selftests/bpf: fix test_align
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
58e2af8b 694 int size, int value_regno)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
9c399760 725 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 726 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 727 } else {
17a52670 728 /* regular write of data into stack */
638f5b90 729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
730
731 for (i = 0; i < size; i++)
638f5b90
AS
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
17a52670
AS
734 }
735 return 0;
736}
737
dc503a8a
EC
738static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739{
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
638f5b90 744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
745 break;
746 /* ... then we depend on parent's value */
638f5b90 747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
748 state = parent;
749 parent = state->parent;
750 }
751}
752
61bd5218
JK
753static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
755 int value_regno)
756{
638f5b90
AS
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
17a52670 759
638f5b90
AS
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
17a52670 766
638f5b90 767 if (stype[0] == STACK_SPILL) {
9c399760 768 if (size != BPF_REG_SIZE) {
61bd5218 769 verbose(env, "invalid size of register spill\n");
17a52670
AS
770 return -EACCES;
771 }
9c399760 772 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 774 verbose(env, "corrupted spill memory\n");
17a52670
AS
775 return -EACCES;
776 }
777 }
778
dc503a8a 779 if (value_regno >= 0) {
17a52670 780 /* restore register state from stack */
638f5b90 781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
782 mark_stack_slot_read(state, spi);
783 }
17a52670
AS
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
638f5b90 787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 788 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
61bd5218 795 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
796 return 0;
797 }
798}
799
800/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 801static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 802 int size, bool zero_size_allowed)
17a52670 803{
638f5b90
AS
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
17a52670 806
9fd29c08
YS
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
61bd5218 809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814}
815
f1174f77
EC
816/* check read/write into a map element with possible variable offset */
817static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 818 int off, int size, bool zero_size_allowed)
dbcfe5f7 819{
638f5b90 820 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
f1174f77
EC
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
dbcfe5f7 827 */
61bd5218
JK
828 if (env->log.level)
829 print_verifier_state(env, state);
dbcfe5f7
GB
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
b03c9f9f 836 if (reg->smin_value < 0) {
61bd5218 837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
838 regno);
839 return -EACCES;
840 }
9fd29c08
YS
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
dbcfe5f7 843 if (err) {
61bd5218
JK
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
dbcfe5f7
GB
846 return err;
847 }
848
b03c9f9f
EC
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 852 */
b03c9f9f 853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
855 regno);
856 return -EACCES;
857 }
9fd29c08
YS
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
f1174f77 860 if (err)
61bd5218
JK
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
f1174f77 863 return err;
dbcfe5f7
GB
864}
865
969bf05e
AS
866#define MAX_PACKET_OFF 0xffff
867
58e2af8b 868static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
4acf6c0b 871{
36bbef52 872 switch (env->prog->type) {
3a0af8fd
TG
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
7e57fbb2 878 /* fallthrough */
36bbef52
DB
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 881 case BPF_PROG_TYPE_XDP:
3a0af8fd 882 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 883 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
4acf6c0b
BB
888 return true;
889 default:
890 return false;
891 }
892}
893
f1174f77 894static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 895 int off, int size, bool zero_size_allowed)
969bf05e 896{
638f5b90 897 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 898 struct bpf_reg_state *reg = &regs[regno];
969bf05e 899
9fd29c08
YS
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
61bd5218 902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 903 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
904 return -EACCES;
905 }
906 return 0;
907}
908
f1174f77 909static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 910 int size, bool zero_size_allowed)
f1174f77 911{
638f5b90 912 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
b03c9f9f 924 if (reg->smin_value < 0) {
61bd5218 925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
926 regno);
927 return -EACCES;
928 }
9fd29c08 929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 930 if (err) {
61bd5218 931 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
932 return err;
933 }
934 return err;
935}
936
937/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 938static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 940{
f96da094
DB
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
31fd8581 944
4f9218aa
JK
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
31fd8581 953 */
23994631 954 *reg_type = info.reg_type;
31fd8581 955
4f9218aa 956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
17a52670 960 return 0;
32bbe007 961 }
17a52670 962
61bd5218 963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
964 return -EACCES;
965}
966
4cabc5b1
DB
967static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
1be7f75d 969{
4cabc5b1 970 if (allow_ptr_leaks)
1be7f75d
AS
971 return false;
972
f1174f77 973 return reg->type != SCALAR_VALUE;
1be7f75d
AS
974}
975
4cabc5b1
DB
976static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977{
638f5b90 978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
979}
980
61bd5218
JK
981static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
d1174416 983 int off, int size, bool strict)
969bf05e 984{
f1174f77 985 struct tnum reg_off;
e07b98d9 986 int ip_align;
d1174416
DM
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
e4eda884
DM
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
e07b98d9 999 */
e4eda884 1000 ip_align = 2;
f1174f77
EC
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1009 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1010 return -EACCES;
1011 }
79adffcd 1012
969bf05e
AS
1013 return 0;
1014}
1015
61bd5218
JK
1016static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
f1174f77
EC
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
79adffcd 1020{
f1174f77
EC
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1033 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1034 return -EACCES;
1035 }
1036
969bf05e
AS
1037 return 0;
1038}
1039
e07b98d9
DM
1040static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
79adffcd
DB
1042 int off, int size)
1043{
e07b98d9 1044 bool strict = env->strict_alignment;
f1174f77 1045 const char *pointer_desc = "";
d1174416 1046
79adffcd
DB
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
de8f3a83
DB
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
61bd5218 1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
a5ec6ae1
JH
1062 /* The stack spill tracking logic in check_stack_write()
1063 * and check_stack_read() relies on stack accesses being
1064 * aligned.
1065 */
1066 strict = true;
f1174f77 1067 break;
79adffcd 1068 default:
f1174f77 1069 break;
79adffcd 1070 }
61bd5218
JK
1071 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1072 strict);
79adffcd
DB
1073}
1074
0c17d1d2
JH
1075/* truncate register to smaller size (in bytes)
1076 * must be called with size < BPF_REG_SIZE
1077 */
1078static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1079{
1080 u64 mask;
1081
1082 /* clear high bits in bit representation */
1083 reg->var_off = tnum_cast(reg->var_off, size);
1084
1085 /* fix arithmetic bounds */
1086 mask = ((u64)1 << (size * 8)) - 1;
1087 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1088 reg->umin_value &= mask;
1089 reg->umax_value &= mask;
1090 } else {
1091 reg->umin_value = 0;
1092 reg->umax_value = mask;
1093 }
1094 reg->smin_value = reg->umin_value;
1095 reg->smax_value = reg->umax_value;
1096}
1097
17a52670
AS
1098/* check whether memory at (regno + off) is accessible for t = (read | write)
1099 * if t==write, value_regno is a register which value is stored into memory
1100 * if t==read, value_regno is a register which will receive the value from memory
1101 * if t==write && value_regno==-1, some unknown value is stored into memory
1102 * if t==read && value_regno==-1, don't care what we read from memory
1103 */
31fd8581 1104static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
17a52670
AS
1105 int bpf_size, enum bpf_access_type t,
1106 int value_regno)
1107{
638f5b90
AS
1108 struct bpf_verifier_state *state = env->cur_state;
1109 struct bpf_reg_state *regs = cur_regs(env);
1110 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1111 int size, err = 0;
1112
1113 size = bpf_size_to_bytes(bpf_size);
1114 if (size < 0)
1115 return size;
1116
f1174f77 1117 /* alignment checks will add in reg->off themselves */
e07b98d9 1118 err = check_ptr_alignment(env, reg, off, size);
969bf05e
AS
1119 if (err)
1120 return err;
17a52670 1121
f1174f77
EC
1122 /* for access checks, reg->off is just part of off */
1123 off += reg->off;
1124
1125 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1126 if (t == BPF_WRITE && value_regno >= 0 &&
1127 is_pointer_value(env, value_regno)) {
61bd5218 1128 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1129 return -EACCES;
1130 }
48461135 1131
9fd29c08 1132 err = check_map_access(env, regno, off, size, false);
17a52670 1133 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1134 mark_reg_unknown(env, regs, value_regno);
17a52670 1135
1a0dc1ac 1136 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1137 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1138
1be7f75d
AS
1139 if (t == BPF_WRITE && value_regno >= 0 &&
1140 is_pointer_value(env, value_regno)) {
61bd5218 1141 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1142 return -EACCES;
1143 }
f1174f77
EC
1144 /* ctx accesses must be at a fixed offset, so that we can
1145 * determine what type of data were returned.
1146 */
28e33f9d 1147 if (reg->off) {
f8ddadc4
DM
1148 verbose(env,
1149 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1150 regno, reg->off, off - reg->off);
1151 return -EACCES;
1152 }
1153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1154 char tn_buf[48];
1155
1156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1157 verbose(env,
1158 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1159 tn_buf, off, size);
1160 return -EACCES;
1161 }
31fd8581 1162 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1163 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1164 /* ctx access returns either a scalar, or a
de8f3a83
DB
1165 * PTR_TO_PACKET[_META,_END]. In the latter
1166 * case, we know the offset is zero.
f1174f77
EC
1167 */
1168 if (reg_type == SCALAR_VALUE)
638f5b90 1169 mark_reg_unknown(env, regs, value_regno);
f1174f77 1170 else
638f5b90 1171 mark_reg_known_zero(env, regs,
61bd5218 1172 value_regno);
638f5b90
AS
1173 regs[value_regno].id = 0;
1174 regs[value_regno].off = 0;
1175 regs[value_regno].range = 0;
1176 regs[value_regno].type = reg_type;
969bf05e 1177 }
17a52670 1178
f1174f77
EC
1179 } else if (reg->type == PTR_TO_STACK) {
1180 /* stack accesses must be at a fixed offset, so that we can
1181 * determine what type of data were returned.
1182 * See check_stack_read().
1183 */
1184 if (!tnum_is_const(reg->var_off)) {
1185 char tn_buf[48];
1186
1187 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1188 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1189 tn_buf, off, size);
1190 return -EACCES;
1191 }
1192 off += reg->var_off.value;
17a52670 1193 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1194 verbose(env, "invalid stack off=%d size=%d\n", off,
1195 size);
17a52670
AS
1196 return -EACCES;
1197 }
8726679a
AS
1198
1199 if (env->prog->aux->stack_depth < -off)
1200 env->prog->aux->stack_depth = -off;
1201
638f5b90 1202 if (t == BPF_WRITE)
61bd5218
JK
1203 err = check_stack_write(env, state, off, size,
1204 value_regno);
638f5b90 1205 else
61bd5218
JK
1206 err = check_stack_read(env, state, off, size,
1207 value_regno);
de8f3a83 1208 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1209 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1210 verbose(env, "cannot write into packet\n");
969bf05e
AS
1211 return -EACCES;
1212 }
4acf6c0b
BB
1213 if (t == BPF_WRITE && value_regno >= 0 &&
1214 is_pointer_value(env, value_regno)) {
61bd5218
JK
1215 verbose(env, "R%d leaks addr into packet\n",
1216 value_regno);
4acf6c0b
BB
1217 return -EACCES;
1218 }
9fd29c08 1219 err = check_packet_access(env, regno, off, size, false);
969bf05e 1220 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1221 mark_reg_unknown(env, regs, value_regno);
17a52670 1222 } else {
61bd5218
JK
1223 verbose(env, "R%d invalid mem access '%s'\n", regno,
1224 reg_type_str[reg->type]);
17a52670
AS
1225 return -EACCES;
1226 }
969bf05e 1227
f1174f77 1228 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1229 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1230 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1231 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1232 }
17a52670
AS
1233 return err;
1234}
1235
31fd8581 1236static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1237{
17a52670
AS
1238 int err;
1239
1240 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1241 insn->imm != 0) {
61bd5218 1242 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1243 return -EINVAL;
1244 }
1245
1246 /* check src1 operand */
dc503a8a 1247 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1248 if (err)
1249 return err;
1250
1251 /* check src2 operand */
dc503a8a 1252 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1253 if (err)
1254 return err;
1255
6bdf6abc 1256 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1257 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1258 return -EACCES;
1259 }
1260
17a52670 1261 /* check whether atomic_add can read the memory */
31fd8581 1262 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1263 BPF_SIZE(insn->code), BPF_READ, -1);
1264 if (err)
1265 return err;
1266
1267 /* check whether atomic_add can write into the same memory */
31fd8581 1268 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
1269 BPF_SIZE(insn->code), BPF_WRITE, -1);
1270}
1271
f1174f77
EC
1272/* Does this register contain a constant zero? */
1273static bool register_is_null(struct bpf_reg_state reg)
1274{
1275 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1276}
1277
17a52670
AS
1278/* when register 'regno' is passed into function that will read 'access_size'
1279 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1280 * and all elements of stack are initialized.
1281 * Unlike most pointer bounds-checking functions, this one doesn't take an
1282 * 'off' argument, so it has to add in reg->off itself.
17a52670 1283 */
58e2af8b 1284static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1285 int access_size, bool zero_size_allowed,
1286 struct bpf_call_arg_meta *meta)
17a52670 1287{
638f5b90 1288 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1289 struct bpf_reg_state *regs = state->regs;
638f5b90 1290 int off, i, slot, spi;
17a52670 1291
8e2fe1d9 1292 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1293 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1294 if (zero_size_allowed && access_size == 0 &&
f1174f77 1295 register_is_null(regs[regno]))
8e2fe1d9
DB
1296 return 0;
1297
61bd5218 1298 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1299 reg_type_str[regs[regno].type],
1300 reg_type_str[PTR_TO_STACK]);
17a52670 1301 return -EACCES;
8e2fe1d9 1302 }
17a52670 1303
f1174f77
EC
1304 /* Only allow fixed-offset stack reads */
1305 if (!tnum_is_const(regs[regno].var_off)) {
1306 char tn_buf[48];
1307
1308 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1309 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1310 regno, tn_buf);
ea25f914 1311 return -EACCES;
f1174f77
EC
1312 }
1313 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1314 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1315 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1316 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1317 regno, off, access_size);
1318 return -EACCES;
1319 }
1320
8726679a
AS
1321 if (env->prog->aux->stack_depth < -off)
1322 env->prog->aux->stack_depth = -off;
1323
435faee1
DB
1324 if (meta && meta->raw_mode) {
1325 meta->access_size = access_size;
1326 meta->regno = regno;
1327 return 0;
1328 }
1329
17a52670 1330 for (i = 0; i < access_size; i++) {
638f5b90
AS
1331 slot = -(off + i) - 1;
1332 spi = slot / BPF_REG_SIZE;
1333 if (state->allocated_stack <= slot ||
1334 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1335 STACK_MISC) {
61bd5218 1336 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1337 off, i, access_size);
1338 return -EACCES;
1339 }
1340 }
1341 return 0;
1342}
1343
06c1c049
GB
1344static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1345 int access_size, bool zero_size_allowed,
1346 struct bpf_call_arg_meta *meta)
1347{
638f5b90 1348 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1349
f1174f77 1350 switch (reg->type) {
06c1c049 1351 case PTR_TO_PACKET:
de8f3a83 1352 case PTR_TO_PACKET_META:
9fd29c08
YS
1353 return check_packet_access(env, regno, reg->off, access_size,
1354 zero_size_allowed);
06c1c049 1355 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1356 return check_map_access(env, regno, reg->off, access_size,
1357 zero_size_allowed);
f1174f77 1358 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1359 return check_stack_boundary(env, regno, access_size,
1360 zero_size_allowed, meta);
1361 }
1362}
1363
58e2af8b 1364static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1365 enum bpf_arg_type arg_type,
1366 struct bpf_call_arg_meta *meta)
17a52670 1367{
638f5b90 1368 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1369 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1370 int err = 0;
1371
80f1d68c 1372 if (arg_type == ARG_DONTCARE)
17a52670
AS
1373 return 0;
1374
dc503a8a
EC
1375 err = check_reg_arg(env, regno, SRC_OP);
1376 if (err)
1377 return err;
17a52670 1378
1be7f75d
AS
1379 if (arg_type == ARG_ANYTHING) {
1380 if (is_pointer_value(env, regno)) {
61bd5218
JK
1381 verbose(env, "R%d leaks addr into helper function\n",
1382 regno);
1be7f75d
AS
1383 return -EACCES;
1384 }
80f1d68c 1385 return 0;
1be7f75d 1386 }
80f1d68c 1387
de8f3a83 1388 if (type_is_pkt_pointer(type) &&
3a0af8fd 1389 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1390 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1391 return -EACCES;
1392 }
1393
8e2fe1d9 1394 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1395 arg_type == ARG_PTR_TO_MAP_VALUE) {
1396 expected_type = PTR_TO_STACK;
de8f3a83
DB
1397 if (!type_is_pkt_pointer(type) &&
1398 type != expected_type)
6841de8b 1399 goto err_type;
39f19ebb
AS
1400 } else if (arg_type == ARG_CONST_SIZE ||
1401 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1402 expected_type = SCALAR_VALUE;
1403 if (type != expected_type)
6841de8b 1404 goto err_type;
17a52670
AS
1405 } else if (arg_type == ARG_CONST_MAP_PTR) {
1406 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1407 if (type != expected_type)
1408 goto err_type;
608cd71a
AS
1409 } else if (arg_type == ARG_PTR_TO_CTX) {
1410 expected_type = PTR_TO_CTX;
6841de8b
AS
1411 if (type != expected_type)
1412 goto err_type;
39f19ebb 1413 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1414 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1415 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1416 expected_type = PTR_TO_STACK;
1417 /* One exception here. In case function allows for NULL to be
f1174f77 1418 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1419 * happens during stack boundary checking.
