_value + off;
3606 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3607 return 0;
3608}
3609
3610/* check_stack_read dispatches to check_stack_read_fixed_off or
3611 * check_stack_read_var_off.
3612 *
3613 * The caller must ensure that the offset falls within the allocated stack
3614 * bounds.
3615 *
3616 * 'dst_regno' is a register which will receive the value from the stack. It
3617 * can be -1, meaning that the read value is not going to a register.
3618 */
3619static int check_stack_read(struct bpf_verifier_env *env,
3620 int ptr_regno, int off, int size,
3621 int dst_regno)
3622{
3623 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3624 struct bpf_func_state *state = func(env, reg);
3625 int err;
3626 /* Some accesses are only permitted with a static offset. */
3627 bool var_off = !tnum_is_const(reg->var_off);
3628
3629 /* The offset is required to be static when reads don't go to a
3630 * register, in order to not leak pointers (see
3631 * check_stack_read_fixed_off).
3632 */
3633 if (dst_regno < 0 && var_off) {
e4298d25
DB
3634 char tn_buf[48];
3635
3636 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3637 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3638 tn_buf, off, size);
3639 return -EACCES;
3640 }
01f810ac
AM
3641 /* Variable offset is prohibited for unprivileged mode for simplicity
3642 * since it requires corresponding support in Spectre masking for stack
3643 * ALU. See also retrieve_ptr_limit().
3644 */
3645 if (!env->bypass_spec_v1 && var_off) {
3646 char tn_buf[48];
e4298d25 3647
01f810ac
AM
3648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3649 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3650 ptr_regno, tn_buf);
e4298d25
DB
3651 return -EACCES;
3652 }
3653
01f810ac
AM
3654 if (!var_off) {
3655 off += reg->var_off.value;
3656 err = check_stack_read_fixed_off(env, state, off, size,
3657 dst_regno);
3658 } else {
3659 /* Variable offset stack reads need more conservative handling
3660 * than fixed offset ones. Note that dst_regno >= 0 on this
3661 * branch.
3662 */
3663 err = check_stack_read_var_off(env, ptr_regno, off, size,
3664 dst_regno);
3665 }
3666 return err;
3667}
3668
3669
3670/* check_stack_write dispatches to check_stack_write_fixed_off or
3671 * check_stack_write_var_off.
3672 *
3673 * 'ptr_regno' is the register used as a pointer into the stack.
3674 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3675 * 'value_regno' is the register whose value we're writing to the stack. It can
3676 * be -1, meaning that we're not writing from a register.
3677 *
3678 * The caller must ensure that the offset falls within the maximum stack size.
3679 */
3680static int check_stack_write(struct bpf_verifier_env *env,
3681 int ptr_regno, int off, int size,
3682 int value_regno, int insn_idx)
3683{
3684 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3685 struct bpf_func_state *state = func(env, reg);
3686 int err;
3687
3688 if (tnum_is_const(reg->var_off)) {
3689 off += reg->var_off.value;
3690 err = check_stack_write_fixed_off(env, state, off, size,
3691 value_regno, insn_idx);
3692 } else {
3693 /* Variable offset stack reads need more conservative handling
3694 * than fixed offset ones.
3695 */
3696 err = check_stack_write_var_off(env, state,
3697 ptr_regno, off, size,
3698 value_regno, insn_idx);
3699 }
3700 return err;
e4298d25
DB
3701}
3702
591fe988
DB
3703static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3704 int off, int size, enum bpf_access_type type)
3705{
3706 struct bpf_reg_state *regs = cur_regs(env);
3707 struct bpf_map *map = regs[regno].map_ptr;
3708 u32 cap = bpf_map_flags_to_cap(map);
3709
3710 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3711 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3712 map->value_size, off, size);
3713 return -EACCES;
3714 }
3715
3716 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3717 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3718 map->value_size, off, size);
3719 return -EACCES;
3720 }
3721
3722 return 0;
3723}
3724
457f4436
AN
3725/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3726static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3727 int off, int size, u32 mem_size,
3728 bool zero_size_allowed)
17a52670 3729{
457f4436
AN
3730 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3731 struct bpf_reg_state *reg;
3732
3733 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3734 return 0;
17a52670 3735
457f4436
AN
3736 reg = &cur_regs(env)[regno];
3737 switch (reg->type) {
69c087ba
YS
3738 case PTR_TO_MAP_KEY:
3739 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3740 mem_size, off, size);
3741 break;
457f4436 3742 case PTR_TO_MAP_VALUE:
61bd5218 3743 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3744 mem_size, off, size);
3745 break;
3746 case PTR_TO_PACKET:
3747 case PTR_TO_PACKET_META:
3748 case PTR_TO_PACKET_END:
3749 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3750 off, size, regno, reg->id, off, mem_size);
3751 break;
3752 case PTR_TO_MEM:
3753 default:
3754 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3755 mem_size, off, size);
17a52670 3756 }
457f4436
AN
3757
3758 return -EACCES;
17a52670
AS
3759}
3760
457f4436
AN
3761/* check read/write into a memory region with possible variable offset */
3762static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3763 int off, int size, u32 mem_size,
3764 bool zero_size_allowed)
dbcfe5f7 3765{
f4d7e40a
AS
3766 struct bpf_verifier_state *vstate = env->cur_state;
3767 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3768 struct bpf_reg_state *reg = &state->regs[regno];
3769 int err;
3770
457f4436 3771 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3772 * need to try adding each of min_value and max_value to off
3773 * to make sure our theoretical access will be safe.
2e576648
CL
3774 *
3775 * The minimum value is only important with signed
dbcfe5f7
GB
3776 * comparisons where we can't assume the floor of a
3777 * value is 0. If we are using signed variables for our
3778 * index'es we need to make sure that whatever we use
3779 * will have a set floor within our range.
3780 */
b7137c4e
DB
3781 if (reg->smin_value < 0 &&
3782 (reg->smin_value == S64_MIN ||
3783 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3784 reg->smin_value + off < 0)) {
61bd5218 3785 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3786 regno);
3787 return -EACCES;
3788 }
457f4436
AN
3789 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3790 mem_size, zero_size_allowed);
dbcfe5f7 3791 if (err) {
457f4436 3792 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3793 regno);
dbcfe5f7
GB
3794 return err;
3795 }
3796
b03c9f9f
EC
3797 /* If we haven't set a max value then we need to bail since we can't be
3798 * sure we won't do bad things.
3799 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3800 */
b03c9f9f 3801 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3802 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3803 regno);
3804 return -EACCES;
3805 }
457f4436
AN
3806 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3807 mem_size, zero_size_allowed);
3808 if (err) {
3809 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3810 regno);
457f4436
AN
3811 return err;
3812 }
3813
3814 return 0;
3815}
d83525ca 3816
e9147b44
KKD
3817static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3818 const struct bpf_reg_state *reg, int regno,
3819 bool fixed_off_ok)
3820{
3821 /* Access to this pointer-typed register or passing it to a helper
3822 * is only allowed in its original, unmodified form.
3823 */
3824
3825 if (reg->off < 0) {
3826 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3827 reg_type_str(env, reg->type), regno, reg->off);
3828 return -EACCES;
3829 }
3830
3831 if (!fixed_off_ok && reg->off) {
3832 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3833 reg_type_str(env, reg->type), regno, reg->off);
3834 return -EACCES;
3835 }
3836
3837 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3838 char tn_buf[48];
3839
3840 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3841 verbose(env, "variable %s access var_off=%s disallowed\n",
3842 reg_type_str(env, reg->type), tn_buf);
3843 return -EACCES;
3844 }
3845
3846 return 0;
3847}
3848
3849int check_ptr_off_reg(struct bpf_verifier_env *env,
3850 const struct bpf_reg_state *reg, int regno)
3851{
3852 return __check_ptr_off_reg(env, reg, regno, false);
3853}
3854
61df10c7 3855static int map_kptr_match_type(struct bpf_verifier_env *env,
aa3496ac 3856 struct btf_field *kptr_field,
61df10c7
KKD
3857 struct bpf_reg_state *reg, u32 regno)
3858{
aa3496ac 3859 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
3f00c523 3860 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED;
61df10c7
KKD
3861 const char *reg_name = "";
3862
6efe152d 3863 /* Only unreferenced case accepts untrusted pointers */
aa3496ac 3864 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3865 perm_flags |= PTR_UNTRUSTED;
3866
3867 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
61df10c7
KKD
3868 goto bad_type;
3869
3870 if (!btf_is_kernel(reg->btf)) {
3871 verbose(env, "R%d must point to kernel BTF\n", regno);
3872 return -EINVAL;
3873 }
3874 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
3875 reg_name = kernel_type_name(reg->btf, reg->btf_id);
3876
c0a5a21c
KKD
3877 /* For ref_ptr case, release function check should ensure we get one
3878 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3879 * normal store of unreferenced kptr, we must ensure var_off is zero.
3880 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3881 * reg->off and reg->ref_obj_id are not needed here.
3882 */
61df10c7
KKD
3883 if (__check_ptr_off_reg(env, reg, regno, true))
3884 return -EACCES;
3885
3886 /* A full type match is needed, as BTF can be vmlinux or module BTF, and
3887 * we also need to take into account the reg->off.
3888 *
3889 * We want to support cases like:
3890 *
3891 * struct foo {
3892 * struct bar br;
3893 * struct baz bz;
3894 * };
3895 *
3896 * struct foo *v;
3897 * v = func(); // PTR_TO_BTF_ID
3898 * val->foo = v; // reg->off is zero, btf and btf_id match type
3899 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3900 * // first member type of struct after comparison fails
3901 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3902 * // to match type
3903 *
3904 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
2ab3b380
KKD
3905 * is zero. We must also ensure that btf_struct_ids_match does not walk
3906 * the struct to match type against first member of struct, i.e. reject
3907 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3908 * strict mode to true for type match.
61df10c7
KKD
3909 */
3910 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
aa3496ac
KKD
3911 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
3912 kptr_field->type == BPF_KPTR_REF))
61df10c7
KKD
3913 goto bad_type;
3914 return 0;
3915bad_type:
3916 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3917 reg_type_str(env, reg->type), reg_name);
6efe152d 3918 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
aa3496ac 3919 if (kptr_field->type == BPF_KPTR_UNREF)
6efe152d
KKD
3920 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3921 targ_name);
3922 else
3923 verbose(env, "\n");
61df10c7
KKD
3924 return -EINVAL;
3925}
3926
3927static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3928 int value_regno, int insn_idx,
aa3496ac 3929 struct btf_field *kptr_field)
61df10c7
KKD
3930{
3931 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3932 int class = BPF_CLASS(insn->code);
3933 struct bpf_reg_state *val_reg;
3934
3935 /* Things we already checked for in check_map_access and caller:
3936 * - Reject cases where variable offset may touch kptr
3937 * - size of access (must be BPF_DW)
3938 * - tnum_is_const(reg->var_off)
aa3496ac 3939 * - kptr_field->offset == off + reg->var_off.value
61df10c7
KKD
3940 */
3941 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3942 if (BPF_MODE(insn->code) != BPF_MEM) {
3943 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3944 return -EACCES;
3945 }
3946
6efe152d
KKD
3947 /* We only allow loading referenced kptr, since it will be marked as
3948 * untrusted, similar to unreferenced kptr.
3949 */
aa3496ac 3950 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
6efe152d 3951 verbose(env, "store to referenced kptr disallowed\n");
c0a5a21c
KKD
3952 return -EACCES;
3953 }
3954
61df10c7
KKD
3955 if (class == BPF_LDX) {
3956 val_reg = reg_state(env, value_regno);
3957 /* We can simply mark the value_regno receiving the pointer
3958 * value from map as PTR_TO_BTF_ID, with the correct type.
3959 */
aa3496ac
KKD
3960 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
3961 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
61df10c7
KKD
3962 /* For mark_ptr_or_null_reg */
3963 val_reg->id = ++env->id_gen;
3964 } else if (class == BPF_STX) {
3965 val_reg = reg_state(env, value_regno);
3966 if (!register_is_null(val_reg) &&
aa3496ac 3967 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
61df10c7
KKD
3968 return -EACCES;
3969 } else if (class == BPF_ST) {
3970 if (insn->imm) {
3971 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
aa3496ac 3972 kptr_field->offset);
61df10c7
KKD
3973 return -EACCES;
3974 }
3975 } else {
3976 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3977 return -EACCES;
3978 }
3979 return 0;
3980}
3981
457f4436
AN
3982/* check read/write into a map element with possible variable offset */
3983static int check_map_access(struct bpf_verifier_env *env, u32 regno,
61df10c7
KKD
3984 int off, int size, bool zero_size_allowed,
3985 enum bpf_access_src src)
457f4436
AN
3986{
3987 struct bpf_verifier_state *vstate = env->cur_state;
3988 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3989 struct bpf_reg_state *reg = &state->regs[regno];
3990 struct bpf_map *map = reg->map_ptr;
aa3496ac
KKD
3991 struct btf_record *rec;
3992 int err, i;
457f4436
AN
3993
3994 err = check_mem_region_access(env, regno, off, size, map->value_size,
3995 zero_size_allowed);
3996 if (err)
3997 return err;
3998
aa3496ac
KKD
3999 if (IS_ERR_OR_NULL(map->record))
4000 return 0;
4001 rec = map->record;
4002 for (i = 0; i < rec->cnt; i++) {
4003 struct btf_field *field = &rec->fields[i];
4004 u32 p = field->offset;
d83525ca 4005
db559117
KKD
4006 /* If any part of a field can be touched by load/store, reject
4007 * this program. To check that [x1, x2) overlaps with [y1, y2),
d83525ca
AS
4008 * it is sufficient to check x1 < y2 && y1 < x2.
4009 */
aa3496ac
KKD
4010 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
4011 p < reg->umax_value + off + size) {
4012 switch (field->type) {
4013 case BPF_KPTR_UNREF:
4014 case BPF_KPTR_REF:
61df10c7
KKD
4015 if (src != ACCESS_DIRECT) {
4016 verbose(env, "kptr cannot be accessed indirectly by helper\n");
4017 return -EACCES;
4018 }
4019 if (!tnum_is_const(reg->var_off)) {
4020 verbose(env, "kptr access cannot have variable offset\n");
4021 return -EACCES;
4022 }
4023 if (p != off + reg->var_off.value) {
4024 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
4025 p, off + reg->var_off.value);
4026 return -EACCES;
4027 }
4028 if (size != bpf_size_to_bytes(BPF_DW)) {
4029 verbose(env, "kptr access size must be BPF_DW\n");
4030 return -EACCES;
4031 }
4032 break;
aa3496ac 4033 default:
db559117
KKD
4034 verbose(env, "%s cannot be accessed directly by load/store\n",
4035 btf_field_type_name(field->type));
aa3496ac 4036 return -EACCES;
61df10c7
KKD
4037 }
4038 }
4039 }
aa3496ac 4040 return 0;
dbcfe5f7
GB
4041}
4042
969bf05e
AS
4043#define MAX_PACKET_OFF 0xffff
4044
58e2af8b 4045static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
4046 const struct bpf_call_arg_meta *meta,
4047 enum bpf_access_type t)
4acf6c0b 4048{
7e40781c
UP
4049 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
4050
4051 switch (prog_type) {
5d66fa7d 4052 /* Program types only with direct read access go here! */
3a0af8fd
TG
4053 case BPF_PROG_TYPE_LWT_IN:
4054 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 4055 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 4056 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 4057 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 4058 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
4059 if (t == BPF_WRITE)
4060 return false;
8731745e 4061 fallthrough;
5d66fa7d
DB
4062
4063 /* Program types with direct read + write access go here! */
36bbef52
DB
4064 case BPF_PROG_TYPE_SCHED_CLS:
4065 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 4066 case BPF_PROG_TYPE_XDP:
3a0af8fd 4067 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 4068 case BPF_PROG_TYPE_SK_SKB:
4f738adb 4069 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
4070 if (meta)
4071 return meta->pkt_access;
4072
4073 env->seen_direct_write = true;
4acf6c0b 4074 return true;
0d01da6a
SF
4075
4076 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
4077 if (t == BPF_WRITE)
4078 env->seen_direct_write = true;
4079
4080 return true;
4081
4acf6c0b
BB
4082 default:
4083 return false;
4084 }
4085}
4086
f1174f77 4087static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 4088 int size, bool zero_size_allowed)
f1174f77 4089{
638f5b90 4090 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
4091 struct bpf_reg_state *reg = &regs[regno];
4092 int err;
4093
4094 /* We may have added a variable offset to the packet pointer; but any
4095 * reg->range we have comes after that. We are only checking the fixed
4096 * offset.
4097 */
4098
4099 /* We don't allow negative numbers, because we aren't tracking enough
4100 * detail to prove they're safe.
4101 */
b03c9f9f 4102 if (reg->smin_value < 0) {
61bd5218 4103 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
4104 regno);
4105 return -EACCES;
4106 }
6d94e741
AS
4107
4108 err = reg->range < 0 ? -EINVAL :
4109 __check_mem_access(env, regno, off, size, reg->range,
457f4436 4110 zero_size_allowed);
f1174f77 4111 if (err) {
61bd5218 4112 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
4113 return err;
4114 }
e647815a 4115
457f4436 4116 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
4117 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
4118 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 4119 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
4120 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
4121 */
4122 env->prog->aux->max_pkt_offset =
4123 max_t(u32, env->prog->aux->max_pkt_offset,
4124 off + reg->umax_value + size - 1);
4125
f1174f77
EC
4126 return err;
4127}
4128
4129/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 4130static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 4131 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 4132 struct btf **btf, u32 *btf_id)
17a52670 4133{
f96da094
DB
4134 struct bpf_insn_access_aux info = {
4135 .reg_type = *reg_type,
9e15db66 4136 .log = &env->log,
f96da094 4137 };
31fd8581 4138
4f9218aa 4139 if (env->ops->is_valid_access &&
5e43f899 4140 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
4141 /* A non zero info.ctx_field_size indicates that this field is a
4142 * candidate for later verifier transformation to load the whole
4143 * field and then apply a mask when accessed with a narrower
4144 * access than actual ctx access size. A zero info.ctx_field_size
4145 * will only allow for whole field access and rejects any other
4146 * type of narrower access.
31fd8581 4147 */
23994631 4148 *reg_type = info.reg_type;
31fd8581 4149
c25b2ae1 4150 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 4151 *btf = info.btf;
9e15db66 4152 *btf_id = info.btf_id;
22dc4a0f 4153 } else {
9e15db66 4154 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 4155 }
32bbe007
AS
4156 /* remember the offset of last byte accessed in ctx */
4157 if (env->prog->aux->max_ctx_offset < off + size)
4158 env->prog->aux->max_ctx_offset = off + size;
17a52670 4159 return 0;
32bbe007 4160 }
17a52670 4161
61bd5218 4162 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
4163 return -EACCES;
4164}
4165
d58e468b
PP
4166static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
4167 int size)
4168{
4169 if (size < 0 || off < 0 ||
4170 (u64)off + size > sizeof(struct bpf_flow_keys)) {
4171 verbose(env, "invalid access to flow keys off=%d size=%d\n",
4172 off, size);
4173 return -EACCES;
4174 }
4175 return 0;
4176}
4177
5f456649
MKL
4178static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
4179 u32 regno, int off, int size,
4180 enum bpf_access_type t)
c64b7983
JS
4181{
4182 struct bpf_reg_state *regs = cur_regs(env);
4183 struct bpf_reg_state *reg = &regs[regno];
5f456649 4184 struct bpf_insn_access_aux info = {};
46f8bc92 4185 bool valid;
c64b7983
JS
4186
4187 if (reg->smin_value < 0) {
4188 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4189 regno);
4190 return -EACCES;
4191 }
4192
46f8bc92
MKL
4193 switch (reg->type) {
4194 case PTR_TO_SOCK_COMMON:
4195 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4196 break;
4197 case PTR_TO_SOCKET:
4198 valid = bpf_sock_is_valid_access(off, size, t, &info);
4199 break;
655a51e5
MKL
4200 case PTR_TO_TCP_SOCK:
4201 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4202 break;
fada7fdc
JL
4203 case PTR_TO_XDP_SOCK:
4204 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4205 break;
46f8bc92
MKL
4206 default:
4207 valid = false;
c64b7983
JS
4208 }
4209
5f456649 4210
46f8bc92
MKL
4211 if (valid) {
4212 env->insn_aux_data[insn_idx].ctx_field_size =
4213 info.ctx_field_size;
4214 return 0;
4215 }
4216
4217 verbose(env, "R%d invalid %s access off=%d size=%d\n",
c25b2ae1 4218 regno, reg_type_str(env, reg->type), off, size);
46f8bc92
MKL
4219
4220 return -EACCES;
c64b7983
JS
4221}
4222
4cabc5b1
DB
4223static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4224{
2a159c6f 4225 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
4226}
4227
f37a8cb8
DB
4228static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4229{
2a159c6f 4230 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 4231
46f8bc92
MKL
4232 return reg->type == PTR_TO_CTX;
4233}
4234
4235static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4236{
4237 const struct bpf_reg_state *reg = reg_state(env, regno);
4238
4239 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
4240}
4241
ca369602
DB
4242static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4243{
2a159c6f 4244 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
4245
4246 return type_is_pkt_pointer(reg->type);
4247}
4248
4b5defde
DB
4249static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4250{
4251 const struct bpf_reg_state *reg = reg_state(env, regno);
4252
4253 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4254 return reg->type == PTR_TO_FLOW_KEYS;
4255}
4256
61bd5218
JK
4257static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4258 const struct bpf_reg_state *reg,
d1174416 4259 int off, int size, bool strict)
969bf05e 4260{
f1174f77 4261 struct tnum reg_off;
e07b98d9 4262 int ip_align;
d1174416
DM
4263
4264 /* Byte size accesses are always allowed. */
4265 if (!strict || size == 1)
4266 return 0;
4267
e4eda884
DM
4268 /* For platforms that do not have a Kconfig enabling
4269 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4270 * NET_IP_ALIGN is universally set to '2'. And on platforms
4271 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4272 * to this code only in strict mode where we want to emulate
4273 * the NET_IP_ALIGN==2 checking. Therefore use an
4274 * unconditional IP align value of '2'.
e07b98d9 4275 */
e4eda884 4276 ip_align = 2;
f1174f77
EC
4277
4278 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4279 if (!tnum_is_aligned(reg_off, size)) {
4280 char tn_buf[48];
4281
4282 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
4283 verbose(env,
4284 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 4285 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
4286 return -EACCES;
4287 }
79adffcd 4288
969bf05e
AS
4289 return 0;
4290}
4291
61bd5218
JK
4292static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4293 const struct bpf_reg_state *reg,
f1174f77
EC
4294 const char *pointer_desc,
4295 int off, int size, bool strict)
79adffcd 4296{
f1174f77
EC
4297 struct tnum reg_off;
4298
4299 /* Byte size accesses are always allowed. */
4300 if (!strict || size == 1)
4301 return 0;
4302
4303 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4304 if (!tnum_is_aligned(reg_off, size)) {
4305 char tn_buf[48];
4306
4307 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4308 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 4309 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
4310 return -EACCES;
4311 }
4312
969bf05e
AS
4313 return 0;
4314}
4315
e07b98d9 4316static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
4317 const struct bpf_reg_state *reg, int off,
4318 int size, bool strict_alignment_once)
79adffcd 4319{
ca369602 4320 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 4321 const char *pointer_desc = "";
d1174416 4322
79adffcd
DB
4323 switch (reg->type) {
4324 case PTR_TO_PACKET:
de8f3a83
DB
4325 case PTR_TO_PACKET_META:
4326 /* Special case, because of NET_IP_ALIGN. Given metadata sits
4327 * right in front, treat it the very same way.
4328 */
61bd5218 4329 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
4330 case PTR_TO_FLOW_KEYS:
4331 pointer_desc = "flow keys ";
4332 break;
69c087ba
YS
4333 case PTR_TO_MAP_KEY:
4334 pointer_desc = "key ";
4335 break;
f1174f77
EC
4336 case PTR_TO_MAP_VALUE:
4337 pointer_desc = "value ";
4338 break;
4339 case PTR_TO_CTX:
4340 pointer_desc = "context ";
4341 break;
4342 case PTR_TO_STACK:
4343 pointer_desc = "stack ";
01f810ac
AM
4344 /* The stack spill tracking logic in check_stack_write_fixed_off()
4345 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
4346 * aligned.
4347 */
4348 strict = true;
f1174f77 4349 break;
c64b7983
JS
4350 case PTR_TO_SOCKET:
4351 pointer_desc = "sock ";
4352 break;
46f8bc92
MKL
4353 case PTR_TO_SOCK_COMMON:
4354 pointer_desc = "sock_common ";
4355 break;
655a51e5
MKL
4356 case PTR_TO_TCP_SOCK:
4357 pointer_desc = "tcp_sock ";
4358 break;
fada7fdc
JL
4359 case PTR_TO_XDP_SOCK:
4360 pointer_desc = "xdp_sock ";
4361 break;
79adffcd 4362 default:
f1174f77 4363 break;
79adffcd 4364 }
61bd5218
JK
4365 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4366 strict);
79adffcd
DB
4367}
4368
f4d7e40a
AS
4369static int update_stack_depth(struct bpf_verifier_env *env,
4370 const struct bpf_func_state *func,
4371 int off)
4372{
9c8105bd 4373 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
4374
4375 if (stack >= -off)
4376 return 0;
4377
4378 /* update known max for given subprogram */
9c8105bd 4379 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
4380 return 0;
4381}
f4d7e40a 4382
70a87ffe
AS
4383/* starting from main bpf function walk all instructions of the function
4384 * and recursively walk all callees that given function can call.
4385 * Ignore jump and exit insns.
4386 * Since recursion is prevented by check_cfg() this algorithm
4387 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4388 */
4389static int check_max_stack_depth(struct bpf_verifier_env *env)
4390{
9c8105bd
JW
4391 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4392 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 4393 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 4394 bool tail_call_reachable = false;
70a87ffe
AS
4395 int ret_insn[MAX_CALL_FRAMES];
4396 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 4397 int j;
f4d7e40a 4398
70a87ffe 4399process_func:
7f6e4312
MF
4400 /* protect against potential stack overflow that might happen when
4401 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4402 * depth for such case down to 256 so that the worst case scenario
4403 * would result in 8k stack size (32 which is tailcall limit * 256 =
4404 * 8k).
4405 *
4406 * To get the idea what might happen, see an example:
4407 * func1 -> sub rsp, 128
4408 * subfunc1 -> sub rsp, 256
4409 * tailcall1 -> add rsp, 256
4410 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4411 * subfunc2 -> sub rsp, 64
4412 * subfunc22 -> sub rsp, 128
4413 * tailcall2 -> add rsp, 128
4414 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4415 *
4416 * tailcall will unwind the current stack frame but it will not get rid
4417 * of caller's stack as shown on the example above.
4418 */
4419 if (idx && subprog[idx].has_tail_call && depth >= 256) {
4420 verbose(env,
4421 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4422 depth);
4423 return -EACCES;
4424 }
70a87ffe
AS
4425 /* round up to 32-bytes, since this is granularity
4426 * of interpreter stack size
4427 */
9c8105bd 4428 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 4429 if (depth > MAX_BPF_STACK) {
f4d7e40a 4430 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 4431 frame + 1, depth);
f4d7e40a
AS
4432 return -EACCES;
4433 }
70a87ffe 4434continue_func:
4cb3d99c 4435 subprog_end = subprog[idx + 1].start;
70a87ffe 4436 for (; i < subprog_end; i++) {
7ddc80a4
AS
4437 int next_insn;
4438
69c087ba 4439 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
4440 continue;
4441 /* remember insn and function to return to */
4442 ret_insn[frame] = i + 1;
9c8105bd 4443 ret_prog[frame] = idx;
70a87ffe
AS
4444
4445 /* find the callee */
7ddc80a4
AS
4446 next_insn = i + insn[i].imm + 1;
4447 idx = find_subprog(env, next_insn);
9c8105bd 4448 if (idx < 0) {
70a87ffe 4449 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7ddc80a4 4450 next_insn);
70a87ffe
AS
4451 return -EFAULT;
4452 }
7ddc80a4
AS
4453 if (subprog[idx].is_async_cb) {
4454 if (subprog[idx].has_tail_call) {
4455 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4456 return -EFAULT;
4457 }
4458 /* async callbacks don't increase bpf prog stack size */
4459 continue;
4460 }
4461 i = next_insn;
ebf7d1f5
MF
4462
4463 if (subprog[idx].has_tail_call)
4464 tail_call_reachable = true;
4465
70a87ffe
AS
4466 frame++;
4467 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
4468 verbose(env, "the call stack of %d frames is too deep !\n",
4469 frame);
4470 return -E2BIG;
70a87ffe
AS
4471 }
4472 goto process_func;
4473 }
ebf7d1f5
MF
4474 /* if tail call got detected across bpf2bpf calls then mark each of the
4475 * currently present subprog frames as tail call reachable subprogs;
4476 * this info will be utilized by JIT so that we will be preserving the
4477 * tail call counter throughout bpf2bpf calls combined with tailcalls
4478 */
4479 if (tail_call_reachable)
4480 for (j = 0; j < frame; j++)
4481 subprog[ret_prog[j]].tail_call_reachable = true;
5dd0a6b8
DB
4482 if (subprog[0].tail_call_reachable)
4483 env->prog->aux->tail_call_reachable = true;
ebf7d1f5 4484
70a87ffe
AS
4485 /* end of for() loop means the last insn of the 'subprog'
4486 * was reached. Doesn't matter whether it was JA or EXIT
4487 */
4488 if (frame == 0)
4489 return 0;
9c8105bd 4490 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
4491 frame--;
4492 i = ret_insn[frame];
9c8105bd 4493 idx = ret_prog[frame];
70a87ffe 4494 goto continue_func;
f4d7e40a
AS
4495}
4496
19d28fbd 4497#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
4498static int get_callee_stack_depth(struct bpf_verifier_env *env,
4499 const struct bpf_insn *insn, int idx)
4500{
4501 int start = idx + insn->imm + 1, subprog;
4502
4503 subprog = find_subprog(env, start);
4504 if (subprog < 0) {
4505 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4506 start);
4507 return -EFAULT;
4508 }
9c8105bd 4509 return env->subprog_info[subprog].stack_depth;
1ea47e01 4510}
19d28fbd 4511#endif
1ea47e01 4512
afbf21dc
YS
4513static int __check_buffer_access(struct bpf_verifier_env *env,
4514 const char *buf_info,
4515 const struct bpf_reg_state *reg,
4516 int regno, int off, int size)
9df1c28b
MM
4517{
4518 if (off < 0) {
4519 verbose(env,
4fc00b79 4520 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 4521 regno, buf_info, off, size);
9df1c28b
MM
4522 return -EACCES;
4523 }
4524 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4525 char tn_buf[48];
4526
4527 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4528 verbose(env,
4fc00b79 4529 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
4530 regno, off, tn_buf);
4531 return -EACCES;
4532 }
afbf21dc
YS
4533
4534 return 0;
4535}
4536
4537static int check_tp_buffer_access(struct bpf_verifier_env *env,
4538 const struct bpf_reg_state *reg,
4539 int regno, int off, int size)
4540{
4541 int err;
4542
4543 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4544 if (err)
4545 return err;
4546
9df1c28b
MM
4547 if (off + size > env->prog->aux->max_tp_access)
4548 env->prog->aux->max_tp_access = off + size;
4549
4550 return 0;
4551}
4552
afbf21dc
YS
4553static int check_buffer_access(struct bpf_verifier_env *env,
4554 const struct bpf_reg_state *reg,
4555 int regno, int off, int size,
4556 bool zero_size_allowed,
afbf21dc
YS
4557 u32 *max_access)
4558{
44e9a741 4559 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
afbf21dc
YS
4560 int err;
4561
4562 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4563 if (err)
4564 return err;
4565
4566 if (off + size > *max_access)
4567 *max_access = off + size;
4568
4569 return 0;
4570}
4571
3f50f132
JF
4572/* BPF architecture zero extends alu32 ops into 64-bit registesr */
4573static void zext_32_to_64(struct bpf_reg_state *reg)
4574{
4575 reg->var_off = tnum_subreg(reg->var_off);
4576 __reg_assign_32_into_64(reg);
4577}
9df1c28b 4578
0c17d1d2
JH
4579/* truncate register to smaller size (in bytes)
4580 * must be called with size < BPF_REG_SIZE
4581 */
4582static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4583{
4584 u64 mask;
4585
4586 /* clear high bits in bit representation */
4587 reg->var_off = tnum_cast(reg->var_off, size);
4588
4589 /* fix arithmetic bounds */
4590 mask = ((u64)1 << (size * 8)) - 1;
4591 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4592 reg->umin_value &= mask;
4593 reg->umax_value &= mask;
4594 } else {
4595 reg->umin_value = 0;
4596 reg->umax_value = mask;
4597 }
4598 reg->smin_value = reg->umin_value;
4599 reg->smax_value = reg->umax_value;
3f50f132
JF
4600
4601 /* If size is smaller than 32bit register the 32bit register
4602 * values are also truncated so we push 64-bit bounds into
4603 * 32-bit bounds. Above were truncated < 32-bits already.
4604 */
4605 if (size >= 4)
4606 return;
4607 __reg_combine_64_into_32(reg);
0c17d1d2
JH
4608}
4609
a23740ec
AN
4610static bool bpf_map_is_rdonly(const struct bpf_map *map)
4611{
353050be
DB
4612 /* A map is considered read-only if the following condition are true:
4613 *
4614 * 1) BPF program side cannot change any of the map content. The
4615 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4616 * and was set at map creation time.
4617 * 2) The map value(s) have been initialized from user space by a
4618 * loader and then "frozen", such that no new map update/delete
4619 * operations from syscall side are possible for the rest of
4620 * the map's lifetime from that point onwards.
4621 * 3) Any parallel/pending map update/delete operations from syscall
4622 * side have been completed. Only after that point, it's safe to
4623 * assume that map value(s) are immutable.
4624 */
4625 return (map->map_flags & BPF_F_RDONLY_PROG) &&
4626 READ_ONCE(map->frozen) &&
4627 !bpf_map_write_active(map);
a23740ec
AN
4628}
4629
4630static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4631{
4632 void *ptr;
4633 u64 addr;
4634 int err;
4635
4636 err = map->ops->map_direct_value_addr(map, &addr, off);
4637 if (err)
4638 return err;
2dedd7d2 4639 ptr = (void *)(long)addr + off;
a23740ec
AN
4640
4641 switch (size) {
4642 case sizeof(u8):
4643 *val = (u64)*(u8 *)ptr;
4644 break;
4645 case sizeof(u16):
4646 *val = (u64)*(u16 *)ptr;
4647 break;
4648 case sizeof(u32):
4649 *val = (u64)*(u32 *)ptr;
4650 break;
4651 case sizeof(u64):
4652 *val = *(u64 *)ptr;
4653 break;
4654 default:
4655 return -EINVAL;
4656 }
4657 return 0;
4658}
4659
9e15db66
AS
4660static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4661 struct bpf_reg_state *regs,
4662 int regno, int off, int size,
4663 enum bpf_access_type atype,
4664 int value_regno)
4665{
4666 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
4667 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4668 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
c6f1bfe8 4669 enum bpf_type_flag flag = 0;
9e15db66
AS
4670 u32 btf_id;
4671 int ret;
4672
9e15db66
AS
4673 if (off < 0) {
4674 verbose(env,
4675 "R%d is ptr_%s invalid negative access: off=%d\n",
4676 regno, tname, off);
4677 return -EACCES;
4678 }
4679 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4680 char tn_buf[48];
4681
4682 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4683 verbose(env,
4684 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4685 regno, tname, off, tn_buf);
4686 return -EACCES;
4687 }
4688
c6f1bfe8
YS
4689 if (reg->type & MEM_USER) {
4690 verbose(env,
4691 "R%d is ptr_%s access user memory: off=%d\n",
4692 regno, tname, off);
4693 return -EACCES;
4694 }
4695
5844101a
HL
4696 if (reg->type & MEM_PERCPU) {
4697 verbose(env,
4698 "R%d is ptr_%s access percpu memory: off=%d\n",
4699 regno, tname, off);
4700 return -EACCES;
4701 }
4702
282de143
KKD
4703 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) {
4704 if (!btf_is_kernel(reg->btf)) {
4705 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
4706 return -EFAULT;
4707 }
6728aea7 4708 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997 4709 } else {
282de143
KKD
4710 /* Writes are permitted with default btf_struct_access for
4711 * program allocated objects (which always have ref_obj_id > 0),
4712 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
4713 */
4714 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
27ae7997
MKL
4715 verbose(env, "only read is supported\n");
4716 return -EACCES;
4717 }
4718
282de143
KKD
4719 if (type_is_alloc(reg->type) && !reg->ref_obj_id) {
4720 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
4721 return -EFAULT;
4722 }
4723
6728aea7 4724 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag);
27ae7997
MKL
4725 }
4726
9e15db66
AS
4727 if (ret < 0)
4728 return ret;
4729
6efe152d
KKD
4730 /* If this is an untrusted pointer, all pointers formed by walking it
4731 * also inherit the untrusted flag.
4732 */
4733 if (type_flag(reg->type) & PTR_UNTRUSTED)
4734 flag |= PTR_UNTRUSTED;
4735
3f00c523
DV
4736 /* Any pointer obtained from walking a trusted pointer is no longer trusted. */
4737 flag &= ~PTR_TRUSTED;
4738
41c48f3a 4739 if (atype == BPF_READ && value_regno >= 0)
c6f1bfe8 4740 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
41c48f3a
AI
4741
4742 return 0;
4743}
4744
4745static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4746 struct bpf_reg_state *regs,
4747 int regno, int off, int size,
4748 enum bpf_access_type atype,
4749 int value_regno)
4750{
4751 struct bpf_reg_state *reg = regs + regno;
4752 struct bpf_map *map = reg->map_ptr;
6728aea7 4753 struct bpf_reg_state map_reg;
c6f1bfe8 4754 enum bpf_type_flag flag = 0;
41c48f3a
AI
4755 const struct btf_type *t;
4756 const char *tname;
4757 u32 btf_id;
4758 int ret;
4759
4760 if (!btf_vmlinux) {
4761 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4762 return -ENOTSUPP;
4763 }
4764
4765 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4766 verbose(env, "map_ptr access not supported for map type %d\n",
4767 map->map_type);
4768 return -ENOTSUPP;
4769 }
4770
4771 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4772 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4773
4774 if (!env->allow_ptr_to_map_access) {
4775 verbose(env,
4776 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4777 tname);
4778 return -EPERM;
9e15db66 4779 }
27ae7997 4780
41c48f3a
AI
4781 if (off < 0) {
4782 verbose(env, "R%d is %s invalid negative access: off=%d\n",
4783 regno, tname, off);
4784 return -EACCES;
4785 }
4786
4787 if (atype != BPF_READ) {
4788 verbose(env, "only read from %s is supported\n", tname);
4789 return -EACCES;
4790 }
4791
6728aea7
KKD
4792 /* Simulate access to a PTR_TO_BTF_ID */
4793 memset(&map_reg, 0, sizeof(map_reg));
4794 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
4795 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag);
41c48f3a
AI
4796 if (ret < 0)
4797 return ret;
4798
4799 if (value_regno >= 0)
c6f1bfe8 4800 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
41c48f3a 4801
9e15db66
AS
4802 return 0;
4803}
4804
01f810ac
AM
4805/* Check that the stack access at the given offset is within bounds. The
4806 * maximum valid offset is -1.
4807 *
4808 * The minimum valid offset is -MAX_BPF_STACK for writes, and
4809 * -state->allocated_stack for reads.
4810 */
4811static int check_stack_slot_within_bounds(int off,
4812 struct bpf_func_state *state,
4813 enum bpf_access_type t)
4814{
4815 int min_valid_off;
4816
4817 if (t == BPF_WRITE)
4818 min_valid_off = -MAX_BPF_STACK;
4819 else
4820 min_valid_off = -state->allocated_stack;
4821
4822 if (off < min_valid_off || off > -1)
4823 return -EACCES;
4824 return 0;
4825}
4826
4827/* Check that the stack access at 'regno + off' falls within the maximum stack
4828 * bounds.
4829 *
4830 * 'off' includes `regno->offset`, but not its dynamic part (if any).
4831 */
4832static int check_stack_access_within_bounds(
4833 struct bpf_verifier_env *env,
4834 int regno, int off, int access_size,
61df10c7 4835 enum bpf_access_src src, enum bpf_access_type type)
01f810ac
AM
4836{
4837 struct bpf_reg_state *regs = cur_regs(env);
4838 struct bpf_reg_state *reg = regs + regno;
4839 struct bpf_func_state *state = func(env, reg);
4840 int min_off, max_off;
4841 int err;
4842 char *err_extra;
4843
4844 if (src == ACCESS_HELPER)
4845 /* We don't know if helpers are reading or writing (or both). */
4846 err_extra = " indirect access to";
4847 else if (type == BPF_READ)
4848 err_extra = " read from";
4849 else
4850 err_extra = " write to";
4851
4852 if (tnum_is_const(reg->var_off)) {
4853 min_off = reg->var_off.value + off;
4854 if (access_size > 0)
4855 max_off = min_off + access_size - 1;
4856 else
4857 max_off = min_off;
4858 } else {
4859 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4860 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4861 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4862 err_extra, regno);
4863 return -EACCES;
4864 }
4865 min_off = reg->smin_value + off;
4866 if (access_size > 0)
4867 max_off = reg->smax_value + off + access_size - 1;
4868 else
4869 max_off = min_off;
4870 }
4871
4872 err = check_stack_slot_within_bounds(min_off, state, type);
4873 if (!err)
4874 err = check_stack_slot_within_bounds(max_off, state, type);
4875
4876 if (err) {
4877 if (tnum_is_const(reg->var_off)) {
4878 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4879 err_extra, regno, off, access_size);
4880 } else {
4881 char tn_buf[48];
4882
4883 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4884 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4885 err_extra, regno, tn_buf, access_size);
4886 }
4887 }
4888 return err;
4889}
41c48f3a 4890
17a52670
AS
4891/* check whether memory at (regno + off) is accessible for t = (read | write)
4892 * if t==write, value_regno is a register which value is stored into memory
4893 * if t==read, value_regno is a register which will receive the value from memory
4894 * if t==write && value_regno==-1, some unknown value is stored into memory
4895 * if t==read && value_regno==-1, don't care what we read from memory
4896 */
ca369602
DB
4897static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4898 int off, int bpf_size, enum bpf_access_type t,
4899 int value_regno, bool strict_alignment_once)
17a52670 4900{
638f5b90
AS
4901 struct bpf_reg_state *regs = cur_regs(env);
4902 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4903 struct bpf_func_state *state;
17a52670
AS
4904 int size, err = 0;
4905
4906 size = bpf_size_to_bytes(bpf_size);
4907 if (size < 0)
4908 return size;
4909
f1174f77 4910 /* alignment checks will add in reg->off themselves */
ca369602 4911 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4912 if (err)
4913 return err;
17a52670 4914
f1174f77
EC
4915 /* for access checks, reg->off is just part of off */
4916 off += reg->off;
4917
69c087ba
YS
4918 if (reg->type == PTR_TO_MAP_KEY) {
4919 if (t == BPF_WRITE) {
4920 verbose(env, "write to change key R%d not allowed\n", regno);
4921 return -EACCES;
4922 }
4923
4924 err = check_mem_region_access(env, regno, off, size,
4925 reg->map_ptr->key_size, false);
4926 if (err)
4927 return err;
4928 if (value_regno >= 0)
4929 mark_reg_unknown(env, regs, value_regno);
4930 } else if (reg->type == PTR_TO_MAP_VALUE) {
aa3496ac 4931 struct btf_field *kptr_field = NULL;
61df10c7 4932
1be7f75d
AS
4933 if (t == BPF_WRITE && value_regno >= 0 &&
4934 is_pointer_value(env, value_regno)) {
61bd5218 4935 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4936 return -EACCES;
4937 }
591fe988
DB
4938 err = check_map_access_type(env, regno, off, size, t);
4939 if (err)
4940 return err;
61df10c7
KKD
4941 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4942 if (err)
4943 return err;
4944 if (tnum_is_const(reg->var_off))
aa3496ac
KKD
4945 kptr_field = btf_record_find(reg->map_ptr->record,
4946 off + reg->var_off.value, BPF_KPTR);
4947 if (kptr_field) {
4948 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
61df10c7 4949 } else if (t == BPF_READ && value_regno >= 0) {
a23740ec
AN
4950 struct bpf_map *map = reg->map_ptr;
4951
4952 /* if map is read-only, track its contents as scalars */
4953 if (tnum_is_const(reg->var_off) &&
4954 bpf_map_is_rdonly(map) &&
4955 map->ops->map_direct_value_addr) {
4956 int map_off = off + reg->var_off.value;
4957 u64 val = 0;
4958
4959 err = bpf_map_direct_read(map, map_off, size,
4960 &val);
4961 if (err)
4962 return err;
4963
4964 regs[value_regno].type = SCALAR_VALUE;
4965 __mark_reg_known(&regs[value_regno], val);
4966 } else {
4967 mark_reg_unknown(env, regs, value_regno);
4968 }
4969 }
34d3a78c
HL
4970 } else if (base_type(reg->type) == PTR_TO_MEM) {
4971 bool rdonly_mem = type_is_rdonly_mem(reg->type);
4972
4973 if (type_may_be_null(reg->type)) {
4974 verbose(env, "R%d invalid mem access '%s'\n", regno,
4975 reg_type_str(env, reg->type));
4976 return -EACCES;
4977 }
4978
4979 if (t == BPF_WRITE && rdonly_mem) {
4980 verbose(env, "R%d cannot write into %s\n",
4981 regno, reg_type_str(env, reg->type));
4982 return -EACCES;
4983 }
4984
457f4436
AN
4985 if (t == BPF_WRITE && value_regno >= 0 &&
4986 is_pointer_value(env, value_regno)) {
4987 verbose(env, "R%d leaks addr into mem\n", value_regno);
4988 return -EACCES;
4989 }
34d3a78c 4990
457f4436
AN
4991 err = check_mem_region_access(env, regno, off, size,
4992 reg->mem_size, false);
34d3a78c 4993 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
457f4436 4994 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4995 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4996 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4997 struct btf *btf = NULL;
9e15db66 4998 u32 btf_id = 0;
19de99f7 4999
1be7f75d
AS
5000 if (t == BPF_WRITE && value_regno >= 0 &&
5001 is_pointer_value(env, value_regno)) {
61bd5218 5002 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
5003 return -EACCES;
5004 }
f1174f77 5005
be80a1d3 5006 err = check_ptr_off_reg(env, reg, regno);
58990d1f
DB
5007 if (err < 0)
5008 return err;
5009
c6f1bfe8
YS
5010 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
5011 &btf_id);
9e15db66
AS
5012 if (err)
5013 verbose_linfo(env, insn_idx, "; ");
969bf05e 5014 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 5015 /* ctx access returns either a scalar, or a
de8f3a83
DB
5016 * PTR_TO_PACKET[_META,_END]. In the latter
5017 * case, we know the offset is zero.
f1174f77 5018 */
46f8bc92 5019 if (reg_type == SCALAR_VALUE) {
638f5b90 5020 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5021 } else {
638f5b90 5022 mark_reg_known_zero(env, regs,
61bd5218 5023 value_regno);
c25b2ae1 5024 if (type_may_be_null(reg_type))
46f8bc92 5025 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
5026 /* A load of ctx field could have different
5027 * actual load size with the one encoded in the
5028 * insn. When the dst is PTR, it is for sure not
5029 * a sub-register.
5030 */
5031 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
c25b2ae1 5032 if (base_type(reg_type) == PTR_TO_BTF_ID) {
22dc4a0f 5033 regs[value_regno].btf = btf;
9e15db66 5034 regs[value_regno].btf_id = btf_id;
22dc4a0f 5035 }
46f8bc92 5036 }
638f5b90 5037 regs[value_regno].type = reg_type;
969bf05e 5038 }
17a52670 5039
f1174f77 5040 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
5041 /* Basic bounds checks. */
5042 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
5043 if (err)
5044 return err;
8726679a 5045
f4d7e40a
AS
5046 state = func(env, reg);
5047 err = update_stack_depth(env, state, off);
5048 if (err)
5049 return err;
8726679a 5050
01f810ac
AM
5051 if (t == BPF_READ)
5052 err = check_stack_read(env, regno, off, size,
61bd5218 5053 value_regno);
01f810ac
AM
5054 else
5055 err = check_stack_write(env, regno, off, size,
5056 value_regno, insn_idx);
de8f3a83 5057 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 5058 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 5059 verbose(env, "cannot write into packet\n");
969bf05e
AS
5060 return -EACCES;
5061 }
4acf6c0b
BB
5062 if (t == BPF_WRITE && value_regno >= 0 &&
5063 is_pointer_value(env, value_regno)) {
61bd5218
JK
5064 verbose(env, "R%d leaks addr into packet\n",
5065 value_regno);
4acf6c0b
BB
5066 return -EACCES;
5067 }
9fd29c08 5068 err = check_packet_access(env, regno, off, size, false);
969bf05e 5069 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 5070 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
5071 } else if (reg->type == PTR_TO_FLOW_KEYS) {
5072 if (t == BPF_WRITE && value_regno >= 0 &&
5073 is_pointer_value(env, value_regno)) {
5074 verbose(env, "R%d leaks addr into flow keys\n",
5075 value_regno);
5076 return -EACCES;
5077 }
5078
5079 err = check_flow_keys_access(env, off, size);
5080 if (!err && t == BPF_READ && value_regno >= 0)
5081 mark_reg_unknown(env, regs, value_regno);
46f8bc92 5082 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 5083 if (t == BPF_WRITE) {
46f8bc92 5084 verbose(env, "R%d cannot write into %s\n",
c25b2ae1 5085 regno, reg_type_str(env, reg->type));
c64b7983
JS
5086 return -EACCES;
5087 }
5f456649 5088 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
5089 if (!err && value_regno >= 0)
5090 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
5091 } else if (reg->type == PTR_TO_TP_BUFFER) {
5092 err = check_tp_buffer_access(env, reg, regno, off, size);
5093 if (!err && t == BPF_READ && value_regno >= 0)
5094 mark_reg_unknown(env, regs, value_regno);
bff61f6f
HL
5095 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
5096 !type_may_be_null(reg->type)) {
9e15db66
AS
5097 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
5098 value_regno);
41c48f3a
AI
5099 } else if (reg->type == CONST_PTR_TO_MAP) {
5100 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
5101 value_regno);
20b2aff4
HL
5102 } else if (base_type(reg->type) == PTR_TO_BUF) {
5103 bool rdonly_mem = type_is_rdonly_mem(reg->type);
20b2aff4
HL
5104 u32 *max_access;
5105
5106 if (rdonly_mem) {
5107 if (t == BPF_WRITE) {
5108 verbose(env, "R%d cannot write into %s\n",
5109 regno, reg_type_str(env, reg->type));
5110 return -EACCES;
5111 }
20b2aff4
HL
5112 max_access = &env->prog->aux->max_rdonly_access;
5113 } else {
20b2aff4 5114 max_access = &env->prog->aux->max_rdwr_access;
afbf21dc 5115 }
20b2aff4 5116
f6dfbe31 5117 err = check_buffer_access(env, reg, regno, off, size, false,
44e9a741 5118 max_access);
20b2aff4
HL
5119
5120 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
afbf21dc 5121 mark_reg_unknown(env, regs, value_regno);
17a52670 5122 } else {
61bd5218 5123 verbose(env, "R%d invalid mem access '%s'\n", regno,
c25b2ae1 5124 reg_type_str(env, reg->type));
17a52670
AS
5125 return -EACCES;
5126 }
969bf05e 5127
f1174f77 5128 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 5129 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 5130 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 5131 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 5132 }
17a52670
AS
5133 return err;
5134}
5135
91c960b0 5136static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 5137{
5ffa2550 5138 int load_reg;
17a52670
AS
5139 int err;
5140
5ca419f2
BJ
5141 switch (insn->imm) {
5142 case BPF_ADD:
5143 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
5144 case BPF_AND:
5145 case BPF_AND | BPF_FETCH:
5146 case BPF_OR:
5147 case BPF_OR | BPF_FETCH:
5148 case BPF_XOR:
5149 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
5150 case BPF_XCHG:
5151 case BPF_CMPXCHG:
5ca419f2
BJ
5152 break;
5153 default:
91c960b0
BJ
5154 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
5155 return -EINVAL;
5156 }
5157
5158 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
5159 verbose(env, "invalid atomic operand size\n");
17a52670
AS
5160 return -EINVAL;
5161 }
5162
5163 /* check src1 operand */
dc503a8a 5164 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5165 if (err)
5166 return err;
5167
5168 /* check src2 operand */
dc503a8a 5169 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5170 if (err)
5171 return err;
5172
5ffa2550
BJ
5173 if (insn->imm == BPF_CMPXCHG) {
5174 /* Check comparison of R0 with memory location */
a82fe085
DB
5175 const u32 aux_reg = BPF_REG_0;
5176
5177 err = check_reg_arg(env, aux_reg, SRC_OP);
5ffa2550
BJ
5178 if (err)
5179 return err;
a82fe085
DB
5180
5181 if (is_pointer_value(env, aux_reg)) {
5182 verbose(env, "R%d leaks addr into mem\n", aux_reg);
5183 return -EACCES;
5184 }
5ffa2550
BJ
5185 }
5186
6bdf6abc 5187 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5188 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
5189 return -EACCES;
5190 }
5191
ca369602 5192 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 5193 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
5194 is_flow_key_reg(env, insn->dst_reg) ||
5195 is_sk_reg(env, insn->dst_reg)) {
91c960b0 5196 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f 5197 insn->dst_reg,
c25b2ae1 5198 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
5199 return -EACCES;
5200 }
5201
37086bfd
BJ
5202 if (insn->imm & BPF_FETCH) {
5203 if (insn->imm == BPF_CMPXCHG)
5204 load_reg = BPF_REG_0;
5205 else
5206 load_reg = insn->src_reg;
5207
5208 /* check and record load of old value */
5209 err = check_reg_arg(env, load_reg, DST_OP);
5210 if (err)
5211 return err;
5212 } else {
5213 /* This instruction accesses a memory location but doesn't
5214 * actually load it into a register.
5215 */
5216 load_reg = -1;
5217 }
5218
7d3baf0a
DB
5219 /* Check whether we can read the memory, with second call for fetch
5220 * case to simulate the register fill.
5221 */
31fd8581 5222 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7d3baf0a
DB
5223 BPF_SIZE(insn->code), BPF_READ, -1, true);
5224 if (!err && load_reg >= 0)
5225 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5226 BPF_SIZE(insn->code), BPF_READ, load_reg,
5227 true);
17a52670
AS
5228 if (err)
5229 return err;
5230
7d3baf0a 5231 /* Check whether we can write into the same memory. */
5ca419f2
BJ
5232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5233 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5234 if (err)
5235 return err;
5236
5ca419f2 5237 return 0;
17a52670
AS
5238}
5239
01f810ac
AM
5240/* When register 'regno' is used to read the stack (either directly or through
5241 * a helper function) make sure that it's within stack boundary and, depending
5242 * on the access type, that all elements of the stack are initialized.
5243 *
5244 * 'off' includes 'regno->off', but not its dynamic part (if any).
5245 *
5246 * All registers that have been spilled on the stack in the slots within the
5247 * read offsets are marked as read.
5248 */
5249static int check_stack_range_initialized(
5250 struct bpf_verifier_env *env, int regno, int off,
5251 int access_size, bool zero_size_allowed,
61df10c7 5252 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
5253{
5254 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
5255 struct bpf_func_state *state = func(env, reg);
5256 int err, min_off, max_off, i, j, slot, spi;
5257 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5258 enum bpf_access_type bounds_check_type;
5259 /* Some accesses can write anything into the stack, others are
5260 * read-only.
5261 */
5262 bool clobber = false;
2011fccf 5263
01f810ac
AM
5264 if (access_size == 0 && !zero_size_allowed) {
5265 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
5266 return -EACCES;
5267 }
2011fccf 5268
01f810ac
AM
5269 if (type == ACCESS_HELPER) {
5270 /* The bounds checks for writes are more permissive than for
5271 * reads. However, if raw_mode is not set, we'll do extra
5272 * checks below.
5273 */
5274 bounds_check_type = BPF_WRITE;
5275 clobber = true;
5276 } else {
5277 bounds_check_type = BPF_READ;
5278 }
5279 err = check_stack_access_within_bounds(env, regno, off, access_size,
5280 type, bounds_check_type);
5281 if (err)
5282 return err;
5283
17a52670 5284
2011fccf 5285 if (tnum_is_const(reg->var_off)) {
01f810ac 5286 min_off = max_off = reg->var_off.value + off;
2011fccf 5287 } else {
088ec26d
AI
5288 /* Variable offset is prohibited for unprivileged mode for
5289 * simplicity since it requires corresponding support in
5290 * Spectre masking for stack ALU.
