bpf, btf: Always output invariant hit in pahole DWARF to BTF transform
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34 25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 26#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
d2e4c1e6
DB
174#define BPF_MAP_KEY_POISON (1ULL << 63)
175#define BPF_MAP_KEY_SEEN (1ULL << 62)
176
c93552c4
DB
177#define BPF_MAP_PTR_UNPRIV 1UL
178#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
179 POISON_POINTER_DELTA))
180#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181
182static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183{
d2e4c1e6 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
185}
186
187static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188{
d2e4c1e6 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
190}
191
192static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 const struct bpf_map *map, bool unpriv)
194{
195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
197 aux->map_ptr_state = (unsigned long)map |
198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199}
200
201static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202{
203 return aux->map_key_state & BPF_MAP_KEY_POISON;
204}
205
206static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207{
208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209}
210
211static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212{
213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214}
215
216static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217{
218 bool poisoned = bpf_map_key_poisoned(aux);
219
220 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 222}
fad73a1a 223
33ff9823
DB
224struct bpf_call_arg_meta {
225 struct bpf_map *map_ptr;
435faee1 226 bool raw_mode;
36bbef52 227 bool pkt_access;
435faee1
DB
228 int regno;
229 int access_size;
849fa506
YS
230 s64 msize_smax_value;
231 u64 msize_umax_value;
1b986589 232 int ref_obj_id;
d83525ca 233 int func_id;
a7658e1a 234 u32 btf_id;
33ff9823
DB
235};
236
8580ac94
AS
237struct btf *btf_vmlinux;
238
cbd35700
AS
239static DEFINE_MUTEX(bpf_verifier_lock);
240
d9762e84
MKL
241static const struct bpf_line_info *
242find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243{
244 const struct bpf_line_info *linfo;
245 const struct bpf_prog *prog;
246 u32 i, nr_linfo;
247
248 prog = env->prog;
249 nr_linfo = prog->aux->nr_linfo;
250
251 if (!nr_linfo || insn_off >= prog->len)
252 return NULL;
253
254 linfo = prog->aux->linfo;
255 for (i = 1; i < nr_linfo; i++)
256 if (insn_off < linfo[i].insn_off)
257 break;
258
259 return &linfo[i - 1];
260}
261
77d2e05a
MKL
262void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 va_list args)
cbd35700 264{
a2a7d570 265 unsigned int n;
cbd35700 266
a2a7d570 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
268
269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 "verifier log line truncated - local buffer too short\n");
271
272 n = min(log->len_total - log->len_used - 1, n);
273 log->kbuf[n] = '\0';
274
8580ac94
AS
275 if (log->level == BPF_LOG_KERNEL) {
276 pr_err("BPF:%s\n", log->kbuf);
277 return;
278 }
a2a7d570
JK
279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 log->len_used += n;
281 else
282 log->ubuf = NULL;
cbd35700 283}
abe08840
JO
284
285/* log_level controls verbosity level of eBPF verifier.
286 * bpf_verifier_log_write() is used to dump the verification trace to the log,
287 * so the user can figure out what's wrong with the program
430e68d1 288 */
abe08840
JO
289__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 const char *fmt, ...)
291{
292 va_list args;
293
77d2e05a
MKL
294 if (!bpf_verifier_log_needed(&env->log))
295 return;
296
abe08840 297 va_start(args, fmt);
77d2e05a 298 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
299 va_end(args);
300}
301EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302
303__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304{
77d2e05a 305 struct bpf_verifier_env *env = private_data;
abe08840
JO
306 va_list args;
307
77d2e05a
MKL
308 if (!bpf_verifier_log_needed(&env->log))
309 return;
310
abe08840 311 va_start(args, fmt);
77d2e05a 312 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
313 va_end(args);
314}
cbd35700 315
9e15db66
AS
316__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 const char *fmt, ...)
318{
319 va_list args;
320
321 if (!bpf_verifier_log_needed(log))
322 return;
323
324 va_start(args, fmt);
325 bpf_verifier_vlog(log, fmt, args);
326 va_end(args);
327}
328
d9762e84
MKL
329static const char *ltrim(const char *s)
330{
331 while (isspace(*s))
332 s++;
333
334 return s;
335}
336
337__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 u32 insn_off,
339 const char *prefix_fmt, ...)
340{
341 const struct bpf_line_info *linfo;
342
343 if (!bpf_verifier_log_needed(&env->log))
344 return;
345
346 linfo = find_linfo(env, insn_off);
347 if (!linfo || linfo == env->prev_linfo)
348 return;
349
350 if (prefix_fmt) {
351 va_list args;
352
353 va_start(args, prefix_fmt);
354 bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 va_end(args);
356 }
357
358 verbose(env, "%s\n",
359 ltrim(btf_name_by_offset(env->prog->aux->btf,
360 linfo->line_off)));
361
362 env->prev_linfo = linfo;
363}
364
de8f3a83
DB
365static bool type_is_pkt_pointer(enum bpf_reg_type type)
366{
367 return type == PTR_TO_PACKET ||
368 type == PTR_TO_PACKET_META;
369}
370
46f8bc92
MKL
371static bool type_is_sk_pointer(enum bpf_reg_type type)
372{
373 return type == PTR_TO_SOCKET ||
655a51e5 374 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
375 type == PTR_TO_TCP_SOCK ||
376 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
377}
378
840b9615
JS
379static bool reg_type_may_be_null(enum bpf_reg_type type)
380{
fd978bf7 381 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 382 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
383 type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
385}
386
d83525ca
AS
387static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388{
389 return reg->type == PTR_TO_MAP_VALUE &&
390 map_value_has_spin_lock(reg->map_ptr);
391}
392
cba368c1
MKL
393static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394{
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCKET_OR_NULL ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_TCP_SOCK_OR_NULL;
399}
400
1b986589 401static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 402{
1b986589 403 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
404}
405
406/* Determine whether the function releases some resources allocated by another
407 * function call. The first reference type argument will be assumed to be
408 * released by release_reference().
409 */
410static bool is_release_function(enum bpf_func_id func_id)
411{
6acc9b43 412 return func_id == BPF_FUNC_sk_release;
840b9615
JS
413}
414
46f8bc92
MKL
415static bool is_acquire_function(enum bpf_func_id func_id)
416{
417 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
418 func_id == BPF_FUNC_sk_lookup_udp ||
419 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
420}
421
1b986589
MKL
422static bool is_ptr_cast_function(enum bpf_func_id func_id)
423{
424 return func_id == BPF_FUNC_tcp_sock ||
425 func_id == BPF_FUNC_sk_fullsock;
426}
427
17a52670
AS
428/* string representation of 'enum bpf_reg_type' */
429static const char * const reg_type_str[] = {
430 [NOT_INIT] = "?",
f1174f77 431 [SCALAR_VALUE] = "inv",
17a52670
AS
432 [PTR_TO_CTX] = "ctx",
433 [CONST_PTR_TO_MAP] = "map_ptr",
434 [PTR_TO_MAP_VALUE] = "map_value",
435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 436 [PTR_TO_STACK] = "fp",
969bf05e 437 [PTR_TO_PACKET] = "pkt",
de8f3a83 438 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 439 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 440 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
441 [PTR_TO_SOCKET] = "sock",
442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
443 [PTR_TO_SOCK_COMMON] = "sock_common",
444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
445 [PTR_TO_TCP_SOCK] = "tcp_sock",
446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 447 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 448 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 449 [PTR_TO_BTF_ID] = "ptr_",
17a52670
AS
450};
451
8efea21d
EC
452static char slot_type_char[] = {
453 [STACK_INVALID] = '?',
454 [STACK_SPILL] = 'r',
455 [STACK_MISC] = 'm',
456 [STACK_ZERO] = '0',
457};
458
4e92024a
AS
459static void print_liveness(struct bpf_verifier_env *env,
460 enum bpf_reg_liveness live)
461{
9242b5f5 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
463 verbose(env, "_");
464 if (live & REG_LIVE_READ)
465 verbose(env, "r");
466 if (live & REG_LIVE_WRITTEN)
467 verbose(env, "w");
9242b5f5
AS
468 if (live & REG_LIVE_DONE)
469 verbose(env, "D");
4e92024a
AS
470}
471
f4d7e40a
AS
472static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 const struct bpf_reg_state *reg)
474{
475 struct bpf_verifier_state *cur = env->cur_state;
476
477 return cur->frame[reg->frameno];
478}
479
9e15db66
AS
480const char *kernel_type_name(u32 id)
481{
482 return btf_name_by_offset(btf_vmlinux,
483 btf_type_by_id(btf_vmlinux, id)->name_off);
484}
485
61bd5218 486static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 487 const struct bpf_func_state *state)
17a52670 488{
f4d7e40a 489 const struct bpf_reg_state *reg;
17a52670
AS
490 enum bpf_reg_type t;
491 int i;
492
f4d7e40a
AS
493 if (state->frameno)
494 verbose(env, " frame%d:", state->frameno);
17a52670 495 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
496 reg = &state->regs[i];
497 t = reg->type;
17a52670
AS
498 if (t == NOT_INIT)
499 continue;
4e92024a
AS
500 verbose(env, " R%d", i);
501 print_liveness(env, reg->live);
502 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
503 if (t == SCALAR_VALUE && reg->precise)
504 verbose(env, "P");
f1174f77
EC
505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 tnum_is_const(reg->var_off)) {
507 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 508 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 509 } else {
9e15db66
AS
510 if (t == PTR_TO_BTF_ID)
511 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
512 verbose(env, "(id=%d", reg->id);
513 if (reg_type_may_be_refcounted_or_null(t))
514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 515 if (t != SCALAR_VALUE)
61bd5218 516 verbose(env, ",off=%d", reg->off);
de8f3a83 517 if (type_is_pkt_pointer(t))
61bd5218 518 verbose(env, ",r=%d", reg->range);
f1174f77
EC
519 else if (t == CONST_PTR_TO_MAP ||
520 t == PTR_TO_MAP_VALUE ||
521 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 522 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
523 reg->map_ptr->key_size,
524 reg->map_ptr->value_size);
7d1238f2
EC
525 if (tnum_is_const(reg->var_off)) {
526 /* Typically an immediate SCALAR_VALUE, but
527 * could be a pointer whose offset is too big
528 * for reg->off
529 */
61bd5218 530 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
531 } else {
532 if (reg->smin_value != reg->umin_value &&
533 reg->smin_value != S64_MIN)
61bd5218 534 verbose(env, ",smin_value=%lld",
7d1238f2
EC
535 (long long)reg->smin_value);
536 if (reg->smax_value != reg->umax_value &&
537 reg->smax_value != S64_MAX)
61bd5218 538 verbose(env, ",smax_value=%lld",
7d1238f2
EC
539 (long long)reg->smax_value);
540 if (reg->umin_value != 0)
61bd5218 541 verbose(env, ",umin_value=%llu",
7d1238f2
EC
542 (unsigned long long)reg->umin_value);
543 if (reg->umax_value != U64_MAX)
61bd5218 544 verbose(env, ",umax_value=%llu",
7d1238f2
EC
545 (unsigned long long)reg->umax_value);
546 if (!tnum_is_unknown(reg->var_off)) {
547 char tn_buf[48];
f1174f77 548
7d1238f2 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 550 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 551 }
f1174f77 552 }
61bd5218 553 verbose(env, ")");
f1174f77 554 }
17a52670 555 }
638f5b90 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
557 char types_buf[BPF_REG_SIZE + 1];
558 bool valid = false;
559 int j;
560
561 for (j = 0; j < BPF_REG_SIZE; j++) {
562 if (state->stack[i].slot_type[j] != STACK_INVALID)
563 valid = true;
564 types_buf[j] = slot_type_char[
565 state->stack[i].slot_type[j]];
566 }
567 types_buf[BPF_REG_SIZE] = 0;
568 if (!valid)
569 continue;
570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
572 if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 reg = &state->stack[i].spilled_ptr;
574 t = reg->type;
575 verbose(env, "=%s", reg_type_str[t]);
576 if (t == SCALAR_VALUE && reg->precise)
577 verbose(env, "P");
578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 verbose(env, "%lld", reg->var_off.value + reg->off);
580 } else {
8efea21d 581 verbose(env, "=%s", types_buf);
b5dc0163 582 }
17a52670 583 }
fd978bf7
JS
584 if (state->acquired_refs && state->refs[0].id) {
585 verbose(env, " refs=%d", state->refs[0].id);
586 for (i = 1; i < state->acquired_refs; i++)
587 if (state->refs[i].id)
588 verbose(env, ",%d", state->refs[i].id);
589 }
61bd5218 590 verbose(env, "\n");
17a52670
AS
591}
592
84dbf350
JS
593#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
594static int copy_##NAME##_state(struct bpf_func_state *dst, \
595 const struct bpf_func_state *src) \
596{ \
597 if (!src->FIELD) \
598 return 0; \
599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
600 /* internal bug, make state invalid to reject the program */ \
601 memset(dst, 0, sizeof(*dst)); \
602 return -EFAULT; \
603 } \
604 memcpy(dst->FIELD, src->FIELD, \
605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
606 return 0; \
638f5b90 607}
fd978bf7
JS
608/* copy_reference_state() */
609COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
610/* copy_stack_state() */
611COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612#undef COPY_STATE_FN
613
614#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
615static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 bool copy_old) \
617{ \
618 u32 old_size = state->COUNT; \
619 struct bpf_##NAME##_state *new_##FIELD; \
620 int slot = size / SIZE; \
621 \
622 if (size <= old_size || !size) { \
623 if (copy_old) \
624 return 0; \
625 state->COUNT = slot * SIZE; \
626 if (!size && old_size) { \
627 kfree(state->FIELD); \
628 state->FIELD = NULL; \
629 } \
630 return 0; \
631 } \
632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 GFP_KERNEL); \
634 if (!new_##FIELD) \
635 return -ENOMEM; \
636 if (copy_old) { \
637 if (state->FIELD) \
638 memcpy(new_##FIELD, state->FIELD, \
639 sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 memset(new_##FIELD + old_size / SIZE, 0, \
641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 } \
643 state->COUNT = slot * SIZE; \
644 kfree(state->FIELD); \
645 state->FIELD = new_##FIELD; \
646 return 0; \
647}
fd978bf7
JS
648/* realloc_reference_state() */
649REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
650/* realloc_stack_state() */
651REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652#undef REALLOC_STATE_FN
638f5b90
AS
653
654/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 656 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658 * which realloc_stack_state() copies over. It points to previous
659 * bpf_verifier_state which is never reallocated.
638f5b90 660 */
fd978bf7
JS
661static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 int refs_size, bool copy_old)
638f5b90 663{
fd978bf7
JS
664 int err = realloc_reference_state(state, refs_size, copy_old);
665 if (err)
666 return err;
667 return realloc_stack_state(state, stack_size, copy_old);
668}
669
670/* Acquire a pointer id from the env and update the state->refs to include
671 * this new pointer reference.
672 * On success, returns a valid pointer id to associate with the register
673 * On failure, returns a negative errno.
638f5b90 674 */
fd978bf7 675static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 676{
fd978bf7
JS
677 struct bpf_func_state *state = cur_func(env);
678 int new_ofs = state->acquired_refs;
679 int id, err;
680
681 err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 if (err)
683 return err;
684 id = ++env->id_gen;
685 state->refs[new_ofs].id = id;
686 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 687
fd978bf7
JS
688 return id;
689}
690
691/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 692static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
693{
694 int i, last_idx;
695
fd978bf7
JS
696 last_idx = state->acquired_refs - 1;
697 for (i = 0; i < state->acquired_refs; i++) {
698 if (state->refs[i].id == ptr_id) {
699 if (last_idx && i != last_idx)
700 memcpy(&state->refs[i], &state->refs[last_idx],
701 sizeof(*state->refs));
702 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 state->acquired_refs--;
638f5b90 704 return 0;
638f5b90 705 }
638f5b90 706 }
46f8bc92 707 return -EINVAL;
fd978bf7
JS
708}
709
710static int transfer_reference_state(struct bpf_func_state *dst,
711 struct bpf_func_state *src)
712{
713 int err = realloc_reference_state(dst, src->acquired_refs, false);
714 if (err)
715 return err;
716 err = copy_reference_state(dst, src);
717 if (err)
718 return err;
638f5b90
AS
719 return 0;
720}
721
f4d7e40a
AS
722static void free_func_state(struct bpf_func_state *state)
723{
5896351e
AS
724 if (!state)
725 return;
fd978bf7 726 kfree(state->refs);
f4d7e40a
AS
727 kfree(state->stack);
728 kfree(state);
729}
730
b5dc0163
AS
731static void clear_jmp_history(struct bpf_verifier_state *state)
732{
733 kfree(state->jmp_history);
734 state->jmp_history = NULL;
735 state->jmp_history_cnt = 0;
736}
737
1969db47
AS
738static void free_verifier_state(struct bpf_verifier_state *state,
739 bool free_self)
638f5b90 740{
f4d7e40a
AS
741 int i;
742
743 for (i = 0; i <= state->curframe; i++) {
744 free_func_state(state->frame[i]);
745 state->frame[i] = NULL;
746 }
b5dc0163 747 clear_jmp_history(state);
1969db47
AS
748 if (free_self)
749 kfree(state);
638f5b90
AS
750}
751
752/* copy verifier state from src to dst growing dst stack space
753 * when necessary to accommodate larger src stack
754 */
f4d7e40a
AS
755static int copy_func_state(struct bpf_func_state *dst,
756 const struct bpf_func_state *src)
638f5b90
AS
757{
758 int err;
759
fd978bf7
JS
760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 false);
762 if (err)
763 return err;
764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 err = copy_reference_state(dst, src);
638f5b90
AS
766 if (err)
767 return err;
638f5b90
AS
768 return copy_stack_state(dst, src);
769}
770
f4d7e40a
AS
771static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 const struct bpf_verifier_state *src)
773{
774 struct bpf_func_state *dst;
b5dc0163 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
776 int i, err;
777
b5dc0163
AS
778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 kfree(dst_state->jmp_history);
780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 if (!dst_state->jmp_history)
782 return -ENOMEM;
783 }
784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 dst_state->jmp_history_cnt = src->jmp_history_cnt;
786
f4d7e40a
AS
787 /* if dst has more stack frames then src frame, free them */
788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 free_func_state(dst_state->frame[i]);
790 dst_state->frame[i] = NULL;
791 }
979d63d5 792 dst_state->speculative = src->speculative;
f4d7e40a 793 dst_state->curframe = src->curframe;
d83525ca 794 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
795 dst_state->branches = src->branches;
796 dst_state->parent = src->parent;
b5dc0163
AS
797 dst_state->first_insn_idx = src->first_insn_idx;
798 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
799 for (i = 0; i <= src->curframe; i++) {
800 dst = dst_state->frame[i];
801 if (!dst) {
802 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 if (!dst)
804 return -ENOMEM;
805 dst_state->frame[i] = dst;
806 }
807 err = copy_func_state(dst, src->frame[i]);
808 if (err)
809 return err;
810 }
811 return 0;
812}
813
2589726d
AS
814static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815{
816 while (st) {
817 u32 br = --st->branches;
818
819 /* WARN_ON(br > 1) technically makes sense here,
820 * but see comment in push_stack(), hence:
821 */
822 WARN_ONCE((int)br < 0,
823 "BUG update_branch_counts:branches_to_explore=%d\n",
824 br);
825 if (br)
826 break;
827 st = st->parent;
828 }
829}
830
638f5b90
AS
831static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 int *insn_idx)
833{
834 struct bpf_verifier_state *cur = env->cur_state;
835 struct bpf_verifier_stack_elem *elem, *head = env->head;
836 int err;
17a52670
AS
837
838 if (env->head == NULL)
638f5b90 839 return -ENOENT;
17a52670 840
638f5b90
AS
841 if (cur) {
842 err = copy_verifier_state(cur, &head->st);
843 if (err)
844 return err;
845 }
846 if (insn_idx)
847 *insn_idx = head->insn_idx;
17a52670 848 if (prev_insn_idx)
638f5b90
AS
849 *prev_insn_idx = head->prev_insn_idx;
850 elem = head->next;
1969db47 851 free_verifier_state(&head->st, false);
638f5b90 852 kfree(head);
17a52670
AS
853 env->head = elem;
854 env->stack_size--;
638f5b90 855 return 0;
17a52670
AS
856}
857
58e2af8b 858static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
859 int insn_idx, int prev_insn_idx,
860 bool speculative)
17a52670 861{
638f5b90 862 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 863 struct bpf_verifier_stack_elem *elem;
638f5b90 864 int err;
17a52670 865
638f5b90 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
867 if (!elem)
868 goto err;
869
17a52670
AS
870 elem->insn_idx = insn_idx;
871 elem->prev_insn_idx = prev_insn_idx;
872 elem->next = env->head;
873 env->head = elem;
874 env->stack_size++;
1969db47
AS
875 err = copy_verifier_state(&elem->st, cur);
876 if (err)
877 goto err;
979d63d5 878 elem->st.speculative |= speculative;
b285fcb7
AS
879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 verbose(env, "The sequence of %d jumps is too complex.\n",
881 env->stack_size);
17a52670
AS
882 goto err;
883 }
2589726d
AS
884 if (elem->st.parent) {
885 ++elem->st.parent->branches;
886 /* WARN_ON(branches > 2) technically makes sense here,
887 * but
888 * 1. speculative states will bump 'branches' for non-branch
889 * instructions
890 * 2. is_state_visited() heuristics may decide not to create
891 * a new state for a sequence of branches and all such current
892 * and cloned states will be pointing to a single parent state
893 * which might have large 'branches' count.