1420 */
db1ac496
GB
1421 if (register_is_null(*reg) &&
1422 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1423 /* final test in check_stack_boundary() */;
de8f3a83
DB
1424 else if (!type_is_pkt_pointer(type) &&
1425 type != PTR_TO_MAP_VALUE &&
f1174f77 1426 type != expected_type)
6841de8b 1427 goto err_type;
39f19ebb 1428 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1429 } else {
61bd5218 1430 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1431 return -EFAULT;
1432 }
1433
17a52670
AS
1434 if (arg_type == ARG_CONST_MAP_PTR) {
1435 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1436 meta->map_ptr = reg->map_ptr;
17a52670
AS
1437 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1438 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1439 * check that [key, key + map->key_size) are within
1440 * stack limits and initialized
1441 */
33ff9823 1442 if (!meta->map_ptr) {
17a52670
AS
1443 /* in function declaration map_ptr must come before
1444 * map_key, so that it's verified and known before
1445 * we have to check map_key here. Otherwise it means
1446 * that kernel subsystem misconfigured verifier
1447 */
61bd5218 1448 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1449 return -EACCES;
1450 }
de8f3a83 1451 if (type_is_pkt_pointer(type))
f1174f77 1452 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1453 meta->map_ptr->key_size,
1454 false);
6841de8b
AS
1455 else
1456 err = check_stack_boundary(env, regno,
1457 meta->map_ptr->key_size,
1458 false, NULL);
17a52670
AS
1459 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1460 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1461 * check [value, value + map->value_size) validity
1462 */
33ff9823 1463 if (!meta->map_ptr) {
17a52670 1464 /* kernel subsystem misconfigured verifier */
61bd5218 1465 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1466 return -EACCES;
1467 }
de8f3a83 1468 if (type_is_pkt_pointer(type))
f1174f77 1469 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1470 meta->map_ptr->value_size,
1471 false);
6841de8b
AS
1472 else
1473 err = check_stack_boundary(env, regno,
1474 meta->map_ptr->value_size,
1475 false, NULL);
39f19ebb
AS
1476 } else if (arg_type == ARG_CONST_SIZE ||
1477 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1478 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1479
17a52670
AS
1480 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1481 * from stack pointer 'buf'. Check it
1482 * note: regno == len, regno - 1 == buf
1483 */
1484 if (regno == 0) {
1485 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1486 verbose(env,
1487 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1488 return -EACCES;
1489 }
06c1c049 1490
f1174f77
EC
1491 /* The register is SCALAR_VALUE; the access check
1492 * happens using its boundaries.
06c1c049 1493 */
f1174f77
EC
1494
1495 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1496 /* For unprivileged variable accesses, disable raw
1497 * mode so that the program is required to
1498 * initialize all the memory that the helper could
1499 * just partially fill up.
1500 */
1501 meta = NULL;
1502
b03c9f9f 1503 if (reg->smin_value < 0) {
61bd5218 1504 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1505 regno);
1506 return -EACCES;
1507 }
06c1c049 1508
b03c9f9f 1509 if (reg->umin_value == 0) {
f1174f77
EC
1510 err = check_helper_mem_access(env, regno - 1, 0,
1511 zero_size_allowed,
1512 meta);
06c1c049
GB
1513 if (err)
1514 return err;
06c1c049 1515 }
f1174f77 1516
b03c9f9f 1517 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1518 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1519 regno);
1520 return -EACCES;
1521 }
1522 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1523 reg->umax_value,
f1174f77 1524 zero_size_allowed, meta);
17a52670
AS
1525 }
1526
1527 return err;
6841de8b 1528err_type:
61bd5218 1529 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1530 reg_type_str[type], reg_type_str[expected_type]);
1531 return -EACCES;
17a52670
AS
1532}
1533
61bd5218
JK
1534static int check_map_func_compatibility(struct bpf_verifier_env *env,
1535 struct bpf_map *map, int func_id)
35578d79 1536{
35578d79
KX
1537 if (!map)
1538 return 0;
1539
6aff67c8
AS
1540 /* We need a two way check, first is from map perspective ... */
1541 switch (map->map_type) {
1542 case BPF_MAP_TYPE_PROG_ARRAY:
1543 if (func_id != BPF_FUNC_tail_call)
1544 goto error;
1545 break;
1546 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1547 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1548 func_id != BPF_FUNC_perf_event_output &&
1549 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1550 goto error;
1551 break;
1552 case BPF_MAP_TYPE_STACK_TRACE:
1553 if (func_id != BPF_FUNC_get_stackid)
1554 goto error;
1555 break;
4ed8ec52 1556 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1557 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1558 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1559 goto error;
1560 break;
546ac1ff
JF
1561 /* devmap returns a pointer to a live net_device ifindex that we cannot
1562 * allow to be modified from bpf side. So do not allow lookup elements
1563 * for now.
1564 */
1565 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1566 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1567 goto error;
1568 break;
6710e112
JDB
1569 /* Restrict bpf side of cpumap, open when use-cases appear */
1570 case BPF_MAP_TYPE_CPUMAP:
1571 if (func_id != BPF_FUNC_redirect_map)
1572 goto error;
1573 break;
56f668df 1574 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1575 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1576 if (func_id != BPF_FUNC_map_lookup_elem)
1577 goto error;
16a43625 1578 break;
174a79ff
JF
1579 case BPF_MAP_TYPE_SOCKMAP:
1580 if (func_id != BPF_FUNC_sk_redirect_map &&
1581 func_id != BPF_FUNC_sock_map_update &&
1582 func_id != BPF_FUNC_map_delete_elem)
1583 goto error;
1584 break;
6aff67c8
AS
1585 default:
1586 break;
1587 }
1588
1589 /* ... and second from the function itself. */
1590 switch (func_id) {
1591 case BPF_FUNC_tail_call:
1592 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1593 goto error;
1594 break;
1595 case BPF_FUNC_perf_event_read:
1596 case BPF_FUNC_perf_event_output:
908432ca 1597 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1598 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1599 goto error;
1600 break;
1601 case BPF_FUNC_get_stackid:
1602 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1603 goto error;
1604 break;
60d20f91 1605 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1606 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1607 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1608 goto error;
1609 break;
97f91a7c 1610 case BPF_FUNC_redirect_map:
9c270af3
JDB
1611 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1612 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1613 goto error;
1614 break;
174a79ff
JF
1615 case BPF_FUNC_sk_redirect_map:
1616 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1617 goto error;
1618 break;
1619 case BPF_FUNC_sock_map_update:
1620 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1621 goto error;
1622 break;
6aff67c8
AS
1623 default:
1624 break;
35578d79
KX
1625 }
1626
1627 return 0;
6aff67c8 1628error:
61bd5218 1629 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1630 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1631 return -EINVAL;
35578d79
KX
1632}
1633
435faee1
DB
1634static int check_raw_mode(const struct bpf_func_proto *fn)
1635{
1636 int count = 0;
1637
39f19ebb 1638 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1639 count++;
39f19ebb 1640 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1641 count++;
39f19ebb 1642 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1643 count++;
39f19ebb 1644 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1645 count++;
39f19ebb 1646 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1647 count++;
1648
1649 return count > 1 ? -EINVAL : 0;
1650}
1651
de8f3a83
DB
1652/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1653 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1654 */
58e2af8b 1655static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1656{
638f5b90 1657 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1658 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1659 int i;
1660
1661 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1662 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1663 mark_reg_unknown(env, regs, i);
969bf05e 1664
638f5b90
AS
1665 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1666 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1667 continue;
638f5b90 1668 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1669 if (reg_is_pkt_pointer_any(reg))
1670 __mark_reg_unknown(reg);
969bf05e
AS
1671 }
1672}
1673
81ed18ab 1674static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1675{
17a52670 1676 const struct bpf_func_proto *fn = NULL;
638f5b90 1677 struct bpf_reg_state *regs;
33ff9823 1678 struct bpf_call_arg_meta meta;
969bf05e 1679 bool changes_data;
17a52670
AS
1680 int i, err;
1681
1682 /* find function prototype */
1683 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1684 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1685 func_id);
17a52670
AS
1686 return -EINVAL;
1687 }
1688
00176a34
JK
1689 if (env->ops->get_func_proto)
1690 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1691
1692 if (!fn) {
61bd5218
JK
1693 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1694 func_id);
17a52670
AS
1695 return -EINVAL;
1696 }
1697
1698 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1699 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1700 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1701 return -EINVAL;
1702 }
1703
04514d13 1704 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1705 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1706 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1707 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1708 func_id_name(func_id), func_id);
1709 return -EINVAL;
1710 }
969bf05e 1711
33ff9823 1712 memset(&meta, 0, sizeof(meta));
36bbef52 1713 meta.pkt_access = fn->pkt_access;
33ff9823 1714
435faee1
DB
1715 /* We only support one arg being in raw mode at the moment, which
1716 * is sufficient for the helper functions we have right now.
1717 */
1718 err = check_raw_mode(fn);
1719 if (err) {
61bd5218 1720 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1721 func_id_name(func_id), func_id);
435faee1
DB
1722 return err;
1723 }
1724
17a52670 1725 /* check args */
33ff9823 1726 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1727 if (err)
1728 return err;
33ff9823 1729 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1730 if (err)
1731 return err;
33ff9823 1732 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1733 if (err)
1734 return err;
33ff9823 1735 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1736 if (err)
1737 return err;
33ff9823 1738 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1739 if (err)
1740 return err;
1741
435faee1
DB
1742 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1743 * is inferred from register state.
1744 */
1745 for (i = 0; i < meta.access_size; i++) {
31fd8581 1746 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
435faee1
DB
1747 if (err)
1748 return err;
1749 }
1750
638f5b90 1751 regs = cur_regs(env);
17a52670 1752 /* reset caller saved regs */
dc503a8a 1753 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1754 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1755 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1756 }
17a52670 1757
dc503a8a 1758 /* update return register (already marked as written above) */
17a52670 1759 if (fn->ret_type == RET_INTEGER) {
f1174f77 1760 /* sets type to SCALAR_VALUE */
61bd5218 1761 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1762 } else if (fn->ret_type == RET_VOID) {
1763 regs[BPF_REG_0].type = NOT_INIT;
1764 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1765 struct bpf_insn_aux_data *insn_aux;
1766
17a52670 1767 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1768 /* There is no offset yet applied, variable or fixed */
61bd5218 1769 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1770 regs[BPF_REG_0].off = 0;
17a52670
AS
1771 /* remember map_ptr, so that check_map_access()
1772 * can check 'value_size' boundary of memory access
1773 * to map element returned from bpf_map_lookup_elem()
1774 */
33ff9823 1775 if (meta.map_ptr == NULL) {
61bd5218
JK
1776 verbose(env,
1777 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1778 return -EINVAL;
1779 }
33ff9823 1780 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1781 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1782 insn_aux = &env->insn_aux_data[insn_idx];
1783 if (!insn_aux->map_ptr)
1784 insn_aux->map_ptr = meta.map_ptr;
1785 else if (insn_aux->map_ptr != meta.map_ptr)
1786 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1787 } else {
61bd5218 1788 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1789 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1790 return -EINVAL;
1791 }
04fd61ab 1792
61bd5218 1793 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1794 if (err)
1795 return err;
04fd61ab 1796
969bf05e
AS
1797 if (changes_data)
1798 clear_all_pkt_pointers(env);
1799 return 0;
1800}
1801
b03c9f9f
EC
1802static bool signed_add_overflows(s64 a, s64 b)
1803{
1804 /* Do the add in u64, where overflow is well-defined */
1805 s64 res = (s64)((u64)a + (u64)b);
1806
1807 if (b < 0)
1808 return res > a;
1809 return res < a;
1810}
1811
1812static bool signed_sub_overflows(s64 a, s64 b)
1813{
1814 /* Do the sub in u64, where overflow is well-defined */
1815 s64 res = (s64)((u64)a - (u64)b);
1816
1817 if (b < 0)
1818 return res < a;
1819 return res > a;
969bf05e
AS
1820}
1821
bb7f0f98
AS
1822static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1823 const struct bpf_reg_state *reg,
1824 enum bpf_reg_type type)
1825{
1826 bool known = tnum_is_const(reg->var_off);
1827 s64 val = reg->var_off.value;
1828 s64 smin = reg->smin_value;
1829
1830 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1831 verbose(env, "math between %s pointer and %lld is not allowed\n",
1832 reg_type_str[type], val);
1833 return false;
1834 }
1835
1836 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1837 verbose(env, "%s pointer offset %d is not allowed\n",
1838 reg_type_str[type], reg->off);
1839 return false;
1840 }
1841
1842 if (smin == S64_MIN) {
1843 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1844 reg_type_str[type]);
1845 return false;
1846 }
1847
1848 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1849 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1850 smin, reg_type_str[type]);
1851 return false;
1852 }
1853
1854 return true;
1855}
1856
f1174f77 1857/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1858 * Caller should also handle BPF_MOV case separately.