5291 * See also retrieve_ptr_limit().
5292 */
2c78ee89 5293 if (!env->bypass_spec_v1) {
088ec26d 5294 char tn_buf[48];
f1174f77 5295
088ec26d 5296 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5297 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5298 regno, err_extra, tn_buf);
088ec26d
AI
5299 return -EACCES;
5300 }
f2bcd05e
AI
5301 /* Only initialized buffer on stack is allowed to be accessed
5302 * with variable offset. With uninitialized buffer it's hard to
5303 * guarantee that whole memory is marked as initialized on
5304 * helper return since specific bounds are unknown what may
5305 * cause uninitialized stack leaking.
5306 */
5307 if (meta && meta->raw_mode)
5308 meta = NULL;
5309
01f810ac
AM
5310 min_off = reg->smin_value + off;
5311 max_off = reg->smax_value + off;
17a52670
AS
5312 }
5313
435faee1
DB
5314 if (meta && meta->raw_mode) {
5315 meta->access_size = access_size;
5316 meta->regno = regno;
5317 return 0;
5318 }
5319
2011fccf 5320 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
5321 u8 *stype;
5322
2011fccf 5323 slot = -i - 1;
638f5b90 5324 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
5325 if (state->allocated_stack <= slot)
5326 goto err;
5327 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5328 if (*stype == STACK_MISC)
5329 goto mark;
5330 if (*stype == STACK_ZERO) {
01f810ac
AM
5331 if (clobber) {
5332 /* helper can write anything into the stack */
5333 *stype = STACK_MISC;
5334 }
cc2b14d5 5335 goto mark;
17a52670 5336 }
1d68f22b 5337
27113c59 5338 if (is_spilled_reg(&state->stack[spi]) &&
cd17d38f
YS
5339 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5340 env->allow_ptr_leaks)) {
01f810ac
AM
5341 if (clobber) {
5342 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5343 for (j = 0; j < BPF_REG_SIZE; j++)
354e8f19 5344 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
01f810ac 5345 }
f7cf25b2
AS
5346 goto mark;
5347 }
5348
cc2b14d5 5349err:
2011fccf 5350 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
5351 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5352 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
5353 } else {
5354 char tn_buf[48];
5355
5356 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
5357 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5358 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 5359 }
cc2b14d5
AS
5360 return -EACCES;
5361mark:
5362 /* reading any byte out of 8-byte 'spill_slot' will cause
5363 * the whole slot to be marked as 'read'
5364 */
679c782d 5365 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
5366 state->stack[spi].spilled_ptr.parent,
5367 REG_LIVE_READ64);
261f4664
KKD
5368 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
5369 * be sure that whether stack slot is written to or not. Hence,
5370 * we must still conservatively propagate reads upwards even if
5371 * helper may write to the entire memory range.
5372 */
17a52670 5373 }
2011fccf 5374 return update_stack_depth(env, state, min_off);
17a52670
AS
5375}
5376
06c1c049
GB
5377static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5378 int access_size, bool zero_size_allowed,
5379 struct bpf_call_arg_meta *meta)
5380{
638f5b90 5381 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
20b2aff4 5382 u32 *max_access;
06c1c049 5383
20b2aff4 5384 switch (base_type(reg->type)) {
06c1c049 5385 case PTR_TO_PACKET:
de8f3a83 5386 case PTR_TO_PACKET_META:
9fd29c08
YS
5387 return check_packet_access(env, regno, reg->off, access_size,
5388 zero_size_allowed);
69c087ba 5389 case PTR_TO_MAP_KEY:
7b3552d3
KKD
5390 if (meta && meta->raw_mode) {
5391 verbose(env, "R%d cannot write into %s\n", regno,
5392 reg_type_str(env, reg->type));
5393 return -EACCES;
5394 }
69c087ba
YS
5395 return check_mem_region_access(env, regno, reg->off, access_size,
5396 reg->map_ptr->key_size, false);
06c1c049 5397 case PTR_TO_MAP_VALUE:
591fe988
DB
5398 if (check_map_access_type(env, regno, reg->off, access_size,
5399 meta && meta->raw_mode ? BPF_WRITE :
5400 BPF_READ))
5401 return -EACCES;
9fd29c08 5402 return check_map_access(env, regno, reg->off, access_size,
61df10c7 5403 zero_size_allowed, ACCESS_HELPER);
457f4436 5404 case PTR_TO_MEM:
97e6d7da
KKD
5405 if (type_is_rdonly_mem(reg->type)) {
5406 if (meta && meta->raw_mode) {
5407 verbose(env, "R%d cannot write into %s\n", regno,
5408 reg_type_str(env, reg->type));
5409 return -EACCES;
5410 }
5411 }
457f4436
AN
5412 return check_mem_region_access(env, regno, reg->off,
5413 access_size, reg->mem_size,
5414 zero_size_allowed);
20b2aff4
HL
5415 case PTR_TO_BUF:
5416 if (type_is_rdonly_mem(reg->type)) {
97e6d7da
KKD
5417 if (meta && meta->raw_mode) {
5418 verbose(env, "R%d cannot write into %s\n", regno,
5419 reg_type_str(env, reg->type));
20b2aff4 5420 return -EACCES;
97e6d7da 5421 }
20b2aff4 5422
20b2aff4
HL
5423 max_access = &env->prog->aux->max_rdonly_access;
5424 } else {
20b2aff4
HL
5425 max_access = &env->prog->aux->max_rdwr_access;
5426 }
afbf21dc
YS
5427 return check_buffer_access(env, reg, regno, reg->off,
5428 access_size, zero_size_allowed,
44e9a741 5429 max_access);
0d004c02 5430 case PTR_TO_STACK:
01f810ac
AM
5431 return check_stack_range_initialized(
5432 env,
5433 regno, reg->off, access_size,
5434 zero_size_allowed, ACCESS_HELPER, meta);
15baa55f
BT
5435 case PTR_TO_CTX:
5436 /* in case the function doesn't know how to access the context,
5437 * (because we are in a program of type SYSCALL for example), we
5438 * can not statically check its size.
5439 * Dynamically check it now.
5440 */
5441 if (!env->ops->convert_ctx_access) {
5442 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
5443 int offset = access_size - 1;
5444
5445 /* Allow zero-byte read from PTR_TO_CTX */
5446 if (access_size == 0)
5447 return zero_size_allowed ? 0 : -EACCES;
5448
5449 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
5450 atype, -1, false);
5451 }
5452
5453 fallthrough;
0d004c02
LB
5454 default: /* scalar_value or invalid ptr */
5455 /* Allow zero-byte read from NULL, regardless of pointer type */
5456 if (zero_size_allowed && access_size == 0 &&
5457 register_is_null(reg))
5458 return 0;
5459
c25b2ae1
HL
5460 verbose(env, "R%d type=%s ", regno,
5461 reg_type_str(env, reg->type));
5462 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
0d004c02 5463 return -EACCES;
06c1c049
GB
5464 }
5465}
5466
d583691c
KKD
5467static int check_mem_size_reg(struct bpf_verifier_env *env,
5468 struct bpf_reg_state *reg, u32 regno,
5469 bool zero_size_allowed,
5470 struct bpf_call_arg_meta *meta)
5471{
5472 int err;
5473
5474 /* This is used to refine r0 return value bounds for helpers
5475 * that enforce this value as an upper bound on return values.
5476 * See do_refine_retval_range() for helpers that can refine
5477 * the return value. C type of helper is u32 so we pull register
5478 * bound from umax_value however, if negative verifier errors
5479 * out. Only upper bounds can be learned because retval is an
5480 * int type and negative retvals are allowed.
5481 */
be77354a 5482 meta->msize_max_value = reg->umax_value;
d583691c
KKD
5483
5484 /* The register is SCALAR_VALUE; the access check
5485 * happens using its boundaries.
5486 */
5487 if (!tnum_is_const(reg->var_off))
5488 /* For unprivileged variable accesses, disable raw
5489 * mode so that the program is required to
5490 * initialize all the memory that the helper could
5491 * just partially fill up.
5492 */
5493 meta = NULL;
5494
5495 if (reg->smin_value < 0) {
5496 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5497 regno);
5498 return -EACCES;
5499 }
5500
5501 if (reg->umin_value == 0) {
5502 err = check_helper_mem_access(env, regno - 1, 0,
5503 zero_size_allowed,
5504 meta);
5505 if (err)
5506 return err;
5507 }
5508
5509 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5510 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5511 regno);
5512 return -EACCES;
5513 }
5514 err = check_helper_mem_access(env, regno - 1,
5515 reg->umax_value,
5516 zero_size_allowed, meta);
5517 if (!err)
5518 err = mark_chain_precision(env, regno);
5519 return err;
5520}
5521
e5069b9c
DB
5522int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5523 u32 regno, u32 mem_size)
5524{
be77354a
KKD
5525 bool may_be_null = type_may_be_null(reg->type);
5526 struct bpf_reg_state saved_reg;
5527 struct bpf_call_arg_meta meta;
5528 int err;
5529
e5069b9c
DB
5530 if (register_is_null(reg))
5531 return 0;
5532
be77354a
KKD
5533 memset(&meta, 0, sizeof(meta));
5534 /* Assuming that the register contains a value check if the memory
5535 * access is safe. Temporarily save and restore the register's state as
5536 * the conversion shouldn't be visible to a caller.
5537 */
5538 if (may_be_null) {
5539 saved_reg = *reg;
e5069b9c 5540 mark_ptr_not_null_reg(reg);
e5069b9c
DB
5541 }
5542
be77354a
KKD
5543 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5544 /* Check access for BPF_WRITE */
5545 meta.raw_mode = true;
5546 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5547
5548 if (may_be_null)
5549 *reg = saved_reg;
5550
5551 return err;
e5069b9c
DB
5552}
5553
00b85860
KKD
5554static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5555 u32 regno)
d583691c
KKD
5556{
5557 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5558 bool may_be_null = type_may_be_null(mem_reg->type);
5559 struct bpf_reg_state saved_reg;
be77354a 5560 struct bpf_call_arg_meta meta;
d583691c
KKD
5561 int err;
5562
5563 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5564
be77354a
KKD
5565 memset(&meta, 0, sizeof(meta));
5566
d583691c
KKD
5567 if (may_be_null) {
5568 saved_reg = *mem_reg;
5569 mark_ptr_not_null_reg(mem_reg);
5570 }
5571
be77354a
KKD
5572 err = check_mem_size_reg(env, reg, regno, true, &meta);
5573 /* Check access for BPF_WRITE */
5574 meta.raw_mode = true;
5575 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
d583691c
KKD
5576
5577 if (may_be_null)
5578 *mem_reg = saved_reg;
5579 return err;
5580}
5581
d83525ca 5582/* Implementation details:
4e814da0
KKD
5583 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
5584 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
d83525ca 5585 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4e814da0
KKD
5586 * Two separate bpf_obj_new will also have different reg->id.
5587 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
5588 * clears reg->id after value_or_null->value transition, since the verifier only
5589 * cares about the range of access to valid map value pointer and doesn't care
5590 * about actual address of the map element.
d83525ca
AS
5591 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5592 * reg->id > 0 after value_or_null->value transition. By doing so
5593 * two bpf_map_lookups will be considered two different pointers that
4e814da0
KKD
5594 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
5595 * returned from bpf_obj_new.
d83525ca
AS
5596 * The verifier allows taking only one bpf_spin_lock at a time to avoid
5597 * dead-locks.
5598 * Since only one bpf_spin_lock is allowed the checks are simpler than
5599 * reg_is_refcounted() logic. The verifier needs to remember only
5600 * one spin_lock instead of array of acquired_refs.
d0d78c1d 5601 * cur_state->active_lock remembers which map value element or allocated
4e814da0 5602 * object got locked and clears it after bpf_spin_unlock.
d83525ca
AS
5603 */
5604static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5605 bool is_lock)
5606{
5607 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5608 struct bpf_verifier_state *cur = env->cur_state;
5609 bool is_const = tnum_is_const(reg->var_off);
d83525ca 5610 u64 val = reg->var_off.value;
4e814da0
KKD
5611 struct bpf_map *map = NULL;
5612 struct btf *btf = NULL;
5613 struct btf_record *rec;
d83525ca 5614
d83525ca
AS
5615 if (!is_const) {
5616 verbose(env,
5617 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5618 regno);
5619 return -EINVAL;
5620 }
4e814da0
KKD
5621 if (reg->type == PTR_TO_MAP_VALUE) {
5622 map = reg->map_ptr;
5623 if (!map->btf) {
5624 verbose(env,
5625 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
5626 map->name);
5627 return -EINVAL;
5628 }
5629 } else {
5630 btf = reg->btf;
d83525ca 5631 }
4e814da0
KKD
5632
5633 rec = reg_btf_record(reg);
5634 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
5635 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
5636 map ? map->name : "kptr");
d83525ca
AS
5637 return -EINVAL;
5638 }
4e814da0 5639 if (rec->spin_lock_off != val + reg->off) {
db559117 5640 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
4e814da0 5641 val + reg->off, rec->spin_lock_off);
d83525ca
AS
5642 return -EINVAL;
5643 }
5644 if (is_lock) {
d0d78c1d 5645 if (cur->active_lock.ptr) {
d83525ca
AS
5646 verbose(env,
5647 "Locking two bpf_spin_locks are not allowed\n");
5648 return -EINVAL;
5649 }
d0d78c1d
KKD
5650 if (map)
5651 cur->active_lock.ptr = map;
5652 else
5653 cur->active_lock.ptr = btf;
5654 cur->active_lock.id = reg->id;
d83525ca 5655 } else {
534e86bc 5656 struct bpf_func_state *fstate = cur_func(env);
d0d78c1d 5657 void *ptr;
534e86bc 5658 int i;
d0d78c1d
KKD
5659
5660 if (map)
5661 ptr = map;
5662 else
5663 ptr = btf;
5664
5665 if (!cur->active_lock.ptr) {
d83525ca
AS
5666 verbose(env, "bpf_spin_unlock without taking a lock\n");
5667 return -EINVAL;
5668 }
d0d78c1d
KKD
5669 if (cur->active_lock.ptr != ptr ||
5670 cur->active_lock.id != reg->id) {
d83525ca
AS
5671 verbose(env, "bpf_spin_unlock of different lock\n");
5672 return -EINVAL;
5673 }
d0d78c1d
KKD
5674 cur->active_lock.ptr = NULL;
5675 cur->active_lock.id = 0;
534e86bc
KKD
5676
5677 for (i = 0; i < fstate->acquired_refs; i++) {
5678 int err;
5679
5680 /* Complain on error because this reference state cannot
5681 * be freed before this point, as bpf_spin_lock critical
5682 * section does not allow functions that release the
5683 * allocated object immediately.
5684 */
5685 if (!fstate->refs[i].release_on_unlock)
5686 continue;
5687 err = release_reference(env, fstate->refs[i].id);
5688 if (err) {
5689 verbose(env, "failed to release release_on_unlock reference");
5690 return err;
5691 }
5692 }
d83525ca
AS
5693 }
5694 return 0;
5695}
5696
b00628b1
AS
5697static int process_timer_func(struct bpf_verifier_env *env, int regno,
5698 struct bpf_call_arg_meta *meta)
5699{
5700 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5701 bool is_const = tnum_is_const(reg->var_off);
5702 struct bpf_map *map = reg->map_ptr;
5703 u64 val = reg->var_off.value;
5704
5705 if (!is_const) {
5706 verbose(env,
5707 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5708 regno);
5709 return -EINVAL;
5710 }
5711 if (!map->btf) {
5712 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5713 map->name);
5714 return -EINVAL;
5715 }
db559117
KKD
5716 if (!btf_record_has_field(map->record, BPF_TIMER)) {
5717 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
68134668
AS
5718 return -EINVAL;
5719 }
db559117 5720 if (map->record->timer_off != val + reg->off) {
68134668 5721 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
db559117 5722 val + reg->off, map->record->timer_off);
b00628b1
AS
5723 return -EINVAL;
5724 }
5725 if (meta->map_ptr) {
5726 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5727 return -EFAULT;
5728 }
3e8ce298 5729 meta->map_uid = reg->map_uid;
b00628b1
AS
5730 meta->map_ptr = map;
5731 return 0;
5732}
5733
c0a5a21c
KKD
5734static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5735 struct bpf_call_arg_meta *meta)
5736{
5737 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
c0a5a21c 5738 struct bpf_map *map_ptr = reg->map_ptr;
aa3496ac 5739 struct btf_field *kptr_field;
c0a5a21c 5740 u32 kptr_off;
c0a5a21c
KKD
5741
5742 if (!tnum_is_const(reg->var_off)) {
5743 verbose(env,
5744 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5745 regno);
5746 return -EINVAL;
5747 }
5748 if (!map_ptr->btf) {
5749 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5750 map_ptr->name);
5751 return -EINVAL;
5752 }
aa3496ac
KKD
5753 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
5754 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
c0a5a21c
KKD
5755 return -EINVAL;
5756 }
5757
5758 meta->map_ptr = map_ptr;
5759 kptr_off = reg->off + reg->var_off.value;
aa3496ac
KKD
5760 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
5761 if (!kptr_field) {
c0a5a21c
KKD
5762 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5763 return -EACCES;
5764 }
aa3496ac 5765 if (kptr_field->type != BPF_KPTR_REF) {
c0a5a21c
KKD
5766 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5767 return -EACCES;
5768 }
aa3496ac 5769 meta->kptr_field = kptr_field;
c0a5a21c
KKD
5770 return 0;
5771}
5772
90133415
DB
5773static bool arg_type_is_mem_size(enum bpf_arg_type type)
5774{
5775 return type == ARG_CONST_SIZE ||
5776 type == ARG_CONST_SIZE_OR_ZERO;
5777}
5778
8f14852e
KKD
5779static bool arg_type_is_release(enum bpf_arg_type type)
5780{
5781 return type & OBJ_RELEASE;
5782}
5783
97e03f52
JK
5784static bool arg_type_is_dynptr(enum bpf_arg_type type)
5785{
5786 return base_type(type) == ARG_PTR_TO_DYNPTR;
5787}
5788
57c3bb72
AI
5789static int int_ptr_type_to_size(enum bpf_arg_type type)
5790{
5791 if (type == ARG_PTR_TO_INT)
5792 return sizeof(u32);
5793 else if (type == ARG_PTR_TO_LONG)
5794 return sizeof(u64);
5795
5796 return -EINVAL;
5797}
5798
912f442c
LB
5799static int resolve_map_arg_type(struct bpf_verifier_env *env,
5800 const struct bpf_call_arg_meta *meta,
5801 enum bpf_arg_type *arg_type)
5802{
5803 if (!meta->map_ptr) {
5804 /* kernel subsystem misconfigured verifier */
5805 verbose(env, "invalid map_ptr to access map->type\n");
5806 return -EACCES;
5807 }
5808
5809 switch (meta->map_ptr->map_type) {
5810 case BPF_MAP_TYPE_SOCKMAP:
5811 case BPF_MAP_TYPE_SOCKHASH:
5812 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 5813 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
5814 } else {
5815 verbose(env, "invalid arg_type for sockmap/sockhash\n");
5816 return -EINVAL;
5817 }
5818 break;
9330986c
JK
5819 case BPF_MAP_TYPE_BLOOM_FILTER:
5820 if (meta->func_id == BPF_FUNC_map_peek_elem)
5821 *arg_type = ARG_PTR_TO_MAP_VALUE;
5822 break;
912f442c
LB
5823 default:
5824 break;
5825 }
5826 return 0;
5827}
5828
f79e7ea5
LB
5829struct bpf_reg_types {
5830 const enum bpf_reg_type types[10];
1df8f55a 5831 u32 *btf_id;
f79e7ea5
LB
5832};
5833
f79e7ea5
LB
5834static const struct bpf_reg_types sock_types = {
5835 .types = {
5836 PTR_TO_SOCK_COMMON,
5837 PTR_TO_SOCKET,
5838 PTR_TO_TCP_SOCK,
5839 PTR_TO_XDP_SOCK,
5840 },
5841};
5842
49a2a4d4 5843#ifdef CONFIG_NET
1df8f55a
MKL
5844static const struct bpf_reg_types btf_id_sock_common_types = {
5845 .types = {
5846 PTR_TO_SOCK_COMMON,
5847 PTR_TO_SOCKET,
5848 PTR_TO_TCP_SOCK,
5849 PTR_TO_XDP_SOCK,
5850 PTR_TO_BTF_ID,
3f00c523 5851 PTR_TO_BTF_ID | PTR_TRUSTED,
1df8f55a
MKL
5852 },
5853 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5854};
49a2a4d4 5855#endif
1df8f55a 5856
f79e7ea5
LB
5857static const struct bpf_reg_types mem_types = {
5858 .types = {
5859 PTR_TO_STACK,
5860 PTR_TO_PACKET,
5861 PTR_TO_PACKET_META,
69c087ba 5862 PTR_TO_MAP_KEY,
f79e7ea5
LB
5863 PTR_TO_MAP_VALUE,
5864 PTR_TO_MEM,
894f2a8b 5865 PTR_TO_MEM | MEM_RINGBUF,
20b2aff4 5866 PTR_TO_BUF,
f79e7ea5
LB
5867 },
5868};
5869
5870static const struct bpf_reg_types int_ptr_types = {
5871 .types = {
5872 PTR_TO_STACK,
5873 PTR_TO_PACKET,
5874 PTR_TO_PACKET_META,
69c087ba 5875 PTR_TO_MAP_KEY,
f79e7ea5
LB
5876 PTR_TO_MAP_VALUE,
5877 },
5878};
5879
4e814da0
KKD
5880static const struct bpf_reg_types spin_lock_types = {
5881 .types = {
5882 PTR_TO_MAP_VALUE,
5883 PTR_TO_BTF_ID | MEM_ALLOC,
5884 }
5885};
5886
f79e7ea5
LB
5887static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5888static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5889static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
894f2a8b 5890static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
f79e7ea5 5891static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
3f00c523
DV
5892static const struct bpf_reg_types btf_ptr_types = {
5893 .types = {
5894 PTR_TO_BTF_ID,
5895 PTR_TO_BTF_ID | PTR_TRUSTED,
5896 },
5897};
5898static const struct bpf_reg_types percpu_btf_ptr_types = {
5899 .types = {
5900 PTR_TO_BTF_ID | MEM_PERCPU,
5901 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
5902 }
5903};
69c087ba
YS
5904static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5905static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 5906static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
b00628b1 5907static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
c0a5a21c 5908static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
20571567
DV
5909static const struct bpf_reg_types dynptr_types = {
5910 .types = {
5911 PTR_TO_STACK,
5912 PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL,
5913 }
5914};
f79e7ea5 5915
0789e13b 5916static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
d1673304
DM
5917 [ARG_PTR_TO_MAP_KEY] = &mem_types,
5918 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
f79e7ea5
LB
5919 [ARG_CONST_SIZE] = &scalar_types,
5920 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
5921 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
5922 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
5923 [ARG_PTR_TO_CTX] = &context_types,
f79e7ea5 5924 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 5925#ifdef CONFIG_NET
1df8f55a 5926 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 5927#endif
f79e7ea5 5928 [ARG_PTR_TO_SOCKET] = &fullsock_types,
f79e7ea5
LB
5929 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
5930 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
5931 [ARG_PTR_TO_MEM] = &mem_types,
894f2a8b 5932 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
f79e7ea5
LB
5933 [ARG_PTR_TO_INT] = &int_ptr_types,
5934 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 5935 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba 5936 [ARG_PTR_TO_FUNC] = &func_ptr_types,
48946bd6 5937 [ARG_PTR_TO_STACK] = &stack_ptr_types,
fff13c4b 5938 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
b00628b1 5939 [ARG_PTR_TO_TIMER] = &timer_types,
c0a5a21c 5940 [ARG_PTR_TO_KPTR] = &kptr_types,
20571567 5941 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
f79e7ea5
LB
5942};
5943
5944static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2 5945 enum bpf_arg_type arg_type,
c0a5a21c
KKD
5946 const u32 *arg_btf_id,
5947 struct bpf_call_arg_meta *meta)
f79e7ea5
LB
5948{
5949 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5950 enum bpf_reg_type expected, type = reg->type;
a968d5e2 5951 const struct bpf_reg_types *compatible;
f79e7ea5
LB
5952 int i, j;
5953
48946bd6 5954 compatible = compatible_reg_types[base_type(arg_type)];
a968d5e2
MKL
5955 if (!compatible) {
5956 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5957 return -EFAULT;
5958 }
5959
216e3cd2
HL
5960 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5961 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5962 *
5963 * Same for MAYBE_NULL:
5964 *
5965 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5966 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5967 *
5968 * Therefore we fold these flags depending on the arg_type before comparison.
5969 */
5970 if (arg_type & MEM_RDONLY)
5971 type &= ~MEM_RDONLY;
5972 if (arg_type & PTR_MAYBE_NULL)
5973 type &= ~PTR_MAYBE_NULL;
5974
f79e7ea5
LB
5975 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5976 expected = compatible->types[i];
5977 if (expected == NOT_INIT)
5978 break;
5979
5980 if (type == expected)
a968d5e2 5981 goto found;
f79e7ea5
LB
5982 }
5983
216e3cd2 5984 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
f79e7ea5 5985 for (j = 0; j + 1 < i; j++)
c25b2ae1
HL
5986 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5987 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
f79e7ea5 5988 return -EACCES;
a968d5e2
MKL
5989
5990found:
3f00c523 5991 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) {
2ab3b380
KKD
5992 /* For bpf_sk_release, it needs to match against first member
5993 * 'struct sock_common', hence make an exception for it. This
5994 * allows bpf_sk_release to work for multiple socket types.
5995 */
5996 bool strict_type_match = arg_type_is_release(arg_type) &&
5997 meta->func_id != BPF_FUNC_sk_release;
5998
1df8f55a
MKL
5999 if (!arg_btf_id) {
6000 if (!compatible->btf_id) {
6001 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
6002 return -EFAULT;
6003 }
6004 arg_btf_id = compatible->btf_id;
6005 }
6006
c0a5a21c 6007 if (meta->func_id == BPF_FUNC_kptr_xchg) {
aa3496ac 6008 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
c0a5a21c 6009 return -EACCES;
47e34cb7
DM
6010 } else {
6011 if (arg_btf_id == BPF_PTR_POISON) {
6012 verbose(env, "verifier internal error:");
6013 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
6014 regno);
6015 return -EACCES;
6016 }
6017
6018 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
6019 btf_vmlinux, *arg_btf_id,
6020 strict_type_match)) {
6021 verbose(env, "R%d is of type %s but %s is expected\n",
6022 regno, kernel_type_name(reg->btf, reg->btf_id),
6023 kernel_type_name(btf_vmlinux, *arg_btf_id));
6024 return -EACCES;
6025 }
a968d5e2 6026 }
4e814da0
KKD
6027 } else if (type_is_alloc(reg->type)) {
6028 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) {
6029 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
6030 return -EFAULT;
6031 }
a968d5e2
MKL
6032 }
6033
6034 return 0;
f79e7ea5
LB
6035}
6036
25b35dd2
KKD
6037int check_func_arg_reg_off(struct bpf_verifier_env *env,
6038 const struct bpf_reg_state *reg, int regno,
8f14852e 6039 enum bpf_arg_type arg_type)
25b35dd2
KKD
6040{
6041 enum bpf_reg_type type = reg->type;
8f14852e 6042 bool fixed_off_ok = false;
25b35dd2
KKD
6043
6044 switch ((u32)type) {
25b35dd2 6045 /* Pointer types where reg offset is explicitly allowed: */
97e03f52
JK
6046 case PTR_TO_STACK:
6047 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
6048 verbose(env, "cannot pass in dynptr at an offset\n");
6049 return -EINVAL;
6050 }
6051 fallthrough;
25b35dd2
KKD
6052 case PTR_TO_PACKET:
6053 case PTR_TO_PACKET_META:
6054 case PTR_TO_MAP_KEY:
6055 case PTR_TO_MAP_VALUE:
6056 case PTR_TO_MEM:
6057 case PTR_TO_MEM | MEM_RDONLY:
894f2a8b 6058 case PTR_TO_MEM | MEM_RINGBUF:
25b35dd2
KKD
6059 case PTR_TO_BUF:
6060 case PTR_TO_BUF | MEM_RDONLY:
97e03f52 6061 case SCALAR_VALUE:
25b35dd2
KKD
6062 /* Some of the argument types nevertheless require a
6063 * zero register offset.
6064 */
894f2a8b 6065 if (base_type(arg_type) != ARG_PTR_TO_RINGBUF_MEM)
25b35dd2
KKD
6066 return 0;
6067 break;
6068 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
6069 * fixed offset.
6070 */
6071 case PTR_TO_BTF_ID:
282de143 6072 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523
DV
6073 case PTR_TO_BTF_ID | PTR_TRUSTED:
6074 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
24d5bb80 6075 /* When referenced PTR_TO_BTF_ID is passed to release function,
8f14852e
KKD
6076 * it's fixed offset must be 0. In the other cases, fixed offset
6077 * can be non-zero.
24d5bb80 6078 */
8f14852e 6079 if (arg_type_is_release(arg_type) && reg->off) {
24d5bb80
KKD
6080 verbose(env, "R%d must have zero offset when passed to release func\n",
6081 regno);
6082 return -EINVAL;
6083 }
8f14852e
KKD
6084 /* For arg is release pointer, fixed_off_ok must be false, but
6085 * we already checked and rejected reg->off != 0 above, so set
6086 * to true to allow fixed offset for all other cases.
24d5bb80 6087 */
25b35dd2
KKD
6088 fixed_off_ok = true;
6089 break;
6090 default:
6091 break;
6092 }
6093 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
6094}
6095
34d4ef57
JK
6096static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
6097{
6098 struct bpf_func_state *state = func(env, reg);
6099 int spi = get_spi(reg->off);
6100
6101 return state->stack[spi].spilled_ptr.id;
6102}
6103
af7ec138
YS
6104static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
6105 struct bpf_call_arg_meta *meta,
6106 const struct bpf_func_proto *fn)
17a52670 6107{
af7ec138 6108 u32 regno = BPF_REG_1 + arg;
638f5b90 6109 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 6110 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 6111 enum bpf_reg_type type = reg->type;
508362ac 6112 u32 *arg_btf_id = NULL;
17a52670
AS
6113 int err = 0;
6114
80f1d68c 6115 if (arg_type == ARG_DONTCARE)
17a52670
AS
6116 return 0;
6117
dc503a8a
EC
6118 err = check_reg_arg(env, regno, SRC_OP);
6119 if (err)
6120 return err;
17a52670 6121
1be7f75d
AS
6122 if (arg_type == ARG_ANYTHING) {
6123 if (is_pointer_value(env, regno)) {
61bd5218
JK
6124 verbose(env, "R%d leaks addr into helper function\n",
6125 regno);
1be7f75d
AS
6126 return -EACCES;
6127 }
80f1d68c 6128 return 0;
1be7f75d 6129 }
80f1d68c 6130
de8f3a83 6131 if (type_is_pkt_pointer(type) &&
3a0af8fd 6132 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 6133 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
6134 return -EACCES;
6135 }
6136
16d1e00c 6137 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
912f442c
LB
6138 err = resolve_map_arg_type(env, meta, &arg_type);
6139 if (err)
6140 return err;
6141 }
6142
48946bd6 6143 if (register_is_null(reg) && type_may_be_null(arg_type))
fd1b0d60
LB
6144 /* A NULL register has a SCALAR_VALUE type, so skip
6145 * type checking.
6146 */
6147 goto skip_type_check;
6148
508362ac 6149 /* arg_btf_id and arg_size are in a union. */
4e814da0
KKD
6150 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
6151 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
508362ac
MM
6152 arg_btf_id = fn->arg_btf_id[arg];
6153
6154 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
f79e7ea5
LB
6155 if (err)
6156 return err;
6157
8f14852e 6158 err = check_func_arg_reg_off(env, reg, regno, arg_type);
25b35dd2
KKD
6159 if (err)
6160 return err;
d7b9454a 6161
fd1b0d60 6162skip_type_check:
8f14852e 6163 if (arg_type_is_release(arg_type)) {
bc34dee6
JK
6164 if (arg_type_is_dynptr(arg_type)) {
6165 struct bpf_func_state *state = func(env, reg);
6166 int spi = get_spi(reg->off);
6167
6168 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
6169 !state->stack[spi].spilled_ptr.id) {
6170 verbose(env, "arg %d is an unacquired reference\n", regno);
6171 return -EINVAL;
6172 }
6173 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8f14852e
KKD
6174 verbose(env, "R%d must be referenced when passed to release function\n",
6175 regno);
6176 return -EINVAL;
6177 }
6178 if (meta->release_regno) {
6179 verbose(env, "verifier internal error: more than one release argument\n");
6180 return -EFAULT;
6181 }
6182 meta->release_regno = regno;
6183 }
6184
02f7c958 6185 if (reg->ref_obj_id) {
457f4436
AN
6186 if (meta->ref_obj_id) {
6187 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6188 regno, reg->ref_obj_id,
6189 meta->ref_obj_id);
6190 return -EFAULT;
6191 }
6192 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
6193 }
6194
8ab4cdcf
JK
6195 switch (base_type(arg_type)) {
6196 case ARG_CONST_MAP_PTR:
17a52670 6197 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3e8ce298
AS
6198 if (meta->map_ptr) {
6199 /* Use map_uid (which is unique id of inner map) to reject:
6200 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
6201 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
6202 * if (inner_map1 && inner_map2) {
6203 * timer = bpf_map_lookup_elem(inner_map1);
6204 * if (timer)
6205 * // mismatch would have been allowed
6206 * bpf_timer_init(timer, inner_map2);
6207 * }
6208 *
6209 * Comparing map_ptr is enough to distinguish normal and outer maps.
6210 */
6211 if (meta->map_ptr != reg->map_ptr ||
6212 meta->map_uid != reg->map_uid) {
6213 verbose(env,
6214 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
6215 meta->map_uid, reg->map_uid);
6216 return -EINVAL;
6217 }
b00628b1 6218 }
33ff9823 6219 meta->map_ptr = reg->map_ptr;
3e8ce298 6220 meta->map_uid = reg->map_uid;
8ab4cdcf
JK
6221 break;
6222 case ARG_PTR_TO_MAP_KEY:
17a52670
AS
6223 /* bpf_map_xxx(..., map_ptr, ..., key) call:
6224 * check that [key, key + map->key_size) are within
6225 * stack limits and initialized
6226 */
33ff9823 6227 if (!meta->map_ptr) {
17a52670
AS
6228 /* in function declaration map_ptr must come before
6229 * map_key, so that it's verified and known before
6230 * we have to check map_key here. Otherwise it means
6231 * that kernel subsystem misconfigured verifier
6232 */
61bd5218 6233 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
6234 return -EACCES;
6235 }
d71962f3
PC
6236 err = check_helper_mem_access(env, regno,
6237 meta->map_ptr->key_size, false,
6238 NULL);
8ab4cdcf
JK
6239 break;
6240 case ARG_PTR_TO_MAP_VALUE:
48946bd6
HL
6241 if (type_may_be_null(arg_type) && register_is_null(reg))
6242 return 0;
6243
17a52670
AS
6244 /* bpf_map_xxx(..., map_ptr, ..., value) call:
6245 * check [value, value + map->value_size) validity
6246 */
33ff9823 6247 if (!meta->map_ptr) {
17a52670 6248 /* kernel subsystem misconfigured verifier */
61bd5218 6249 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
6250 return -EACCES;
6251 }
16d1e00c 6252 meta->raw_mode = arg_type & MEM_UNINIT;
d71962f3
PC
6253 err = check_helper_mem_access(env, regno,
6254 meta->map_ptr->value_size, false,
2ea864c5 6255 meta);
8ab4cdcf
JK
6256 break;
6257 case ARG_PTR_TO_PERCPU_BTF_ID:
eaa6bcb7
HL
6258 if (!reg->btf_id) {
6259 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
6260 return -EACCES;
6261 }
22dc4a0f 6262 meta->ret_btf = reg->btf;
eaa6bcb7 6263 meta->ret_btf_id = reg->btf_id;
8ab4cdcf
JK
6264 break;
6265 case ARG_PTR_TO_SPIN_LOCK:
c18f0b6a
LB
6266 if (meta->func_id == BPF_FUNC_spin_lock) {
6267 if (process_spin_lock(env, regno, true))
6268 return -EACCES;
6269 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
6270 if (process_spin_lock(env, regno, false))
6271 return -EACCES;
6272 } else {
6273 verbose(env, "verifier internal error\n");
6274 return -EFAULT;
6275 }
8ab4cdcf
JK
6276 break;
6277 case ARG_PTR_TO_TIMER:
b00628b1
AS
6278 if (process_timer_func(env, regno, meta))
6279 return -EACCES;
8ab4cdcf
JK
6280 break;
6281 case ARG_PTR_TO_FUNC:
69c087ba 6282 meta->subprogno = reg->subprogno;
8ab4cdcf
JK
6283 break;
6284 case ARG_PTR_TO_MEM:
a2bbe7cc
LB
6285 /* The access to this pointer is only checked when we hit the
6286 * next is_mem_size argument below.
6287 */
16d1e00c 6288 meta->raw_mode = arg_type & MEM_UNINIT;
508362ac
MM
6289 if (arg_type & MEM_FIXED_SIZE) {
6290 err = check_helper_mem_access(env, regno,
6291 fn->arg_size[arg], false,
6292 meta);
6293 }
8ab4cdcf
JK
6294 break;
6295 case ARG_CONST_SIZE:
6296 err = check_mem_size_reg(env, reg, regno, false, meta);
6297 break;
6298 case ARG_CONST_SIZE_OR_ZERO:
6299 err = check_mem_size_reg(env, reg, regno, true, meta);
6300 break;
6301 case ARG_PTR_TO_DYNPTR:
20571567
DV
6302 /* We only need to check for initialized / uninitialized helper
6303 * dynptr args if the dynptr is not PTR_TO_DYNPTR, as the
6304 * assumption is that if it is, that a helper function
6305 * initialized the dynptr on behalf of the BPF program.
6306 */
6307 if (base_type(reg->type) == PTR_TO_DYNPTR)
6308 break;
97e03f52
JK
6309 if (arg_type & MEM_UNINIT) {
6310 if (!is_dynptr_reg_valid_uninit(env, reg)) {
6311 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6312 return -EINVAL;
6313 }
6314
6315 /* We only support one dynptr being uninitialized at the moment,
6316 * which is sufficient for the helper functions we have right now.
6317 */
6318 if (meta->uninit_dynptr_regno) {
6319 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6320 return -EFAULT;
6321 }
6322
6323 meta->uninit_dynptr_regno = regno;
e9e315b4
RS
6324 } else if (!is_dynptr_reg_valid_init(env, reg)) {
6325 verbose(env,
6326 "Expected an initialized dynptr as arg #%d\n",
6327 arg + 1);
6328 return -EINVAL;
6329 } else if (!is_dynptr_type_expected(env, reg, arg_type)) {
97e03f52
JK
6330 const char *err_extra = "";
6331
6332 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6333 case DYNPTR_TYPE_LOCAL:
e9e315b4 6334 err_extra = "local";
97e03f52 6335 break;
bc34dee6 6336 case DYNPTR_TYPE_RINGBUF:
e9e315b4 6337 err_extra = "ringbuf";
bc34dee6 6338 break;
97e03f52 6339 default:
e9e315b4 6340 err_extra = "<unknown>";
97e03f52
JK
6341 break;
6342 }
e9e315b4
RS
6343 verbose(env,
6344 "Expected a dynptr of type %s as arg #%d\n",
97e03f52
JK
6345 err_extra, arg + 1);
6346 return -EINVAL;
6347 }
8ab4cdcf
JK
6348 break;
6349 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
457f4436 6350 if (!tnum_is_const(reg->var_off)) {
28a8add6 6351 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
6352 regno);
6353 return -EACCES;
6354 }
6355 meta->mem_size = reg->var_off.value;
2fc31465
KKD
6356 err = mark_chain_precision(env, regno);
6357 if (err)
6358 return err;
8ab4cdcf
JK
6359 break;
6360 case ARG_PTR_TO_INT:
6361 case ARG_PTR_TO_LONG:
6362 {
57c3bb72
AI
6363 int size = int_ptr_type_to_size(arg_type);
6364
6365 err = check_helper_mem_access(env, regno, size, false, meta);
6366 if (err)
6367 return err;
6368 err = check_ptr_alignment(env, reg, 0, size, true);
8ab4cdcf
JK
6369 break;
6370 }
6371 case ARG_PTR_TO_CONST_STR:
6372 {
fff13c4b
FR
6373 struct bpf_map *map = reg->map_ptr;
6374 int map_off;
6375 u64 map_addr;
6376 char *str_ptr;
6377
a8fad73e 6378 if (!bpf_map_is_rdonly(map)) {
fff13c4b
FR
6379 verbose(env, "R%d does not point to a readonly map'\n", regno);
6380 return -EACCES;
6381 }
6382
6383 if (!tnum_is_const(reg->var_off)) {
6384 verbose(env, "R%d is not a constant address'\n", regno);
6385 return -EACCES;
6386 }
6387
6388 if (!map->ops->map_direct_value_addr) {
6389 verbose(env, "no direct value access support for this map type\n");
6390 return -EACCES;
6391 }
6392
6393 err = check_map_access(env, regno, reg->off,
61df10c7
KKD
6394 map->value_size - reg->off, false,
6395 ACCESS_HELPER);
fff13c4b
FR
6396 if (err)
6397 return err;
6398
6399 map_off = reg->off + reg->var_off.value;
6400 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6401 if (err) {
6402 verbose(env, "direct value access on string failed\n");
6403 return err;
6404 }
6405
6406 str_ptr = (char *)(long)(map_addr);
6407 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6408 verbose(env, "string is not zero-terminated\n");
6409 return -EINVAL;
6410 }
8ab4cdcf
JK
6411 break;
6412 }
6413 case ARG_PTR_TO_KPTR:
c0a5a21c
KKD
6414 if (process_kptr_func(env, regno, meta))
6415 return -EACCES;
8ab4cdcf 6416 break;
17a52670
AS
6417 }
6418
6419 return err;
6420}
6421
0126240f
LB
6422static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6423{
6424 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 6425 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
6426
6427 if (func_id != BPF_FUNC_map_update_elem)
6428 return false;
6429
6430 /* It's not possible to get access to a locked struct sock in these
6431 * contexts, so updating is safe.
6432 */
6433 switch (type) {
6434 case BPF_PROG_TYPE_TRACING:
6435 if (eatype == BPF_TRACE_ITER)
6436 return true;
6437 break;
6438 case BPF_PROG_TYPE_SOCKET_FILTER:
6439 case BPF_PROG_TYPE_SCHED_CLS:
6440 case BPF_PROG_TYPE_SCHED_ACT:
6441 case BPF_PROG_TYPE_XDP:
6442 case BPF_PROG_TYPE_SK_REUSEPORT:
6443 case BPF_PROG_TYPE_FLOW_DISSECTOR:
6444 case BPF_PROG_TYPE_SK_LOOKUP:
6445 return true;
6446 default:
6447 break;
6448 }
6449
6450 verbose(env, "cannot update sockmap in this context\n");
6451 return false;
6452}
6453
e411901c
MF
6454static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6455{
95acd881
TA
6456 return env->prog->jit_requested &&
6457 bpf_jit_supports_subprog_tailcalls();
e411901c
MF
6458}
6459
61bd5218
JK
6460static int check_map_func_compatibility(struct bpf_verifier_env *env,
6461 struct bpf_map *map, int func_id)
35578d79 6462{
35578d79
KX
6463 if (!map)
6464 return 0;
6465
6aff67c8
AS
6466 /* We need a two way check, first is from map perspective ... */
6467 switch (map->map_type) {
6468 case BPF_MAP_TYPE_PROG_ARRAY:
6469 if (func_id != BPF_FUNC_tail_call)
6470 goto error;
6471 break;
6472 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6473 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 6474 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 6475 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
6476 func_id != BPF_FUNC_perf_event_read_value &&
6477 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
6478 goto error;
6479 break;
457f4436
AN
6480 case BPF_MAP_TYPE_RINGBUF:
6481 if (func_id != BPF_FUNC_ringbuf_output &&
6482 func_id != BPF_FUNC_ringbuf_reserve &&
bc34dee6
JK
6483 func_id != BPF_FUNC_ringbuf_query &&
6484 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6485 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6486 func_id != BPF_FUNC_ringbuf_discard_dynptr)
457f4436
AN
6487 goto error;
6488 break;
583c1f42 6489 case BPF_MAP_TYPE_USER_RINGBUF:
20571567
DV
6490 if (func_id != BPF_FUNC_user_ringbuf_drain)
6491 goto error;
6492 break;
6aff67c8
AS
6493 case BPF_MAP_TYPE_STACK_TRACE:
6494 if (func_id != BPF_FUNC_get_stackid)
6495 goto error;
6496 break;
4ed8ec52 6497 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 6498 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 6499 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
6500 goto error;
6501 break;
cd339431 6502 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 6503 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
6504 if (func_id != BPF_FUNC_get_local_storage)
6505 goto error;
6506 break;
546ac1ff 6507 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 6508 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
6509 if (func_id != BPF_FUNC_redirect_map &&
6510 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
6511 goto error;
6512 break;
fbfc504a
BT
6513 /* Restrict bpf side of cpumap and xskmap, open when use-cases
6514 * appear.
6515 */
6710e112
JDB
6516 case BPF_MAP_TYPE_CPUMAP:
6517 if (func_id != BPF_FUNC_redirect_map)
6518 goto error;
6519 break;
fada7fdc
JL
6520 case BPF_MAP_TYPE_XSKMAP:
6521 if (func_id != BPF_FUNC_redirect_map &&
6522 func_id != BPF_FUNC_map_lookup_elem)
6523 goto error;
6524 break;
56f668df 6525 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 6526 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
6527 if (func_id != BPF_FUNC_map_lookup_elem)
6528 goto error;
16a43625 6529 break;
174a79ff
JF
6530 case BPF_MAP_TYPE_SOCKMAP:
6531 if (func_id != BPF_FUNC_sk_redirect_map &&
6532 func_id != BPF_FUNC_sock_map_update &&
4f738adb 6533 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6534 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 6535 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6536 func_id != BPF_FUNC_map_lookup_elem &&
6537 !may_update_sockmap(env, func_id))
174a79ff
JF
6538 goto error;
6539 break;
81110384
JF
6540 case BPF_MAP_TYPE_SOCKHASH:
6541 if (func_id != BPF_FUNC_sk_redirect_hash &&
6542 func_id != BPF_FUNC_sock_hash_update &&
6543 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 6544 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 6545 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
6546 func_id != BPF_FUNC_map_lookup_elem &&
6547 !may_update_sockmap(env, func_id))
81110384
JF
6548 goto error;
6549 break;
2dbb9b9e
MKL
6550 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6551 if (func_id != BPF_FUNC_sk_select_reuseport)
6552 goto error;
6553 break;
f1a2e44a
MV
6554 case BPF_MAP_TYPE_QUEUE:
6555 case BPF_MAP_TYPE_STACK:
6556 if (func_id != BPF_FUNC_map_peek_elem &&
6557 func_id != BPF_FUNC_map_pop_elem &&
6558 func_id != BPF_FUNC_map_push_elem)
6559 goto error;
6560 break;
6ac99e8f
MKL
6561 case BPF_MAP_TYPE_SK_STORAGE:
6562 if (func_id != BPF_FUNC_sk_storage_get &&
6563 func_id != BPF_FUNC_sk_storage_delete)
6564 goto error;
6565 break;
8ea63684
KS
6566 case BPF_MAP_TYPE_INODE_STORAGE:
6567 if (func_id != BPF_FUNC_inode_storage_get &&
6568 func_id != BPF_FUNC_inode_storage_delete)
6569 goto error;
6570 break;
4cf1bc1f
KS
6571 case BPF_MAP_TYPE_TASK_STORAGE:
6572 if (func_id != BPF_FUNC_task_storage_get &&
6573 func_id != BPF_FUNC_task_storage_delete)
6574 goto error;
6575 break;
c4bcfb38
YS
6576 case BPF_MAP_TYPE_CGRP_STORAGE:
6577 if (func_id != BPF_FUNC_cgrp_storage_get &&
6578 func_id != BPF_FUNC_cgrp_storage_delete)
6579 goto error;
6580 break;
9330986c
JK
6581 case BPF_MAP_TYPE_BLOOM_FILTER:
6582 if (func_id != BPF_FUNC_map_peek_elem &&
6583 func_id != BPF_FUNC_map_push_elem)
6584 goto error;
6585 break;
6aff67c8
AS
6586 default:
6587 break;
6588 }
6589
6590 /* ... and second from the function itself. */
6591 switch (func_id) {
6592 case BPF_FUNC_tail_call:
6593 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6594 goto error;
e411901c
MF
6595 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6596 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
6597 return -EINVAL;
6598 }
6aff67c8
AS
6599 break;
6600 case BPF_FUNC_perf_event_read:
6601 case BPF_FUNC_perf_event_output:
908432ca 6602 case BPF_FUNC_perf_event_read_value:
a7658e1a 6603 case BPF_FUNC_skb_output:
d831ee84 6604 case BPF_FUNC_xdp_output:
6aff67c8
AS
6605 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6606 goto error;
6607 break;
5b029a32
DB
6608 case BPF_FUNC_ringbuf_output:
6609 case BPF_FUNC_ringbuf_reserve:
6610 case BPF_FUNC_ringbuf_query:
bc34dee6
JK
6611 case BPF_FUNC_ringbuf_reserve_dynptr:
6612 case BPF_FUNC_ringbuf_submit_dynptr:
6613 case BPF_FUNC_ringbuf_discard_dynptr:
5b029a32
DB
6614 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6615 goto error;
6616 break;
20571567
DV
6617 case BPF_FUNC_user_ringbuf_drain:
6618 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
6619 goto error;
6620 break;
6aff67c8
AS
6621 case BPF_FUNC_get_stackid:
6622 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6623 goto error;
6624 break;
60d20f91 6625 case BPF_FUNC_current_task_under_cgroup:
747ea55e 6626 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
6627 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6628 goto error;
6629 break;
97f91a7c 6630 case BPF_FUNC_redirect_map:
9c270af3 6631 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 6632 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
6633 map->map_type != BPF_MAP_TYPE_CPUMAP &&
6634 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
6635 goto error;
6636 break;
174a79ff 6637 case BPF_FUNC_sk_redirect_map:
4f738adb 6638 case BPF_FUNC_msg_redirect_map:
81110384 6639 case BPF_FUNC_sock_map_update:
174a79ff
JF
6640 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6641 goto error;
6642 break;
81110384
JF
6643 case BPF_FUNC_sk_redirect_hash:
6644 case BPF_FUNC_msg_redirect_hash:
6645 case BPF_FUNC_sock_hash_update:
6646 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
6647 goto error;
6648 break;
cd339431 6649 case BPF_FUNC_get_local_storage:
b741f163
RG
6650 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6651 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
6652 goto error;
6653 break;
2dbb9b9e 6654 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
6655 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6656 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6657 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
6658 goto error;
6659 break;
f1a2e44a 6660 case BPF_FUNC_map_pop_elem:
f1a2e44a
MV
6661 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6662 map->map_type != BPF_MAP_TYPE_STACK)
6663 goto error;
6664 break;
9330986c
JK
6665 case BPF_FUNC_map_peek_elem:
6666 case BPF_FUNC_map_push_elem:
6667 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6668 map->map_type != BPF_MAP_TYPE_STACK &&
6669 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6670 goto error;
6671 break;
07343110
FZ
6672 case BPF_FUNC_map_lookup_percpu_elem:
6673 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6674 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6675 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6676 goto error;
6677 break;
6ac99e8f
MKL
6678 case BPF_FUNC_sk_storage_get:
6679 case BPF_FUNC_sk_storage_delete:
6680 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6681 goto error;
6682 break;
8ea63684
KS
6683 case BPF_FUNC_inode_storage_get:
6684 case BPF_FUNC_inode_storage_delete:
6685 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6686 goto error;
6687 break;
4cf1bc1f
KS
6688 case BPF_FUNC_task_storage_get:
6689 case BPF_FUNC_task_storage_delete:
6690 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6691 goto error;
6692 break;
c4bcfb38
YS
6693 case BPF_FUNC_cgrp_storage_get:
6694 case BPF_FUNC_cgrp_storage_delete:
6695 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
6696 goto error;
6697 break;
6aff67c8
AS
6698 default:
6699 break;
35578d79
KX
6700 }
6701
6702 return 0;
6aff67c8 6703error:
61bd5218 6704 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 6705 map->map_type, func_id_name(func_id), func_id);
6aff67c8 6706 return -EINVAL;
35578d79
KX
6707}
6708
90133415 6709static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
6710{
6711 int count = 0;
6712
39f19ebb 6713 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6714 count++;
39f19ebb 6715 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6716 count++;
39f19ebb 6717 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6718 count++;
39f19ebb 6719 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 6720 count++;
39f19ebb 6721 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
6722 count++;
6723
90133415
DB
6724 /* We only support one arg being in raw mode at the moment,
6725 * which is sufficient for the helper functions we have
6726 * right now.
6727 */
6728 return count <= 1;
6729}
6730
508362ac 6731static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
90133415 6732{
508362ac
MM
6733 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6734 bool has_size = fn->arg_size[arg] != 0;
6735 bool is_next_size = false;
6736
6737 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6738 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6739
6740 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6741 return is_next_size;
6742
6743 return has_size == is_next_size || is_next_size == is_fixed;
90133415
DB
6744}
6745
6746static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6747{
6748 /* bpf_xxx(..., buf, len) call will access 'len'
6749 * bytes from memory 'buf'. Both arg types need
6750 * to be paired, so make sure there's no buggy
6751 * helper function specification.
6752 */
6753 if (arg_type_is_mem_size(fn->arg1_type) ||
508362ac
MM
6754 check_args_pair_invalid(fn, 0) ||
6755 check_args_pair_invalid(fn, 1) ||
6756 check_args_pair_invalid(fn, 2) ||
6757 check_args_pair_invalid(fn, 3) ||
6758 check_args_pair_invalid(fn, 4))
90133415
DB
6759 return false;
6760
6761 return true;
6762}
6763
9436ef6e
LB
6764static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6765{
6766 int i;
6767
1df8f55a 6768 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4e814da0
KKD
6769 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
6770 return !!fn->arg_btf_id[i];
6771 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
6772 return fn->arg_btf_id[i] == BPF_PTR_POISON;
508362ac
MM
6773 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6774 /* arg_btf_id and arg_size are in a union. */
6775 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6776 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
1df8f55a
MKL
6777 return false;
6778 }
6779
9436ef6e
LB
6780 return true;
6781}
6782
0c9a7a7e 6783static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
6784{
6785 return check_raw_mode_ok(fn) &&
fd978bf7 6786 check_arg_pair_ok(fn) &&
b2d8ef19 6787 check_btf_id_ok(fn) ? 0 : -EINVAL;
435faee1
DB
6788}
6789
de8f3a83
DB
6790/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6791 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 6792 */
b239da34 6793static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 6794{
b239da34
KKD
6795 struct bpf_func_state *state;
6796 struct bpf_reg_state *reg;
969bf05e 6797
b239da34 6798 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
de8f3a83 6799 if (reg_is_pkt_pointer_any(reg))
f54c7898 6800 __mark_reg_unknown(env, reg);
b239da34 6801 }));
f4d7e40a
AS
6802}
6803
6d94e741
AS
6804enum {
6805 AT_PKT_END = -1,
6806 BEYOND_PKT_END = -2,
6807};
6808
6809static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6810{
6811 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6812 struct bpf_reg_state *reg = &state->regs[regn];
6813
6814 if (reg->type != PTR_TO_PACKET)
6815 /* PTR_TO_PACKET_META is not supported yet */
6816 return;
6817
6818 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6819 * How far beyond pkt_end it goes is unknown.
6820 * if (!range_open) it's the case of pkt >= pkt_end
6821 * if (range_open) it's the case of pkt > pkt_end
6822 * hence this pointer is at least 1 byte bigger than pkt_end
6823 */
6824 if (range_open)
6825 reg->range = BEYOND_PKT_END;
6826 else
6827 reg->range = AT_PKT_END;
6828}
6829
fd978bf7
JS
6830/* The pointer with the specified id has released its reference to kernel
6831 * resources. Identify all copies of the same pointer and clear the reference.