894 */
895 }
17a52670
AS
896 return &elem->st;
897err:
5896351e
AS
898 free_verifier_state(env->cur_state, true);
899 env->cur_state = NULL;
17a52670 900 /* pop all elements and return */
638f5b90 901 while (!pop_stack(env, NULL, NULL));
17a52670
AS
902 return NULL;
903}
904
905#define CALLER_SAVED_REGS 6
906static const int caller_saved[CALLER_SAVED_REGS] = {
907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908};
909
f54c7898
DB
910static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 struct bpf_reg_state *reg);
f1174f77 912
b03c9f9f
EC
913/* Mark the unknown part of a register (variable offset or scalar value) as
914 * known to have the value @imm.
915 */
916static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917{
a9c676bc
AS
918 /* Clear id, off, and union(map_ptr, range) */
919 memset(((u8 *)reg) + sizeof(reg->type), 0,
920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
921 reg->var_off = tnum_const(imm);
922 reg->smin_value = (s64)imm;
923 reg->smax_value = (s64)imm;
924 reg->umin_value = imm;
925 reg->umax_value = imm;
926}
927
f1174f77
EC
928/* Mark the 'variable offset' part of a register as zero. This should be
929 * used only on registers holding a pointer type.
930 */
931static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 932{
b03c9f9f 933 __mark_reg_known(reg, 0);
f1174f77 934}
a9789ef9 935
cc2b14d5
AS
936static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937{
938 __mark_reg_known(reg, 0);
cc2b14d5
AS
939 reg->type = SCALAR_VALUE;
940}
941
61bd5218
JK
942static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
947 /* Something bad happened, let's kill all regs */
948 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 949 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
950 return;
951 }
952 __mark_reg_known_zero(regs + regno);
953}
954
de8f3a83
DB
955static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956{
957 return type_is_pkt_pointer(reg->type);
958}
959
960static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961{
962 return reg_is_pkt_pointer(reg) ||
963 reg->type == PTR_TO_PACKET_END;
964}
965
966/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 enum bpf_reg_type which)
969{
970 /* The register can already have a range from prior markings.
971 * This is fine as long as it hasn't been advanced from its
972 * origin.
973 */
974 return reg->type == which &&
975 reg->id == 0 &&
976 reg->off == 0 &&
977 tnum_equals_const(reg->var_off, 0);
978}
979
b03c9f9f
EC
980/* Attempts to improve min/max values based on var_off information */
981static void __update_reg_bounds(struct bpf_reg_state *reg)
982{
983 /* min signed is max(sign bit) | min(other bits) */
984 reg->smin_value = max_t(s64, reg->smin_value,
985 reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 /* max signed is min(sign bit) | max(other bits) */
987 reg->smax_value = min_t(s64, reg->smax_value,
988 reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 reg->umax_value = min(reg->umax_value,
991 reg->var_off.value | reg->var_off.mask);
992}
993
994/* Uses signed min/max values to inform unsigned, and vice-versa */
995static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996{
997 /* Learn sign from signed bounds.
998 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 * are the same, so combine. This works even in the negative case, e.g.
1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 */
1002 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 reg->umin_value);
1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 reg->umax_value);
1007 return;
1008 }
1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1010 * boundary, so we must be careful.
1011 */
1012 if ((s64)reg->umax_value >= 0) {
1013 /* Positive. We can't learn anything from the smin, but smax
1014 * is positive, hence safe.
1015 */
1016 reg->smin_value = reg->umin_value;
1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 reg->umax_value);
1019 } else if ((s64)reg->umin_value < 0) {
1020 /* Negative. We can't learn anything from the smax, but smin
1021 * is negative, hence safe.
1022 */
1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 reg->umin_value);
1025 reg->smax_value = reg->umax_value;
1026 }
1027}
1028
1029/* Attempts to improve var_off based on unsigned min/max information */
1030static void __reg_bound_offset(struct bpf_reg_state *reg)
1031{
1032 reg->var_off = tnum_intersect(reg->var_off,
1033 tnum_range(reg->umin_value,
1034 reg->umax_value));
1035}
1036
581738a6
YS
1037static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038{
1039 u64 mask = 0xffffFFFF;
1040 struct tnum range = tnum_range(reg->umin_value & mask,
1041 reg->umax_value & mask);
1042 struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044
1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046}
1047
b03c9f9f
EC
1048/* Reset the min/max bounds of a register */
1049static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050{
1051 reg->smin_value = S64_MIN;
1052 reg->smax_value = S64_MAX;
1053 reg->umin_value = 0;
1054 reg->umax_value = U64_MAX;
1055}
1056
f1174f77 1057/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1058static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 struct bpf_reg_state *reg)
f1174f77 1060{
a9c676bc
AS
1061 /*
1062 * Clear type, id, off, and union(map_ptr, range) and
1063 * padding between 'type' and union
1064 */
1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1066 reg->type = SCALAR_VALUE;
f1174f77 1067 reg->var_off = tnum_unknown;
f4d7e40a 1068 reg->frameno = 0;
f54c7898
DB
1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 true : false;
b03c9f9f 1071 __mark_reg_unbounded(reg);
f1174f77
EC
1072}
1073
61bd5218
JK
1074static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1076{
1077 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1079 /* Something bad happened, let's kill all regs except FP */
1080 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1081 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1082 return;
1083 }
f54c7898 1084 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1085}
1086
f54c7898
DB
1087static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 struct bpf_reg_state *reg)
f1174f77 1089{
f54c7898 1090 __mark_reg_unknown(env, reg);
f1174f77
EC
1091 reg->type = NOT_INIT;
1092}
1093
61bd5218
JK
1094static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1096{
1097 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1099 /* Something bad happened, let's kill all regs except FP */
1100 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1101 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1102 return;
1103 }
f54c7898 1104 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1105}
1106
5327ed3d 1107#define DEF_NOT_SUBREG (0)
61bd5218 1108static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1109 struct bpf_func_state *state)
17a52670 1110{
f4d7e40a 1111 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1112 int i;
1113
dc503a8a 1114 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1115 mark_reg_not_init(env, regs, i);
dc503a8a 1116 regs[i].live = REG_LIVE_NONE;
679c782d 1117 regs[i].parent = NULL;
5327ed3d 1118 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1119 }
17a52670
AS
1120
1121 /* frame pointer */
f1174f77 1122 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1123 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1124 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1125}
1126
f4d7e40a
AS
1127#define BPF_MAIN_FUNC (-1)
1128static void init_func_state(struct bpf_verifier_env *env,
1129 struct bpf_func_state *state,
1130 int callsite, int frameno, int subprogno)
1131{
1132 state->callsite = callsite;
1133 state->frameno = frameno;
1134 state->subprogno = subprogno;
1135 init_reg_state(env, state);
1136}
1137
17a52670
AS
1138enum reg_arg_type {
1139 SRC_OP, /* register is used as source operand */
1140 DST_OP, /* register is used as destination operand */
1141 DST_OP_NO_MARK /* same as above, check only, don't mark */
1142};
1143
cc8b0b92
AS
1144static int cmp_subprogs(const void *a, const void *b)
1145{
9c8105bd
JW
1146 return ((struct bpf_subprog_info *)a)->start -
1147 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1148}
1149
1150static int find_subprog(struct bpf_verifier_env *env, int off)
1151{
9c8105bd 1152 struct bpf_subprog_info *p;
cc8b0b92 1153
9c8105bd
JW
1154 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1155 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1156 if (!p)
1157 return -ENOENT;
9c8105bd 1158 return p - env->subprog_info;
cc8b0b92
AS
1159
1160}
1161
1162static int add_subprog(struct bpf_verifier_env *env, int off)
1163{
1164 int insn_cnt = env->prog->len;
1165 int ret;
1166
1167 if (off >= insn_cnt || off < 0) {
1168 verbose(env, "call to invalid destination\n");
1169 return -EINVAL;
1170 }
1171 ret = find_subprog(env, off);
1172 if (ret >= 0)
1173 return 0;
4cb3d99c 1174 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1175 verbose(env, "too many subprograms\n");
1176 return -E2BIG;
1177 }
9c8105bd
JW
1178 env->subprog_info[env->subprog_cnt++].start = off;
1179 sort(env->subprog_info, env->subprog_cnt,
1180 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1181 return 0;
1182}
1183
1184static int check_subprogs(struct bpf_verifier_env *env)
1185{
1186 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1187 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1188 struct bpf_insn *insn = env->prog->insnsi;
1189 int insn_cnt = env->prog->len;
1190
f910cefa
JW
1191 /* Add entry function. */
1192 ret = add_subprog(env, 0);
1193 if (ret < 0)
1194 return ret;
1195
cc8b0b92
AS
1196 /* determine subprog starts. The end is one before the next starts */
1197 for (i = 0; i < insn_cnt; i++) {
1198 if (insn[i].code != (BPF_JMP | BPF_CALL))
1199 continue;
1200 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1201 continue;
1202 if (!env->allow_ptr_leaks) {
1203 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1204 return -EPERM;
1205 }
cc8b0b92
AS
1206 ret = add_subprog(env, i + insn[i].imm + 1);
1207 if (ret < 0)
1208 return ret;
1209 }
1210
4cb3d99c
JW
1211 /* Add a fake 'exit' subprog which could simplify subprog iteration
1212 * logic. 'subprog_cnt' should not be increased.
1213 */
1214 subprog[env->subprog_cnt].start = insn_cnt;
1215
06ee7115 1216 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1217 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1218 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1219
1220 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1221 subprog_start = subprog[cur_subprog].start;
1222 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1223 for (i = 0; i < insn_cnt; i++) {
1224 u8 code = insn[i].code;
1225
092ed096 1226 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1227 goto next;
1228 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1229 goto next;
1230 off = i + insn[i].off + 1;
1231 if (off < subprog_start || off >= subprog_end) {
1232 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1233 return -EINVAL;
1234 }
1235next:
1236 if (i == subprog_end - 1) {
1237 /* to avoid fall-through from one subprog into another
1238 * the last insn of the subprog should be either exit
1239 * or unconditional jump back
1240 */
1241 if (code != (BPF_JMP | BPF_EXIT) &&
1242 code != (BPF_JMP | BPF_JA)) {
1243 verbose(env, "last insn is not an exit or jmp\n");
1244 return -EINVAL;
1245 }
1246 subprog_start = subprog_end;
4cb3d99c
JW
1247 cur_subprog++;
1248 if (cur_subprog < env->subprog_cnt)
9c8105bd 1249 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1250 }
1251 }
1252 return 0;
1253}
1254
679c782d
EC
1255/* Parentage chain of this register (or stack slot) should take care of all
1256 * issues like callee-saved registers, stack slot allocation time, etc.
1257 */
f4d7e40a 1258static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1259 const struct bpf_reg_state *state,
5327ed3d 1260 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1261{
1262 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1263 int cnt = 0;
dc503a8a
EC
1264
1265 while (parent) {
1266 /* if read wasn't screened by an earlier write ... */
679c782d 1267 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1268 break;
9242b5f5
AS
1269 if (parent->live & REG_LIVE_DONE) {
1270 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1271 reg_type_str[parent->type],
1272 parent->var_off.value, parent->off);
1273 return -EFAULT;
1274 }
5327ed3d
JW
1275 /* The first condition is more likely to be true than the
1276 * second, checked it first.
1277 */
1278 if ((parent->live & REG_LIVE_READ) == flag ||
1279 parent->live & REG_LIVE_READ64)
25af32da
AS
1280 /* The parentage chain never changes and
1281 * this parent was already marked as LIVE_READ.
1282 * There is no need to keep walking the chain again and
1283 * keep re-marking all parents as LIVE_READ.
1284 * This case happens when the same register is read
1285 * multiple times without writes into it in-between.
5327ed3d
JW
1286 * Also, if parent has the stronger REG_LIVE_READ64 set,
1287 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1288 */
1289 break;
dc503a8a 1290 /* ... then we depend on parent's value */
5327ed3d
JW
1291 parent->live |= flag;
1292 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1293 if (flag == REG_LIVE_READ64)
1294 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1295 state = parent;
1296 parent = state->parent;
f4d7e40a 1297 writes = true;
06ee7115 1298 cnt++;
dc503a8a 1299 }
06ee7115
AS
1300
1301 if (env->longest_mark_read_walk < cnt)
1302 env->longest_mark_read_walk = cnt;
f4d7e40a 1303 return 0;
dc503a8a
EC
1304}
1305
5327ed3d
JW
1306/* This function is supposed to be used by the following 32-bit optimization
1307 * code only. It returns TRUE if the source or destination register operates
1308 * on 64-bit, otherwise return FALSE.
1309 */
1310static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1311 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1312{
1313 u8 code, class, op;
1314
1315 code = insn->code;
1316 class = BPF_CLASS(code);
1317 op = BPF_OP(code);
1318 if (class == BPF_JMP) {
1319 /* BPF_EXIT for "main" will reach here. Return TRUE
1320 * conservatively.
1321 */
1322 if (op == BPF_EXIT)
1323 return true;
1324 if (op == BPF_CALL) {
1325 /* BPF to BPF call will reach here because of marking
1326 * caller saved clobber with DST_OP_NO_MARK for which we
1327 * don't care the register def because they are anyway
1328 * marked as NOT_INIT already.
1329 */
1330 if (insn->src_reg == BPF_PSEUDO_CALL)
1331 return false;
1332 /* Helper call will reach here because of arg type
1333 * check, conservatively return TRUE.
1334 */
1335 if (t == SRC_OP)
1336 return true;
1337
1338 return false;
1339 }
1340 }
1341
1342 if (class == BPF_ALU64 || class == BPF_JMP ||
1343 /* BPF_END always use BPF_ALU class. */
1344 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1345 return true;
1346
1347 if (class == BPF_ALU || class == BPF_JMP32)
1348 return false;
1349
1350 if (class == BPF_LDX) {
1351 if (t != SRC_OP)
1352 return BPF_SIZE(code) == BPF_DW;
1353 /* LDX source must be ptr. */
1354 return true;
1355 }
1356
1357 if (class == BPF_STX) {
1358 if (reg->type != SCALAR_VALUE)
1359 return true;
1360 return BPF_SIZE(code) == BPF_DW;
1361 }
1362
1363 if (class == BPF_LD) {
1364 u8 mode = BPF_MODE(code);
1365
1366 /* LD_IMM64 */
1367 if (mode == BPF_IMM)
1368 return true;
1369
1370 /* Both LD_IND and LD_ABS return 32-bit data. */
1371 if (t != SRC_OP)
1372 return false;
1373
1374 /* Implicit ctx ptr. */
1375 if (regno == BPF_REG_6)
1376 return true;
1377
1378 /* Explicit source could be any width. */
1379 return true;
1380 }
1381
1382 if (class == BPF_ST)
1383 /* The only source register for BPF_ST is a ptr. */
1384 return true;
1385
1386 /* Conservatively return true at default. */
1387 return true;
1388}
1389
b325fbca
JW
1390/* Return TRUE if INSN doesn't have explicit value define. */
1391static bool insn_no_def(struct bpf_insn *insn)
1392{
1393 u8 class = BPF_CLASS(insn->code);
1394
1395 return (class == BPF_JMP || class == BPF_JMP32 ||
1396 class == BPF_STX || class == BPF_ST);
1397}
1398
1399/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1400static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1401{
1402 if (insn_no_def(insn))
1403 return false;
1404
1405 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1406}
1407
5327ed3d
JW
1408static void mark_insn_zext(struct bpf_verifier_env *env,
1409 struct bpf_reg_state *reg)
1410{
1411 s32 def_idx = reg->subreg_def;
1412
1413 if (def_idx == DEF_NOT_SUBREG)
1414 return;
1415
1416 env->insn_aux_data[def_idx - 1].zext_dst = true;
1417 /* The dst will be zero extended, so won't be sub-register anymore. */
1418 reg->subreg_def = DEF_NOT_SUBREG;
1419}
1420
dc503a8a 1421static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1422 enum reg_arg_type t)
1423{
f4d7e40a
AS
1424 struct bpf_verifier_state *vstate = env->cur_state;
1425 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1426 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1427 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1428 bool rw64;
dc503a8a 1429
17a52670 1430 if (regno >= MAX_BPF_REG) {
61bd5218 1431 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1432 return -EINVAL;
1433 }
1434
c342dc10 1435 reg = &regs[regno];
5327ed3d 1436 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1437 if (t == SRC_OP) {
1438 /* check whether register used as source operand can be read */
c342dc10 1439 if (reg->type == NOT_INIT) {
61bd5218 1440 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1441 return -EACCES;
1442 }
679c782d 1443 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1444 if (regno == BPF_REG_FP)
1445 return 0;
1446
5327ed3d
JW
1447 if (rw64)
1448 mark_insn_zext(env, reg);
1449
1450 return mark_reg_read(env, reg, reg->parent,
1451 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1452 } else {
1453 /* check whether register used as dest operand can be written to */
1454 if (regno == BPF_REG_FP) {
61bd5218 1455 verbose(env, "frame pointer is read only\n");
17a52670
AS
1456 return -EACCES;
1457 }
c342dc10 1458 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1459 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1460 if (t == DST_OP)
61bd5218 1461 mark_reg_unknown(env, regs, regno);
17a52670
AS
1462 }
1463 return 0;
1464}
1465
b5dc0163
AS
1466/* for any branch, call, exit record the history of jmps in the given state */
1467static int push_jmp_history(struct bpf_verifier_env *env,
1468 struct bpf_verifier_state *cur)
1469{
1470 u32 cnt = cur->jmp_history_cnt;
1471 struct bpf_idx_pair *p;
1472
1473 cnt++;
1474 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1475 if (!p)
1476 return -ENOMEM;
1477 p[cnt - 1].idx = env->insn_idx;
1478 p[cnt - 1].prev_idx = env->prev_insn_idx;
1479 cur->jmp_history = p;
1480 cur->jmp_history_cnt = cnt;
1481 return 0;
1482}
1483
1484/* Backtrack one insn at a time. If idx is not at the top of recorded
1485 * history then previous instruction came from straight line execution.