1859 * If we return -EACCES, caller may want to try again treating pointer as a
1860 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1861 */
1862static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1863 struct bpf_insn *insn,
1864 const struct bpf_reg_state *ptr_reg,
1865 const struct bpf_reg_state *off_reg)
969bf05e 1866{
638f5b90 1867 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1868 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1869 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1870 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1871 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1872 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1873 u8 opcode = BPF_OP(insn->code);
f1174f77 1874 u32 dst = insn->dst_reg;
969bf05e 1875
f1174f77 1876 dst_reg = &regs[dst];
969bf05e 1877
b03c9f9f 1878 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
638f5b90 1879 print_verifier_state(env, env->cur_state);
61bd5218
JK
1880 verbose(env,
1881 "verifier internal error: known but bad sbounds\n");
b03c9f9f
EC
1882 return -EINVAL;
1883 }
1884 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
638f5b90 1885 print_verifier_state(env, env->cur_state);
61bd5218
JK
1886 verbose(env,
1887 "verifier internal error: known but bad ubounds\n");
f1174f77
EC
1888 return -EINVAL;
1889 }
1890
1891 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1892 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
1893 verbose(env,
1894 "R%d 32-bit pointer arithmetic prohibited\n",
1895 dst);
f1174f77 1896 return -EACCES;
969bf05e
AS
1897 }
1898
f1174f77 1899 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
1900 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1901 dst);
f1174f77
EC
1902 return -EACCES;
1903 }
1904 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
1905 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1906 dst);
f1174f77
EC
1907 return -EACCES;
1908 }
1909 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
1910 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1911 dst);
f1174f77
EC
1912 return -EACCES;
1913 }
1914
1915 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1916 * The id may be overwritten later if we create a new variable offset.
969bf05e 1917 */
f1174f77
EC
1918 dst_reg->type = ptr_reg->type;
1919 dst_reg->id = ptr_reg->id;
969bf05e 1920
bb7f0f98
AS
1921 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1922 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1923 return -EINVAL;
1924
f1174f77
EC
1925 switch (opcode) {
1926 case BPF_ADD:
1927 /* We can take a fixed offset as long as it doesn't overflow
1928 * the s32 'off' field
969bf05e 1929 */
b03c9f9f
EC
1930 if (known && (ptr_reg->off + smin_val ==
1931 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1932 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1933 dst_reg->smin_value = smin_ptr;
1934 dst_reg->smax_value = smax_ptr;
1935 dst_reg->umin_value = umin_ptr;
1936 dst_reg->umax_value = umax_ptr;
f1174f77 1937 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1938 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1939 dst_reg->range = ptr_reg->range;
1940 break;
1941 }
f1174f77
EC
1942 /* A new variable offset is created. Note that off_reg->off
1943 * == 0, since it's a scalar.
1944 * dst_reg gets the pointer type and since some positive
1945 * integer value was added to the pointer, give it a new 'id'
1946 * if it's a PTR_TO_PACKET.
1947 * this creates a new 'base' pointer, off_reg (variable) gets
1948 * added into the variable offset, and we copy the fixed offset
1949 * from ptr_reg.
969bf05e 1950 */
b03c9f9f
EC
1951 if (signed_add_overflows(smin_ptr, smin_val) ||
1952 signed_add_overflows(smax_ptr, smax_val)) {
1953 dst_reg->smin_value = S64_MIN;
1954 dst_reg->smax_value = S64_MAX;
1955 } else {
1956 dst_reg->smin_value = smin_ptr + smin_val;
1957 dst_reg->smax_value = smax_ptr + smax_val;
1958 }
1959 if (umin_ptr + umin_val < umin_ptr ||
1960 umax_ptr + umax_val < umax_ptr) {
1961 dst_reg->umin_value = 0;
1962 dst_reg->umax_value = U64_MAX;
1963 } else {
1964 dst_reg->umin_value = umin_ptr + umin_val;
1965 dst_reg->umax_value = umax_ptr + umax_val;
1966 }
f1174f77
EC
1967 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1968 dst_reg->off = ptr_reg->off;
de8f3a83 1969 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
1970 dst_reg->id = ++env->id_gen;
1971 /* something was added to pkt_ptr, set range to zero */
1972 dst_reg->range = 0;
1973 }
1974 break;
1975 case BPF_SUB:
1976 if (dst_reg == off_reg) {
1977 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
1978 verbose(env, "R%d tried to subtract pointer from scalar\n",
1979 dst);
f1174f77
EC
1980 return -EACCES;
1981 }
1982 /* We don't allow subtraction from FP, because (according to
1983 * test_verifier.c test "invalid fp arithmetic", JITs might not
1984 * be able to deal with it.
969bf05e 1985 */
f1174f77 1986 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
1987 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1988 dst);
f1174f77
EC
1989 return -EACCES;
1990 }
b03c9f9f
EC
1991 if (known && (ptr_reg->off - smin_val ==
1992 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 1993 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
1994 dst_reg->smin_value = smin_ptr;
1995 dst_reg->smax_value = smax_ptr;
1996 dst_reg->umin_value = umin_ptr;
1997 dst_reg->umax_value = umax_ptr;
f1174f77
EC
1998 dst_reg->var_off = ptr_reg->var_off;
1999 dst_reg->id = ptr_reg->id;
b03c9f9f 2000 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2001 dst_reg->range = ptr_reg->range;
2002 break;
2003 }
f1174f77
EC
2004 /* A new variable offset is created. If the subtrahend is known
2005 * nonnegative, then any reg->range we had before is still good.
969bf05e 2006 */
b03c9f9f
EC
2007 if (signed_sub_overflows(smin_ptr, smax_val) ||
2008 signed_sub_overflows(smax_ptr, smin_val)) {
2009 /* Overflow possible, we know nothing */
2010 dst_reg->smin_value = S64_MIN;
2011 dst_reg->smax_value = S64_MAX;
2012 } else {
2013 dst_reg->smin_value = smin_ptr - smax_val;
2014 dst_reg->smax_value = smax_ptr - smin_val;
2015 }
2016 if (umin_ptr < umax_val) {
2017 /* Overflow possible, we know nothing */
2018 dst_reg->umin_value = 0;
2019 dst_reg->umax_value = U64_MAX;
2020 } else {
2021 /* Cannot overflow (as long as bounds are consistent) */
2022 dst_reg->umin_value = umin_ptr - umax_val;
2023 dst_reg->umax_value = umax_ptr - umin_val;
2024 }
f1174f77
EC
2025 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2026 dst_reg->off = ptr_reg->off;
de8f3a83 2027 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2028 dst_reg->id = ++env->id_gen;
2029 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2030 if (smin_val < 0)
f1174f77 2031 dst_reg->range = 0;
43188702 2032 }
f1174f77
EC
2033 break;
2034 case BPF_AND:
2035 case BPF_OR:
2036 case BPF_XOR:
82abbf8d
AS
2037 /* bitwise ops on pointers are troublesome, prohibit. */
2038 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2039 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2040 return -EACCES;
2041 default:
2042 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2043 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2044 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2045 return -EACCES;
43188702
JF
2046 }
2047
bb7f0f98
AS
2048 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2049 return -EINVAL;
2050
b03c9f9f
EC
2051 __update_reg_bounds(dst_reg);
2052 __reg_deduce_bounds(dst_reg);
2053 __reg_bound_offset(dst_reg);
43188702
JF
2054 return 0;
2055}
2056
468f6eaf
JH
2057/* WARNING: This function does calculations on 64-bit values, but the actual
2058 * execution may occur on 32-bit values. Therefore, things like bitshifts
2059 * need extra checks in the 32-bit case.
2060 */
f1174f77
EC
2061static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2062 struct bpf_insn *insn,
2063 struct bpf_reg_state *dst_reg,
2064 struct bpf_reg_state src_reg)
969bf05e 2065{
638f5b90 2066 struct bpf_reg_state *regs = cur_regs(env);
48461135 2067 u8 opcode = BPF_OP(insn->code);
f1174f77 2068 bool src_known, dst_known;
b03c9f9f
EC
2069 s64 smin_val, smax_val;
2070 u64 umin_val, umax_val;
468f6eaf 2071 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2072
b03c9f9f
EC
2073 smin_val = src_reg.smin_value;
2074 smax_val = src_reg.smax_value;
2075 umin_val = src_reg.umin_value;
2076 umax_val = src_reg.umax_value;
f1174f77
EC
2077 src_known = tnum_is_const(src_reg.var_off);
2078 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2079
bb7f0f98
AS
2080 if (!src_known &&
2081 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2082 __mark_reg_unknown(dst_reg);
2083 return 0;
2084 }
2085
48461135
JB
2086 switch (opcode) {
2087 case BPF_ADD:
b03c9f9f
EC
2088 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2089 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2090 dst_reg->smin_value = S64_MIN;
2091 dst_reg->smax_value = S64_MAX;
2092 } else {
2093 dst_reg->smin_value += smin_val;
2094 dst_reg->smax_value += smax_val;
2095 }
2096 if (dst_reg->umin_value + umin_val < umin_val ||
2097 dst_reg->umax_value + umax_val < umax_val) {
2098 dst_reg->umin_value = 0;
2099 dst_reg->umax_value = U64_MAX;
2100 } else {
2101 dst_reg->umin_value += umin_val;
2102 dst_reg->umax_value += umax_val;
2103 }
f1174f77 2104 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2105 break;
2106 case BPF_SUB:
b03c9f9f
EC
2107 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2108 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2109 /* Overflow possible, we know nothing */
2110 dst_reg->smin_value = S64_MIN;
2111 dst_reg->smax_value = S64_MAX;
2112 } else {
2113 dst_reg->smin_value -= smax_val;
2114 dst_reg->smax_value -= smin_val;
2115 }
2116 if (dst_reg->umin_value < umax_val) {
2117 /* Overflow possible, we know nothing */
2118 dst_reg->umin_value = 0;
2119 dst_reg->umax_value = U64_MAX;
2120 } else {
2121 /* Cannot overflow (as long as bounds are consistent) */
2122 dst_reg->umin_value -= umax_val;
2123 dst_reg->umax_value -= umin_val;
2124 }
f1174f77 2125 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2126 break;
2127 case BPF_MUL:
b03c9f9f
EC
2128 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2129 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2130 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2131 __mark_reg_unbounded(dst_reg);
2132 __update_reg_bounds(dst_reg);
f1174f77
EC
2133 break;
2134 }
b03c9f9f
EC
2135 /* Both values are positive, so we can work with unsigned and
2136 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2137 */
b03c9f9f
EC
2138 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2139 /* Potential overflow, we know nothing */
2140 __mark_reg_unbounded(dst_reg);
2141 /* (except what we can learn from the var_off) */
2142 __update_reg_bounds(dst_reg);
2143 break;
2144 }
2145 dst_reg->umin_value *= umin_val;
2146 dst_reg->umax_value *= umax_val;
2147 if (dst_reg->umax_value > S64_MAX) {
2148 /* Overflow possible, we know nothing */
2149 dst_reg->smin_value = S64_MIN;
2150 dst_reg->smax_value = S64_MAX;
2151 } else {
2152 dst_reg->smin_value = dst_reg->umin_value;
2153 dst_reg->smax_value = dst_reg->umax_value;
2154 }
48461135
JB
2155 break;
2156 case BPF_AND:
f1174f77 2157 if (src_known && dst_known) {
b03c9f9f
EC
2158 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2159 src_reg.var_off.value);
f1174f77
EC
2160 break;
2161 }
b03c9f9f
EC
2162 /* We get our minimum from the var_off, since that's inherently
2163 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2164 */
f1174f77 2165 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2166 dst_reg->umin_value = dst_reg->var_off.value;
2167 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2168 if (dst_reg->smin_value < 0 || smin_val < 0) {
2169 /* Lose signed bounds when ANDing negative numbers,
2170 * ain't nobody got time for that.
2171 */
2172 dst_reg->smin_value = S64_MIN;
2173 dst_reg->smax_value = S64_MAX;
2174 } else {
2175 /* ANDing two positives gives a positive, so safe to
2176 * cast result into s64.
2177 */
2178 dst_reg->smin_value = dst_reg->umin_value;
2179 dst_reg->smax_value = dst_reg->umax_value;
2180 }
2181 /* We may learn something more from the var_off */
2182 __update_reg_bounds(dst_reg);
f1174f77
EC
2183 break;
2184 case BPF_OR:
2185 if (src_known && dst_known) {
b03c9f9f
EC
2186 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2187 src_reg.var_off.value);
f1174f77
EC
2188 break;
2189 }
b03c9f9f
EC
2190 /* We get our maximum from the var_off, and our minimum is the
2191 * maximum of the operands' minima
f1174f77
EC
2192 */
2193 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2194 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2195 dst_reg->umax_value = dst_reg->var_off.value |
2196 dst_reg->var_off.mask;
2197 if (dst_reg->smin_value < 0 || smin_val < 0) {
2198 /* Lose signed bounds when ORing negative numbers,
2199 * ain't nobody got time for that.
2200 */
2201 dst_reg->smin_value = S64_MIN;
2202 dst_reg->smax_value = S64_MAX;
f1174f77 2203 } else {
b03c9f9f
EC
2204 /* ORing two positives gives a positive, so safe to
2205 * cast result into s64.
2206 */
2207 dst_reg->smin_value = dst_reg->umin_value;
2208 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2209 }
b03c9f9f
EC
2210 /* We may learn something more from the var_off */
2211 __update_reg_bounds(dst_reg);
48461135
JB
2212 break;
2213 case BPF_LSH:
468f6eaf
JH
2214 if (umax_val >= insn_bitness) {
2215 /* Shifts greater than 31 or 63 are undefined.
2216 * This includes shifts by a negative number.
b03c9f9f 2217 */
61bd5218 2218 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2219 break;
2220 }
b03c9f9f
EC
2221 /* We lose all sign bit information (except what we can pick
2222 * up from var_off)
48461135 2223 */
b03c9f9f
EC
2224 dst_reg->smin_value = S64_MIN;
2225 dst_reg->smax_value = S64_MAX;
2226 /* If we might shift our top bit out, then we know nothing */
2227 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2228 dst_reg->umin_value = 0;
2229 dst_reg->umax_value = U64_MAX;
d1174416 2230 } else {
b03c9f9f
EC
2231 dst_reg->umin_value <<= umin_val;
2232 dst_reg->umax_value <<= umax_val;
d1174416 2233 }
b03c9f9f
EC
2234 if (src_known)
2235 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2236 else
2237 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2238 /* We may learn something more from the var_off */
2239 __update_reg_bounds(dst_reg);
48461135
JB
2240 break;
2241 case BPF_RSH:
468f6eaf
JH
2242 if (umax_val >= insn_bitness) {
2243 /* Shifts greater than 31 or 63 are undefined.
2244 * This includes shifts by a negative number.
b03c9f9f 2245 */
61bd5218 2246 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2247 break;
2248 }
4374f256
EC
2249 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2250 * be negative, then either:
2251 * 1) src_reg might be zero, so the sign bit of the result is
2252 * unknown, so we lose our signed bounds
2253 * 2) it's known negative, thus the unsigned bounds capture the
2254 * signed bounds
2255 * 3) the signed bounds cross zero, so they tell us nothing
2256 * about the result
2257 * If the value in dst_reg is known nonnegative, then again the
2258 * unsigned bounts capture the signed bounds.