6832 */
6833static int release_reference(struct bpf_verifier_env *env,
1b986589 6834 int ref_obj_id)
fd978bf7 6835{
b239da34
KKD
6836 struct bpf_func_state *state;
6837 struct bpf_reg_state *reg;
1b986589 6838 int err;
fd978bf7 6839
1b986589
MKL
6840 err = release_reference_state(cur_func(env), ref_obj_id);
6841 if (err)
6842 return err;
6843
b239da34 6844 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
f1db2081
YL
6845 if (reg->ref_obj_id == ref_obj_id) {
6846 if (!env->allow_ptr_leaks)
6847 __mark_reg_not_init(env, reg);
6848 else
6849 __mark_reg_unknown(env, reg);
6850 }
b239da34 6851 }));
fd978bf7 6852
1b986589 6853 return 0;
fd978bf7
JS
6854}
6855
51c39bb1
AS
6856static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6857 struct bpf_reg_state *regs)
6858{
6859 int i;
6860
6861 /* after the call registers r0 - r5 were scratched */
6862 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6863 mark_reg_not_init(env, regs, caller_saved[i]);
6864 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6865 }
6866}
6867
14351375
YS
6868typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6869 struct bpf_func_state *caller,
6870 struct bpf_func_state *callee,
6871 int insn_idx);
6872
be2ef816
AN
6873static int set_callee_state(struct bpf_verifier_env *env,
6874 struct bpf_func_state *caller,
6875 struct bpf_func_state *callee, int insn_idx);
6876
14351375
YS
6877static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6878 int *insn_idx, int subprog,
6879 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
6880{
6881 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 6882 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 6883 struct bpf_func_state *caller, *callee;
14351375 6884 int err;
51c39bb1 6885 bool is_global = false;
f4d7e40a 6886
aada9ce6 6887 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 6888 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 6889 state->curframe + 2);
f4d7e40a
AS
6890 return -E2BIG;
6891 }
6892
f4d7e40a
AS
6893 caller = state->frame[state->curframe];
6894 if (state->frame[state->curframe + 1]) {
6895 verbose(env, "verifier bug. Frame %d already allocated\n",
6896 state->curframe + 1);
6897 return -EFAULT;
6898 }
6899
51c39bb1
AS
6900 func_info_aux = env->prog->aux->func_info_aux;
6901 if (func_info_aux)
6902 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
95f2f26f 6903 err = btf_check_subprog_call(env, subprog, caller->regs);
51c39bb1
AS
6904 if (err == -EFAULT)
6905 return err;
6906 if (is_global) {
6907 if (err) {
6908 verbose(env, "Caller passes invalid args into func#%d\n",
6909 subprog);
6910 return err;
6911 } else {
6912 if (env->log.level & BPF_LOG_LEVEL)
6913 verbose(env,
6914 "Func#%d is global and valid. Skipping.\n",
6915 subprog);
6916 clear_caller_saved_regs(env, caller->regs);
6917
45159b27 6918 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 6919 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 6920 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
6921
6922 /* continue with next insn after call */
6923 return 0;
6924 }
6925 }
6926
be2ef816
AN
6927 /* set_callee_state is used for direct subprog calls, but we are
6928 * interested in validating only BPF helpers that can call subprogs as
6929 * callbacks
6930 */
6931 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) {
6932 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n",
6933 func_id_name(insn->imm), insn->imm);
6934 return -EFAULT;
6935 }
6936
bfc6bb74 6937 if (insn->code == (BPF_JMP | BPF_CALL) &&
a5bebc4f 6938 insn->src_reg == 0 &&
bfc6bb74
AS
6939 insn->imm == BPF_FUNC_timer_set_callback) {
6940 struct bpf_verifier_state *async_cb;
6941
6942 /* there is no real recursion here. timer callbacks are async */
7ddc80a4 6943 env->subprog_info[subprog].is_async_cb = true;
bfc6bb74
AS
6944 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6945 *insn_idx, subprog);
6946 if (!async_cb)
6947 return -EFAULT;
6948 callee = async_cb->frame[0];
6949 callee->async_entry_cnt = caller->async_entry_cnt + 1;
6950
6951 /* Convert bpf_timer_set_callback() args into timer callback args */
6952 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6953 if (err)
6954 return err;
6955
6956 clear_caller_saved_regs(env, caller->regs);
6957 mark_reg_unknown(env, caller->regs, BPF_REG_0);
6958 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6959 /* continue with next insn after call */
6960 return 0;
6961 }
6962
f4d7e40a
AS
6963 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6964 if (!callee)
6965 return -ENOMEM;
6966 state->frame[state->curframe + 1] = callee;
6967
6968 /* callee cannot access r0, r6 - r9 for reading and has to write
6969 * into its own stack before reading from it.
6970 * callee can read/write into caller's stack
6971 */
6972 init_func_state(env, callee,
6973 /* remember the callsite, it will be used by bpf_exit */
6974 *insn_idx /* callsite */,
6975 state->curframe + 1 /* frameno within this callchain */,
f910cefa 6976 subprog /* subprog number within this prog */);
f4d7e40a 6977
fd978bf7 6978 /* Transfer references to the callee */
c69431aa 6979 err = copy_reference_state(callee, caller);
fd978bf7
JS
6980 if (err)
6981 return err;
6982
14351375
YS
6983 err = set_callee_state_cb(env, caller, callee, *insn_idx);
6984 if (err)
6985 return err;
f4d7e40a 6986
51c39bb1 6987 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
6988
6989 /* only increment it after check_reg_arg() finished */
6990 state->curframe++;
6991
6992 /* and go analyze first insn of the callee */
14351375 6993 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 6994
06ee7115 6995 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 6996 verbose(env, "caller:\n");
0f55f9ed 6997 print_verifier_state(env, caller, true);
f4d7e40a 6998 verbose(env, "callee:\n");
0f55f9ed 6999 print_verifier_state(env, callee, true);
f4d7e40a
AS
7000 }
7001 return 0;
7002}
7003
314ee05e
YS
7004int map_set_for_each_callback_args(struct bpf_verifier_env *env,
7005 struct bpf_func_state *caller,
7006 struct bpf_func_state *callee)
7007{
7008 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
7009 * void *callback_ctx, u64 flags);
7010 * callback_fn(struct bpf_map *map, void *key, void *value,
7011 * void *callback_ctx);
7012 */
7013 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7014
7015 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7016 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7017 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7018
7019 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7020 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7021 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
7022
7023 /* pointer to stack or null */
7024 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
7025
7026 /* unused */
7027 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7028 return 0;
7029}
7030
14351375
YS
7031static int set_callee_state(struct bpf_verifier_env *env,
7032 struct bpf_func_state *caller,
7033 struct bpf_func_state *callee, int insn_idx)
7034{
7035 int i;
7036
7037 /* copy r1 - r5 args that callee can access. The copy includes parent
7038 * pointers, which connects us up to the liveness chain
7039 */
7040 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
7041 callee->regs[i] = caller->regs[i];
7042 return 0;
7043}
7044
7045static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7046 int *insn_idx)
7047{
7048 int subprog, target_insn;
7049
7050 target_insn = *insn_idx + insn->imm + 1;
7051 subprog = find_subprog(env, target_insn);
7052 if (subprog < 0) {
7053 verbose(env, "verifier bug. No program starts at insn %d\n",
7054 target_insn);
7055 return -EFAULT;
7056 }
7057
7058 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
7059}
7060
69c087ba
YS
7061static int set_map_elem_callback_state(struct bpf_verifier_env *env,
7062 struct bpf_func_state *caller,
7063 struct bpf_func_state *callee,
7064 int insn_idx)
7065{
7066 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
7067 struct bpf_map *map;
7068 int err;
7069
7070 if (bpf_map_ptr_poisoned(insn_aux)) {
7071 verbose(env, "tail_call abusing map_ptr\n");
7072 return -EINVAL;
7073 }
7074
7075 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
7076 if (!map->ops->map_set_for_each_callback_args ||
7077 !map->ops->map_for_each_callback) {
7078 verbose(env, "callback function not allowed for map\n");
7079 return -ENOTSUPP;
7080 }
7081
7082 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
7083 if (err)
7084 return err;
7085
7086 callee->in_callback_fn = true;
1bfe26fb 7087 callee->callback_ret_range = tnum_range(0, 1);
69c087ba
YS
7088 return 0;
7089}
7090
e6f2dd0f
JK
7091static int set_loop_callback_state(struct bpf_verifier_env *env,
7092 struct bpf_func_state *caller,
7093 struct bpf_func_state *callee,
7094 int insn_idx)
7095{
7096 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
7097 * u64 flags);
7098 * callback_fn(u32 index, void *callback_ctx);
7099 */
7100 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
7101 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7102
7103 /* unused */
7104 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7105 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7106 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7107
7108 callee->in_callback_fn = true;
1bfe26fb 7109 callee->callback_ret_range = tnum_range(0, 1);
e6f2dd0f
JK
7110 return 0;
7111}
7112
b00628b1
AS
7113static int set_timer_callback_state(struct bpf_verifier_env *env,
7114 struct bpf_func_state *caller,
7115 struct bpf_func_state *callee,
7116 int insn_idx)
7117{
7118 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
7119
7120 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
7121 * callback_fn(struct bpf_map *map, void *key, void *value);
7122 */
7123 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
7124 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7125 callee->regs[BPF_REG_1].map_ptr = map_ptr;
7126
7127 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
7128 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7129 callee->regs[BPF_REG_2].map_ptr = map_ptr;
7130
7131 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
7132 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
7133 callee->regs[BPF_REG_3].map_ptr = map_ptr;
7134
7135 /* unused */
7136 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7137 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
bfc6bb74 7138 callee->in_async_callback_fn = true;
1bfe26fb 7139 callee->callback_ret_range = tnum_range(0, 1);
b00628b1
AS
7140 return 0;
7141}
7142
7c7e3d31
SL
7143static int set_find_vma_callback_state(struct bpf_verifier_env *env,
7144 struct bpf_func_state *caller,
7145 struct bpf_func_state *callee,
7146 int insn_idx)
7147{
7148 /* bpf_find_vma(struct task_struct *task, u64 addr,
7149 * void *callback_fn, void *callback_ctx, u64 flags)
7150 * (callback_fn)(struct task_struct *task,
7151 * struct vm_area_struct *vma, void *callback_ctx);
7152 */
7153 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
7154
7155 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
7156 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
7157 callee->regs[BPF_REG_2].btf = btf_vmlinux;
d19ddb47 7158 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
7c7e3d31
SL
7159
7160 /* pointer to stack or null */
7161 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
7162
7163 /* unused */
7164 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7165 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7166 callee->in_callback_fn = true;
1bfe26fb 7167 callee->callback_ret_range = tnum_range(0, 1);
7c7e3d31
SL
7168 return 0;
7169}
7170
20571567
DV
7171static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
7172 struct bpf_func_state *caller,
7173 struct bpf_func_state *callee,
7174 int insn_idx)
7175{
7176 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
7177 * callback_ctx, u64 flags);
7178 * callback_fn(struct bpf_dynptr_t* dynptr, void *callback_ctx);
7179 */
7180 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
7181 callee->regs[BPF_REG_1].type = PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL;
7182 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
7183 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
7184
7185 /* unused */
7186 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
7187 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
7188 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
7189
7190 callee->in_callback_fn = true;
c92a7a52 7191 callee->callback_ret_range = tnum_range(0, 1);
20571567
DV
7192 return 0;
7193}
7194
f4d7e40a
AS
7195static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
7196{
7197 struct bpf_verifier_state *state = env->cur_state;
7198 struct bpf_func_state *caller, *callee;
7199 struct bpf_reg_state *r0;
fd978bf7 7200 int err;
f4d7e40a
AS
7201
7202 callee = state->frame[state->curframe];
7203 r0 = &callee->regs[BPF_REG_0];
7204 if (r0->type == PTR_TO_STACK) {
7205 /* technically it's ok to return caller's stack pointer
7206 * (or caller's caller's pointer) back to the caller,
7207 * since these pointers are valid. Only current stack
7208 * pointer will be invalid as soon as function exits,
7209 * but let's be conservative
7210 */
7211 verbose(env, "cannot return stack pointer to the caller\n");
7212 return -EINVAL;
7213 }
7214
7215 state->curframe--;
7216 caller = state->frame[state->curframe];
69c087ba
YS
7217 if (callee->in_callback_fn) {
7218 /* enforce R0 return value range [0, 1]. */
1bfe26fb 7219 struct tnum range = callee->callback_ret_range;
69c087ba
YS
7220
7221 if (r0->type != SCALAR_VALUE) {
7222 verbose(env, "R0 not a scalar value\n");
7223 return -EACCES;
7224 }
7225 if (!tnum_in(range, r0->var_off)) {
7226 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
7227 return -EINVAL;
7228 }
7229 } else {
7230 /* return to the caller whatever r0 had in the callee */
7231 caller->regs[BPF_REG_0] = *r0;
7232 }
f4d7e40a 7233
9d9d00ac
KKD
7234 /* callback_fn frame should have released its own additions to parent's
7235 * reference state at this point, or check_reference_leak would
7236 * complain, hence it must be the same as the caller. There is no need
7237 * to copy it back.
7238 */
7239 if (!callee->in_callback_fn) {
7240 /* Transfer references to the caller */
7241 err = copy_reference_state(caller, callee);
7242 if (err)
7243 return err;
7244 }
fd978bf7 7245
f4d7e40a 7246 *insn_idx = callee->callsite + 1;
06ee7115 7247 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a 7248 verbose(env, "returning from callee:\n");
0f55f9ed 7249 print_verifier_state(env, callee, true);
f4d7e40a 7250 verbose(env, "to caller at %d:\n", *insn_idx);
0f55f9ed 7251 print_verifier_state(env, caller, true);
f4d7e40a
AS
7252 }
7253 /* clear everything in the callee */
7254 free_func_state(callee);
7255 state->frame[state->curframe + 1] = NULL;
7256 return 0;
7257}
7258
849fa506
YS
7259static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
7260 int func_id,
7261 struct bpf_call_arg_meta *meta)
7262{
7263 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
7264
7265 if (ret_type != RET_INTEGER ||
7266 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 7267 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
7268 func_id != BPF_FUNC_probe_read_str &&
7269 func_id != BPF_FUNC_probe_read_kernel_str &&
7270 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
7271 return;
7272
10060503 7273 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 7274 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
7275 ret_reg->smin_value = -MAX_ERRNO;
7276 ret_reg->s32_min_value = -MAX_ERRNO;
3844d153 7277 reg_bounds_sync(ret_reg);
849fa506
YS
7278}
7279
c93552c4
DB
7280static int
7281record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7282 int func_id, int insn_idx)
7283{
7284 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 7285 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
7286
7287 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
7288 func_id != BPF_FUNC_map_lookup_elem &&
7289 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
7290 func_id != BPF_FUNC_map_delete_elem &&
7291 func_id != BPF_FUNC_map_push_elem &&
7292 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 7293 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f 7294 func_id != BPF_FUNC_for_each_map_elem &&
07343110
FZ
7295 func_id != BPF_FUNC_redirect_map &&
7296 func_id != BPF_FUNC_map_lookup_percpu_elem)
c93552c4 7297 return 0;
09772d92 7298
591fe988 7299 if (map == NULL) {
c93552c4
DB
7300 verbose(env, "kernel subsystem misconfigured verifier\n");
7301 return -EINVAL;
7302 }
7303
591fe988
DB
7304 /* In case of read-only, some additional restrictions
7305 * need to be applied in order to prevent altering the
7306 * state of the map from program side.
7307 */
7308 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7309 (func_id == BPF_FUNC_map_delete_elem ||
7310 func_id == BPF_FUNC_map_update_elem ||
7311 func_id == BPF_FUNC_map_push_elem ||
7312 func_id == BPF_FUNC_map_pop_elem)) {
7313 verbose(env, "write into map forbidden\n");
7314 return -EACCES;
7315 }
7316
d2e4c1e6 7317 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 7318 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 7319 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 7320 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 7321 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 7322 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
7323 return 0;
7324}
7325
d2e4c1e6
DB
7326static int
7327record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7328 int func_id, int insn_idx)
7329{
7330 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7331 struct bpf_reg_state *regs = cur_regs(env), *reg;
7332 struct bpf_map *map = meta->map_ptr;
a657182a 7333 u64 val, max;
cc52d914 7334 int err;
d2e4c1e6
DB
7335
7336 if (func_id != BPF_FUNC_tail_call)
7337 return 0;
7338 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7339 verbose(env, "kernel subsystem misconfigured verifier\n");
7340 return -EINVAL;
7341 }
7342
d2e4c1e6 7343 reg = &regs[BPF_REG_3];
a657182a
DB
7344 val = reg->var_off.value;
7345 max = map->max_entries;
d2e4c1e6 7346
a657182a 7347 if (!(register_is_const(reg) && val < max)) {
d2e4c1e6
DB
7348 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7349 return 0;
7350 }
7351
cc52d914
DB
7352 err = mark_chain_precision(env, BPF_REG_3);
7353 if (err)
7354 return err;
d2e4c1e6
DB
7355 if (bpf_map_key_unseen(aux))
7356 bpf_map_key_store(aux, val);
7357 else if (!bpf_map_key_poisoned(aux) &&
7358 bpf_map_key_immediate(aux) != val)
7359 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7360 return 0;
7361}
7362
fd978bf7
JS
7363static int check_reference_leak(struct bpf_verifier_env *env)
7364{
7365 struct bpf_func_state *state = cur_func(env);
9d9d00ac 7366 bool refs_lingering = false;
fd978bf7
JS
7367 int i;
7368
9d9d00ac
KKD
7369 if (state->frameno && !state->in_callback_fn)
7370 return 0;
7371
fd978bf7 7372 for (i = 0; i < state->acquired_refs; i++) {
9d9d00ac
KKD
7373 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
7374 continue;
fd978bf7
JS
7375 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7376 state->refs[i].id, state->refs[i].insn_idx);
9d9d00ac 7377 refs_lingering = true;
fd978bf7 7378 }
9d9d00ac 7379 return refs_lingering ? -EINVAL : 0;
fd978bf7
JS
7380}
7381
7b15523a
FR
7382static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7383 struct bpf_reg_state *regs)
7384{
7385 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7386 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7387 struct bpf_map *fmt_map = fmt_reg->map_ptr;
7388 int err, fmt_map_off, num_args;
7389 u64 fmt_addr;
7390 char *fmt;
7391
7392 /* data must be an array of u64 */
7393 if (data_len_reg->var_off.value % 8)
7394 return -EINVAL;
7395 num_args = data_len_reg->var_off.value / 8;
7396
7397 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7398 * and map_direct_value_addr is set.
7399 */
7400 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7401 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7402 fmt_map_off);
8e8ee109
FR
7403 if (err) {
7404 verbose(env, "verifier bug\n");
7405 return -EFAULT;
7406 }
7b15523a
FR
7407 fmt = (char *)(long)fmt_addr + fmt_map_off;
7408
7409 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7410 * can focus on validating the format specifiers.
7411 */
48cac3f4 7412 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7b15523a
FR
7413 if (err < 0)
7414 verbose(env, "Invalid format string\n");
7415
7416 return err;
7417}
7418
9b99edca
JO
7419static int check_get_func_ip(struct bpf_verifier_env *env)
7420{
9b99edca
JO
7421 enum bpf_prog_type type = resolve_prog_type(env->prog);
7422 int func_id = BPF_FUNC_get_func_ip;
7423
7424 if (type == BPF_PROG_TYPE_TRACING) {
f92c1e18 7425 if (!bpf_prog_has_trampoline(env->prog)) {
9b99edca
JO
7426 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7427 func_id_name(func_id), func_id);
7428 return -ENOTSUPP;
7429 }
7430 return 0;
9ffd9f3f
JO
7431 } else if (type == BPF_PROG_TYPE_KPROBE) {
7432 return 0;
9b99edca
JO
7433 }
7434
7435 verbose(env, "func %s#%d not supported for program type %d\n",
7436 func_id_name(func_id), func_id, type);
7437 return -ENOTSUPP;
7438}
7439
1ade2371
EZ
7440static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7441{
7442 return &env->insn_aux_data[env->insn_idx];
7443}
7444
7445static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7446{
7447 struct bpf_reg_state *regs = cur_regs(env);
7448 struct bpf_reg_state *reg = &regs[BPF_REG_4];
7449 bool reg_is_null = register_is_null(reg);
7450
7451 if (reg_is_null)
7452 mark_chain_precision(env, BPF_REG_4);
7453
7454 return reg_is_null;
7455}
7456
7457static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7458{
7459 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7460
7461 if (!state->initialized) {
7462 state->initialized = 1;
7463 state->fit_for_inline = loop_flag_is_zero(env);
7464 state->callback_subprogno = subprogno;
7465 return;
7466 }
7467
7468 if (!state->fit_for_inline)
7469 return;
7470
7471 state->fit_for_inline = (loop_flag_is_zero(env) &&
7472 state->callback_subprogno == subprogno);
7473}
7474
69c087ba
YS
7475static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7476 int *insn_idx_p)
17a52670 7477{
aef9d4a3 7478 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
17a52670 7479 const struct bpf_func_proto *fn = NULL;
3c480732 7480 enum bpf_return_type ret_type;
c25b2ae1 7481 enum bpf_type_flag ret_flag;
638f5b90 7482 struct bpf_reg_state *regs;
33ff9823 7483 struct bpf_call_arg_meta meta;
69c087ba 7484 int insn_idx = *insn_idx_p;
969bf05e 7485 bool changes_data;
69c087ba 7486 int i, err, func_id;
17a52670
AS
7487
7488 /* find function prototype */
69c087ba 7489 func_id = insn->imm;
17a52670 7490 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
7491 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7492 func_id);
17a52670
AS
7493 return -EINVAL;
7494 }
7495
00176a34 7496 if (env->ops->get_func_proto)
5e43f899 7497 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 7498 if (!fn) {
61bd5218
JK
7499 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7500 func_id);
17a52670
AS
7501 return -EINVAL;
7502 }
7503
7504 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 7505 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 7506 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
7507 return -EINVAL;
7508 }
7509
eae2e83e
JO
7510 if (fn->allowed && !fn->allowed(env->prog)) {
7511 verbose(env, "helper call is not allowed in probe\n");
7512 return -EINVAL;
7513 }
7514
04514d13 7515 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 7516 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
7517 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7518 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7519 func_id_name(func_id), func_id);
7520 return -EINVAL;
7521 }
969bf05e 7522
33ff9823 7523 memset(&meta, 0, sizeof(meta));
36bbef52 7524 meta.pkt_access = fn->pkt_access;
33ff9823 7525
0c9a7a7e 7526 err = check_func_proto(fn, func_id);
435faee1 7527 if (err) {
61bd5218 7528 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 7529 func_id_name(func_id), func_id);
435faee1
DB
7530 return err;
7531 }
7532
d83525ca 7533 meta.func_id = func_id;
17a52670 7534 /* check args */
523a4cf4 7535 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 7536 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
7537 if (err)
7538 return err;
7539 }
17a52670 7540
c93552c4
DB
7541 err = record_func_map(env, &meta, func_id, insn_idx);
7542 if (err)
7543 return err;
7544
d2e4c1e6
DB
7545 err = record_func_key(env, &meta, func_id, insn_idx);
7546 if (err)
7547 return err;
7548
435faee1
DB
7549 /* Mark slots with STACK_MISC in case of raw mode, stack offset
7550 * is inferred from register state.
7551 */
7552 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
7553 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7554 BPF_WRITE, -1, false);
435faee1
DB
7555 if (err)
7556 return err;
7557 }
7558
8f14852e
KKD
7559 regs = cur_regs(env);
7560
97e03f52
JK
7561 if (meta.uninit_dynptr_regno) {
7562 /* we write BPF_DW bits (8 bytes) at a time */
7563 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7564 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7565 i, BPF_DW, BPF_WRITE, -1, false);
7566 if (err)
7567 return err;
7568 }
7569
7570 err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7571 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7572 insn_idx);
7573 if (err)
7574 return err;
7575 }
7576
8f14852e
KKD
7577 if (meta.release_regno) {
7578 err = -EINVAL;
97e03f52
JK
7579 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7580 err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7581 else if (meta.ref_obj_id)
8f14852e
KKD
7582 err = release_reference(env, meta.ref_obj_id);
7583 /* meta.ref_obj_id can only be 0 if register that is meant to be
7584 * released is NULL, which must be > R0.
7585 */
7586 else if (register_is_null(&regs[meta.release_regno]))
7587 err = 0;
46f8bc92
MKL
7588 if (err) {
7589 verbose(env, "func %s#%d reference has not been acquired before\n",
7590 func_id_name(func_id), func_id);
fd978bf7 7591 return err;
46f8bc92 7592 }
fd978bf7
JS
7593 }
7594
e6f2dd0f
JK
7595 switch (func_id) {
7596 case BPF_FUNC_tail_call:
7597 err = check_reference_leak(env);
7598 if (err) {
7599 verbose(env, "tail_call would lead to reference leak\n");
7600 return err;
7601 }
7602 break;
7603 case BPF_FUNC_get_local_storage:
7604 /* check that flags argument in get_local_storage(map, flags) is 0,
7605 * this is required because get_local_storage() can't return an error.
7606 */
7607 if (!register_is_null(&regs[BPF_REG_2])) {
7608 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7609 return -EINVAL;
7610 }
7611 break;
7612 case BPF_FUNC_for_each_map_elem:
69c087ba
YS
7613 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7614 set_map_elem_callback_state);
e6f2dd0f
JK
7615 break;
7616 case BPF_FUNC_timer_set_callback:
b00628b1
AS
7617 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7618 set_timer_callback_state);
e6f2dd0f
JK
7619 break;
7620 case BPF_FUNC_find_vma:
7c7e3d31
SL
7621 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7622 set_find_vma_callback_state);
e6f2dd0f
JK
7623 break;
7624 case BPF_FUNC_snprintf:
7b15523a 7625 err = check_bpf_snprintf_call(env, regs);
e6f2dd0f
JK
7626 break;
7627 case BPF_FUNC_loop:
1ade2371 7628 update_loop_inline_state(env, meta.subprogno);
e6f2dd0f
JK
7629 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7630 set_loop_callback_state);
7631 break;
263ae152
JK
7632 case BPF_FUNC_dynptr_from_mem:
7633 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7634 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7635 reg_type_str(env, regs[BPF_REG_1].type));
7636 return -EACCES;
7637 }
69fd337a
SF
7638 break;
7639 case BPF_FUNC_set_retval:
aef9d4a3
SF
7640 if (prog_type == BPF_PROG_TYPE_LSM &&
7641 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
69fd337a
SF
7642 if (!env->prog->aux->attach_func_proto->type) {
7643 /* Make sure programs that attach to void
7644 * hooks don't try to modify return value.
7645 */
7646 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7647 return -EINVAL;
7648 }
7649 }
7650 break;
88374342
JK
7651 case BPF_FUNC_dynptr_data:
7652 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7653 if (arg_type_is_dynptr(fn->arg_type[i])) {
20571567
DV
7654 struct bpf_reg_state *reg = &regs[BPF_REG_1 + i];
7655
88374342
JK
7656 if (meta.ref_obj_id) {
7657 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
7658 return -EFAULT;
7659 }
20571567
DV
7660
7661 if (base_type(reg->type) != PTR_TO_DYNPTR)
7662 /* Find the id of the dynptr we're
7663 * tracking the reference of
7664 */
7665 meta.ref_obj_id = stack_slot_get_id(env, reg);
88374342
JK
7666 break;
7667 }
7668 }
7669 if (i == MAX_BPF_FUNC_REG_ARGS) {
7670 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n");
7671 return -EFAULT;
7672 }
7673 break;
20571567
DV
7674 case BPF_FUNC_user_ringbuf_drain:
7675 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7676 set_user_ringbuf_callback_state);
7677 break;
7b15523a
FR
7678 }
7679
e6f2dd0f
JK
7680 if (err)
7681 return err;
7682
17a52670 7683 /* reset caller saved regs */
dc503a8a 7684 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 7685 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
7686 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7687 }
17a52670 7688
5327ed3d
JW
7689 /* helper call returns 64-bit value. */
7690 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7691
dc503a8a 7692 /* update return register (already marked as written above) */
3c480732 7693 ret_type = fn->ret_type;
0c9a7a7e
JK
7694 ret_flag = type_flag(ret_type);
7695
7696 switch (base_type(ret_type)) {
7697 case RET_INTEGER:
f1174f77 7698 /* sets type to SCALAR_VALUE */
61bd5218 7699 mark_reg_unknown(env, regs, BPF_REG_0);
0c9a7a7e
JK
7700 break;
7701 case RET_VOID:
17a52670 7702 regs[BPF_REG_0].type = NOT_INIT;
0c9a7a7e
JK
7703 break;
7704 case RET_PTR_TO_MAP_VALUE:
f1174f77 7705 /* There is no offset yet applied, variable or fixed */
61bd5218 7706 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
7707 /* remember map_ptr, so that check_map_access()
7708 * can check 'value_size' boundary of memory access
7709 * to map element returned from bpf_map_lookup_elem()
7710 */
33ff9823 7711 if (meta.map_ptr == NULL) {
61bd5218
JK
7712 verbose(env,
7713 "kernel subsystem misconfigured verifier\n");
17a52670
AS
7714 return -EINVAL;
7715 }
33ff9823 7716 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3e8ce298 7717 regs[BPF_REG_0].map_uid = meta.map_uid;
c25b2ae1
HL
7718 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7719 if (!type_may_be_null(ret_type) &&
db559117 7720 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
c25b2ae1 7721 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301 7722 }
0c9a7a7e
JK
7723 break;
7724 case RET_PTR_TO_SOCKET:
c64b7983 7725 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7726 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
0c9a7a7e
JK
7727 break;
7728 case RET_PTR_TO_SOCK_COMMON:
85a51f8c 7729 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7730 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
0c9a7a7e
JK
7731 break;
7732 case RET_PTR_TO_TCP_SOCK:
655a51e5 7733 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7734 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
0c9a7a7e 7735 break;
2de2669b 7736 case RET_PTR_TO_MEM:
457f4436 7737 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7738 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
457f4436 7739 regs[BPF_REG_0].mem_size = meta.mem_size;
0c9a7a7e
JK
7740 break;
7741 case RET_PTR_TO_MEM_OR_BTF_ID:
7742 {
eaa6bcb7
HL
7743 const struct btf_type *t;
7744
7745 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 7746 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
7747 if (!btf_type_is_struct(t)) {
7748 u32 tsize;
7749 const struct btf_type *ret;
7750 const char *tname;
7751
7752 /* resolve the type size of ksym. */
22dc4a0f 7753 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 7754 if (IS_ERR(ret)) {
22dc4a0f 7755 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
7756 verbose(env, "unable to resolve the size of type '%s': %ld\n",
7757 tname, PTR_ERR(ret));
7758 return -EINVAL;
7759 }
c25b2ae1 7760 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
eaa6bcb7
HL
7761 regs[BPF_REG_0].mem_size = tsize;
7762 } else {
34d3a78c
HL
7763 /* MEM_RDONLY may be carried from ret_flag, but it
7764 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7765 * it will confuse the check of PTR_TO_BTF_ID in
7766 * check_mem_access().
7767 */
7768 ret_flag &= ~MEM_RDONLY;
7769
c25b2ae1 7770 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
22dc4a0f 7771 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
7772 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7773 }
0c9a7a7e
JK
7774 break;
7775 }
7776 case RET_PTR_TO_BTF_ID:
7777 {
c0a5a21c 7778 struct btf *ret_btf;
af7ec138
YS
7779 int ret_btf_id;
7780
7781 mark_reg_known_zero(env, regs, BPF_REG_0);
c25b2ae1 7782 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
c0a5a21c 7783 if (func_id == BPF_FUNC_kptr_xchg) {
aa3496ac
KKD
7784 ret_btf = meta.kptr_field->kptr.btf;
7785 ret_btf_id = meta.kptr_field->kptr.btf_id;
c0a5a21c 7786 } else {
47e34cb7
DM
7787 if (fn->ret_btf_id == BPF_PTR_POISON) {
7788 verbose(env, "verifier internal error:");
7789 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
7790 func_id_name(func_id));
7791 return -EINVAL;
7792 }
c0a5a21c
KKD
7793 ret_btf = btf_vmlinux;
7794 ret_btf_id = *fn->ret_btf_id;
7795 }
af7ec138 7796 if (ret_btf_id == 0) {
3c480732
HL
7797 verbose(env, "invalid return type %u of func %s#%d\n",
7798 base_type(ret_type), func_id_name(func_id),
7799 func_id);
af7ec138
YS
7800 return -EINVAL;
7801 }
c0a5a21c 7802 regs[BPF_REG_0].btf = ret_btf;
af7ec138 7803 regs[BPF_REG_0].btf_id = ret_btf_id;
0c9a7a7e
JK
7804 break;
7805 }
7806 default:
3c480732
HL
7807 verbose(env, "unknown return type %u of func %s#%d\n",
7808 base_type(ret_type), func_id_name(func_id), func_id);
17a52670
AS
7809 return -EINVAL;
7810 }
04fd61ab 7811
c25b2ae1 7812 if (type_may_be_null(regs[BPF_REG_0].type))
93c230e3
MKL
7813 regs[BPF_REG_0].id = ++env->id_gen;
7814
b2d8ef19
DM
7815 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
7816 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
7817 func_id_name(func_id), func_id);
7818 return -EFAULT;
7819 }
7820
88374342 7821 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
1b986589
MKL
7822 /* For release_reference() */
7823 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 7824 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
7825 int id = acquire_reference_state(env, insn_idx);
7826
7827 if (id < 0)
7828 return id;
7829 /* For mark_ptr_or_null_reg() */
7830 regs[BPF_REG_0].id = id;
7831 /* For release_reference() */
7832 regs[BPF_REG_0].ref_obj_id = id;
7833 }
1b986589 7834
849fa506
YS
7835 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7836
61bd5218 7837 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
7838 if (err)
7839 return err;
04fd61ab 7840
fa28dcb8
SL
7841 if ((func_id == BPF_FUNC_get_stack ||
7842 func_id == BPF_FUNC_get_task_stack) &&
7843 !env->prog->has_callchain_buf) {
c195651e
YS
7844 const char *err_str;
7845
7846#ifdef CONFIG_PERF_EVENTS
7847 err = get_callchain_buffers(sysctl_perf_event_max_stack);
7848 err_str = "cannot get callchain buffer for func %s#%d\n";
7849#else
7850 err = -ENOTSUPP;
7851 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7852#endif
7853 if (err) {
7854 verbose(env, err_str, func_id_name(func_id), func_id);
7855 return err;
7856 }
7857
7858 env->prog->has_callchain_buf = true;
7859 }
7860
5d99cb2c
SL
7861 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7862 env->prog->call_get_stack = true;
7863
9b99edca
JO
7864 if (func_id == BPF_FUNC_get_func_ip) {
7865 if (check_get_func_ip(env))
7866 return -ENOTSUPP;
7867 env->prog->call_get_func_ip = true;
7868 }
7869
969bf05e
AS
7870 if (changes_data)
7871 clear_all_pkt_pointers(env);
7872 return 0;
7873}
7874
e6ac2450
MKL
7875/* mark_btf_func_reg_size() is used when the reg size is determined by
7876 * the BTF func_proto's return value size and argument.
7877 */
7878static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7879 size_t reg_size)
7880{
7881 struct bpf_reg_state *reg = &cur_regs(env)[regno];
7882
7883 if (regno == BPF_REG_0) {
7884 /* Function return value */
7885 reg->live |= REG_LIVE_WRITTEN;
7886 reg->subreg_def = reg_size == sizeof(u64) ?
7887 DEF_NOT_SUBREG : env->insn_idx + 1;
7888 } else {
7889 /* Function argument */
7890 if (reg_size == sizeof(u64)) {
7891 mark_insn_zext(env, reg);
7892 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7893 } else {
7894 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7895 }
7896 }
7897}
7898
00b85860
KKD
7899struct bpf_kfunc_call_arg_meta {
7900 /* In parameters */
7901 struct btf *btf;
7902 u32 func_id;
7903 u32 kfunc_flags;
7904 const struct btf_type *func_proto;
7905 const char *func_name;
7906 /* Out parameters */
7907 u32 ref_obj_id;
7908 u8 release_regno;
7909 bool r0_rdonly;
fd264ca0 7910 u32 ret_btf_id;
00b85860 7911 u64 r0_size;
a50388db
KKD
7912 struct {
7913 u64 value;
7914 bool found;
7915 } arg_constant;
ac9f0605
KKD
7916 struct {
7917 struct btf *btf;
7918 u32 btf_id;
7919 } arg_obj_drop;
8cab76ec
KKD
7920 struct {
7921 struct btf_field *field;
7922 } arg_list_head;
00b85860
KKD
7923};
7924
7925static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
7926{
7927 return meta->kfunc_flags & KF_ACQUIRE;
7928}
7929
7930static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
7931{
7932 return meta->kfunc_flags & KF_RET_NULL;
7933}
7934
7935static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
7936{
7937 return meta->kfunc_flags & KF_RELEASE;
7938}
7939
7940static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
7941{
7942 return meta->kfunc_flags & KF_TRUSTED_ARGS;
7943}
7944
7945static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
7946{
7947 return meta->kfunc_flags & KF_SLEEPABLE;
7948}
7949
7950static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
7951{
7952 return meta->kfunc_flags & KF_DESTRUCTIVE;
7953}
7954
7955static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg)
7956{
7957 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET);
7958}
7959
3f00c523
DV
7960static bool is_trusted_reg(const struct bpf_reg_state *reg)
7961{
7962 /* A referenced register is always trusted. */
7963 if (reg->ref_obj_id)
7964 return true;
7965
7966 /* If a register is not referenced, it is trusted if it has either the
7967 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
7968 * other type modifiers may be safe, but we elect to take an opt-in
7969 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
7970 * not.
7971 *
7972 * Eventually, we should make PTR_TRUSTED the single source of truth
7973 * for whether a register is trusted.
7974 */
7975 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
7976 !bpf_type_has_unsafe_modifiers(reg->type);
7977}
7978
a50388db
KKD
7979static bool __kfunc_param_match_suffix(const struct btf *btf,
7980 const struct btf_param *arg,
7981 const char *suffix)
00b85860 7982{
a50388db 7983 int suffix_len = strlen(suffix), len;
00b85860
KKD
7984 const char *param_name;
7985
00b85860
KKD
7986 /* In the future, this can be ported to use BTF tagging */
7987 param_name = btf_name_by_offset(btf, arg->name_off);
7988 if (str_is_empty(param_name))
7989 return false;
7990 len = strlen(param_name);
a50388db 7991 if (len < suffix_len)
00b85860 7992 return false;
a50388db
KKD
7993 param_name += len - suffix_len;
7994 return !strncmp(param_name, suffix, suffix_len);
7995}
7996
7997static bool is_kfunc_arg_mem_size(const struct btf *btf,
7998 const struct btf_param *arg,
7999 const struct bpf_reg_state *reg)
8000{
8001 const struct btf_type *t;
8002
8003 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8004 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
00b85860
KKD
8005 return false;
8006
a50388db
KKD
8007 return __kfunc_param_match_suffix(btf, arg, "__sz");
8008}
8009
8010static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
8011{
8012 return __kfunc_param_match_suffix(btf, arg, "__k");
00b85860
KKD
8013}
8014
958cf2e2
KKD
8015static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
8016{
8017 return __kfunc_param_match_suffix(btf, arg, "__ign");
8018}
8019
ac9f0605
KKD
8020static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
8021{
8022 return __kfunc_param_match_suffix(btf, arg, "__alloc");
8023}
8024
00b85860
KKD
8025static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
8026 const struct btf_param *arg,
8027 const char *name)
8028{
8029 int len, target_len = strlen(name);
8030 const char *param_name;
8031
8032 param_name = btf_name_by_offset(btf, arg->name_off);
8033 if (str_is_empty(param_name))
8034 return false;
8035 len = strlen(param_name);
8036 if (len != target_len)
8037 return false;
8038 if (strcmp(param_name, name))
8039 return false;
8040
8041 return true;
8042}
8043
8044enum {
8045 KF_ARG_DYNPTR_ID,
8cab76ec
KKD
8046 KF_ARG_LIST_HEAD_ID,
8047 KF_ARG_LIST_NODE_ID,
00b85860
KKD
8048};
8049
8050BTF_ID_LIST(kf_arg_btf_ids)
8051BTF_ID(struct, bpf_dynptr_kern)
8cab76ec
KKD
8052BTF_ID(struct, bpf_list_head)
8053BTF_ID(struct, bpf_list_node)
00b85860 8054
8cab76ec
KKD
8055static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
8056 const struct btf_param *arg, int type)
00b85860
KKD
8057{
8058 const struct btf_type *t;
8059 u32 res_id;
8060
8061 t = btf_type_skip_modifiers(btf, arg->type, NULL);
8062 if (!t)
8063 return false;
8064 if (!btf_type_is_ptr(t))
8065 return false;
8066 t = btf_type_skip_modifiers(btf, t->type, &res_id);
8067 if (!t)
8068 return false;
8cab76ec
KKD
8069 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
8070}
8071
8072static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
8073{
8074 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
8075}
8076
8077static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
8078{
8079 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
8080}
8081
8082static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
8083{
8084 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
00b85860
KKD
8085}
8086
8087/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
8088static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
8089 const struct btf *btf,
8090 const struct btf_type *t, int rec)
8091{
8092 const struct btf_type *member_type;
8093 const struct btf_member *member;
8094 u32 i;
8095
8096 if (!btf_type_is_struct(t))
8097 return false;
8098
8099 for_each_member(i, t, member) {
8100 const struct btf_array *array;
8101
8102 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
8103 if (btf_type_is_struct(member_type)) {
8104 if (rec >= 3) {
8105 verbose(env, "max struct nesting depth exceeded\n");
8106 return false;
8107 }
8108 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
8109 return false;
8110 continue;
8111 }
8112 if (btf_type_is_array(member_type)) {
8113 array = btf_array(member_type);
8114 if (!array->nelems)
8115 return false;
8116 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
8117 if (!btf_type_is_scalar(member_type))
8118 return false;
8119 continue;
8120 }
8121 if (!btf_type_is_scalar(member_type))
8122 return false;
8123 }
8124 return true;
8125}
8126
8127
8128static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
8129#ifdef CONFIG_NET
8130 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
8131 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8132 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
8133#endif
8134};
8135
8136enum kfunc_ptr_arg_type {
8137 KF_ARG_PTR_TO_CTX,
ac9f0605 8138 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
00b85860
KKD
8139 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */
8140 KF_ARG_PTR_TO_DYNPTR,
8cab76ec
KKD
8141 KF_ARG_PTR_TO_LIST_HEAD,
8142 KF_ARG_PTR_TO_LIST_NODE,
00b85860
KKD
8143 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
8144 KF_ARG_PTR_TO_MEM,
8145 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
8146};
8147
ac9f0605
KKD
8148enum special_kfunc_type {
8149 KF_bpf_obj_new_impl,
8150 KF_bpf_obj_drop_impl,
8cab76ec
KKD
8151 KF_bpf_list_push_front,
8152 KF_bpf_list_push_back,
8153 KF_bpf_list_pop_front,
8154 KF_bpf_list_pop_back,
fd264ca0 8155 KF_bpf_cast_to_kern_ctx,
a35b9af4 8156 KF_bpf_rdonly_cast,
ac9f0605
KKD
8157};
8158
8159BTF_SET_START(special_kfunc_set)
8160BTF_ID(func, bpf_obj_new_impl)
8161BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
8162BTF_ID(func, bpf_list_push_front)
8163BTF_ID(func, bpf_list_push_back)
8164BTF_ID(func, bpf_list_pop_front)
8165BTF_ID(func, bpf_list_pop_back)
fd264ca0 8166BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 8167BTF_ID(func, bpf_rdonly_cast)
ac9f0605
KKD
8168BTF_SET_END(special_kfunc_set)
8169
8170BTF_ID_LIST(special_kfunc_list)
8171BTF_ID(func, bpf_obj_new_impl)
8172BTF_ID(func, bpf_obj_drop_impl)
8cab76ec
KKD
8173BTF_ID(func, bpf_list_push_front)
8174BTF_ID(func, bpf_list_push_back)
8175BTF_ID(func, bpf_list_pop_front)
8176BTF_ID(func, bpf_list_pop_back)
fd264ca0 8177BTF_ID(func, bpf_cast_to_kern_ctx)
a35b9af4 8178BTF_ID(func, bpf_rdonly_cast)
ac9f0605 8179
00b85860
KKD
8180static enum kfunc_ptr_arg_type
8181get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
8182 struct bpf_kfunc_call_arg_meta *meta,
8183 const struct btf_type *t, const struct btf_type *ref_t,
8184 const char *ref_tname, const struct btf_param *args,
8185 int argno, int nargs)
8186{
8187 u32 regno = argno + 1;
8188 struct bpf_reg_state *regs = cur_regs(env);
8189 struct bpf_reg_state *reg = &regs[regno];
8190 bool arg_mem_size = false;
8191
fd264ca0
YS
8192 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
8193 return KF_ARG_PTR_TO_CTX;
8194
00b85860
KKD
8195 /* In this function, we verify the kfunc's BTF as per the argument type,
8196 * leaving the rest of the verification with respect to the register
8197 * type to our caller. When a set of conditions hold in the BTF type of
8198 * arguments, we resolve it to a known kfunc_ptr_arg_type.
8199 */
8200 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
8201 return KF_ARG_PTR_TO_CTX;
8202
ac9f0605
KKD
8203 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
8204 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
8205
00b85860
KKD
8206 if (is_kfunc_arg_kptr_get(meta, argno)) {
8207 if (!btf_type_is_ptr(ref_t)) {
8208 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n");
8209 return -EINVAL;
8210 }
8211 ref_t = btf_type_by_id(meta->btf, ref_t->type);
8212 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off);
8213 if (!btf_type_is_struct(ref_t)) {
8214 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n",
8215 meta->func_name, btf_type_str(ref_t), ref_tname);
8216 return -EINVAL;
8217 }
8218 return KF_ARG_PTR_TO_KPTR;
8219 }
8220
8221 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
8222 return KF_ARG_PTR_TO_DYNPTR;
8223
8cab76ec
KKD
8224 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
8225 return KF_ARG_PTR_TO_LIST_HEAD;
8226
8227 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
8228 return KF_ARG_PTR_TO_LIST_NODE;
8229
00b85860
KKD
8230 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
8231 if (!btf_type_is_struct(ref_t)) {
8232 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
8233 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8234 return -EINVAL;
8235 }
8236 return KF_ARG_PTR_TO_BTF_ID;
8237 }
8238
8239 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]))
8240 arg_mem_size = true;
8241
8242 /* This is the catch all argument type of register types supported by
8243 * check_helper_mem_access. However, we only allow when argument type is
8244 * pointer to scalar, or struct composed (recursively) of scalars. When
8245 * arg_mem_size is true, the pointer can be void *.
8246 */
8247 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
8248 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
8249 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
8250 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
8251 return -EINVAL;
8252 }
8253 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
8254}
8255
8256static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
8257 struct bpf_reg_state *reg,
8258 const struct btf_type *ref_t,
8259 const char *ref_tname, u32 ref_id,
8260 struct bpf_kfunc_call_arg_meta *meta,
8261 int argno)
8262{
8263 const struct btf_type *reg_ref_t;
8264 bool strict_type_match = false;
8265 const struct btf *reg_btf;
8266 const char *reg_ref_tname;
8267 u32 reg_ref_id;
8268
3f00c523 8269 if (base_type(reg->type) == PTR_TO_BTF_ID) {
00b85860
KKD
8270 reg_btf = reg->btf;
8271 reg_ref_id = reg->btf_id;
8272 } else {
8273 reg_btf = btf_vmlinux;
8274 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
8275 }
8276
8277 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id))
8278 strict_type_match = true;
8279
8280 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
8281 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
8282 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
8283 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
8284 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
8285 btf_type_str(reg_ref_t), reg_ref_tname);
8286 return -EINVAL;
8287 }
8288 return 0;
8289}
8290
8291static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env,
8292 struct bpf_reg_state *reg,
8293 const struct btf_type *ref_t,
8294 const char *ref_tname,
8295 struct bpf_kfunc_call_arg_meta *meta,
8296 int argno)
8297{
8298 struct btf_field *kptr_field;
8299
8300 /* check_func_arg_reg_off allows var_off for
8301 * PTR_TO_MAP_VALUE, but we need fixed offset to find
8302 * off_desc.
8303 */
8304 if (!tnum_is_const(reg->var_off)) {
8305 verbose(env, "arg#0 must have constant offset\n");
8306 return -EINVAL;
8307 }
8308
8309 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR);
8310 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) {
8311 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n",
8312 reg->off + reg->var_off.value);
8313 return -EINVAL;
8314 }
8315
8316 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf,
8317 kptr_field->kptr.btf_id, true)) {
8318 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n",
8319 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
8320 return -EINVAL;
8321 }
8322 return 0;
8323}
8324
534e86bc
KKD
8325static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id)
8326{
8327 struct bpf_func_state *state = cur_func(env);
8328 struct bpf_reg_state *reg;
8329 int i;
8330
8331 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF
8332 * subprogs, no global functions. This means that the references would
8333 * not be released inside the critical section but they may be added to
8334 * the reference state, and the acquired_refs are never copied out for a
8335 * different frame as BPF to BPF calls don't work in bpf_spin_lock
8336 * critical sections.
8337 */
8338 if (!ref_obj_id) {
8339 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n");
8340 return -EFAULT;
8341 }
8342 for (i = 0; i < state->acquired_refs; i++) {
8343 if (state->refs[i].id == ref_obj_id) {
8344 if (state->refs[i].release_on_unlock) {
8345 verbose(env, "verifier internal error: expected false release_on_unlock");
8346 return -EFAULT;
8347 }
8348 state->refs[i].release_on_unlock = true;
8349 /* Now mark everyone sharing same ref_obj_id as untrusted */
8350 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8351 if (reg->ref_obj_id == ref_obj_id)
8352 reg->type |= PTR_UNTRUSTED;
8353 }));
8354 return 0;
8355 }
8356 }
8357 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
8358 return -EFAULT;
8359}
8360
8cab76ec
KKD
8361/* Implementation details:
8362 *
8363 * Each register points to some region of memory, which we define as an
8364 * allocation. Each allocation may embed a bpf_spin_lock which protects any
8365 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
8366 * allocation. The lock and the data it protects are colocated in the same
8367 * memory region.
8368 *
8369 * Hence, everytime a register holds a pointer value pointing to such
8370 * allocation, the verifier preserves a unique reg->id for it.
8371 *
8372 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
8373 * bpf_spin_lock is called.
8374 *
8375 * To enable this, lock state in the verifier captures two values:
8376 * active_lock.ptr = Register's type specific pointer
8377 * active_lock.id = A unique ID for each register pointer value
8378 *
8379 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
8380 * supported register types.
8381 *
8382 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
8383 * allocated objects is the reg->btf pointer.
8384 *
8385 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
8386 * can establish the provenance of the map value statically for each distinct
8387 * lookup into such maps. They always contain a single map value hence unique
8388 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
8389 *
8390 * So, in case of global variables, they use array maps with max_entries = 1,
8391 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
8392 * into the same map value as max_entries is 1, as described above).
8393 *
8394 * In case of inner map lookups, the inner map pointer has same map_ptr as the
8395 * outer map pointer (in verifier context), but each lookup into an inner map
8396 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
8397 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
8398 * will get different reg->id assigned to each lookup, hence different
8399 * active_lock.id.
8400 *
8401 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
8402 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
8403 * returned from bpf_obj_new. Each allocation receives a new reg->id.
8404 */
8405static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8406{
8407 void *ptr;
8408 u32 id;
8409
8410 switch ((int)reg->type) {
8411 case PTR_TO_MAP_VALUE:
8412 ptr = reg->map_ptr;
8413 break;
8414 case PTR_TO_BTF_ID | MEM_ALLOC:
3f00c523 8415 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED:
8cab76ec
KKD
8416 ptr = reg->btf;
8417 break;
8418 default:
8419 verbose(env, "verifier internal error: unknown reg type for lock check\n");
8420 return -EFAULT;
8421 }
8422 id = reg->id;
8423
8424 if (!env->cur_state->active_lock.ptr)
8425 return -EINVAL;
8426 if (env->cur_state->active_lock.ptr != ptr ||
8427 env->cur_state->active_lock.id != id) {
8428 verbose(env, "held lock and object are not in the same allocation\n");
8429 return -EINVAL;
8430 }
8431 return 0;
8432}
8433
8434static bool is_bpf_list_api_kfunc(u32 btf_id)
8435{
8436 return btf_id == special_kfunc_list[KF_bpf_list_push_front] ||
8437 btf_id == special_kfunc_list[KF_bpf_list_push_back] ||
8438 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8439 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
8440}
8441
8442static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
8443 struct bpf_reg_state *reg, u32 regno,
8444 struct bpf_kfunc_call_arg_meta *meta)
8445{
8446 struct btf_field *field;
8447 struct btf_record *rec;
8448 u32 list_head_off;
8449
8450 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) {
8451 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n");
8452 return -EFAULT;
8453 }
8454
8455 if (!tnum_is_const(reg->var_off)) {
8456 verbose(env,
8457 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n",
8458 regno);
8459 return -EINVAL;
8460 }
8461
8462 rec = reg_btf_record(reg);
8463 list_head_off = reg->off + reg->var_off.value;
8464 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD);
8465 if (!field) {
8466 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off);
8467 return -EINVAL;
8468 }
8469
8470 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
8471 if (check_reg_allocation_locked(env, reg)) {
8472 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n",
8473 rec->spin_lock_off);
8474 return -EINVAL;
8475 }
8476
8477 if (meta->arg_list_head.field) {
8478 verbose(env, "verifier internal error: repeating bpf_list_head arg\n");
8479 return -EFAULT;
8480 }
8481 meta->arg_list_head.field = field;
8482 return 0;
8483}
8484
8485static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
8486 struct bpf_reg_state *reg, u32 regno,
8487 struct bpf_kfunc_call_arg_meta *meta)
8488{
8489 const struct btf_type *et, *t;
8490 struct btf_field *field;
8491 struct btf_record *rec;
8492 u32 list_node_off;
8493
8494 if (meta->btf != btf_vmlinux ||
8495 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] &&
8496 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) {
8497 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n");
8498 return -EFAULT;
8499 }
8500
8501 if (!tnum_is_const(reg->var_off)) {
8502 verbose(env,
8503 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n",
8504 regno);
8505 return -EINVAL;
8506 }
8507
8508 rec = reg_btf_record(reg);
8509 list_node_off = reg->off + reg->var_off.value;
8510 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE);
8511 if (!field || field->offset != list_node_off) {
8512 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off);
8513 return -EINVAL;
8514 }
8515
8516 field = meta->arg_list_head.field;
8517
8518 et = btf_type_by_id(field->list_head.btf, field->list_head.value_btf_id);
8519 t = btf_type_by_id(reg->btf, reg->btf_id);
8520 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->list_head.btf,
8521 field->list_head.value_btf_id, true)) {
8522 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d "
8523 "in struct %s, but arg is at offset=%d in struct %s\n",
8524 field->list_head.node_offset, btf_name_by_offset(field->list_head.btf, et->name_off),
8525 list_node_off, btf_name_by_offset(reg->btf, t->name_off));
8526 return -EINVAL;
8527 }
8528
8529 if (list_node_off != field->list_head.node_offset) {
8530 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n",
8531 list_node_off, field->list_head.node_offset,
8532 btf_name_by_offset(field->list_head.btf, et->name_off));
8533 return -EINVAL;
8534 }
534e86bc
KKD
8535 /* Set arg#1 for expiration after unlock */
8536 return ref_set_release_on_unlock(env, reg->ref_obj_id);
8cab76ec
KKD
8537}
8538
00b85860
KKD
8539static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta)
8540{
8541 const char *func_name = meta->func_name, *ref_tname;
8542 const struct btf *btf = meta->btf;
8543 const struct btf_param *args;
8544 u32 i, nargs;
8545 int ret;
8546
8547 args = (const struct btf_param *)(meta->func_proto + 1);
8548 nargs = btf_type_vlen(meta->func_proto);
8549 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
8550 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
8551 MAX_BPF_FUNC_REG_ARGS);
8552 return -EINVAL;
8553 }
8554
8555 /* Check that BTF function arguments match actual types that the
8556 * verifier sees.