1486 */
1487static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1488 u32 *history)
1489{
1490 u32 cnt = *history;
1491
1492 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1493 i = st->jmp_history[cnt - 1].prev_idx;
1494 (*history)--;
1495 } else {
1496 i--;
1497 }
1498 return i;
1499}
1500
1501/* For given verifier state backtrack_insn() is called from the last insn to
1502 * the first insn. Its purpose is to compute a bitmask of registers and
1503 * stack slots that needs precision in the parent verifier state.
1504 */
1505static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1506 u32 *reg_mask, u64 *stack_mask)
1507{
1508 const struct bpf_insn_cbs cbs = {
1509 .cb_print = verbose,
1510 .private_data = env,
1511 };
1512 struct bpf_insn *insn = env->prog->insnsi + idx;
1513 u8 class = BPF_CLASS(insn->code);
1514 u8 opcode = BPF_OP(insn->code);
1515 u8 mode = BPF_MODE(insn->code);
1516 u32 dreg = 1u << insn->dst_reg;
1517 u32 sreg = 1u << insn->src_reg;
1518 u32 spi;
1519
1520 if (insn->code == 0)
1521 return 0;
1522 if (env->log.level & BPF_LOG_LEVEL) {
1523 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1524 verbose(env, "%d: ", idx);
1525 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1526 }
1527
1528 if (class == BPF_ALU || class == BPF_ALU64) {
1529 if (!(*reg_mask & dreg))
1530 return 0;
1531 if (opcode == BPF_MOV) {
1532 if (BPF_SRC(insn->code) == BPF_X) {
1533 /* dreg = sreg
1534 * dreg needs precision after this insn
1535 * sreg needs precision before this insn
1536 */
1537 *reg_mask &= ~dreg;
1538 *reg_mask |= sreg;
1539 } else {
1540 /* dreg = K
1541 * dreg needs precision after this insn.
1542 * Corresponding register is already marked
1543 * as precise=true in this verifier state.
1544 * No further markings in parent are necessary
1545 */
1546 *reg_mask &= ~dreg;
1547 }
1548 } else {
1549 if (BPF_SRC(insn->code) == BPF_X) {
1550 /* dreg += sreg
1551 * both dreg and sreg need precision
1552 * before this insn
1553 */
1554 *reg_mask |= sreg;
1555 } /* else dreg += K
1556 * dreg still needs precision before this insn
1557 */
1558 }
1559 } else if (class == BPF_LDX) {
1560 if (!(*reg_mask & dreg))
1561 return 0;
1562 *reg_mask &= ~dreg;
1563
1564 /* scalars can only be spilled into stack w/o losing precision.
1565 * Load from any other memory can be zero extended.
1566 * The desire to keep that precision is already indicated
1567 * by 'precise' mark in corresponding register of this state.
1568 * No further tracking necessary.
1569 */
1570 if (insn->src_reg != BPF_REG_FP)
1571 return 0;
1572 if (BPF_SIZE(insn->code) != BPF_DW)
1573 return 0;
1574
1575 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1576 * that [fp - off] slot contains scalar that needs to be
1577 * tracked with precision
1578 */
1579 spi = (-insn->off - 1) / BPF_REG_SIZE;
1580 if (spi >= 64) {
1581 verbose(env, "BUG spi %d\n", spi);
1582 WARN_ONCE(1, "verifier backtracking bug");
1583 return -EFAULT;
1584 }
1585 *stack_mask |= 1ull << spi;
b3b50f05 1586 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1587 if (*reg_mask & dreg)
b3b50f05 1588 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1589 * to access memory. It means backtracking
1590 * encountered a case of pointer subtraction.
1591 */
1592 return -ENOTSUPP;
1593 /* scalars can only be spilled into stack */
1594 if (insn->dst_reg != BPF_REG_FP)
1595 return 0;
1596 if (BPF_SIZE(insn->code) != BPF_DW)
1597 return 0;
1598 spi = (-insn->off - 1) / BPF_REG_SIZE;
1599 if (spi >= 64) {
1600 verbose(env, "BUG spi %d\n", spi);
1601 WARN_ONCE(1, "verifier backtracking bug");
1602 return -EFAULT;
1603 }
1604 if (!(*stack_mask & (1ull << spi)))
1605 return 0;
1606 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1607 if (class == BPF_STX)
1608 *reg_mask |= sreg;
b5dc0163
AS
1609 } else if (class == BPF_JMP || class == BPF_JMP32) {
1610 if (opcode == BPF_CALL) {
1611 if (insn->src_reg == BPF_PSEUDO_CALL)
1612 return -ENOTSUPP;
1613 /* regular helper call sets R0 */
1614 *reg_mask &= ~1;
1615 if (*reg_mask & 0x3f) {
1616 /* if backtracing was looking for registers R1-R5
1617 * they should have been found already.
1618 */
1619 verbose(env, "BUG regs %x\n", *reg_mask);
1620 WARN_ONCE(1, "verifier backtracking bug");
1621 return -EFAULT;
1622 }
1623 } else if (opcode == BPF_EXIT) {
1624 return -ENOTSUPP;
1625 }
1626 } else if (class == BPF_LD) {
1627 if (!(*reg_mask & dreg))
1628 return 0;
1629 *reg_mask &= ~dreg;
1630 /* It's ld_imm64 or ld_abs or ld_ind.
1631 * For ld_imm64 no further tracking of precision
1632 * into parent is necessary
1633 */
1634 if (mode == BPF_IND || mode == BPF_ABS)
1635 /* to be analyzed */
1636 return -ENOTSUPP;
b5dc0163
AS
1637 }
1638 return 0;
1639}
1640
1641/* the scalar precision tracking algorithm:
1642 * . at the start all registers have precise=false.
1643 * . scalar ranges are tracked as normal through alu and jmp insns.
1644 * . once precise value of the scalar register is used in:
1645 * . ptr + scalar alu
1646 * . if (scalar cond K|scalar)
1647 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1648 * backtrack through the verifier states and mark all registers and
1649 * stack slots with spilled constants that these scalar regisers
1650 * should be precise.
1651 * . during state pruning two registers (or spilled stack slots)
1652 * are equivalent if both are not precise.
1653 *
1654 * Note the verifier cannot simply walk register parentage chain,
1655 * since many different registers and stack slots could have been
1656 * used to compute single precise scalar.
1657 *
1658 * The approach of starting with precise=true for all registers and then
1659 * backtrack to mark a register as not precise when the verifier detects
1660 * that program doesn't care about specific value (e.g., when helper
1661 * takes register as ARG_ANYTHING parameter) is not safe.
1662 *
1663 * It's ok to walk single parentage chain of the verifier states.
1664 * It's possible that this backtracking will go all the way till 1st insn.
1665 * All other branches will be explored for needing precision later.
1666 *
1667 * The backtracking needs to deal with cases like:
1668 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1669 * r9 -= r8
1670 * r5 = r9
1671 * if r5 > 0x79f goto pc+7
1672 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1673 * r5 += 1
1674 * ...
1675 * call bpf_perf_event_output#25
1676 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1677 *
1678 * and this case:
1679 * r6 = 1
1680 * call foo // uses callee's r6 inside to compute r0
1681 * r0 += r6
1682 * if r0 == 0 goto
1683 *
1684 * to track above reg_mask/stack_mask needs to be independent for each frame.
1685 *
1686 * Also if parent's curframe > frame where backtracking started,
1687 * the verifier need to mark registers in both frames, otherwise callees
1688 * may incorrectly prune callers. This is similar to
1689 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1690 *
1691 * For now backtracking falls back into conservative marking.
1692 */
1693static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1694 struct bpf_verifier_state *st)
1695{
1696 struct bpf_func_state *func;
1697 struct bpf_reg_state *reg;
1698 int i, j;
1699
1700 /* big hammer: mark all scalars precise in this path.
1701 * pop_stack may still get !precise scalars.
1702 */
1703 for (; st; st = st->parent)
1704 for (i = 0; i <= st->curframe; i++) {
1705 func = st->frame[i];
1706 for (j = 0; j < BPF_REG_FP; j++) {
1707 reg = &func->regs[j];
1708 if (reg->type != SCALAR_VALUE)
1709 continue;
1710 reg->precise = true;
1711 }
1712 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1713 if (func->stack[j].slot_type[0] != STACK_SPILL)
1714 continue;
1715 reg = &func->stack[j].spilled_ptr;
1716 if (reg->type != SCALAR_VALUE)
1717 continue;
1718 reg->precise = true;
1719 }
1720 }
1721}
1722
a3ce685d
AS
1723static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1724 int spi)
b5dc0163
AS
1725{
1726 struct bpf_verifier_state *st = env->cur_state;
1727 int first_idx = st->first_insn_idx;
1728 int last_idx = env->insn_idx;
1729 struct bpf_func_state *func;
1730 struct bpf_reg_state *reg;
a3ce685d
AS
1731 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1732 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1733 bool skip_first = true;
a3ce685d 1734 bool new_marks = false;
b5dc0163
AS
1735 int i, err;
1736
1737 if (!env->allow_ptr_leaks)
1738 /* backtracking is root only for now */
1739 return 0;
1740
1741 func = st->frame[st->curframe];
a3ce685d
AS
1742 if (regno >= 0) {
1743 reg = &func->regs[regno];
1744 if (reg->type != SCALAR_VALUE) {
1745 WARN_ONCE(1, "backtracing misuse");
1746 return -EFAULT;
1747 }
1748 if (!reg->precise)
1749 new_marks = true;
1750 else
1751 reg_mask = 0;
1752 reg->precise = true;
b5dc0163 1753 }
b5dc0163 1754
a3ce685d
AS
1755 while (spi >= 0) {
1756 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1757 stack_mask = 0;
1758 break;
1759 }
1760 reg = &func->stack[spi].spilled_ptr;
1761 if (reg->type != SCALAR_VALUE) {
1762 stack_mask = 0;
1763 break;
1764 }
1765 if (!reg->precise)
1766 new_marks = true;
1767 else
1768 stack_mask = 0;
1769 reg->precise = true;
1770 break;
1771 }
1772
1773 if (!new_marks)
1774 return 0;
1775 if (!reg_mask && !stack_mask)
1776 return 0;
b5dc0163
AS
1777 for (;;) {
1778 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1779 u32 history = st->jmp_history_cnt;
1780
1781 if (env->log.level & BPF_LOG_LEVEL)
1782 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1783 for (i = last_idx;;) {
1784 if (skip_first) {
1785 err = 0;
1786 skip_first = false;
1787 } else {
1788 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1789 }
1790 if (err == -ENOTSUPP) {
1791 mark_all_scalars_precise(env, st);
1792 return 0;
1793 } else if (err) {
1794 return err;
1795 }
1796 if (!reg_mask && !stack_mask)
1797 /* Found assignment(s) into tracked register in this state.
1798 * Since this state is already marked, just return.
1799 * Nothing to be tracked further in the parent state.
1800 */
1801 return 0;
1802 if (i == first_idx)
1803 break;
1804 i = get_prev_insn_idx(st, i, &history);
1805 if (i >= env->prog->len) {
1806 /* This can happen if backtracking reached insn 0
1807 * and there are still reg_mask or stack_mask
1808 * to backtrack.
1809 * It means the backtracking missed the spot where
1810 * particular register was initialized with a constant.
1811 */
1812 verbose(env, "BUG backtracking idx %d\n", i);
1813 WARN_ONCE(1, "verifier backtracking bug");
1814 return -EFAULT;
1815 }
1816 }
1817 st = st->parent;
1818 if (!st)
1819 break;
1820
a3ce685d 1821 new_marks = false;
b5dc0163
AS
1822 func = st->frame[st->curframe];
1823 bitmap_from_u64(mask, reg_mask);
1824 for_each_set_bit(i, mask, 32) {
1825 reg = &func->regs[i];
a3ce685d
AS
1826 if (reg->type != SCALAR_VALUE) {
1827 reg_mask &= ~(1u << i);
b5dc0163 1828 continue;
a3ce685d 1829 }
b5dc0163
AS
1830 if (!reg->precise)
1831 new_marks = true;
1832 reg->precise = true;
1833 }
1834
1835 bitmap_from_u64(mask, stack_mask);
1836 for_each_set_bit(i, mask, 64) {
1837 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
1838 /* the sequence of instructions:
1839 * 2: (bf) r3 = r10
1840 * 3: (7b) *(u64 *)(r3 -8) = r0
1841 * 4: (79) r4 = *(u64 *)(r10 -8)
1842 * doesn't contain jmps. It's backtracked
1843 * as a single block.
1844 * During backtracking insn 3 is not recognized as
1845 * stack access, so at the end of backtracking
1846 * stack slot fp-8 is still marked in stack_mask.
1847 * However the parent state may not have accessed
1848 * fp-8 and it's "unallocated" stack space.
1849 * In such case fallback to conservative.
b5dc0163 1850 */
2339cd6c
AS
1851 mark_all_scalars_precise(env, st);
1852 return 0;
b5dc0163
AS
1853 }
1854
a3ce685d
AS
1855 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1856 stack_mask &= ~(1ull << i);
b5dc0163 1857 continue;
a3ce685d 1858 }
b5dc0163 1859 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1860 if (reg->type != SCALAR_VALUE) {
1861 stack_mask &= ~(1ull << i);
b5dc0163 1862 continue;
a3ce685d 1863 }
b5dc0163
AS
1864 if (!reg->precise)
1865 new_marks = true;
1866 reg->precise = true;
1867 }
1868 if (env->log.level & BPF_LOG_LEVEL) {
1869 print_verifier_state(env, func);
1870 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1871 new_marks ? "didn't have" : "already had",
1872 reg_mask, stack_mask);
1873 }
1874
a3ce685d
AS
1875 if (!reg_mask && !stack_mask)
1876 break;
b5dc0163
AS
1877 if (!new_marks)
1878 break;
1879
1880 last_idx = st->last_insn_idx;
1881 first_idx = st->first_insn_idx;
1882 }
1883 return 0;
1884}
1885
a3ce685d
AS
1886static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1887{
1888 return __mark_chain_precision(env, regno, -1);
1889}
1890
1891static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1892{
1893 return __mark_chain_precision(env, -1, spi);
1894}
b5dc0163 1895
1be7f75d
AS
1896static bool is_spillable_regtype(enum bpf_reg_type type)
1897{
1898 switch (type) {
1899 case PTR_TO_MAP_VALUE:
1900 case PTR_TO_MAP_VALUE_OR_NULL:
1901 case PTR_TO_STACK:
1902 case PTR_TO_CTX:
969bf05e 1903 case PTR_TO_PACKET:
de8f3a83 1904 case PTR_TO_PACKET_META:
969bf05e 1905 case PTR_TO_PACKET_END:
d58e468b 1906 case PTR_TO_FLOW_KEYS:
1be7f75d 1907 case CONST_PTR_TO_MAP:
c64b7983
JS
1908 case PTR_TO_SOCKET:
1909 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1910 case PTR_TO_SOCK_COMMON:
1911 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1912 case PTR_TO_TCP_SOCK:
1913 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1914 case PTR_TO_XDP_SOCK:
65726b5b 1915 case PTR_TO_BTF_ID:
1be7f75d
AS
1916 return true;
1917 default:
1918 return false;
1919 }
1920}
1921
cc2b14d5
AS
1922/* Does this register contain a constant zero? */
1923static bool register_is_null(struct bpf_reg_state *reg)
1924{
1925 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1926}
1927
f7cf25b2
AS
1928static bool register_is_const(struct bpf_reg_state *reg)
1929{
1930 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1931}
1932
1933static void save_register_state(struct bpf_func_state *state,
1934 int spi, struct bpf_reg_state *reg)
1935{
1936 int i;
1937
1938 state->stack[spi].spilled_ptr = *reg;
1939 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1940
1941 for (i = 0; i < BPF_REG_SIZE; i++)
1942 state->stack[spi].slot_type[i] = STACK_SPILL;
1943}
1944
17a52670
AS
1945/* check_stack_read/write functions track spill/fill of registers,
1946 * stack boundary and alignment are checked in check_mem_access()
1947 */
61bd5218 1948static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1949 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1950 int off, int size, int value_regno, int insn_idx)
17a52670 1951{
f4d7e40a 1952 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1953 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1954 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1955 struct bpf_reg_state *reg = NULL;
638f5b90 1956
f4d7e40a 1957 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1958 state->acquired_refs, true);
638f5b90
AS
1959 if (err)
1960 return err;
9c399760
AS
1961 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1962 * so it's aligned access and [off, off + size) are within stack limits
1963 */
638f5b90
AS
1964 if (!env->allow_ptr_leaks &&
1965 state->stack[spi].slot_type[0] == STACK_SPILL &&
1966 size != BPF_REG_SIZE) {
1967 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1968 return -EACCES;
1969 }
17a52670 1970
f4d7e40a 1971 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1972 if (value_regno >= 0)
1973 reg = &cur->regs[value_regno];
17a52670 1974
f7cf25b2
AS
1975 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1976 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1977 if (dst_reg != BPF_REG_FP) {
1978 /* The backtracking logic can only recognize explicit
1979 * stack slot address like [fp - 8]. Other spill of
1980 * scalar via different register has to be conervative.
1981 * Backtrack from here and mark all registers as precise
1982 * that contributed into 'reg' being a constant.
1983 */
1984 err = mark_chain_precision(env, value_regno);
1985 if (err)
1986 return err;
1987 }
f7cf25b2
AS
1988 save_register_state(state, spi, reg);
1989 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1990 /* register containing pointer is being spilled into stack */
9c399760 1991 if (size != BPF_REG_SIZE) {
f7cf25b2 1992 verbose_linfo(env, insn_idx, "; ");
61bd5218 1993 verbose(env, "invalid size of register spill\n");
17a52670
AS
1994 return -EACCES;
1995 }
1996
f7cf25b2 1997 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1998 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1999 return -EINVAL;
2000 }
2001
f7cf25b2
AS
2002 if (!env->allow_ptr_leaks) {
2003 bool sanitize = false;
17a52670 2004
f7cf25b2
AS
2005 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2006 register_is_const(&state->stack[spi].spilled_ptr))
2007 sanitize = true;
2008 for (i = 0; i < BPF_REG_SIZE; i++)
2009 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2010 sanitize = true;
2011 break;
2012 }
2013 if (sanitize) {
af86ca4e
AS
2014 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2015 int soff = (-spi - 1) * BPF_REG_SIZE;
2016
2017 /* detected reuse of integer stack slot with a pointer
2018 * which means either llvm is reusing stack slot or
2019 * an attacker is trying to exploit CVE-2018-3639
2020 * (speculative store bypass)
2021 * Have to sanitize that slot with preemptive
2022 * store of zero.