2259 * Thus, in all cases it suffices to blow away our signed bounds
2260 * and rely on inferring new ones from the unsigned bounds and
2261 * var_off of the result.
2262 */
2263 dst_reg->smin_value = S64_MIN;
2264 dst_reg->smax_value = S64_MAX;
f1174f77 2265 if (src_known)
b03c9f9f
EC
2266 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2267 umin_val);
f1174f77 2268 else
b03c9f9f
EC
2269 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2270 dst_reg->umin_value >>= umax_val;
2271 dst_reg->umax_value >>= umin_val;
2272 /* We may learn something more from the var_off */
2273 __update_reg_bounds(dst_reg);
48461135
JB
2274 break;
2275 default:
61bd5218 2276 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2277 break;
2278 }
2279
468f6eaf
JH
2280 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2281 /* 32-bit ALU ops are (32,32)->32 */
2282 coerce_reg_to_size(dst_reg, 4);
2283 coerce_reg_to_size(&src_reg, 4);
2284 }
2285
b03c9f9f
EC
2286 __reg_deduce_bounds(dst_reg);
2287 __reg_bound_offset(dst_reg);
f1174f77
EC
2288 return 0;
2289}
2290
2291/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2292 * and var_off.
2293 */
2294static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2295 struct bpf_insn *insn)
2296{
638f5b90 2297 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2298 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2299 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2300
2301 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2302 src_reg = NULL;
2303 if (dst_reg->type != SCALAR_VALUE)
2304 ptr_reg = dst_reg;
2305 if (BPF_SRC(insn->code) == BPF_X) {
2306 src_reg = &regs[insn->src_reg];
f1174f77
EC
2307 if (src_reg->type != SCALAR_VALUE) {
2308 if (dst_reg->type != SCALAR_VALUE) {
2309 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2310 * an arbitrary scalar. Disallow all math except
2311 * pointer subtraction
f1174f77 2312 */
82abbf8d
AS
2313 if (opcode == BPF_SUB){
2314 mark_reg_unknown(env, regs, insn->dst_reg);
2315 return 0;
f1174f77 2316 }
82abbf8d
AS
2317 verbose(env, "R%d pointer %s pointer prohibited\n",
2318 insn->dst_reg,
2319 bpf_alu_string[opcode >> 4]);
2320 return -EACCES;
f1174f77
EC
2321 } else {
2322 /* scalar += pointer
2323 * This is legal, but we have to reverse our
2324 * src/dest handling in computing the range
2325 */
82abbf8d
AS
2326 return adjust_ptr_min_max_vals(env, insn,
2327 src_reg, dst_reg);
f1174f77
EC
2328 }
2329 } else if (ptr_reg) {
2330 /* pointer += scalar */
82abbf8d
AS
2331 return adjust_ptr_min_max_vals(env, insn,
2332 dst_reg, src_reg);
f1174f77
EC
2333 }
2334 } else {
2335 /* Pretend the src is a reg with a known value, since we only
2336 * need to be able to read from this state.
2337 */
2338 off_reg.type = SCALAR_VALUE;
b03c9f9f 2339 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2340 src_reg = &off_reg;
82abbf8d
AS
2341 if (ptr_reg) /* pointer += K */
2342 return adjust_ptr_min_max_vals(env, insn,
2343 ptr_reg, src_reg);
f1174f77
EC
2344 }
2345
2346 /* Got here implies adding two SCALAR_VALUEs */
2347 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2348 print_verifier_state(env, env->cur_state);
61bd5218 2349 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2350 return -EINVAL;
2351 }
2352 if (WARN_ON(!src_reg)) {
638f5b90 2353 print_verifier_state(env, env->cur_state);
61bd5218 2354 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2355 return -EINVAL;
2356 }
2357 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2358}
2359
17a52670 2360/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2361static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2362{
638f5b90 2363 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2364 u8 opcode = BPF_OP(insn->code);
2365 int err;
2366
2367 if (opcode == BPF_END || opcode == BPF_NEG) {
2368 if (opcode == BPF_NEG) {
2369 if (BPF_SRC(insn->code) != 0 ||
2370 insn->src_reg != BPF_REG_0 ||
2371 insn->off != 0 || insn->imm != 0) {
61bd5218 2372 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2373 return -EINVAL;
2374 }
2375 } else {
2376 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2377 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2378 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2379 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2380 return -EINVAL;
2381 }
2382 }
2383
2384 /* check src operand */
dc503a8a 2385 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2386 if (err)
2387 return err;
2388
1be7f75d 2389 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2390 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2391 insn->dst_reg);
2392 return -EACCES;
2393 }
2394
17a52670 2395 /* check dest operand */
dc503a8a 2396 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2397 if (err)
2398 return err;
2399
2400 } else if (opcode == BPF_MOV) {
2401
2402 if (BPF_SRC(insn->code) == BPF_X) {
2403 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2404 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2405 return -EINVAL;
2406 }
2407
2408 /* check src operand */
dc503a8a 2409 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2410 if (err)
2411 return err;
2412 } else {
2413 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2414 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2415 return -EINVAL;
2416 }
2417 }
2418
2419 /* check dest operand */
dc503a8a 2420 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2421 if (err)
2422 return err;
2423
2424 if (BPF_SRC(insn->code) == BPF_X) {
2425 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2426 /* case: R1 = R2
2427 * copy register state to dest reg
2428 */
2429 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2430 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2431 } else {
f1174f77 2432 /* R1 = (u32) R2 */
1be7f75d 2433 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2434 verbose(env,
2435 "R%d partial copy of pointer\n",
1be7f75d
AS
2436 insn->src_reg);
2437 return -EACCES;
2438 }
61bd5218 2439 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2440 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2441 }
2442 } else {
2443 /* case: R = imm
2444 * remember the value we stored into this reg
2445 */
f1174f77 2446 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2447 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2448 __mark_reg_known(regs + insn->dst_reg,
2449 insn->imm);
2450 } else {
2451 __mark_reg_known(regs + insn->dst_reg,
2452 (u32)insn->imm);
2453 }
17a52670
AS
2454 }
2455
2456 } else if (opcode > BPF_END) {
61bd5218 2457 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2458 return -EINVAL;
2459
2460 } else { /* all other ALU ops: and, sub, xor, add, ... */
2461
17a52670
AS
2462 if (BPF_SRC(insn->code) == BPF_X) {
2463 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2464 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2465 return -EINVAL;
2466 }
2467 /* check src1 operand */
dc503a8a 2468 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2469 if (err)
2470 return err;
2471 } else {
2472 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2473 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2474 return -EINVAL;
2475 }
2476 }
2477
2478 /* check src2 operand */
dc503a8a 2479 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2480 if (err)
2481 return err;
2482
2483 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2484 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2485 verbose(env, "div by zero\n");
17a52670
AS
2486 return -EINVAL;
2487 }
2488
229394e8
RV
2489 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2490 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2491 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2492
2493 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2494 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2495 return -EINVAL;
2496 }
2497 }
2498
1a0dc1ac 2499 /* check dest operand */
dc503a8a 2500 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2501 if (err)
2502 return err;
2503
f1174f77 2504 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2505 }
2506
2507 return 0;
2508}
2509
58e2af8b 2510static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2511 struct bpf_reg_state *dst_reg,
f8ddadc4 2512 enum bpf_reg_type type,
fb2a311a 2513 bool range_right_open)
969bf05e 2514{
58e2af8b 2515 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2516 u16 new_range;
969bf05e 2517 int i;
2d2be8ca 2518
fb2a311a
DB
2519 if (dst_reg->off < 0 ||
2520 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2521 /* This doesn't give us any range */
2522 return;
2523
b03c9f9f
EC
2524 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2525 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2526 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2527 * than pkt_end, but that's because it's also less than pkt.
2528 */
2529 return;
2530
fb2a311a
DB
2531 new_range = dst_reg->off;
2532 if (range_right_open)
2533 new_range--;
2534
2535 /* Examples for register markings:
2d2be8ca 2536 *
fb2a311a 2537 * pkt_data in dst register:
2d2be8ca
DB
2538 *
2539 * r2 = r3;
2540 * r2 += 8;
2541 * if (r2 > pkt_end) goto <handle exception>
2542 * <access okay>
2543 *
b4e432f1
DB
2544 * r2 = r3;
2545 * r2 += 8;
2546 * if (r2 < pkt_end) goto <access okay>
2547 * <handle exception>
2548 *
2d2be8ca
DB
2549 * Where:
2550 * r2 == dst_reg, pkt_end == src_reg
2551 * r2=pkt(id=n,off=8,r=0)
2552 * r3=pkt(id=n,off=0,r=0)
2553 *
fb2a311a 2554 * pkt_data in src register:
2d2be8ca
DB
2555 *
2556 * r2 = r3;
2557 * r2 += 8;
2558 * if (pkt_end >= r2) goto <access okay>
2559 * <handle exception>
2560 *
b4e432f1
DB
2561 * r2 = r3;
2562 * r2 += 8;
2563 * if (pkt_end <= r2) goto <handle exception>
2564 * <access okay>
2565 *
2d2be8ca
DB
2566 * Where:
2567 * pkt_end == dst_reg, r2 == src_reg
2568 * r2=pkt(id=n,off=8,r=0)
2569 * r3=pkt(id=n,off=0,r=0)
2570 *
2571 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2572 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2573 * and [r3, r3 + 8-1) respectively is safe to access depending on
2574 * the check.
969bf05e 2575 */
2d2be8ca 2576
f1174f77
EC
2577 /* If our ids match, then we must have the same max_value. And we
2578 * don't care about the other reg's fixed offset, since if it's too big
2579 * the range won't allow anything.
2580 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2581 */
969bf05e 2582 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2583 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2584 /* keep the maximum range already checked */
fb2a311a 2585 regs[i].range = max(regs[i].range, new_range);
969bf05e 2586
638f5b90
AS
2587 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2588 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2589 continue;
638f5b90 2590 reg = &state->stack[i].spilled_ptr;
de8f3a83 2591 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2592 reg->range = max(reg->range, new_range);
969bf05e
AS
2593 }
2594}
2595
48461135
JB
2596/* Adjusts the register min/max values in the case that the dst_reg is the
2597 * variable register that we are working on, and src_reg is a constant or we're
2598 * simply doing a BPF_K check.
f1174f77 2599 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2600 */
2601static void reg_set_min_max(struct bpf_reg_state *true_reg,
2602 struct bpf_reg_state *false_reg, u64 val,
2603 u8 opcode)
2604{
f1174f77
EC
2605 /* If the dst_reg is a pointer, we can't learn anything about its
2606 * variable offset from the compare (unless src_reg were a pointer into
2607 * the same object, but we don't bother with that.
2608 * Since false_reg and true_reg have the same type by construction, we
2609 * only need to check one of them for pointerness.
2610 */
2611 if (__is_pointer_value(false, false_reg))
2612 return;
4cabc5b1 2613
48461135
JB
2614 switch (opcode) {
2615 case BPF_JEQ:
2616 /* If this is false then we know nothing Jon Snow, but if it is
2617 * true then we know for sure.
2618 */
b03c9f9f 2619 __mark_reg_known(true_reg, val);
48461135
JB
2620 break;
2621 case BPF_JNE:
2622 /* If this is true we know nothing Jon Snow, but if it is false
2623 * we know the value for sure;
2624 */
b03c9f9f 2625 __mark_reg_known(false_reg, val);
48461135
JB
2626 break;
2627 case BPF_JGT:
b03c9f9f
EC
2628 false_reg->umax_value = min(false_reg->umax_value, val);
2629 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2630 break;
48461135 2631 case BPF_JSGT:
b03c9f9f
EC
2632 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2633 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2634 break;
b4e432f1
DB
2635 case BPF_JLT:
2636 false_reg->umin_value = max(false_reg->umin_value, val);
2637 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2638 break;
2639 case BPF_JSLT:
2640 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2641 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2642 break;
48461135 2643 case BPF_JGE:
b03c9f9f
EC
2644 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2645 true_reg->umin_value = max(true_reg->umin_value, val);
2646 break;
48461135 2647 case BPF_JSGE:
b03c9f9f
EC
2648 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2649 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2650 break;
b4e432f1
DB
2651 case BPF_JLE:
2652 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2653 true_reg->umax_value = min(true_reg->umax_value, val);
2654 break;
2655 case BPF_JSLE:
2656 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2657 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2658 break;
48461135
JB
2659 default:
2660 break;
2661 }
2662
b03c9f9f
EC
2663 __reg_deduce_bounds(false_reg);
2664 __reg_deduce_bounds(true_reg);
2665 /* We might have learned some bits from the bounds. */
2666 __reg_bound_offset(false_reg);
2667 __reg_bound_offset(true_reg);
2668 /* Intersecting with the old var_off might have improved our bounds
2669 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2670 * then new var_off is (0; 0x7f...fc) which improves our umax.
2671 */
2672 __update_reg_bounds(false_reg);
2673 __update_reg_bounds(true_reg);
48461135
JB
2674}
2675
f1174f77
EC
2676/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2677 * the variable reg.
48461135
JB
2678 */
2679static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2680 struct bpf_reg_state *false_reg, u64 val,
2681 u8 opcode)
2682{
f1174f77
EC
2683 if (__is_pointer_value(false, false_reg))
2684 return;
4cabc5b1 2685
48461135
JB
2686 switch (opcode) {
2687 case BPF_JEQ:
2688 /* If this is false then we know nothing Jon Snow, but if it is
2689 * true then we know for sure.
2690 */
b03c9f9f 2691 __mark_reg_known(true_reg, val);
48461135
JB
2692 break;
2693 case BPF_JNE:
2694 /* If this is true we know nothing Jon Snow, but if it is false
2695 * we know the value for sure;
2696 */
b03c9f9f 2697 __mark_reg_known(false_reg, val);
48461135
JB
2698 break;
2699 case BPF_JGT:
b03c9f9f
EC
2700 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2701 false_reg->umin_value = max(false_reg->umin_value, val);
2702 break;
48461135 2703 case BPF_JSGT:
b03c9f9f
EC
2704 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2705 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2706 break;
b4e432f1
DB
2707 case BPF_JLT:
2708 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2709 false_reg->umax_value = min(false_reg->umax_value, val);
2710 break;
2711 case BPF_JSLT:
2712 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2713 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2714 break;
48461135 2715 case BPF_JGE:
b03c9f9f
EC
2716 true_reg->umax_value = min(true_reg->umax_value, val);
2717 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2718 break;
48461135 2719 case BPF_JSGE:
b03c9f9f
EC
2720 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2721 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2722 break;
b4e432f1
DB
2723 case BPF_JLE:
2724 true_reg->umin_value = max(true_reg->umin_value, val);
2725 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2726 break;
2727 case BPF_JSLE:
2728 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2729 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2730 break;
48461135
JB
2731 default:
2732 break;
2733 }
2734
b03c9f9f
EC
2735 __reg_deduce_bounds(false_reg);
2736 __reg_deduce_bounds(true_reg);
2737 /* We might have learned some bits from the bounds. */
2738 __reg_bound_offset(false_reg);
2739 __reg_bound_offset(true_reg);
2740 /* Intersecting with the old var_off might have improved our bounds
2741 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2742 * then new var_off is (0; 0x7f...fc) which improves our umax.