8557 */
8558 for (i = 0; i < nargs; i++) {
8559 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
8560 const struct btf_type *t, *ref_t, *resolve_ret;
8561 enum bpf_arg_type arg_type = ARG_DONTCARE;
8562 u32 regno = i + 1, ref_id, type_size;
8563 bool is_ret_buf_sz = false;
8564 int kf_arg_type;
8565
8566 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
958cf2e2
KKD
8567
8568 if (is_kfunc_arg_ignore(btf, &args[i]))
8569 continue;
8570
00b85860
KKD
8571 if (btf_type_is_scalar(t)) {
8572 if (reg->type != SCALAR_VALUE) {
8573 verbose(env, "R%d is not a scalar\n", regno);
8574 return -EINVAL;
8575 }
a50388db
KKD
8576
8577 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
8578 if (meta->arg_constant.found) {
8579 verbose(env, "verifier internal error: only one constant argument permitted\n");
8580 return -EFAULT;
8581 }
8582 if (!tnum_is_const(reg->var_off)) {
8583 verbose(env, "R%d must be a known constant\n", regno);
8584 return -EINVAL;
8585 }
8586 ret = mark_chain_precision(env, regno);
8587 if (ret < 0)
8588 return ret;
8589 meta->arg_constant.found = true;
8590 meta->arg_constant.value = reg->var_off.value;
8591 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
00b85860
KKD
8592 meta->r0_rdonly = true;
8593 is_ret_buf_sz = true;
8594 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
8595 is_ret_buf_sz = true;
8596 }
8597
8598 if (is_ret_buf_sz) {
8599 if (meta->r0_size) {
8600 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
8601 return -EINVAL;
8602 }
8603
8604 if (!tnum_is_const(reg->var_off)) {
8605 verbose(env, "R%d is not a const\n", regno);
8606 return -EINVAL;
8607 }
8608
8609 meta->r0_size = reg->var_off.value;
8610 ret = mark_chain_precision(env, regno);
8611 if (ret)
8612 return ret;
8613 }
8614 continue;
8615 }
8616
8617 if (!btf_type_is_ptr(t)) {
8618 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
8619 return -EINVAL;
8620 }
8621
8622 if (reg->ref_obj_id) {
8623 if (is_kfunc_release(meta) && meta->ref_obj_id) {
8624 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8625 regno, reg->ref_obj_id,
8626 meta->ref_obj_id);
8627 return -EFAULT;
8628 }
8629 meta->ref_obj_id = reg->ref_obj_id;
8630 if (is_kfunc_release(meta))
8631 meta->release_regno = regno;
8632 }
8633
8634 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
8635 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
8636
8637 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
8638 if (kf_arg_type < 0)
8639 return kf_arg_type;
8640
8641 switch (kf_arg_type) {
ac9f0605 8642 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
00b85860
KKD
8643 case KF_ARG_PTR_TO_BTF_ID:
8644 if (!is_kfunc_trusted_args(meta))
8645 break;
3f00c523
DV
8646
8647 if (!is_trusted_reg(reg)) {
8648 verbose(env, "R%d must be referenced or trusted\n", regno);
00b85860
KKD
8649 return -EINVAL;
8650 }
8651 fallthrough;
8652 case KF_ARG_PTR_TO_CTX:
8653 /* Trusted arguments have the same offset checks as release arguments */
8654 arg_type |= OBJ_RELEASE;
8655 break;
8656 case KF_ARG_PTR_TO_KPTR:
8657 case KF_ARG_PTR_TO_DYNPTR:
8cab76ec
KKD
8658 case KF_ARG_PTR_TO_LIST_HEAD:
8659 case KF_ARG_PTR_TO_LIST_NODE:
00b85860
KKD
8660 case KF_ARG_PTR_TO_MEM:
8661 case KF_ARG_PTR_TO_MEM_SIZE:
8662 /* Trusted by default */
8663 break;
8664 default:
8665 WARN_ON_ONCE(1);
8666 return -EFAULT;
8667 }
8668
8669 if (is_kfunc_release(meta) && reg->ref_obj_id)
8670 arg_type |= OBJ_RELEASE;
8671 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
8672 if (ret < 0)
8673 return ret;
8674
8675 switch (kf_arg_type) {
8676 case KF_ARG_PTR_TO_CTX:
8677 if (reg->type != PTR_TO_CTX) {
8678 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
8679 return -EINVAL;
8680 }
fd264ca0
YS
8681
8682 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8683 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
8684 if (ret < 0)
8685 return -EINVAL;
8686 meta->ret_btf_id = ret;
8687 }
00b85860 8688 break;
ac9f0605
KKD
8689 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
8690 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8691 verbose(env, "arg#%d expected pointer to allocated object\n", i);
8692 return -EINVAL;
8693 }
8694 if (!reg->ref_obj_id) {
8695 verbose(env, "allocated object must be referenced\n");
8696 return -EINVAL;
8697 }
8698 if (meta->btf == btf_vmlinux &&
8699 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8700 meta->arg_obj_drop.btf = reg->btf;
8701 meta->arg_obj_drop.btf_id = reg->btf_id;
8702 }
8703 break;
00b85860
KKD
8704 case KF_ARG_PTR_TO_KPTR:
8705 if (reg->type != PTR_TO_MAP_VALUE) {
8706 verbose(env, "arg#0 expected pointer to map value\n");
8707 return -EINVAL;
8708 }
8709 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i);
8710 if (ret < 0)
8711 return ret;
8712 break;
8713 case KF_ARG_PTR_TO_DYNPTR:
8714 if (reg->type != PTR_TO_STACK) {
8715 verbose(env, "arg#%d expected pointer to stack\n", i);
8716 return -EINVAL;
8717 }
8718
8719 if (!is_dynptr_reg_valid_init(env, reg)) {
8720 verbose(env, "arg#%d pointer type %s %s must be valid and initialized\n",
8721 i, btf_type_str(ref_t), ref_tname);
8722 return -EINVAL;
8723 }
8724
8725 if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
8726 verbose(env, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
8727 i, btf_type_str(ref_t), ref_tname);
8728 return -EINVAL;
8729 }
8730 break;
8cab76ec
KKD
8731 case KF_ARG_PTR_TO_LIST_HEAD:
8732 if (reg->type != PTR_TO_MAP_VALUE &&
8733 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8734 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
8735 return -EINVAL;
8736 }
8737 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
8738 verbose(env, "allocated object must be referenced\n");
8739 return -EINVAL;
8740 }
8741 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
8742 if (ret < 0)
8743 return ret;
8744 break;
8745 case KF_ARG_PTR_TO_LIST_NODE:
8746 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
8747 verbose(env, "arg#%d expected pointer to allocated object\n", i);
8748 return -EINVAL;
8749 }
8750 if (!reg->ref_obj_id) {
8751 verbose(env, "allocated object must be referenced\n");
8752 return -EINVAL;
8753 }
8754 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
8755 if (ret < 0)
8756 return ret;
8757 break;
00b85860
KKD
8758 case KF_ARG_PTR_TO_BTF_ID:
8759 /* Only base_type is checked, further checks are done here */
3f00c523
DV
8760 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
8761 bpf_type_has_unsafe_modifiers(reg->type)) &&
8762 !reg2btf_ids[base_type(reg->type)]) {
8763 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
8764 verbose(env, "expected %s or socket\n",
8765 reg_type_str(env, base_type(reg->type) |
8766 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
00b85860
KKD
8767 return -EINVAL;
8768 }
8769 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
8770 if (ret < 0)
8771 return ret;
8772 break;
8773 case KF_ARG_PTR_TO_MEM:
8774 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
8775 if (IS_ERR(resolve_ret)) {
8776 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
8777 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
8778 return -EINVAL;
8779 }
8780 ret = check_mem_reg(env, reg, regno, type_size);
8781 if (ret < 0)
8782 return ret;
8783 break;
8784 case KF_ARG_PTR_TO_MEM_SIZE:
8785 ret = check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1);
8786 if (ret < 0) {
8787 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
8788 return ret;
8789 }
8790 /* Skip next '__sz' argument */
8791 i++;
8792 break;
8793 }
8794 }
8795
8796 if (is_kfunc_release(meta) && !meta->release_regno) {
8797 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
8798 func_name);
8799 return -EINVAL;
8800 }
8801
8802 return 0;
8803}
8804
5c073f26
KKD
8805static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8806 int *insn_idx_p)
e6ac2450
MKL
8807{
8808 const struct btf_type *t, *func, *func_proto, *ptr_type;
8809 struct bpf_reg_state *regs = cur_regs(env);
8810 const char *func_name, *ptr_type_name;
00b85860 8811 struct bpf_kfunc_call_arg_meta meta;
e6ac2450 8812 u32 i, nargs, func_id, ptr_type_id;
5c073f26 8813 int err, insn_idx = *insn_idx_p;
e6ac2450 8814 const struct btf_param *args;
a35b9af4 8815 const struct btf_type *ret_t;
2357672c 8816 struct btf *desc_btf;
a4703e31 8817 u32 *kfunc_flags;
e6ac2450 8818
a5d82727
KKD
8819 /* skip for now, but return error when we find this in fixup_kfunc_call */
8820 if (!insn->imm)
8821 return 0;
8822
43bf0878 8823 desc_btf = find_kfunc_desc_btf(env, insn->off);
2357672c
KKD
8824 if (IS_ERR(desc_btf))
8825 return PTR_ERR(desc_btf);
8826
e6ac2450 8827 func_id = insn->imm;
2357672c
KKD
8828 func = btf_type_by_id(desc_btf, func_id);
8829 func_name = btf_name_by_offset(desc_btf, func->name_off);
8830 func_proto = btf_type_by_id(desc_btf, func->type);
e6ac2450 8831
a4703e31
KKD
8832 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
8833 if (!kfunc_flags) {
e6ac2450
MKL
8834 verbose(env, "calling kernel function %s is not allowed\n",
8835 func_name);
8836 return -EACCES;
8837 }
00b85860
KKD
8838
8839 /* Prepare kfunc call metadata */
8840 memset(&meta, 0, sizeof(meta));
8841 meta.btf = desc_btf;
8842 meta.func_id = func_id;
8843 meta.kfunc_flags = *kfunc_flags;
8844 meta.func_proto = func_proto;
8845 meta.func_name = func_name;
8846
8847 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
8848 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
4dd48c6f
AS
8849 return -EACCES;
8850 }
8851
00b85860
KKD
8852 if (is_kfunc_sleepable(&meta) && !env->prog->aux->sleepable) {
8853 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
8854 return -EACCES;
8855 }
eb1f7f71 8856
e6ac2450 8857 /* Check the arguments */
00b85860 8858 err = check_kfunc_args(env, &meta);
5c073f26 8859 if (err < 0)
e6ac2450 8860 return err;
5c073f26 8861 /* In case of release function, we get register number of refcounted
00b85860 8862 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
5c073f26 8863 */
00b85860
KKD
8864 if (meta.release_regno) {
8865 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
5c073f26
KKD
8866 if (err) {
8867 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
8868 func_name, func_id);
8869 return err;
8870 }
8871 }
e6ac2450
MKL
8872
8873 for (i = 0; i < CALLER_SAVED_REGS; i++)
8874 mark_reg_not_init(env, regs, caller_saved[i]);
8875
8876 /* Check return type */
2357672c 8877 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
5c073f26 8878
00b85860 8879 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
958cf2e2
KKD
8880 /* Only exception is bpf_obj_new_impl */
8881 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) {
8882 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
8883 return -EINVAL;
8884 }
5c073f26
KKD
8885 }
8886
e6ac2450
MKL
8887 if (btf_type_is_scalar(t)) {
8888 mark_reg_unknown(env, regs, BPF_REG_0);
8889 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
8890 } else if (btf_type_is_ptr(t)) {
958cf2e2
KKD
8891 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
8892
8893 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
8894 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
958cf2e2
KKD
8895 struct btf *ret_btf;
8896 u32 ret_btf_id;
8897
e181d3f1
KKD
8898 if (unlikely(!bpf_global_ma_set))
8899 return -ENOMEM;
8900
958cf2e2
KKD
8901 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
8902 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
8903 return -EINVAL;
8904 }
8905
8906 ret_btf = env->prog->aux->btf;
8907 ret_btf_id = meta.arg_constant.value;
8908
8909 /* This may be NULL due to user not supplying a BTF */
8910 if (!ret_btf) {
8911 verbose(env, "bpf_obj_new requires prog BTF\n");
8912 return -EINVAL;
8913 }
8914
8915 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
8916 if (!ret_t || !__btf_type_is_struct(ret_t)) {
8917 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
8918 return -EINVAL;
8919 }
8920
8921 mark_reg_known_zero(env, regs, BPF_REG_0);
8922 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
8923 regs[BPF_REG_0].btf = ret_btf;
8924 regs[BPF_REG_0].btf_id = ret_btf_id;
8925
8926 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size;
8927 env->insn_aux_data[insn_idx].kptr_struct_meta =
8928 btf_find_struct_meta(ret_btf, ret_btf_id);
ac9f0605
KKD
8929 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
8930 env->insn_aux_data[insn_idx].kptr_struct_meta =
8931 btf_find_struct_meta(meta.arg_obj_drop.btf,
8932 meta.arg_obj_drop.btf_id);
8cab76ec
KKD
8933 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
8934 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
8935 struct btf_field *field = meta.arg_list_head.field;
8936
8937 mark_reg_known_zero(env, regs, BPF_REG_0);
8938 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
8939 regs[BPF_REG_0].btf = field->list_head.btf;
8940 regs[BPF_REG_0].btf_id = field->list_head.value_btf_id;
8941 regs[BPF_REG_0].off = field->list_head.node_offset;
fd264ca0
YS
8942 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
8943 mark_reg_known_zero(env, regs, BPF_REG_0);
8944 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
8945 regs[BPF_REG_0].btf = desc_btf;
8946 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
a35b9af4
YS
8947 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
8948 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
8949 if (!ret_t || !btf_type_is_struct(ret_t)) {
8950 verbose(env,
8951 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
8952 return -EINVAL;
8953 }
8954
8955 mark_reg_known_zero(env, regs, BPF_REG_0);
8956 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
8957 regs[BPF_REG_0].btf = desc_btf;
8958 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
958cf2e2
KKD
8959 } else {
8960 verbose(env, "kernel function %s unhandled dynamic return type\n",
8961 meta.func_name);
8962 return -EFAULT;
8963 }
8964 } else if (!__btf_type_is_struct(ptr_type)) {
eb1f7f71
BT
8965 if (!meta.r0_size) {
8966 ptr_type_name = btf_name_by_offset(desc_btf,
8967 ptr_type->name_off);
8968 verbose(env,
8969 "kernel function %s returns pointer type %s %s is not supported\n",
8970 func_name,
8971 btf_type_str(ptr_type),
8972 ptr_type_name);
8973 return -EINVAL;
8974 }
8975
8976 mark_reg_known_zero(env, regs, BPF_REG_0);
8977 regs[BPF_REG_0].type = PTR_TO_MEM;
8978 regs[BPF_REG_0].mem_size = meta.r0_size;
8979
8980 if (meta.r0_rdonly)
8981 regs[BPF_REG_0].type |= MEM_RDONLY;
8982
8983 /* Ensures we don't access the memory after a release_reference() */
8984 if (meta.ref_obj_id)
8985 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
8986 } else {
8987 mark_reg_known_zero(env, regs, BPF_REG_0);
8988 regs[BPF_REG_0].btf = desc_btf;
8989 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
8990 regs[BPF_REG_0].btf_id = ptr_type_id;
e6ac2450 8991 }
958cf2e2 8992
00b85860 8993 if (is_kfunc_ret_null(&meta)) {
5c073f26
KKD
8994 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
8995 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
8996 regs[BPF_REG_0].id = ++env->id_gen;
8997 }
e6ac2450 8998 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
00b85860 8999 if (is_kfunc_acquire(&meta)) {
5c073f26
KKD
9000 int id = acquire_reference_state(env, insn_idx);
9001
9002 if (id < 0)
9003 return id;
00b85860
KKD
9004 if (is_kfunc_ret_null(&meta))
9005 regs[BPF_REG_0].id = id;
5c073f26
KKD
9006 regs[BPF_REG_0].ref_obj_id = id;
9007 }
00b85860
KKD
9008 if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
9009 regs[BPF_REG_0].id = ++env->id_gen;
e6ac2450
MKL
9010 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
9011
9012 nargs = btf_type_vlen(func_proto);
9013 args = (const struct btf_param *)(func_proto + 1);
9014 for (i = 0; i < nargs; i++) {
9015 u32 regno = i + 1;
9016
2357672c 9017 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
e6ac2450
MKL
9018 if (btf_type_is_ptr(t))
9019 mark_btf_func_reg_size(env, regno, sizeof(void *));
9020 else
9021 /* scalar. ensured by btf_check_kfunc_arg_match() */
9022 mark_btf_func_reg_size(env, regno, t->size);
9023 }
9024
9025 return 0;
9026}
9027
b03c9f9f
EC
9028static bool signed_add_overflows(s64 a, s64 b)
9029{
9030 /* Do the add in u64, where overflow is well-defined */
9031 s64 res = (s64)((u64)a + (u64)b);
9032
9033 if (b < 0)
9034 return res > a;
9035 return res < a;
9036}
9037
bc895e8b 9038static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
9039{
9040 /* Do the add in u32, where overflow is well-defined */
9041 s32 res = (s32)((u32)a + (u32)b);
9042
9043 if (b < 0)
9044 return res > a;
9045 return res < a;
9046}
9047
bc895e8b 9048static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
9049{
9050 /* Do the sub in u64, where overflow is well-defined */
9051 s64 res = (s64)((u64)a - (u64)b);
9052
9053 if (b < 0)
9054 return res < a;
9055 return res > a;
969bf05e
AS
9056}
9057
3f50f132
JF
9058static bool signed_sub32_overflows(s32 a, s32 b)
9059{
bc895e8b 9060 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
9061 s32 res = (s32)((u32)a - (u32)b);
9062
9063 if (b < 0)
9064 return res < a;
9065 return res > a;
9066}
9067
bb7f0f98
AS
9068static bool check_reg_sane_offset(struct bpf_verifier_env *env,
9069 const struct bpf_reg_state *reg,
9070 enum bpf_reg_type type)
9071{
9072 bool known = tnum_is_const(reg->var_off);
9073 s64 val = reg->var_off.value;
9074 s64 smin = reg->smin_value;
9075
9076 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
9077 verbose(env, "math between %s pointer and %lld is not allowed\n",
c25b2ae1 9078 reg_type_str(env, type), val);
bb7f0f98
AS
9079 return false;
9080 }
9081
9082 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
9083 verbose(env, "%s pointer offset %d is not allowed\n",
c25b2ae1 9084 reg_type_str(env, type), reg->off);
bb7f0f98
AS
9085 return false;
9086 }
9087
9088 if (smin == S64_MIN) {
9089 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
c25b2ae1 9090 reg_type_str(env, type));
bb7f0f98
AS
9091 return false;
9092 }
9093
9094 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
9095 verbose(env, "value %lld makes %s pointer be out of bounds\n",
c25b2ae1 9096 smin, reg_type_str(env, type));
bb7f0f98
AS
9097 return false;
9098 }
9099
9100 return true;
9101}
9102
a6aaece0
DB
9103enum {
9104 REASON_BOUNDS = -1,
9105 REASON_TYPE = -2,
9106 REASON_PATHS = -3,
9107 REASON_LIMIT = -4,
9108 REASON_STACK = -5,
9109};
9110
979d63d5 9111static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
bb01a1bb 9112 u32 *alu_limit, bool mask_to_left)
979d63d5 9113{
7fedb63a 9114 u32 max = 0, ptr_limit = 0;
979d63d5
DB
9115
9116 switch (ptr_reg->type) {
9117 case PTR_TO_STACK:
1b1597e6 9118 /* Offset 0 is out-of-bounds, but acceptable start for the
7fedb63a
DB
9119 * left direction, see BPF_REG_FP. Also, unknown scalar
9120 * offset where we would need to deal with min/max bounds is
9121 * currently prohibited for unprivileged.
1b1597e6
PK
9122 */
9123 max = MAX_BPF_STACK + mask_to_left;
7fedb63a 9124 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
b658bbb8 9125 break;
979d63d5 9126 case PTR_TO_MAP_VALUE:
1b1597e6 9127 max = ptr_reg->map_ptr->value_size;
7fedb63a
DB
9128 ptr_limit = (mask_to_left ?
9129 ptr_reg->smin_value :
9130 ptr_reg->umax_value) + ptr_reg->off;
b658bbb8 9131 break;
979d63d5 9132 default:
a6aaece0 9133 return REASON_TYPE;
979d63d5 9134 }
b658bbb8
DB
9135
9136 if (ptr_limit >= max)
a6aaece0 9137 return REASON_LIMIT;
b658bbb8
DB
9138 *alu_limit = ptr_limit;
9139 return 0;
979d63d5
DB
9140}
9141
d3bd7413
DB
9142static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
9143 const struct bpf_insn *insn)
9144{
2c78ee89 9145 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
9146}
9147
9148static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
9149 u32 alu_state, u32 alu_limit)
9150{
9151 /* If we arrived here from different branches with different
9152 * state or limits to sanitize, then this won't work.
9153 */
9154 if (aux->alu_state &&
9155 (aux->alu_state != alu_state ||
9156 aux->alu_limit != alu_limit))
a6aaece0 9157 return REASON_PATHS;
d3bd7413 9158
e6ac5933 9159 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
9160 aux->alu_state = alu_state;
9161 aux->alu_limit = alu_limit;
9162 return 0;
9163}
9164
9165static int sanitize_val_alu(struct bpf_verifier_env *env,
9166 struct bpf_insn *insn)
9167{
9168 struct bpf_insn_aux_data *aux = cur_aux(env);
9169
9170 if (can_skip_alu_sanitation(env, insn))
9171 return 0;
9172
9173 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
9174}
9175
f5288193
DB
9176static bool sanitize_needed(u8 opcode)
9177{
9178 return opcode == BPF_ADD || opcode == BPF_SUB;
9179}
9180
3d0220f6
DB
9181struct bpf_sanitize_info {
9182 struct bpf_insn_aux_data aux;
bb01a1bb 9183 bool mask_to_left;
3d0220f6
DB
9184};
9185
9183671a
DB
9186static struct bpf_verifier_state *
9187sanitize_speculative_path(struct bpf_verifier_env *env,
9188 const struct bpf_insn *insn,
9189 u32 next_idx, u32 curr_idx)
9190{
9191 struct bpf_verifier_state *branch;
9192 struct bpf_reg_state *regs;
9193
9194 branch = push_stack(env, next_idx, curr_idx, true);
9195 if (branch && insn) {
9196 regs = branch->frame[branch->curframe]->regs;
9197 if (BPF_SRC(insn->code) == BPF_K) {
9198 mark_reg_unknown(env, regs, insn->dst_reg);
9199 } else if (BPF_SRC(insn->code) == BPF_X) {
9200 mark_reg_unknown(env, regs, insn->dst_reg);
9201 mark_reg_unknown(env, regs, insn->src_reg);
9202 }
9203 }
9204 return branch;
9205}
9206
979d63d5
DB
9207static int sanitize_ptr_alu(struct bpf_verifier_env *env,
9208 struct bpf_insn *insn,
9209 const struct bpf_reg_state *ptr_reg,
6f55b2f2 9210 const struct bpf_reg_state *off_reg,
979d63d5 9211 struct bpf_reg_state *dst_reg,
3d0220f6 9212 struct bpf_sanitize_info *info,
7fedb63a 9213 const bool commit_window)
979d63d5 9214{
3d0220f6 9215 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
979d63d5 9216 struct bpf_verifier_state *vstate = env->cur_state;
801c6058 9217 bool off_is_imm = tnum_is_const(off_reg->var_off);
6f55b2f2 9218 bool off_is_neg = off_reg->smin_value < 0;
979d63d5
DB
9219 bool ptr_is_dst_reg = ptr_reg == dst_reg;
9220 u8 opcode = BPF_OP(insn->code);
9221 u32 alu_state, alu_limit;
9222 struct bpf_reg_state tmp;
9223 bool ret;
f232326f 9224 int err;
979d63d5 9225
d3bd7413 9226 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
9227 return 0;
9228
9229 /* We already marked aux for masking from non-speculative
9230 * paths, thus we got here in the first place. We only care
9231 * to explore bad access from here.
9232 */
9233 if (vstate->speculative)
9234 goto do_sim;
9235
bb01a1bb
DB
9236 if (!commit_window) {
9237 if (!tnum_is_const(off_reg->var_off) &&
9238 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
9239 return REASON_BOUNDS;
9240
9241 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
9242 (opcode == BPF_SUB && !off_is_neg);
9243 }
9244
9245 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
f232326f
PK
9246 if (err < 0)
9247 return err;
9248
7fedb63a
DB
9249 if (commit_window) {
9250 /* In commit phase we narrow the masking window based on
9251 * the observed pointer move after the simulated operation.
9252 */
3d0220f6
DB
9253 alu_state = info->aux.alu_state;
9254 alu_limit = abs(info->aux.alu_limit - alu_limit);
7fedb63a
DB
9255 } else {
9256 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
801c6058 9257 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7fedb63a
DB
9258 alu_state |= ptr_is_dst_reg ?
9259 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
e042aa53
DB
9260
9261 /* Limit pruning on unknown scalars to enable deep search for
9262 * potential masking differences from other program paths.
9263 */
9264 if (!off_is_imm)
9265 env->explore_alu_limits = true;
7fedb63a
DB
9266 }
9267
f232326f
PK
9268 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
9269 if (err < 0)
9270 return err;
979d63d5 9271do_sim:
7fedb63a
DB
9272 /* If we're in commit phase, we're done here given we already
9273 * pushed the truncated dst_reg into the speculative verification
9274 * stack.
a7036191
DB
9275 *
9276 * Also, when register is a known constant, we rewrite register-based
9277 * operation to immediate-based, and thus do not need masking (and as
9278 * a consequence, do not need to simulate the zero-truncation either).
7fedb63a 9279 */
a7036191 9280 if (commit_window || off_is_imm)
7fedb63a
DB
9281 return 0;
9282
979d63d5
DB
9283 /* Simulate and find potential out-of-bounds access under
9284 * speculative execution from truncation as a result of
9285 * masking when off was not within expected range. If off
9286 * sits in dst, then we temporarily need to move ptr there
9287 * to simulate dst (== 0) +/-= ptr. Needed, for example,
9288 * for cases where we use K-based arithmetic in one direction
9289 * and truncated reg-based in the other in order to explore
9290 * bad access.
9291 */
9292 if (!ptr_is_dst_reg) {
9293 tmp = *dst_reg;
9294 *dst_reg = *ptr_reg;
9295 }
9183671a
DB
9296 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
9297 env->insn_idx);
0803278b 9298 if (!ptr_is_dst_reg && ret)
979d63d5 9299 *dst_reg = tmp;
a6aaece0
DB
9300 return !ret ? REASON_STACK : 0;
9301}
9302
fe9a5ca7
DB
9303static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
9304{
9305 struct bpf_verifier_state *vstate = env->cur_state;
9306
9307 /* If we simulate paths under speculation, we don't update the
9308 * insn as 'seen' such that when we verify unreachable paths in
9309 * the non-speculative domain, sanitize_dead_code() can still
9310 * rewrite/sanitize them.
9311 */
9312 if (!vstate->speculative)
9313 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9314}
9315
a6aaece0
DB
9316static int sanitize_err(struct bpf_verifier_env *env,
9317 const struct bpf_insn *insn, int reason,
9318 const struct bpf_reg_state *off_reg,
9319 const struct bpf_reg_state *dst_reg)
9320{
9321 static const char *err = "pointer arithmetic with it prohibited for !root";
9322 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
9323 u32 dst = insn->dst_reg, src = insn->src_reg;
9324
9325 switch (reason) {
9326 case REASON_BOUNDS:
9327 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
9328 off_reg == dst_reg ? dst : src, err);
9329 break;
9330 case REASON_TYPE:
9331 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
9332 off_reg == dst_reg ? src : dst, err);
9333 break;
9334 case REASON_PATHS:
9335 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
9336 dst, op, err);
9337 break;
9338 case REASON_LIMIT:
9339 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
9340 dst, op, err);
9341 break;
9342 case REASON_STACK:
9343 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
9344 dst, err);
9345 break;
9346 default:
9347 verbose(env, "verifier internal error: unknown reason (%d)\n",
9348 reason);
9349 break;
9350 }
9351
9352 return -EACCES;
979d63d5
DB
9353}
9354
01f810ac
AM
9355/* check that stack access falls within stack limits and that 'reg' doesn't
9356 * have a variable offset.
9357 *
9358 * Variable offset is prohibited for unprivileged mode for simplicity since it
9359 * requires corresponding support in Spectre masking for stack ALU. See also
9360 * retrieve_ptr_limit().
9361 *
9362 *
9363 * 'off' includes 'reg->off'.
9364 */
9365static int check_stack_access_for_ptr_arithmetic(
9366 struct bpf_verifier_env *env,
9367 int regno,
9368 const struct bpf_reg_state *reg,
9369 int off)
9370{
9371 if (!tnum_is_const(reg->var_off)) {
9372 char tn_buf[48];
9373
9374 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
9375 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
9376 regno, tn_buf, off);
9377 return -EACCES;
9378 }
9379
9380 if (off >= 0 || off < -MAX_BPF_STACK) {
9381 verbose(env, "R%d stack pointer arithmetic goes out of range, "
9382 "prohibited for !root; off=%d\n", regno, off);
9383 return -EACCES;
9384 }
9385
9386 return 0;
9387}
9388
073815b7
DB
9389static int sanitize_check_bounds(struct bpf_verifier_env *env,
9390 const struct bpf_insn *insn,
9391 const struct bpf_reg_state *dst_reg)
9392{
9393 u32 dst = insn->dst_reg;
9394
9395 /* For unprivileged we require that resulting offset must be in bounds
9396 * in order to be able to sanitize access later on.
9397 */
9398 if (env->bypass_spec_v1)
9399 return 0;
9400
9401 switch (dst_reg->type) {
9402 case PTR_TO_STACK:
9403 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
9404 dst_reg->off + dst_reg->var_off.value))
9405 return -EACCES;
9406 break;
9407 case PTR_TO_MAP_VALUE:
61df10c7 9408 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
073815b7
DB
9409 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
9410 "prohibited for !root\n", dst);
9411 return -EACCES;
9412 }
9413 break;
9414 default:
9415 break;
9416 }
9417
9418 return 0;
9419}
01f810ac 9420
f1174f77 9421/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
9422 * Caller should also handle BPF_MOV case separately.
9423 * If we return -EACCES, caller may want to try again treating pointer as a
9424 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
9425 */
9426static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
9427 struct bpf_insn *insn,
9428 const struct bpf_reg_state *ptr_reg,
9429 const struct bpf_reg_state *off_reg)
969bf05e 9430{
f4d7e40a
AS
9431 struct bpf_verifier_state *vstate = env->cur_state;
9432 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9433 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 9434 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
9435 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
9436 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
9437 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
9438 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3d0220f6 9439 struct bpf_sanitize_info info = {};
969bf05e 9440 u8 opcode = BPF_OP(insn->code);
24c109bb 9441 u32 dst = insn->dst_reg;
979d63d5 9442 int ret;
969bf05e 9443
f1174f77 9444 dst_reg = &regs[dst];
969bf05e 9445
6f16101e
DB
9446 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
9447 smin_val > smax_val || umin_val > umax_val) {
9448 /* Taint dst register if offset had invalid bounds derived from
9449 * e.g. dead branches.
9450 */
f54c7898 9451 __mark_reg_unknown(env, dst_reg);
6f16101e 9452 return 0;
f1174f77
EC
9453 }
9454
9455 if (BPF_CLASS(insn->code) != BPF_ALU64) {
9456 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
9457 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9458 __mark_reg_unknown(env, dst_reg);
9459 return 0;
9460 }
9461
82abbf8d
AS
9462 verbose(env,
9463 "R%d 32-bit pointer arithmetic prohibited\n",
9464 dst);
f1174f77 9465 return -EACCES;
969bf05e
AS
9466 }
9467
c25b2ae1 9468 if (ptr_reg->type & PTR_MAYBE_NULL) {
aad2eeaf 9469 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
c25b2ae1 9470 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9471 return -EACCES;
c25b2ae1
HL
9472 }
9473
9474 switch (base_type(ptr_reg->type)) {
aad2eeaf 9475 case CONST_PTR_TO_MAP:
7c696732
YS
9476 /* smin_val represents the known value */
9477 if (known && smin_val == 0 && opcode == BPF_ADD)
9478 break;
8731745e 9479 fallthrough;
aad2eeaf 9480 case PTR_TO_PACKET_END:
c64b7983 9481 case PTR_TO_SOCKET:
46f8bc92 9482 case PTR_TO_SOCK_COMMON:
655a51e5 9483 case PTR_TO_TCP_SOCK:
fada7fdc 9484 case PTR_TO_XDP_SOCK:
aad2eeaf 9485 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
c25b2ae1 9486 dst, reg_type_str(env, ptr_reg->type));
f1174f77 9487 return -EACCES;
aad2eeaf
JS
9488 default:
9489 break;
f1174f77
EC
9490 }
9491
9492 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
9493 * The id may be overwritten later if we create a new variable offset.
969bf05e 9494 */
f1174f77
EC
9495 dst_reg->type = ptr_reg->type;
9496 dst_reg->id = ptr_reg->id;
969bf05e 9497
bb7f0f98
AS
9498 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
9499 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
9500 return -EINVAL;
9501
3f50f132
JF
9502 /* pointer types do not carry 32-bit bounds at the moment. */
9503 __mark_reg32_unbounded(dst_reg);
9504
7fedb63a
DB
9505 if (sanitize_needed(opcode)) {
9506 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
3d0220f6 9507 &info, false);
a6aaece0
DB
9508 if (ret < 0)
9509 return sanitize_err(env, insn, ret, off_reg, dst_reg);
7fedb63a 9510 }
a6aaece0 9511
f1174f77
EC
9512 switch (opcode) {
9513 case BPF_ADD:
9514 /* We can take a fixed offset as long as it doesn't overflow
9515 * the s32 'off' field
969bf05e 9516 */
b03c9f9f
EC
9517 if (known && (ptr_reg->off + smin_val ==
9518 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 9519 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
9520 dst_reg->smin_value = smin_ptr;
9521 dst_reg->smax_value = smax_ptr;
9522 dst_reg->umin_value = umin_ptr;
9523 dst_reg->umax_value = umax_ptr;
f1174f77 9524 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 9525 dst_reg->off = ptr_reg->off + smin_val;
0962590e 9526 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9527 break;
9528 }
f1174f77
EC
9529 /* A new variable offset is created. Note that off_reg->off
9530 * == 0, since it's a scalar.
9531 * dst_reg gets the pointer type and since some positive
9532 * integer value was added to the pointer, give it a new 'id'
9533 * if it's a PTR_TO_PACKET.
9534 * this creates a new 'base' pointer, off_reg (variable) gets
9535 * added into the variable offset, and we copy the fixed offset
9536 * from ptr_reg.
969bf05e 9537 */
b03c9f9f
EC
9538 if (signed_add_overflows(smin_ptr, smin_val) ||
9539 signed_add_overflows(smax_ptr, smax_val)) {
9540 dst_reg->smin_value = S64_MIN;
9541 dst_reg->smax_value = S64_MAX;
9542 } else {
9543 dst_reg->smin_value = smin_ptr + smin_val;
9544 dst_reg->smax_value = smax_ptr + smax_val;
9545 }
9546 if (umin_ptr + umin_val < umin_ptr ||
9547 umax_ptr + umax_val < umax_ptr) {
9548 dst_reg->umin_value = 0;
9549 dst_reg->umax_value = U64_MAX;
9550 } else {
9551 dst_reg->umin_value = umin_ptr + umin_val;
9552 dst_reg->umax_value = umax_ptr + umax_val;
9553 }
f1174f77
EC
9554 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
9555 dst_reg->off = ptr_reg->off;
0962590e 9556 dst_reg->raw = ptr_reg->raw;
de8f3a83 9557 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9558 dst_reg->id = ++env->id_gen;
9559 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 9560 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
9561 }
9562 break;
9563 case BPF_SUB:
9564 if (dst_reg == off_reg) {
9565 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
9566 verbose(env, "R%d tried to subtract pointer from scalar\n",
9567 dst);
f1174f77
EC
9568 return -EACCES;
9569 }
9570 /* We don't allow subtraction from FP, because (according to
9571 * test_verifier.c test "invalid fp arithmetic", JITs might not
9572 * be able to deal with it.
969bf05e 9573 */
f1174f77 9574 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
9575 verbose(env, "R%d subtraction from stack pointer prohibited\n",
9576 dst);
f1174f77
EC
9577 return -EACCES;
9578 }
b03c9f9f
EC
9579 if (known && (ptr_reg->off - smin_val ==
9580 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 9581 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
9582 dst_reg->smin_value = smin_ptr;
9583 dst_reg->smax_value = smax_ptr;
9584 dst_reg->umin_value = umin_ptr;
9585 dst_reg->umax_value = umax_ptr;
f1174f77
EC
9586 dst_reg->var_off = ptr_reg->var_off;
9587 dst_reg->id = ptr_reg->id;
b03c9f9f 9588 dst_reg->off = ptr_reg->off - smin_val;
0962590e 9589 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
9590 break;
9591 }
f1174f77
EC
9592 /* A new variable offset is created. If the subtrahend is known
9593 * nonnegative, then any reg->range we had before is still good.
969bf05e 9594 */
b03c9f9f
EC
9595 if (signed_sub_overflows(smin_ptr, smax_val) ||
9596 signed_sub_overflows(smax_ptr, smin_val)) {
9597 /* Overflow possible, we know nothing */
9598 dst_reg->smin_value = S64_MIN;
9599 dst_reg->smax_value = S64_MAX;
9600 } else {
9601 dst_reg->smin_value = smin_ptr - smax_val;
9602 dst_reg->smax_value = smax_ptr - smin_val;
9603 }
9604 if (umin_ptr < umax_val) {
9605 /* Overflow possible, we know nothing */
9606 dst_reg->umin_value = 0;
9607 dst_reg->umax_value = U64_MAX;
9608 } else {
9609 /* Cannot overflow (as long as bounds are consistent) */
9610 dst_reg->umin_value = umin_ptr - umax_val;
9611 dst_reg->umax_value = umax_ptr - umin_val;
9612 }
f1174f77
EC
9613 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
9614 dst_reg->off = ptr_reg->off;
0962590e 9615 dst_reg->raw = ptr_reg->raw;
de8f3a83 9616 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
9617 dst_reg->id = ++env->id_gen;
9618 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 9619 if (smin_val < 0)
22dc4a0f 9620 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 9621 }
f1174f77
EC
9622 break;
9623 case BPF_AND:
9624 case BPF_OR:
9625 case BPF_XOR:
82abbf8d
AS
9626 /* bitwise ops on pointers are troublesome, prohibit. */
9627 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
9628 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
9629 return -EACCES;
9630 default:
9631 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
9632 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
9633 dst, bpf_alu_string[opcode >> 4]);
f1174f77 9634 return -EACCES;
43188702
JF
9635 }
9636
bb7f0f98
AS
9637 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
9638 return -EINVAL;
3844d153 9639 reg_bounds_sync(dst_reg);
073815b7
DB
9640 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
9641 return -EACCES;
7fedb63a
DB
9642 if (sanitize_needed(opcode)) {
9643 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
3d0220f6 9644 &info, true);
7fedb63a
DB
9645 if (ret < 0)
9646 return sanitize_err(env, insn, ret, off_reg, dst_reg);
0d6303db
DB
9647 }
9648
43188702
JF
9649 return 0;
9650}
9651
3f50f132
JF
9652static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
9653 struct bpf_reg_state *src_reg)
9654{
9655 s32 smin_val = src_reg->s32_min_value;
9656 s32 smax_val = src_reg->s32_max_value;
9657 u32 umin_val = src_reg->u32_min_value;
9658 u32 umax_val = src_reg->u32_max_value;
9659
9660 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
9661 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
9662 dst_reg->s32_min_value = S32_MIN;
9663 dst_reg->s32_max_value = S32_MAX;
9664 } else {
9665 dst_reg->s32_min_value += smin_val;
9666 dst_reg->s32_max_value += smax_val;
9667 }
9668 if (dst_reg->u32_min_value + umin_val < umin_val ||
9669 dst_reg->u32_max_value + umax_val < umax_val) {
9670 dst_reg->u32_min_value = 0;
9671 dst_reg->u32_max_value = U32_MAX;
9672 } else {
9673 dst_reg->u32_min_value += umin_val;
9674 dst_reg->u32_max_value += umax_val;
9675 }
9676}
9677
07cd2631
JF
9678static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
9679 struct bpf_reg_state *src_reg)
9680{
9681 s64 smin_val = src_reg->smin_value;
9682 s64 smax_val = src_reg->smax_value;
9683 u64 umin_val = src_reg->umin_value;
9684 u64 umax_val = src_reg->umax_value;
9685
9686 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
9687 signed_add_overflows(dst_reg->smax_value, smax_val)) {
9688 dst_reg->smin_value = S64_MIN;
9689 dst_reg->smax_value = S64_MAX;
9690 } else {
9691 dst_reg->smin_value += smin_val;
9692 dst_reg->smax_value += smax_val;
9693 }
9694 if (dst_reg->umin_value + umin_val < umin_val ||
9695 dst_reg->umax_value + umax_val < umax_val) {
9696 dst_reg->umin_value = 0;
9697 dst_reg->umax_value = U64_MAX;
9698 } else {
9699 dst_reg->umin_value += umin_val;
9700 dst_reg->umax_value += umax_val;
9701 }
3f50f132
JF
9702}
9703
9704static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
9705 struct bpf_reg_state *src_reg)
9706{
9707 s32 smin_val = src_reg->s32_min_value;
9708 s32 smax_val = src_reg->s32_max_value;
9709 u32 umin_val = src_reg->u32_min_value;
9710 u32 umax_val = src_reg->u32_max_value;
9711
9712 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
9713 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
9714 /* Overflow possible, we know nothing */
9715 dst_reg->s32_min_value = S32_MIN;
9716 dst_reg->s32_max_value = S32_MAX;
9717 } else {
9718 dst_reg->s32_min_value -= smax_val;
9719 dst_reg->s32_max_value -= smin_val;
9720 }
9721 if (dst_reg->u32_min_value < umax_val) {
9722 /* Overflow possible, we know nothing */
9723 dst_reg->u32_min_value = 0;
9724 dst_reg->u32_max_value = U32_MAX;
9725 } else {
9726 /* Cannot overflow (as long as bounds are consistent) */
9727 dst_reg->u32_min_value -= umax_val;
9728 dst_reg->u32_max_value -= umin_val;
9729 }
07cd2631
JF
9730}
9731
9732static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
9733 struct bpf_reg_state *src_reg)
9734{
9735 s64 smin_val = src_reg->smin_value;
9736 s64 smax_val = src_reg->smax_value;
9737 u64 umin_val = src_reg->umin_value;
9738 u64 umax_val = src_reg->umax_value;
9739
9740 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
9741 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
9742 /* Overflow possible, we know nothing */
9743 dst_reg->smin_value = S64_MIN;
9744 dst_reg->smax_value = S64_MAX;
9745 } else {
9746 dst_reg->smin_value -= smax_val;
9747 dst_reg->smax_value -= smin_val;
9748 }
9749 if (dst_reg->umin_value < umax_val) {
9750 /* Overflow possible, we know nothing */
9751 dst_reg->umin_value = 0;
9752 dst_reg->umax_value = U64_MAX;
9753 } else {
9754 /* Cannot overflow (as long as bounds are consistent) */
9755 dst_reg->umin_value -= umax_val;
9756 dst_reg->umax_value -= umin_val;
9757 }
3f50f132
JF
9758}
9759
9760static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
9761 struct bpf_reg_state *src_reg)
9762{
9763 s32 smin_val = src_reg->s32_min_value;
9764 u32 umin_val = src_reg->u32_min_value;
9765 u32 umax_val = src_reg->u32_max_value;
9766
9767 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
9768 /* Ain't nobody got time to multiply that sign */
9769 __mark_reg32_unbounded(dst_reg);
9770 return;
9771 }
9772 /* Both values are positive, so we can work with unsigned and
9773 * copy the result to signed (unless it exceeds S32_MAX).
9774 */
9775 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
9776 /* Potential overflow, we know nothing */
9777 __mark_reg32_unbounded(dst_reg);
9778 return;
9779 }
9780 dst_reg->u32_min_value *= umin_val;
9781 dst_reg->u32_max_value *= umax_val;
9782 if (dst_reg->u32_max_value > S32_MAX) {
9783 /* Overflow possible, we know nothing */
9784 dst_reg->s32_min_value = S32_MIN;
9785 dst_reg->s32_max_value = S32_MAX;
9786 } else {
9787 dst_reg->s32_min_value = dst_reg->u32_min_value;
9788 dst_reg->s32_max_value = dst_reg->u32_max_value;
9789 }
07cd2631
JF
9790}
9791
9792static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
9793 struct bpf_reg_state *src_reg)
9794{
9795 s64 smin_val = src_reg->smin_value;
9796 u64 umin_val = src_reg->umin_value;
9797 u64 umax_val = src_reg->umax_value;
9798
07cd2631
JF
9799 if (smin_val < 0 || dst_reg->smin_value < 0) {
9800 /* Ain't nobody got time to multiply that sign */
3f50f132 9801 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9802 return;
9803 }
9804 /* Both values are positive, so we can work with unsigned and
9805 * copy the result to signed (unless it exceeds S64_MAX).
9806 */
9807 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
9808 /* Potential overflow, we know nothing */
3f50f132 9809 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
9810 return;
9811 }
9812 dst_reg->umin_value *= umin_val;
9813 dst_reg->umax_value *= umax_val;
9814 if (dst_reg->umax_value > S64_MAX) {
9815 /* Overflow possible, we know nothing */
9816 dst_reg->smin_value = S64_MIN;
9817 dst_reg->smax_value = S64_MAX;
9818 } else {
9819 dst_reg->smin_value = dst_reg->umin_value;
9820 dst_reg->smax_value = dst_reg->umax_value;
9821 }
9822}
9823
3f50f132
JF
9824static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
9825 struct bpf_reg_state *src_reg)
9826{
9827 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9828 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9829 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9830 s32 smin_val = src_reg->s32_min_value;
9831 u32 umax_val = src_reg->u32_max_value;
9832
049c4e13
DB
9833 if (src_known && dst_known) {
9834 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 9835 return;
049c4e13 9836 }
3f50f132
JF
9837
9838 /* We get our minimum from the var_off, since that's inherently
9839 * bitwise. Our maximum is the minimum of the operands' maxima.
9840 */
9841 dst_reg->u32_min_value = var32_off.value;
9842 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
9843 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9844 /* Lose signed bounds when ANDing negative numbers,
9845 * ain't nobody got time for that.
9846 */
9847 dst_reg->s32_min_value = S32_MIN;
9848 dst_reg->s32_max_value = S32_MAX;
9849 } else {
9850 /* ANDing two positives gives a positive, so safe to
9851 * cast result into s64.
9852 */
9853 dst_reg->s32_min_value = dst_reg->u32_min_value;
9854 dst_reg->s32_max_value = dst_reg->u32_max_value;
9855 }
3f50f132
JF
9856}
9857
07cd2631
JF
9858static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
9859 struct bpf_reg_state *src_reg)
9860{
3f50f132
JF
9861 bool src_known = tnum_is_const(src_reg->var_off);
9862 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
9863 s64 smin_val = src_reg->smin_value;
9864 u64 umax_val = src_reg->umax_value;
9865
3f50f132 9866 if (src_known && dst_known) {
4fbb38a3 9867 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
9868 return;
9869 }
9870
07cd2631
JF
9871 /* We get our minimum from the var_off, since that's inherently
9872 * bitwise. Our maximum is the minimum of the operands' maxima.
9873 */
07cd2631
JF
9874 dst_reg->umin_value = dst_reg->var_off.value;
9875 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
9876 if (dst_reg->smin_value < 0 || smin_val < 0) {
9877 /* Lose signed bounds when ANDing negative numbers,
9878 * ain't nobody got time for that.
9879 */
9880 dst_reg->smin_value = S64_MIN;
9881 dst_reg->smax_value = S64_MAX;
9882 } else {
9883 /* ANDing two positives gives a positive, so safe to
9884 * cast result into s64.
9885 */
9886 dst_reg->smin_value = dst_reg->umin_value;
9887 dst_reg->smax_value = dst_reg->umax_value;
9888 }
9889 /* We may learn something more from the var_off */
9890 __update_reg_bounds(dst_reg);
9891}
9892
3f50f132
JF
9893static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
9894 struct bpf_reg_state *src_reg)
9895{
9896 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9897 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9898 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
9899 s32 smin_val = src_reg->s32_min_value;
9900 u32 umin_val = src_reg->u32_min_value;
3f50f132 9901
049c4e13
DB
9902 if (src_known && dst_known) {
9903 __mark_reg32_known(dst_reg, var32_off.value);
3f50f132 9904 return;
049c4e13 9905 }
3f50f132
JF
9906
9907 /* We get our maximum from the var_off, and our minimum is the
9908 * maximum of the operands' minima
9909 */
9910 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
9911 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
9912 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
9913 /* Lose signed bounds when ORing negative numbers,
9914 * ain't nobody got time for that.
9915 */
9916 dst_reg->s32_min_value = S32_MIN;
9917 dst_reg->s32_max_value = S32_MAX;
9918 } else {
9919 /* ORing two positives gives a positive, so safe to
9920 * cast result into s64.
9921 */
5b9fbeb7
DB
9922 dst_reg->s32_min_value = dst_reg->u32_min_value;
9923 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
9924 }
9925}
9926
07cd2631
JF
9927static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
9928 struct bpf_reg_state *src_reg)
9929{
3f50f132
JF
9930 bool src_known = tnum_is_const(src_reg->var_off);
9931 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
9932 s64 smin_val = src_reg->smin_value;
9933 u64 umin_val = src_reg->umin_value;
9934
3f50f132 9935 if (src_known && dst_known) {
4fbb38a3 9936 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
9937 return;
9938 }
9939
07cd2631
JF
9940 /* We get our maximum from the var_off, and our minimum is the
9941 * maximum of the operands' minima
9942 */
07cd2631
JF
9943 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
9944 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
9945 if (dst_reg->smin_value < 0 || smin_val < 0) {
9946 /* Lose signed bounds when ORing negative numbers,
9947 * ain't nobody got time for that.
9948 */
9949 dst_reg->smin_value = S64_MIN;
9950 dst_reg->smax_value = S64_MAX;
9951 } else {
9952 /* ORing two positives gives a positive, so safe to
9953 * cast result into s64.
9954 */
9955 dst_reg->smin_value = dst_reg->umin_value;
9956 dst_reg->smax_value = dst_reg->umax_value;
9957 }
9958 /* We may learn something more from the var_off */
9959 __update_reg_bounds(dst_reg);
9960}
9961
2921c90d
YS
9962static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
9963 struct bpf_reg_state *src_reg)
9964{
9965 bool src_known = tnum_subreg_is_const(src_reg->var_off);
9966 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
9967 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
9968 s32 smin_val = src_reg->s32_min_value;
9969
049c4e13
DB
9970 if (src_known && dst_known) {
9971 __mark_reg32_known(dst_reg, var32_off.value);
2921c90d 9972 return;
049c4e13 9973 }
2921c90d
YS
9974
9975 /* We get both minimum and maximum from the var32_off. */
9976 dst_reg->u32_min_value = var32_off.value;
9977 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
9978
9979 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
9980 /* XORing two positive sign numbers gives a positive,
9981 * so safe to cast u32 result into s32.
9982 */
9983 dst_reg->s32_min_value = dst_reg->u32_min_value;
9984 dst_reg->s32_max_value = dst_reg->u32_max_value;
9985 } else {
9986 dst_reg->s32_min_value = S32_MIN;
9987 dst_reg->s32_max_value = S32_MAX;
9988 }
9989}
9990
9991static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
9992 struct bpf_reg_state *src_reg)
9993{
9994 bool src_known = tnum_is_const(src_reg->var_off);
9995 bool dst_known = tnum_is_const(dst_reg->var_off);
9996 s64 smin_val = src_reg->smin_value;
9997
9998 if (src_known && dst_known) {
9999 /* dst_reg->var_off.value has been updated earlier */
10000 __mark_reg_known(dst_reg, dst_reg->var_off.value);
10001 return;
10002 }
10003
10004 /* We get both minimum and maximum from the var_off. */
10005 dst_reg->umin_value = dst_reg->var_off.value;
10006 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
10007
10008 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
10009 /* XORing two positive sign numbers gives a positive,
10010 * so safe to cast u64 result into s64.
10011 */
10012 dst_reg->smin_value = dst_reg->umin_value;
10013 dst_reg->smax_value = dst_reg->umax_value;
10014 } else {
10015 dst_reg->smin_value = S64_MIN;
10016 dst_reg->smax_value = S64_MAX;
10017 }
10018
10019 __update_reg_bounds(dst_reg);
10020}
10021
3f50f132
JF
10022static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10023 u64 umin_val, u64 umax_val)
07cd2631 10024{
07cd2631
JF
10025 /* We lose all sign bit information (except what we can pick
10026 * up from var_off)
10027 */
3f50f132
JF
10028 dst_reg->s32_min_value = S32_MIN;
10029 dst_reg->s32_max_value = S32_MAX;
10030 /* If we might shift our top bit out, then we know nothing */
10031 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
10032 dst_reg->u32_min_value = 0;
10033 dst_reg->u32_max_value = U32_MAX;
10034 } else {
10035 dst_reg->u32_min_value <<= umin_val;
10036 dst_reg->u32_max_value <<= umax_val;
10037 }
10038}
10039
10040static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
10041 struct bpf_reg_state *src_reg)
10042{
10043 u32 umax_val = src_reg->u32_max_value;
10044 u32 umin_val = src_reg->u32_min_value;
10045 /* u32 alu operation will zext upper bits */
10046 struct tnum subreg = tnum_subreg(dst_reg->var_off);
10047
10048 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10049 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
10050 /* Not required but being careful mark reg64 bounds as unknown so
10051 * that we are forced to pick them up from tnum and zext later and
10052 * if some path skips this step we are still safe.
10053 */
10054 __mark_reg64_unbounded(dst_reg);
10055 __update_reg32_bounds(dst_reg);
10056}
10057
10058static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
10059 u64 umin_val, u64 umax_val)
10060{
10061 /* Special case <<32 because it is a common compiler pattern to sign
10062 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
10063 * positive we know this shift will also be positive so we can track
10064 * bounds correctly. Otherwise we lose all sign bit information except
10065 * what we can pick up from var_off. Perhaps we can generalize this
10066 * later to shifts of any length.
10067 */
10068 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
10069 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
10070 else
10071 dst_reg->smax_value = S64_MAX;
10072
10073 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
10074 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
10075 else
10076 dst_reg->smin_value = S64_MIN;
10077
07cd2631
JF
10078 /* If we might shift our top bit out, then we know nothing */
10079 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
10080 dst_reg->umin_value = 0;
10081 dst_reg->umax_value = U64_MAX;
10082 } else {
10083 dst_reg->umin_value <<= umin_val;
10084 dst_reg->umax_value <<= umax_val;
10085 }
3f50f132
JF
10086}
10087
10088static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
10089 struct bpf_reg_state *src_reg)
10090{
10091 u64 umax_val = src_reg->umax_value;
10092 u64 umin_val = src_reg->umin_value;
10093
10094 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
10095 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
10096 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
10097
07cd2631
JF
10098 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
10099 /* We may learn something more from the var_off */
10100 __update_reg_bounds(dst_reg);
10101}
10102
3f50f132
JF
10103static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
10104 struct bpf_reg_state *src_reg)
10105{
10106 struct tnum subreg = tnum_subreg(dst_reg->var_off);
10107 u32 umax_val = src_reg->u32_max_value;
10108 u32 umin_val = src_reg->u32_min_value;
10109
10110 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
10111 * be negative, then either:
10112 * 1) src_reg might be zero, so the sign bit of the result is
10113 * unknown, so we lose our signed bounds
10114 * 2) it's known negative, thus the unsigned bounds capture the
10115 * signed bounds
10116 * 3) the signed bounds cross zero, so they tell us nothing
10117 * about the result
10118 * If the value in dst_reg is known nonnegative, then again the
18b24d78 10119 * unsigned bounds capture the signed bounds.
3f50f132
JF
10120 * Thus, in all cases it suffices to blow away our signed bounds
10121 * and rely on inferring new ones from the unsigned bounds and
10122 * var_off of the result.
10123 */
10124 dst_reg->s32_min_value = S32_MIN;
10125 dst_reg->s32_max_value = S32_MAX;
10126
10127 dst_reg->var_off = tnum_rshift(subreg, umin_val);
10128 dst_reg->u32_min_value >>= umax_val;
10129 dst_reg->u32_max_value >>= umin_val;
10130
10131 __mark_reg64_unbounded(dst_reg);
10132 __update_reg32_bounds(dst_reg);
10133}
10134
07cd2631
JF
10135static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
10136 struct bpf_reg_state *src_reg)
10137{
10138 u64 umax_val = src_reg->umax_value;
10139 u64 umin_val = src_reg->umin_value;
10140
10141 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
10142 * be negative, then either:
10143 * 1) src_reg might be zero, so the sign bit of the result is
10144 * unknown, so we lose our signed bounds
10145 * 2) it's known negative, thus the unsigned bounds capture the
10146 * signed bounds
10147 * 3) the signed bounds cross zero, so they tell us nothing
10148 * about the result
10149 * If the value in dst_reg is known nonnegative, then again the
18b24d78 10150 * unsigned bounds capture the signed bounds.