2023 */
2024 if (*poff && *poff != soff) {
2025 /* disallow programs where single insn stores
2026 * into two different stack slots, since verifier
2027 * cannot sanitize them
2028 */
2029 verbose(env,
2030 "insn %d cannot access two stack slots fp%d and fp%d",
2031 insn_idx, *poff, soff);
2032 return -EINVAL;
2033 }
2034 *poff = soff;
2035 }
af86ca4e 2036 }
f7cf25b2 2037 save_register_state(state, spi, reg);
9c399760 2038 } else {
cc2b14d5
AS
2039 u8 type = STACK_MISC;
2040
679c782d
EC
2041 /* regular write of data into stack destroys any spilled ptr */
2042 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2043 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2044 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2045 for (i = 0; i < BPF_REG_SIZE; i++)
2046 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2047
cc2b14d5
AS
2048 /* only mark the slot as written if all 8 bytes were written
2049 * otherwise read propagation may incorrectly stop too soon
2050 * when stack slots are partially written.
2051 * This heuristic means that read propagation will be
2052 * conservative, since it will add reg_live_read marks
2053 * to stack slots all the way to first state when programs
2054 * writes+reads less than 8 bytes
2055 */
2056 if (size == BPF_REG_SIZE)
2057 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2058
2059 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2060 if (reg && register_is_null(reg)) {
2061 /* backtracking doesn't work for STACK_ZERO yet. */
2062 err = mark_chain_precision(env, value_regno);
2063 if (err)
2064 return err;
cc2b14d5 2065 type = STACK_ZERO;
b5dc0163 2066 }
cc2b14d5 2067
0bae2d4d 2068 /* Mark slots affected by this stack write. */
9c399760 2069 for (i = 0; i < size; i++)
638f5b90 2070 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2071 type;
17a52670
AS
2072 }
2073 return 0;
2074}
2075
61bd5218 2076static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2077 struct bpf_func_state *reg_state /* func where register points to */,
2078 int off, int size, int value_regno)
17a52670 2079{
f4d7e40a
AS
2080 struct bpf_verifier_state *vstate = env->cur_state;
2081 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2082 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2083 struct bpf_reg_state *reg;
638f5b90 2084 u8 *stype;
17a52670 2085
f4d7e40a 2086 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2087 verbose(env, "invalid read from stack off %d+0 size %d\n",
2088 off, size);
2089 return -EACCES;
2090 }
f4d7e40a 2091 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2092 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2093
638f5b90 2094 if (stype[0] == STACK_SPILL) {
9c399760 2095 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2096 if (reg->type != SCALAR_VALUE) {
2097 verbose_linfo(env, env->insn_idx, "; ");
2098 verbose(env, "invalid size of register fill\n");
2099 return -EACCES;
2100 }
2101 if (value_regno >= 0) {
2102 mark_reg_unknown(env, state->regs, value_regno);
2103 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2104 }
2105 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2106 return 0;
17a52670 2107 }
9c399760 2108 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2109 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2110 verbose(env, "corrupted spill memory\n");
17a52670
AS
2111 return -EACCES;
2112 }
2113 }
2114
dc503a8a 2115 if (value_regno >= 0) {
17a52670 2116 /* restore register state from stack */
f7cf25b2 2117 state->regs[value_regno] = *reg;
2f18f62e
AS
2118 /* mark reg as written since spilled pointer state likely
2119 * has its liveness marks cleared by is_state_visited()
2120 * which resets stack/reg liveness for state transitions
2121 */
2122 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2123 }
f7cf25b2 2124 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2125 } else {
cc2b14d5
AS
2126 int zeros = 0;
2127
17a52670 2128 for (i = 0; i < size; i++) {
cc2b14d5
AS
2129 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2130 continue;
2131 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2132 zeros++;
2133 continue;
17a52670 2134 }
cc2b14d5
AS
2135 verbose(env, "invalid read from stack off %d+%d size %d\n",
2136 off, i, size);
2137 return -EACCES;
2138 }
f7cf25b2 2139 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2140 if (value_regno >= 0) {
2141 if (zeros == size) {
2142 /* any size read into register is zero extended,
2143 * so the whole register == const_zero
2144 */
2145 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2146 /* backtracking doesn't support STACK_ZERO yet,
2147 * so mark it precise here, so that later
2148 * backtracking can stop here.
2149 * Backtracking may not need this if this register
2150 * doesn't participate in pointer adjustment.
2151 * Forward propagation of precise flag is not
2152 * necessary either. This mark is only to stop
2153 * backtracking. Any register that contributed
2154 * to const 0 was marked precise before spill.
2155 */
2156 state->regs[value_regno].precise = true;
cc2b14d5
AS
2157 } else {
2158 /* have read misc data from the stack */
2159 mark_reg_unknown(env, state->regs, value_regno);
2160 }
2161 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2162 }
17a52670 2163 }
f7cf25b2 2164 return 0;
17a52670
AS
2165}
2166
e4298d25
DB
2167static int check_stack_access(struct bpf_verifier_env *env,
2168 const struct bpf_reg_state *reg,
2169 int off, int size)
2170{
2171 /* Stack accesses must be at a fixed offset, so that we
2172 * can determine what type of data were returned. See
2173 * check_stack_read().
2174 */
2175 if (!tnum_is_const(reg->var_off)) {
2176 char tn_buf[48];
2177
2178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2179 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2180 tn_buf, off, size);
2181 return -EACCES;
2182 }
2183
2184 if (off >= 0 || off < -MAX_BPF_STACK) {
2185 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2186 return -EACCES;
2187 }
2188
2189 return 0;
2190}
2191
591fe988
DB
2192static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2193 int off, int size, enum bpf_access_type type)
2194{
2195 struct bpf_reg_state *regs = cur_regs(env);
2196 struct bpf_map *map = regs[regno].map_ptr;
2197 u32 cap = bpf_map_flags_to_cap(map);
2198
2199 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2200 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2201 map->value_size, off, size);
2202 return -EACCES;
2203 }
2204
2205 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2206 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2207 map->value_size, off, size);
2208 return -EACCES;
2209 }
2210
2211 return 0;
2212}
2213
17a52670 2214/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2215static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2216 int size, bool zero_size_allowed)
17a52670 2217{
638f5b90
AS
2218 struct bpf_reg_state *regs = cur_regs(env);
2219 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2220
9fd29c08
YS
2221 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2222 off + size > map->value_size) {
61bd5218 2223 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2224 map->value_size, off, size);
2225 return -EACCES;
2226 }
2227 return 0;
2228}
2229
f1174f77
EC
2230/* check read/write into a map element with possible variable offset */
2231static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2232 int off, int size, bool zero_size_allowed)
dbcfe5f7 2233{
f4d7e40a
AS
2234 struct bpf_verifier_state *vstate = env->cur_state;
2235 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2236 struct bpf_reg_state *reg = &state->regs[regno];
2237 int err;
2238
f1174f77
EC
2239 /* We may have adjusted the register to this map value, so we
2240 * need to try adding each of min_value and max_value to off
2241 * to make sure our theoretical access will be safe.
dbcfe5f7 2242 */
06ee7115 2243 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2244 print_verifier_state(env, state);
b7137c4e 2245
dbcfe5f7
GB
2246 /* The minimum value is only important with signed
2247 * comparisons where we can't assume the floor of a
2248 * value is 0. If we are using signed variables for our
2249 * index'es we need to make sure that whatever we use
2250 * will have a set floor within our range.
2251 */
b7137c4e
DB
2252 if (reg->smin_value < 0 &&
2253 (reg->smin_value == S64_MIN ||
2254 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2255 reg->smin_value + off < 0)) {
61bd5218 2256 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2257 regno);
2258 return -EACCES;
2259 }
9fd29c08
YS
2260 err = __check_map_access(env, regno, reg->smin_value + off, size,
2261 zero_size_allowed);
dbcfe5f7 2262 if (err) {
61bd5218
JK
2263 verbose(env, "R%d min value is outside of the array range\n",
2264 regno);
dbcfe5f7
GB
2265 return err;
2266 }
2267
b03c9f9f
EC
2268 /* If we haven't set a max value then we need to bail since we can't be
2269 * sure we won't do bad things.
2270 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2271 */
b03c9f9f 2272 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2273 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2274 regno);
2275 return -EACCES;
2276 }
9fd29c08
YS
2277 err = __check_map_access(env, regno, reg->umax_value + off, size,
2278 zero_size_allowed);
f1174f77 2279 if (err)
61bd5218
JK
2280 verbose(env, "R%d max value is outside of the array range\n",
2281 regno);
d83525ca
AS
2282
2283 if (map_value_has_spin_lock(reg->map_ptr)) {
2284 u32 lock = reg->map_ptr->spin_lock_off;
2285
2286 /* if any part of struct bpf_spin_lock can be touched by
2287 * load/store reject this program.
2288 * To check that [x1, x2) overlaps with [y1, y2)
2289 * it is sufficient to check x1 < y2 && y1 < x2.
2290 */
2291 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2292 lock < reg->umax_value + off + size) {
2293 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2294 return -EACCES;
2295 }
2296 }
f1174f77 2297 return err;
dbcfe5f7
GB
2298}
2299
969bf05e
AS
2300#define MAX_PACKET_OFF 0xffff
2301
58e2af8b 2302static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2303 const struct bpf_call_arg_meta *meta,
2304 enum bpf_access_type t)
4acf6c0b 2305{
36bbef52 2306 switch (env->prog->type) {
5d66fa7d 2307 /* Program types only with direct read access go here! */
3a0af8fd
TG
2308 case BPF_PROG_TYPE_LWT_IN:
2309 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2310 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2311 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2312 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2313 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2314 if (t == BPF_WRITE)
2315 return false;
7e57fbb2 2316 /* fallthrough */
5d66fa7d
DB
2317
2318 /* Program types with direct read + write access go here! */
36bbef52
DB
2319 case BPF_PROG_TYPE_SCHED_CLS:
2320 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2321 case BPF_PROG_TYPE_XDP:
3a0af8fd 2322 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2323 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2324 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2325 if (meta)
2326 return meta->pkt_access;
2327
2328 env->seen_direct_write = true;
4acf6c0b 2329 return true;
0d01da6a
SF
2330
2331 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2332 if (t == BPF_WRITE)
2333 env->seen_direct_write = true;
2334
2335 return true;
2336
4acf6c0b
BB
2337 default:
2338 return false;
2339 }
2340}
2341
f1174f77 2342static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2343 int off, int size, bool zero_size_allowed)
969bf05e 2344{
638f5b90 2345 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2346 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2347
9fd29c08
YS
2348 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2349 (u64)off + size > reg->range) {
61bd5218 2350 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2351 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2352 return -EACCES;
2353 }
2354 return 0;
2355}
2356
f1174f77 2357static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2358 int size, bool zero_size_allowed)
f1174f77 2359{
638f5b90 2360 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2361 struct bpf_reg_state *reg = &regs[regno];
2362 int err;
2363
2364 /* We may have added a variable offset to the packet pointer; but any
2365 * reg->range we have comes after that. We are only checking the fixed
2366 * offset.
2367 */
2368
2369 /* We don't allow negative numbers, because we aren't tracking enough
2370 * detail to prove they're safe.
2371 */
b03c9f9f 2372 if (reg->smin_value < 0) {
61bd5218 2373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2374 regno);
2375 return -EACCES;
2376 }
9fd29c08 2377 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2378 if (err) {
61bd5218 2379 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2380 return err;
2381 }
e647815a
JW
2382
2383 /* __check_packet_access has made sure "off + size - 1" is within u16.
2384 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2385 * otherwise find_good_pkt_pointers would have refused to set range info
2386 * that __check_packet_access would have rejected this pkt access.
2387 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2388 */
2389 env->prog->aux->max_pkt_offset =
2390 max_t(u32, env->prog->aux->max_pkt_offset,
2391 off + reg->umax_value + size - 1);
2392
f1174f77
EC
2393 return err;
2394}
2395
2396/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2397static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2398 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2399 u32 *btf_id)
17a52670 2400{
f96da094
DB
2401 struct bpf_insn_access_aux info = {
2402 .reg_type = *reg_type,
9e15db66 2403 .log = &env->log,
f96da094 2404 };
31fd8581 2405
4f9218aa 2406 if (env->ops->is_valid_access &&
5e43f899 2407 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2408 /* A non zero info.ctx_field_size indicates that this field is a
2409 * candidate for later verifier transformation to load the whole
2410 * field and then apply a mask when accessed with a narrower
2411 * access than actual ctx access size. A zero info.ctx_field_size
2412 * will only allow for whole field access and rejects any other
2413 * type of narrower access.
31fd8581 2414 */
23994631 2415 *reg_type = info.reg_type;
31fd8581 2416
9e15db66
AS
2417 if (*reg_type == PTR_TO_BTF_ID)
2418 *btf_id = info.btf_id;
2419 else
2420 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2421 /* remember the offset of last byte accessed in ctx */
2422 if (env->prog->aux->max_ctx_offset < off + size)
2423 env->prog->aux->max_ctx_offset = off + size;
17a52670 2424 return 0;
32bbe007 2425 }
17a52670 2426
61bd5218 2427 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2428 return -EACCES;
2429}
2430
d58e468b
PP
2431static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2432 int size)
2433{
2434 if (size < 0 || off < 0 ||
2435 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2436 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2437 off, size);
2438 return -EACCES;
2439 }
2440 return 0;
2441}
2442
5f456649
MKL
2443static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2444 u32 regno, int off, int size,
2445 enum bpf_access_type t)
c64b7983
JS
2446{
2447 struct bpf_reg_state *regs = cur_regs(env);
2448 struct bpf_reg_state *reg = &regs[regno];
5f456649 2449 struct bpf_insn_access_aux info = {};
46f8bc92 2450 bool valid;
c64b7983
JS
2451
2452 if (reg->smin_value < 0) {
2453 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2454 regno);
2455 return -EACCES;
2456 }
2457
46f8bc92
MKL
2458 switch (reg->type) {
2459 case PTR_TO_SOCK_COMMON:
2460 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2461 break;
2462 case PTR_TO_SOCKET:
2463 valid = bpf_sock_is_valid_access(off, size, t, &info);
2464 break;
655a51e5
MKL
2465 case PTR_TO_TCP_SOCK:
2466 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2467 break;
fada7fdc
JL
2468 case PTR_TO_XDP_SOCK:
2469 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2470 break;
46f8bc92
MKL
2471 default:
2472 valid = false;
c64b7983
JS
2473 }
2474
5f456649 2475
46f8bc92
MKL
2476 if (valid) {
2477 env->insn_aux_data[insn_idx].ctx_field_size =
2478 info.ctx_field_size;
2479 return 0;
2480 }
2481
2482 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2483 regno, reg_type_str[reg->type], off, size);
2484
2485 return -EACCES;
c64b7983
JS
2486}
2487
4cabc5b1
DB
2488static bool __is_pointer_value(bool allow_ptr_leaks,
2489 const struct bpf_reg_state *reg)
1be7f75d 2490{
4cabc5b1 2491 if (allow_ptr_leaks)
1be7f75d
AS
2492 return false;
2493
f1174f77 2494 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2495}
2496
2a159c6f
DB
2497static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2498{
2499 return cur_regs(env) + regno;
2500}
2501
4cabc5b1
DB
2502static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2503{
2a159c6f 2504 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2505}
2506
f37a8cb8
DB
2507static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2508{
2a159c6f 2509 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2510
46f8bc92
MKL
2511 return reg->type == PTR_TO_CTX;
2512}
2513
2514static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2515{
2516 const struct bpf_reg_state *reg = reg_state(env, regno);
2517
2518 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2519}
2520
ca369602
DB
2521static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2522{
2a159c6f 2523 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2524
2525 return type_is_pkt_pointer(reg->type);
2526}
2527
4b5defde
DB
2528static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2529{
2530 const struct bpf_reg_state *reg = reg_state(env, regno);
2531
2532 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2533 return reg->type == PTR_TO_FLOW_KEYS;
2534}
2535
61bd5218
JK
2536static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2537 const struct bpf_reg_state *reg,
d1174416 2538 int off, int size, bool strict)
969bf05e 2539{
f1174f77 2540 struct tnum reg_off;
e07b98d9 2541 int ip_align;
d1174416
DM
2542
2543 /* Byte size accesses are always allowed. */
2544 if (!strict || size == 1)
2545 return 0;
2546
e4eda884
DM
2547 /* For platforms that do not have a Kconfig enabling
2548 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2549 * NET_IP_ALIGN is universally set to '2'. And on platforms
2550 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2551 * to this code only in strict mode where we want to emulate
2552 * the NET_IP_ALIGN==2 checking. Therefore use an
2553 * unconditional IP align value of '2'.
e07b98d9 2554 */
e4eda884 2555 ip_align = 2;
f1174f77
EC
2556
2557 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2558 if (!tnum_is_aligned(reg_off, size)) {
2559 char tn_buf[48];
2560
2561 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2562 verbose(env,
2563 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2564 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2565 return -EACCES;
2566 }
79adffcd 2567
969bf05e
AS
2568 return 0;
2569}
2570
61bd5218
JK
2571static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2572 const struct bpf_reg_state *reg,
f1174f77
EC
2573 const char *pointer_desc,
2574 int off, int size, bool strict)
79adffcd 2575{
f1174f77
EC
2576 struct tnum reg_off;
2577
2578 /* Byte size accesses are always allowed. */
2579 if (!strict || size == 1)
2580 return 0;
2581
2582 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2583 if (!tnum_is_aligned(reg_off, size)) {
2584 char tn_buf[48];
2585
2586 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2587 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2588 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2589 return -EACCES;
2590 }
2591
969bf05e
AS
2592 return 0;
2593}
2594
e07b98d9 2595static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2596 const struct bpf_reg_state *reg, int off,
2597 int size, bool strict_alignment_once)
79adffcd 2598{
ca369602 2599 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2600 const char *pointer_desc = "";
d1174416 2601
79adffcd
DB
2602 switch (reg->type) {
2603 case PTR_TO_PACKET:
de8f3a83
DB
2604 case PTR_TO_PACKET_META:
2605 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2606 * right in front, treat it the very same way.
2607 */
61bd5218 2608 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2609 case PTR_TO_FLOW_KEYS:
2610 pointer_desc = "flow keys ";
2611 break;
f1174f77
EC
2612 case PTR_TO_MAP_VALUE:
2613 pointer_desc = "value ";
2614 break;
2615 case PTR_TO_CTX:
2616 pointer_desc = "context ";
2617 break;
2618 case PTR_TO_STACK:
2619 pointer_desc = "stack ";
a5ec6ae1
JH
2620 /* The stack spill tracking logic in check_stack_write()
2621 * and check_stack_read() relies on stack accesses being
2622 * aligned.
2623 */
2624 strict = true;
f1174f77 2625 break;
c64b7983
JS
2626 case PTR_TO_SOCKET:
2627 pointer_desc = "sock ";
2628 break;
46f8bc92
MKL
2629 case PTR_TO_SOCK_COMMON:
2630 pointer_desc = "sock_common ";
2631 break;
655a51e5
MKL
2632 case PTR_TO_TCP_SOCK:
2633 pointer_desc = "tcp_sock ";
2634 break;
fada7fdc
JL
2635 case PTR_TO_XDP_SOCK:
2636 pointer_desc = "xdp_sock ";
2637 break;
79adffcd 2638 default:
f1174f77 2639 break;
79adffcd 2640 }
61bd5218
JK
2641 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2642 strict);
79adffcd
DB
2643}
2644
f4d7e40a
AS
2645static int update_stack_depth(struct bpf_verifier_env *env,
2646 const struct bpf_func_state *func,
2647 int off)
2648{
9c8105bd 2649 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2650
2651 if (stack >= -off)
2652 return 0;
2653
2654 /* update known max for given subprogram */
9c8105bd 2655 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2656 return 0;
2657}
f4d7e40a 2658
70a87ffe
AS
2659/* starting from main bpf function walk all instructions of the function
2660 * and recursively walk all callees that given function can call.
2661 * Ignore jump and exit insns.