2743 */
2744 __update_reg_bounds(false_reg);
2745 __update_reg_bounds(true_reg);
f1174f77
EC
2746}
2747
2748/* Regs are known to be equal, so intersect their min/max/var_off */
2749static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2750 struct bpf_reg_state *dst_reg)
2751{
b03c9f9f
EC
2752 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2753 dst_reg->umin_value);
2754 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2755 dst_reg->umax_value);
2756 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2757 dst_reg->smin_value);
2758 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2759 dst_reg->smax_value);
f1174f77
EC
2760 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2761 dst_reg->var_off);
b03c9f9f
EC
2762 /* We might have learned new bounds from the var_off. */
2763 __update_reg_bounds(src_reg);
2764 __update_reg_bounds(dst_reg);
2765 /* We might have learned something about the sign bit. */
2766 __reg_deduce_bounds(src_reg);
2767 __reg_deduce_bounds(dst_reg);
2768 /* We might have learned some bits from the bounds. */
2769 __reg_bound_offset(src_reg);
2770 __reg_bound_offset(dst_reg);
2771 /* Intersecting with the old var_off might have improved our bounds
2772 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2773 * then new var_off is (0; 0x7f...fc) which improves our umax.
2774 */
2775 __update_reg_bounds(src_reg);
2776 __update_reg_bounds(dst_reg);
f1174f77
EC
2777}
2778
2779static void reg_combine_min_max(struct bpf_reg_state *true_src,
2780 struct bpf_reg_state *true_dst,
2781 struct bpf_reg_state *false_src,
2782 struct bpf_reg_state *false_dst,
2783 u8 opcode)
2784{
2785 switch (opcode) {
2786 case BPF_JEQ:
2787 __reg_combine_min_max(true_src, true_dst);
2788 break;
2789 case BPF_JNE:
2790 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2791 break;
4cabc5b1 2792 }
48461135
JB
2793}
2794
57a09bf0 2795static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2796 bool is_null)
57a09bf0
TG
2797{
2798 struct bpf_reg_state *reg = &regs[regno];
2799
2800 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2801 /* Old offset (both fixed and variable parts) should
2802 * have been known-zero, because we don't allow pointer
2803 * arithmetic on pointers that might be NULL.
2804 */
b03c9f9f
EC
2805 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2806 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2807 reg->off)) {
b03c9f9f
EC
2808 __mark_reg_known_zero(reg);
2809 reg->off = 0;
f1174f77
EC
2810 }
2811 if (is_null) {
2812 reg->type = SCALAR_VALUE;
56f668df
MKL
2813 } else if (reg->map_ptr->inner_map_meta) {
2814 reg->type = CONST_PTR_TO_MAP;
2815 reg->map_ptr = reg->map_ptr->inner_map_meta;
2816 } else {
f1174f77 2817 reg->type = PTR_TO_MAP_VALUE;
56f668df 2818 }
a08dd0da
DB
2819 /* We don't need id from this point onwards anymore, thus we
2820 * should better reset it, so that state pruning has chances
2821 * to take effect.
2822 */
2823 reg->id = 0;
57a09bf0
TG
2824 }
2825}
2826
2827/* The logic is similar to find_good_pkt_pointers(), both could eventually
2828 * be folded together at some point.
2829 */
2830static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2831 bool is_null)
57a09bf0
TG
2832{
2833 struct bpf_reg_state *regs = state->regs;
a08dd0da 2834 u32 id = regs[regno].id;
57a09bf0
TG
2835 int i;
2836
2837 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2838 mark_map_reg(regs, i, id, is_null);
57a09bf0 2839
638f5b90
AS
2840 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2841 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2842 continue;
638f5b90 2843 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2844 }
2845}
2846
5beca081
DB
2847static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2848 struct bpf_reg_state *dst_reg,
2849 struct bpf_reg_state *src_reg,
2850 struct bpf_verifier_state *this_branch,
2851 struct bpf_verifier_state *other_branch)
2852{
2853 if (BPF_SRC(insn->code) != BPF_X)
2854 return false;
2855
2856 switch (BPF_OP(insn->code)) {
2857 case BPF_JGT:
2858 if ((dst_reg->type == PTR_TO_PACKET &&
2859 src_reg->type == PTR_TO_PACKET_END) ||
2860 (dst_reg->type == PTR_TO_PACKET_META &&
2861 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2862 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2863 find_good_pkt_pointers(this_branch, dst_reg,
2864 dst_reg->type, false);
2865 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2866 src_reg->type == PTR_TO_PACKET) ||
2867 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2868 src_reg->type == PTR_TO_PACKET_META)) {
2869 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2870 find_good_pkt_pointers(other_branch, src_reg,
2871 src_reg->type, true);
2872 } else {
2873 return false;
2874 }
2875 break;
2876 case BPF_JLT:
2877 if ((dst_reg->type == PTR_TO_PACKET &&
2878 src_reg->type == PTR_TO_PACKET_END) ||
2879 (dst_reg->type == PTR_TO_PACKET_META &&
2880 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2881 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2882 find_good_pkt_pointers(other_branch, dst_reg,
2883 dst_reg->type, true);
2884 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2885 src_reg->type == PTR_TO_PACKET) ||
2886 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2887 src_reg->type == PTR_TO_PACKET_META)) {
2888 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2889 find_good_pkt_pointers(this_branch, src_reg,
2890 src_reg->type, false);
2891 } else {
2892 return false;
2893 }
2894 break;
2895 case BPF_JGE:
2896 if ((dst_reg->type == PTR_TO_PACKET &&
2897 src_reg->type == PTR_TO_PACKET_END) ||
2898 (dst_reg->type == PTR_TO_PACKET_META &&
2899 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2900 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2901 find_good_pkt_pointers(this_branch, dst_reg,
2902 dst_reg->type, true);
2903 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2904 src_reg->type == PTR_TO_PACKET) ||
2905 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2906 src_reg->type == PTR_TO_PACKET_META)) {
2907 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2908 find_good_pkt_pointers(other_branch, src_reg,
2909 src_reg->type, false);
2910 } else {
2911 return false;
2912 }
2913 break;
2914 case BPF_JLE:
2915 if ((dst_reg->type == PTR_TO_PACKET &&
2916 src_reg->type == PTR_TO_PACKET_END) ||
2917 (dst_reg->type == PTR_TO_PACKET_META &&
2918 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2919 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2920 find_good_pkt_pointers(other_branch, dst_reg,
2921 dst_reg->type, false);
2922 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2923 src_reg->type == PTR_TO_PACKET) ||
2924 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2925 src_reg->type == PTR_TO_PACKET_META)) {
2926 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2927 find_good_pkt_pointers(this_branch, src_reg,
2928 src_reg->type, true);
2929 } else {
2930 return false;
2931 }
2932 break;
2933 default:
2934 return false;
2935 }
2936
2937 return true;
2938}
2939
58e2af8b 2940static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
2941 struct bpf_insn *insn, int *insn_idx)
2942{
638f5b90 2943 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 2944 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
2945 u8 opcode = BPF_OP(insn->code);
2946 int err;
2947
b4e432f1 2948 if (opcode > BPF_JSLE) {
61bd5218 2949 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
2950 return -EINVAL;
2951 }
2952
2953 if (BPF_SRC(insn->code) == BPF_X) {
2954 if (insn->imm != 0) {
61bd5218 2955 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2956 return -EINVAL;
2957 }
2958
2959 /* check src1 operand */
dc503a8a 2960 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2961 if (err)
2962 return err;
1be7f75d
AS
2963
2964 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2965 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
2966 insn->src_reg);
2967 return -EACCES;
2968 }
17a52670
AS
2969 } else {
2970 if (insn->src_reg != BPF_REG_0) {
61bd5218 2971 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
2972 return -EINVAL;
2973 }
2974 }
2975
2976 /* check src2 operand */
dc503a8a 2977 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2978 if (err)
2979 return err;
2980
1a0dc1ac
AS
2981 dst_reg = &regs[insn->dst_reg];
2982
17a52670
AS
2983 /* detect if R == 0 where R was initialized to zero earlier */
2984 if (BPF_SRC(insn->code) == BPF_K &&
2985 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
2986 dst_reg->type == SCALAR_VALUE &&
2987 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
2988 if (opcode == BPF_JEQ) {
2989 /* if (imm == imm) goto pc+off;
2990 * only follow the goto, ignore fall-through
2991 */
2992 *insn_idx += insn->off;
2993 return 0;
2994 } else {
2995 /* if (imm != imm) goto pc+off;
2996 * only follow fall-through branch, since
2997 * that's where the program will go
2998 */
2999 return 0;
3000 }
3001 }
3002
3003 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3004 if (!other_branch)
3005 return -EFAULT;
3006
48461135
JB
3007 /* detect if we are comparing against a constant value so we can adjust
3008 * our min/max values for our dst register.
f1174f77
EC
3009 * this is only legit if both are scalars (or pointers to the same
3010 * object, I suppose, but we don't support that right now), because
3011 * otherwise the different base pointers mean the offsets aren't
3012 * comparable.
48461135
JB
3013 */
3014 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3015 if (dst_reg->type == SCALAR_VALUE &&
3016 regs[insn->src_reg].type == SCALAR_VALUE) {
3017 if (tnum_is_const(regs[insn->src_reg].var_off))
3018 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3019 dst_reg, regs[insn->src_reg].var_off.value,
3020 opcode);
3021 else if (tnum_is_const(dst_reg->var_off))
3022 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3023 &regs[insn->src_reg],
3024 dst_reg->var_off.value, opcode);
3025 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3026 /* Comparing for equality, we can combine knowledge */
3027 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3028 &other_branch->regs[insn->dst_reg],
3029 &regs[insn->src_reg],
3030 &regs[insn->dst_reg], opcode);
3031 }
3032 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3033 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3034 dst_reg, insn->imm, opcode);
3035 }
3036
58e2af8b 3037 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3038 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3039 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3040 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3041 /* Mark all identical map registers in each branch as either
3042 * safe or unknown depending R == 0 or R != 0 conditional.
3043 */
f1174f77
EC
3044 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3045 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3046 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3047 this_branch, other_branch) &&
3048 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3049 verbose(env, "R%d pointer comparison prohibited\n",
3050 insn->dst_reg);
1be7f75d 3051 return -EACCES;
17a52670 3052 }
61bd5218
JK
3053 if (env->log.level)
3054 print_verifier_state(env, this_branch);
17a52670
AS
3055 return 0;
3056}
3057
0246e64d
AS
3058/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3059static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3060{
3061 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3062
3063 return (struct bpf_map *) (unsigned long) imm64;
3064}
3065
17a52670 3066/* verify BPF_LD_IMM64 instruction */
58e2af8b 3067static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3068{
638f5b90 3069 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3070 int err;
3071
3072 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3073 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3074 return -EINVAL;
3075 }
3076 if (insn->off != 0) {
61bd5218 3077 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3078 return -EINVAL;
3079 }
3080
dc503a8a 3081 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3082 if (err)
3083 return err;
3084
6b173873 3085 if (insn->src_reg == 0) {
6b173873
JK
3086 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3087
f1174f77 3088 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3089 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3090 return 0;
6b173873 3091 }
17a52670
AS
3092
3093 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3094 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3095
3096 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3097 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3098 return 0;
3099}
3100
96be4325
DB
3101static bool may_access_skb(enum bpf_prog_type type)
3102{
3103 switch (type) {
3104 case BPF_PROG_TYPE_SOCKET_FILTER:
3105 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3106 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3107 return true;
3108 default:
3109 return false;
3110 }
3111}
3112
ddd872bc
AS
3113/* verify safety of LD_ABS|LD_IND instructions:
3114 * - they can only appear in the programs where ctx == skb
3115 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3116 * preserve R6-R9, and store return value into R0
3117 *
3118 * Implicit input:
3119 * ctx == skb == R6 == CTX
3120 *
3121 * Explicit input:
3122 * SRC == any register
3123 * IMM == 32-bit immediate
3124 *
3125 * Output:
3126 * R0 - 8/16/32-bit skb data converted to cpu endianness
3127 */
58e2af8b 3128static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3129{
638f5b90 3130 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3131 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3132 int i, err;
3133
24701ece 3134 if (!may_access_skb(env->prog->type)) {
61bd5218 3135 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3136 return -EINVAL;
3137 }
3138
3139 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3140 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3141 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3142 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3143 return -EINVAL;
3144 }
3145
3146 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3147 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3148 if (err)
3149 return err;
3150
3151 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3152 verbose(env,
3153 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3154 return -EINVAL;
3155 }
3156
3157 if (mode == BPF_IND) {
3158 /* check explicit source operand */
dc503a8a 3159 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3160 if (err)
3161 return err;
3162 }
3163
3164 /* reset caller saved regs to unreadable */
dc503a8a 3165 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3166 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3167 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3168 }
ddd872bc
AS
3169
3170 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3171 * the value fetched from the packet.