07cd2631
JF
10151 * Thus, in all cases it suffices to blow away our signed bounds
10152 * and rely on inferring new ones from the unsigned bounds and
10153 * var_off of the result.
10154 */
10155 dst_reg->smin_value = S64_MIN;
10156 dst_reg->smax_value = S64_MAX;
10157 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
10158 dst_reg->umin_value >>= umax_val;
10159 dst_reg->umax_value >>= umin_val;
3f50f132
JF
10160
10161 /* Its not easy to operate on alu32 bounds here because it depends
10162 * on bits being shifted in. Take easy way out and mark unbounded
10163 * so we can recalculate later from tnum.
10164 */
10165 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
10166 __update_reg_bounds(dst_reg);
10167}
10168
3f50f132
JF
10169static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
10170 struct bpf_reg_state *src_reg)
07cd2631 10171{
3f50f132 10172 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
10173
10174 /* Upon reaching here, src_known is true and
10175 * umax_val is equal to umin_val.
10176 */
3f50f132
JF
10177 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
10178 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 10179
3f50f132
JF
10180 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
10181
10182 /* blow away the dst_reg umin_value/umax_value and rely on
10183 * dst_reg var_off to refine the result.
10184 */
10185 dst_reg->u32_min_value = 0;
10186 dst_reg->u32_max_value = U32_MAX;
10187
10188 __mark_reg64_unbounded(dst_reg);
10189 __update_reg32_bounds(dst_reg);
10190}
10191
10192static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
10193 struct bpf_reg_state *src_reg)
10194{
10195 u64 umin_val = src_reg->umin_value;
10196
10197 /* Upon reaching here, src_known is true and umax_val is equal
10198 * to umin_val.
10199 */
10200 dst_reg->smin_value >>= umin_val;
10201 dst_reg->smax_value >>= umin_val;
10202
10203 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
10204
10205 /* blow away the dst_reg umin_value/umax_value and rely on
10206 * dst_reg var_off to refine the result.
10207 */
10208 dst_reg->umin_value = 0;
10209 dst_reg->umax_value = U64_MAX;
3f50f132
JF
10210
10211 /* Its not easy to operate on alu32 bounds here because it depends
10212 * on bits being shifted in from upper 32-bits. Take easy way out
10213 * and mark unbounded so we can recalculate later from tnum.
10214 */
10215 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
10216 __update_reg_bounds(dst_reg);
10217}
10218
468f6eaf
JH
10219/* WARNING: This function does calculations on 64-bit values, but the actual
10220 * execution may occur on 32-bit values. Therefore, things like bitshifts
10221 * need extra checks in the 32-bit case.
10222 */
f1174f77
EC
10223static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
10224 struct bpf_insn *insn,
10225 struct bpf_reg_state *dst_reg,
10226 struct bpf_reg_state src_reg)
969bf05e 10227{
638f5b90 10228 struct bpf_reg_state *regs = cur_regs(env);
48461135 10229 u8 opcode = BPF_OP(insn->code);
b0b3fb67 10230 bool src_known;
b03c9f9f
EC
10231 s64 smin_val, smax_val;
10232 u64 umin_val, umax_val;
3f50f132
JF
10233 s32 s32_min_val, s32_max_val;
10234 u32 u32_min_val, u32_max_val;
468f6eaf 10235 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3f50f132 10236 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
a6aaece0 10237 int ret;
b799207e 10238
b03c9f9f
EC
10239 smin_val = src_reg.smin_value;
10240 smax_val = src_reg.smax_value;
10241 umin_val = src_reg.umin_value;
10242 umax_val = src_reg.umax_value;
f23cc643 10243
3f50f132
JF
10244 s32_min_val = src_reg.s32_min_value;
10245 s32_max_val = src_reg.s32_max_value;
10246 u32_min_val = src_reg.u32_min_value;
10247 u32_max_val = src_reg.u32_max_value;
10248
10249 if (alu32) {
10250 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
10251 if ((src_known &&
10252 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
10253 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
10254 /* Taint dst register if offset had invalid bounds
10255 * derived from e.g. dead branches.
10256 */
10257 __mark_reg_unknown(env, dst_reg);
10258 return 0;
10259 }
10260 } else {
10261 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
10262 if ((src_known &&
10263 (smin_val != smax_val || umin_val != umax_val)) ||
10264 smin_val > smax_val || umin_val > umax_val) {
10265 /* Taint dst register if offset had invalid bounds
10266 * derived from e.g. dead branches.
10267 */
10268 __mark_reg_unknown(env, dst_reg);
10269 return 0;
10270 }
6f16101e
DB
10271 }
10272
bb7f0f98
AS
10273 if (!src_known &&
10274 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 10275 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
10276 return 0;
10277 }
10278
f5288193
DB
10279 if (sanitize_needed(opcode)) {
10280 ret = sanitize_val_alu(env, insn);
10281 if (ret < 0)
10282 return sanitize_err(env, insn, ret, NULL, NULL);
10283 }
10284
3f50f132
JF
10285 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
10286 * There are two classes of instructions: The first class we track both
10287 * alu32 and alu64 sign/unsigned bounds independently this provides the
10288 * greatest amount of precision when alu operations are mixed with jmp32
10289 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
10290 * and BPF_OR. This is possible because these ops have fairly easy to
10291 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
10292 * See alu32 verifier tests for examples. The second class of
10293 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
10294 * with regards to tracking sign/unsigned bounds because the bits may
10295 * cross subreg boundaries in the alu64 case. When this happens we mark
10296 * the reg unbounded in the subreg bound space and use the resulting
10297 * tnum to calculate an approximation of the sign/unsigned bounds.
10298 */
48461135
JB
10299 switch (opcode) {
10300 case BPF_ADD:
3f50f132 10301 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 10302 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 10303 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
10304 break;
10305 case BPF_SUB:
3f50f132 10306 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 10307 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 10308 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
10309 break;
10310 case BPF_MUL:
3f50f132
JF
10311 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
10312 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 10313 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
10314 break;
10315 case BPF_AND:
3f50f132
JF
10316 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
10317 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 10318 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
10319 break;
10320 case BPF_OR:
3f50f132
JF
10321 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
10322 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 10323 scalar_min_max_or(dst_reg, &src_reg);
48461135 10324 break;
2921c90d
YS
10325 case BPF_XOR:
10326 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
10327 scalar32_min_max_xor(dst_reg, &src_reg);
10328 scalar_min_max_xor(dst_reg, &src_reg);
10329 break;
48461135 10330 case BPF_LSH:
468f6eaf
JH
10331 if (umax_val >= insn_bitness) {
10332 /* Shifts greater than 31 or 63 are undefined.
10333 * This includes shifts by a negative number.
b03c9f9f 10334 */
61bd5218 10335 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
10336 break;
10337 }
3f50f132
JF
10338 if (alu32)
10339 scalar32_min_max_lsh(dst_reg, &src_reg);
10340 else
10341 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
10342 break;
10343 case BPF_RSH:
468f6eaf
JH
10344 if (umax_val >= insn_bitness) {
10345 /* Shifts greater than 31 or 63 are undefined.
10346 * This includes shifts by a negative number.
b03c9f9f 10347 */
61bd5218 10348 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
10349 break;
10350 }
3f50f132
JF
10351 if (alu32)
10352 scalar32_min_max_rsh(dst_reg, &src_reg);
10353 else
10354 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 10355 break;
9cbe1f5a
YS
10356 case BPF_ARSH:
10357 if (umax_val >= insn_bitness) {
10358 /* Shifts greater than 31 or 63 are undefined.
10359 * This includes shifts by a negative number.
10360 */
10361 mark_reg_unknown(env, regs, insn->dst_reg);
10362 break;
10363 }
3f50f132
JF
10364 if (alu32)
10365 scalar32_min_max_arsh(dst_reg, &src_reg);
10366 else
10367 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 10368 break;
48461135 10369 default:
61bd5218 10370 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
10371 break;
10372 }
10373
3f50f132
JF
10374 /* ALU32 ops are zero extended into 64bit register */
10375 if (alu32)
10376 zext_32_to_64(dst_reg);
3844d153 10377 reg_bounds_sync(dst_reg);
f1174f77
EC
10378 return 0;
10379}
10380
10381/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
10382 * and var_off.
10383 */
10384static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
10385 struct bpf_insn *insn)
10386{
f4d7e40a
AS
10387 struct bpf_verifier_state *vstate = env->cur_state;
10388 struct bpf_func_state *state = vstate->frame[vstate->curframe];
10389 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
10390 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
10391 u8 opcode = BPF_OP(insn->code);
b5dc0163 10392 int err;
f1174f77
EC
10393
10394 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
10395 src_reg = NULL;
10396 if (dst_reg->type != SCALAR_VALUE)
10397 ptr_reg = dst_reg;
75748837
AS
10398 else
10399 /* Make sure ID is cleared otherwise dst_reg min/max could be
10400 * incorrectly propagated into other registers by find_equal_scalars()
10401 */
10402 dst_reg->id = 0;
f1174f77
EC
10403 if (BPF_SRC(insn->code) == BPF_X) {
10404 src_reg = &regs[insn->src_reg];
f1174f77
EC
10405 if (src_reg->type != SCALAR_VALUE) {
10406 if (dst_reg->type != SCALAR_VALUE) {
10407 /* Combining two pointers by any ALU op yields
82abbf8d
AS
10408 * an arbitrary scalar. Disallow all math except
10409 * pointer subtraction
f1174f77 10410 */
dd066823 10411 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
10412 mark_reg_unknown(env, regs, insn->dst_reg);
10413 return 0;
f1174f77 10414 }
82abbf8d
AS
10415 verbose(env, "R%d pointer %s pointer prohibited\n",
10416 insn->dst_reg,
10417 bpf_alu_string[opcode >> 4]);
10418 return -EACCES;
f1174f77
EC
10419 } else {
10420 /* scalar += pointer
10421 * This is legal, but we have to reverse our
10422 * src/dest handling in computing the range
10423 */
b5dc0163
AS
10424 err = mark_chain_precision(env, insn->dst_reg);
10425 if (err)
10426 return err;
82abbf8d
AS
10427 return adjust_ptr_min_max_vals(env, insn,
10428 src_reg, dst_reg);
f1174f77
EC
10429 }
10430 } else if (ptr_reg) {
10431 /* pointer += scalar */
b5dc0163
AS
10432 err = mark_chain_precision(env, insn->src_reg);
10433 if (err)
10434 return err;
82abbf8d
AS
10435 return adjust_ptr_min_max_vals(env, insn,
10436 dst_reg, src_reg);
a3b666bf
AN
10437 } else if (dst_reg->precise) {
10438 /* if dst_reg is precise, src_reg should be precise as well */
10439 err = mark_chain_precision(env, insn->src_reg);
10440 if (err)
10441 return err;
f1174f77
EC
10442 }
10443 } else {
10444 /* Pretend the src is a reg with a known value, since we only
10445 * need to be able to read from this state.
10446 */
10447 off_reg.type = SCALAR_VALUE;
b03c9f9f 10448 __mark_reg_known(&off_reg, insn->imm);
f1174f77 10449 src_reg = &off_reg;
82abbf8d
AS
10450 if (ptr_reg) /* pointer += K */
10451 return adjust_ptr_min_max_vals(env, insn,
10452 ptr_reg, src_reg);
f1174f77
EC
10453 }
10454
10455 /* Got here implies adding two SCALAR_VALUEs */
10456 if (WARN_ON_ONCE(ptr_reg)) {
0f55f9ed 10457 print_verifier_state(env, state, true);
61bd5218 10458 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
10459 return -EINVAL;
10460 }
10461 if (WARN_ON(!src_reg)) {
0f55f9ed 10462 print_verifier_state(env, state, true);
61bd5218 10463 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
10464 return -EINVAL;
10465 }
10466 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
10467}
10468
17a52670 10469/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 10470static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 10471{
638f5b90 10472 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
10473 u8 opcode = BPF_OP(insn->code);
10474 int err;
10475
10476 if (opcode == BPF_END || opcode == BPF_NEG) {
10477 if (opcode == BPF_NEG) {
395e942d 10478 if (BPF_SRC(insn->code) != BPF_K ||
17a52670
AS
10479 insn->src_reg != BPF_REG_0 ||
10480 insn->off != 0 || insn->imm != 0) {
61bd5218 10481 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
10482 return -EINVAL;
10483 }
10484 } else {
10485 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
10486 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
10487 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 10488 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
10489 return -EINVAL;
10490 }
10491 }
10492
10493 /* check src operand */
dc503a8a 10494 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10495 if (err)
10496 return err;
10497
1be7f75d 10498 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 10499 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
10500 insn->dst_reg);
10501 return -EACCES;
10502 }
10503
17a52670 10504 /* check dest operand */
dc503a8a 10505 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
10506 if (err)
10507 return err;
10508
10509 } else if (opcode == BPF_MOV) {
10510
10511 if (BPF_SRC(insn->code) == BPF_X) {
10512 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10513 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10514 return -EINVAL;
10515 }
10516
10517 /* check src operand */
dc503a8a 10518 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10519 if (err)
10520 return err;
10521 } else {
10522 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10523 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
10524 return -EINVAL;
10525 }
10526 }
10527
fbeb1603
AF
10528 /* check dest operand, mark as required later */
10529 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
10530 if (err)
10531 return err;
10532
10533 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
10534 struct bpf_reg_state *src_reg = regs + insn->src_reg;
10535 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
10536
17a52670
AS
10537 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10538 /* case: R1 = R2
10539 * copy register state to dest reg
10540 */
75748837
AS
10541 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
10542 /* Assign src and dst registers the same ID
10543 * that will be used by find_equal_scalars()
10544 * to propagate min/max range.
10545 */
10546 src_reg->id = ++env->id_gen;
e434b8cd
JW
10547 *dst_reg = *src_reg;
10548 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10549 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 10550 } else {
f1174f77 10551 /* R1 = (u32) R2 */
1be7f75d 10552 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
10553 verbose(env,
10554 "R%d partial copy of pointer\n",
1be7f75d
AS
10555 insn->src_reg);
10556 return -EACCES;
e434b8cd
JW
10557 } else if (src_reg->type == SCALAR_VALUE) {
10558 *dst_reg = *src_reg;
75748837
AS
10559 /* Make sure ID is cleared otherwise
10560 * dst_reg min/max could be incorrectly
10561 * propagated into src_reg by find_equal_scalars()
10562 */
10563 dst_reg->id = 0;
e434b8cd 10564 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 10565 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
10566 } else {
10567 mark_reg_unknown(env, regs,
10568 insn->dst_reg);
1be7f75d 10569 }
3f50f132 10570 zext_32_to_64(dst_reg);
3844d153 10571 reg_bounds_sync(dst_reg);
17a52670
AS
10572 }
10573 } else {
10574 /* case: R = imm
10575 * remember the value we stored into this reg
10576 */
fbeb1603
AF
10577 /* clear any state __mark_reg_known doesn't set */
10578 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 10579 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
10580 if (BPF_CLASS(insn->code) == BPF_ALU64) {
10581 __mark_reg_known(regs + insn->dst_reg,
10582 insn->imm);
10583 } else {
10584 __mark_reg_known(regs + insn->dst_reg,
10585 (u32)insn->imm);
10586 }
17a52670
AS
10587 }
10588
10589 } else if (opcode > BPF_END) {
61bd5218 10590 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
10591 return -EINVAL;
10592
10593 } else { /* all other ALU ops: and, sub, xor, add, ... */
10594
17a52670
AS
10595 if (BPF_SRC(insn->code) == BPF_X) {
10596 if (insn->imm != 0 || insn->off != 0) {
61bd5218 10597 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10598 return -EINVAL;
10599 }
10600 /* check src1 operand */
dc503a8a 10601 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10602 if (err)
10603 return err;
10604 } else {
10605 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 10606 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
10607 return -EINVAL;
10608 }
10609 }
10610
10611 /* check src2 operand */
dc503a8a 10612 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10613 if (err)
10614 return err;
10615
10616 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
10617 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 10618 verbose(env, "div by zero\n");
17a52670
AS
10619 return -EINVAL;
10620 }
10621
229394e8
RV
10622 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
10623 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
10624 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
10625
10626 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 10627 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
10628 return -EINVAL;
10629 }
10630 }
10631
1a0dc1ac 10632 /* check dest operand */
dc503a8a 10633 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
10634 if (err)
10635 return err;
10636
f1174f77 10637 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
10638 }
10639
10640 return 0;
10641}
10642
f4d7e40a 10643static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 10644 struct bpf_reg_state *dst_reg,
f8ddadc4 10645 enum bpf_reg_type type,
fb2a311a 10646 bool range_right_open)
969bf05e 10647{
b239da34
KKD
10648 struct bpf_func_state *state;
10649 struct bpf_reg_state *reg;
10650 int new_range;
2d2be8ca 10651
fb2a311a
DB
10652 if (dst_reg->off < 0 ||
10653 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
10654 /* This doesn't give us any range */
10655 return;
10656
b03c9f9f
EC
10657 if (dst_reg->umax_value > MAX_PACKET_OFF ||
10658 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
10659 /* Risk of overflow. For instance, ptr + (1<<63) may be less
10660 * than pkt_end, but that's because it's also less than pkt.
10661 */
10662 return;
10663
fb2a311a
DB
10664 new_range = dst_reg->off;
10665 if (range_right_open)
2fa7d94a 10666 new_range++;
fb2a311a
DB
10667
10668 /* Examples for register markings:
2d2be8ca 10669 *
fb2a311a 10670 * pkt_data in dst register:
2d2be8ca
DB
10671 *
10672 * r2 = r3;
10673 * r2 += 8;
10674 * if (r2 > pkt_end) goto <handle exception>
10675 * <access okay>
10676 *
b4e432f1
DB
10677 * r2 = r3;
10678 * r2 += 8;
10679 * if (r2 < pkt_end) goto <access okay>
10680 * <handle exception>
10681 *
2d2be8ca
DB
10682 * Where:
10683 * r2 == dst_reg, pkt_end == src_reg
10684 * r2=pkt(id=n,off=8,r=0)
10685 * r3=pkt(id=n,off=0,r=0)
10686 *
fb2a311a 10687 * pkt_data in src register:
2d2be8ca
DB
10688 *
10689 * r2 = r3;
10690 * r2 += 8;
10691 * if (pkt_end >= r2) goto <access okay>
10692 * <handle exception>
10693 *
b4e432f1
DB
10694 * r2 = r3;
10695 * r2 += 8;
10696 * if (pkt_end <= r2) goto <handle exception>
10697 * <access okay>
10698 *
2d2be8ca
DB
10699 * Where:
10700 * pkt_end == dst_reg, r2 == src_reg
10701 * r2=pkt(id=n,off=8,r=0)
10702 * r3=pkt(id=n,off=0,r=0)
10703 *
10704 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
10705 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
10706 * and [r3, r3 + 8-1) respectively is safe to access depending on
10707 * the check.
969bf05e 10708 */
2d2be8ca 10709
f1174f77
EC
10710 /* If our ids match, then we must have the same max_value. And we
10711 * don't care about the other reg's fixed offset, since if it's too big
10712 * the range won't allow anything.
10713 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
10714 */
b239da34
KKD
10715 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
10716 if (reg->type == type && reg->id == dst_reg->id)
10717 /* keep the maximum range already checked */
10718 reg->range = max(reg->range, new_range);
10719 }));
969bf05e
AS
10720}
10721
3f50f132 10722static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 10723{
3f50f132
JF
10724 struct tnum subreg = tnum_subreg(reg->var_off);
10725 s32 sval = (s32)val;
a72dafaf 10726
3f50f132
JF
10727 switch (opcode) {
10728 case BPF_JEQ:
10729 if (tnum_is_const(subreg))
10730 return !!tnum_equals_const(subreg, val);
10731 break;
10732 case BPF_JNE:
10733 if (tnum_is_const(subreg))
10734 return !tnum_equals_const(subreg, val);
10735 break;
10736 case BPF_JSET:
10737 if ((~subreg.mask & subreg.value) & val)
10738 return 1;
10739 if (!((subreg.mask | subreg.value) & val))
10740 return 0;
10741 break;
10742 case BPF_JGT:
10743 if (reg->u32_min_value > val)
10744 return 1;
10745 else if (reg->u32_max_value <= val)
10746 return 0;
10747 break;
10748 case BPF_JSGT:
10749 if (reg->s32_min_value > sval)
10750 return 1;
ee114dd6 10751 else if (reg->s32_max_value <= sval)
3f50f132
JF
10752 return 0;
10753 break;
10754 case BPF_JLT:
10755 if (reg->u32_max_value < val)
10756 return 1;
10757 else if (reg->u32_min_value >= val)
10758 return 0;
10759 break;
10760 case BPF_JSLT:
10761 if (reg->s32_max_value < sval)
10762 return 1;
10763 else if (reg->s32_min_value >= sval)
10764 return 0;
10765 break;
10766 case BPF_JGE:
10767 if (reg->u32_min_value >= val)
10768 return 1;
10769 else if (reg->u32_max_value < val)
10770 return 0;
10771 break;
10772 case BPF_JSGE:
10773 if (reg->s32_min_value >= sval)
10774 return 1;
10775 else if (reg->s32_max_value < sval)
10776 return 0;
10777 break;
10778 case BPF_JLE:
10779 if (reg->u32_max_value <= val)
10780 return 1;
10781 else if (reg->u32_min_value > val)
10782 return 0;
10783 break;
10784 case BPF_JSLE:
10785 if (reg->s32_max_value <= sval)
10786 return 1;
10787 else if (reg->s32_min_value > sval)
10788 return 0;
10789 break;
10790 }
4f7b3e82 10791
3f50f132
JF
10792 return -1;
10793}
092ed096 10794
3f50f132
JF
10795
10796static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
10797{
10798 s64 sval = (s64)val;
a72dafaf 10799
4f7b3e82
AS
10800 switch (opcode) {
10801 case BPF_JEQ:
10802 if (tnum_is_const(reg->var_off))
10803 return !!tnum_equals_const(reg->var_off, val);
10804 break;
10805 case BPF_JNE:
10806 if (tnum_is_const(reg->var_off))
10807 return !tnum_equals_const(reg->var_off, val);
10808 break;
960ea056
JK
10809 case BPF_JSET:
10810 if ((~reg->var_off.mask & reg->var_off.value) & val)
10811 return 1;
10812 if (!((reg->var_off.mask | reg->var_off.value) & val))
10813 return 0;
10814 break;
4f7b3e82
AS
10815 case BPF_JGT:
10816 if (reg->umin_value > val)
10817 return 1;
10818 else if (reg->umax_value <= val)
10819 return 0;
10820 break;
10821 case BPF_JSGT:
a72dafaf 10822 if (reg->smin_value > sval)
4f7b3e82 10823 return 1;
ee114dd6 10824 else if (reg->smax_value <= sval)
4f7b3e82
AS
10825 return 0;
10826 break;
10827 case BPF_JLT:
10828 if (reg->umax_value < val)
10829 return 1;
10830 else if (reg->umin_value >= val)
10831 return 0;
10832 break;
10833 case BPF_JSLT:
a72dafaf 10834 if (reg->smax_value < sval)
4f7b3e82 10835 return 1;
a72dafaf 10836 else if (reg->smin_value >= sval)
4f7b3e82
AS
10837 return 0;
10838 break;
10839 case BPF_JGE:
10840 if (reg->umin_value >= val)
10841 return 1;
10842 else if (reg->umax_value < val)
10843 return 0;
10844 break;
10845 case BPF_JSGE:
a72dafaf 10846 if (reg->smin_value >= sval)
4f7b3e82 10847 return 1;
a72dafaf 10848 else if (reg->smax_value < sval)
4f7b3e82
AS
10849 return 0;
10850 break;
10851 case BPF_JLE:
10852 if (reg->umax_value <= val)
10853 return 1;
10854 else if (reg->umin_value > val)
10855 return 0;
10856 break;
10857 case BPF_JSLE:
a72dafaf 10858 if (reg->smax_value <= sval)
4f7b3e82 10859 return 1;
a72dafaf 10860 else if (reg->smin_value > sval)
4f7b3e82
AS
10861 return 0;
10862 break;
10863 }
10864
10865 return -1;
10866}
10867
3f50f132
JF
10868/* compute branch direction of the expression "if (reg opcode val) goto target;"
10869 * and return:
10870 * 1 - branch will be taken and "goto target" will be executed
10871 * 0 - branch will not be taken and fall-through to next insn
10872 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
10873 * range [0,10]
604dca5e 10874 */
3f50f132
JF
10875static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
10876 bool is_jmp32)
604dca5e 10877{
cac616db
JF
10878 if (__is_pointer_value(false, reg)) {
10879 if (!reg_type_not_null(reg->type))
10880 return -1;
10881
10882 /* If pointer is valid tests against zero will fail so we can
10883 * use this to direct branch taken.
10884 */
10885 if (val != 0)
10886 return -1;
10887
10888 switch (opcode) {
10889 case BPF_JEQ:
10890 return 0;
10891 case BPF_JNE:
10892 return 1;
10893 default:
10894 return -1;
10895 }
10896 }
604dca5e 10897
3f50f132
JF
10898 if (is_jmp32)
10899 return is_branch32_taken(reg, val, opcode);
10900 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
10901}
10902
6d94e741
AS
10903static int flip_opcode(u32 opcode)
10904{
10905 /* How can we transform "a <op> b" into "b <op> a"? */
10906 static const u8 opcode_flip[16] = {
10907 /* these stay the same */
10908 [BPF_JEQ >> 4] = BPF_JEQ,
10909 [BPF_JNE >> 4] = BPF_JNE,
10910 [BPF_JSET >> 4] = BPF_JSET,
10911 /* these swap "lesser" and "greater" (L and G in the opcodes) */
10912 [BPF_JGE >> 4] = BPF_JLE,
10913 [BPF_JGT >> 4] = BPF_JLT,
10914 [BPF_JLE >> 4] = BPF_JGE,
10915 [BPF_JLT >> 4] = BPF_JGT,
10916 [BPF_JSGE >> 4] = BPF_JSLE,
10917 [BPF_JSGT >> 4] = BPF_JSLT,
10918 [BPF_JSLE >> 4] = BPF_JSGE,
10919 [BPF_JSLT >> 4] = BPF_JSGT
10920 };
10921 return opcode_flip[opcode >> 4];
10922}
10923
10924static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
10925 struct bpf_reg_state *src_reg,
10926 u8 opcode)
10927{
10928 struct bpf_reg_state *pkt;
10929
10930 if (src_reg->type == PTR_TO_PACKET_END) {
10931 pkt = dst_reg;
10932 } else if (dst_reg->type == PTR_TO_PACKET_END) {
10933 pkt = src_reg;
10934 opcode = flip_opcode(opcode);
10935 } else {
10936 return -1;
10937 }
10938
10939 if (pkt->range >= 0)
10940 return -1;
10941
10942 switch (opcode) {
10943 case BPF_JLE:
10944 /* pkt <= pkt_end */
10945 fallthrough;
10946 case BPF_JGT:
10947 /* pkt > pkt_end */
10948 if (pkt->range == BEYOND_PKT_END)
10949 /* pkt has at last one extra byte beyond pkt_end */
10950 return opcode == BPF_JGT;
10951 break;
10952 case BPF_JLT:
10953 /* pkt < pkt_end */
10954 fallthrough;
10955 case BPF_JGE:
10956 /* pkt >= pkt_end */
10957 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
10958 return opcode == BPF_JGE;
10959 break;
10960 }
10961 return -1;
10962}
10963
48461135
JB
10964/* Adjusts the register min/max values in the case that the dst_reg is the
10965 * variable register that we are working on, and src_reg is a constant or we're
10966 * simply doing a BPF_K check.
f1174f77 10967 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
10968 */
10969static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
10970 struct bpf_reg_state *false_reg,
10971 u64 val, u32 val32,
092ed096 10972 u8 opcode, bool is_jmp32)
48461135 10973{
3f50f132
JF
10974 struct tnum false_32off = tnum_subreg(false_reg->var_off);
10975 struct tnum false_64off = false_reg->var_off;
10976 struct tnum true_32off = tnum_subreg(true_reg->var_off);
10977 struct tnum true_64off = true_reg->var_off;
10978 s64 sval = (s64)val;
10979 s32 sval32 = (s32)val32;
a72dafaf 10980
f1174f77
EC
10981 /* If the dst_reg is a pointer, we can't learn anything about its
10982 * variable offset from the compare (unless src_reg were a pointer into
10983 * the same object, but we don't bother with that.
10984 * Since false_reg and true_reg have the same type by construction, we
10985 * only need to check one of them for pointerness.
10986 */
10987 if (__is_pointer_value(false, false_reg))
10988 return;
4cabc5b1 10989
48461135 10990 switch (opcode) {
a12ca627
DB
10991 /* JEQ/JNE comparison doesn't change the register equivalence.
10992 *
10993 * r1 = r2;
10994 * if (r1 == 42) goto label;
10995 * ...
10996 * label: // here both r1 and r2 are known to be 42.
10997 *
10998 * Hence when marking register as known preserve it's ID.
10999 */
48461135 11000 case BPF_JEQ:
a12ca627
DB
11001 if (is_jmp32) {
11002 __mark_reg32_known(true_reg, val32);
11003 true_32off = tnum_subreg(true_reg->var_off);
11004 } else {
11005 ___mark_reg_known(true_reg, val);
11006 true_64off = true_reg->var_off;
11007 }
11008 break;
48461135 11009 case BPF_JNE:
a12ca627
DB
11010 if (is_jmp32) {
11011 __mark_reg32_known(false_reg, val32);
11012 false_32off = tnum_subreg(false_reg->var_off);
11013 } else {
11014 ___mark_reg_known(false_reg, val);
11015 false_64off = false_reg->var_off;
11016 }
48461135 11017 break;
960ea056 11018 case BPF_JSET:
3f50f132
JF
11019 if (is_jmp32) {
11020 false_32off = tnum_and(false_32off, tnum_const(~val32));
11021 if (is_power_of_2(val32))
11022 true_32off = tnum_or(true_32off,
11023 tnum_const(val32));
11024 } else {
11025 false_64off = tnum_and(false_64off, tnum_const(~val));
11026 if (is_power_of_2(val))
11027 true_64off = tnum_or(true_64off,
11028 tnum_const(val));
11029 }
960ea056 11030 break;
48461135 11031 case BPF_JGE:
a72dafaf
JW
11032 case BPF_JGT:
11033 {
3f50f132
JF
11034 if (is_jmp32) {
11035 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
11036 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
11037
11038 false_reg->u32_max_value = min(false_reg->u32_max_value,
11039 false_umax);
11040 true_reg->u32_min_value = max(true_reg->u32_min_value,
11041 true_umin);
11042 } else {
11043 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
11044 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
11045
11046 false_reg->umax_value = min(false_reg->umax_value, false_umax);
11047 true_reg->umin_value = max(true_reg->umin_value, true_umin);
11048 }
b03c9f9f 11049 break;
a72dafaf 11050 }
48461135 11051 case BPF_JSGE:
a72dafaf
JW
11052 case BPF_JSGT:
11053 {
3f50f132
JF
11054 if (is_jmp32) {
11055 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
11056 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 11057
3f50f132
JF
11058 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
11059 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
11060 } else {
11061 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
11062 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
11063
11064 false_reg->smax_value = min(false_reg->smax_value, false_smax);
11065 true_reg->smin_value = max(true_reg->smin_value, true_smin);
11066 }
48461135 11067 break;
a72dafaf 11068 }
b4e432f1 11069 case BPF_JLE:
a72dafaf
JW
11070 case BPF_JLT:
11071 {
3f50f132
JF
11072 if (is_jmp32) {
11073 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
11074 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
11075
11076 false_reg->u32_min_value = max(false_reg->u32_min_value,
11077 false_umin);
11078 true_reg->u32_max_value = min(true_reg->u32_max_value,
11079 true_umax);
11080 } else {
11081 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
11082 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
11083
11084 false_reg->umin_value = max(false_reg->umin_value, false_umin);
11085 true_reg->umax_value = min(true_reg->umax_value, true_umax);
11086 }
b4e432f1 11087 break;
a72dafaf 11088 }
b4e432f1 11089 case BPF_JSLE:
a72dafaf
JW
11090 case BPF_JSLT:
11091 {
3f50f132
JF
11092 if (is_jmp32) {
11093 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
11094 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 11095
3f50f132
JF
11096 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
11097 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
11098 } else {
11099 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
11100 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
11101
11102 false_reg->smin_value = max(false_reg->smin_value, false_smin);
11103 true_reg->smax_value = min(true_reg->smax_value, true_smax);
11104 }
b4e432f1 11105 break;
a72dafaf 11106 }
48461135 11107 default:
0fc31b10 11108 return;
48461135
JB
11109 }
11110
3f50f132
JF
11111 if (is_jmp32) {
11112 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
11113 tnum_subreg(false_32off));
11114 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
11115 tnum_subreg(true_32off));
11116 __reg_combine_32_into_64(false_reg);
11117 __reg_combine_32_into_64(true_reg);
11118 } else {
11119 false_reg->var_off = false_64off;
11120 true_reg->var_off = true_64off;
11121 __reg_combine_64_into_32(false_reg);
11122 __reg_combine_64_into_32(true_reg);
11123 }
48461135
JB
11124}
11125
f1174f77
EC
11126/* Same as above, but for the case that dst_reg holds a constant and src_reg is
11127 * the variable reg.
48461135
JB
11128 */
11129static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
11130 struct bpf_reg_state *false_reg,
11131 u64 val, u32 val32,
092ed096 11132 u8 opcode, bool is_jmp32)
48461135 11133{
6d94e741 11134 opcode = flip_opcode(opcode);
0fc31b10
JH
11135 /* This uses zero as "not present in table"; luckily the zero opcode,
11136 * BPF_JA, can't get here.
b03c9f9f 11137 */
0fc31b10 11138 if (opcode)
3f50f132 11139 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
11140}
11141
11142/* Regs are known to be equal, so intersect their min/max/var_off */
11143static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
11144 struct bpf_reg_state *dst_reg)
11145{
b03c9f9f
EC
11146 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
11147 dst_reg->umin_value);
11148 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
11149 dst_reg->umax_value);
11150 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
11151 dst_reg->smin_value);
11152 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
11153 dst_reg->smax_value);
f1174f77
EC
11154 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
11155 dst_reg->var_off);
3844d153
DB
11156 reg_bounds_sync(src_reg);
11157 reg_bounds_sync(dst_reg);
f1174f77
EC
11158}
11159
11160static void reg_combine_min_max(struct bpf_reg_state *true_src,
11161 struct bpf_reg_state *true_dst,
11162 struct bpf_reg_state *false_src,
11163 struct bpf_reg_state *false_dst,
11164 u8 opcode)
11165{
11166 switch (opcode) {
11167 case BPF_JEQ:
11168 __reg_combine_min_max(true_src, true_dst);
11169 break;
11170 case BPF_JNE:
11171 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 11172 break;
4cabc5b1 11173 }
48461135
JB
11174}
11175
fd978bf7
JS
11176static void mark_ptr_or_null_reg(struct bpf_func_state *state,
11177 struct bpf_reg_state *reg, u32 id,
840b9615 11178 bool is_null)
57a09bf0 11179{
c25b2ae1 11180 if (type_may_be_null(reg->type) && reg->id == id &&
93c230e3 11181 !WARN_ON_ONCE(!reg->id)) {
df57f38a
KKD
11182 /* Old offset (both fixed and variable parts) should have been
11183 * known-zero, because we don't allow pointer arithmetic on
11184 * pointers that might be NULL. If we see this happening, don't
11185 * convert the register.
11186 *
11187 * But in some cases, some helpers that return local kptrs
11188 * advance offset for the returned pointer. In those cases, it
11189 * is fine to expect to see reg->off.
11190 */
11191 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
11192 return;
11193 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off))
e60b0d12 11194 return;
f1174f77
EC
11195 if (is_null) {
11196 reg->type = SCALAR_VALUE;
1b986589
MKL
11197 /* We don't need id and ref_obj_id from this point
11198 * onwards anymore, thus we should better reset it,
11199 * so that state pruning has chances to take effect.
11200 */
11201 reg->id = 0;
11202 reg->ref_obj_id = 0;
4ddb7416
DB
11203
11204 return;
11205 }
11206
11207 mark_ptr_not_null_reg(reg);
11208
11209 if (!reg_may_point_to_spin_lock(reg)) {
1b986589 11210 /* For not-NULL ptr, reg->ref_obj_id will be reset
b239da34 11211 * in release_reference().
1b986589
MKL
11212 *
11213 * reg->id is still used by spin_lock ptr. Other
11214 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
11215 */
11216 reg->id = 0;
56f668df 11217 }
57a09bf0
TG
11218 }
11219}
11220
11221/* The logic is similar to find_good_pkt_pointers(), both could eventually
11222 * be folded together at some point.
11223 */
840b9615
JS
11224static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
11225 bool is_null)
57a09bf0 11226{
f4d7e40a 11227 struct bpf_func_state *state = vstate->frame[vstate->curframe];
b239da34 11228 struct bpf_reg_state *regs = state->regs, *reg;
1b986589 11229 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 11230 u32 id = regs[regno].id;
57a09bf0 11231
1b986589
MKL
11232 if (ref_obj_id && ref_obj_id == id && is_null)
11233 /* regs[regno] is in the " == NULL" branch.
11234 * No one could have freed the reference state before
11235 * doing the NULL check.
11236 */
11237 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 11238
b239da34
KKD
11239 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11240 mark_ptr_or_null_reg(state, reg, id, is_null);
11241 }));
57a09bf0
TG
11242}
11243
5beca081
DB
11244static bool try_match_pkt_pointers(const struct bpf_insn *insn,
11245 struct bpf_reg_state *dst_reg,
11246 struct bpf_reg_state *src_reg,
11247 struct bpf_verifier_state *this_branch,
11248 struct bpf_verifier_state *other_branch)
11249{
11250 if (BPF_SRC(insn->code) != BPF_X)
11251 return false;
11252
092ed096
JW
11253 /* Pointers are always 64-bit. */
11254 if (BPF_CLASS(insn->code) == BPF_JMP32)
11255 return false;
11256
5beca081
DB
11257 switch (BPF_OP(insn->code)) {
11258 case BPF_JGT:
11259 if ((dst_reg->type == PTR_TO_PACKET &&
11260 src_reg->type == PTR_TO_PACKET_END) ||
11261 (dst_reg->type == PTR_TO_PACKET_META &&
11262 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11263 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
11264 find_good_pkt_pointers(this_branch, dst_reg,
11265 dst_reg->type, false);
6d94e741 11266 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
11267 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11268 src_reg->type == PTR_TO_PACKET) ||
11269 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11270 src_reg->type == PTR_TO_PACKET_META)) {
11271 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
11272 find_good_pkt_pointers(other_branch, src_reg,
11273 src_reg->type, true);
6d94e741 11274 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
11275 } else {
11276 return false;
11277 }
11278 break;
11279 case BPF_JLT:
11280 if ((dst_reg->type == PTR_TO_PACKET &&
11281 src_reg->type == PTR_TO_PACKET_END) ||
11282 (dst_reg->type == PTR_TO_PACKET_META &&
11283 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11284 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
11285 find_good_pkt_pointers(other_branch, dst_reg,
11286 dst_reg->type, true);
6d94e741 11287 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
11288 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11289 src_reg->type == PTR_TO_PACKET) ||
11290 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11291 src_reg->type == PTR_TO_PACKET_META)) {
11292 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
11293 find_good_pkt_pointers(this_branch, src_reg,
11294 src_reg->type, false);
6d94e741 11295 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
11296 } else {
11297 return false;
11298 }
11299 break;
11300 case BPF_JGE:
11301 if ((dst_reg->type == PTR_TO_PACKET &&
11302 src_reg->type == PTR_TO_PACKET_END) ||
11303 (dst_reg->type == PTR_TO_PACKET_META &&
11304 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11305 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
11306 find_good_pkt_pointers(this_branch, dst_reg,
11307 dst_reg->type, true);
6d94e741 11308 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
11309 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11310 src_reg->type == PTR_TO_PACKET) ||
11311 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11312 src_reg->type == PTR_TO_PACKET_META)) {
11313 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
11314 find_good_pkt_pointers(other_branch, src_reg,
11315 src_reg->type, false);
6d94e741 11316 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
11317 } else {
11318 return false;
11319 }
11320 break;
11321 case BPF_JLE:
11322 if ((dst_reg->type == PTR_TO_PACKET &&
11323 src_reg->type == PTR_TO_PACKET_END) ||
11324 (dst_reg->type == PTR_TO_PACKET_META &&
11325 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
11326 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
11327 find_good_pkt_pointers(other_branch, dst_reg,
11328 dst_reg->type, false);
6d94e741 11329 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
11330 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
11331 src_reg->type == PTR_TO_PACKET) ||
11332 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
11333 src_reg->type == PTR_TO_PACKET_META)) {
11334 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
11335 find_good_pkt_pointers(this_branch, src_reg,
11336 src_reg->type, true);
6d94e741 11337 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
11338 } else {
11339 return false;
11340 }
11341 break;
11342 default:
11343 return false;
11344 }
11345
11346 return true;
11347}
11348
75748837
AS
11349static void find_equal_scalars(struct bpf_verifier_state *vstate,
11350 struct bpf_reg_state *known_reg)
11351{
11352 struct bpf_func_state *state;
11353 struct bpf_reg_state *reg;
75748837 11354
b239da34
KKD
11355 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
11356 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
11357 *reg = *known_reg;
11358 }));
75748837
AS
11359}
11360
58e2af8b 11361static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
11362 struct bpf_insn *insn, int *insn_idx)
11363{
f4d7e40a
AS
11364 struct bpf_verifier_state *this_branch = env->cur_state;
11365 struct bpf_verifier_state *other_branch;
11366 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 11367 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
befae758 11368 struct bpf_reg_state *eq_branch_regs;
17a52670 11369 u8 opcode = BPF_OP(insn->code);
092ed096 11370 bool is_jmp32;
fb8d251e 11371 int pred = -1;
17a52670
AS
11372 int err;
11373
092ed096
JW
11374 /* Only conditional jumps are expected to reach here. */
11375 if (opcode == BPF_JA || opcode > BPF_JSLE) {
11376 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
11377 return -EINVAL;
11378 }
11379
11380 if (BPF_SRC(insn->code) == BPF_X) {
11381 if (insn->imm != 0) {
092ed096 11382 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
11383 return -EINVAL;
11384 }
11385
11386 /* check src1 operand */
dc503a8a 11387 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
11388 if (err)
11389 return err;
1be7f75d
AS
11390
11391 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 11392 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
11393 insn->src_reg);
11394 return -EACCES;
11395 }
fb8d251e 11396 src_reg = &regs[insn->src_reg];
17a52670
AS
11397 } else {
11398 if (insn->src_reg != BPF_REG_0) {
092ed096 11399 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
11400 return -EINVAL;
11401 }
11402 }
11403
11404 /* check src2 operand */
dc503a8a 11405 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
11406 if (err)
11407 return err;
11408
1a0dc1ac 11409 dst_reg = &regs[insn->dst_reg];
092ed096 11410 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 11411
3f50f132
JF
11412 if (BPF_SRC(insn->code) == BPF_K) {
11413 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
11414 } else if (src_reg->type == SCALAR_VALUE &&
11415 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
11416 pred = is_branch_taken(dst_reg,
11417 tnum_subreg(src_reg->var_off).value,
11418 opcode,
11419 is_jmp32);
11420 } else if (src_reg->type == SCALAR_VALUE &&
11421 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
11422 pred = is_branch_taken(dst_reg,
11423 src_reg->var_off.value,
11424 opcode,
11425 is_jmp32);
6d94e741
AS
11426 } else if (reg_is_pkt_pointer_any(dst_reg) &&
11427 reg_is_pkt_pointer_any(src_reg) &&
11428 !is_jmp32) {
11429 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
11430 }
11431
b5dc0163 11432 if (pred >= 0) {
cac616db
JF
11433 /* If we get here with a dst_reg pointer type it is because
11434 * above is_branch_taken() special cased the 0 comparison.
11435 */
11436 if (!__is_pointer_value(false, dst_reg))
11437 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
11438 if (BPF_SRC(insn->code) == BPF_X && !err &&
11439 !__is_pointer_value(false, src_reg))
b5dc0163
AS
11440 err = mark_chain_precision(env, insn->src_reg);
11441 if (err)
11442 return err;
11443 }
9183671a 11444
fb8d251e 11445 if (pred == 1) {
9183671a
DB
11446 /* Only follow the goto, ignore fall-through. If needed, push
11447 * the fall-through branch for simulation under speculative
11448 * execution.
11449 */
11450 if (!env->bypass_spec_v1 &&
11451 !sanitize_speculative_path(env, insn, *insn_idx + 1,
11452 *insn_idx))
11453 return -EFAULT;
fb8d251e
AS
11454 *insn_idx += insn->off;
11455 return 0;
11456 } else if (pred == 0) {
9183671a
DB
11457 /* Only follow the fall-through branch, since that's where the
11458 * program will go. If needed, push the goto branch for
11459 * simulation under speculative execution.
fb8d251e 11460 */
9183671a
DB
11461 if (!env->bypass_spec_v1 &&
11462 !sanitize_speculative_path(env, insn,
11463 *insn_idx + insn->off + 1,
11464 *insn_idx))
11465 return -EFAULT;
fb8d251e 11466 return 0;
17a52670
AS
11467 }
11468
979d63d5
DB
11469 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
11470 false);
17a52670
AS
11471 if (!other_branch)
11472 return -EFAULT;
f4d7e40a 11473 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 11474
48461135
JB
11475 /* detect if we are comparing against a constant value so we can adjust
11476 * our min/max values for our dst register.
f1174f77 11477 * this is only legit if both are scalars (or pointers to the same
befae758
EZ
11478 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
11479 * because otherwise the different base pointers mean the offsets aren't
f1174f77 11480 * comparable.
48461135
JB
11481 */
11482 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 11483 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 11484
f1174f77 11485 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
11486 src_reg->type == SCALAR_VALUE) {
11487 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
11488 (is_jmp32 &&
11489 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 11490 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 11491 dst_reg,
3f50f132
JF
11492 src_reg->var_off.value,
11493 tnum_subreg(src_reg->var_off).value,
092ed096
JW
11494 opcode, is_jmp32);
11495 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
11496 (is_jmp32 &&
11497 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 11498 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 11499 src_reg,
3f50f132
JF
11500 dst_reg->var_off.value,
11501 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
11502 opcode, is_jmp32);
11503 else if (!is_jmp32 &&
11504 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 11505 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
11506 reg_combine_min_max(&other_branch_regs[insn->src_reg],
11507 &other_branch_regs[insn->dst_reg],
092ed096 11508 src_reg, dst_reg, opcode);
e688c3db
AS
11509 if (src_reg->id &&
11510 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
11511 find_equal_scalars(this_branch, src_reg);
11512 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
11513 }
11514
f1174f77
EC
11515 }
11516 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 11517 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
11518 dst_reg, insn->imm, (u32)insn->imm,
11519 opcode, is_jmp32);
48461135
JB
11520 }
11521
e688c3db
AS
11522 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
11523 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
11524 find_equal_scalars(this_branch, dst_reg);
11525 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
11526 }
11527
befae758
EZ
11528 /* if one pointer register is compared to another pointer
11529 * register check if PTR_MAYBE_NULL could be lifted.
11530 * E.g. register A - maybe null
11531 * register B - not null
11532 * for JNE A, B, ... - A is not null in the false branch;
11533 * for JEQ A, B, ... - A is not null in the true branch.
11534 */
11535 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
11536 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
11537 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type)) {
11538 eq_branch_regs = NULL;
11539 switch (opcode) {
11540 case BPF_JEQ:
11541 eq_branch_regs = other_branch_regs;
11542 break;
11543 case BPF_JNE:
11544 eq_branch_regs = regs;
11545 break;
11546 default:
11547 /* do nothing */
11548 break;
11549 }
11550 if (eq_branch_regs) {
11551 if (type_may_be_null(src_reg->type))
11552 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
11553 else
11554 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
11555 }
11556 }
11557
092ed096
JW
11558 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
11559 * NOTE: these optimizations below are related with pointer comparison
11560 * which will never be JMP32.
11561 */
11562 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 11563 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
c25b2ae1 11564 type_may_be_null(dst_reg->type)) {
840b9615 11565 /* Mark all identical registers in each branch as either
57a09bf0
TG
11566 * safe or unknown depending R == 0 or R != 0 conditional.
11567 */
840b9615
JS
11568 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
11569 opcode == BPF_JNE);
11570 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
11571 opcode == BPF_JEQ);
5beca081
DB
11572 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
11573 this_branch, other_branch) &&
11574 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
11575 verbose(env, "R%d pointer comparison prohibited\n",
11576 insn->dst_reg);
1be7f75d 11577 return -EACCES;
17a52670 11578 }
06ee7115 11579 if (env->log.level & BPF_LOG_LEVEL)
2e576648 11580 print_insn_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
11581 return 0;
11582}
11583
17a52670 11584/* verify BPF_LD_IMM64 instruction */
58e2af8b 11585static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 11586{
d8eca5bb 11587 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 11588 struct bpf_reg_state *regs = cur_regs(env);
4976b718 11589 struct bpf_reg_state *dst_reg;
d8eca5bb 11590 struct bpf_map *map;
17a52670
AS
11591 int err;
11592
11593 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 11594 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
11595 return -EINVAL;
11596 }
11597 if (insn->off != 0) {
61bd5218 11598 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
11599 return -EINVAL;
11600 }
11601
dc503a8a 11602 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
11603 if (err)
11604 return err;
11605
4976b718 11606 dst_reg = &regs[insn->dst_reg];
6b173873 11607 if (insn->src_reg == 0) {
6b173873
JK
11608 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
11609
4976b718 11610 dst_reg->type = SCALAR_VALUE;
b03c9f9f 11611 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 11612 return 0;
6b173873 11613 }
17a52670 11614
d400a6cf
DB
11615 /* All special src_reg cases are listed below. From this point onwards
11616 * we either succeed and assign a corresponding dst_reg->type after
11617 * zeroing the offset, or fail and reject the program.
11618 */
11619 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 11620
d400a6cf 11621 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
4976b718 11622 dst_reg->type = aux->btf_var.reg_type;
34d3a78c 11623 switch (base_type(dst_reg->type)) {
4976b718
HL
11624 case PTR_TO_MEM:
11625 dst_reg->mem_size = aux->btf_var.mem_size;
11626 break;
11627 case PTR_TO_BTF_ID:
22dc4a0f 11628 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
11629 dst_reg->btf_id = aux->btf_var.btf_id;
11630 break;
11631 default:
11632 verbose(env, "bpf verifier is misconfigured\n");
11633 return -EFAULT;
11634 }
11635 return 0;
11636 }
11637
69c087ba
YS
11638 if (insn->src_reg == BPF_PSEUDO_FUNC) {
11639 struct bpf_prog_aux *aux = env->prog->aux;
3990ed4c
MKL
11640 u32 subprogno = find_subprog(env,
11641 env->insn_idx + insn->imm + 1);
69c087ba
YS
11642
11643 if (!aux->func_info) {
11644 verbose(env, "missing btf func_info\n");
11645 return -EINVAL;
11646 }
11647 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
11648 verbose(env, "callback function not static\n");
11649 return -EINVAL;
11650 }
11651
11652 dst_reg->type = PTR_TO_FUNC;
11653 dst_reg->subprogno = subprogno;
11654 return 0;
11655 }
11656
d8eca5bb 11657 map = env->used_maps[aux->map_index];
4976b718 11658 dst_reg->map_ptr = map;
d8eca5bb 11659
387544bf
AS
11660 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
11661 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
4976b718
HL
11662 dst_reg->type = PTR_TO_MAP_VALUE;
11663 dst_reg->off = aux->map_off;
d0d78c1d
KKD
11664 WARN_ON_ONCE(map->max_entries != 1);
11665 /* We want reg->id to be same (0) as map_value is not distinct */
387544bf
AS
11666 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
11667 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
4976b718 11668 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
11669 } else {
11670 verbose(env, "bpf verifier is misconfigured\n");
11671 return -EINVAL;
11672 }
17a52670 11673
17a52670
AS
11674 return 0;
11675}
11676
96be4325
DB
11677static bool may_access_skb(enum bpf_prog_type type)
11678{
11679 switch (type) {
11680 case BPF_PROG_TYPE_SOCKET_FILTER:
11681 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 11682 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
11683 return true;
11684 default:
11685 return false;
11686 }
11687}
11688
ddd872bc
AS
11689/* verify safety of LD_ABS|LD_IND instructions:
11690 * - they can only appear in the programs where ctx == skb
11691 * - since they are wrappers of function calls, they scratch R1-R5 registers,
11692 * preserve R6-R9, and store return value into R0
11693 *
11694 * Implicit input:
11695 * ctx == skb == R6 == CTX
11696 *
11697 * Explicit input:
11698 * SRC == any register
11699 * IMM == 32-bit immediate
11700 *
11701 * Output:
11702 * R0 - 8/16/32-bit skb data converted to cpu endianness
11703 */
58e2af8b 11704static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 11705{
638f5b90 11706 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 11707 static const int ctx_reg = BPF_REG_6;
ddd872bc 11708 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
11709 int i, err;
11710
7e40781c 11711 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 11712 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
11713 return -EINVAL;
11714 }
11715
e0cea7ce
DB
11716 if (!env->ops->gen_ld_abs) {
11717 verbose(env, "bpf verifier is misconfigured\n");
11718 return -EINVAL;
11719 }
11720
ddd872bc 11721 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 11722 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 11723 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 11724 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
11725 return -EINVAL;
11726 }
11727
11728 /* check whether implicit source operand (register R6) is readable */
6d4f151a 11729 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
11730 if (err)
11731 return err;
11732
fd978bf7
JS
11733 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
11734 * gen_ld_abs() may terminate the program at runtime, leading to
11735 * reference leak.
11736 */
11737 err = check_reference_leak(env);
11738 if (err) {
11739 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
11740 return err;
11741 }
11742
d0d78c1d 11743 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
11744 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
11745 return -EINVAL;
11746 }
11747
6d4f151a 11748 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
11749 verbose(env,
11750 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
11751 return -EINVAL;
11752 }
11753
11754 if (mode == BPF_IND) {
11755 /* check explicit source operand */
dc503a8a 11756 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
11757 if (err)
11758 return err;
11759 }
11760
be80a1d3 11761 err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
6d4f151a
DB
11762 if (err < 0)
11763 return err;
11764
ddd872bc 11765 /* reset caller saved regs to unreadable */
dc503a8a 11766 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 11767 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
11768 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
11769 }
ddd872bc
AS
11770
11771 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
11772 * the value fetched from the packet.
11773 * Already marked as written above.
ddd872bc 11774 */
61bd5218 11775 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
11776 /* ld_abs load up to 32-bit skb data. */
11777 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
11778 return 0;
11779}
11780
390ee7e2
AS
11781static int check_return_code(struct bpf_verifier_env *env)
11782{
5cf1e914 11783 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 11784 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
11785 struct bpf_reg_state *reg;
11786 struct tnum range = tnum_range(0, 1);
7e40781c 11787 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 11788 int err;
bfc6bb74
AS
11789 struct bpf_func_state *frame = env->cur_state->frame[0];
11790 const bool is_subprog = frame->subprogno;
27ae7997 11791
9e4e01df 11792 /* LSM and struct_ops func-ptr's return type could be "void" */
d1a6edec
SF
11793 if (!is_subprog) {
11794 switch (prog_type) {
11795 case BPF_PROG_TYPE_LSM:
11796 if (prog->expected_attach_type == BPF_LSM_CGROUP)
11797 /* See below, can be 0 or 0-1 depending on hook. */
11798 break;
11799 fallthrough;
11800 case BPF_PROG_TYPE_STRUCT_OPS:
11801 if (!prog->aux->attach_func_proto->type)
11802 return 0;
11803 break;
11804 default:
11805 break;
11806 }
11807 }
27ae7997 11808
8fb33b60 11809 /* eBPF calling convention is such that R0 is used
27ae7997
MKL
11810 * to return the value from eBPF program.