2662 * Since recursion is prevented by check_cfg() this algorithm
2663 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2664 */
2665static int check_max_stack_depth(struct bpf_verifier_env *env)
2666{
9c8105bd
JW
2667 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2668 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2669 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2670 int ret_insn[MAX_CALL_FRAMES];
2671 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2672
70a87ffe
AS
2673process_func:
2674 /* round up to 32-bytes, since this is granularity
2675 * of interpreter stack size
2676 */
9c8105bd 2677 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2678 if (depth > MAX_BPF_STACK) {
f4d7e40a 2679 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2680 frame + 1, depth);
f4d7e40a
AS
2681 return -EACCES;
2682 }
70a87ffe 2683continue_func:
4cb3d99c 2684 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2685 for (; i < subprog_end; i++) {
2686 if (insn[i].code != (BPF_JMP | BPF_CALL))
2687 continue;
2688 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2689 continue;
2690 /* remember insn and function to return to */
2691 ret_insn[frame] = i + 1;
9c8105bd 2692 ret_prog[frame] = idx;
70a87ffe
AS
2693
2694 /* find the callee */
2695 i = i + insn[i].imm + 1;
9c8105bd
JW
2696 idx = find_subprog(env, i);
2697 if (idx < 0) {
70a87ffe
AS
2698 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2699 i);
2700 return -EFAULT;
2701 }
70a87ffe
AS
2702 frame++;
2703 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2704 verbose(env, "the call stack of %d frames is too deep !\n",
2705 frame);
2706 return -E2BIG;
70a87ffe
AS
2707 }
2708 goto process_func;
2709 }
2710 /* end of for() loop means the last insn of the 'subprog'
2711 * was reached. Doesn't matter whether it was JA or EXIT
2712 */
2713 if (frame == 0)
2714 return 0;
9c8105bd 2715 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2716 frame--;
2717 i = ret_insn[frame];
9c8105bd 2718 idx = ret_prog[frame];
70a87ffe 2719 goto continue_func;
f4d7e40a
AS
2720}
2721
19d28fbd 2722#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2723static int get_callee_stack_depth(struct bpf_verifier_env *env,
2724 const struct bpf_insn *insn, int idx)
2725{
2726 int start = idx + insn->imm + 1, subprog;
2727
2728 subprog = find_subprog(env, start);
2729 if (subprog < 0) {
2730 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2731 start);
2732 return -EFAULT;
2733 }
9c8105bd 2734 return env->subprog_info[subprog].stack_depth;
1ea47e01 2735}
19d28fbd 2736#endif
1ea47e01 2737
51c39bb1
AS
2738int check_ctx_reg(struct bpf_verifier_env *env,
2739 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
2740{
2741 /* Access to ctx or passing it to a helper is only allowed in
2742 * its original, unmodified form.
2743 */
2744
2745 if (reg->off) {
2746 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2747 regno, reg->off);
2748 return -EACCES;
2749 }
2750
2751 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2752 char tn_buf[48];
2753
2754 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2755 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2756 return -EACCES;
2757 }
2758
2759 return 0;
2760}
2761
9df1c28b
MM
2762static int check_tp_buffer_access(struct bpf_verifier_env *env,
2763 const struct bpf_reg_state *reg,
2764 int regno, int off, int size)
2765{
2766 if (off < 0) {
2767 verbose(env,
2768 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2769 regno, off, size);
2770 return -EACCES;
2771 }
2772 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2773 char tn_buf[48];
2774
2775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2776 verbose(env,
2777 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2778 regno, off, tn_buf);
2779 return -EACCES;
2780 }
2781 if (off + size > env->prog->aux->max_tp_access)
2782 env->prog->aux->max_tp_access = off + size;
2783
2784 return 0;
2785}
2786
2787
0c17d1d2
JH
2788/* truncate register to smaller size (in bytes)
2789 * must be called with size < BPF_REG_SIZE
2790 */
2791static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2792{
2793 u64 mask;
2794
2795 /* clear high bits in bit representation */
2796 reg->var_off = tnum_cast(reg->var_off, size);
2797
2798 /* fix arithmetic bounds */
2799 mask = ((u64)1 << (size * 8)) - 1;
2800 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2801 reg->umin_value &= mask;
2802 reg->umax_value &= mask;
2803 } else {
2804 reg->umin_value = 0;
2805 reg->umax_value = mask;
2806 }
2807 reg->smin_value = reg->umin_value;
2808 reg->smax_value = reg->umax_value;
2809}
2810
a23740ec
AN
2811static bool bpf_map_is_rdonly(const struct bpf_map *map)
2812{
2813 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2814}
2815
2816static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2817{
2818 void *ptr;
2819 u64 addr;
2820 int err;
2821
2822 err = map->ops->map_direct_value_addr(map, &addr, off);
2823 if (err)
2824 return err;
2dedd7d2 2825 ptr = (void *)(long)addr + off;
a23740ec
AN
2826
2827 switch (size) {
2828 case sizeof(u8):
2829 *val = (u64)*(u8 *)ptr;
2830 break;
2831 case sizeof(u16):
2832 *val = (u64)*(u16 *)ptr;
2833 break;
2834 case sizeof(u32):
2835 *val = (u64)*(u32 *)ptr;
2836 break;
2837 case sizeof(u64):
2838 *val = *(u64 *)ptr;
2839 break;
2840 default:
2841 return -EINVAL;
2842 }
2843 return 0;
2844}
2845
9e15db66
AS
2846static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2847 struct bpf_reg_state *regs,
2848 int regno, int off, int size,
2849 enum bpf_access_type atype,
2850 int value_regno)
2851{
2852 struct bpf_reg_state *reg = regs + regno;
2853 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2854 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2855 u32 btf_id;
2856 int ret;
2857
9e15db66
AS
2858 if (off < 0) {
2859 verbose(env,
2860 "R%d is ptr_%s invalid negative access: off=%d\n",
2861 regno, tname, off);
2862 return -EACCES;
2863 }
2864 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2865 char tn_buf[48];
2866
2867 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2868 verbose(env,
2869 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2870 regno, tname, off, tn_buf);
2871 return -EACCES;
2872 }
2873
27ae7997
MKL
2874 if (env->ops->btf_struct_access) {
2875 ret = env->ops->btf_struct_access(&env->log, t, off, size,
2876 atype, &btf_id);
2877 } else {
2878 if (atype != BPF_READ) {
2879 verbose(env, "only read is supported\n");
2880 return -EACCES;
2881 }
2882
2883 ret = btf_struct_access(&env->log, t, off, size, atype,
2884 &btf_id);
2885 }
2886
9e15db66
AS
2887 if (ret < 0)
2888 return ret;
2889
27ae7997
MKL
2890 if (atype == BPF_READ) {
2891 if (ret == SCALAR_VALUE) {
2892 mark_reg_unknown(env, regs, value_regno);
2893 return 0;
2894 }
2895 mark_reg_known_zero(env, regs, value_regno);
2896 regs[value_regno].type = PTR_TO_BTF_ID;
2897 regs[value_regno].btf_id = btf_id;
9e15db66 2898 }
27ae7997 2899
9e15db66
AS
2900 return 0;
2901}
2902
17a52670
AS
2903/* check whether memory at (regno + off) is accessible for t = (read | write)
2904 * if t==write, value_regno is a register which value is stored into memory
2905 * if t==read, value_regno is a register which will receive the value from memory
2906 * if t==write && value_regno==-1, some unknown value is stored into memory
2907 * if t==read && value_regno==-1, don't care what we read from memory
2908 */
ca369602
DB
2909static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2910 int off, int bpf_size, enum bpf_access_type t,
2911 int value_regno, bool strict_alignment_once)
17a52670 2912{
638f5b90
AS
2913 struct bpf_reg_state *regs = cur_regs(env);
2914 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2915 struct bpf_func_state *state;
17a52670
AS
2916 int size, err = 0;
2917
2918 size = bpf_size_to_bytes(bpf_size);
2919 if (size < 0)
2920 return size;
2921
f1174f77 2922 /* alignment checks will add in reg->off themselves */
ca369602 2923 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2924 if (err)
2925 return err;
17a52670 2926
f1174f77
EC
2927 /* for access checks, reg->off is just part of off */
2928 off += reg->off;
2929
2930 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2931 if (t == BPF_WRITE && value_regno >= 0 &&
2932 is_pointer_value(env, value_regno)) {
61bd5218 2933 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2934 return -EACCES;
2935 }
591fe988
DB
2936 err = check_map_access_type(env, regno, off, size, t);
2937 if (err)
2938 return err;
9fd29c08 2939 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
2940 if (!err && t == BPF_READ && value_regno >= 0) {
2941 struct bpf_map *map = reg->map_ptr;
2942
2943 /* if map is read-only, track its contents as scalars */
2944 if (tnum_is_const(reg->var_off) &&
2945 bpf_map_is_rdonly(map) &&
2946 map->ops->map_direct_value_addr) {
2947 int map_off = off + reg->var_off.value;
2948 u64 val = 0;
2949
2950 err = bpf_map_direct_read(map, map_off, size,
2951 &val);
2952 if (err)
2953 return err;
2954
2955 regs[value_regno].type = SCALAR_VALUE;
2956 __mark_reg_known(&regs[value_regno], val);
2957 } else {
2958 mark_reg_unknown(env, regs, value_regno);
2959 }
2960 }
1a0dc1ac 2961 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2962 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 2963 u32 btf_id = 0;
19de99f7 2964
1be7f75d
AS
2965 if (t == BPF_WRITE && value_regno >= 0 &&
2966 is_pointer_value(env, value_regno)) {
61bd5218 2967 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2968 return -EACCES;
2969 }
f1174f77 2970
58990d1f
DB
2971 err = check_ctx_reg(env, reg, regno);
2972 if (err < 0)
2973 return err;
2974
9e15db66
AS
2975 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2976 if (err)
2977 verbose_linfo(env, insn_idx, "; ");
969bf05e 2978 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2979 /* ctx access returns either a scalar, or a
de8f3a83
DB
2980 * PTR_TO_PACKET[_META,_END]. In the latter
2981 * case, we know the offset is zero.
f1174f77 2982 */
46f8bc92 2983 if (reg_type == SCALAR_VALUE) {
638f5b90 2984 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2985 } else {
638f5b90 2986 mark_reg_known_zero(env, regs,
61bd5218 2987 value_regno);
46f8bc92
MKL
2988 if (reg_type_may_be_null(reg_type))
2989 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2990 /* A load of ctx field could have different
2991 * actual load size with the one encoded in the
2992 * insn. When the dst is PTR, it is for sure not
2993 * a sub-register.
2994 */
2995 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
9e15db66
AS
2996 if (reg_type == PTR_TO_BTF_ID)
2997 regs[value_regno].btf_id = btf_id;
46f8bc92 2998 }
638f5b90 2999 regs[value_regno].type = reg_type;
969bf05e 3000 }
17a52670 3001
f1174f77 3002 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3003 off += reg->var_off.value;
e4298d25
DB
3004 err = check_stack_access(env, reg, off, size);
3005 if (err)
3006 return err;
8726679a 3007
f4d7e40a
AS
3008 state = func(env, reg);
3009 err = update_stack_depth(env, state, off);
3010 if (err)
3011 return err;
8726679a 3012
638f5b90 3013 if (t == BPF_WRITE)
61bd5218 3014 err = check_stack_write(env, state, off, size,
af86ca4e 3015 value_regno, insn_idx);
638f5b90 3016 else
61bd5218
JK
3017 err = check_stack_read(env, state, off, size,
3018 value_regno);
de8f3a83 3019 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3020 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3021 verbose(env, "cannot write into packet\n");
969bf05e
AS
3022 return -EACCES;
3023 }
4acf6c0b
BB
3024 if (t == BPF_WRITE && value_regno >= 0 &&
3025 is_pointer_value(env, value_regno)) {
61bd5218
JK
3026 verbose(env, "R%d leaks addr into packet\n",
3027 value_regno);
4acf6c0b
BB
3028 return -EACCES;
3029 }
9fd29c08 3030 err = check_packet_access(env, regno, off, size, false);
969bf05e 3031 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3032 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3033 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3034 if (t == BPF_WRITE && value_regno >= 0 &&
3035 is_pointer_value(env, value_regno)) {
3036 verbose(env, "R%d leaks addr into flow keys\n",
3037 value_regno);
3038 return -EACCES;
3039 }
3040
3041 err = check_flow_keys_access(env, off, size);
3042 if (!err && t == BPF_READ && value_regno >= 0)
3043 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3044 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3045 if (t == BPF_WRITE) {
46f8bc92
MKL
3046 verbose(env, "R%d cannot write into %s\n",
3047 regno, reg_type_str[reg->type]);
c64b7983
JS
3048 return -EACCES;
3049 }
5f456649 3050 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3051 if (!err && value_regno >= 0)
3052 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3053 } else if (reg->type == PTR_TO_TP_BUFFER) {
3054 err = check_tp_buffer_access(env, reg, regno, off, size);
3055 if (!err && t == BPF_READ && value_regno >= 0)
3056 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3057 } else if (reg->type == PTR_TO_BTF_ID) {
3058 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3059 value_regno);
17a52670 3060 } else {
61bd5218
JK
3061 verbose(env, "R%d invalid mem access '%s'\n", regno,
3062 reg_type_str[reg->type]);
17a52670
AS
3063 return -EACCES;
3064 }
969bf05e 3065
f1174f77 3066 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3067 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3068 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3069 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3070 }
17a52670
AS
3071 return err;
3072}
3073
31fd8581 3074static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3075{
17a52670
AS
3076 int err;
3077
3078 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3079 insn->imm != 0) {
61bd5218 3080 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3081 return -EINVAL;
3082 }
3083
3084 /* check src1 operand */
dc503a8a 3085 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3086 if (err)
3087 return err;
3088
3089 /* check src2 operand */
dc503a8a 3090 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3091 if (err)
3092 return err;
3093
6bdf6abc 3094 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3095 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3096 return -EACCES;
3097 }
3098
ca369602 3099 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3100 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3101 is_flow_key_reg(env, insn->dst_reg) ||
3102 is_sk_reg(env, insn->dst_reg)) {
ca369602 3103 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3104 insn->dst_reg,
3105 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3106 return -EACCES;
3107 }
3108
17a52670 3109 /* check whether atomic_add can read the memory */
31fd8581 3110 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3111 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3112 if (err)
3113 return err;
3114
3115 /* check whether atomic_add can write into the same memory */
31fd8581 3116 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3117 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3118}
3119
2011fccf
AI
3120static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3121 int off, int access_size,
3122 bool zero_size_allowed)
3123{
3124 struct bpf_reg_state *reg = reg_state(env, regno);
3125
3126 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3127 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3128 if (tnum_is_const(reg->var_off)) {
3129 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3130 regno, off, access_size);
3131 } else {
3132 char tn_buf[48];
3133
3134 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3135 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3136 regno, tn_buf, access_size);
3137 }
3138 return -EACCES;
3139 }
3140 return 0;
3141}
3142
17a52670
AS
3143/* when register 'regno' is passed into function that will read 'access_size'
3144 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3145 * and all elements of stack are initialized.
3146 * Unlike most pointer bounds-checking functions, this one doesn't take an
3147 * 'off' argument, so it has to add in reg->off itself.
17a52670 3148 */
58e2af8b 3149static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3150 int access_size, bool zero_size_allowed,
3151 struct bpf_call_arg_meta *meta)
17a52670 3152{
2a159c6f 3153 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3154 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3155 int err, min_off, max_off, i, j, slot, spi;
17a52670 3156
914cb781 3157 if (reg->type != PTR_TO_STACK) {
f1174f77 3158 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3159 if (zero_size_allowed && access_size == 0 &&
914cb781 3160 register_is_null(reg))
8e2fe1d9
DB
3161 return 0;
3162
61bd5218 3163 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3164 reg_type_str[reg->type],
8e2fe1d9 3165 reg_type_str[PTR_TO_STACK]);
17a52670 3166 return -EACCES;
8e2fe1d9 3167 }
17a52670 3168
2011fccf
AI
3169 if (tnum_is_const(reg->var_off)) {
3170 min_off = max_off = reg->var_off.value + reg->off;
3171 err = __check_stack_boundary(env, regno, min_off, access_size,
3172 zero_size_allowed);
3173 if (err)
3174 return err;
3175 } else {
088ec26d
AI
3176 /* Variable offset is prohibited for unprivileged mode for
3177 * simplicity since it requires corresponding support in
3178 * Spectre masking for stack ALU.
3179 * See also retrieve_ptr_limit().
3180 */
3181 if (!env->allow_ptr_leaks) {
3182 char tn_buf[48];
f1174f77 3183
088ec26d
AI
3184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3185 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3186 regno, tn_buf);
3187 return -EACCES;
3188 }
f2bcd05e
AI
3189 /* Only initialized buffer on stack is allowed to be accessed
3190 * with variable offset. With uninitialized buffer it's hard to
3191 * guarantee that whole memory is marked as initialized on
3192 * helper return since specific bounds are unknown what may
3193 * cause uninitialized stack leaking.
3194 */
3195 if (meta && meta->raw_mode)
3196 meta = NULL;
3197
107c26a7
AI
3198 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3199 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3200 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3201 regno);
3202 return -EACCES;
3203 }
2011fccf 3204 min_off = reg->smin_value + reg->off;
107c26a7 3205 max_off = reg->smax_value + reg->off;
2011fccf
AI
3206 err = __check_stack_boundary(env, regno, min_off, access_size,
3207 zero_size_allowed);
107c26a7
AI
3208 if (err) {
3209 verbose(env, "R%d min value is outside of stack bound\n",
3210 regno);
2011fccf 3211 return err;
107c26a7 3212 }
2011fccf
AI
3213 err = __check_stack_boundary(env, regno, max_off, access_size,
3214 zero_size_allowed);
107c26a7
AI
3215 if (err) {
3216 verbose(env, "R%d max value is outside of stack bound\n",
3217 regno);
2011fccf 3218 return err;
107c26a7 3219 }
17a52670
AS
3220 }
3221
435faee1
DB
3222 if (meta && meta->raw_mode) {
3223 meta->access_size = access_size;
3224 meta->regno = regno;
3225 return 0;
3226 }
3227
2011fccf 3228 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3229 u8 *stype;
3230
2011fccf 3231 slot = -i - 1;
638f5b90 3232 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3233 if (state->allocated_stack <= slot)
3234 goto err;
3235 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3236 if (*stype == STACK_MISC)
3237 goto mark;
3238 if (*stype == STACK_ZERO) {
3239 /* helper can write anything into the stack */
3240 *stype = STACK_MISC;
3241 goto mark;
17a52670 3242 }
f7cf25b2
AS
3243 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3244 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3245 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3246 for (j = 0; j < BPF_REG_SIZE; j++)
3247 state->stack[spi].slot_type[j] = STACK_MISC;
3248 goto mark;
3249 }
3250
cc2b14d5 3251err:
2011fccf
AI
3252 if (tnum_is_const(reg->var_off)) {
3253 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3254 min_off, i - min_off, access_size);
3255 } else {
3256 char tn_buf[48];
3257
3258 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3259 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3260 tn_buf, i - min_off, access_size);
3261 }
cc2b14d5
AS
3262 return -EACCES;
3263mark:
3264 /* reading any byte out of 8-byte 'spill_slot' will cause
3265 * the whole slot to be marked as 'read'
3266 */
679c782d 3267 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3268 state->stack[spi].spilled_ptr.parent,
3269 REG_LIVE_READ64);
17a52670 3270 }
2011fccf 3271 return update_stack_depth(env, state, min_off);
17a52670
AS
3272}
3273
06c1c049
GB
3274static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3275 int access_size, bool zero_size_allowed,
3276 struct bpf_call_arg_meta *meta)
3277{
638f5b90 3278 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3279
f1174f77 3280 switch (reg->type) {
06c1c049 3281 case PTR_TO_PACKET:
de8f3a83 3282 case PTR_TO_PACKET_META:
9fd29c08
YS
3283 return check_packet_access(env, regno, reg->off, access_size,
3284 zero_size_allowed);
06c1c049 3285 case PTR_TO_MAP_VALUE:
591fe988
DB
3286 if (check_map_access_type(env, regno, reg->off, access_size,
3287 meta && meta->raw_mode ? BPF_WRITE :
3288 BPF_READ))
3289 return -EACCES;
9fd29c08
YS
3290 return check_map_access(env, regno, reg->off, access_size,
3291 zero_size_allowed);
f1174f77 3292 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3293 return check_stack_boundary(env, regno, access_size,
3294 zero_size_allowed, meta);
3295 }
3296}
3297
d83525ca
AS
3298/* Implementation details:
3299 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3300 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3301 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3302 * value_or_null->value transition, since the verifier only cares about
3303 * the range of access to valid map value pointer and doesn't care about actual
3304 * address of the map element.