3172 * Already marked as written above.
ddd872bc 3173 */
61bd5218 3174 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3175 return 0;
3176}
3177
390ee7e2
AS
3178static int check_return_code(struct bpf_verifier_env *env)
3179{
3180 struct bpf_reg_state *reg;
3181 struct tnum range = tnum_range(0, 1);
3182
3183 switch (env->prog->type) {
3184 case BPF_PROG_TYPE_CGROUP_SKB:
3185 case BPF_PROG_TYPE_CGROUP_SOCK:
3186 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3187 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3188 break;
3189 default:
3190 return 0;
3191 }
3192
638f5b90 3193 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3194 if (reg->type != SCALAR_VALUE) {
61bd5218 3195 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3196 reg_type_str[reg->type]);
3197 return -EINVAL;
3198 }
3199
3200 if (!tnum_in(range, reg->var_off)) {
61bd5218 3201 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3202 if (!tnum_is_unknown(reg->var_off)) {
3203 char tn_buf[48];
3204
3205 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3206 verbose(env, "has value %s", tn_buf);
390ee7e2 3207 } else {
61bd5218 3208 verbose(env, "has unknown scalar value");
390ee7e2 3209 }
61bd5218 3210 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3211 return -EINVAL;
3212 }
3213 return 0;
3214}
3215
475fb78f
AS
3216/* non-recursive DFS pseudo code
3217 * 1 procedure DFS-iterative(G,v):
3218 * 2 label v as discovered
3219 * 3 let S be a stack
3220 * 4 S.push(v)
3221 * 5 while S is not empty
3222 * 6 t <- S.pop()
3223 * 7 if t is what we're looking for:
3224 * 8 return t
3225 * 9 for all edges e in G.adjacentEdges(t) do
3226 * 10 if edge e is already labelled
3227 * 11 continue with the next edge
3228 * 12 w <- G.adjacentVertex(t,e)
3229 * 13 if vertex w is not discovered and not explored
3230 * 14 label e as tree-edge
3231 * 15 label w as discovered
3232 * 16 S.push(w)
3233 * 17 continue at 5
3234 * 18 else if vertex w is discovered
3235 * 19 label e as back-edge
3236 * 20 else
3237 * 21 // vertex w is explored
3238 * 22 label e as forward- or cross-edge
3239 * 23 label t as explored
3240 * 24 S.pop()
3241 *
3242 * convention:
3243 * 0x10 - discovered
3244 * 0x11 - discovered and fall-through edge labelled
3245 * 0x12 - discovered and fall-through and branch edges labelled
3246 * 0x20 - explored
3247 */
3248
3249enum {
3250 DISCOVERED = 0x10,
3251 EXPLORED = 0x20,
3252 FALLTHROUGH = 1,
3253 BRANCH = 2,
3254};
3255
58e2af8b 3256#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3257
475fb78f
AS
3258static int *insn_stack; /* stack of insns to process */
3259static int cur_stack; /* current stack index */
3260static int *insn_state;
3261
3262/* t, w, e - match pseudo-code above:
3263 * t - index of current instruction
3264 * w - next instruction
3265 * e - edge
3266 */
58e2af8b 3267static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3268{
3269 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3270 return 0;
3271
3272 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3273 return 0;
3274
3275 if (w < 0 || w >= env->prog->len) {
61bd5218 3276 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3277 return -EINVAL;
3278 }
3279
f1bca824
AS
3280 if (e == BRANCH)
3281 /* mark branch target for state pruning */
3282 env->explored_states[w] = STATE_LIST_MARK;
3283
475fb78f
AS
3284 if (insn_state[w] == 0) {
3285 /* tree-edge */
3286 insn_state[t] = DISCOVERED | e;
3287 insn_state[w] = DISCOVERED;
3288 if (cur_stack >= env->prog->len)
3289 return -E2BIG;
3290 insn_stack[cur_stack++] = w;
3291 return 1;
3292 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3293 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3294 return -EINVAL;
3295 } else if (insn_state[w] == EXPLORED) {
3296 /* forward- or cross-edge */
3297 insn_state[t] = DISCOVERED | e;
3298 } else {
61bd5218 3299 verbose(env, "insn state internal bug\n");
475fb78f
AS
3300 return -EFAULT;
3301 }
3302 return 0;
3303}
3304
3305/* non-recursive depth-first-search to detect loops in BPF program
3306 * loop == back-edge in directed graph
3307 */
58e2af8b 3308static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3309{
3310 struct bpf_insn *insns = env->prog->insnsi;
3311 int insn_cnt = env->prog->len;
3312 int ret = 0;
3313 int i, t;
3314
3315 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3316 if (!insn_state)
3317 return -ENOMEM;
3318
3319 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3320 if (!insn_stack) {
3321 kfree(insn_state);
3322 return -ENOMEM;
3323 }
3324
3325 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3326 insn_stack[0] = 0; /* 0 is the first instruction */
3327 cur_stack = 1;
3328
3329peek_stack:
3330 if (cur_stack == 0)
3331 goto check_state;
3332 t = insn_stack[cur_stack - 1];
3333
3334 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3335 u8 opcode = BPF_OP(insns[t].code);
3336
3337 if (opcode == BPF_EXIT) {
3338 goto mark_explored;
3339 } else if (opcode == BPF_CALL) {
3340 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3341 if (ret == 1)
3342 goto peek_stack;
3343 else if (ret < 0)
3344 goto err_free;
07016151
DB
3345 if (t + 1 < insn_cnt)
3346 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3347 } else if (opcode == BPF_JA) {
3348 if (BPF_SRC(insns[t].code) != BPF_K) {
3349 ret = -EINVAL;
3350 goto err_free;
3351 }
3352 /* unconditional jump with single edge */
3353 ret = push_insn(t, t + insns[t].off + 1,
3354 FALLTHROUGH, env);
3355 if (ret == 1)
3356 goto peek_stack;
3357 else if (ret < 0)
3358 goto err_free;
f1bca824
AS
3359 /* tell verifier to check for equivalent states
3360 * after every call and jump
3361 */
c3de6317
AS
3362 if (t + 1 < insn_cnt)
3363 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3364 } else {
3365 /* conditional jump with two edges */
3c2ce60b 3366 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3367 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3368 if (ret == 1)
3369 goto peek_stack;
3370 else if (ret < 0)
3371 goto err_free;
3372
3373 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3374 if (ret == 1)
3375 goto peek_stack;
3376 else if (ret < 0)
3377 goto err_free;
3378 }
3379 } else {
3380 /* all other non-branch instructions with single
3381 * fall-through edge
3382 */
3383 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3384 if (ret == 1)
3385 goto peek_stack;
3386 else if (ret < 0)
3387 goto err_free;
3388 }
3389
3390mark_explored:
3391 insn_state[t] = EXPLORED;
3392 if (cur_stack-- <= 0) {
61bd5218 3393 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3394 ret = -EFAULT;
3395 goto err_free;
3396 }
3397 goto peek_stack;
3398
3399check_state:
3400 for (i = 0; i < insn_cnt; i++) {
3401 if (insn_state[i] != EXPLORED) {
61bd5218 3402 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3403 ret = -EINVAL;
3404 goto err_free;
3405 }
3406 }
3407 ret = 0; /* cfg looks good */
3408
3409err_free:
3410 kfree(insn_state);
3411 kfree(insn_stack);
3412 return ret;
3413}
3414
f1174f77
EC
3415/* check %cur's range satisfies %old's */
3416static bool range_within(struct bpf_reg_state *old,
3417 struct bpf_reg_state *cur)
3418{
b03c9f9f
EC
3419 return old->umin_value <= cur->umin_value &&
3420 old->umax_value >= cur->umax_value &&
3421 old->smin_value <= cur->smin_value &&
3422 old->smax_value >= cur->smax_value;
f1174f77
EC
3423}
3424
3425/* Maximum number of register states that can exist at once */
3426#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3427struct idpair {
3428 u32 old;
3429 u32 cur;
3430};
3431
3432/* If in the old state two registers had the same id, then they need to have
3433 * the same id in the new state as well. But that id could be different from
3434 * the old state, so we need to track the mapping from old to new ids.
3435 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3436 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3437 * regs with a different old id could still have new id 9, we don't care about
3438 * that.
3439 * So we look through our idmap to see if this old id has been seen before. If
3440 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3441 */
f1174f77 3442static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3443{
f1174f77 3444 unsigned int i;
969bf05e 3445
f1174f77
EC
3446 for (i = 0; i < ID_MAP_SIZE; i++) {
3447 if (!idmap[i].old) {
3448 /* Reached an empty slot; haven't seen this id before */
3449 idmap[i].old = old_id;
3450 idmap[i].cur = cur_id;
3451 return true;
3452 }
3453 if (idmap[i].old == old_id)
3454 return idmap[i].cur == cur_id;
3455 }
3456 /* We ran out of idmap slots, which should be impossible */
3457 WARN_ON_ONCE(1);
3458 return false;
3459}
3460
3461/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3462static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3463 struct idpair *idmap)
f1174f77 3464{
dc503a8a
EC
3465 if (!(rold->live & REG_LIVE_READ))
3466 /* explored state didn't use this */
3467 return true;
3468
3469 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3470 return true;
3471
f1174f77
EC
3472 if (rold->type == NOT_INIT)
3473 /* explored state can't have used this */
969bf05e 3474 return true;
f1174f77
EC
3475 if (rcur->type == NOT_INIT)
3476 return false;
3477 switch (rold->type) {
3478 case SCALAR_VALUE:
3479 if (rcur->type == SCALAR_VALUE) {
3480 /* new val must satisfy old val knowledge */
3481 return range_within(rold, rcur) &&
3482 tnum_in(rold->var_off, rcur->var_off);
3483 } else {
179d1c56
JH
3484 /* We're trying to use a pointer in place of a scalar.
3485 * Even if the scalar was unbounded, this could lead to
3486 * pointer leaks because scalars are allowed to leak
3487 * while pointers are not. We could make this safe in
3488 * special cases if root is calling us, but it's
3489 * probably not worth the hassle.
f1174f77 3490 */
179d1c56 3491 return false;
f1174f77
EC
3492 }
3493 case PTR_TO_MAP_VALUE:
1b688a19
EC
3494 /* If the new min/max/var_off satisfy the old ones and
3495 * everything else matches, we are OK.
3496 * We don't care about the 'id' value, because nothing
3497 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3498 */
3499 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3500 range_within(rold, rcur) &&
3501 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3502 case PTR_TO_MAP_VALUE_OR_NULL:
3503 /* a PTR_TO_MAP_VALUE could be safe to use as a
3504 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3505 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3506 * checked, doing so could have affected others with the same
3507 * id, and we can't check for that because we lost the id when
3508 * we converted to a PTR_TO_MAP_VALUE.
3509 */
3510 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3511 return false;
3512 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3513 return false;
3514 /* Check our ids match any regs they're supposed to */
3515 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3516 case PTR_TO_PACKET_META:
f1174f77 3517 case PTR_TO_PACKET:
de8f3a83 3518 if (rcur->type != rold->type)
f1174f77
EC
3519 return false;
3520 /* We must have at least as much range as the old ptr
3521 * did, so that any accesses which were safe before are
3522 * still safe. This is true even if old range < old off,
3523 * since someone could have accessed through (ptr - k), or
3524 * even done ptr -= k in a register, to get a safe access.
3525 */
3526 if (rold->range > rcur->range)
3527 return false;
3528 /* If the offsets don't match, we can't trust our alignment;
3529 * nor can we be sure that we won't fall out of range.
3530 */
3531 if (rold->off != rcur->off)
3532 return false;
3533 /* id relations must be preserved */
3534 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3535 return false;
3536 /* new val must satisfy old val knowledge */
3537 return range_within(rold, rcur) &&
3538 tnum_in(rold->var_off, rcur->var_off);
3539 case PTR_TO_CTX:
3540 case CONST_PTR_TO_MAP:
3541 case PTR_TO_STACK:
3542 case PTR_TO_PACKET_END:
3543 /* Only valid matches are exact, which memcmp() above
3544 * would have accepted
3545 */
3546 default:
3547 /* Don't know what's going on, just say it's not safe */
3548 return false;
3549 }
969bf05e 3550
f1174f77
EC
3551 /* Shouldn't get here; if we do, say it's not safe */
3552 WARN_ON_ONCE(1);
969bf05e
AS
3553 return false;
3554}
3555
638f5b90
AS
3556static bool stacksafe(struct bpf_verifier_state *old,
3557 struct bpf_verifier_state *cur,
3558 struct idpair *idmap)
3559{
3560 int i, spi;
3561
3562 /* if explored stack has more populated slots than current stack
3563 * such stacks are not equivalent
3564 */
3565 if (old->allocated_stack > cur->allocated_stack)
3566 return false;
3567
3568 /* walk slots of the explored stack and ignore any additional
3569 * slots in the current stack, since explored(safe) state
3570 * didn't use them
3571 */
3572 for (i = 0; i < old->allocated_stack; i++) {
3573 spi = i / BPF_REG_SIZE;
3574
3575 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3576 continue;
3577 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3578 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3579 /* Ex: old explored (safe) state has STACK_SPILL in
3580 * this stack slot, but current has has STACK_MISC ->
3581 * this verifier states are not equivalent,
3582 * return false to continue verification of this path
3583 */
3584 return false;
3585 if (i % BPF_REG_SIZE)
3586 continue;
3587 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3588 continue;
3589 if (!regsafe(&old->stack[spi].spilled_ptr,
3590 &cur->stack[spi].spilled_ptr,
3591 idmap))
3592 /* when explored and current stack slot are both storing
3593 * spilled registers, check that stored pointers types
3594 * are the same as well.
3595 * Ex: explored safe path could have stored
3596 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3597 * but current path has stored:
3598 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3599 * such verifier states are not equivalent.
3600 * return false to continue verification of this path
3601 */
3602 return false;
3603 }
3604 return true;
3605}
3606
f1bca824
AS
3607/* compare two verifier states
3608 *
3609 * all states stored in state_list are known to be valid, since
3610 * verifier reached 'bpf_exit' instruction through them
3611 *
3612 * this function is called when verifier exploring different branches of
3613 * execution popped from the state stack. If it sees an old state that has
3614 * more strict register state and more strict stack state then this execution
3615 * branch doesn't need to be explored further, since verifier already
3616 * concluded that more strict state leads to valid finish.
3617 *
3618 * Therefore two states are equivalent if register state is more conservative
3619 * and explored stack state is more conservative than the current one.
3620 * Example:
3621 * explored current
3622 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3623 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3624 *
3625 * In other words if current stack state (one being explored) has more
3626 * valid slots than old one that already passed validation, it means
3627 * the verifier can stop exploring and conclude that current state is valid too
3628 *
3629 * Similarly with registers. If explored state has register type as invalid
3630 * whereas register type in current state is meaningful, it means that
3631 * the current state will reach 'bpf_exit' instruction safely
3632 */
48461135
JB
3633static bool states_equal(struct bpf_verifier_env *env,
3634 struct bpf_verifier_state *old,
58e2af8b 3635 struct bpf_verifier_state *cur)
f1bca824 3636{
f1174f77
EC
3637 struct idpair *idmap;
3638 bool ret = false;
f1bca824
AS
3639 int i;
3640
f1174f77
EC
3641 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3642 /* If we failed to allocate the idmap, just say it's not safe */
3643 if (!idmap)
1a0dc1ac 3644 return false;
f1174f77
EC
3645
3646 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3647 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3648 goto out_free;
f1bca824
AS
3649 }
3650
638f5b90
AS
3651 if (!stacksafe(old, cur, idmap))
3652 goto out_free;
f1174f77
EC
3653 ret = true;
3654out_free:
3655 kfree(idmap);
3656 return ret;
f1bca824
AS
3657}
3658
8e9cd9ce
EC
3659/* A write screens off any subsequent reads; but write marks come from the
3660 * straight-line code between a state and its parent. When we arrive at a
3661 * jump target (in the first iteration of the propagate_liveness() loop),
3662 * we didn't arrive by the straight-line code, so read marks in state must
3663 * propagate to parent regardless of state's write marks.
3664 */
dc503a8a
EC
3665static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3666 struct bpf_verifier_state *parent)
3667{
63f45f84 3668 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3669 bool touched = false; /* any changes made? */
3670 int i;
3671
3672 if (!parent)
3673 return touched;
3674 /* Propagate read liveness of registers... */
3675 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3676 /* We don't need to worry about FP liveness because it's read-only */
3677 for (i = 0; i < BPF_REG_FP; i++) {
3678 if (parent->regs[i].live & REG_LIVE_READ)
3679 continue;
63f45f84
EC
3680 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3681 continue;
3682 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3683 parent->regs[i].live |= REG_LIVE_READ;
3684 touched = true;
3685 }
3686 }
3687 /* ... and stack slots */
638f5b90
AS
3688 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3689 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3690 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3691 continue;
638f5b90 3692 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3693 continue;
638f5b90 3694 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3695 continue;
638f5b90
AS
3696 if (writes &&
3697 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3698 continue;
638f5b90
AS
3699 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3700 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3701 touched = true;
3702 }
3703 }
3704 return touched;
3705}
3706
8e9cd9ce
EC
3707/* "parent" is "a state from which we reach the current state", but initially
3708 * it is not the state->parent (i.e. "the state whose straight-line code leads
3709 * to the current state"), instead it is the state that happened to arrive at
3710 * a (prunable) equivalent of the current state. See comment above
3711 * do_propagate_liveness() for consequences of this.