11811 * Make sure that it's readable at this time
11812 * of bpf_exit, which means that program wrote
11813 * something into it earlier
11814 */
11815 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
11816 if (err)
11817 return err;
11818
11819 if (is_pointer_value(env, BPF_REG_0)) {
11820 verbose(env, "R0 leaks addr as return value\n");
11821 return -EACCES;
11822 }
390ee7e2 11823
f782e2c3 11824 reg = cur_regs(env) + BPF_REG_0;
bfc6bb74
AS
11825
11826 if (frame->in_async_callback_fn) {
11827 /* enforce return zero from async callbacks like timer */
11828 if (reg->type != SCALAR_VALUE) {
11829 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
c25b2ae1 11830 reg_type_str(env, reg->type));
bfc6bb74
AS
11831 return -EINVAL;
11832 }
11833
11834 if (!tnum_in(tnum_const(0), reg->var_off)) {
11835 verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
11836 return -EINVAL;
11837 }
11838 return 0;
11839 }
11840
f782e2c3
DB
11841 if (is_subprog) {
11842 if (reg->type != SCALAR_VALUE) {
11843 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
c25b2ae1 11844 reg_type_str(env, reg->type));
f782e2c3
DB
11845 return -EINVAL;
11846 }
11847 return 0;
11848 }
11849
7e40781c 11850 switch (prog_type) {
983695fa
DB
11851 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
11852 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
11853 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
11854 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
11855 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
11856 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
11857 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 11858 range = tnum_range(1, 1);
77241217
SF
11859 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
11860 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
11861 range = tnum_range(0, 3);
ed4ed404 11862 break;
390ee7e2 11863 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 11864 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
11865 range = tnum_range(0, 3);
11866 enforce_attach_type_range = tnum_range(2, 3);
11867 }
ed4ed404 11868 break;
390ee7e2
AS
11869 case BPF_PROG_TYPE_CGROUP_SOCK:
11870 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 11871 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 11872 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 11873 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 11874 break;
15ab09bd
AS
11875 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11876 if (!env->prog->aux->attach_btf_id)
11877 return 0;
11878 range = tnum_const(0);
11879 break;
15d83c4d 11880 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
11881 switch (env->prog->expected_attach_type) {
11882 case BPF_TRACE_FENTRY:
11883 case BPF_TRACE_FEXIT:
11884 range = tnum_const(0);
11885 break;
11886 case BPF_TRACE_RAW_TP:
11887 case BPF_MODIFY_RETURN:
15d83c4d 11888 return 0;
2ec0616e
DB
11889 case BPF_TRACE_ITER:
11890 break;
e92888c7
YS
11891 default:
11892 return -ENOTSUPP;
11893 }
15d83c4d 11894 break;
e9ddbb77
JS
11895 case BPF_PROG_TYPE_SK_LOOKUP:
11896 range = tnum_range(SK_DROP, SK_PASS);
11897 break;
69fd337a
SF
11898
11899 case BPF_PROG_TYPE_LSM:
11900 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
11901 /* Regular BPF_PROG_TYPE_LSM programs can return
11902 * any value.
11903 */
11904 return 0;
11905 }
11906 if (!env->prog->aux->attach_func_proto->type) {
11907 /* Make sure programs that attach to void
11908 * hooks don't try to modify return value.
11909 */
11910 range = tnum_range(1, 1);
11911 }
11912 break;
11913
e92888c7
YS
11914 case BPF_PROG_TYPE_EXT:
11915 /* freplace program can return anything as its return value
11916 * depends on the to-be-replaced kernel func or bpf program.
11917 */
390ee7e2
AS
11918 default:
11919 return 0;
11920 }
11921
390ee7e2 11922 if (reg->type != SCALAR_VALUE) {
61bd5218 11923 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
c25b2ae1 11924 reg_type_str(env, reg->type));
390ee7e2
AS
11925 return -EINVAL;
11926 }
11927
11928 if (!tnum_in(range, reg->var_off)) {
bc2591d6 11929 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
69fd337a 11930 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
d1a6edec 11931 prog_type == BPF_PROG_TYPE_LSM &&
69fd337a
SF
11932 !prog->aux->attach_func_proto->type)
11933 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
390ee7e2
AS
11934 return -EINVAL;
11935 }
5cf1e914 11936
11937 if (!tnum_is_unknown(enforce_attach_type_range) &&
11938 tnum_in(enforce_attach_type_range, reg->var_off))
11939 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
11940 return 0;
11941}
11942
475fb78f
AS
11943/* non-recursive DFS pseudo code
11944 * 1 procedure DFS-iterative(G,v):
11945 * 2 label v as discovered
11946 * 3 let S be a stack
11947 * 4 S.push(v)
11948 * 5 while S is not empty
b6d20799 11949 * 6 t <- S.peek()
475fb78f
AS
11950 * 7 if t is what we're looking for:
11951 * 8 return t
11952 * 9 for all edges e in G.adjacentEdges(t) do
11953 * 10 if edge e is already labelled
11954 * 11 continue with the next edge
11955 * 12 w <- G.adjacentVertex(t,e)
11956 * 13 if vertex w is not discovered and not explored
11957 * 14 label e as tree-edge
11958 * 15 label w as discovered
11959 * 16 S.push(w)
11960 * 17 continue at 5
11961 * 18 else if vertex w is discovered
11962 * 19 label e as back-edge
11963 * 20 else
11964 * 21 // vertex w is explored
11965 * 22 label e as forward- or cross-edge
11966 * 23 label t as explored
11967 * 24 S.pop()
11968 *
11969 * convention:
11970 * 0x10 - discovered
11971 * 0x11 - discovered and fall-through edge labelled
11972 * 0x12 - discovered and fall-through and branch edges labelled
11973 * 0x20 - explored
11974 */
11975
11976enum {
11977 DISCOVERED = 0x10,
11978 EXPLORED = 0x20,
11979 FALLTHROUGH = 1,
11980 BRANCH = 2,
11981};
11982
dc2a4ebc
AS
11983static u32 state_htab_size(struct bpf_verifier_env *env)
11984{
11985 return env->prog->len;
11986}
11987
5d839021
AS
11988static struct bpf_verifier_state_list **explored_state(
11989 struct bpf_verifier_env *env,
11990 int idx)
11991{
dc2a4ebc
AS
11992 struct bpf_verifier_state *cur = env->cur_state;
11993 struct bpf_func_state *state = cur->frame[cur->curframe];
11994
11995 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
11996}
11997
11998static void init_explored_state(struct bpf_verifier_env *env, int idx)
11999{
a8f500af 12000 env->insn_aux_data[idx].prune_point = true;
5d839021 12001}
f1bca824 12002
59e2e27d
WAF
12003enum {
12004 DONE_EXPLORING = 0,
12005 KEEP_EXPLORING = 1,
12006};
12007
475fb78f
AS
12008/* t, w, e - match pseudo-code above:
12009 * t - index of current instruction
12010 * w - next instruction
12011 * e - edge
12012 */
2589726d
AS
12013static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
12014 bool loop_ok)
475fb78f 12015{
7df737e9
AS
12016 int *insn_stack = env->cfg.insn_stack;
12017 int *insn_state = env->cfg.insn_state;
12018
475fb78f 12019 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 12020 return DONE_EXPLORING;
475fb78f
AS
12021
12022 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 12023 return DONE_EXPLORING;
475fb78f
AS
12024
12025 if (w < 0 || w >= env->prog->len) {
d9762e84 12026 verbose_linfo(env, t, "%d: ", t);
61bd5218 12027 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
12028 return -EINVAL;
12029 }
12030
f1bca824
AS
12031 if (e == BRANCH)
12032 /* mark branch target for state pruning */
5d839021 12033 init_explored_state(env, w);
f1bca824 12034
475fb78f
AS
12035 if (insn_state[w] == 0) {
12036 /* tree-edge */
12037 insn_state[t] = DISCOVERED | e;
12038 insn_state[w] = DISCOVERED;
7df737e9 12039 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 12040 return -E2BIG;
7df737e9 12041 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 12042 return KEEP_EXPLORING;
475fb78f 12043 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 12044 if (loop_ok && env->bpf_capable)
59e2e27d 12045 return DONE_EXPLORING;
d9762e84
MKL
12046 verbose_linfo(env, t, "%d: ", t);
12047 verbose_linfo(env, w, "%d: ", w);
61bd5218 12048 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
12049 return -EINVAL;
12050 } else if (insn_state[w] == EXPLORED) {
12051 /* forward- or cross-edge */
12052 insn_state[t] = DISCOVERED | e;
12053 } else {
61bd5218 12054 verbose(env, "insn state internal bug\n");
475fb78f
AS
12055 return -EFAULT;
12056 }
59e2e27d
WAF
12057 return DONE_EXPLORING;
12058}
12059
efdb22de
YS
12060static int visit_func_call_insn(int t, int insn_cnt,
12061 struct bpf_insn *insns,
12062 struct bpf_verifier_env *env,
12063 bool visit_callee)
12064{
12065 int ret;
12066
12067 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
12068 if (ret)
12069 return ret;
12070
12071 if (t + 1 < insn_cnt)
12072 init_explored_state(env, t + 1);
12073 if (visit_callee) {
12074 init_explored_state(env, t);
86fc6ee6
AS
12075 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
12076 /* It's ok to allow recursion from CFG point of
12077 * view. __check_func_call() will do the actual
12078 * check.
12079 */
12080 bpf_pseudo_func(insns + t));
efdb22de
YS
12081 }
12082 return ret;
12083}
12084
59e2e27d
WAF
12085/* Visits the instruction at index t and returns one of the following:
12086 * < 0 - an error occurred
12087 * DONE_EXPLORING - the instruction was fully explored
12088 * KEEP_EXPLORING - there is still work to be done before it is fully explored
12089 */
12090static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
12091{
12092 struct bpf_insn *insns = env->prog->insnsi;
12093 int ret;
12094
69c087ba
YS
12095 if (bpf_pseudo_func(insns + t))
12096 return visit_func_call_insn(t, insn_cnt, insns, env, true);
12097
59e2e27d
WAF
12098 /* All non-branch instructions have a single fall-through edge. */
12099 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
12100 BPF_CLASS(insns[t].code) != BPF_JMP32)
12101 return push_insn(t, t + 1, FALLTHROUGH, env, false);
12102
12103 switch (BPF_OP(insns[t].code)) {
12104 case BPF_EXIT:
12105 return DONE_EXPLORING;
12106
12107 case BPF_CALL:
bfc6bb74
AS
12108 if (insns[t].imm == BPF_FUNC_timer_set_callback)
12109 /* Mark this call insn to trigger is_state_visited() check
12110 * before call itself is processed by __check_func_call().
12111 * Otherwise new async state will be pushed for further
12112 * exploration.
12113 */
12114 init_explored_state(env, t);
efdb22de
YS
12115 return visit_func_call_insn(t, insn_cnt, insns, env,
12116 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
12117
12118 case BPF_JA:
12119 if (BPF_SRC(insns[t].code) != BPF_K)
12120 return -EINVAL;
12121
12122 /* unconditional jump with single edge */
12123 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
12124 true);
12125 if (ret)
12126 return ret;
12127
12128 /* unconditional jmp is not a good pruning point,
12129 * but it's marked, since backtracking needs
12130 * to record jmp history in is_state_visited().
12131 */
12132 init_explored_state(env, t + insns[t].off + 1);
12133 /* tell verifier to check for equivalent states
12134 * after every call and jump
12135 */
12136 if (t + 1 < insn_cnt)
12137 init_explored_state(env, t + 1);
12138
12139 return ret;
12140
12141 default:
12142 /* conditional jump with two edges */
12143 init_explored_state(env, t);
12144 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
12145 if (ret)
12146 return ret;
12147
12148 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
12149 }
475fb78f
AS
12150}
12151
12152/* non-recursive depth-first-search to detect loops in BPF program
12153 * loop == back-edge in directed graph
12154 */
58e2af8b 12155static int check_cfg(struct bpf_verifier_env *env)
475fb78f 12156{
475fb78f 12157 int insn_cnt = env->prog->len;
7df737e9 12158 int *insn_stack, *insn_state;
475fb78f 12159 int ret = 0;
59e2e27d 12160 int i;
475fb78f 12161
7df737e9 12162 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
12163 if (!insn_state)
12164 return -ENOMEM;
12165
7df737e9 12166 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 12167 if (!insn_stack) {
71dde681 12168 kvfree(insn_state);
475fb78f
AS
12169 return -ENOMEM;
12170 }
12171
12172 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
12173 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 12174 env->cfg.cur_stack = 1;
475fb78f 12175
59e2e27d
WAF
12176 while (env->cfg.cur_stack > 0) {
12177 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 12178
59e2e27d
WAF
12179 ret = visit_insn(t, insn_cnt, env);
12180 switch (ret) {
12181 case DONE_EXPLORING:
12182 insn_state[t] = EXPLORED;
12183 env->cfg.cur_stack--;
12184 break;
12185 case KEEP_EXPLORING:
12186 break;
12187 default:
12188 if (ret > 0) {
12189 verbose(env, "visit_insn internal bug\n");
12190 ret = -EFAULT;
475fb78f 12191 }
475fb78f 12192 goto err_free;
59e2e27d 12193 }
475fb78f
AS
12194 }
12195
59e2e27d 12196 if (env->cfg.cur_stack < 0) {
61bd5218 12197 verbose(env, "pop stack internal bug\n");
475fb78f
AS
12198 ret = -EFAULT;
12199 goto err_free;
12200 }
475fb78f 12201
475fb78f
AS
12202 for (i = 0; i < insn_cnt; i++) {
12203 if (insn_state[i] != EXPLORED) {
61bd5218 12204 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
12205 ret = -EINVAL;
12206 goto err_free;
12207 }
12208 }
12209 ret = 0; /* cfg looks good */
12210
12211err_free:
71dde681
AS
12212 kvfree(insn_state);
12213 kvfree(insn_stack);
7df737e9 12214 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
12215 return ret;
12216}
12217
09b28d76
AS
12218static int check_abnormal_return(struct bpf_verifier_env *env)
12219{
12220 int i;
12221
12222 for (i = 1; i < env->subprog_cnt; i++) {
12223 if (env->subprog_info[i].has_ld_abs) {
12224 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
12225 return -EINVAL;
12226 }
12227 if (env->subprog_info[i].has_tail_call) {
12228 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
12229 return -EINVAL;
12230 }
12231 }
12232 return 0;
12233}
12234
838e9690
YS
12235/* The minimum supported BTF func info size */
12236#define MIN_BPF_FUNCINFO_SIZE 8
12237#define MAX_FUNCINFO_REC_SIZE 252
12238
c454a46b
MKL
12239static int check_btf_func(struct bpf_verifier_env *env,
12240 const union bpf_attr *attr,
af2ac3e1 12241 bpfptr_t uattr)
838e9690 12242{
09b28d76 12243 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 12244 u32 i, nfuncs, urec_size, min_size;
838e9690 12245 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 12246 struct bpf_func_info *krecord;
8c1b6e69 12247 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
12248 struct bpf_prog *prog;
12249 const struct btf *btf;
af2ac3e1 12250 bpfptr_t urecord;
d0b2818e 12251 u32 prev_offset = 0;
09b28d76 12252 bool scalar_return;
e7ed83d6 12253 int ret = -ENOMEM;
838e9690
YS
12254
12255 nfuncs = attr->func_info_cnt;
09b28d76
AS
12256 if (!nfuncs) {
12257 if (check_abnormal_return(env))
12258 return -EINVAL;
838e9690 12259 return 0;
09b28d76 12260 }
838e9690
YS
12261
12262 if (nfuncs != env->subprog_cnt) {
12263 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
12264 return -EINVAL;
12265 }
12266
12267 urec_size = attr->func_info_rec_size;
12268 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
12269 urec_size > MAX_FUNCINFO_REC_SIZE ||
12270 urec_size % sizeof(u32)) {
12271 verbose(env, "invalid func info rec size %u\n", urec_size);
12272 return -EINVAL;
12273 }
12274
c454a46b
MKL
12275 prog = env->prog;
12276 btf = prog->aux->btf;
838e9690 12277
af2ac3e1 12278 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
838e9690
YS
12279 min_size = min_t(u32, krec_size, urec_size);
12280
ba64e7d8 12281 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
12282 if (!krecord)
12283 return -ENOMEM;
8c1b6e69
AS
12284 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
12285 if (!info_aux)
12286 goto err_free;
ba64e7d8 12287
838e9690
YS
12288 for (i = 0; i < nfuncs; i++) {
12289 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
12290 if (ret) {
12291 if (ret == -E2BIG) {
12292 verbose(env, "nonzero tailing record in func info");
12293 /* set the size kernel expects so loader can zero
12294 * out the rest of the record.
12295 */
af2ac3e1
AS
12296 if (copy_to_bpfptr_offset(uattr,
12297 offsetof(union bpf_attr, func_info_rec_size),
12298 &min_size, sizeof(min_size)))
838e9690
YS
12299 ret = -EFAULT;
12300 }
c454a46b 12301 goto err_free;
838e9690
YS
12302 }
12303
af2ac3e1 12304 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
838e9690 12305 ret = -EFAULT;
c454a46b 12306 goto err_free;
838e9690
YS
12307 }
12308
d30d42e0 12309 /* check insn_off */
09b28d76 12310 ret = -EINVAL;
838e9690 12311 if (i == 0) {
d30d42e0 12312 if (krecord[i].insn_off) {
838e9690 12313 verbose(env,
d30d42e0
MKL
12314 "nonzero insn_off %u for the first func info record",
12315 krecord[i].insn_off);
c454a46b 12316 goto err_free;
838e9690 12317 }
d30d42e0 12318 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
12319 verbose(env,
12320 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 12321 krecord[i].insn_off, prev_offset);
c454a46b 12322 goto err_free;
838e9690
YS
12323 }
12324
d30d42e0 12325 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 12326 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 12327 goto err_free;
838e9690
YS
12328 }
12329
12330 /* check type_id */
ba64e7d8 12331 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 12332 if (!type || !btf_type_is_func(type)) {
838e9690 12333 verbose(env, "invalid type id %d in func info",
ba64e7d8 12334 krecord[i].type_id);
c454a46b 12335 goto err_free;
838e9690 12336 }
51c39bb1 12337 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
12338
12339 func_proto = btf_type_by_id(btf, type->type);
12340 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
12341 /* btf_func_check() already verified it during BTF load */
12342 goto err_free;
12343 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
12344 scalar_return =
6089fb32 12345 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
09b28d76
AS
12346 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
12347 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
12348 goto err_free;
12349 }
12350 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
12351 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
12352 goto err_free;
12353 }
12354
d30d42e0 12355 prev_offset = krecord[i].insn_off;
af2ac3e1 12356 bpfptr_add(&urecord, urec_size);
838e9690
YS
12357 }
12358
ba64e7d8
YS
12359 prog->aux->func_info = krecord;
12360 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 12361 prog->aux->func_info_aux = info_aux;
838e9690
YS
12362 return 0;
12363
c454a46b 12364err_free:
ba64e7d8 12365 kvfree(krecord);
8c1b6e69 12366 kfree(info_aux);
838e9690
YS
12367 return ret;
12368}
12369
ba64e7d8
YS
12370static void adjust_btf_func(struct bpf_verifier_env *env)
12371{
8c1b6e69 12372 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
12373 int i;
12374
8c1b6e69 12375 if (!aux->func_info)
ba64e7d8
YS
12376 return;
12377
12378 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 12379 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
12380}
12381
1b773d00 12382#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
c454a46b
MKL
12383#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
12384
12385static int check_btf_line(struct bpf_verifier_env *env,
12386 const union bpf_attr *attr,
af2ac3e1 12387 bpfptr_t uattr)
c454a46b
MKL
12388{
12389 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
12390 struct bpf_subprog_info *sub;
12391 struct bpf_line_info *linfo;
12392 struct bpf_prog *prog;
12393 const struct btf *btf;
af2ac3e1 12394 bpfptr_t ulinfo;
c454a46b
MKL
12395 int err;
12396
12397 nr_linfo = attr->line_info_cnt;
12398 if (!nr_linfo)
12399 return 0;
0e6491b5
BC
12400 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
12401 return -EINVAL;
c454a46b
MKL
12402
12403 rec_size = attr->line_info_rec_size;
12404 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
12405 rec_size > MAX_LINEINFO_REC_SIZE ||
12406 rec_size & (sizeof(u32) - 1))
12407 return -EINVAL;
12408
12409 /* Need to zero it in case the userspace may
12410 * pass in a smaller bpf_line_info object.
12411 */
12412 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
12413 GFP_KERNEL | __GFP_NOWARN);
12414 if (!linfo)
12415 return -ENOMEM;
12416
12417 prog = env->prog;
12418 btf = prog->aux->btf;
12419
12420 s = 0;
12421 sub = env->subprog_info;
af2ac3e1 12422 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
c454a46b
MKL
12423 expected_size = sizeof(struct bpf_line_info);
12424 ncopy = min_t(u32, expected_size, rec_size);
12425 for (i = 0; i < nr_linfo; i++) {
12426 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
12427 if (err) {
12428 if (err == -E2BIG) {
12429 verbose(env, "nonzero tailing record in line_info");
af2ac3e1
AS
12430 if (copy_to_bpfptr_offset(uattr,
12431 offsetof(union bpf_attr, line_info_rec_size),
12432 &expected_size, sizeof(expected_size)))
c454a46b
MKL
12433 err = -EFAULT;
12434 }
12435 goto err_free;
12436 }
12437
af2ac3e1 12438 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
c454a46b
MKL
12439 err = -EFAULT;
12440 goto err_free;
12441 }
12442
12443 /*
12444 * Check insn_off to ensure
12445 * 1) strictly increasing AND
12446 * 2) bounded by prog->len
12447 *
12448 * The linfo[0].insn_off == 0 check logically falls into
12449 * the later "missing bpf_line_info for func..." case
12450 * because the first linfo[0].insn_off must be the
12451 * first sub also and the first sub must have
12452 * subprog_info[0].start == 0.
12453 */
12454 if ((i && linfo[i].insn_off <= prev_offset) ||
12455 linfo[i].insn_off >= prog->len) {
12456 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
12457 i, linfo[i].insn_off, prev_offset,
12458 prog->len);
12459 err = -EINVAL;
12460 goto err_free;
12461 }
12462
fdbaa0be
MKL
12463 if (!prog->insnsi[linfo[i].insn_off].code) {
12464 verbose(env,
12465 "Invalid insn code at line_info[%u].insn_off\n",
12466 i);
12467 err = -EINVAL;
12468 goto err_free;
12469 }
12470
23127b33
MKL
12471 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
12472 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
12473 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
12474 err = -EINVAL;
12475 goto err_free;
12476 }
12477
12478 if (s != env->subprog_cnt) {
12479 if (linfo[i].insn_off == sub[s].start) {
12480 sub[s].linfo_idx = i;
12481 s++;
12482 } else if (sub[s].start < linfo[i].insn_off) {
12483 verbose(env, "missing bpf_line_info for func#%u\n", s);
12484 err = -EINVAL;
12485 goto err_free;
12486 }
12487 }
12488
12489 prev_offset = linfo[i].insn_off;
af2ac3e1 12490 bpfptr_add(&ulinfo, rec_size);
c454a46b
MKL
12491 }
12492
12493 if (s != env->subprog_cnt) {
12494 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
12495 env->subprog_cnt - s, s);
12496 err = -EINVAL;
12497 goto err_free;
12498 }
12499
12500 prog->aux->linfo = linfo;
12501 prog->aux->nr_linfo = nr_linfo;
12502
12503 return 0;
12504
12505err_free:
12506 kvfree(linfo);
12507 return err;
12508}
12509
fbd94c7a
AS
12510#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
12511#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
12512
12513static int check_core_relo(struct bpf_verifier_env *env,
12514 const union bpf_attr *attr,
12515 bpfptr_t uattr)
12516{
12517 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
12518 struct bpf_core_relo core_relo = {};
12519 struct bpf_prog *prog = env->prog;
12520 const struct btf *btf = prog->aux->btf;
12521 struct bpf_core_ctx ctx = {
12522 .log = &env->log,
12523 .btf = btf,
12524 };
12525 bpfptr_t u_core_relo;
12526 int err;
12527
12528 nr_core_relo = attr->core_relo_cnt;
12529 if (!nr_core_relo)
12530 return 0;
12531 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
12532 return -EINVAL;
12533
12534 rec_size = attr->core_relo_rec_size;
12535 if (rec_size < MIN_CORE_RELO_SIZE ||
12536 rec_size > MAX_CORE_RELO_SIZE ||
12537 rec_size % sizeof(u32))
12538 return -EINVAL;
12539
12540 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
12541 expected_size = sizeof(struct bpf_core_relo);
12542 ncopy = min_t(u32, expected_size, rec_size);
12543
12544 /* Unlike func_info and line_info, copy and apply each CO-RE
12545 * relocation record one at a time.
12546 */
12547 for (i = 0; i < nr_core_relo; i++) {
12548 /* future proofing when sizeof(bpf_core_relo) changes */
12549 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
12550 if (err) {
12551 if (err == -E2BIG) {
12552 verbose(env, "nonzero tailing record in core_relo");
12553 if (copy_to_bpfptr_offset(uattr,
12554 offsetof(union bpf_attr, core_relo_rec_size),
12555 &expected_size, sizeof(expected_size)))
12556 err = -EFAULT;
12557 }
12558 break;
12559 }
12560
12561 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
12562 err = -EFAULT;
12563 break;
12564 }
12565
12566 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
12567 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
12568 i, core_relo.insn_off, prog->len);
12569 err = -EINVAL;
12570 break;
12571 }
12572
12573 err = bpf_core_apply(&ctx, &core_relo, i,
12574 &prog->insnsi[core_relo.insn_off / 8]);
12575 if (err)
12576 break;
12577 bpfptr_add(&u_core_relo, rec_size);
12578 }
12579 return err;
12580}
12581
c454a46b
MKL
12582static int check_btf_info(struct bpf_verifier_env *env,
12583 const union bpf_attr *attr,
af2ac3e1 12584 bpfptr_t uattr)
c454a46b
MKL
12585{
12586 struct btf *btf;
12587 int err;
12588
09b28d76
AS
12589 if (!attr->func_info_cnt && !attr->line_info_cnt) {
12590 if (check_abnormal_return(env))
12591 return -EINVAL;
c454a46b 12592 return 0;
09b28d76 12593 }
c454a46b
MKL
12594
12595 btf = btf_get_by_fd(attr->prog_btf_fd);
12596 if (IS_ERR(btf))
12597 return PTR_ERR(btf);
350a5c4d
AS
12598 if (btf_is_kernel(btf)) {
12599 btf_put(btf);
12600 return -EACCES;
12601 }
c454a46b
MKL
12602 env->prog->aux->btf = btf;
12603
12604 err = check_btf_func(env, attr, uattr);
12605 if (err)
12606 return err;
12607
12608 err = check_btf_line(env, attr, uattr);
12609 if (err)
12610 return err;
12611
fbd94c7a
AS
12612 err = check_core_relo(env, attr, uattr);
12613 if (err)
12614 return err;
12615
c454a46b 12616 return 0;
ba64e7d8
YS
12617}
12618
f1174f77
EC
12619/* check %cur's range satisfies %old's */
12620static bool range_within(struct bpf_reg_state *old,
12621 struct bpf_reg_state *cur)
12622{
b03c9f9f
EC
12623 return old->umin_value <= cur->umin_value &&
12624 old->umax_value >= cur->umax_value &&
12625 old->smin_value <= cur->smin_value &&
fd675184
DB
12626 old->smax_value >= cur->smax_value &&
12627 old->u32_min_value <= cur->u32_min_value &&
12628 old->u32_max_value >= cur->u32_max_value &&
12629 old->s32_min_value <= cur->s32_min_value &&
12630 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
12631}
12632
f1174f77
EC
12633/* If in the old state two registers had the same id, then they need to have
12634 * the same id in the new state as well. But that id could be different from
12635 * the old state, so we need to track the mapping from old to new ids.
12636 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
12637 * regs with old id 5 must also have new id 9 for the new state to be safe. But
12638 * regs with a different old id could still have new id 9, we don't care about
12639 * that.
12640 * So we look through our idmap to see if this old id has been seen before. If
12641 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 12642 */
c9e73e3d 12643static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
969bf05e 12644{
f1174f77 12645 unsigned int i;
969bf05e 12646
c9e73e3d 12647 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
f1174f77
EC
12648 if (!idmap[i].old) {
12649 /* Reached an empty slot; haven't seen this id before */
12650 idmap[i].old = old_id;
12651 idmap[i].cur = cur_id;
12652 return true;
12653 }
12654 if (idmap[i].old == old_id)
12655 return idmap[i].cur == cur_id;
12656 }
12657 /* We ran out of idmap slots, which should be impossible */
12658 WARN_ON_ONCE(1);
12659 return false;
12660}
12661
9242b5f5
AS
12662static void clean_func_state(struct bpf_verifier_env *env,
12663 struct bpf_func_state *st)
12664{
12665 enum bpf_reg_liveness live;
12666 int i, j;
12667
12668 for (i = 0; i < BPF_REG_FP; i++) {
12669 live = st->regs[i].live;
12670 /* liveness must not touch this register anymore */
12671 st->regs[i].live |= REG_LIVE_DONE;
12672 if (!(live & REG_LIVE_READ))
12673 /* since the register is unused, clear its state
12674 * to make further comparison simpler
12675 */
f54c7898 12676 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
12677 }
12678
12679 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
12680 live = st->stack[i].spilled_ptr.live;
12681 /* liveness must not touch this stack slot anymore */
12682 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
12683 if (!(live & REG_LIVE_READ)) {
f54c7898 12684 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
12685 for (j = 0; j < BPF_REG_SIZE; j++)
12686 st->stack[i].slot_type[j] = STACK_INVALID;
12687 }
12688 }
12689}
12690
12691static void clean_verifier_state(struct bpf_verifier_env *env,
12692 struct bpf_verifier_state *st)
12693{
12694 int i;
12695
12696 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
12697 /* all regs in this state in all frames were already marked */
12698 return;
12699
12700 for (i = 0; i <= st->curframe; i++)
12701 clean_func_state(env, st->frame[i]);
12702}
12703
12704/* the parentage chains form a tree.
12705 * the verifier states are added to state lists at given insn and
12706 * pushed into state stack for future exploration.
12707 * when the verifier reaches bpf_exit insn some of the verifer states
12708 * stored in the state lists have their final liveness state already,
12709 * but a lot of states will get revised from liveness point of view when
12710 * the verifier explores other branches.
12711 * Example:
12712 * 1: r0 = 1
12713 * 2: if r1 == 100 goto pc+1
12714 * 3: r0 = 2
12715 * 4: exit
12716 * when the verifier reaches exit insn the register r0 in the state list of
12717 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
12718 * of insn 2 and goes exploring further. At the insn 4 it will walk the
12719 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
12720 *
12721 * Since the verifier pushes the branch states as it sees them while exploring
12722 * the program the condition of walking the branch instruction for the second
12723 * time means that all states below this branch were already explored and
8fb33b60 12724 * their final liveness marks are already propagated.
9242b5f5
AS
12725 * Hence when the verifier completes the search of state list in is_state_visited()
12726 * we can call this clean_live_states() function to mark all liveness states
12727 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
12728 * will not be used.
12729 * This function also clears the registers and stack for states that !READ
12730 * to simplify state merging.
12731 *
12732 * Important note here that walking the same branch instruction in the callee
12733 * doesn't meant that the states are DONE. The verifier has to compare
12734 * the callsites
12735 */
12736static void clean_live_states(struct bpf_verifier_env *env, int insn,
12737 struct bpf_verifier_state *cur)
12738{
12739 struct bpf_verifier_state_list *sl;
12740 int i;
12741
5d839021 12742 sl = *explored_state(env, insn);
a8f500af 12743 while (sl) {
2589726d
AS
12744 if (sl->state.branches)
12745 goto next;
dc2a4ebc
AS
12746 if (sl->state.insn_idx != insn ||
12747 sl->state.curframe != cur->curframe)
9242b5f5
AS
12748 goto next;
12749 for (i = 0; i <= cur->curframe; i++)
12750 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
12751 goto next;
12752 clean_verifier_state(env, &sl->state);
12753next:
12754 sl = sl->next;
12755 }
12756}
12757
f1174f77 12758/* Returns true if (rold safe implies rcur safe) */
e042aa53
DB
12759static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
12760 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
f1174f77 12761{
f4d7e40a
AS
12762 bool equal;
12763
dc503a8a
EC
12764 if (!(rold->live & REG_LIVE_READ))
12765 /* explored state didn't use this */
12766 return true;
12767
679c782d 12768 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
12769
12770 if (rold->type == PTR_TO_STACK)
12771 /* two stack pointers are equal only if they're pointing to
12772 * the same stack frame, since fp-8 in foo != fp-8 in bar
12773 */
12774 return equal && rold->frameno == rcur->frameno;
12775
12776 if (equal)
969bf05e
AS
12777 return true;
12778
f1174f77
EC
12779 if (rold->type == NOT_INIT)
12780 /* explored state can't have used this */
969bf05e 12781 return true;
f1174f77
EC
12782 if (rcur->type == NOT_INIT)
12783 return false;
c25b2ae1 12784 switch (base_type(rold->type)) {
f1174f77 12785 case SCALAR_VALUE:
e042aa53
DB
12786 if (env->explore_alu_limits)
12787 return false;
f1174f77 12788 if (rcur->type == SCALAR_VALUE) {
f63181b6 12789 if (!rold->precise)
b5dc0163 12790 return true;
f1174f77
EC
12791 /* new val must satisfy old val knowledge */
12792 return range_within(rold, rcur) &&
12793 tnum_in(rold->var_off, rcur->var_off);
12794 } else {
179d1c56
JH
12795 /* We're trying to use a pointer in place of a scalar.
12796 * Even if the scalar was unbounded, this could lead to
12797 * pointer leaks because scalars are allowed to leak
12798 * while pointers are not. We could make this safe in
12799 * special cases if root is calling us, but it's
12800 * probably not worth the hassle.
f1174f77 12801 */
179d1c56 12802 return false;
f1174f77 12803 }
69c087ba 12804 case PTR_TO_MAP_KEY:
f1174f77 12805 case PTR_TO_MAP_VALUE:
c25b2ae1
HL
12806 /* a PTR_TO_MAP_VALUE could be safe to use as a
12807 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
12808 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
12809 * checked, doing so could have affected others with the same
12810 * id, and we can't check for that because we lost the id when
12811 * we converted to a PTR_TO_MAP_VALUE.
12812 */
12813 if (type_may_be_null(rold->type)) {
12814 if (!type_may_be_null(rcur->type))
12815 return false;
12816 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
12817 return false;
12818 /* Check our ids match any regs they're supposed to */
12819 return check_ids(rold->id, rcur->id, idmap);
12820 }
12821
1b688a19
EC
12822 /* If the new min/max/var_off satisfy the old ones and
12823 * everything else matches, we are OK.
d83525ca
AS
12824 * 'id' is not compared, since it's only used for maps with
12825 * bpf_spin_lock inside map element and in such cases if
12826 * the rest of the prog is valid for one map element then
12827 * it's valid for all map elements regardless of the key
12828 * used in bpf_map_lookup()
1b688a19
EC
12829 */
12830 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
12831 range_within(rold, rcur) &&
12832 tnum_in(rold->var_off, rcur->var_off);
de8f3a83 12833 case PTR_TO_PACKET_META:
f1174f77 12834 case PTR_TO_PACKET:
de8f3a83 12835 if (rcur->type != rold->type)
f1174f77
EC
12836 return false;
12837 /* We must have at least as much range as the old ptr
12838 * did, so that any accesses which were safe before are
12839 * still safe. This is true even if old range < old off,
12840 * since someone could have accessed through (ptr - k), or
12841 * even done ptr -= k in a register, to get a safe access.
12842 */
12843 if (rold->range > rcur->range)
12844 return false;
12845 /* If the offsets don't match, we can't trust our alignment;
12846 * nor can we be sure that we won't fall out of range.
12847 */
12848 if (rold->off != rcur->off)
12849 return false;
12850 /* id relations must be preserved */
12851 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
12852 return false;
12853 /* new val must satisfy old val knowledge */
12854 return range_within(rold, rcur) &&
12855 tnum_in(rold->var_off, rcur->var_off);
12856 case PTR_TO_CTX:
12857 case CONST_PTR_TO_MAP:
f1174f77 12858 case PTR_TO_PACKET_END:
d58e468b 12859 case PTR_TO_FLOW_KEYS:
c64b7983 12860 case PTR_TO_SOCKET:
46f8bc92 12861 case PTR_TO_SOCK_COMMON:
655a51e5 12862 case PTR_TO_TCP_SOCK:
fada7fdc 12863 case PTR_TO_XDP_SOCK:
f1174f77
EC
12864 /* Only valid matches are exact, which memcmp() above
12865 * would have accepted
12866 */
12867 default:
12868 /* Don't know what's going on, just say it's not safe */
12869 return false;
12870 }
969bf05e 12871
f1174f77
EC
12872 /* Shouldn't get here; if we do, say it's not safe */
12873 WARN_ON_ONCE(1);
969bf05e
AS
12874 return false;
12875}
12876
e042aa53
DB
12877static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
12878 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
638f5b90
AS
12879{
12880 int i, spi;
12881
638f5b90
AS
12882 /* walk slots of the explored stack and ignore any additional
12883 * slots in the current stack, since explored(safe) state
12884 * didn't use them
12885 */
12886 for (i = 0; i < old->allocated_stack; i++) {
12887 spi = i / BPF_REG_SIZE;
12888
b233920c
AS
12889 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
12890 i += BPF_REG_SIZE - 1;
cc2b14d5 12891 /* explored state didn't use this */
fd05e57b 12892 continue;
b233920c 12893 }
cc2b14d5 12894
638f5b90
AS
12895 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
12896 continue;
19e2dbb7
AS
12897
12898 /* explored stack has more populated slots than current stack
12899 * and these slots were used
12900 */
12901 if (i >= cur->allocated_stack)
12902 return false;
12903
cc2b14d5
AS
12904 /* if old state was safe with misc data in the stack
12905 * it will be safe with zero-initialized stack.
12906 * The opposite is not true
12907 */
12908 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
12909 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
12910 continue;
638f5b90
AS
12911 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
12912 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
12913 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 12914 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
12915 * this verifier states are not equivalent,
12916 * return false to continue verification of this path
12917 */
12918 return false;
27113c59 12919 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
638f5b90 12920 continue;
27113c59 12921 if (!is_spilled_reg(&old->stack[spi]))
638f5b90 12922 continue;
e042aa53
DB
12923 if (!regsafe(env, &old->stack[spi].spilled_ptr,
12924 &cur->stack[spi].spilled_ptr, idmap))
638f5b90
AS
12925 /* when explored and current stack slot are both storing
12926 * spilled registers, check that stored pointers types
12927 * are the same as well.
12928 * Ex: explored safe path could have stored
12929 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
12930 * but current path has stored:
12931 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
12932 * such verifier states are not equivalent.
12933 * return false to continue verification of this path
12934 */
12935 return false;
12936 }
12937 return true;
12938}
12939
fd978bf7
JS
12940static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
12941{
12942 if (old->acquired_refs != cur->acquired_refs)
12943 return false;
12944 return !memcmp(old->refs, cur->refs,
12945 sizeof(*old->refs) * old->acquired_refs);
12946}
12947
f1bca824
AS
12948/* compare two verifier states
12949 *
12950 * all states stored in state_list are known to be valid, since
12951 * verifier reached 'bpf_exit' instruction through them
12952 *
12953 * this function is called when verifier exploring different branches of
12954 * execution popped from the state stack. If it sees an old state that has
12955 * more strict register state and more strict stack state then this execution
12956 * branch doesn't need to be explored further, since verifier already
12957 * concluded that more strict state leads to valid finish.
12958 *
12959 * Therefore two states are equivalent if register state is more conservative
12960 * and explored stack state is more conservative than the current one.
12961 * Example:
12962 * explored current
12963 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
12964 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
12965 *
12966 * In other words if current stack state (one being explored) has more
12967 * valid slots than old one that already passed validation, it means
12968 * the verifier can stop exploring and conclude that current state is valid too
12969 *
12970 * Similarly with registers. If explored state has register type as invalid
12971 * whereas register type in current state is meaningful, it means that
12972 * the current state will reach 'bpf_exit' instruction safely
12973 */
c9e73e3d 12974static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
f4d7e40a 12975 struct bpf_func_state *cur)
f1bca824
AS
12976{
12977 int i;
12978
c9e73e3d
LB
12979 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
12980 for (i = 0; i < MAX_BPF_REG; i++)
e042aa53
DB
12981 if (!regsafe(env, &old->regs[i], &cur->regs[i],
12982 env->idmap_scratch))
c9e73e3d 12983 return false;
f1bca824 12984
e042aa53 12985 if (!stacksafe(env, old, cur, env->idmap_scratch))
c9e73e3d 12986 return false;
fd978bf7
JS
12987
12988 if (!refsafe(old, cur))
c9e73e3d
LB
12989 return false;
12990
12991 return true;
f1bca824
AS
12992}
12993
f4d7e40a
AS
12994static bool states_equal(struct bpf_verifier_env *env,
12995 struct bpf_verifier_state *old,
12996 struct bpf_verifier_state *cur)
12997{
12998 int i;
12999
13000 if (old->curframe != cur->curframe)
13001 return false;
13002
979d63d5
DB
13003 /* Verification state from speculative execution simulation
13004 * must never prune a non-speculative execution one.
13005 */
13006 if (old->speculative && !cur->speculative)
13007 return false;
13008
d0d78c1d
KKD
13009 if (old->active_lock.ptr != cur->active_lock.ptr ||
13010 old->active_lock.id != cur->active_lock.id)
d83525ca
AS
13011 return false;
13012
f4d7e40a
AS
13013 /* for states to be equal callsites have to be the same
13014 * and all frame states need to be equivalent
13015 */
13016 for (i = 0; i <= old->curframe; i++) {
13017 if (old->frame[i]->callsite != cur->frame[i]->callsite)
13018 return false;
c9e73e3d 13019 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
f4d7e40a
AS
13020 return false;
13021 }
13022 return true;
13023}
13024
5327ed3d
JW
13025/* Return 0 if no propagation happened. Return negative error code if error
13026 * happened. Otherwise, return the propagated bit.
13027 */
55e7f3b5
JW
13028static int propagate_liveness_reg(struct bpf_verifier_env *env,
13029 struct bpf_reg_state *reg,
13030 struct bpf_reg_state *parent_reg)
13031{
5327ed3d
JW
13032 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
13033 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
13034 int err;
13035
5327ed3d
JW
13036 /* When comes here, read flags of PARENT_REG or REG could be any of
13037 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
13038 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
13039 */
13040 if (parent_flag == REG_LIVE_READ64 ||
13041 /* Or if there is no read flag from REG. */
13042 !flag ||
13043 /* Or if the read flag from REG is the same as PARENT_REG. */
13044 parent_flag == flag)
55e7f3b5
JW
13045 return 0;
13046
5327ed3d 13047 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
13048 if (err)
13049 return err;
13050
5327ed3d 13051 return flag;
55e7f3b5
JW
13052}
13053
8e9cd9ce 13054/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
13055 * straight-line code between a state and its parent. When we arrive at an
13056 * equivalent state (jump target or such) we didn't arrive by the straight-line
13057 * code, so read marks in the state must propagate to the parent regardless
13058 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 13059 * in mark_reg_read() is for.
8e9cd9ce 13060 */
f4d7e40a
AS
13061static int propagate_liveness(struct bpf_verifier_env *env,
13062 const struct bpf_verifier_state *vstate,
13063 struct bpf_verifier_state *vparent)
dc503a8a 13064{
3f8cafa4 13065 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 13066 struct bpf_func_state *state, *parent;
3f8cafa4 13067 int i, frame, err = 0;
dc503a8a 13068
f4d7e40a
AS
13069 if (vparent->curframe != vstate->curframe) {
13070 WARN(1, "propagate_live: parent frame %d current frame %d\n",
13071 vparent->curframe, vstate->curframe);
13072 return -EFAULT;
13073 }
dc503a8a
EC
13074 /* Propagate read liveness of registers... */
13075 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 13076 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
13077 parent = vparent->frame[frame];
13078 state = vstate->frame[frame];
13079 parent_reg = parent->regs;
13080 state_reg = state->regs;
83d16312
JK
13081 /* We don't need to worry about FP liveness, it's read-only */
13082 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
13083 err = propagate_liveness_reg(env, &state_reg[i],
13084 &parent_reg[i]);
5327ed3d 13085 if (err < 0)
3f8cafa4 13086 return err;
5327ed3d
JW
13087 if (err == REG_LIVE_READ64)
13088 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 13089 }
f4d7e40a 13090
1b04aee7 13091 /* Propagate stack slots. */
f4d7e40a
AS
13092 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
13093 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
13094 parent_reg = &parent->stack[i].spilled_ptr;
13095 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
13096 err = propagate_liveness_reg(env, state_reg,
13097 parent_reg);
5327ed3d 13098 if (err < 0)
3f8cafa4 13099 return err;
dc503a8a
EC
13100 }
13101 }
5327ed3d 13102 return 0;
dc503a8a
EC
13103}
13104
a3ce685d
AS
13105/* find precise scalars in the previous equivalent state and
13106 * propagate them into the current state
13107 */
13108static int propagate_precision(struct bpf_verifier_env *env,
13109 const struct bpf_verifier_state *old)
13110{
13111 struct bpf_reg_state *state_reg;
13112 struct bpf_func_state *state;
529409ea 13113 int i, err = 0, fr;
a3ce685d 13114
529409ea
AN
13115 for (fr = old->curframe; fr >= 0; fr--) {
13116 state = old->frame[fr];
13117 state_reg = state->regs;
13118 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
13119 if (state_reg->type != SCALAR_VALUE ||
13120 !state_reg->precise)
13121 continue;
13122 if (env->log.level & BPF_LOG_LEVEL2)
13123 verbose(env, "frame %d: propagating r%d\n", i, fr);
13124 err = mark_chain_precision_frame(env, fr, i);
13125 if (err < 0)
13126 return err;
13127 }
a3ce685d 13128
529409ea
AN
13129 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
13130 if (!is_spilled_reg(&state->stack[i]))
13131 continue;
13132 state_reg = &state->stack[i].spilled_ptr;
13133 if (state_reg->type != SCALAR_VALUE ||
13134 !state_reg->precise)
13135 continue;
13136 if (env->log.level & BPF_LOG_LEVEL2)
13137 verbose(env, "frame %d: propagating fp%d\n",
13138 (-i - 1) * BPF_REG_SIZE, fr);
13139 err = mark_chain_precision_stack_frame(env, fr, i);
13140 if (err < 0)
13141 return err;
13142 }
a3ce685d
AS
13143 }
13144 return 0;
13145}
13146
2589726d
AS
13147static bool states_maybe_looping(struct bpf_verifier_state *old,
13148 struct bpf_verifier_state *cur)
13149{
13150 struct bpf_func_state *fold, *fcur;
13151 int i, fr = cur->curframe;
13152
13153 if (old->curframe != fr)
13154 return false;
13155
13156 fold = old->frame[fr];
13157 fcur = cur->frame[fr];
13158 for (i = 0; i < MAX_BPF_REG; i++)
13159 if (memcmp(&fold->regs[i], &fcur->regs[i],
13160 offsetof(struct bpf_reg_state, parent)))
13161 return false;
13162 return true;
13163}
13164
13165
58e2af8b 13166static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 13167{
58e2af8b 13168 struct bpf_verifier_state_list *new_sl;
9f4686c4 13169 struct bpf_verifier_state_list *sl, **pprev;
679c782d 13170 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 13171 int i, j, err, states_cnt = 0;
10d274e8 13172 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 13173
b5dc0163 13174 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 13175 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
13176 /* this 'insn_idx' instruction wasn't marked, so we will not
13177 * be doing state search here
13178 */
13179 return 0;
13180
2589726d
AS
13181 /* bpf progs typically have pruning point every 4 instructions
13182 * http://vger.kernel.org/bpfconf2019.html#session-1
13183 * Do not add new state for future pruning if the verifier hasn't seen
13184 * at least 2 jumps and at least 8 instructions.
13185 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
13186 * In tests that amounts to up to 50% reduction into total verifier
13187 * memory consumption and 20% verifier time speedup.
13188 */
13189 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
13190 env->insn_processed - env->prev_insn_processed >= 8)
13191 add_new_state = true;
13192
a8f500af
AS
13193 pprev = explored_state(env, insn_idx);
13194 sl = *pprev;
13195
9242b5f5
AS
13196 clean_live_states(env, insn_idx, cur);
13197
a8f500af 13198 while (sl) {
dc2a4ebc
AS
13199 states_cnt++;
13200 if (sl->state.insn_idx != insn_idx)
13201 goto next;
bfc6bb74 13202
2589726d 13203 if (sl->state.branches) {
bfc6bb74
AS
13204 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
13205
13206 if (frame->in_async_callback_fn &&
13207 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
13208 /* Different async_entry_cnt means that the verifier is
13209 * processing another entry into async callback.
13210 * Seeing the same state is not an indication of infinite
13211 * loop or infinite recursion.
13212 * But finding the same state doesn't mean that it's safe
13213 * to stop processing the current state. The previous state
13214 * hasn't yet reached bpf_exit, since state.branches > 0.
13215 * Checking in_async_callback_fn alone is not enough either.
13216 * Since the verifier still needs to catch infinite loops
13217 * inside async callbacks.
13218 */
13219 } else if (states_maybe_looping(&sl->state, cur) &&
13220 states_equal(env, &sl->state, cur)) {
2589726d
AS
13221 verbose_linfo(env, insn_idx, "; ");
13222 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
13223 return -EINVAL;
13224 }
13225 /* if the verifier is processing a loop, avoid adding new state
13226 * too often, since different loop iterations have distinct
13227 * states and may not help future pruning.
13228 * This threshold shouldn't be too low to make sure that
13229 * a loop with large bound will be rejected quickly.
13230 * The most abusive loop will be:
13231 * r1 += 1
13232 * if r1 < 1000000 goto pc-2
13233 * 1M insn_procssed limit / 100 == 10k peak states.
13234 * This threshold shouldn't be too high either, since states
13235 * at the end of the loop are likely to be useful in pruning.
13236 */
13237 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
13238 env->insn_processed - env->prev_insn_processed < 100)
13239 add_new_state = false;
13240 goto miss;
13241 }
638f5b90 13242 if (states_equal(env, &sl->state, cur)) {
9f4686c4 13243 sl->hit_cnt++;
f1bca824 13244 /* reached equivalent register/stack state,
dc503a8a
EC
13245 * prune the search.
13246 * Registers read by the continuation are read by us.
8e9cd9ce
EC
13247 * If we have any write marks in env->cur_state, they
13248 * will prevent corresponding reads in the continuation
13249 * from reaching our parent (an explored_state). Our
13250 * own state will get the read marks recorded, but
13251 * they'll be immediately forgotten as we're pruning
13252 * this state and will pop a new one.
f1bca824 13253 */
f4d7e40a 13254 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
13255
13256 /* if previous state reached the exit with precision and
13257 * current state is equivalent to it (except precsion marks)
13258 * the precision needs to be propagated back in
13259 * the current state.
13260 */
13261 err = err ? : push_jmp_history(env, cur);
13262 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
13263 if (err)
13264 return err;
f1bca824 13265 return 1;
dc503a8a 13266 }
2589726d
AS
13267miss:
13268 /* when new state is not going to be added do not increase miss count.
13269 * Otherwise several loop iterations will remove the state
13270 * recorded earlier. The goal of these heuristics is to have
13271 * states from some iterations of the loop (some in the beginning
13272 * and some at the end) to help pruning.
13273 */
13274 if (add_new_state)
13275 sl->miss_cnt++;
9f4686c4
AS
13276 /* heuristic to determine whether this state is beneficial
13277 * to keep checking from state equivalence point of view.
13278 * Higher numbers increase max_states_per_insn and verification time,
13279 * but do not meaningfully decrease insn_processed.
13280 */
13281 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
13282 /* the state is unlikely to be useful. Remove it to
13283 * speed up verification
13284 */
13285 *pprev = sl->next;
13286 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
13287 u32 br = sl->state.branches;
13288
13289 WARN_ONCE(br,
13290 "BUG live_done but branches_to_explore %d\n",
13291 br);
9f4686c4
AS
13292 free_verifier_state(&sl->state, false);
13293 kfree(sl);
13294 env->peak_states--;
13295 } else {
13296 /* cannot free this state, since parentage chain may
13297 * walk it later. Add it for free_list instead to
13298 * be freed at the end of verification
13299 */
13300 sl->next = env->free_list;
13301 env->free_list = sl;
13302 }
13303 sl = *pprev;
13304 continue;
13305 }
dc2a4ebc 13306next:
9f4686c4
AS
13307 pprev = &sl->next;
13308 sl = *pprev;
f1bca824
AS
13309 }
13310
06ee7115
AS
13311 if (env->max_states_per_insn < states_cnt)
13312 env->max_states_per_insn = states_cnt;
13313
2c78ee89 13314 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 13315 return push_jmp_history(env, cur);
ceefbc96 13316
2589726d 13317 if (!add_new_state)
b5dc0163 13318 return push_jmp_history(env, cur);
ceefbc96 13319
2589726d
AS
13320 /* There were no equivalent states, remember the current one.
13321 * Technically the current state is not proven to be safe yet,
f4d7e40a 13322 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 13323 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 13324 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
13325 * again on the way to bpf_exit.
13326 * When looping the sl->state.branches will be > 0 and this state
13327 * will not be considered for equivalence until branches == 0.
f1bca824 13328 */
638f5b90 13329 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
13330 if (!new_sl)
13331 return -ENOMEM;
06ee7115
AS
13332 env->total_states++;
13333 env->peak_states++;
2589726d
AS
13334 env->prev_jmps_processed = env->jmps_processed;
13335 env->prev_insn_processed = env->insn_processed;
f1bca824 13336
7a830b53
AN
13337 /* forget precise markings we inherited, see __mark_chain_precision */
13338 if (env->bpf_capable)
13339 mark_all_scalars_imprecise(env, cur);
13340
f1bca824 13341 /* add new state to the head of linked list */
679c782d
EC
13342 new = &new_sl->state;
13343 err = copy_verifier_state(new, cur);
1969db47 13344 if (err) {
679c782d 13345 free_verifier_state(new, false);
1969db47
AS
13346 kfree(new_sl);
13347 return err;
13348 }
dc2a4ebc 13349 new->insn_idx = insn_idx;
2589726d
AS
13350 WARN_ONCE(new->branches != 1,
13351 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 13352
2589726d 13353 cur->parent = new;
b5dc0163
AS
13354 cur->first_insn_idx = insn_idx;
13355 clear_jmp_history(cur);
5d839021
AS
13356 new_sl->next = *explored_state(env, insn_idx);
13357 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
13358 /* connect new state to parentage chain. Current frame needs all
13359 * registers connected. Only r6 - r9 of the callers are alive (pushed
13360 * to the stack implicitly by JITs) so in callers' frames connect just
13361 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
13362 * the state of the call instruction (with WRITTEN set), and r0 comes
13363 * from callee with its full parentage chain, anyway.
13364 */
8e9cd9ce
EC
13365 /* clear write marks in current state: the writes we did are not writes
13366 * our child did, so they don't screen off its reads from us.
13367 * (There are no read marks in current state, because reads always mark
13368 * their parent and current state never has children yet. Only
13369 * explored_states can get read marks.)
13370 */
eea1c227
AS
13371 for (j = 0; j <= cur->curframe; j++) {
13372 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
13373 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
13374 for (i = 0; i < BPF_REG_FP; i++)
13375 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
13376 }
f4d7e40a
AS
13377
13378 /* all stack frames are accessible from callee, clear them all */
13379 for (j = 0; j <= cur->curframe; j++) {
13380 struct bpf_func_state *frame = cur->frame[j];
679c782d 13381 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 13382
679c782d 13383 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 13384 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
13385 frame->stack[i].spilled_ptr.parent =
13386 &newframe->stack[i].spilled_ptr;
13387 }
f4d7e40a 13388 }
f1bca824
AS
13389 return 0;
13390}
13391
c64b7983
JS
13392/* Return true if it's OK to have the same insn return a different type. */
13393static bool reg_type_mismatch_ok(enum bpf_reg_type type)
13394{
c25b2ae1 13395 switch (base_type(type)) {
c64b7983
JS
13396 case PTR_TO_CTX:
13397 case PTR_TO_SOCKET:
46f8bc92 13398 case PTR_TO_SOCK_COMMON:
655a51e5 13399 case PTR_TO_TCP_SOCK:
fada7fdc 13400 case PTR_TO_XDP_SOCK:
2a02759e 13401 case PTR_TO_BTF_ID:
c64b7983
JS
13402 return false;
13403 default:
13404 return true;
13405 }
13406}
13407
13408/* If an instruction was previously used with particular pointer types, then we
13409 * need to be careful to avoid cases such as the below, where it may be ok
13410 * for one branch accessing the pointer, but not ok for the other branch:
13411 *
13412 * R1 = sock_ptr
13413 * goto X;
13414 * ...