3305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3306 * reg->id > 0 after value_or_null->value transition. By doing so
3307 * two bpf_map_lookups will be considered two different pointers that
3308 * point to different bpf_spin_locks.
3309 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3310 * dead-locks.
3311 * Since only one bpf_spin_lock is allowed the checks are simpler than
3312 * reg_is_refcounted() logic. The verifier needs to remember only
3313 * one spin_lock instead of array of acquired_refs.
3314 * cur_state->active_spin_lock remembers which map value element got locked
3315 * and clears it after bpf_spin_unlock.
3316 */
3317static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3318 bool is_lock)
3319{
3320 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3321 struct bpf_verifier_state *cur = env->cur_state;
3322 bool is_const = tnum_is_const(reg->var_off);
3323 struct bpf_map *map = reg->map_ptr;
3324 u64 val = reg->var_off.value;
3325
3326 if (reg->type != PTR_TO_MAP_VALUE) {
3327 verbose(env, "R%d is not a pointer to map_value\n", regno);
3328 return -EINVAL;
3329 }
3330 if (!is_const) {
3331 verbose(env,
3332 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3333 regno);
3334 return -EINVAL;
3335 }
3336 if (!map->btf) {
3337 verbose(env,
3338 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3339 map->name);
3340 return -EINVAL;
3341 }
3342 if (!map_value_has_spin_lock(map)) {
3343 if (map->spin_lock_off == -E2BIG)
3344 verbose(env,
3345 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3346 map->name);
3347 else if (map->spin_lock_off == -ENOENT)
3348 verbose(env,
3349 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3350 map->name);
3351 else
3352 verbose(env,
3353 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3354 map->name);
3355 return -EINVAL;
3356 }
3357 if (map->spin_lock_off != val + reg->off) {
3358 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3359 val + reg->off);
3360 return -EINVAL;
3361 }
3362 if (is_lock) {
3363 if (cur->active_spin_lock) {
3364 verbose(env,
3365 "Locking two bpf_spin_locks are not allowed\n");
3366 return -EINVAL;
3367 }
3368 cur->active_spin_lock = reg->id;
3369 } else {
3370 if (!cur->active_spin_lock) {
3371 verbose(env, "bpf_spin_unlock without taking a lock\n");
3372 return -EINVAL;
3373 }
3374 if (cur->active_spin_lock != reg->id) {
3375 verbose(env, "bpf_spin_unlock of different lock\n");
3376 return -EINVAL;
3377 }
3378 cur->active_spin_lock = 0;
3379 }
3380 return 0;
3381}
3382
90133415
DB
3383static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3384{
3385 return type == ARG_PTR_TO_MEM ||
3386 type == ARG_PTR_TO_MEM_OR_NULL ||
3387 type == ARG_PTR_TO_UNINIT_MEM;
3388}
3389
3390static bool arg_type_is_mem_size(enum bpf_arg_type type)
3391{
3392 return type == ARG_CONST_SIZE ||
3393 type == ARG_CONST_SIZE_OR_ZERO;
3394}
3395
57c3bb72
AI
3396static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3397{
3398 return type == ARG_PTR_TO_INT ||
3399 type == ARG_PTR_TO_LONG;
3400}
3401
3402static int int_ptr_type_to_size(enum bpf_arg_type type)
3403{
3404 if (type == ARG_PTR_TO_INT)
3405 return sizeof(u32);
3406 else if (type == ARG_PTR_TO_LONG)
3407 return sizeof(u64);
3408
3409 return -EINVAL;
3410}
3411
58e2af8b 3412static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3413 enum bpf_arg_type arg_type,
3414 struct bpf_call_arg_meta *meta)
17a52670 3415{
638f5b90 3416 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3417 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3418 int err = 0;
3419
80f1d68c 3420 if (arg_type == ARG_DONTCARE)
17a52670
AS
3421 return 0;
3422
dc503a8a
EC
3423 err = check_reg_arg(env, regno, SRC_OP);
3424 if (err)
3425 return err;
17a52670 3426
1be7f75d
AS
3427 if (arg_type == ARG_ANYTHING) {
3428 if (is_pointer_value(env, regno)) {
61bd5218
JK
3429 verbose(env, "R%d leaks addr into helper function\n",
3430 regno);
1be7f75d
AS
3431 return -EACCES;
3432 }
80f1d68c 3433 return 0;
1be7f75d 3434 }
80f1d68c 3435
de8f3a83 3436 if (type_is_pkt_pointer(type) &&
3a0af8fd 3437 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3438 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3439 return -EACCES;
3440 }
3441
8e2fe1d9 3442 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3443 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3444 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3445 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3446 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3447 if (register_is_null(reg) &&
3448 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3449 /* final test in check_stack_boundary() */;
3450 else if (!type_is_pkt_pointer(type) &&
3451 type != PTR_TO_MAP_VALUE &&
3452 type != expected_type)
6841de8b 3453 goto err_type;
39f19ebb
AS
3454 } else if (arg_type == ARG_CONST_SIZE ||
3455 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3456 expected_type = SCALAR_VALUE;
3457 if (type != expected_type)
6841de8b 3458 goto err_type;
17a52670
AS
3459 } else if (arg_type == ARG_CONST_MAP_PTR) {
3460 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3461 if (type != expected_type)
3462 goto err_type;
608cd71a
AS
3463 } else if (arg_type == ARG_PTR_TO_CTX) {
3464 expected_type = PTR_TO_CTX;
6841de8b
AS
3465 if (type != expected_type)
3466 goto err_type;
58990d1f
DB
3467 err = check_ctx_reg(env, reg, regno);
3468 if (err < 0)
3469 return err;
46f8bc92
MKL
3470 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3471 expected_type = PTR_TO_SOCK_COMMON;
3472 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3473 if (!type_is_sk_pointer(type))
3474 goto err_type;
1b986589
MKL
3475 if (reg->ref_obj_id) {
3476 if (meta->ref_obj_id) {
3477 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3478 regno, reg->ref_obj_id,
3479 meta->ref_obj_id);
3480 return -EFAULT;
3481 }
3482 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3483 }
6ac99e8f
MKL
3484 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3485 expected_type = PTR_TO_SOCKET;
3486 if (type != expected_type)
3487 goto err_type;
a7658e1a
AS
3488 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3489 expected_type = PTR_TO_BTF_ID;
3490 if (type != expected_type)
3491 goto err_type;
3492 if (reg->btf_id != meta->btf_id) {
3493 verbose(env, "Helper has type %s got %s in R%d\n",
3494 kernel_type_name(meta->btf_id),
3495 kernel_type_name(reg->btf_id), regno);
3496
3497 return -EACCES;
3498 }
3499 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3500 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3501 regno);
3502 return -EACCES;
3503 }
d83525ca
AS
3504 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3505 if (meta->func_id == BPF_FUNC_spin_lock) {
3506 if (process_spin_lock(env, regno, true))
3507 return -EACCES;
3508 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3509 if (process_spin_lock(env, regno, false))
3510 return -EACCES;
3511 } else {
3512 verbose(env, "verifier internal error\n");
3513 return -EFAULT;
3514 }
90133415 3515 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3516 expected_type = PTR_TO_STACK;
3517 /* One exception here. In case function allows for NULL to be
f1174f77 3518 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3519 * happens during stack boundary checking.
3520 */
914cb781 3521 if (register_is_null(reg) &&
db1ac496 3522 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3523 /* final test in check_stack_boundary() */;
de8f3a83
DB
3524 else if (!type_is_pkt_pointer(type) &&
3525 type != PTR_TO_MAP_VALUE &&
f1174f77 3526 type != expected_type)
6841de8b 3527 goto err_type;
39f19ebb 3528 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3529 } else if (arg_type_is_int_ptr(arg_type)) {
3530 expected_type = PTR_TO_STACK;
3531 if (!type_is_pkt_pointer(type) &&
3532 type != PTR_TO_MAP_VALUE &&
3533 type != expected_type)
3534 goto err_type;
17a52670 3535 } else {
61bd5218 3536 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3537 return -EFAULT;
3538 }
3539
17a52670
AS
3540 if (arg_type == ARG_CONST_MAP_PTR) {
3541 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3542 meta->map_ptr = reg->map_ptr;
17a52670
AS
3543 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3544 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3545 * check that [key, key + map->key_size) are within
3546 * stack limits and initialized
3547 */
33ff9823 3548 if (!meta->map_ptr) {
17a52670
AS
3549 /* in function declaration map_ptr must come before
3550 * map_key, so that it's verified and known before
3551 * we have to check map_key here. Otherwise it means
3552 * that kernel subsystem misconfigured verifier
3553 */
61bd5218 3554 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3555 return -EACCES;
3556 }
d71962f3
PC
3557 err = check_helper_mem_access(env, regno,
3558 meta->map_ptr->key_size, false,
3559 NULL);
2ea864c5 3560 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3561 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3562 !register_is_null(reg)) ||
2ea864c5 3563 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3564 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3565 * check [value, value + map->value_size) validity
3566 */
33ff9823 3567 if (!meta->map_ptr) {
17a52670 3568 /* kernel subsystem misconfigured verifier */
61bd5218 3569 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3570 return -EACCES;
3571 }
2ea864c5 3572 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3573 err = check_helper_mem_access(env, regno,
3574 meta->map_ptr->value_size, false,
2ea864c5 3575 meta);
90133415 3576 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3577 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3578
849fa506
YS
3579 /* remember the mem_size which may be used later
3580 * to refine return values.
3581 */
3582 meta->msize_smax_value = reg->smax_value;
3583 meta->msize_umax_value = reg->umax_value;
3584
f1174f77
EC
3585 /* The register is SCALAR_VALUE; the access check
3586 * happens using its boundaries.
06c1c049 3587 */
f1174f77 3588 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3589 /* For unprivileged variable accesses, disable raw
3590 * mode so that the program is required to
3591 * initialize all the memory that the helper could
3592 * just partially fill up.
3593 */
3594 meta = NULL;
3595
b03c9f9f 3596 if (reg->smin_value < 0) {
61bd5218 3597 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3598 regno);
3599 return -EACCES;
3600 }
06c1c049 3601
b03c9f9f 3602 if (reg->umin_value == 0) {
f1174f77
EC
3603 err = check_helper_mem_access(env, regno - 1, 0,
3604 zero_size_allowed,
3605 meta);
06c1c049
GB
3606 if (err)
3607 return err;
06c1c049 3608 }
f1174f77 3609
b03c9f9f 3610 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3611 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3612 regno);
3613 return -EACCES;
3614 }
3615 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3616 reg->umax_value,
f1174f77 3617 zero_size_allowed, meta);
b5dc0163
AS
3618 if (!err)
3619 err = mark_chain_precision(env, regno);
57c3bb72
AI
3620 } else if (arg_type_is_int_ptr(arg_type)) {
3621 int size = int_ptr_type_to_size(arg_type);
3622
3623 err = check_helper_mem_access(env, regno, size, false, meta);
3624 if (err)
3625 return err;
3626 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3627 }
3628
3629 return err;
6841de8b 3630err_type:
61bd5218 3631 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3632 reg_type_str[type], reg_type_str[expected_type]);
3633 return -EACCES;
17a52670
AS
3634}
3635
61bd5218
JK
3636static int check_map_func_compatibility(struct bpf_verifier_env *env,
3637 struct bpf_map *map, int func_id)
35578d79 3638{
35578d79
KX
3639 if (!map)
3640 return 0;
3641
6aff67c8
AS
3642 /* We need a two way check, first is from map perspective ... */
3643 switch (map->map_type) {
3644 case BPF_MAP_TYPE_PROG_ARRAY:
3645 if (func_id != BPF_FUNC_tail_call)
3646 goto error;
3647 break;
3648 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3649 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 3650 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 3651 func_id != BPF_FUNC_skb_output &&
908432ca 3652 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3653 goto error;
3654 break;
3655 case BPF_MAP_TYPE_STACK_TRACE:
3656 if (func_id != BPF_FUNC_get_stackid)
3657 goto error;
3658 break;
4ed8ec52 3659 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3660 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3661 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3662 goto error;
3663 break;
cd339431 3664 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3665 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3666 if (func_id != BPF_FUNC_get_local_storage)
3667 goto error;
3668 break;
546ac1ff 3669 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3670 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3671 if (func_id != BPF_FUNC_redirect_map &&
3672 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3673 goto error;
3674 break;
fbfc504a
BT
3675 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3676 * appear.
3677 */
6710e112
JDB
3678 case BPF_MAP_TYPE_CPUMAP:
3679 if (func_id != BPF_FUNC_redirect_map)
3680 goto error;
3681 break;
fada7fdc
JL
3682 case BPF_MAP_TYPE_XSKMAP:
3683 if (func_id != BPF_FUNC_redirect_map &&
3684 func_id != BPF_FUNC_map_lookup_elem)
3685 goto error;
3686 break;
56f668df 3687 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3688 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3689 if (func_id != BPF_FUNC_map_lookup_elem)
3690 goto error;
16a43625 3691 break;
174a79ff
JF
3692 case BPF_MAP_TYPE_SOCKMAP:
3693 if (func_id != BPF_FUNC_sk_redirect_map &&
3694 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3695 func_id != BPF_FUNC_map_delete_elem &&
3696 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3697 goto error;
3698 break;
81110384
JF
3699 case BPF_MAP_TYPE_SOCKHASH:
3700 if (func_id != BPF_FUNC_sk_redirect_hash &&
3701 func_id != BPF_FUNC_sock_hash_update &&
3702 func_id != BPF_FUNC_map_delete_elem &&
3703 func_id != BPF_FUNC_msg_redirect_hash)
3704 goto error;
3705 break;
2dbb9b9e
MKL
3706 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3707 if (func_id != BPF_FUNC_sk_select_reuseport)
3708 goto error;
3709 break;
f1a2e44a
MV
3710 case BPF_MAP_TYPE_QUEUE:
3711 case BPF_MAP_TYPE_STACK:
3712 if (func_id != BPF_FUNC_map_peek_elem &&
3713 func_id != BPF_FUNC_map_pop_elem &&
3714 func_id != BPF_FUNC_map_push_elem)
3715 goto error;
3716 break;
6ac99e8f
MKL
3717 case BPF_MAP_TYPE_SK_STORAGE:
3718 if (func_id != BPF_FUNC_sk_storage_get &&
3719 func_id != BPF_FUNC_sk_storage_delete)
3720 goto error;
3721 break;
6aff67c8
AS
3722 default:
3723 break;
3724 }
3725
3726 /* ... and second from the function itself. */
3727 switch (func_id) {
3728 case BPF_FUNC_tail_call:
3729 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3730 goto error;
f910cefa 3731 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3732 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3733 return -EINVAL;
3734 }
6aff67c8
AS
3735 break;
3736 case BPF_FUNC_perf_event_read:
3737 case BPF_FUNC_perf_event_output:
908432ca 3738 case BPF_FUNC_perf_event_read_value:
a7658e1a 3739 case BPF_FUNC_skb_output:
6aff67c8
AS
3740 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3741 goto error;
3742 break;
3743 case BPF_FUNC_get_stackid:
3744 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3745 goto error;
3746 break;
60d20f91 3747 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3748 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3749 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3750 goto error;
3751 break;
97f91a7c 3752 case BPF_FUNC_redirect_map:
9c270af3 3753 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3754 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3755 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3756 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3757 goto error;
3758 break;
174a79ff 3759 case BPF_FUNC_sk_redirect_map:
4f738adb 3760 case BPF_FUNC_msg_redirect_map:
81110384 3761 case BPF_FUNC_sock_map_update:
174a79ff
JF
3762 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3763 goto error;
3764 break;
81110384
JF
3765 case BPF_FUNC_sk_redirect_hash:
3766 case BPF_FUNC_msg_redirect_hash:
3767 case BPF_FUNC_sock_hash_update:
3768 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3769 goto error;
3770 break;
cd339431 3771 case BPF_FUNC_get_local_storage:
b741f163
RG
3772 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3773 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3774 goto error;
3775 break;
2dbb9b9e
MKL
3776 case BPF_FUNC_sk_select_reuseport:
3777 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3778 goto error;
3779 break;
f1a2e44a
MV
3780 case BPF_FUNC_map_peek_elem:
3781 case BPF_FUNC_map_pop_elem:
3782 case BPF_FUNC_map_push_elem:
3783 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3784 map->map_type != BPF_MAP_TYPE_STACK)
3785 goto error;
3786 break;
6ac99e8f
MKL
3787 case BPF_FUNC_sk_storage_get:
3788 case BPF_FUNC_sk_storage_delete:
3789 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3790 goto error;
3791 break;
6aff67c8
AS
3792 default:
3793 break;
35578d79
KX
3794 }
3795
3796 return 0;
6aff67c8 3797error:
61bd5218 3798 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3799 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3800 return -EINVAL;
35578d79
KX
3801}
3802
90133415 3803static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3804{
3805 int count = 0;
3806
39f19ebb 3807 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3808 count++;
39f19ebb 3809 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3810 count++;
39f19ebb 3811 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3812 count++;
39f19ebb 3813 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3814 count++;
39f19ebb 3815 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3816 count++;
3817
90133415
DB
3818 /* We only support one arg being in raw mode at the moment,
3819 * which is sufficient for the helper functions we have
3820 * right now.
3821 */
3822 return count <= 1;
3823}
3824
3825static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3826 enum bpf_arg_type arg_next)
3827{
3828 return (arg_type_is_mem_ptr(arg_curr) &&
3829 !arg_type_is_mem_size(arg_next)) ||
3830 (!arg_type_is_mem_ptr(arg_curr) &&
3831 arg_type_is_mem_size(arg_next));
3832}
3833
3834static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3835{
3836 /* bpf_xxx(..., buf, len) call will access 'len'
3837 * bytes from memory 'buf'. Both arg types need
3838 * to be paired, so make sure there's no buggy
3839 * helper function specification.
3840 */
3841 if (arg_type_is_mem_size(fn->arg1_type) ||
3842 arg_type_is_mem_ptr(fn->arg5_type) ||
3843 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3844 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3845 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3846 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3847 return false;
3848
3849 return true;
3850}
3851
1b986589 3852static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3853{
3854 int count = 0;
3855
1b986589 3856 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3857 count++;
1b986589 3858 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3859 count++;
1b986589 3860 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3861 count++;
1b986589 3862 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3863 count++;
1b986589 3864 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3865 count++;
3866
1b986589
MKL
3867 /* A reference acquiring function cannot acquire
3868 * another refcounted ptr.