3712 * This function is just a more efficient way of calling mark_reg_read() or
3713 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3714 * though it requires that parent != state->parent in the call arguments.
3715 */
dc503a8a
EC
3716static void propagate_liveness(const struct bpf_verifier_state *state,
3717 struct bpf_verifier_state *parent)
3718{
3719 while (do_propagate_liveness(state, parent)) {
3720 /* Something changed, so we need to feed those changes onward */
3721 state = parent;
3722 parent = state->parent;
3723 }
3724}
3725
58e2af8b 3726static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3727{
58e2af8b
JK
3728 struct bpf_verifier_state_list *new_sl;
3729 struct bpf_verifier_state_list *sl;
638f5b90 3730 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3731 int i, err;
f1bca824
AS
3732
3733 sl = env->explored_states[insn_idx];
3734 if (!sl)
3735 /* this 'insn_idx' instruction wasn't marked, so we will not
3736 * be doing state search here
3737 */
3738 return 0;
3739
3740 while (sl != STATE_LIST_MARK) {
638f5b90 3741 if (states_equal(env, &sl->state, cur)) {
f1bca824 3742 /* reached equivalent register/stack state,
dc503a8a
EC
3743 * prune the search.
3744 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3745 * If we have any write marks in env->cur_state, they
3746 * will prevent corresponding reads in the continuation
3747 * from reaching our parent (an explored_state). Our
3748 * own state will get the read marks recorded, but
3749 * they'll be immediately forgotten as we're pruning
3750 * this state and will pop a new one.
f1bca824 3751 */
638f5b90 3752 propagate_liveness(&sl->state, cur);
f1bca824 3753 return 1;
dc503a8a 3754 }
f1bca824
AS
3755 sl = sl->next;
3756 }
3757
3758 /* there were no equivalent states, remember current one.
3759 * technically the current state is not proven to be safe yet,
3760 * but it will either reach bpf_exit (which means it's safe) or
3761 * it will be rejected. Since there are no loops, we won't be
3762 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3763 */
638f5b90 3764 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3765 if (!new_sl)
3766 return -ENOMEM;
3767
3768 /* add new state to the head of linked list */
1969db47
AS
3769 err = copy_verifier_state(&new_sl->state, cur);
3770 if (err) {
3771 free_verifier_state(&new_sl->state, false);
3772 kfree(new_sl);
3773 return err;
3774 }
f1bca824
AS
3775 new_sl->next = env->explored_states[insn_idx];
3776 env->explored_states[insn_idx] = new_sl;
dc503a8a 3777 /* connect new state to parentage chain */
638f5b90 3778 cur->parent = &new_sl->state;
8e9cd9ce
EC
3779 /* clear write marks in current state: the writes we did are not writes
3780 * our child did, so they don't screen off its reads from us.
3781 * (There are no read marks in current state, because reads always mark
3782 * their parent and current state never has children yet. Only
3783 * explored_states can get read marks.)
3784 */
dc503a8a 3785 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3786 cur->regs[i].live = REG_LIVE_NONE;
3787 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3788 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3789 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3790 return 0;
3791}
3792
13a27dfc
JK
3793static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3794 int insn_idx, int prev_insn_idx)
3795{
ab3f0063
JK
3796 if (env->dev_ops && env->dev_ops->insn_hook)
3797 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3798
ab3f0063 3799 return 0;
13a27dfc
JK
3800}
3801
58e2af8b 3802static int do_check(struct bpf_verifier_env *env)
17a52670 3803{
638f5b90 3804 struct bpf_verifier_state *state;
17a52670 3805 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3806 struct bpf_reg_state *regs;
17a52670
AS
3807 int insn_cnt = env->prog->len;
3808 int insn_idx, prev_insn_idx = 0;
3809 int insn_processed = 0;
3810 bool do_print_state = false;
3811
638f5b90
AS
3812 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3813 if (!state)
3814 return -ENOMEM;
3815 env->cur_state = state;
3816 init_reg_state(env, state->regs);
dc503a8a 3817 state->parent = NULL;
17a52670
AS
3818 insn_idx = 0;
3819 for (;;) {
3820 struct bpf_insn *insn;
3821 u8 class;
3822 int err;
3823
3824 if (insn_idx >= insn_cnt) {
61bd5218 3825 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3826 insn_idx, insn_cnt);
3827 return -EFAULT;
3828 }
3829
3830 insn = &insns[insn_idx];
3831 class = BPF_CLASS(insn->code);
3832
07016151 3833 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3834 verbose(env,
3835 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3836 insn_processed);
3837 return -E2BIG;
3838 }
3839
f1bca824
AS
3840 err = is_state_visited(env, insn_idx);
3841 if (err < 0)
3842 return err;
3843 if (err == 1) {
3844 /* found equivalent state, can prune the search */
61bd5218 3845 if (env->log.level) {
f1bca824 3846 if (do_print_state)
61bd5218 3847 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3848 prev_insn_idx, insn_idx);
3849 else
61bd5218 3850 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3851 }
3852 goto process_bpf_exit;
3853 }
3854
3c2ce60b
DB
3855 if (need_resched())
3856 cond_resched();
3857
61bd5218
JK
3858 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3859 if (env->log.level > 1)
3860 verbose(env, "%d:", insn_idx);
c5fc9692 3861 else
61bd5218 3862 verbose(env, "\nfrom %d to %d:",
c5fc9692 3863 prev_insn_idx, insn_idx);
638f5b90 3864 print_verifier_state(env, state);
17a52670
AS
3865 do_print_state = false;
3866 }
3867
61bd5218
JK
3868 if (env->log.level) {
3869 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3870 print_bpf_insn(verbose, env, insn,
3871 env->allow_ptr_leaks);
17a52670
AS
3872 }
3873
13a27dfc
JK
3874 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3875 if (err)
3876 return err;
3877
638f5b90 3878 regs = cur_regs(env);
c131187d 3879 env->insn_aux_data[insn_idx].seen = true;
17a52670 3880 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3881 err = check_alu_op(env, insn);
17a52670
AS
3882 if (err)
3883 return err;
3884
3885 } else if (class == BPF_LDX) {
3df126f3 3886 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3887
3888 /* check for reserved fields is already done */
3889
17a52670 3890 /* check src operand */
dc503a8a 3891 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3892 if (err)
3893 return err;
3894
dc503a8a 3895 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3896 if (err)
3897 return err;
3898
725f9dcd
AS
3899 src_reg_type = regs[insn->src_reg].type;
3900
17a52670
AS
3901 /* check that memory (src_reg + off) is readable,
3902 * the state of dst_reg will be updated by this func
3903 */
31fd8581 3904 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670
AS
3905 BPF_SIZE(insn->code), BPF_READ,
3906 insn->dst_reg);
3907 if (err)
3908 return err;
3909
3df126f3
JK
3910 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3911
3912 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3913 /* saw a valid insn
3914 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3915 * save type to validate intersecting paths
9bac3d6d 3916 */
3df126f3 3917 *prev_src_type = src_reg_type;
9bac3d6d 3918
3df126f3 3919 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3920 (src_reg_type == PTR_TO_CTX ||
3df126f3 3921 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3922 /* ABuser program is trying to use the same insn
3923 * dst_reg = *(u32*) (src_reg + off)
3924 * with different pointer types:
3925 * src_reg == ctx in one branch and
3926 * src_reg == stack|map in some other branch.
3927 * Reject it.
3928 */
61bd5218 3929 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
3930 return -EINVAL;
3931 }
3932
17a52670 3933 } else if (class == BPF_STX) {
3df126f3 3934 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 3935
17a52670 3936 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 3937 err = check_xadd(env, insn_idx, insn);
17a52670
AS
3938 if (err)
3939 return err;
3940 insn_idx++;
3941 continue;
3942 }
3943
17a52670 3944 /* check src1 operand */
dc503a8a 3945 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3946 if (err)
3947 return err;
3948 /* check src2 operand */
dc503a8a 3949 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3950 if (err)
3951 return err;
3952
d691f9e8
AS
3953 dst_reg_type = regs[insn->dst_reg].type;
3954
17a52670 3955 /* check that memory (dst_reg + off) is writeable */
31fd8581 3956 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3957 BPF_SIZE(insn->code), BPF_WRITE,
3958 insn->src_reg);
3959 if (err)
3960 return err;
3961
3df126f3
JK
3962 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3963
3964 if (*prev_dst_type == NOT_INIT) {
3965 *prev_dst_type = dst_reg_type;
3966 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 3967 (dst_reg_type == PTR_TO_CTX ||
3df126f3 3968 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 3969 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
3970 return -EINVAL;
3971 }
3972
17a52670
AS
3973 } else if (class == BPF_ST) {
3974 if (BPF_MODE(insn->code) != BPF_MEM ||
3975 insn->src_reg != BPF_REG_0) {
61bd5218 3976 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
3977 return -EINVAL;
3978 }
3979 /* check src operand */
dc503a8a 3980 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3981 if (err)
3982 return err;
3983
3984 /* check that memory (dst_reg + off) is writeable */
31fd8581 3985 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670
AS
3986 BPF_SIZE(insn->code), BPF_WRITE,
3987 -1);
3988 if (err)
3989 return err;
3990
3991 } else if (class == BPF_JMP) {
3992 u8 opcode = BPF_OP(insn->code);
3993
3994 if (opcode == BPF_CALL) {
3995 if (BPF_SRC(insn->code) != BPF_K ||
3996 insn->off != 0 ||
3997 insn->src_reg != BPF_REG_0 ||
3998 insn->dst_reg != BPF_REG_0) {
61bd5218 3999 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4000 return -EINVAL;
4001 }
4002
81ed18ab 4003 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
4004 if (err)
4005 return err;
4006
4007 } else if (opcode == BPF_JA) {
4008 if (BPF_SRC(insn->code) != BPF_K ||
4009 insn->imm != 0 ||
4010 insn->src_reg != BPF_REG_0 ||
4011 insn->dst_reg != BPF_REG_0) {
61bd5218 4012 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4013 return -EINVAL;
4014 }
4015
4016 insn_idx += insn->off + 1;
4017 continue;
4018
4019 } else if (opcode == BPF_EXIT) {
4020 if (BPF_SRC(insn->code) != BPF_K ||
4021 insn->imm != 0 ||
4022 insn->src_reg != BPF_REG_0 ||
4023 insn->dst_reg != BPF_REG_0) {
61bd5218 4024 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4025 return -EINVAL;
4026 }
4027
4028 /* eBPF calling convetion is such that R0 is used
4029 * to return the value from eBPF program.
4030 * Make sure that it's readable at this time
4031 * of bpf_exit, which means that program wrote
4032 * something into it earlier
4033 */
dc503a8a 4034 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4035 if (err)
4036 return err;
4037
1be7f75d 4038 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4039 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4040 return -EACCES;
4041 }
4042
390ee7e2
AS
4043 err = check_return_code(env);
4044 if (err)
4045 return err;
f1bca824 4046process_bpf_exit:
638f5b90
AS
4047 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4048 if (err < 0) {
4049 if (err != -ENOENT)
4050 return err;
17a52670
AS
4051 break;
4052 } else {
4053 do_print_state = true;
4054 continue;
4055 }
4056 } else {
4057 err = check_cond_jmp_op(env, insn, &insn_idx);
4058 if (err)
4059 return err;
4060 }
4061 } else if (class == BPF_LD) {
4062 u8 mode = BPF_MODE(insn->code);
4063
4064 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4065 err = check_ld_abs(env, insn);
4066 if (err)
4067 return err;
4068
17a52670
AS
4069 } else if (mode == BPF_IMM) {
4070 err = check_ld_imm(env, insn);
4071 if (err)
4072 return err;
4073
4074 insn_idx++;
c131187d 4075 env->insn_aux_data[insn_idx].seen = true;
17a52670 4076 } else {
61bd5218 4077 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4078 return -EINVAL;
4079 }
4080 } else {
61bd5218 4081 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4082 return -EINVAL;
4083 }
4084
4085 insn_idx++;
4086 }
4087
61bd5218
JK
4088 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4089 env->prog->aux->stack_depth);
17a52670
AS
4090 return 0;
4091}
4092
56f668df
MKL
4093static int check_map_prealloc(struct bpf_map *map)
4094{
4095 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4096 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4097 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4098 !(map->map_flags & BPF_F_NO_PREALLOC);
4099}
4100
61bd5218
JK
4101static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4102 struct bpf_map *map,
fdc15d38
AS
4103 struct bpf_prog *prog)
4104
4105{
56f668df
MKL
4106 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4107 * preallocated hash maps, since doing memory allocation
4108 * in overflow_handler can crash depending on where nmi got
4109 * triggered.
4110 */
4111 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4112 if (!check_map_prealloc(map)) {
61bd5218 4113 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4114 return -EINVAL;
4115 }
4116 if (map->inner_map_meta &&
4117 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4118 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4119 return -EINVAL;
4120 }
fdc15d38
AS
4121 }
4122 return 0;
4123}
4124
0246e64d
AS
4125/* look for pseudo eBPF instructions that access map FDs and
4126 * replace them with actual map pointers
4127 */
58e2af8b 4128static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4129{
4130 struct bpf_insn *insn = env->prog->insnsi;
4131 int insn_cnt = env->prog->len;
fdc15d38 4132 int i, j, err;
0246e64d 4133
f1f7714e 4134 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4135 if (err)
4136 return err;
4137
0246e64d 4138 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4139 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4140 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4141 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4142 return -EINVAL;
4143 }
4144
d691f9e8
AS
4145 if (BPF_CLASS(insn->code) == BPF_STX &&
4146 ((BPF_MODE(insn->code) != BPF_MEM &&
4147 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4148 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4149 return -EINVAL;
4150 }
4151
0246e64d
AS
4152 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4153 struct bpf_map *map;
4154 struct fd f;
4155
4156 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4157 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4158 insn[1].off != 0) {
61bd5218 4159 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4160 return -EINVAL;
4161 }
4162
4163 if (insn->src_reg == 0)
4164 /* valid generic load 64-bit imm */
4165 goto next_insn;
4166
4167 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4168 verbose(env,
4169 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4170 return -EINVAL;
4171 }
4172
4173 f = fdget(insn->imm);
c2101297 4174 map = __bpf_map_get(f);
0246e64d 4175 if (IS_ERR(map)) {
61bd5218 4176 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4177 insn->imm);
0246e64d
AS
4178 return PTR_ERR(map);
4179 }
4180
61bd5218 4181 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4182 if (err) {
4183 fdput(f);
4184 return err;
4185 }
4186
0246e64d
AS
4187 /* store map pointer inside BPF_LD_IMM64 instruction */
4188 insn[0].imm = (u32) (unsigned long) map;
4189 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4190
4191 /* check whether we recorded this map already */
4192 for (j = 0; j < env->used_map_cnt; j++)
4193 if (env->used_maps[j] == map) {
4194 fdput(f);
4195 goto next_insn;
4196 }
4197
4198 if (env->used_map_cnt >= MAX_USED_MAPS) {
4199 fdput(f);
4200 return -E2BIG;
4201 }
4202
0246e64d
AS
4203 /* hold the map. If the program is rejected by verifier,
4204 * the map will be released by release_maps() or it
4205 * will be used by the valid program until it's unloaded
4206 * and all maps are released in free_bpf_prog_info()
4207 */
92117d84
AS
4208 map = bpf_map_inc(map, false);
4209 if (IS_ERR(map)) {
4210 fdput(f);
4211 return PTR_ERR(map);
4212 }
4213 env->used_maps[env->used_map_cnt++] = map;
4214
0246e64d
AS
4215 fdput(f);
4216next_insn:
4217 insn++;
4218 i++;
4219 }
4220 }
4221
4222 /* now all pseudo BPF_LD_IMM64 instructions load valid
4223 * 'struct bpf_map *' into a register instead of user map_fd.