13415 * R1 = some_other_valid_ptr;
13416 * goto X;
13417 * ...
13418 * R2 = *(u32 *)(R1 + 0);
13419 */
13420static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
13421{
13422 return src != prev && (!reg_type_mismatch_ok(src) ||
13423 !reg_type_mismatch_ok(prev));
13424}
13425
58e2af8b 13426static int do_check(struct bpf_verifier_env *env)
17a52670 13427{
6f8a57cc 13428 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 13429 struct bpf_verifier_state *state = env->cur_state;
17a52670 13430 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 13431 struct bpf_reg_state *regs;
06ee7115 13432 int insn_cnt = env->prog->len;
17a52670 13433 bool do_print_state = false;
b5dc0163 13434 int prev_insn_idx = -1;
17a52670 13435
17a52670
AS
13436 for (;;) {
13437 struct bpf_insn *insn;
13438 u8 class;
13439 int err;
13440
b5dc0163 13441 env->prev_insn_idx = prev_insn_idx;
c08435ec 13442 if (env->insn_idx >= insn_cnt) {
61bd5218 13443 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 13444 env->insn_idx, insn_cnt);
17a52670
AS
13445 return -EFAULT;
13446 }
13447
c08435ec 13448 insn = &insns[env->insn_idx];
17a52670
AS
13449 class = BPF_CLASS(insn->code);
13450
06ee7115 13451 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
13452 verbose(env,
13453 "BPF program is too large. Processed %d insn\n",
06ee7115 13454 env->insn_processed);
17a52670
AS
13455 return -E2BIG;
13456 }
13457
c08435ec 13458 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
13459 if (err < 0)
13460 return err;
13461 if (err == 1) {
13462 /* found equivalent state, can prune the search */
06ee7115 13463 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 13464 if (do_print_state)
979d63d5
DB
13465 verbose(env, "\nfrom %d to %d%s: safe\n",
13466 env->prev_insn_idx, env->insn_idx,
13467 env->cur_state->speculative ?
13468 " (speculative execution)" : "");
f1bca824 13469 else
c08435ec 13470 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
13471 }
13472 goto process_bpf_exit;
13473 }
13474
c3494801
AS
13475 if (signal_pending(current))
13476 return -EAGAIN;
13477
3c2ce60b
DB
13478 if (need_resched())
13479 cond_resched();
13480
2e576648
CL
13481 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
13482 verbose(env, "\nfrom %d to %d%s:",
13483 env->prev_insn_idx, env->insn_idx,
13484 env->cur_state->speculative ?
13485 " (speculative execution)" : "");
13486 print_verifier_state(env, state->frame[state->curframe], true);
17a52670
AS
13487 do_print_state = false;
13488 }
13489
06ee7115 13490 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 13491 const struct bpf_insn_cbs cbs = {
e6ac2450 13492 .cb_call = disasm_kfunc_name,
7105e828 13493 .cb_print = verbose,
abe08840 13494 .private_data = env,
7105e828
DB
13495 };
13496
2e576648
CL
13497 if (verifier_state_scratched(env))
13498 print_insn_state(env, state->frame[state->curframe]);
13499
c08435ec 13500 verbose_linfo(env, env->insn_idx, "; ");
2e576648 13501 env->prev_log_len = env->log.len_used;
c08435ec 13502 verbose(env, "%d: ", env->insn_idx);
abe08840 13503 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2e576648
CL
13504 env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
13505 env->prev_log_len = env->log.len_used;
17a52670
AS
13506 }
13507
cae1927c 13508 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
13509 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
13510 env->prev_insn_idx);
cae1927c
JK
13511 if (err)
13512 return err;
13513 }
13a27dfc 13514
638f5b90 13515 regs = cur_regs(env);
fe9a5ca7 13516 sanitize_mark_insn_seen(env);
b5dc0163 13517 prev_insn_idx = env->insn_idx;
fd978bf7 13518
17a52670 13519 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 13520 err = check_alu_op(env, insn);
17a52670
AS
13521 if (err)
13522 return err;
13523
13524 } else if (class == BPF_LDX) {
3df126f3 13525 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
13526
13527 /* check for reserved fields is already done */
13528
17a52670 13529 /* check src operand */
dc503a8a 13530 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13531 if (err)
13532 return err;
13533
dc503a8a 13534 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
13535 if (err)
13536 return err;
13537
725f9dcd
AS
13538 src_reg_type = regs[insn->src_reg].type;
13539
17a52670
AS
13540 /* check that memory (src_reg + off) is readable,
13541 * the state of dst_reg will be updated by this func
13542 */
c08435ec
DB
13543 err = check_mem_access(env, env->insn_idx, insn->src_reg,
13544 insn->off, BPF_SIZE(insn->code),
13545 BPF_READ, insn->dst_reg, false);
17a52670
AS
13546 if (err)
13547 return err;
13548
c08435ec 13549 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13550
13551 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
13552 /* saw a valid insn
13553 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 13554 * save type to validate intersecting paths
9bac3d6d 13555 */
3df126f3 13556 *prev_src_type = src_reg_type;
9bac3d6d 13557
c64b7983 13558 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
13559 /* ABuser program is trying to use the same insn
13560 * dst_reg = *(u32*) (src_reg + off)
13561 * with different pointer types:
13562 * src_reg == ctx in one branch and
13563 * src_reg == stack|map in some other branch.
13564 * Reject it.
13565 */
61bd5218 13566 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
13567 return -EINVAL;
13568 }
13569
17a52670 13570 } else if (class == BPF_STX) {
3df126f3 13571 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 13572
91c960b0
BJ
13573 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
13574 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
13575 if (err)
13576 return err;
c08435ec 13577 env->insn_idx++;
17a52670
AS
13578 continue;
13579 }
13580
5ca419f2
BJ
13581 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
13582 verbose(env, "BPF_STX uses reserved fields\n");
13583 return -EINVAL;
13584 }
13585
17a52670 13586 /* check src1 operand */
dc503a8a 13587 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
13588 if (err)
13589 return err;
13590 /* check src2 operand */
dc503a8a 13591 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13592 if (err)
13593 return err;
13594
d691f9e8
AS
13595 dst_reg_type = regs[insn->dst_reg].type;
13596
17a52670 13597 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13598 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13599 insn->off, BPF_SIZE(insn->code),
13600 BPF_WRITE, insn->src_reg, false);
17a52670
AS
13601 if (err)
13602 return err;
13603
c08435ec 13604 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
13605
13606 if (*prev_dst_type == NOT_INIT) {
13607 *prev_dst_type = dst_reg_type;
c64b7983 13608 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 13609 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
13610 return -EINVAL;
13611 }
13612
17a52670
AS
13613 } else if (class == BPF_ST) {
13614 if (BPF_MODE(insn->code) != BPF_MEM ||
13615 insn->src_reg != BPF_REG_0) {
61bd5218 13616 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
13617 return -EINVAL;
13618 }
13619 /* check src operand */
dc503a8a 13620 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
13621 if (err)
13622 return err;
13623
f37a8cb8 13624 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 13625 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f 13626 insn->dst_reg,
c25b2ae1 13627 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
f37a8cb8
DB
13628 return -EACCES;
13629 }
13630
17a52670 13631 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
13632 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
13633 insn->off, BPF_SIZE(insn->code),
13634 BPF_WRITE, -1, false);
17a52670
AS
13635 if (err)
13636 return err;
13637
092ed096 13638 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
13639 u8 opcode = BPF_OP(insn->code);
13640
2589726d 13641 env->jmps_processed++;
17a52670
AS
13642 if (opcode == BPF_CALL) {
13643 if (BPF_SRC(insn->code) != BPF_K ||
2357672c
KKD
13644 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
13645 && insn->off != 0) ||
f4d7e40a 13646 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
13647 insn->src_reg != BPF_PSEUDO_CALL &&
13648 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
13649 insn->dst_reg != BPF_REG_0 ||
13650 class == BPF_JMP32) {
61bd5218 13651 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
13652 return -EINVAL;
13653 }
13654
8cab76ec
KKD
13655 if (env->cur_state->active_lock.ptr) {
13656 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
13657 (insn->src_reg == BPF_PSEUDO_CALL) ||
13658 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
13659 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) {
13660 verbose(env, "function calls are not allowed while holding a lock\n");
13661 return -EINVAL;
13662 }
d83525ca 13663 }
f4d7e40a 13664 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 13665 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450 13666 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
5c073f26 13667 err = check_kfunc_call(env, insn, &env->insn_idx);
f4d7e40a 13668 else
69c087ba 13669 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
13670 if (err)
13671 return err;
17a52670
AS
13672 } else if (opcode == BPF_JA) {
13673 if (BPF_SRC(insn->code) != BPF_K ||
13674 insn->imm != 0 ||
13675 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13676 insn->dst_reg != BPF_REG_0 ||
13677 class == BPF_JMP32) {
61bd5218 13678 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
13679 return -EINVAL;
13680 }
13681
c08435ec 13682 env->insn_idx += insn->off + 1;
17a52670
AS
13683 continue;
13684
13685 } else if (opcode == BPF_EXIT) {
13686 if (BPF_SRC(insn->code) != BPF_K ||
13687 insn->imm != 0 ||
13688 insn->src_reg != BPF_REG_0 ||
092ed096
JW
13689 insn->dst_reg != BPF_REG_0 ||
13690 class == BPF_JMP32) {
61bd5218 13691 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
13692 return -EINVAL;
13693 }
13694
d0d78c1d 13695 if (env->cur_state->active_lock.ptr) {
d83525ca
AS
13696 verbose(env, "bpf_spin_unlock is missing\n");
13697 return -EINVAL;
13698 }
13699
9d9d00ac
KKD
13700 /* We must do check_reference_leak here before
13701 * prepare_func_exit to handle the case when
13702 * state->curframe > 0, it may be a callback
13703 * function, for which reference_state must
13704 * match caller reference state when it exits.
13705 */
13706 err = check_reference_leak(env);
13707 if (err)
13708 return err;
13709
f4d7e40a
AS
13710 if (state->curframe) {
13711 /* exit from nested function */
c08435ec 13712 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
13713 if (err)
13714 return err;
13715 do_print_state = true;
13716 continue;
13717 }
13718
390ee7e2
AS
13719 err = check_return_code(env);
13720 if (err)
13721 return err;
f1bca824 13722process_bpf_exit:
0f55f9ed 13723 mark_verifier_state_scratched(env);
2589726d 13724 update_branch_counts(env, env->cur_state);
b5dc0163 13725 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 13726 &env->insn_idx, pop_log);
638f5b90
AS
13727 if (err < 0) {
13728 if (err != -ENOENT)
13729 return err;
17a52670
AS
13730 break;
13731 } else {
13732 do_print_state = true;
13733 continue;
13734 }
13735 } else {
c08435ec 13736 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
13737 if (err)
13738 return err;
13739 }
13740 } else if (class == BPF_LD) {
13741 u8 mode = BPF_MODE(insn->code);
13742
13743 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
13744 err = check_ld_abs(env, insn);
13745 if (err)
13746 return err;
13747
17a52670
AS
13748 } else if (mode == BPF_IMM) {
13749 err = check_ld_imm(env, insn);
13750 if (err)
13751 return err;
13752
c08435ec 13753 env->insn_idx++;
fe9a5ca7 13754 sanitize_mark_insn_seen(env);
17a52670 13755 } else {
61bd5218 13756 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
13757 return -EINVAL;
13758 }
13759 } else {
61bd5218 13760 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
13761 return -EINVAL;
13762 }
13763
c08435ec 13764 env->insn_idx++;
17a52670
AS
13765 }
13766
13767 return 0;
13768}
13769
541c3bad
AN
13770static int find_btf_percpu_datasec(struct btf *btf)
13771{
13772 const struct btf_type *t;
13773 const char *tname;
13774 int i, n;
13775
13776 /*
13777 * Both vmlinux and module each have their own ".data..percpu"
13778 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
13779 * types to look at only module's own BTF types.
13780 */
13781 n = btf_nr_types(btf);
13782 if (btf_is_module(btf))
13783 i = btf_nr_types(btf_vmlinux);
13784 else
13785 i = 1;
13786
13787 for(; i < n; i++) {
13788 t = btf_type_by_id(btf, i);
13789 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
13790 continue;
13791
13792 tname = btf_name_by_offset(btf, t->name_off);
13793 if (!strcmp(tname, ".data..percpu"))
13794 return i;
13795 }
13796
13797 return -ENOENT;
13798}
13799
4976b718
HL
13800/* replace pseudo btf_id with kernel symbol address */
13801static int check_pseudo_btf_id(struct bpf_verifier_env *env,
13802 struct bpf_insn *insn,
13803 struct bpf_insn_aux_data *aux)
13804{
eaa6bcb7
HL
13805 const struct btf_var_secinfo *vsi;
13806 const struct btf_type *datasec;
541c3bad 13807 struct btf_mod_pair *btf_mod;
4976b718
HL
13808 const struct btf_type *t;
13809 const char *sym_name;
eaa6bcb7 13810 bool percpu = false;
f16e6313 13811 u32 type, id = insn->imm;
541c3bad 13812 struct btf *btf;
f16e6313 13813 s32 datasec_id;
4976b718 13814 u64 addr;
541c3bad 13815 int i, btf_fd, err;
4976b718 13816
541c3bad
AN
13817 btf_fd = insn[1].imm;
13818 if (btf_fd) {
13819 btf = btf_get_by_fd(btf_fd);
13820 if (IS_ERR(btf)) {
13821 verbose(env, "invalid module BTF object FD specified.\n");
13822 return -EINVAL;
13823 }
13824 } else {
13825 if (!btf_vmlinux) {
13826 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
13827 return -EINVAL;
13828 }
13829 btf = btf_vmlinux;
13830 btf_get(btf);
4976b718
HL
13831 }
13832
541c3bad 13833 t = btf_type_by_id(btf, id);
4976b718
HL
13834 if (!t) {
13835 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
13836 err = -ENOENT;
13837 goto err_put;
4976b718
HL
13838 }
13839
13840 if (!btf_type_is_var(t)) {
541c3bad
AN
13841 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
13842 err = -EINVAL;
13843 goto err_put;
4976b718
HL
13844 }
13845
541c3bad 13846 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
13847 addr = kallsyms_lookup_name(sym_name);
13848 if (!addr) {
13849 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
13850 sym_name);
541c3bad
AN
13851 err = -ENOENT;
13852 goto err_put;
4976b718
HL
13853 }
13854
541c3bad 13855 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 13856 if (datasec_id > 0) {
541c3bad 13857 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
13858 for_each_vsi(i, datasec, vsi) {
13859 if (vsi->type == id) {
13860 percpu = true;
13861 break;
13862 }
13863 }
13864 }
13865
4976b718
HL
13866 insn[0].imm = (u32)addr;
13867 insn[1].imm = addr >> 32;
13868
13869 type = t->type;
541c3bad 13870 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7 13871 if (percpu) {
5844101a 13872 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
541c3bad 13873 aux->btf_var.btf = btf;
eaa6bcb7
HL
13874 aux->btf_var.btf_id = type;
13875 } else if (!btf_type_is_struct(t)) {
4976b718
HL
13876 const struct btf_type *ret;
13877 const char *tname;
13878 u32 tsize;
13879
13880 /* resolve the type size of ksym. */
541c3bad 13881 ret = btf_resolve_size(btf, t, &tsize);
4976b718 13882 if (IS_ERR(ret)) {
541c3bad 13883 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
13884 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
13885 tname, PTR_ERR(ret));
541c3bad
AN
13886 err = -EINVAL;
13887 goto err_put;
4976b718 13888 }
34d3a78c 13889 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
4976b718
HL
13890 aux->btf_var.mem_size = tsize;
13891 } else {
13892 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 13893 aux->btf_var.btf = btf;
4976b718
HL
13894 aux->btf_var.btf_id = type;
13895 }
541c3bad
AN
13896
13897 /* check whether we recorded this BTF (and maybe module) already */
13898 for (i = 0; i < env->used_btf_cnt; i++) {
13899 if (env->used_btfs[i].btf == btf) {
13900 btf_put(btf);
13901 return 0;
13902 }
13903 }
13904
13905 if (env->used_btf_cnt >= MAX_USED_BTFS) {
13906 err = -E2BIG;
13907 goto err_put;
13908 }
13909
13910 btf_mod = &env->used_btfs[env->used_btf_cnt];
13911 btf_mod->btf = btf;
13912 btf_mod->module = NULL;
13913
13914 /* if we reference variables from kernel module, bump its refcount */
13915 if (btf_is_module(btf)) {
13916 btf_mod->module = btf_try_get_module(btf);
13917 if (!btf_mod->module) {
13918 err = -ENXIO;
13919 goto err_put;
13920 }
13921 }
13922
13923 env->used_btf_cnt++;
13924
4976b718 13925 return 0;
541c3bad
AN
13926err_put:
13927 btf_put(btf);
13928 return err;
4976b718
HL
13929}
13930
d83525ca
AS
13931static bool is_tracing_prog_type(enum bpf_prog_type type)
13932{
13933 switch (type) {
13934 case BPF_PROG_TYPE_KPROBE:
13935 case BPF_PROG_TYPE_TRACEPOINT:
13936 case BPF_PROG_TYPE_PERF_EVENT:
13937 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5002615a 13938 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
d83525ca
AS
13939 return true;
13940 default:
13941 return false;
13942 }
13943}
13944
61bd5218
JK
13945static int check_map_prog_compatibility(struct bpf_verifier_env *env,
13946 struct bpf_map *map,
fdc15d38
AS
13947 struct bpf_prog *prog)
13948
13949{
7e40781c 13950 enum bpf_prog_type prog_type = resolve_prog_type(prog);
a3884572 13951
f0c5941f
KKD
13952 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) {
13953 if (is_tracing_prog_type(prog_type)) {
13954 verbose(env, "tracing progs cannot use bpf_list_head yet\n");
13955 return -EINVAL;
13956 }
13957 }
13958
db559117 13959 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
9e7a4d98
KS
13960 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
13961 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
13962 return -EINVAL;
13963 }
13964
13965 if (is_tracing_prog_type(prog_type)) {
13966 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
13967 return -EINVAL;
13968 }
13969
13970 if (prog->aux->sleepable) {
13971 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
13972 return -EINVAL;
13973 }
d83525ca
AS
13974 }
13975
db559117 13976 if (btf_record_has_field(map->record, BPF_TIMER)) {
5e0bc308
DB
13977 if (is_tracing_prog_type(prog_type)) {
13978 verbose(env, "tracing progs cannot use bpf_timer yet\n");
13979 return -EINVAL;
13980 }
13981 }
13982
a3884572 13983 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 13984 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
13985 verbose(env, "offload device mismatch between prog and map\n");
13986 return -EINVAL;
13987 }
13988
85d33df3
MKL
13989 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
13990 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
13991 return -EINVAL;
13992 }
13993
1e6c62a8
AS
13994 if (prog->aux->sleepable)
13995 switch (map->map_type) {
13996 case BPF_MAP_TYPE_HASH:
13997 case BPF_MAP_TYPE_LRU_HASH:
13998 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
13999 case BPF_MAP_TYPE_PERCPU_HASH:
14000 case BPF_MAP_TYPE_PERCPU_ARRAY:
14001 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
14002 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
14003 case BPF_MAP_TYPE_HASH_OF_MAPS:
ba90c2cc 14004 case BPF_MAP_TYPE_RINGBUF:
583c1f42 14005 case BPF_MAP_TYPE_USER_RINGBUF:
0fe4b381
KS
14006 case BPF_MAP_TYPE_INODE_STORAGE:
14007 case BPF_MAP_TYPE_SK_STORAGE:
14008 case BPF_MAP_TYPE_TASK_STORAGE:
ba90c2cc 14009 break;
1e6c62a8
AS
14010 default:
14011 verbose(env,
ba90c2cc 14012 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
14013 return -EINVAL;
14014 }
14015
fdc15d38
AS
14016 return 0;
14017}
14018
b741f163
RG
14019static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
14020{
14021 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
14022 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
14023}
14024
4976b718
HL
14025/* find and rewrite pseudo imm in ld_imm64 instructions:
14026 *
14027 * 1. if it accesses map FD, replace it with actual map pointer.
14028 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
14029 *
14030 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 14031 */
4976b718 14032static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
14033{
14034 struct bpf_insn *insn = env->prog->insnsi;
14035 int insn_cnt = env->prog->len;
fdc15d38 14036 int i, j, err;
0246e64d 14037
f1f7714e 14038 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
14039 if (err)
14040 return err;
14041
0246e64d 14042 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 14043 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 14044 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 14045 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
14046 return -EINVAL;
14047 }
14048
0246e64d 14049 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 14050 struct bpf_insn_aux_data *aux;
0246e64d
AS
14051 struct bpf_map *map;
14052 struct fd f;
d8eca5bb 14053 u64 addr;
387544bf 14054 u32 fd;
0246e64d
AS
14055
14056 if (i == insn_cnt - 1 || insn[1].code != 0 ||
14057 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
14058 insn[1].off != 0) {
61bd5218 14059 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
14060 return -EINVAL;
14061 }
14062
d8eca5bb 14063 if (insn[0].src_reg == 0)
0246e64d
AS
14064 /* valid generic load 64-bit imm */
14065 goto next_insn;
14066
4976b718
HL
14067 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
14068 aux = &env->insn_aux_data[i];
14069 err = check_pseudo_btf_id(env, insn, aux);
14070 if (err)
14071 return err;
14072 goto next_insn;
14073 }
14074
69c087ba
YS
14075 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
14076 aux = &env->insn_aux_data[i];
14077 aux->ptr_type = PTR_TO_FUNC;
14078 goto next_insn;
14079 }
14080
d8eca5bb
DB
14081 /* In final convert_pseudo_ld_imm64() step, this is
14082 * converted into regular 64-bit imm load insn.
14083 */
387544bf
AS
14084 switch (insn[0].src_reg) {
14085 case BPF_PSEUDO_MAP_VALUE:
14086 case BPF_PSEUDO_MAP_IDX_VALUE:
14087 break;
14088 case BPF_PSEUDO_MAP_FD:
14089 case BPF_PSEUDO_MAP_IDX:
14090 if (insn[1].imm == 0)
14091 break;
14092 fallthrough;
14093 default:
14094 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
14095 return -EINVAL;
14096 }
14097
387544bf
AS
14098 switch (insn[0].src_reg) {
14099 case BPF_PSEUDO_MAP_IDX_VALUE:
14100 case BPF_PSEUDO_MAP_IDX:
14101 if (bpfptr_is_null(env->fd_array)) {
14102 verbose(env, "fd_idx without fd_array is invalid\n");
14103 return -EPROTO;
14104 }
14105 if (copy_from_bpfptr_offset(&fd, env->fd_array,
14106 insn[0].imm * sizeof(fd),
14107 sizeof(fd)))
14108 return -EFAULT;
14109 break;
14110 default:
14111 fd = insn[0].imm;
14112 break;
14113 }
14114
14115 f = fdget(fd);
c2101297 14116 map = __bpf_map_get(f);
0246e64d 14117 if (IS_ERR(map)) {
61bd5218 14118 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 14119 insn[0].imm);
0246e64d
AS
14120 return PTR_ERR(map);
14121 }
14122
61bd5218 14123 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
14124 if (err) {
14125 fdput(f);
14126 return err;
14127 }
14128
d8eca5bb 14129 aux = &env->insn_aux_data[i];
387544bf
AS
14130 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
14131 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
d8eca5bb
DB
14132 addr = (unsigned long)map;
14133 } else {
14134 u32 off = insn[1].imm;
14135
14136 if (off >= BPF_MAX_VAR_OFF) {
14137 verbose(env, "direct value offset of %u is not allowed\n", off);
14138 fdput(f);
14139 return -EINVAL;
14140 }
14141
14142 if (!map->ops->map_direct_value_addr) {
14143 verbose(env, "no direct value access support for this map type\n");
14144 fdput(f);
14145 return -EINVAL;
14146 }
14147
14148 err = map->ops->map_direct_value_addr(map, &addr, off);
14149 if (err) {
14150 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
14151 map->value_size, off);
14152 fdput(f);
14153 return err;
14154 }
14155
14156 aux->map_off = off;
14157 addr += off;
14158 }
14159
14160 insn[0].imm = (u32)addr;
14161 insn[1].imm = addr >> 32;
0246e64d
AS
14162
14163 /* check whether we recorded this map already */
d8eca5bb 14164 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 14165 if (env->used_maps[j] == map) {
d8eca5bb 14166 aux->map_index = j;
0246e64d
AS
14167 fdput(f);
14168 goto next_insn;
14169 }
d8eca5bb 14170 }
0246e64d
AS
14171
14172 if (env->used_map_cnt >= MAX_USED_MAPS) {
14173 fdput(f);
14174 return -E2BIG;
14175 }
14176
0246e64d
AS
14177 /* hold the map. If the program is rejected by verifier,
14178 * the map will be released by release_maps() or it
14179 * will be used by the valid program until it's unloaded
ab7f5bf0 14180 * and all maps are released in free_used_maps()
0246e64d 14181 */
1e0bd5a0 14182 bpf_map_inc(map);
d8eca5bb
DB
14183
14184 aux->map_index = env->used_map_cnt;
92117d84
AS
14185 env->used_maps[env->used_map_cnt++] = map;
14186
b741f163 14187 if (bpf_map_is_cgroup_storage(map) &&
e4730423 14188 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 14189 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
14190 fdput(f);
14191 return -EBUSY;
14192 }
14193
0246e64d
AS
14194 fdput(f);
14195next_insn:
14196 insn++;
14197 i++;
5e581dad
DB
14198 continue;
14199 }
14200
14201 /* Basic sanity check before we invest more work here. */
14202 if (!bpf_opcode_in_insntable(insn->code)) {
14203 verbose(env, "unknown opcode %02x\n", insn->code);
14204 return -EINVAL;
0246e64d
AS
14205 }
14206 }
14207
14208 /* now all pseudo BPF_LD_IMM64 instructions load valid
14209 * 'struct bpf_map *' into a register instead of user map_fd.
14210 * These pointers will be used later by verifier to validate map access.
14211 */
14212 return 0;
14213}
14214
14215/* drop refcnt of maps used by the rejected program */
58e2af8b 14216static void release_maps(struct bpf_verifier_env *env)
0246e64d 14217{
a2ea0746
DB
14218 __bpf_free_used_maps(env->prog->aux, env->used_maps,
14219 env->used_map_cnt);
0246e64d
AS
14220}
14221
541c3bad
AN
14222/* drop refcnt of maps used by the rejected program */
14223static void release_btfs(struct bpf_verifier_env *env)
14224{
14225 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
14226 env->used_btf_cnt);
14227}
14228
0246e64d 14229/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 14230static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
14231{
14232 struct bpf_insn *insn = env->prog->insnsi;
14233 int insn_cnt = env->prog->len;
14234 int i;
14235
69c087ba
YS
14236 for (i = 0; i < insn_cnt; i++, insn++) {
14237 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
14238 continue;
14239 if (insn->src_reg == BPF_PSEUDO_FUNC)
14240 continue;
14241 insn->src_reg = 0;
14242 }
0246e64d
AS
14243}
14244
8041902d
AS
14245/* single env->prog->insni[off] instruction was replaced with the range
14246 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
14247 * [0, off) and [off, end) to new locations, so the patched range stays zero
14248 */
75f0fc7b
HF
14249static void adjust_insn_aux_data(struct bpf_verifier_env *env,
14250 struct bpf_insn_aux_data *new_data,
14251 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d 14252{
75f0fc7b 14253 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
b325fbca 14254 struct bpf_insn *insn = new_prog->insnsi;
d203b0fd 14255 u32 old_seen = old_data[off].seen;
b325fbca 14256 u32 prog_len;
c131187d 14257 int i;
8041902d 14258
b325fbca
JW
14259 /* aux info at OFF always needs adjustment, no matter fast path
14260 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
14261 * original insn at old prog.
14262 */
14263 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
14264
8041902d 14265 if (cnt == 1)
75f0fc7b 14266 return;
b325fbca 14267 prog_len = new_prog->len;
75f0fc7b 14268
8041902d
AS
14269 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
14270 memcpy(new_data + off + cnt - 1, old_data + off,
14271 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 14272 for (i = off; i < off + cnt - 1; i++) {
d203b0fd
DB
14273 /* Expand insni[off]'s seen count to the patched range. */
14274 new_data[i].seen = old_seen;
b325fbca
JW
14275 new_data[i].zext_dst = insn_has_def32(env, insn + i);
14276 }
8041902d
AS
14277 env->insn_aux_data = new_data;
14278 vfree(old_data);
8041902d
AS
14279}
14280
cc8b0b92
AS
14281static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
14282{
14283 int i;
14284
14285 if (len == 1)
14286 return;
4cb3d99c
JW
14287 /* NOTE: fake 'exit' subprog should be updated as well. */
14288 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 14289 if (env->subprog_info[i].start <= off)
cc8b0b92 14290 continue;
9c8105bd 14291 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
14292 }
14293}
14294
7506d211 14295static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
a748c697
MF
14296{
14297 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
14298 int i, sz = prog->aux->size_poke_tab;
14299 struct bpf_jit_poke_descriptor *desc;
14300
14301 for (i = 0; i < sz; i++) {
14302 desc = &tab[i];
7506d211
JF
14303 if (desc->insn_idx <= off)
14304 continue;
a748c697
MF
14305 desc->insn_idx += len - 1;
14306 }
14307}
14308
8041902d
AS
14309static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
14310 const struct bpf_insn *patch, u32 len)
14311{
14312 struct bpf_prog *new_prog;
75f0fc7b
HF
14313 struct bpf_insn_aux_data *new_data = NULL;
14314
14315 if (len > 1) {
14316 new_data = vzalloc(array_size(env->prog->len + len - 1,
14317 sizeof(struct bpf_insn_aux_data)));
14318 if (!new_data)
14319 return NULL;
14320 }
8041902d
AS
14321
14322 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
14323 if (IS_ERR(new_prog)) {
14324 if (PTR_ERR(new_prog) == -ERANGE)
14325 verbose(env,
14326 "insn %d cannot be patched due to 16-bit range\n",
14327 env->insn_aux_data[off].orig_idx);
75f0fc7b 14328 vfree(new_data);
8041902d 14329 return NULL;
4f73379e 14330 }
75f0fc7b 14331 adjust_insn_aux_data(env, new_data, new_prog, off, len);
cc8b0b92 14332 adjust_subprog_starts(env, off, len);
7506d211 14333 adjust_poke_descs(new_prog, off, len);
8041902d
AS
14334 return new_prog;
14335}
14336
52875a04
JK
14337static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
14338 u32 off, u32 cnt)
14339{
14340 int i, j;
14341
14342 /* find first prog starting at or after off (first to remove) */
14343 for (i = 0; i < env->subprog_cnt; i++)
14344 if (env->subprog_info[i].start >= off)
14345 break;
14346 /* find first prog starting at or after off + cnt (first to stay) */
14347 for (j = i; j < env->subprog_cnt; j++)
14348 if (env->subprog_info[j].start >= off + cnt)
14349 break;
14350 /* if j doesn't start exactly at off + cnt, we are just removing
14351 * the front of previous prog
14352 */
14353 if (env->subprog_info[j].start != off + cnt)
14354 j--;
14355
14356 if (j > i) {
14357 struct bpf_prog_aux *aux = env->prog->aux;
14358 int move;
14359
14360 /* move fake 'exit' subprog as well */
14361 move = env->subprog_cnt + 1 - j;
14362
14363 memmove(env->subprog_info + i,
14364 env->subprog_info + j,
14365 sizeof(*env->subprog_info) * move);
14366 env->subprog_cnt -= j - i;
14367
14368 /* remove func_info */
14369 if (aux->func_info) {
14370 move = aux->func_info_cnt - j;
14371
14372 memmove(aux->func_info + i,
14373 aux->func_info + j,
14374 sizeof(*aux->func_info) * move);
14375 aux->func_info_cnt -= j - i;
14376 /* func_info->insn_off is set after all code rewrites,
14377 * in adjust_btf_func() - no need to adjust
14378 */
14379 }
14380 } else {
14381 /* convert i from "first prog to remove" to "first to adjust" */
14382 if (env->subprog_info[i].start == off)
14383 i++;
14384 }
14385
14386 /* update fake 'exit' subprog as well */
14387 for (; i <= env->subprog_cnt; i++)
14388 env->subprog_info[i].start -= cnt;
14389
14390 return 0;
14391}
14392
14393static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
14394 u32 cnt)
14395{
14396 struct bpf_prog *prog = env->prog;
14397 u32 i, l_off, l_cnt, nr_linfo;
14398 struct bpf_line_info *linfo;
14399
14400 nr_linfo = prog->aux->nr_linfo;
14401 if (!nr_linfo)
14402 return 0;
14403
14404 linfo = prog->aux->linfo;
14405
14406 /* find first line info to remove, count lines to be removed */
14407 for (i = 0; i < nr_linfo; i++)
14408 if (linfo[i].insn_off >= off)
14409 break;
14410
14411 l_off = i;
14412 l_cnt = 0;
14413 for (; i < nr_linfo; i++)
14414 if (linfo[i].insn_off < off + cnt)
14415 l_cnt++;
14416 else
14417 break;
14418
14419 /* First live insn doesn't match first live linfo, it needs to "inherit"
14420 * last removed linfo. prog is already modified, so prog->len == off
14421 * means no live instructions after (tail of the program was removed).
14422 */
14423 if (prog->len != off && l_cnt &&
14424 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
14425 l_cnt--;
14426 linfo[--i].insn_off = off + cnt;
14427 }
14428
14429 /* remove the line info which refer to the removed instructions */
14430 if (l_cnt) {
14431 memmove(linfo + l_off, linfo + i,
14432 sizeof(*linfo) * (nr_linfo - i));
14433
14434 prog->aux->nr_linfo -= l_cnt;
14435 nr_linfo = prog->aux->nr_linfo;
14436 }
14437
14438 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
14439 for (i = l_off; i < nr_linfo; i++)
14440 linfo[i].insn_off -= cnt;
14441
14442 /* fix up all subprogs (incl. 'exit') which start >= off */
14443 for (i = 0; i <= env->subprog_cnt; i++)
14444 if (env->subprog_info[i].linfo_idx > l_off) {
14445 /* program may have started in the removed region but
14446 * may not be fully removed
14447 */
14448 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
14449 env->subprog_info[i].linfo_idx -= l_cnt;
14450 else
14451 env->subprog_info[i].linfo_idx = l_off;
14452 }
14453
14454 return 0;
14455}
14456
14457static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
14458{
14459 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14460 unsigned int orig_prog_len = env->prog->len;
14461 int err;
14462
08ca90af
JK
14463 if (bpf_prog_is_dev_bound(env->prog->aux))
14464 bpf_prog_offload_remove_insns(env, off, cnt);
14465
52875a04
JK
14466 err = bpf_remove_insns(env->prog, off, cnt);
14467 if (err)
14468 return err;
14469
14470 err = adjust_subprog_starts_after_remove(env, off, cnt);
14471 if (err)
14472 return err;
14473
14474 err = bpf_adj_linfo_after_remove(env, off, cnt);
14475 if (err)
14476 return err;
14477
14478 memmove(aux_data + off, aux_data + off + cnt,
14479 sizeof(*aux_data) * (orig_prog_len - off - cnt));
14480
14481 return 0;
14482}
14483
2a5418a1
DB
14484/* The verifier does more data flow analysis than llvm and will not
14485 * explore branches that are dead at run time. Malicious programs can
14486 * have dead code too. Therefore replace all dead at-run-time code
14487 * with 'ja -1'.
14488 *
14489 * Just nops are not optimal, e.g. if they would sit at the end of the
14490 * program and through another bug we would manage to jump there, then
14491 * we'd execute beyond program memory otherwise. Returning exception
14492 * code also wouldn't work since we can have subprogs where the dead
14493 * code could be located.
c131187d
AS
14494 */
14495static void sanitize_dead_code(struct bpf_verifier_env *env)
14496{
14497 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 14498 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
14499 struct bpf_insn *insn = env->prog->insnsi;
14500 const int insn_cnt = env->prog->len;
14501 int i;
14502
14503 for (i = 0; i < insn_cnt; i++) {
14504 if (aux_data[i].seen)
14505 continue;
2a5418a1 14506 memcpy(insn + i, &trap, sizeof(trap));
45c709f8 14507 aux_data[i].zext_dst = false;
c131187d
AS
14508 }
14509}
14510
e2ae4ca2
JK
14511static bool insn_is_cond_jump(u8 code)
14512{
14513 u8 op;
14514
092ed096
JW
14515 if (BPF_CLASS(code) == BPF_JMP32)
14516 return true;
14517
e2ae4ca2
JK
14518 if (BPF_CLASS(code) != BPF_JMP)
14519 return false;
14520
14521 op = BPF_OP(code);
14522 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
14523}
14524
14525static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
14526{
14527 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14528 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14529 struct bpf_insn *insn = env->prog->insnsi;
14530 const int insn_cnt = env->prog->len;
14531 int i;
14532
14533 for (i = 0; i < insn_cnt; i++, insn++) {
14534 if (!insn_is_cond_jump(insn->code))
14535 continue;
14536
14537 if (!aux_data[i + 1].seen)
14538 ja.off = insn->off;
14539 else if (!aux_data[i + 1 + insn->off].seen)
14540 ja.off = 0;
14541 else
14542 continue;
14543
08ca90af
JK
14544 if (bpf_prog_is_dev_bound(env->prog->aux))
14545 bpf_prog_offload_replace_insn(env, i, &ja);
14546
e2ae4ca2
JK
14547 memcpy(insn, &ja, sizeof(ja));
14548 }
14549}
14550
52875a04
JK
14551static int opt_remove_dead_code(struct bpf_verifier_env *env)
14552{
14553 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
14554 int insn_cnt = env->prog->len;
14555 int i, err;
14556
14557 for (i = 0; i < insn_cnt; i++) {
14558 int j;
14559
14560 j = 0;
14561 while (i + j < insn_cnt && !aux_data[i + j].seen)
14562 j++;
14563 if (!j)
14564 continue;
14565
14566 err = verifier_remove_insns(env, i, j);
14567 if (err)
14568 return err;
14569 insn_cnt = env->prog->len;
14570 }
14571
14572 return 0;
14573}
14574
a1b14abc
JK
14575static int opt_remove_nops(struct bpf_verifier_env *env)
14576{
14577 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
14578 struct bpf_insn *insn = env->prog->insnsi;
14579 int insn_cnt = env->prog->len;
14580 int i, err;
14581
14582 for (i = 0; i < insn_cnt; i++) {
14583 if (memcmp(&insn[i], &ja, sizeof(ja)))
14584 continue;
14585
14586 err = verifier_remove_insns(env, i, 1);
14587 if (err)
14588 return err;
14589 insn_cnt--;
14590 i--;
14591 }
14592
14593 return 0;
14594}
14595
d6c2308c
JW
14596static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
14597 const union bpf_attr *attr)
a4b1d3c1 14598{
d6c2308c 14599 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 14600 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 14601 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 14602 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 14603 struct bpf_prog *new_prog;
d6c2308c 14604 bool rnd_hi32;
a4b1d3c1 14605
d6c2308c 14606 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 14607 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
14608 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
14609 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
14610 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
14611 for (i = 0; i < len; i++) {
14612 int adj_idx = i + delta;
14613 struct bpf_insn insn;
83a28819 14614 int load_reg;
a4b1d3c1 14615
d6c2308c 14616 insn = insns[adj_idx];
83a28819 14617 load_reg = insn_def_regno(&insn);
d6c2308c
JW
14618 if (!aux[adj_idx].zext_dst) {
14619 u8 code, class;
14620 u32 imm_rnd;
14621
14622 if (!rnd_hi32)
14623 continue;
14624
14625 code = insn.code;
14626 class = BPF_CLASS(code);
83a28819 14627 if (load_reg == -1)
d6c2308c
JW
14628 continue;
14629
14630 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
14631 * BPF_STX + SRC_OP, so it is safe to pass NULL
14632 * here.
d6c2308c 14633 */
83a28819 14634 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
14635 if (class == BPF_LD &&
14636 BPF_MODE(code) == BPF_IMM)
14637 i++;
14638 continue;
14639 }
14640
14641 /* ctx load could be transformed into wider load. */
14642 if (class == BPF_LDX &&
14643 aux[adj_idx].ptr_type == PTR_TO_CTX)
14644 continue;
14645
a251c17a 14646 imm_rnd = get_random_u32();
d6c2308c
JW
14647 rnd_hi32_patch[0] = insn;
14648 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 14649 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
14650 patch = rnd_hi32_patch;
14651 patch_len = 4;
14652 goto apply_patch_buffer;
14653 }
14654
39491867
BJ
14655 /* Add in an zero-extend instruction if a) the JIT has requested
14656 * it or b) it's a CMPXCHG.
14657 *
14658 * The latter is because: BPF_CMPXCHG always loads a value into
14659 * R0, therefore always zero-extends. However some archs'
14660 * equivalent instruction only does this load when the
14661 * comparison is successful. This detail of CMPXCHG is
14662 * orthogonal to the general zero-extension behaviour of the
14663 * CPU, so it's treated independently of bpf_jit_needs_zext.
14664 */
14665 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
14666 continue;
14667
83a28819
IL
14668 if (WARN_ON(load_reg == -1)) {
14669 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
14670 return -EFAULT;
b2e37a71
IL
14671 }
14672
a4b1d3c1 14673 zext_patch[0] = insn;
b2e37a71
IL
14674 zext_patch[1].dst_reg = load_reg;
14675 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
14676 patch = zext_patch;
14677 patch_len = 2;
14678apply_patch_buffer:
14679 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
14680 if (!new_prog)
14681 return -ENOMEM;
14682 env->prog = new_prog;
14683 insns = new_prog->insnsi;
14684 aux = env->insn_aux_data;
d6c2308c 14685 delta += patch_len - 1;
a4b1d3c1
JW
14686 }
14687
14688 return 0;
14689}
14690
c64b7983
JS
14691/* convert load instructions that access fields of a context type into a
14692 * sequence of instructions that access fields of the underlying structure:
14693 * struct __sk_buff -> struct sk_buff
14694 * struct bpf_sock_ops -> struct sock
9bac3d6d 14695 */
58e2af8b 14696static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 14697{
00176a34 14698 const struct bpf_verifier_ops *ops = env->ops;
f96da094 14699 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 14700 const int insn_cnt = env->prog->len;
36bbef52 14701 struct bpf_insn insn_buf[16], *insn;
46f53a65 14702 u32 target_size, size_default, off;
9bac3d6d 14703 struct bpf_prog *new_prog;
d691f9e8 14704 enum bpf_access_type type;
f96da094 14705 bool is_narrower_load;
9bac3d6d 14706
b09928b9
DB
14707 if (ops->gen_prologue || env->seen_direct_write) {
14708 if (!ops->gen_prologue) {
14709 verbose(env, "bpf verifier is misconfigured\n");
14710 return -EINVAL;
14711 }
36bbef52
DB
14712 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
14713 env->prog);
14714 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 14715 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
14716 return -EINVAL;
14717 } else if (cnt) {
8041902d 14718 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
14719 if (!new_prog)
14720 return -ENOMEM;
8041902d 14721
36bbef52 14722 env->prog = new_prog;
3df126f3 14723 delta += cnt - 1;
36bbef52
DB
14724 }
14725 }
14726
c64b7983 14727 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
14728 return 0;
14729
3df126f3 14730 insn = env->prog->insnsi + delta;
36bbef52 14731
9bac3d6d 14732 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983 14733 bpf_convert_ctx_access_t convert_ctx_access;
2039f26f 14734 bool ctx_access;
c64b7983 14735
62c7989b
DB
14736 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
14737 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
14738 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
2039f26f 14739 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
d691f9e8 14740 type = BPF_READ;
2039f26f
DB
14741 ctx_access = true;
14742 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
14743 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
14744 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
14745 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
14746 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
14747 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
14748 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
14749 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
d691f9e8 14750 type = BPF_WRITE;
2039f26f
DB
14751 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
14752 } else {
9bac3d6d 14753 continue;
2039f26f 14754 }
9bac3d6d 14755
af86ca4e 14756 if (type == BPF_WRITE &&
2039f26f 14757 env->insn_aux_data[i + delta].sanitize_stack_spill) {
af86ca4e 14758 struct bpf_insn patch[] = {
af86ca4e 14759 *insn,
2039f26f 14760 BPF_ST_NOSPEC(),
af86ca4e
AS
14761 };
14762
14763 cnt = ARRAY_SIZE(patch);
14764 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
14765 if (!new_prog)
14766 return -ENOMEM;
14767
14768 delta += cnt - 1;
14769 env->prog = new_prog;
14770 insn = new_prog->insnsi + i + delta;
14771 continue;
14772 }
14773
2039f26f
DB
14774 if (!ctx_access)
14775 continue;
14776
6efe152d 14777 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
c64b7983
JS
14778 case PTR_TO_CTX:
14779 if (!ops->convert_ctx_access)
14780 continue;
14781 convert_ctx_access = ops->convert_ctx_access;
14782 break;
14783 case PTR_TO_SOCKET:
46f8bc92 14784 case PTR_TO_SOCK_COMMON:
c64b7983
JS
14785 convert_ctx_access = bpf_sock_convert_ctx_access;
14786 break;
655a51e5
MKL
14787 case PTR_TO_TCP_SOCK:
14788 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
14789 break;
fada7fdc
JL
14790 case PTR_TO_XDP_SOCK:
14791 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
14792 break;
2a02759e 14793 case PTR_TO_BTF_ID:
6efe152d 14794 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
3f00c523 14795 case PTR_TO_BTF_ID | PTR_TRUSTED:
282de143
KKD
14796 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
14797 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
14798 * be said once it is marked PTR_UNTRUSTED, hence we must handle
14799 * any faults for loads into such types. BPF_WRITE is disallowed
14800 * for this case.
14801 */
14802 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
3f00c523
DV
14803 case PTR_TO_BTF_ID | PTR_UNTRUSTED | PTR_TRUSTED:
14804 case PTR_TO_BTF_ID | PTR_UNTRUSTED | MEM_ALLOC | PTR_TRUSTED:
27ae7997
MKL
14805 if (type == BPF_READ) {
14806 insn->code = BPF_LDX | BPF_PROBE_MEM |
14807 BPF_SIZE((insn)->code);
14808 env->prog->aux->num_exentries++;
2a02759e 14809 }
2a02759e 14810 continue;
c64b7983 14811 default:
9bac3d6d 14812 continue;
c64b7983 14813 }
9bac3d6d 14814
31fd8581 14815 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 14816 size = BPF_LDST_BYTES(insn);
31fd8581
YS
14817
14818 /* If the read access is a narrower load of the field,
14819 * convert to a 4/8-byte load, to minimum program type specific
14820 * convert_ctx_access changes. If conversion is successful,
14821 * we will apply proper mask to the result.
14822 */
f96da094 14823 is_narrower_load = size < ctx_field_size;
46f53a65
AI
14824 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
14825 off = insn->off;
31fd8581 14826 if (is_narrower_load) {
f96da094
DB
14827 u8 size_code;
14828
14829 if (type == BPF_WRITE) {
61bd5218 14830 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
14831 return -EINVAL;
14832 }
31fd8581 14833
f96da094 14834 size_code = BPF_H;
31fd8581
YS
14835 if (ctx_field_size == 4)
14836 size_code = BPF_W;
14837 else if (ctx_field_size == 8)
14838 size_code = BPF_DW;
f96da094 14839
bc23105c 14840 insn->off = off & ~(size_default - 1);
31fd8581
YS
14841 insn->code = BPF_LDX | BPF_MEM | size_code;
14842 }
f96da094
DB
14843
14844 target_size = 0;
c64b7983
JS
14845 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
14846 &target_size);
f96da094
DB
14847 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
14848 (ctx_field_size && !target_size)) {
61bd5218 14849 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
14850 return -EINVAL;
14851 }
f96da094
DB
14852
14853 if (is_narrower_load && size < target_size) {
d895a0f1
IL
14854 u8 shift = bpf_ctx_narrow_access_offset(
14855 off, size, size_default) * 8;
d7af7e49
AI
14856 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
14857 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
14858 return -EINVAL;
14859 }
46f53a65
AI
14860 if (ctx_field_size <= 4) {
14861 if (shift)
14862 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
14863 insn->dst_reg,
14864 shift);
31fd8581 14865 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 14866 (1 << size * 8) - 1);
46f53a65
AI
14867 } else {
14868 if (shift)
14869 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
14870 insn->dst_reg,
14871 shift);
31fd8581 14872 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 14873 (1ULL << size * 8) - 1);
46f53a65 14874 }
31fd8581 14875 }
9bac3d6d 14876
8041902d 14877 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
14878 if (!new_prog)
14879 return -ENOMEM;
14880
3df126f3 14881 delta += cnt - 1;
9bac3d6d
AS
14882
14883 /* keep walking new program and skip insns we just inserted */
14884 env->prog = new_prog;
3df126f3 14885 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
14886 }
14887
14888 return 0;
14889}
14890
1c2a088a
AS
14891static int jit_subprogs(struct bpf_verifier_env *env)
14892{
14893 struct bpf_prog *prog = env->prog, **func, *tmp;
14894 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 14895 struct bpf_map *map_ptr;
7105e828 14896 struct bpf_insn *insn;
1c2a088a 14897 void *old_bpf_func;
c4c0bdc0 14898 int err, num_exentries;
1c2a088a 14899
f910cefa 14900 if (env->subprog_cnt <= 1)
1c2a088a
AS
14901 return 0;
14902
7105e828 14903 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
3990ed4c 14904 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
69c087ba 14905 continue;
69c087ba 14906
c7a89784
DB
14907 /* Upon error here we cannot fall back to interpreter but
14908 * need a hard reject of the program. Thus -EFAULT is
14909 * propagated in any case.
14910 */
1c2a088a
AS
14911 subprog = find_subprog(env, i + insn->imm + 1);
14912 if (subprog < 0) {
14913 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
14914 i + insn->imm + 1);
14915 return -EFAULT;
14916 }
14917 /* temporarily remember subprog id inside insn instead of
14918 * aux_data, since next loop will split up all insns into funcs
14919 */
f910cefa 14920 insn->off = subprog;
1c2a088a
AS
14921 /* remember original imm in case JIT fails and fallback
14922 * to interpreter will be needed
14923 */
14924 env->insn_aux_data[i].call_imm = insn->imm;
14925 /* point imm to __bpf_call_base+1 from JITs point of view */
14926 insn->imm = 1;
3990ed4c
MKL
14927 if (bpf_pseudo_func(insn))
14928 /* jit (e.g. x86_64) may emit fewer instructions
14929 * if it learns a u32 imm is the same as a u64 imm.
14930 * Force a non zero here.
14931 */
14932 insn[1].imm = 1;
1c2a088a
AS
14933 }
14934
c454a46b
MKL
14935 err = bpf_prog_alloc_jited_linfo(prog);
14936 if (err)
14937 goto out_undo_insn;
14938
14939 err = -ENOMEM;
6396bb22 14940 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 14941 if (!func)
c7a89784 14942 goto out_undo_insn;
1c2a088a 14943
f910cefa 14944 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 14945 subprog_start = subprog_end;
4cb3d99c 14946 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
14947
14948 len = subprog_end - subprog_start;
fb7dd8bc 14949 /* bpf_prog_run() doesn't call subprogs directly,
492ecee8
AS
14950 * hence main prog stats include the runtime of subprogs.
14951 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 14952 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
14953 */
14954 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
14955 if (!func[i])
14956 goto out_free;
14957 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
14958 len * sizeof(struct bpf_insn));
4f74d809 14959 func[i]->type = prog->type;
1c2a088a 14960 func[i]->len = len;
4f74d809
DB
14961 if (bpf_prog_calc_tag(func[i]))
14962 goto out_free;
1c2a088a 14963 func[i]->is_func = 1;
ba64e7d8 14964 func[i]->aux->func_idx = i;
f263a814 14965 /* Below members will be freed only at prog->aux */
ba64e7d8
YS
14966 func[i]->aux->btf = prog->aux->btf;
14967 func[i]->aux->func_info = prog->aux->func_info;
9c7c48d6 14968 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
f263a814
JF
14969 func[i]->aux->poke_tab = prog->aux->poke_tab;
14970 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
ba64e7d8 14971
a748c697 14972 for (j = 0; j < prog->aux->size_poke_tab; j++) {
f263a814 14973 struct bpf_jit_poke_descriptor *poke;
a748c697 14974
f263a814
JF
14975 poke = &prog->aux->poke_tab[j];
14976 if (poke->insn_idx < subprog_end &&
14977 poke->insn_idx >= subprog_start)
14978 poke->aux = func[i]->aux;
a748c697
MF
14979 }
14980
1c2a088a 14981 func[i]->aux->name[0] = 'F';
9c8105bd 14982 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 14983 func[i]->jit_requested = 1;
d2a3b7c5 14984 func[i]->blinding_requested = prog->blinding_requested;
e6ac2450 14985 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
2357672c 14986 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
c454a46b
MKL
14987 func[i]->aux->linfo = prog->aux->linfo;
14988 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
14989 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
14990 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
14991 num_exentries = 0;
14992 insn = func[i]->insnsi;
14993 for (j = 0; j < func[i]->len; j++, insn++) {
14994 if (BPF_CLASS(insn->code) == BPF_LDX &&
14995 BPF_MODE(insn->code) == BPF_PROBE_MEM)
14996 num_exentries++;
14997 }
14998 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 14999 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
15000 func[i] = bpf_int_jit_compile(func[i]);
15001 if (!func[i]->jited) {
15002 err = -ENOTSUPP;
15003 goto out_free;
15004 }
15005 cond_resched();
15006 }
a748c697 15007
1c2a088a
AS
15008 /* at this point all bpf functions were successfully JITed
15009 * now populate all bpf_calls with correct addresses and
15010 * run last pass of JIT
15011 */
f910cefa 15012 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15013 insn = func[i]->insnsi;
15014 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba 15015 if (bpf_pseudo_func(insn)) {
3990ed4c 15016 subprog = insn->off;
69c087ba
YS
15017 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
15018 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
15019 continue;
15020 }
23a2d70c 15021 if (!bpf_pseudo_call(insn))
1c2a088a
AS
15022 continue;
15023 subprog = insn->off;
3d717fad 15024 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
1c2a088a 15025 }
2162fed4
SD
15026
15027 /* we use the aux data to keep a list of the start addresses
15028 * of the JITed images for each function in the program
15029 *
15030 * for some architectures, such as powerpc64, the imm field
15031 * might not be large enough to hold the offset of the start
15032 * address of the callee's JITed image from __bpf_call_base
15033 *
15034 * in such cases, we can lookup the start address of a callee
15035 * by using its subprog id, available from the off field of
15036 * the call instruction, as an index for this list
15037 */
15038 func[i]->aux->func = func;
15039 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 15040 }
f910cefa 15041 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15042 old_bpf_func = func[i]->bpf_func;
15043 tmp = bpf_int_jit_compile(func[i]);
15044 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
15045 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 15046 err = -ENOTSUPP;
1c2a088a
AS
15047 goto out_free;
15048 }
15049 cond_resched();
15050 }
15051
15052 /* finally lock prog and jit images for all functions and
15053 * populate kallsysm
15054 */
f910cefa 15055 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
15056 bpf_prog_lock_ro(func[i]);
15057 bpf_prog_kallsyms_add(func[i]);
15058 }
7105e828
DB
15059
15060 /* Last step: make now unused interpreter insns from main
15061 * prog consistent for later dump requests, so they can
15062 * later look the same as if they were interpreted only.
15063 */
15064 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
15065 if (bpf_pseudo_func(insn)) {
15066 insn[0].imm = env->insn_aux_data[i].call_imm;
3990ed4c
MKL
15067 insn[1].imm = insn->off;
15068 insn->off = 0;
69c087ba
YS
15069 continue;
15070 }
23a2d70c 15071 if (!bpf_pseudo_call(insn))
7105e828
DB
15072 continue;
15073 insn->off = env->insn_aux_data[i].call_imm;
15074 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 15075 insn->imm = subprog;
7105e828
DB
15076 }
15077
1c2a088a
AS
15078 prog->jited = 1;
15079 prog->bpf_func = func[0]->bpf_func;
d00c6473 15080 prog->jited_len = func[0]->jited_len;
1c2a088a 15081 prog->aux->func = func;
f910cefa 15082 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 15083 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
15084 return 0;
15085out_free:
f263a814
JF
15086 /* We failed JIT'ing, so at this point we need to unregister poke
15087 * descriptors from subprogs, so that kernel is not attempting to
15088 * patch it anymore as we're freeing the subprog JIT memory.
15089 */
15090 for (i = 0; i < prog->aux->size_poke_tab; i++) {
15091 map_ptr = prog->aux->poke_tab[i].tail_call.map;
15092 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
15093 }
15094 /* At this point we're guaranteed that poke descriptors are not
15095 * live anymore. We can just unlink its descriptor table as it's
15096 * released with the main prog.