3869 */
3870 if (is_acquire_function(func_id) && count)
3871 return false;
3872
fd978bf7
JS
3873 /* We only support one arg being unreferenced at the moment,
3874 * which is sufficient for the helper functions we have right now.
3875 */
3876 return count <= 1;
3877}
3878
1b986589 3879static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3880{
3881 return check_raw_mode_ok(fn) &&
fd978bf7 3882 check_arg_pair_ok(fn) &&
1b986589 3883 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3884}
3885
de8f3a83
DB
3886/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3887 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3888 */
f4d7e40a
AS
3889static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3890 struct bpf_func_state *state)
969bf05e 3891{
58e2af8b 3892 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3893 int i;
3894
3895 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3896 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3897 mark_reg_unknown(env, regs, i);
969bf05e 3898
f3709f69
JS
3899 bpf_for_each_spilled_reg(i, state, reg) {
3900 if (!reg)
969bf05e 3901 continue;
de8f3a83 3902 if (reg_is_pkt_pointer_any(reg))
f54c7898 3903 __mark_reg_unknown(env, reg);
969bf05e
AS
3904 }
3905}
3906
f4d7e40a
AS
3907static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3908{
3909 struct bpf_verifier_state *vstate = env->cur_state;
3910 int i;
3911
3912 for (i = 0; i <= vstate->curframe; i++)
3913 __clear_all_pkt_pointers(env, vstate->frame[i]);
3914}
3915
fd978bf7 3916static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3917 struct bpf_func_state *state,
3918 int ref_obj_id)
fd978bf7
JS
3919{
3920 struct bpf_reg_state *regs = state->regs, *reg;
3921 int i;
3922
3923 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3924 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3925 mark_reg_unknown(env, regs, i);
3926
3927 bpf_for_each_spilled_reg(i, state, reg) {
3928 if (!reg)
3929 continue;
1b986589 3930 if (reg->ref_obj_id == ref_obj_id)
f54c7898 3931 __mark_reg_unknown(env, reg);
fd978bf7
JS
3932 }
3933}
3934
3935/* The pointer with the specified id has released its reference to kernel
3936 * resources. Identify all copies of the same pointer and clear the reference.
3937 */
3938static int release_reference(struct bpf_verifier_env *env,
1b986589 3939 int ref_obj_id)
fd978bf7
JS
3940{
3941 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3942 int err;
fd978bf7
JS
3943 int i;
3944
1b986589
MKL
3945 err = release_reference_state(cur_func(env), ref_obj_id);
3946 if (err)
3947 return err;
3948
fd978bf7 3949 for (i = 0; i <= vstate->curframe; i++)
1b986589 3950 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3951
1b986589 3952 return 0;
fd978bf7
JS
3953}
3954
51c39bb1
AS
3955static void clear_caller_saved_regs(struct bpf_verifier_env *env,
3956 struct bpf_reg_state *regs)
3957{
3958 int i;
3959
3960 /* after the call registers r0 - r5 were scratched */
3961 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3962 mark_reg_not_init(env, regs, caller_saved[i]);
3963 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3964 }
3965}
3966
f4d7e40a
AS
3967static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3968 int *insn_idx)
3969{
3970 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 3971 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 3972 struct bpf_func_state *caller, *callee;
fd978bf7 3973 int i, err, subprog, target_insn;
51c39bb1 3974 bool is_global = false;
f4d7e40a 3975
aada9ce6 3976 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3977 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3978 state->curframe + 2);
f4d7e40a
AS
3979 return -E2BIG;
3980 }
3981
3982 target_insn = *insn_idx + insn->imm;
3983 subprog = find_subprog(env, target_insn + 1);
3984 if (subprog < 0) {
3985 verbose(env, "verifier bug. No program starts at insn %d\n",
3986 target_insn + 1);
3987 return -EFAULT;
3988 }
3989
3990 caller = state->frame[state->curframe];
3991 if (state->frame[state->curframe + 1]) {
3992 verbose(env, "verifier bug. Frame %d already allocated\n",
3993 state->curframe + 1);
3994 return -EFAULT;
3995 }
3996
51c39bb1
AS
3997 func_info_aux = env->prog->aux->func_info_aux;
3998 if (func_info_aux)
3999 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4000 err = btf_check_func_arg_match(env, subprog, caller->regs);
4001 if (err == -EFAULT)
4002 return err;
4003 if (is_global) {
4004 if (err) {
4005 verbose(env, "Caller passes invalid args into func#%d\n",
4006 subprog);
4007 return err;
4008 } else {
4009 if (env->log.level & BPF_LOG_LEVEL)
4010 verbose(env,
4011 "Func#%d is global and valid. Skipping.\n",
4012 subprog);
4013 clear_caller_saved_regs(env, caller->regs);
4014
4015 /* All global functions return SCALAR_VALUE */
4016 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4017
4018 /* continue with next insn after call */
4019 return 0;
4020 }
4021 }
4022
f4d7e40a
AS
4023 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4024 if (!callee)
4025 return -ENOMEM;
4026 state->frame[state->curframe + 1] = callee;
4027
4028 /* callee cannot access r0, r6 - r9 for reading and has to write
4029 * into its own stack before reading from it.
4030 * callee can read/write into caller's stack
4031 */
4032 init_func_state(env, callee,
4033 /* remember the callsite, it will be used by bpf_exit */
4034 *insn_idx /* callsite */,
4035 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4036 subprog /* subprog number within this prog */);
f4d7e40a 4037
fd978bf7
JS
4038 /* Transfer references to the callee */
4039 err = transfer_reference_state(callee, caller);
4040 if (err)
4041 return err;
4042
679c782d
EC
4043 /* copy r1 - r5 args that callee can access. The copy includes parent
4044 * pointers, which connects us up to the liveness chain
4045 */
f4d7e40a
AS
4046 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4047 callee->regs[i] = caller->regs[i];
4048
51c39bb1 4049 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
4050
4051 /* only increment it after check_reg_arg() finished */
4052 state->curframe++;
4053
4054 /* and go analyze first insn of the callee */
4055 *insn_idx = target_insn;
4056
06ee7115 4057 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4058 verbose(env, "caller:\n");
4059 print_verifier_state(env, caller);
4060 verbose(env, "callee:\n");
4061 print_verifier_state(env, callee);
4062 }
4063 return 0;
4064}
4065
4066static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4067{
4068 struct bpf_verifier_state *state = env->cur_state;
4069 struct bpf_func_state *caller, *callee;
4070 struct bpf_reg_state *r0;
fd978bf7 4071 int err;
f4d7e40a
AS
4072
4073 callee = state->frame[state->curframe];
4074 r0 = &callee->regs[BPF_REG_0];
4075 if (r0->type == PTR_TO_STACK) {
4076 /* technically it's ok to return caller's stack pointer
4077 * (or caller's caller's pointer) back to the caller,
4078 * since these pointers are valid. Only current stack
4079 * pointer will be invalid as soon as function exits,
4080 * but let's be conservative
4081 */
4082 verbose(env, "cannot return stack pointer to the caller\n");
4083 return -EINVAL;
4084 }
4085
4086 state->curframe--;
4087 caller = state->frame[state->curframe];
4088 /* return to the caller whatever r0 had in the callee */
4089 caller->regs[BPF_REG_0] = *r0;
4090
fd978bf7
JS
4091 /* Transfer references to the caller */
4092 err = transfer_reference_state(caller, callee);
4093 if (err)
4094 return err;
4095
f4d7e40a 4096 *insn_idx = callee->callsite + 1;
06ee7115 4097 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4098 verbose(env, "returning from callee:\n");
4099 print_verifier_state(env, callee);
4100 verbose(env, "to caller at %d:\n", *insn_idx);
4101 print_verifier_state(env, caller);
4102 }
4103 /* clear everything in the callee */
4104 free_func_state(callee);
4105 state->frame[state->curframe + 1] = NULL;
4106 return 0;
4107}
4108
849fa506
YS
4109static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4110 int func_id,
4111 struct bpf_call_arg_meta *meta)
4112{
4113 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4114
4115 if (ret_type != RET_INTEGER ||
4116 (func_id != BPF_FUNC_get_stack &&
4117 func_id != BPF_FUNC_probe_read_str))
4118 return;
4119
4120 ret_reg->smax_value = meta->msize_smax_value;
4121 ret_reg->umax_value = meta->msize_umax_value;
4122 __reg_deduce_bounds(ret_reg);
4123 __reg_bound_offset(ret_reg);
4124}
4125
c93552c4
DB
4126static int
4127record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4128 int func_id, int insn_idx)
4129{
4130 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4131 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4132
4133 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4134 func_id != BPF_FUNC_map_lookup_elem &&
4135 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4136 func_id != BPF_FUNC_map_delete_elem &&
4137 func_id != BPF_FUNC_map_push_elem &&
4138 func_id != BPF_FUNC_map_pop_elem &&
4139 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4140 return 0;
09772d92 4141
591fe988 4142 if (map == NULL) {
c93552c4
DB
4143 verbose(env, "kernel subsystem misconfigured verifier\n");
4144 return -EINVAL;
4145 }
4146
591fe988
DB
4147 /* In case of read-only, some additional restrictions
4148 * need to be applied in order to prevent altering the
4149 * state of the map from program side.
4150 */
4151 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4152 (func_id == BPF_FUNC_map_delete_elem ||
4153 func_id == BPF_FUNC_map_update_elem ||
4154 func_id == BPF_FUNC_map_push_elem ||
4155 func_id == BPF_FUNC_map_pop_elem)) {
4156 verbose(env, "write into map forbidden\n");
4157 return -EACCES;
4158 }
4159
d2e4c1e6 4160 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4
DB
4161 bpf_map_ptr_store(aux, meta->map_ptr,
4162 meta->map_ptr->unpriv_array);
d2e4c1e6 4163 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4
DB
4164 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4165 meta->map_ptr->unpriv_array);
4166 return 0;
4167}
4168
d2e4c1e6
DB
4169static int
4170record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4171 int func_id, int insn_idx)
4172{
4173 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4174 struct bpf_reg_state *regs = cur_regs(env), *reg;
4175 struct bpf_map *map = meta->map_ptr;
4176 struct tnum range;
4177 u64 val;
cc52d914 4178 int err;
d2e4c1e6
DB
4179
4180 if (func_id != BPF_FUNC_tail_call)
4181 return 0;
4182 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4183 verbose(env, "kernel subsystem misconfigured verifier\n");
4184 return -EINVAL;
4185 }
4186
4187 range = tnum_range(0, map->max_entries - 1);
4188 reg = &regs[BPF_REG_3];
4189
4190 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4191 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4192 return 0;
4193 }
4194
cc52d914
DB
4195 err = mark_chain_precision(env, BPF_REG_3);
4196 if (err)
4197 return err;
4198
d2e4c1e6
DB
4199 val = reg->var_off.value;
4200 if (bpf_map_key_unseen(aux))
4201 bpf_map_key_store(aux, val);
4202 else if (!bpf_map_key_poisoned(aux) &&
4203 bpf_map_key_immediate(aux) != val)
4204 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4205 return 0;
4206}
4207
fd978bf7
JS
4208static int check_reference_leak(struct bpf_verifier_env *env)
4209{
4210 struct bpf_func_state *state = cur_func(env);
4211 int i;
4212
4213 for (i = 0; i < state->acquired_refs; i++) {
4214 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4215 state->refs[i].id, state->refs[i].insn_idx);
4216 }
4217 return state->acquired_refs ? -EINVAL : 0;
4218}
4219
f4d7e40a 4220static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4221{
17a52670 4222 const struct bpf_func_proto *fn = NULL;
638f5b90 4223 struct bpf_reg_state *regs;
33ff9823 4224 struct bpf_call_arg_meta meta;
969bf05e 4225 bool changes_data;
17a52670
AS
4226 int i, err;
4227
4228 /* find function prototype */
4229 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4230 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4231 func_id);
17a52670
AS
4232 return -EINVAL;
4233 }
4234
00176a34 4235 if (env->ops->get_func_proto)
5e43f899 4236 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4237 if (!fn) {
61bd5218
JK
4238 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4239 func_id);
17a52670
AS
4240 return -EINVAL;
4241 }
4242
4243 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4244 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4245 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4246 return -EINVAL;
4247 }
4248
04514d13 4249 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4250 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4251 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4252 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4253 func_id_name(func_id), func_id);
4254 return -EINVAL;
4255 }
969bf05e 4256
33ff9823 4257 memset(&meta, 0, sizeof(meta));
36bbef52 4258 meta.pkt_access = fn->pkt_access;
33ff9823 4259
1b986589 4260 err = check_func_proto(fn, func_id);
435faee1 4261 if (err) {
61bd5218 4262 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4263 func_id_name(func_id), func_id);
435faee1
DB
4264 return err;
4265 }
4266
d83525ca 4267 meta.func_id = func_id;
17a52670 4268 /* check args */
a7658e1a 4269 for (i = 0; i < 5; i++) {
9cc31b3a
AS
4270 err = btf_resolve_helper_id(&env->log, fn, i);
4271 if (err > 0)
4272 meta.btf_id = err;
a7658e1a
AS
4273 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4274 if (err)
4275 return err;
4276 }
17a52670 4277
c93552c4
DB
4278 err = record_func_map(env, &meta, func_id, insn_idx);
4279 if (err)
4280 return err;
4281
d2e4c1e6
DB
4282 err = record_func_key(env, &meta, func_id, insn_idx);
4283 if (err)
4284 return err;
4285
435faee1
DB
4286 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4287 * is inferred from register state.
4288 */
4289 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4290 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4291 BPF_WRITE, -1, false);
435faee1
DB
4292 if (err)
4293 return err;
4294 }
4295
fd978bf7
JS
4296 if (func_id == BPF_FUNC_tail_call) {
4297 err = check_reference_leak(env);
4298 if (err) {
4299 verbose(env, "tail_call would lead to reference leak\n");
4300 return err;
4301 }
4302 } else if (is_release_function(func_id)) {
1b986589 4303 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4304 if (err) {
4305 verbose(env, "func %s#%d reference has not been acquired before\n",
4306 func_id_name(func_id), func_id);
fd978bf7 4307 return err;
46f8bc92 4308 }
fd978bf7
JS
4309 }
4310
638f5b90 4311 regs = cur_regs(env);
cd339431
RG
4312
4313 /* check that flags argument in get_local_storage(map, flags) is 0,
4314 * this is required because get_local_storage() can't return an error.
4315 */
4316 if (func_id == BPF_FUNC_get_local_storage &&
4317 !register_is_null(&regs[BPF_REG_2])) {
4318 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4319 return -EINVAL;
4320 }
4321
17a52670 4322 /* reset caller saved regs */
dc503a8a 4323 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4324 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4325 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4326 }
17a52670 4327
5327ed3d
JW
4328 /* helper call returns 64-bit value. */
4329 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4330
dc503a8a 4331 /* update return register (already marked as written above) */
17a52670 4332 if (fn->ret_type == RET_INTEGER) {
f1174f77 4333 /* sets type to SCALAR_VALUE */
61bd5218 4334 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4335 } else if (fn->ret_type == RET_VOID) {
4336 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4337 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4338 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4339 /* There is no offset yet applied, variable or fixed */
61bd5218 4340 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4341 /* remember map_ptr, so that check_map_access()
4342 * can check 'value_size' boundary of memory access
4343 * to map element returned from bpf_map_lookup_elem()
4344 */
33ff9823 4345 if (meta.map_ptr == NULL) {
61bd5218
JK
4346 verbose(env,
4347 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4348 return -EINVAL;
4349 }
33ff9823 4350 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4351 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4352 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4353 if (map_value_has_spin_lock(meta.map_ptr))
4354 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4355 } else {
4356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4357 regs[BPF_REG_0].id = ++env->id_gen;
4358 }
c64b7983
JS
4359 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4360 mark_reg_known_zero(env, regs, BPF_REG_0);
4361 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4362 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4363 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4364 mark_reg_known_zero(env, regs, BPF_REG_0);
4365 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4366 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4367 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4368 mark_reg_known_zero(env, regs, BPF_REG_0);
4369 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4370 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4371 } else {
61bd5218 4372 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4373 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4374 return -EINVAL;
4375 }
04fd61ab 4376
0f3adc28 4377 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4378 /* For release_reference() */
4379 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4380 } else if (is_acquire_function(func_id)) {
4381 int id = acquire_reference_state(env, insn_idx);
4382
4383 if (id < 0)
4384 return id;
4385 /* For mark_ptr_or_null_reg() */
4386 regs[BPF_REG_0].id = id;
4387 /* For release_reference() */
4388 regs[BPF_REG_0].ref_obj_id = id;
4389 }
1b986589 4390
849fa506
YS
4391 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4392
61bd5218 4393 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4394 if (err)
4395 return err;
04fd61ab 4396
c195651e
YS
4397 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4398 const char *err_str;
4399
4400#ifdef CONFIG_PERF_EVENTS
4401 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4402 err_str = "cannot get callchain buffer for func %s#%d\n";
4403#else
4404 err = -ENOTSUPP;
4405 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4406#endif
4407 if (err) {
4408 verbose(env, err_str, func_id_name(func_id), func_id);
4409 return err;
4410 }
4411
4412 env->prog->has_callchain_buf = true;
4413 }
4414
969bf05e
AS
4415 if (changes_data)
4416 clear_all_pkt_pointers(env);
4417 return 0;
4418}
4419
b03c9f9f
EC
4420static bool signed_add_overflows(s64 a, s64 b)
4421{
4422 /* Do the add in u64, where overflow is well-defined */
4423 s64 res = (s64)((u64)a + (u64)b);
4424
4425 if (b < 0)
4426 return res > a;
4427 return res < a;
4428}
4429
4430static bool signed_sub_overflows(s64 a, s64 b)
4431{
4432 /* Do the sub in u64, where overflow is well-defined */
4433 s64 res = (s64)((u64)a - (u64)b);
4434
4435 if (b < 0)
4436 return res < a;
4437 return res > a;
969bf05e
AS
4438}
4439
bb7f0f98
AS
4440static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4441 const struct bpf_reg_state *reg,
4442 enum bpf_reg_type type)
4443{
4444 bool known = tnum_is_const(reg->var_off);
4445 s64 val = reg->var_off.value;
4446 s64 smin = reg->smin_value;
4447
4448 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4449 verbose(env, "math between %s pointer and %lld is not allowed\n",
4450 reg_type_str[type], val);
4451 return false;
4452 }
4453
4454 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4455 verbose(env, "%s pointer offset %d is not allowed\n",
4456 reg_type_str[type], reg->off);
4457 return false;
4458 }
4459
4460 if (smin == S64_MIN) {
4461 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4462 reg_type_str[type]);
4463 return false;
4464 }
4465
4466 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4467 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4468 smin, reg_type_str[type]);
4469 return false;
4470 }
4471
4472 return true;
4473}
4474
979d63d5
DB
4475static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4476{
4477 return &env->insn_aux_data[env->insn_idx];
4478}
4479
4480static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4481 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4482{
4483 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4484 (opcode == BPF_SUB && !off_is_neg);
4485 u32 off;
4486
4487 switch (ptr_reg->type) {
4488 case PTR_TO_STACK:
088ec26d
AI
4489 /* Indirect variable offset stack access is prohibited in
4490 * unprivileged mode so it's not handled here.