4224 * These pointers will be used later by verifier to validate map access.
4225 */
4226 return 0;
4227}
4228
4229/* drop refcnt of maps used by the rejected program */
58e2af8b 4230static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4231{
4232 int i;
4233
4234 for (i = 0; i < env->used_map_cnt; i++)
4235 bpf_map_put(env->used_maps[i]);
4236}
4237
4238/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4239static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4240{
4241 struct bpf_insn *insn = env->prog->insnsi;
4242 int insn_cnt = env->prog->len;
4243 int i;
4244
4245 for (i = 0; i < insn_cnt; i++, insn++)
4246 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4247 insn->src_reg = 0;
4248}
4249
8041902d
AS
4250/* single env->prog->insni[off] instruction was replaced with the range
4251 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4252 * [0, off) and [off, end) to new locations, so the patched range stays zero
4253 */
4254static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4255 u32 off, u32 cnt)
4256{
4257 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4258 int i;
8041902d
AS
4259
4260 if (cnt == 1)
4261 return 0;
4262 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4263 if (!new_data)
4264 return -ENOMEM;
4265 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4266 memcpy(new_data + off + cnt - 1, old_data + off,
4267 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4268 for (i = off; i < off + cnt - 1; i++)
4269 new_data[i].seen = true;
8041902d
AS
4270 env->insn_aux_data = new_data;
4271 vfree(old_data);
4272 return 0;
4273}
4274
4275static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4276 const struct bpf_insn *patch, u32 len)
4277{
4278 struct bpf_prog *new_prog;
4279
4280 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4281 if (!new_prog)
4282 return NULL;
4283 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4284 return NULL;
4285 return new_prog;
4286}
4287
c131187d
AS
4288/* The verifier does more data flow analysis than llvm and will not explore
4289 * branches that are dead at run time. Malicious programs can have dead code
4290 * too. Therefore replace all dead at-run-time code with nops.
4291 */
4292static void sanitize_dead_code(struct bpf_verifier_env *env)
4293{
4294 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4295 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4296 struct bpf_insn *insn = env->prog->insnsi;
4297 const int insn_cnt = env->prog->len;
4298 int i;
4299
4300 for (i = 0; i < insn_cnt; i++) {
4301 if (aux_data[i].seen)
4302 continue;
4303 memcpy(insn + i, &nop, sizeof(nop));
4304 }
4305}
4306
9bac3d6d
AS
4307/* convert load instructions that access fields of 'struct __sk_buff'
4308 * into sequence of instructions that access fields of 'struct sk_buff'
4309 */
58e2af8b 4310static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4311{
00176a34 4312 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4313 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4314 const int insn_cnt = env->prog->len;
36bbef52 4315 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4316 struct bpf_prog *new_prog;
d691f9e8 4317 enum bpf_access_type type;
f96da094
DB
4318 bool is_narrower_load;
4319 u32 target_size;
9bac3d6d 4320
36bbef52
DB
4321 if (ops->gen_prologue) {
4322 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4323 env->prog);
4324 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4325 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4326 return -EINVAL;
4327 } else if (cnt) {
8041902d 4328 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4329 if (!new_prog)
4330 return -ENOMEM;
8041902d 4331
36bbef52 4332 env->prog = new_prog;
3df126f3 4333 delta += cnt - 1;
36bbef52
DB
4334 }
4335 }
4336
4337 if (!ops->convert_ctx_access)
9bac3d6d
AS
4338 return 0;
4339
3df126f3 4340 insn = env->prog->insnsi + delta;
36bbef52 4341
9bac3d6d 4342 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4343 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4344 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4345 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4346 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4347 type = BPF_READ;
62c7989b
DB
4348 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4349 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4350 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4351 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4352 type = BPF_WRITE;
4353 else
9bac3d6d
AS
4354 continue;
4355
8041902d 4356 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4357 continue;
9bac3d6d 4358
31fd8581 4359 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4360 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4361
4362 /* If the read access is a narrower load of the field,
4363 * convert to a 4/8-byte load, to minimum program type specific
4364 * convert_ctx_access changes. If conversion is successful,
4365 * we will apply proper mask to the result.
4366 */
f96da094 4367 is_narrower_load = size < ctx_field_size;
31fd8581 4368 if (is_narrower_load) {
f96da094
DB
4369 u32 off = insn->off;
4370 u8 size_code;
4371
4372 if (type == BPF_WRITE) {
61bd5218 4373 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4374 return -EINVAL;
4375 }
31fd8581 4376
f96da094 4377 size_code = BPF_H;
31fd8581
YS
4378 if (ctx_field_size == 4)
4379 size_code = BPF_W;
4380 else if (ctx_field_size == 8)
4381 size_code = BPF_DW;
f96da094 4382
31fd8581
YS
4383 insn->off = off & ~(ctx_field_size - 1);
4384 insn->code = BPF_LDX | BPF_MEM | size_code;
4385 }
f96da094
DB
4386
4387 target_size = 0;
4388 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4389 &target_size);
4390 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4391 (ctx_field_size && !target_size)) {
61bd5218 4392 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4393 return -EINVAL;
4394 }
f96da094
DB
4395
4396 if (is_narrower_load && size < target_size) {
31fd8581
YS
4397 if (ctx_field_size <= 4)
4398 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4399 (1 << size * 8) - 1);
31fd8581
YS
4400 else
4401 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4402 (1 << size * 8) - 1);
31fd8581 4403 }
9bac3d6d 4404
8041902d 4405 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4406 if (!new_prog)
4407 return -ENOMEM;
4408
3df126f3 4409 delta += cnt - 1;
9bac3d6d
AS
4410
4411 /* keep walking new program and skip insns we just inserted */
4412 env->prog = new_prog;
3df126f3 4413 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4414 }
4415
4416 return 0;
4417}
4418
79741b3b 4419/* fixup insn->imm field of bpf_call instructions
81ed18ab 4420 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4421 *
4422 * this function is called after eBPF program passed verification
4423 */
79741b3b 4424static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4425{
79741b3b
AS
4426 struct bpf_prog *prog = env->prog;
4427 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4428 const struct bpf_func_proto *fn;
79741b3b 4429 const int insn_cnt = prog->len;
81ed18ab
AS
4430 struct bpf_insn insn_buf[16];
4431 struct bpf_prog *new_prog;
4432 struct bpf_map *map_ptr;
4433 int i, cnt, delta = 0;
e245c5c6 4434
79741b3b
AS
4435 for (i = 0; i < insn_cnt; i++, insn++) {
4436 if (insn->code != (BPF_JMP | BPF_CALL))
4437 continue;
e245c5c6 4438
79741b3b
AS
4439 if (insn->imm == BPF_FUNC_get_route_realm)
4440 prog->dst_needed = 1;
4441 if (insn->imm == BPF_FUNC_get_prandom_u32)
4442 bpf_user_rnd_init_once();
79741b3b 4443 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4444 /* If we tail call into other programs, we
4445 * cannot make any assumptions since they can
4446 * be replaced dynamically during runtime in
4447 * the program array.
4448 */
4449 prog->cb_access = 1;
80a58d02 4450 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4451
79741b3b
AS
4452 /* mark bpf_tail_call as different opcode to avoid
4453 * conditional branch in the interpeter for every normal
4454 * call and to prevent accidental JITing by JIT compiler
4455 * that doesn't support bpf_tail_call yet
e245c5c6 4456 */
79741b3b 4457 insn->imm = 0;
71189fa9 4458 insn->code = BPF_JMP | BPF_TAIL_CALL;
79741b3b
AS
4459 continue;
4460 }
e245c5c6 4461
89c63074
DB
4462 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4463 * handlers are currently limited to 64 bit only.
4464 */
4465 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4466 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4467 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4468 if (map_ptr == BPF_MAP_PTR_POISON ||
4469 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4470 goto patch_call_imm;
4471
4472 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4473 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4474 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4475 return -EINVAL;
4476 }
4477
4478 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4479 cnt);
4480 if (!new_prog)
4481 return -ENOMEM;
4482
4483 delta += cnt - 1;
4484
4485 /* keep walking new program and skip insns we just inserted */
4486 env->prog = prog = new_prog;
4487 insn = new_prog->insnsi + i + delta;
4488 continue;
4489 }
4490
109980b8 4491 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4492 /* Note, we cannot use prog directly as imm as subsequent
4493 * rewrites would still change the prog pointer. The only
4494 * stable address we can use is aux, which also works with
4495 * prog clones during blinding.
4496 */
4497 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4498 struct bpf_insn r4_ld[] = {
4499 BPF_LD_IMM64(BPF_REG_4, addr),
4500 *insn,
4501 };
4502 cnt = ARRAY_SIZE(r4_ld);
4503
4504 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4505 if (!new_prog)
4506 return -ENOMEM;
4507
4508 delta += cnt - 1;
4509 env->prog = prog = new_prog;
4510 insn = new_prog->insnsi + i + delta;
4511 }
81ed18ab 4512patch_call_imm:
00176a34 4513 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4514 /* all functions that have prototype and verifier allowed
4515 * programs to call them, must be real in-kernel functions
4516 */
4517 if (!fn->func) {
61bd5218
JK
4518 verbose(env,
4519 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4520 func_id_name(insn->imm), insn->imm);
4521 return -EFAULT;
e245c5c6 4522 }
79741b3b 4523 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4524 }
e245c5c6 4525
79741b3b
AS
4526 return 0;
4527}
e245c5c6 4528
58e2af8b 4529static void free_states(struct bpf_verifier_env *env)
f1bca824 4530{
58e2af8b 4531 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4532 int i;
4533
4534 if (!env->explored_states)
4535 return;
4536
4537 for (i = 0; i < env->prog->len; i++) {
4538 sl = env->explored_states[i];
4539
4540 if (sl)
4541 while (sl != STATE_LIST_MARK) {
4542 sln = sl->next;
1969db47 4543 free_verifier_state(&sl->state, false);
f1bca824
AS
4544 kfree(sl);
4545 sl = sln;
4546 }
4547 }
4548
4549 kfree(env->explored_states);
4550}
4551
9bac3d6d 4552int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4553{
58e2af8b 4554 struct bpf_verifier_env *env;
61bd5218 4555 struct bpf_verifer_log *log;
51580e79
AS
4556 int ret = -EINVAL;
4557
eba0c929
AB
4558 /* no program is valid */
4559 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4560 return -EINVAL;
4561
58e2af8b 4562 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4563 * allocate/free it every time bpf_check() is called
4564 */
58e2af8b 4565 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4566 if (!env)
4567 return -ENOMEM;
61bd5218 4568 log = &env->log;
cbd35700 4569
3df126f3
JK
4570 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4571 (*prog)->len);
4572 ret = -ENOMEM;
4573 if (!env->insn_aux_data)
4574 goto err_free_env;
9bac3d6d 4575 env->prog = *prog;
00176a34 4576 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4577
cbd35700
AS
4578 /* grab the mutex to protect few globals used by verifier */
4579 mutex_lock(&bpf_verifier_lock);
4580
4581 if (attr->log_level || attr->log_buf || attr->log_size) {
4582 /* user requested verbose verifier output
4583 * and supplied buffer to store the verification trace
4584 */
e7bf8249
JK
4585 log->level = attr->log_level;
4586 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4587 log->len_total = attr->log_size;
cbd35700
AS
4588
4589 ret = -EINVAL;
e7bf8249
JK
4590 /* log attributes have to be sane */
4591 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4592 !log->level || !log->ubuf)
3df126f3 4593 goto err_unlock;
cbd35700 4594 }
1ad2f583
DB
4595
4596 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4597 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4598 env->strict_alignment = true;
cbd35700 4599
ab3f0063
JK
4600 if (env->prog->aux->offload) {
4601 ret = bpf_prog_offload_verifier_prep(env);
4602 if (ret)
4603 goto err_unlock;
4604 }
4605
0246e64d
AS
4606 ret = replace_map_fd_with_map_ptr(env);
4607 if (ret < 0)
4608 goto skip_full_check;
4609
9bac3d6d 4610 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4611 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4612 GFP_USER);
4613 ret = -ENOMEM;
4614 if (!env->explored_states)
4615 goto skip_full_check;
4616
475fb78f
AS
4617 ret = check_cfg(env);
4618 if (ret < 0)
4619 goto skip_full_check;
4620
1be7f75d
AS
4621 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4622
17a52670 4623 ret = do_check(env);
8c01c4f8
CG
4624 if (env->cur_state) {
4625 free_verifier_state(env->cur_state, true);
4626 env->cur_state = NULL;
4627 }
cbd35700 4628
0246e64d 4629skip_full_check:
638f5b90 4630 while (!pop_stack(env, NULL, NULL));
f1bca824 4631 free_states(env);
0246e64d 4632
c131187d
AS
4633 if (ret == 0)
4634 sanitize_dead_code(env);
4635
9bac3d6d
AS
4636 if (ret == 0)
4637 /* program is valid, convert *(u32*)(ctx + off) accesses */
4638 ret = convert_ctx_accesses(env);
4639
e245c5c6 4640 if (ret == 0)
79741b3b 4641 ret = fixup_bpf_calls(env);
e245c5c6 4642
a2a7d570 4643 if (log->level && bpf_verifier_log_full(log))
cbd35700 4644 ret = -ENOSPC;
a2a7d570 4645 if (log->level && !log->ubuf) {
cbd35700 4646 ret = -EFAULT;
a2a7d570 4647 goto err_release_maps;
cbd35700
AS
4648 }
4649
0246e64d
AS
4650 if (ret == 0 && env->used_map_cnt) {
4651 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4652 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4653 sizeof(env->used_maps[0]),
4654 GFP_KERNEL);
0246e64d 4655
9bac3d6d 4656 if (!env->prog->aux->used_maps) {
0246e64d 4657 ret = -ENOMEM;
a2a7d570 4658 goto err_release_maps;
0246e64d
AS
4659 }
4660
9bac3d6d 4661 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4662 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4663 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4664
4665 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4666 * bpf_ld_imm64 instructions
4667 */
4668 convert_pseudo_ld_imm64(env);
4669 }
cbd35700 4670
a2a7d570 4671err_release_maps:
9bac3d6d 4672 if (!env->prog->aux->used_maps)
0246e64d
AS
4673 /* if we didn't copy map pointers into bpf_prog_info, release
4674 * them now. Otherwise free_bpf_prog_info() will release them.
4675 */
4676 release_maps(env);
9bac3d6d 4677 *prog = env->prog;
3df126f3 4678err_unlock:
cbd35700 4679 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4680 vfree(env->insn_aux_data);
4681err_free_env:
4682 kfree(env);
51580e79
AS
4683 return ret;
4684}