15097 */
a748c697
MF
15098 for (i = 0; i < env->subprog_cnt; i++) {
15099 if (!func[i])
15100 continue;
f263a814 15101 func[i]->aux->poke_tab = NULL;
a748c697
MF
15102 bpf_jit_free(func[i]);
15103 }
1c2a088a 15104 kfree(func);
c7a89784 15105out_undo_insn:
1c2a088a
AS
15106 /* cleanup main prog to be interpreted */
15107 prog->jit_requested = 0;
d2a3b7c5 15108 prog->blinding_requested = 0;
1c2a088a 15109 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 15110 if (!bpf_pseudo_call(insn))
1c2a088a
AS
15111 continue;
15112 insn->off = 0;
15113 insn->imm = env->insn_aux_data[i].call_imm;
15114 }
e16301fb 15115 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
15116 return err;
15117}
15118
1ea47e01
AS
15119static int fixup_call_args(struct bpf_verifier_env *env)
15120{
19d28fbd 15121#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
15122 struct bpf_prog *prog = env->prog;
15123 struct bpf_insn *insn = prog->insnsi;
e6ac2450 15124 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 15125 int i, depth;
19d28fbd 15126#endif
e4052d06 15127 int err = 0;
1ea47e01 15128
e4052d06
QM
15129 if (env->prog->jit_requested &&
15130 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
15131 err = jit_subprogs(env);
15132 if (err == 0)
1c2a088a 15133 return 0;
c7a89784
DB
15134 if (err == -EFAULT)
15135 return err;
19d28fbd
DM
15136 }
15137#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
15138 if (has_kfunc_call) {
15139 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
15140 return -EINVAL;
15141 }
e411901c
MF
15142 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
15143 /* When JIT fails the progs with bpf2bpf calls and tail_calls
15144 * have to be rejected, since interpreter doesn't support them yet.
15145 */
15146 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
15147 return -EINVAL;
15148 }
1ea47e01 15149 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
15150 if (bpf_pseudo_func(insn)) {
15151 /* When JIT fails the progs with callback calls
15152 * have to be rejected, since interpreter doesn't support them yet.
15153 */
15154 verbose(env, "callbacks are not allowed in non-JITed programs\n");
15155 return -EINVAL;
15156 }
15157
23a2d70c 15158 if (!bpf_pseudo_call(insn))
1ea47e01
AS
15159 continue;
15160 depth = get_callee_stack_depth(env, insn, i);
15161 if (depth < 0)
15162 return depth;
15163 bpf_patch_call_args(insn, depth);
15164 }
19d28fbd
DM
15165 err = 0;
15166#endif
15167 return err;
1ea47e01
AS
15168}
15169
958cf2e2
KKD
15170static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
15171 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
e6ac2450
MKL
15172{
15173 const struct bpf_kfunc_desc *desc;
15174
a5d82727
KKD
15175 if (!insn->imm) {
15176 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
15177 return -EINVAL;
15178 }
15179
e6ac2450
MKL
15180 /* insn->imm has the btf func_id. Replace it with
15181 * an address (relative to __bpf_base_call).
15182 */
2357672c 15183 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
e6ac2450
MKL
15184 if (!desc) {
15185 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
15186 insn->imm);
15187 return -EFAULT;
15188 }
15189
958cf2e2 15190 *cnt = 0;
e6ac2450 15191 insn->imm = desc->imm;
958cf2e2
KKD
15192 if (insn->off)
15193 return 0;
15194 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
15195 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15196 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15197 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
e6ac2450 15198
958cf2e2
KKD
15199 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
15200 insn_buf[1] = addr[0];
15201 insn_buf[2] = addr[1];
15202 insn_buf[3] = *insn;
15203 *cnt = 4;
ac9f0605
KKD
15204 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
15205 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
15206 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
15207
15208 insn_buf[0] = addr[0];
15209 insn_buf[1] = addr[1];
15210 insn_buf[2] = *insn;
15211 *cnt = 3;
a35b9af4
YS
15212 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
15213 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
fd264ca0
YS
15214 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
15215 *cnt = 1;
958cf2e2 15216 }
e6ac2450
MKL
15217 return 0;
15218}
15219
e6ac5933
BJ
15220/* Do various post-verification rewrites in a single program pass.
15221 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 15222 */
e6ac5933 15223static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 15224{
79741b3b 15225 struct bpf_prog *prog = env->prog;
f92c1e18 15226 enum bpf_attach_type eatype = prog->expected_attach_type;
9b99edca 15227 enum bpf_prog_type prog_type = resolve_prog_type(prog);
79741b3b 15228 struct bpf_insn *insn = prog->insnsi;
e245c5c6 15229 const struct bpf_func_proto *fn;
79741b3b 15230 const int insn_cnt = prog->len;
09772d92 15231 const struct bpf_map_ops *ops;
c93552c4 15232 struct bpf_insn_aux_data *aux;
81ed18ab
AS
15233 struct bpf_insn insn_buf[16];
15234 struct bpf_prog *new_prog;
15235 struct bpf_map *map_ptr;
d2e4c1e6 15236 int i, ret, cnt, delta = 0;
e245c5c6 15237
79741b3b 15238 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 15239 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
15240 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
15241 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
15242 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 15243 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 15244 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
15245 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
15246 struct bpf_insn *patchlet;
15247 struct bpf_insn chk_and_div[] = {
9b00f1b7 15248 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
15249 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15250 BPF_JNE | BPF_K, insn->src_reg,
15251 0, 2, 0),
f6b1b3bf
DB
15252 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
15253 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15254 *insn,
15255 };
e88b2c6e 15256 struct bpf_insn chk_and_mod[] = {
9b00f1b7 15257 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
15258 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
15259 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 15260 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 15261 *insn,
9b00f1b7
DB
15262 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
15263 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 15264 };
f6b1b3bf 15265
e88b2c6e
DB
15266 patchlet = isdiv ? chk_and_div : chk_and_mod;
15267 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 15268 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
15269
15270 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
15271 if (!new_prog)
15272 return -ENOMEM;
15273
15274 delta += cnt - 1;
15275 env->prog = prog = new_prog;
15276 insn = new_prog->insnsi + i + delta;
15277 continue;
15278 }
15279
e6ac5933 15280 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
15281 if (BPF_CLASS(insn->code) == BPF_LD &&
15282 (BPF_MODE(insn->code) == BPF_ABS ||
15283 BPF_MODE(insn->code) == BPF_IND)) {
15284 cnt = env->ops->gen_ld_abs(insn, insn_buf);
15285 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
15286 verbose(env, "bpf verifier is misconfigured\n");
15287 return -EINVAL;
15288 }
15289
15290 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15291 if (!new_prog)
15292 return -ENOMEM;
15293
15294 delta += cnt - 1;
15295 env->prog = prog = new_prog;
15296 insn = new_prog->insnsi + i + delta;
15297 continue;
15298 }
15299
e6ac5933 15300 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
15301 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
15302 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
15303 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
15304 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5 15305 struct bpf_insn *patch = &insn_buf[0];
801c6058 15306 bool issrc, isneg, isimm;
979d63d5
DB
15307 u32 off_reg;
15308
15309 aux = &env->insn_aux_data[i + delta];
3612af78
DB
15310 if (!aux->alu_state ||
15311 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
15312 continue;
15313
15314 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
15315 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
15316 BPF_ALU_SANITIZE_SRC;
801c6058 15317 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
979d63d5
DB
15318
15319 off_reg = issrc ? insn->src_reg : insn->dst_reg;
801c6058
DB
15320 if (isimm) {
15321 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15322 } else {
15323 if (isneg)
15324 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15325 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
15326 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
15327 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
15328 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
15329 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
15330 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
15331 }
b9b34ddb
DB
15332 if (!issrc)
15333 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
15334 insn->src_reg = BPF_REG_AX;
979d63d5
DB
15335 if (isneg)
15336 insn->code = insn->code == code_add ?
15337 code_sub : code_add;
15338 *patch++ = *insn;
801c6058 15339 if (issrc && isneg && !isimm)
979d63d5
DB
15340 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
15341 cnt = patch - insn_buf;
15342
15343 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15344 if (!new_prog)
15345 return -ENOMEM;
15346
15347 delta += cnt - 1;
15348 env->prog = prog = new_prog;
15349 insn = new_prog->insnsi + i + delta;
15350 continue;
15351 }
15352
79741b3b
AS
15353 if (insn->code != (BPF_JMP | BPF_CALL))
15354 continue;
cc8b0b92
AS
15355 if (insn->src_reg == BPF_PSEUDO_CALL)
15356 continue;
e6ac2450 15357 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
958cf2e2 15358 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
e6ac2450
MKL
15359 if (ret)
15360 return ret;
958cf2e2
KKD
15361 if (cnt == 0)
15362 continue;
15363
15364 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15365 if (!new_prog)
15366 return -ENOMEM;
15367
15368 delta += cnt - 1;
15369 env->prog = prog = new_prog;
15370 insn = new_prog->insnsi + i + delta;
e6ac2450
MKL
15371 continue;
15372 }
e245c5c6 15373
79741b3b
AS
15374 if (insn->imm == BPF_FUNC_get_route_realm)
15375 prog->dst_needed = 1;
15376 if (insn->imm == BPF_FUNC_get_prandom_u32)
15377 bpf_user_rnd_init_once();
9802d865
JB
15378 if (insn->imm == BPF_FUNC_override_return)
15379 prog->kprobe_override = 1;
79741b3b 15380 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
15381 /* If we tail call into other programs, we
15382 * cannot make any assumptions since they can
15383 * be replaced dynamically during runtime in
15384 * the program array.
15385 */
15386 prog->cb_access = 1;
e411901c
MF
15387 if (!allow_tail_call_in_subprogs(env))
15388 prog->aux->stack_depth = MAX_BPF_STACK;
15389 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 15390
79741b3b 15391 /* mark bpf_tail_call as different opcode to avoid
8fb33b60 15392 * conditional branch in the interpreter for every normal
79741b3b
AS
15393 * call and to prevent accidental JITing by JIT compiler
15394 * that doesn't support bpf_tail_call yet
e245c5c6 15395 */
79741b3b 15396 insn->imm = 0;
71189fa9 15397 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 15398
c93552c4 15399 aux = &env->insn_aux_data[i + delta];
d2a3b7c5 15400 if (env->bpf_capable && !prog->blinding_requested &&
cc52d914 15401 prog->jit_requested &&
d2e4c1e6
DB
15402 !bpf_map_key_poisoned(aux) &&
15403 !bpf_map_ptr_poisoned(aux) &&
15404 !bpf_map_ptr_unpriv(aux)) {
15405 struct bpf_jit_poke_descriptor desc = {
15406 .reason = BPF_POKE_REASON_TAIL_CALL,
15407 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
15408 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 15409 .insn_idx = i + delta,
d2e4c1e6
DB
15410 };
15411
15412 ret = bpf_jit_add_poke_descriptor(prog, &desc);
15413 if (ret < 0) {
15414 verbose(env, "adding tail call poke descriptor failed\n");
15415 return ret;
15416 }
15417
15418 insn->imm = ret + 1;
15419 continue;
15420 }
15421
c93552c4
DB
15422 if (!bpf_map_ptr_unpriv(aux))
15423 continue;
15424
b2157399
AS
15425 /* instead of changing every JIT dealing with tail_call
15426 * emit two extra insns:
15427 * if (index >= max_entries) goto out;
15428 * index &= array->index_mask;
15429 * to avoid out-of-bounds cpu speculation
15430 */
c93552c4 15431 if (bpf_map_ptr_poisoned(aux)) {
40950343 15432 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
15433 return -EINVAL;
15434 }
c93552c4 15435
d2e4c1e6 15436 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
15437 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
15438 map_ptr->max_entries, 2);
15439 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
15440 container_of(map_ptr,
15441 struct bpf_array,
15442 map)->index_mask);
15443 insn_buf[2] = *insn;
15444 cnt = 3;
15445 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15446 if (!new_prog)
15447 return -ENOMEM;
15448
15449 delta += cnt - 1;
15450 env->prog = prog = new_prog;
15451 insn = new_prog->insnsi + i + delta;
79741b3b
AS
15452 continue;
15453 }
e245c5c6 15454
b00628b1
AS
15455 if (insn->imm == BPF_FUNC_timer_set_callback) {
15456 /* The verifier will process callback_fn as many times as necessary
15457 * with different maps and the register states prepared by
15458 * set_timer_callback_state will be accurate.
15459 *
15460 * The following use case is valid:
15461 * map1 is shared by prog1, prog2, prog3.
15462 * prog1 calls bpf_timer_init for some map1 elements
15463 * prog2 calls bpf_timer_set_callback for some map1 elements.
15464 * Those that were not bpf_timer_init-ed will return -EINVAL.
15465 * prog3 calls bpf_timer_start for some map1 elements.
15466 * Those that were not both bpf_timer_init-ed and
15467 * bpf_timer_set_callback-ed will return -EINVAL.
15468 */
15469 struct bpf_insn ld_addrs[2] = {
15470 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
15471 };
15472
15473 insn_buf[0] = ld_addrs[0];
15474 insn_buf[1] = ld_addrs[1];
15475 insn_buf[2] = *insn;
15476 cnt = 3;
15477
15478 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15479 if (!new_prog)
15480 return -ENOMEM;
15481
15482 delta += cnt - 1;
15483 env->prog = prog = new_prog;
15484 insn = new_prog->insnsi + i + delta;
15485 goto patch_call_imm;
15486 }
15487
b00fa38a
JK
15488 if (insn->imm == BPF_FUNC_task_storage_get ||
15489 insn->imm == BPF_FUNC_sk_storage_get ||
c4bcfb38
YS
15490 insn->imm == BPF_FUNC_inode_storage_get ||
15491 insn->imm == BPF_FUNC_cgrp_storage_get) {
b00fa38a 15492 if (env->prog->aux->sleepable)
d56c9fe6 15493 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
b00fa38a 15494 else
d56c9fe6 15495 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
b00fa38a
JK
15496 insn_buf[1] = *insn;
15497 cnt = 2;
15498
15499 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15500 if (!new_prog)
15501 return -ENOMEM;
15502
15503 delta += cnt - 1;
15504 env->prog = prog = new_prog;
15505 insn = new_prog->insnsi + i + delta;
15506 goto patch_call_imm;
15507 }
15508
89c63074 15509 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
15510 * and other inlining handlers are currently limited to 64 bit
15511 * only.
89c63074 15512 */
60b58afc 15513 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
15514 (insn->imm == BPF_FUNC_map_lookup_elem ||
15515 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
15516 insn->imm == BPF_FUNC_map_delete_elem ||
15517 insn->imm == BPF_FUNC_map_push_elem ||
15518 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f 15519 insn->imm == BPF_FUNC_map_peek_elem ||
0640c77c 15520 insn->imm == BPF_FUNC_redirect_map ||
07343110
FZ
15521 insn->imm == BPF_FUNC_for_each_map_elem ||
15522 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
c93552c4
DB
15523 aux = &env->insn_aux_data[i + delta];
15524 if (bpf_map_ptr_poisoned(aux))
15525 goto patch_call_imm;
15526
d2e4c1e6 15527 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
15528 ops = map_ptr->ops;
15529 if (insn->imm == BPF_FUNC_map_lookup_elem &&
15530 ops->map_gen_lookup) {
15531 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
15532 if (cnt == -EOPNOTSUPP)
15533 goto patch_map_ops_generic;
15534 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
15535 verbose(env, "bpf verifier is misconfigured\n");
15536 return -EINVAL;
15537 }
81ed18ab 15538
09772d92
DB
15539 new_prog = bpf_patch_insn_data(env, i + delta,
15540 insn_buf, cnt);
15541 if (!new_prog)
15542 return -ENOMEM;
81ed18ab 15543
09772d92
DB
15544 delta += cnt - 1;
15545 env->prog = prog = new_prog;
15546 insn = new_prog->insnsi + i + delta;
15547 continue;
15548 }
81ed18ab 15549
09772d92
DB
15550 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
15551 (void *(*)(struct bpf_map *map, void *key))NULL));
15552 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
15553 (int (*)(struct bpf_map *map, void *key))NULL));
15554 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
15555 (int (*)(struct bpf_map *map, void *key, void *value,
15556 u64 flags))NULL));
84430d42
DB
15557 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
15558 (int (*)(struct bpf_map *map, void *value,
15559 u64 flags))NULL));
15560 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
15561 (int (*)(struct bpf_map *map, void *value))NULL));
15562 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
15563 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f 15564 BUILD_BUG_ON(!__same_type(ops->map_redirect,
32637e33 15565 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
0640c77c
AI
15566 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
15567 (int (*)(struct bpf_map *map,
15568 bpf_callback_t callback_fn,
15569 void *callback_ctx,
15570 u64 flags))NULL));
07343110
FZ
15571 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
15572 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
e6a4750f 15573
4a8f87e6 15574patch_map_ops_generic:
09772d92
DB
15575 switch (insn->imm) {
15576 case BPF_FUNC_map_lookup_elem:
3d717fad 15577 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
09772d92
DB
15578 continue;
15579 case BPF_FUNC_map_update_elem:
3d717fad 15580 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
09772d92
DB
15581 continue;
15582 case BPF_FUNC_map_delete_elem:
3d717fad 15583 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
09772d92 15584 continue;
84430d42 15585 case BPF_FUNC_map_push_elem:
3d717fad 15586 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
84430d42
DB
15587 continue;
15588 case BPF_FUNC_map_pop_elem:
3d717fad 15589 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
84430d42
DB
15590 continue;
15591 case BPF_FUNC_map_peek_elem:
3d717fad 15592 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
84430d42 15593 continue;
e6a4750f 15594 case BPF_FUNC_redirect_map:
3d717fad 15595 insn->imm = BPF_CALL_IMM(ops->map_redirect);
e6a4750f 15596 continue;
0640c77c
AI
15597 case BPF_FUNC_for_each_map_elem:
15598 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
e6a4750f 15599 continue;
07343110
FZ
15600 case BPF_FUNC_map_lookup_percpu_elem:
15601 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
15602 continue;
09772d92 15603 }
81ed18ab 15604
09772d92 15605 goto patch_call_imm;
81ed18ab
AS
15606 }
15607
e6ac5933 15608 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
15609 if (prog->jit_requested && BITS_PER_LONG == 64 &&
15610 insn->imm == BPF_FUNC_jiffies64) {
15611 struct bpf_insn ld_jiffies_addr[2] = {
15612 BPF_LD_IMM64(BPF_REG_0,
15613 (unsigned long)&jiffies),
15614 };
15615
15616 insn_buf[0] = ld_jiffies_addr[0];
15617 insn_buf[1] = ld_jiffies_addr[1];
15618 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
15619 BPF_REG_0, 0);
15620 cnt = 3;
15621
15622 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
15623 cnt);
15624 if (!new_prog)
15625 return -ENOMEM;
15626
15627 delta += cnt - 1;
15628 env->prog = prog = new_prog;
15629 insn = new_prog->insnsi + i + delta;
15630 continue;
15631 }
15632
f92c1e18
JO
15633 /* Implement bpf_get_func_arg inline. */
15634 if (prog_type == BPF_PROG_TYPE_TRACING &&
15635 insn->imm == BPF_FUNC_get_func_arg) {
15636 /* Load nr_args from ctx - 8 */
15637 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15638 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
15639 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
15640 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
15641 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
15642 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15643 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
15644 insn_buf[7] = BPF_JMP_A(1);
15645 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
15646 cnt = 9;
15647
15648 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15649 if (!new_prog)
15650 return -ENOMEM;
15651
15652 delta += cnt - 1;
15653 env->prog = prog = new_prog;
15654 insn = new_prog->insnsi + i + delta;
15655 continue;
15656 }
15657
15658 /* Implement bpf_get_func_ret inline. */
15659 if (prog_type == BPF_PROG_TYPE_TRACING &&
15660 insn->imm == BPF_FUNC_get_func_ret) {
15661 if (eatype == BPF_TRACE_FEXIT ||
15662 eatype == BPF_MODIFY_RETURN) {
15663 /* Load nr_args from ctx - 8 */
15664 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15665 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
15666 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
15667 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
15668 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
15669 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
15670 cnt = 6;
15671 } else {
15672 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
15673 cnt = 1;
15674 }
15675
15676 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
15677 if (!new_prog)
15678 return -ENOMEM;
15679
15680 delta += cnt - 1;
15681 env->prog = prog = new_prog;
15682 insn = new_prog->insnsi + i + delta;
15683 continue;
15684 }
15685
15686 /* Implement get_func_arg_cnt inline. */
15687 if (prog_type == BPF_PROG_TYPE_TRACING &&
15688 insn->imm == BPF_FUNC_get_func_arg_cnt) {
15689 /* Load nr_args from ctx - 8 */
15690 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
15691
15692 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15693 if (!new_prog)
15694 return -ENOMEM;
15695
15696 env->prog = prog = new_prog;
15697 insn = new_prog->insnsi + i + delta;
15698 continue;
15699 }
15700
f705ec76 15701 /* Implement bpf_get_func_ip inline. */
9b99edca
JO
15702 if (prog_type == BPF_PROG_TYPE_TRACING &&
15703 insn->imm == BPF_FUNC_get_func_ip) {
f92c1e18
JO
15704 /* Load IP address from ctx - 16 */
15705 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
9b99edca
JO
15706
15707 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
15708 if (!new_prog)
15709 return -ENOMEM;
15710
15711 env->prog = prog = new_prog;
15712 insn = new_prog->insnsi + i + delta;
15713 continue;
15714 }
15715
81ed18ab 15716patch_call_imm:
5e43f899 15717 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
15718 /* all functions that have prototype and verifier allowed
15719 * programs to call them, must be real in-kernel functions
15720 */
15721 if (!fn->func) {
61bd5218
JK
15722 verbose(env,
15723 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
15724 func_id_name(insn->imm), insn->imm);
15725 return -EFAULT;
e245c5c6 15726 }
79741b3b 15727 insn->imm = fn->func - __bpf_call_base;
e245c5c6 15728 }
e245c5c6 15729
d2e4c1e6
DB
15730 /* Since poke tab is now finalized, publish aux to tracker. */
15731 for (i = 0; i < prog->aux->size_poke_tab; i++) {
15732 map_ptr = prog->aux->poke_tab[i].tail_call.map;
15733 if (!map_ptr->ops->map_poke_track ||
15734 !map_ptr->ops->map_poke_untrack ||
15735 !map_ptr->ops->map_poke_run) {
15736 verbose(env, "bpf verifier is misconfigured\n");
15737 return -EINVAL;
15738 }
15739
15740 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
15741 if (ret < 0) {
15742 verbose(env, "tracking tail call prog failed\n");
15743 return ret;
15744 }
15745 }
15746
e6ac2450
MKL
15747 sort_kfunc_descs_by_imm(env->prog);
15748
79741b3b
AS
15749 return 0;
15750}
e245c5c6 15751
1ade2371
EZ
15752static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
15753 int position,
15754 s32 stack_base,
15755 u32 callback_subprogno,
15756 u32 *cnt)
15757{
15758 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
15759 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
15760 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
15761 int reg_loop_max = BPF_REG_6;
15762 int reg_loop_cnt = BPF_REG_7;
15763 int reg_loop_ctx = BPF_REG_8;
15764
15765 struct bpf_prog *new_prog;
15766 u32 callback_start;
15767 u32 call_insn_offset;
15768 s32 callback_offset;
15769
15770 /* This represents an inlined version of bpf_iter.c:bpf_loop,
15771 * be careful to modify this code in sync.
15772 */
15773 struct bpf_insn insn_buf[] = {
15774 /* Return error and jump to the end of the patch if
15775 * expected number of iterations is too big.
15776 */
15777 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
15778 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
15779 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
15780 /* spill R6, R7, R8 to use these as loop vars */
15781 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
15782 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
15783 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
15784 /* initialize loop vars */
15785 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
15786 BPF_MOV32_IMM(reg_loop_cnt, 0),
15787 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
15788 /* loop header,
15789 * if reg_loop_cnt >= reg_loop_max skip the loop body
15790 */
15791 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
15792 /* callback call,
15793 * correct callback offset would be set after patching
15794 */
15795 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
15796 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
15797 BPF_CALL_REL(0),
15798 /* increment loop counter */
15799 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
15800 /* jump to loop header if callback returned 0 */
15801 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
15802 /* return value of bpf_loop,
15803 * set R0 to the number of iterations
15804 */
15805 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
15806 /* restore original values of R6, R7, R8 */
15807 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
15808 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
15809 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
15810 };
15811
15812 *cnt = ARRAY_SIZE(insn_buf);
15813 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
15814 if (!new_prog)
15815 return new_prog;
15816
15817 /* callback start is known only after patching */
15818 callback_start = env->subprog_info[callback_subprogno].start;
15819 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
15820 call_insn_offset = position + 12;
15821 callback_offset = callback_start - call_insn_offset - 1;
fb4e3b33 15822 new_prog->insnsi[call_insn_offset].imm = callback_offset;
1ade2371
EZ
15823
15824 return new_prog;
15825}
15826
15827static bool is_bpf_loop_call(struct bpf_insn *insn)
15828{
15829 return insn->code == (BPF_JMP | BPF_CALL) &&
15830 insn->src_reg == 0 &&
15831 insn->imm == BPF_FUNC_loop;
15832}
15833
15834/* For all sub-programs in the program (including main) check
15835 * insn_aux_data to see if there are bpf_loop calls that require
15836 * inlining. If such calls are found the calls are replaced with a
15837 * sequence of instructions produced by `inline_bpf_loop` function and
15838 * subprog stack_depth is increased by the size of 3 registers.
15839 * This stack space is used to spill values of the R6, R7, R8. These
15840 * registers are used to store the loop bound, counter and context
15841 * variables.
15842 */
15843static int optimize_bpf_loop(struct bpf_verifier_env *env)
15844{
15845 struct bpf_subprog_info *subprogs = env->subprog_info;
15846 int i, cur_subprog = 0, cnt, delta = 0;
15847 struct bpf_insn *insn = env->prog->insnsi;
15848 int insn_cnt = env->prog->len;
15849 u16 stack_depth = subprogs[cur_subprog].stack_depth;
15850 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
15851 u16 stack_depth_extra = 0;
15852
15853 for (i = 0; i < insn_cnt; i++, insn++) {
15854 struct bpf_loop_inline_state *inline_state =
15855 &env->insn_aux_data[i + delta].loop_inline_state;
15856
15857 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
15858 struct bpf_prog *new_prog;
15859
15860 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
15861 new_prog = inline_bpf_loop(env,
15862 i + delta,
15863 -(stack_depth + stack_depth_extra),
15864 inline_state->callback_subprogno,
15865 &cnt);
15866 if (!new_prog)
15867 return -ENOMEM;
15868
15869 delta += cnt - 1;
15870 env->prog = new_prog;
15871 insn = new_prog->insnsi + i + delta;
15872 }
15873
15874 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
15875 subprogs[cur_subprog].stack_depth += stack_depth_extra;
15876 cur_subprog++;
15877 stack_depth = subprogs[cur_subprog].stack_depth;
15878 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
15879 stack_depth_extra = 0;
15880 }
15881 }
15882
15883 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
15884
15885 return 0;
15886}
15887
58e2af8b 15888static void free_states(struct bpf_verifier_env *env)
f1bca824 15889{
58e2af8b 15890 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
15891 int i;
15892
9f4686c4
AS
15893 sl = env->free_list;
15894 while (sl) {
15895 sln = sl->next;
15896 free_verifier_state(&sl->state, false);
15897 kfree(sl);
15898 sl = sln;
15899 }
51c39bb1 15900 env->free_list = NULL;
9f4686c4 15901
f1bca824
AS
15902 if (!env->explored_states)
15903 return;
15904
dc2a4ebc 15905 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
15906 sl = env->explored_states[i];
15907
a8f500af
AS
15908 while (sl) {
15909 sln = sl->next;
15910 free_verifier_state(&sl->state, false);
15911 kfree(sl);
15912 sl = sln;
15913 }
51c39bb1 15914 env->explored_states[i] = NULL;
f1bca824 15915 }
51c39bb1 15916}
f1bca824 15917
51c39bb1
AS
15918static int do_check_common(struct bpf_verifier_env *env, int subprog)
15919{
6f8a57cc 15920 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
15921 struct bpf_verifier_state *state;
15922 struct bpf_reg_state *regs;
15923 int ret, i;
15924
15925 env->prev_linfo = NULL;
15926 env->pass_cnt++;
15927
15928 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
15929 if (!state)
15930 return -ENOMEM;
15931 state->curframe = 0;
15932 state->speculative = false;
15933 state->branches = 1;
15934 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
15935 if (!state->frame[0]) {
15936 kfree(state);
15937 return -ENOMEM;
15938 }
15939 env->cur_state = state;
15940 init_func_state(env, state->frame[0],
15941 BPF_MAIN_FUNC /* callsite */,
15942 0 /* frameno */,
15943 subprog);
be2ef816
AN
15944 state->first_insn_idx = env->subprog_info[subprog].start;
15945 state->last_insn_idx = -1;
51c39bb1
AS
15946
15947 regs = state->frame[state->curframe]->regs;
be8704ff 15948 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
15949 ret = btf_prepare_func_args(env, subprog, regs);
15950 if (ret)
15951 goto out;
15952 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
15953 if (regs[i].type == PTR_TO_CTX)
15954 mark_reg_known_zero(env, regs, i);
15955 else if (regs[i].type == SCALAR_VALUE)
15956 mark_reg_unknown(env, regs, i);
cf9f2f8d 15957 else if (base_type(regs[i].type) == PTR_TO_MEM) {
e5069b9c
DB
15958 const u32 mem_size = regs[i].mem_size;
15959
15960 mark_reg_known_zero(env, regs, i);
15961 regs[i].mem_size = mem_size;
15962 regs[i].id = ++env->id_gen;
15963 }
51c39bb1
AS
15964 }
15965 } else {
15966 /* 1st arg to a function */
15967 regs[BPF_REG_1].type = PTR_TO_CTX;
15968 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 15969 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
15970 if (ret == -EFAULT)
15971 /* unlikely verifier bug. abort.
15972 * ret == 0 and ret < 0 are sadly acceptable for
15973 * main() function due to backward compatibility.
15974 * Like socket filter program may be written as:
15975 * int bpf_prog(struct pt_regs *ctx)
15976 * and never dereference that ctx in the program.
15977 * 'struct pt_regs' is a type mismatch for socket
15978 * filter that should be using 'struct __sk_buff'.
15979 */
15980 goto out;
15981 }
15982
15983 ret = do_check(env);
15984out:
f59bbfc2
AS
15985 /* check for NULL is necessary, since cur_state can be freed inside
15986 * do_check() under memory pressure.
15987 */
15988 if (env->cur_state) {
15989 free_verifier_state(env->cur_state, true);
15990 env->cur_state = NULL;
15991 }
6f8a57cc
AN
15992 while (!pop_stack(env, NULL, NULL, false));
15993 if (!ret && pop_log)
15994 bpf_vlog_reset(&env->log, 0);
51c39bb1 15995 free_states(env);
51c39bb1
AS
15996 return ret;
15997}
15998
15999/* Verify all global functions in a BPF program one by one based on their BTF.
16000 * All global functions must pass verification. Otherwise the whole program is rejected.
16001 * Consider:
16002 * int bar(int);
16003 * int foo(int f)
16004 * {
16005 * return bar(f);
16006 * }
16007 * int bar(int b)
16008 * {
16009 * ...
16010 * }
16011 * foo() will be verified first for R1=any_scalar_value. During verification it
16012 * will be assumed that bar() already verified successfully and call to bar()
16013 * from foo() will be checked for type match only. Later bar() will be verified
16014 * independently to check that it's safe for R1=any_scalar_value.
16015 */
16016static int do_check_subprogs(struct bpf_verifier_env *env)
16017{
16018 struct bpf_prog_aux *aux = env->prog->aux;
16019 int i, ret;
16020
16021 if (!aux->func_info)
16022 return 0;
16023
16024 for (i = 1; i < env->subprog_cnt; i++) {
16025 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
16026 continue;
16027 env->insn_idx = env->subprog_info[i].start;
16028 WARN_ON_ONCE(env->insn_idx == 0);
16029 ret = do_check_common(env, i);
16030 if (ret) {
16031 return ret;
16032 } else if (env->log.level & BPF_LOG_LEVEL) {
16033 verbose(env,
16034 "Func#%d is safe for any args that match its prototype\n",
16035 i);
16036 }
16037 }
16038 return 0;
16039}
16040
16041static int do_check_main(struct bpf_verifier_env *env)
16042{
16043 int ret;
16044
16045 env->insn_idx = 0;
16046 ret = do_check_common(env, 0);
16047 if (!ret)
16048 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
16049 return ret;
16050}
16051
16052
06ee7115
AS
16053static void print_verification_stats(struct bpf_verifier_env *env)
16054{
16055 int i;
16056
16057 if (env->log.level & BPF_LOG_STATS) {
16058 verbose(env, "verification time %lld usec\n",
16059 div_u64(env->verification_time, 1000));
16060 verbose(env, "stack depth ");
16061 for (i = 0; i < env->subprog_cnt; i++) {
16062 u32 depth = env->subprog_info[i].stack_depth;
16063
16064 verbose(env, "%d", depth);
16065 if (i + 1 < env->subprog_cnt)
16066 verbose(env, "+");
16067 }
16068 verbose(env, "\n");
16069 }
16070 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
16071 "total_states %d peak_states %d mark_read %d\n",
16072 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
16073 env->max_states_per_insn, env->total_states,
16074 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
16075}
16076
27ae7997
MKL
16077static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
16078{
16079 const struct btf_type *t, *func_proto;
16080 const struct bpf_struct_ops *st_ops;
16081 const struct btf_member *member;
16082 struct bpf_prog *prog = env->prog;
16083 u32 btf_id, member_idx;
16084 const char *mname;
16085
12aa8a94
THJ
16086 if (!prog->gpl_compatible) {
16087 verbose(env, "struct ops programs must have a GPL compatible license\n");
16088 return -EINVAL;
16089 }
16090
27ae7997
MKL
16091 btf_id = prog->aux->attach_btf_id;
16092 st_ops = bpf_struct_ops_find(btf_id);
16093 if (!st_ops) {
16094 verbose(env, "attach_btf_id %u is not a supported struct\n",
16095 btf_id);
16096 return -ENOTSUPP;
16097 }
16098
16099 t = st_ops->type;
16100 member_idx = prog->expected_attach_type;
16101 if (member_idx >= btf_type_vlen(t)) {
16102 verbose(env, "attach to invalid member idx %u of struct %s\n",
16103 member_idx, st_ops->name);
16104 return -EINVAL;
16105 }
16106
16107 member = &btf_type_member(t)[member_idx];
16108 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
16109 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
16110 NULL);
16111 if (!func_proto) {
16112 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
16113 mname, member_idx, st_ops->name);
16114 return -EINVAL;
16115 }
16116
16117 if (st_ops->check_member) {
16118 int err = st_ops->check_member(t, member);
16119
16120 if (err) {
16121 verbose(env, "attach to unsupported member %s of struct %s\n",
16122 mname, st_ops->name);
16123 return err;
16124 }
16125 }
16126
16127 prog->aux->attach_func_proto = func_proto;
16128 prog->aux->attach_func_name = mname;
16129 env->ops = st_ops->verifier_ops;
16130
16131 return 0;
16132}
6ba43b76
KS
16133#define SECURITY_PREFIX "security_"
16134
f7b12b6f 16135static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 16136{
69191754 16137 if (within_error_injection_list(addr) ||
f7b12b6f 16138 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 16139 return 0;
6ba43b76 16140
6ba43b76
KS
16141 return -EINVAL;
16142}
27ae7997 16143
1e6c62a8
AS
16144/* list of non-sleepable functions that are otherwise on
16145 * ALLOW_ERROR_INJECTION list
16146 */
16147BTF_SET_START(btf_non_sleepable_error_inject)
16148/* Three functions below can be called from sleepable and non-sleepable context.
16149 * Assume non-sleepable from bpf safety point of view.
16150 */
9dd3d069 16151BTF_ID(func, __filemap_add_folio)
1e6c62a8
AS
16152BTF_ID(func, should_fail_alloc_page)
16153BTF_ID(func, should_failslab)
16154BTF_SET_END(btf_non_sleepable_error_inject)
16155
16156static int check_non_sleepable_error_inject(u32 btf_id)
16157{
16158 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
16159}
16160
f7b12b6f
THJ
16161int bpf_check_attach_target(struct bpf_verifier_log *log,
16162 const struct bpf_prog *prog,
16163 const struct bpf_prog *tgt_prog,
16164 u32 btf_id,
16165 struct bpf_attach_target_info *tgt_info)
38207291 16166{
be8704ff 16167 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 16168 const char prefix[] = "btf_trace_";
5b92a28a 16169 int ret = 0, subprog = -1, i;
38207291 16170 const struct btf_type *t;
5b92a28a 16171 bool conservative = true;
38207291 16172 const char *tname;
5b92a28a 16173 struct btf *btf;
f7b12b6f 16174 long addr = 0;
38207291 16175
f1b9509c 16176 if (!btf_id) {
efc68158 16177 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
16178 return -EINVAL;
16179 }
22dc4a0f 16180 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 16181 if (!btf) {
efc68158 16182 bpf_log(log,
5b92a28a
AS
16183 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
16184 return -EINVAL;
16185 }
16186 t = btf_type_by_id(btf, btf_id);
f1b9509c 16187 if (!t) {
efc68158 16188 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
16189 return -EINVAL;
16190 }
5b92a28a 16191 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 16192 if (!tname) {
efc68158 16193 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
16194 return -EINVAL;
16195 }
5b92a28a
AS
16196 if (tgt_prog) {
16197 struct bpf_prog_aux *aux = tgt_prog->aux;
16198
16199 for (i = 0; i < aux->func_info_cnt; i++)
16200 if (aux->func_info[i].type_id == btf_id) {
16201 subprog = i;
16202 break;
16203 }
16204 if (subprog == -1) {
efc68158 16205 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
16206 return -EINVAL;
16207 }
16208 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
16209 if (prog_extension) {
16210 if (conservative) {
efc68158 16211 bpf_log(log,
be8704ff
AS
16212 "Cannot replace static functions\n");
16213 return -EINVAL;
16214 }
16215 if (!prog->jit_requested) {
efc68158 16216 bpf_log(log,
be8704ff
AS
16217 "Extension programs should be JITed\n");
16218 return -EINVAL;
16219 }
be8704ff
AS
16220 }
16221 if (!tgt_prog->jited) {
efc68158 16222 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
16223 return -EINVAL;
16224 }
16225 if (tgt_prog->type == prog->type) {
16226 /* Cannot fentry/fexit another fentry/fexit program.
16227 * Cannot attach program extension to another extension.
16228 * It's ok to attach fentry/fexit to extension program.
16229 */
efc68158 16230 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
16231 return -EINVAL;
16232 }
16233 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
16234 prog_extension &&
16235 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
16236 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
16237 /* Program extensions can extend all program types
16238 * except fentry/fexit. The reason is the following.
16239 * The fentry/fexit programs are used for performance
16240 * analysis, stats and can be attached to any program
16241 * type except themselves. When extension program is
16242 * replacing XDP function it is necessary to allow
16243 * performance analysis of all functions. Both original
16244 * XDP program and its program extension. Hence
16245 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
16246 * allowed. If extending of fentry/fexit was allowed it
16247 * would be possible to create long call chain
16248 * fentry->extension->fentry->extension beyond
16249 * reasonable stack size. Hence extending fentry is not
16250 * allowed.
16251 */
efc68158 16252 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
16253 return -EINVAL;
16254 }
5b92a28a 16255 } else {
be8704ff 16256 if (prog_extension) {
efc68158 16257 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
16258 return -EINVAL;
16259 }
5b92a28a 16260 }
f1b9509c
AS
16261
16262 switch (prog->expected_attach_type) {
16263 case BPF_TRACE_RAW_TP:
5b92a28a 16264 if (tgt_prog) {
efc68158 16265 bpf_log(log,
5b92a28a
AS
16266 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
16267 return -EINVAL;
16268 }
38207291 16269 if (!btf_type_is_typedef(t)) {
efc68158 16270 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
16271 btf_id);
16272 return -EINVAL;
16273 }
f1b9509c 16274 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 16275 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
16276 btf_id, tname);
16277 return -EINVAL;
16278 }
16279 tname += sizeof(prefix) - 1;
5b92a28a 16280 t = btf_type_by_id(btf, t->type);
38207291
MKL
16281 if (!btf_type_is_ptr(t))
16282 /* should never happen in valid vmlinux build */
16283 return -EINVAL;
5b92a28a 16284 t = btf_type_by_id(btf, t->type);
38207291
MKL
16285 if (!btf_type_is_func_proto(t))
16286 /* should never happen in valid vmlinux build */
16287 return -EINVAL;
16288
f7b12b6f 16289 break;
15d83c4d
YS
16290 case BPF_TRACE_ITER:
16291 if (!btf_type_is_func(t)) {
efc68158 16292 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
16293 btf_id);
16294 return -EINVAL;
16295 }
16296 t = btf_type_by_id(btf, t->type);
16297 if (!btf_type_is_func_proto(t))
16298 return -EINVAL;
f7b12b6f
THJ
16299 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
16300 if (ret)
16301 return ret;
16302 break;
be8704ff
AS
16303 default:
16304 if (!prog_extension)
16305 return -EINVAL;
df561f66 16306 fallthrough;
ae240823 16307 case BPF_MODIFY_RETURN:
9e4e01df 16308 case BPF_LSM_MAC:
69fd337a 16309 case BPF_LSM_CGROUP:
fec56f58
AS
16310 case BPF_TRACE_FENTRY:
16311 case BPF_TRACE_FEXIT:
16312 if (!btf_type_is_func(t)) {
efc68158 16313 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
16314 btf_id);
16315 return -EINVAL;
16316 }
be8704ff 16317 if (prog_extension &&
efc68158 16318 btf_check_type_match(log, prog, btf, t))
be8704ff 16319 return -EINVAL;
5b92a28a 16320 t = btf_type_by_id(btf, t->type);
fec56f58
AS
16321 if (!btf_type_is_func_proto(t))
16322 return -EINVAL;
f7b12b6f 16323
4a1e7c0c
THJ
16324 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
16325 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
16326 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
16327 return -EINVAL;
16328
f7b12b6f 16329 if (tgt_prog && conservative)
5b92a28a 16330 t = NULL;
f7b12b6f
THJ
16331
16332 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 16333 if (ret < 0)
f7b12b6f
THJ
16334 return ret;
16335
5b92a28a 16336 if (tgt_prog) {
e9eeec58
YS
16337 if (subprog == 0)
16338 addr = (long) tgt_prog->bpf_func;
16339 else
16340 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
16341 } else {
16342 addr = kallsyms_lookup_name(tname);
16343 if (!addr) {
efc68158 16344 bpf_log(log,
5b92a28a
AS
16345 "The address of function %s cannot be found\n",
16346 tname);
f7b12b6f 16347 return -ENOENT;
5b92a28a 16348 }
fec56f58 16349 }
18644cec 16350
1e6c62a8
AS
16351 if (prog->aux->sleepable) {
16352 ret = -EINVAL;
16353 switch (prog->type) {
16354 case BPF_PROG_TYPE_TRACING:
16355 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
16356 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
16357 */
16358 if (!check_non_sleepable_error_inject(btf_id) &&
16359 within_error_injection_list(addr))
16360 ret = 0;
16361 break;
16362 case BPF_PROG_TYPE_LSM:
16363 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
16364 * Only some of them are sleepable.
16365 */
423f1610 16366 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
16367 ret = 0;
16368 break;
16369 default:
16370 break;
16371 }
f7b12b6f
THJ
16372 if (ret) {
16373 bpf_log(log, "%s is not sleepable\n", tname);
16374 return ret;
16375 }
1e6c62a8 16376 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 16377 if (tgt_prog) {
efc68158 16378 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
16379 return -EINVAL;
16380 }
16381 ret = check_attach_modify_return(addr, tname);
16382 if (ret) {
16383 bpf_log(log, "%s() is not modifiable\n", tname);
16384 return ret;
1af9270e 16385 }
18644cec 16386 }
f7b12b6f
THJ
16387
16388 break;
16389 }
16390 tgt_info->tgt_addr = addr;
16391 tgt_info->tgt_name = tname;
16392 tgt_info->tgt_type = t;
16393 return 0;
16394}
16395
35e3815f
JO
16396BTF_SET_START(btf_id_deny)
16397BTF_ID_UNUSED
16398#ifdef CONFIG_SMP
16399BTF_ID(func, migrate_disable)
16400BTF_ID(func, migrate_enable)
16401#endif
16402#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
16403BTF_ID(func, rcu_read_unlock_strict)
16404#endif
16405BTF_SET_END(btf_id_deny)
16406
f7b12b6f
THJ
16407static int check_attach_btf_id(struct bpf_verifier_env *env)
16408{
16409 struct bpf_prog *prog = env->prog;
3aac1ead 16410 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
16411 struct bpf_attach_target_info tgt_info = {};
16412 u32 btf_id = prog->aux->attach_btf_id;
16413 struct bpf_trampoline *tr;
16414 int ret;
16415 u64 key;
16416
79a7f8bd
AS
16417 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
16418 if (prog->aux->sleepable)
16419 /* attach_btf_id checked to be zero already */
16420 return 0;
16421 verbose(env, "Syscall programs can only be sleepable\n");
16422 return -EINVAL;
16423 }
16424
f7b12b6f 16425 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
64ad7556
DK
16426 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
16427 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
f7b12b6f
THJ
16428 return -EINVAL;
16429 }
16430
16431 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
16432 return check_struct_ops_btf_id(env);
16433
16434 if (prog->type != BPF_PROG_TYPE_TRACING &&
16435 prog->type != BPF_PROG_TYPE_LSM &&
16436 prog->type != BPF_PROG_TYPE_EXT)
16437 return 0;
16438
16439 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
16440 if (ret)
fec56f58 16441 return ret;
f7b12b6f
THJ
16442
16443 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
16444 /* to make freplace equivalent to their targets, they need to
16445 * inherit env->ops and expected_attach_type for the rest of the
16446 * verification
16447 */
f7b12b6f
THJ
16448 env->ops = bpf_verifier_ops[tgt_prog->type];
16449 prog->expected_attach_type = tgt_prog->expected_attach_type;
16450 }
16451
16452 /* store info about the attachment target that will be used later */
16453 prog->aux->attach_func_proto = tgt_info.tgt_type;
16454 prog->aux->attach_func_name = tgt_info.tgt_name;
16455
4a1e7c0c
THJ
16456 if (tgt_prog) {
16457 prog->aux->saved_dst_prog_type = tgt_prog->type;
16458 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
16459 }
16460
f7b12b6f
THJ
16461 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
16462 prog->aux->attach_btf_trace = true;
16463 return 0;
16464 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
16465 if (!bpf_iter_prog_supported(prog))
16466 return -EINVAL;
16467 return 0;
16468 }
16469
16470 if (prog->type == BPF_PROG_TYPE_LSM) {
16471 ret = bpf_lsm_verify_prog(&env->log, prog);
16472 if (ret < 0)
16473 return ret;
35e3815f
JO
16474 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
16475 btf_id_set_contains(&btf_id_deny, btf_id)) {
16476 return -EINVAL;
38207291 16477 }
f7b12b6f 16478
22dc4a0f 16479 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
16480 tr = bpf_trampoline_get(key, &tgt_info);
16481 if (!tr)
16482 return -ENOMEM;
16483
3aac1ead 16484 prog->aux->dst_trampoline = tr;
f7b12b6f 16485 return 0;
38207291
MKL
16486}
16487
76654e67
AM
16488struct btf *bpf_get_btf_vmlinux(void)
16489{
16490 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
16491 mutex_lock(&bpf_verifier_lock);
16492 if (!btf_vmlinux)
16493 btf_vmlinux = btf_parse_vmlinux();
16494 mutex_unlock(&bpf_verifier_lock);
16495 }
16496 return btf_vmlinux;
16497}
16498
af2ac3e1 16499int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
51580e79 16500{
06ee7115 16501 u64 start_time = ktime_get_ns();
58e2af8b 16502 struct bpf_verifier_env *env;
b9193c1b 16503 struct bpf_verifier_log *log;
9e4c24e7 16504 int i, len, ret = -EINVAL;
e2ae4ca2 16505 bool is_priv;
51580e79 16506
eba0c929
AB
16507 /* no program is valid */
16508 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
16509 return -EINVAL;
16510
58e2af8b 16511 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
16512 * allocate/free it every time bpf_check() is called
16513 */
58e2af8b 16514 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
16515 if (!env)
16516 return -ENOMEM;
61bd5218 16517 log = &env->log;
cbd35700 16518
9e4c24e7 16519 len = (*prog)->len;
fad953ce 16520 env->insn_aux_data =
9e4c24e7 16521 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
16522 ret = -ENOMEM;
16523 if (!env->insn_aux_data)
16524 goto err_free_env;
9e4c24e7
JK
16525 for (i = 0; i < len; i++)
16526 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 16527 env->prog = *prog;
00176a34 16528 env->ops = bpf_verifier_ops[env->prog->type];
387544bf 16529 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
2c78ee89 16530 is_priv = bpf_capable();
0246e64d 16531
76654e67 16532 bpf_get_btf_vmlinux();
8580ac94 16533
cbd35700 16534 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
16535 if (!is_priv)
16536 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
16537
16538 if (attr->log_level || attr->log_buf || attr->log_size) {
16539 /* user requested verbose verifier output
16540 * and supplied buffer to store the verification trace
16541 */
e7bf8249
JK
16542 log->level = attr->log_level;
16543 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
16544 log->len_total = attr->log_size;
cbd35700 16545
e7bf8249 16546 /* log attributes have to be sane */
866de407
HT
16547 if (!bpf_verifier_log_attr_valid(log)) {
16548 ret = -EINVAL;
3df126f3 16549 goto err_unlock;
866de407 16550 }
cbd35700 16551 }
1ad2f583 16552
0f55f9ed
CL
16553 mark_verifier_state_clean(env);
16554
8580ac94
AS
16555 if (IS_ERR(btf_vmlinux)) {
16556 /* Either gcc or pahole or kernel are broken. */
16557 verbose(env, "in-kernel BTF is malformed\n");
16558 ret = PTR_ERR(btf_vmlinux);
38207291 16559 goto skip_full_check;
8580ac94
AS
16560 }
16561
1ad2f583
DB
16562 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
16563 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 16564 env->strict_alignment = true;
e9ee9efc
DM
16565 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
16566 env->strict_alignment = false;
cbd35700 16567
2c78ee89 16568 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 16569 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 16570 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
16571 env->bypass_spec_v1 = bpf_bypass_spec_v1();
16572 env->bypass_spec_v4 = bpf_bypass_spec_v4();
16573 env->bpf_capable = bpf_capable();
e2ae4ca2 16574
10d274e8
AS
16575 if (is_priv)
16576 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
16577
dc2a4ebc 16578 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 16579 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
16580 GFP_USER);
16581 ret = -ENOMEM;
16582 if (!env->explored_states)
16583 goto skip_full_check;
16584
e6ac2450
MKL
16585 ret = add_subprog_and_kfunc(env);
16586 if (ret < 0)
16587 goto skip_full_check;
16588
d9762e84 16589 ret = check_subprogs(env);
475fb78f
AS
16590 if (ret < 0)
16591 goto skip_full_check;
16592
c454a46b 16593 ret = check_btf_info(env, attr, uattr);
838e9690
YS
16594 if (ret < 0)
16595 goto skip_full_check;
16596
be8704ff
AS
16597 ret = check_attach_btf_id(env);
16598 if (ret)
16599 goto skip_full_check;
16600
4976b718
HL
16601 ret = resolve_pseudo_ldimm64(env);
16602 if (ret < 0)
16603 goto skip_full_check;
16604
ceb11679
YZ
16605 if (bpf_prog_is_dev_bound(env->prog->aux)) {
16606 ret = bpf_prog_offload_verifier_prep(env->prog);
16607 if (ret)
16608 goto skip_full_check;
16609 }
16610
d9762e84
MKL
16611 ret = check_cfg(env);
16612 if (ret < 0)
16613 goto skip_full_check;
16614
51c39bb1
AS
16615 ret = do_check_subprogs(env);
16616 ret = ret ?: do_check_main(env);
cbd35700 16617
c941ce9c
QM
16618 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
16619 ret = bpf_prog_offload_finalize(env);
16620
0246e64d 16621skip_full_check:
51c39bb1 16622 kvfree(env->explored_states);
0246e64d 16623
c131187d 16624 if (ret == 0)
9b38c405 16625 ret = check_max_stack_depth(env);
c131187d 16626
9b38c405 16627 /* instruction rewrites happen after this point */
1ade2371
EZ
16628 if (ret == 0)
16629 ret = optimize_bpf_loop(env);
16630
e2ae4ca2
JK
16631 if (is_priv) {
16632 if (ret == 0)
16633 opt_hard_wire_dead_code_branches(env);
52875a04
JK
16634 if (ret == 0)
16635 ret = opt_remove_dead_code(env);
a1b14abc
JK
16636 if (ret == 0)
16637 ret = opt_remove_nops(env);
52875a04
JK
16638 } else {
16639 if (ret == 0)
16640 sanitize_dead_code(env);
e2ae4ca2
JK
16641 }
16642
9bac3d6d
AS
16643 if (ret == 0)
16644 /* program is valid, convert *(u32*)(ctx + off) accesses */
16645 ret = convert_ctx_accesses(env);
16646
e245c5c6 16647 if (ret == 0)
e6ac5933 16648 ret = do_misc_fixups(env);
e245c5c6 16649
a4b1d3c1
JW
16650 /* do 32-bit optimization after insn patching has done so those patched
16651 * insns could be handled correctly.
16652 */
d6c2308c
JW
16653 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
16654 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
16655 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
16656 : false;
a4b1d3c1
JW
16657 }
16658
1ea47e01
AS
16659 if (ret == 0)
16660 ret = fixup_call_args(env);
16661
06ee7115
AS
16662 env->verification_time = ktime_get_ns() - start_time;
16663 print_verification_stats(env);
aba64c7d 16664 env->prog->aux->verified_insns = env->insn_processed;
06ee7115 16665
a2a7d570 16666 if (log->level && bpf_verifier_log_full(log))
cbd35700 16667 ret = -ENOSPC;
a2a7d570 16668 if (log->level && !log->ubuf) {
cbd35700 16669 ret = -EFAULT;
a2a7d570 16670 goto err_release_maps;
cbd35700
AS
16671 }
16672
541c3bad
AN
16673 if (ret)
16674 goto err_release_maps;
16675
16676 if (env->used_map_cnt) {
0246e64d 16677 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
16678 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
16679 sizeof(env->used_maps[0]),
16680 GFP_KERNEL);
0246e64d 16681
9bac3d6d 16682 if (!env->prog->aux->used_maps) {
0246e64d 16683 ret = -ENOMEM;
a2a7d570 16684 goto err_release_maps;
0246e64d
AS
16685 }
16686
9bac3d6d 16687 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 16688 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 16689 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
16690 }
16691 if (env->used_btf_cnt) {
16692 /* if program passed verifier, update used_btfs in bpf_prog_aux */
16693 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
16694 sizeof(env->used_btfs[0]),
16695 GFP_KERNEL);
16696 if (!env->prog->aux->used_btfs) {
16697 ret = -ENOMEM;
16698 goto err_release_maps;
16699 }
0246e64d 16700
541c3bad
AN
16701 memcpy(env->prog->aux->used_btfs, env->used_btfs,
16702 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
16703 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
16704 }
16705 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
16706 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
16707 * bpf_ld_imm64 instructions
16708 */
16709 convert_pseudo_ld_imm64(env);
16710 }
cbd35700 16711
541c3bad 16712 adjust_btf_func(env);
ba64e7d8 16713
a2a7d570 16714err_release_maps:
9bac3d6d 16715 if (!env->prog->aux->used_maps)
0246e64d 16716 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 16717 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
16718 */
16719 release_maps(env);
541c3bad
AN
16720 if (!env->prog->aux->used_btfs)
16721 release_btfs(env);
03f87c0b
THJ
16722
16723 /* extension progs temporarily inherit the attach_type of their targets
16724 for verification purposes, so set it back to zero before returning
16725 */
16726 if (env->prog->type == BPF_PROG_TYPE_EXT)
16727 env->prog->expected_attach_type = 0;
16728
9bac3d6d 16729 *prog = env->prog;
3df126f3 16730err_unlock:
45a73c17
AS
16731 if (!is_priv)
16732 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
16733 vfree(env->insn_aux_data);
16734err_free_env:
16735 kfree(env);
51580e79
AS
16736 return ret;
16737}