4491 */
979d63d5
DB
4492 off = ptr_reg->off + ptr_reg->var_off.value;
4493 if (mask_to_left)
4494 *ptr_limit = MAX_BPF_STACK + off;
4495 else
4496 *ptr_limit = -off;
4497 return 0;
4498 case PTR_TO_MAP_VALUE:
4499 if (mask_to_left) {
4500 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4501 } else {
4502 off = ptr_reg->smin_value + ptr_reg->off;
4503 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4504 }
4505 return 0;
4506 default:
4507 return -EINVAL;
4508 }
4509}
4510
d3bd7413
DB
4511static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4512 const struct bpf_insn *insn)
4513{
4514 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4515}
4516
4517static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4518 u32 alu_state, u32 alu_limit)
4519{
4520 /* If we arrived here from different branches with different
4521 * state or limits to sanitize, then this won't work.
4522 */
4523 if (aux->alu_state &&
4524 (aux->alu_state != alu_state ||
4525 aux->alu_limit != alu_limit))
4526 return -EACCES;
4527
4528 /* Corresponding fixup done in fixup_bpf_calls(). */
4529 aux->alu_state = alu_state;
4530 aux->alu_limit = alu_limit;
4531 return 0;
4532}
4533
4534static int sanitize_val_alu(struct bpf_verifier_env *env,
4535 struct bpf_insn *insn)
4536{
4537 struct bpf_insn_aux_data *aux = cur_aux(env);
4538
4539 if (can_skip_alu_sanitation(env, insn))
4540 return 0;
4541
4542 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4543}
4544
979d63d5
DB
4545static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4546 struct bpf_insn *insn,
4547 const struct bpf_reg_state *ptr_reg,
4548 struct bpf_reg_state *dst_reg,
4549 bool off_is_neg)
4550{
4551 struct bpf_verifier_state *vstate = env->cur_state;
4552 struct bpf_insn_aux_data *aux = cur_aux(env);
4553 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4554 u8 opcode = BPF_OP(insn->code);
4555 u32 alu_state, alu_limit;
4556 struct bpf_reg_state tmp;
4557 bool ret;
4558
d3bd7413 4559 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4560 return 0;
4561
4562 /* We already marked aux for masking from non-speculative
4563 * paths, thus we got here in the first place. We only care
4564 * to explore bad access from here.
4565 */
4566 if (vstate->speculative)
4567 goto do_sim;
4568
4569 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4570 alu_state |= ptr_is_dst_reg ?
4571 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4572
4573 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4574 return 0;
d3bd7413 4575 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4576 return -EACCES;
979d63d5
DB
4577do_sim:
4578 /* Simulate and find potential out-of-bounds access under
4579 * speculative execution from truncation as a result of
4580 * masking when off was not within expected range. If off
4581 * sits in dst, then we temporarily need to move ptr there
4582 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4583 * for cases where we use K-based arithmetic in one direction
4584 * and truncated reg-based in the other in order to explore
4585 * bad access.
4586 */
4587 if (!ptr_is_dst_reg) {
4588 tmp = *dst_reg;
4589 *dst_reg = *ptr_reg;
4590 }
4591 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4592 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4593 *dst_reg = tmp;
4594 return !ret ? -EFAULT : 0;
4595}
4596
f1174f77 4597/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4598 * Caller should also handle BPF_MOV case separately.
4599 * If we return -EACCES, caller may want to try again treating pointer as a
4600 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4601 */
4602static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4603 struct bpf_insn *insn,
4604 const struct bpf_reg_state *ptr_reg,
4605 const struct bpf_reg_state *off_reg)
969bf05e 4606{
f4d7e40a
AS
4607 struct bpf_verifier_state *vstate = env->cur_state;
4608 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4609 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4610 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4611 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4612 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4613 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4614 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4615 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4616 u8 opcode = BPF_OP(insn->code);
979d63d5 4617 int ret;
969bf05e 4618
f1174f77 4619 dst_reg = &regs[dst];
969bf05e 4620
6f16101e
DB
4621 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4622 smin_val > smax_val || umin_val > umax_val) {
4623 /* Taint dst register if offset had invalid bounds derived from
4624 * e.g. dead branches.
4625 */
f54c7898 4626 __mark_reg_unknown(env, dst_reg);
6f16101e 4627 return 0;
f1174f77
EC
4628 }
4629
4630 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4631 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4632 verbose(env,
4633 "R%d 32-bit pointer arithmetic prohibited\n",
4634 dst);
f1174f77 4635 return -EACCES;
969bf05e
AS
4636 }
4637
aad2eeaf
JS
4638 switch (ptr_reg->type) {
4639 case PTR_TO_MAP_VALUE_OR_NULL:
4640 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4641 dst, reg_type_str[ptr_reg->type]);
f1174f77 4642 return -EACCES;
aad2eeaf
JS
4643 case CONST_PTR_TO_MAP:
4644 case PTR_TO_PACKET_END:
c64b7983
JS
4645 case PTR_TO_SOCKET:
4646 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4647 case PTR_TO_SOCK_COMMON:
4648 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4649 case PTR_TO_TCP_SOCK:
4650 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4651 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4652 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4653 dst, reg_type_str[ptr_reg->type]);
f1174f77 4654 return -EACCES;
9d7eceed
DB
4655 case PTR_TO_MAP_VALUE:
4656 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4657 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4658 off_reg == dst_reg ? dst : src);
4659 return -EACCES;
4660 }
4661 /* fall-through */
aad2eeaf
JS
4662 default:
4663 break;
f1174f77
EC
4664 }
4665
4666 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4667 * The id may be overwritten later if we create a new variable offset.
969bf05e 4668 */
f1174f77
EC
4669 dst_reg->type = ptr_reg->type;
4670 dst_reg->id = ptr_reg->id;
969bf05e 4671
bb7f0f98
AS
4672 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4673 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4674 return -EINVAL;
4675
f1174f77
EC
4676 switch (opcode) {
4677 case BPF_ADD:
979d63d5
DB
4678 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4679 if (ret < 0) {
4680 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4681 return ret;
4682 }
f1174f77
EC
4683 /* We can take a fixed offset as long as it doesn't overflow
4684 * the s32 'off' field
969bf05e 4685 */
b03c9f9f
EC
4686 if (known && (ptr_reg->off + smin_val ==
4687 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4688 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4689 dst_reg->smin_value = smin_ptr;
4690 dst_reg->smax_value = smax_ptr;
4691 dst_reg->umin_value = umin_ptr;
4692 dst_reg->umax_value = umax_ptr;
f1174f77 4693 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4694 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4695 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4696 break;
4697 }
f1174f77
EC
4698 /* A new variable offset is created. Note that off_reg->off
4699 * == 0, since it's a scalar.
4700 * dst_reg gets the pointer type and since some positive
4701 * integer value was added to the pointer, give it a new 'id'
4702 * if it's a PTR_TO_PACKET.
4703 * this creates a new 'base' pointer, off_reg (variable) gets
4704 * added into the variable offset, and we copy the fixed offset
4705 * from ptr_reg.
969bf05e 4706 */
b03c9f9f
EC
4707 if (signed_add_overflows(smin_ptr, smin_val) ||
4708 signed_add_overflows(smax_ptr, smax_val)) {
4709 dst_reg->smin_value = S64_MIN;
4710 dst_reg->smax_value = S64_MAX;
4711 } else {
4712 dst_reg->smin_value = smin_ptr + smin_val;
4713 dst_reg->smax_value = smax_ptr + smax_val;
4714 }
4715 if (umin_ptr + umin_val < umin_ptr ||
4716 umax_ptr + umax_val < umax_ptr) {
4717 dst_reg->umin_value = 0;
4718 dst_reg->umax_value = U64_MAX;
4719 } else {
4720 dst_reg->umin_value = umin_ptr + umin_val;
4721 dst_reg->umax_value = umax_ptr + umax_val;
4722 }
f1174f77
EC
4723 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4724 dst_reg->off = ptr_reg->off;
0962590e 4725 dst_reg->raw = ptr_reg->raw;
de8f3a83 4726 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4727 dst_reg->id = ++env->id_gen;
4728 /* something was added to pkt_ptr, set range to zero */
0962590e 4729 dst_reg->raw = 0;
f1174f77
EC
4730 }
4731 break;
4732 case BPF_SUB:
979d63d5
DB
4733 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4734 if (ret < 0) {
4735 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4736 return ret;
4737 }
f1174f77
EC
4738 if (dst_reg == off_reg) {
4739 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4740 verbose(env, "R%d tried to subtract pointer from scalar\n",
4741 dst);
f1174f77
EC
4742 return -EACCES;
4743 }
4744 /* We don't allow subtraction from FP, because (according to
4745 * test_verifier.c test "invalid fp arithmetic", JITs might not
4746 * be able to deal with it.
969bf05e 4747 */
f1174f77 4748 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4749 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4750 dst);
f1174f77
EC
4751 return -EACCES;
4752 }
b03c9f9f
EC
4753 if (known && (ptr_reg->off - smin_val ==
4754 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4755 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4756 dst_reg->smin_value = smin_ptr;
4757 dst_reg->smax_value = smax_ptr;
4758 dst_reg->umin_value = umin_ptr;
4759 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4760 dst_reg->var_off = ptr_reg->var_off;
4761 dst_reg->id = ptr_reg->id;
b03c9f9f 4762 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4763 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4764 break;
4765 }
f1174f77
EC
4766 /* A new variable offset is created. If the subtrahend is known
4767 * nonnegative, then any reg->range we had before is still good.
969bf05e 4768 */
b03c9f9f
EC
4769 if (signed_sub_overflows(smin_ptr, smax_val) ||
4770 signed_sub_overflows(smax_ptr, smin_val)) {
4771 /* Overflow possible, we know nothing */
4772 dst_reg->smin_value = S64_MIN;
4773 dst_reg->smax_value = S64_MAX;
4774 } else {
4775 dst_reg->smin_value = smin_ptr - smax_val;
4776 dst_reg->smax_value = smax_ptr - smin_val;
4777 }
4778 if (umin_ptr < umax_val) {
4779 /* Overflow possible, we know nothing */
4780 dst_reg->umin_value = 0;
4781 dst_reg->umax_value = U64_MAX;
4782 } else {
4783 /* Cannot overflow (as long as bounds are consistent) */
4784 dst_reg->umin_value = umin_ptr - umax_val;
4785 dst_reg->umax_value = umax_ptr - umin_val;
4786 }
f1174f77
EC
4787 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4788 dst_reg->off = ptr_reg->off;
0962590e 4789 dst_reg->raw = ptr_reg->raw;
de8f3a83 4790 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4791 dst_reg->id = ++env->id_gen;
4792 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4793 if (smin_val < 0)
0962590e 4794 dst_reg->raw = 0;
43188702 4795 }
f1174f77
EC
4796 break;
4797 case BPF_AND:
4798 case BPF_OR:
4799 case BPF_XOR:
82abbf8d
AS
4800 /* bitwise ops on pointers are troublesome, prohibit. */
4801 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4802 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4803 return -EACCES;
4804 default:
4805 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4806 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4807 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4808 return -EACCES;
43188702
JF
4809 }
4810
bb7f0f98
AS
4811 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4812 return -EINVAL;
4813
b03c9f9f
EC
4814 __update_reg_bounds(dst_reg);
4815 __reg_deduce_bounds(dst_reg);
4816 __reg_bound_offset(dst_reg);
0d6303db
DB
4817
4818 /* For unprivileged we require that resulting offset must be in bounds
4819 * in order to be able to sanitize access later on.
4820 */
e4298d25
DB
4821 if (!env->allow_ptr_leaks) {
4822 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4823 check_map_access(env, dst, dst_reg->off, 1, false)) {
4824 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4825 "prohibited for !root\n", dst);
4826 return -EACCES;
4827 } else if (dst_reg->type == PTR_TO_STACK &&
4828 check_stack_access(env, dst_reg, dst_reg->off +
4829 dst_reg->var_off.value, 1)) {
4830 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4831 "prohibited for !root\n", dst);
4832 return -EACCES;
4833 }
0d6303db
DB
4834 }
4835
43188702
JF
4836 return 0;
4837}
4838
468f6eaf
JH
4839/* WARNING: This function does calculations on 64-bit values, but the actual
4840 * execution may occur on 32-bit values. Therefore, things like bitshifts
4841 * need extra checks in the 32-bit case.
4842 */
f1174f77
EC
4843static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4844 struct bpf_insn *insn,
4845 struct bpf_reg_state *dst_reg,
4846 struct bpf_reg_state src_reg)
969bf05e 4847{
638f5b90 4848 struct bpf_reg_state *regs = cur_regs(env);
48461135 4849 u8 opcode = BPF_OP(insn->code);
f1174f77 4850 bool src_known, dst_known;
b03c9f9f
EC
4851 s64 smin_val, smax_val;
4852 u64 umin_val, umax_val;
468f6eaf 4853 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4854 u32 dst = insn->dst_reg;
4855 int ret;
48461135 4856
b799207e
JH
4857 if (insn_bitness == 32) {
4858 /* Relevant for 32-bit RSH: Information can propagate towards
4859 * LSB, so it isn't sufficient to only truncate the output to
4860 * 32 bits.
4861 */
4862 coerce_reg_to_size(dst_reg, 4);
4863 coerce_reg_to_size(&src_reg, 4);
4864 }
4865
b03c9f9f
EC
4866 smin_val = src_reg.smin_value;
4867 smax_val = src_reg.smax_value;
4868 umin_val = src_reg.umin_value;
4869 umax_val = src_reg.umax_value;
f1174f77
EC
4870 src_known = tnum_is_const(src_reg.var_off);
4871 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4872
6f16101e
DB
4873 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4874 smin_val > smax_val || umin_val > umax_val) {
4875 /* Taint dst register if offset had invalid bounds derived from
4876 * e.g. dead branches.
4877 */
f54c7898 4878 __mark_reg_unknown(env, dst_reg);
6f16101e
DB
4879 return 0;
4880 }
4881
bb7f0f98
AS
4882 if (!src_known &&
4883 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 4884 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
4885 return 0;
4886 }
4887
48461135
JB
4888 switch (opcode) {
4889 case BPF_ADD:
d3bd7413
DB
4890 ret = sanitize_val_alu(env, insn);
4891 if (ret < 0) {
4892 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4893 return ret;
4894 }
b03c9f9f
EC
4895 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4896 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4897 dst_reg->smin_value = S64_MIN;
4898 dst_reg->smax_value = S64_MAX;
4899 } else {
4900 dst_reg->smin_value += smin_val;
4901 dst_reg->smax_value += smax_val;
4902 }
4903 if (dst_reg->umin_value + umin_val < umin_val ||
4904 dst_reg->umax_value + umax_val < umax_val) {
4905 dst_reg->umin_value = 0;
4906 dst_reg->umax_value = U64_MAX;
4907 } else {
4908 dst_reg->umin_value += umin_val;
4909 dst_reg->umax_value += umax_val;
4910 }
f1174f77 4911 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4912 break;
4913 case BPF_SUB:
d3bd7413
DB
4914 ret = sanitize_val_alu(env, insn);
4915 if (ret < 0) {
4916 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4917 return ret;
4918 }
b03c9f9f
EC
4919 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4920 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4921 /* Overflow possible, we know nothing */
4922 dst_reg->smin_value = S64_MIN;
4923 dst_reg->smax_value = S64_MAX;
4924 } else {
4925 dst_reg->smin_value -= smax_val;
4926 dst_reg->smax_value -= smin_val;
4927 }
4928 if (dst_reg->umin_value < umax_val) {
4929 /* Overflow possible, we know nothing */
4930 dst_reg->umin_value = 0;
4931 dst_reg->umax_value = U64_MAX;
4932 } else {
4933 /* Cannot overflow (as long as bounds are consistent) */
4934 dst_reg->umin_value -= umax_val;
4935 dst_reg->umax_value -= umin_val;
4936 }
f1174f77 4937 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4938 break;
4939 case BPF_MUL:
b03c9f9f
EC
4940 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4941 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4942 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4943 __mark_reg_unbounded(dst_reg);
4944 __update_reg_bounds(dst_reg);
f1174f77
EC
4945 break;
4946 }
b03c9f9f
EC
4947 /* Both values are positive, so we can work with unsigned and
4948 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4949 */
b03c9f9f
EC
4950 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4951 /* Potential overflow, we know nothing */
4952 __mark_reg_unbounded(dst_reg);
4953 /* (except what we can learn from the var_off) */
4954 __update_reg_bounds(dst_reg);
4955 break;
4956 }
4957 dst_reg->umin_value *= umin_val;
4958 dst_reg->umax_value *= umax_val;
4959 if (dst_reg->umax_value > S64_MAX) {
4960 /* Overflow possible, we know nothing */
4961 dst_reg->smin_value = S64_MIN;
4962 dst_reg->smax_value = S64_MAX;
4963 } else {
4964 dst_reg->smin_value = dst_reg->umin_value;
4965 dst_reg->smax_value = dst_reg->umax_value;
4966 }
48461135
JB
4967 break;
4968 case BPF_AND:
f1174f77 4969 if (src_known && dst_known) {
b03c9f9f
EC
4970 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4971 src_reg.var_off.value);
f1174f77
EC
4972 break;
4973 }
b03c9f9f
EC
4974 /* We get our minimum from the var_off, since that's inherently
4975 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4976 */
f1174f77 4977 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4978 dst_reg->umin_value = dst_reg->var_off.value;
4979 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4980 if (dst_reg->smin_value < 0 || smin_val < 0) {
4981 /* Lose signed bounds when ANDing negative numbers,
4982 * ain't nobody got time for that.
4983 */
4984 dst_reg->smin_value = S64_MIN;
4985 dst_reg->smax_value = S64_MAX;
4986 } else {
4987 /* ANDing two positives gives a positive, so safe to
4988 * cast result into s64.
4989 */
4990 dst_reg->smin_value = dst_reg->umin_value;
4991 dst_reg->smax_value = dst_reg->umax_value;
4992 }
4993 /* We may learn something more from the var_off */
4994 __update_reg_bounds(dst_reg);
f1174f77
EC
4995 break;
4996 case BPF_OR:
4997 if (src_known && dst_known) {
b03c9f9f
EC
4998 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4999 src_reg.var_off.value);
f1174f77
EC
5000 break;
5001 }
b03c9f9f
EC
5002 /* We get our maximum from the var_off, and our minimum is the
5003 * maximum of the operands' minima
f1174f77
EC
5004 */
5005 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
5006 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5007 dst_reg->umax_value = dst_reg->var_off.value |
5008 dst_reg->var_off.mask;
5009 if (dst_reg->smin_value < 0 || smin_val < 0) {
5010 /* Lose signed bounds when ORing negative numbers,
5011 * ain't nobody got time for that.
5012 */
5013 dst_reg->smin_value = S64_MIN;
5014 dst_reg->smax_value = S64_MAX;
f1174f77 5015 } else {
b03c9f9f
EC
5016 /* ORing two positives gives a positive, so safe to
5017 * cast result into s64.
5018 */
5019 dst_reg->smin_value = dst_reg->umin_value;
5020 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 5021 }
b03c9f9f
EC
5022 /* We may learn something more from the var_off */
5023 __update_reg_bounds(dst_reg);
48461135
JB
5024 break;
5025 case BPF_LSH:
468f6eaf
JH
5026 if (umax_val >= insn_bitness) {
5027 /* Shifts greater than 31 or 63 are undefined.
5028 * This includes shifts by a negative number.
b03c9f9f 5029 */
61bd5218 5030 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5031 break;
5032 }
b03c9f9f
EC
5033 /* We lose all sign bit information (except what we can pick
5034 * up from var_off)
48461135 5035 */
b03c9f9f
EC
5036 dst_reg->smin_value = S64_MIN;
5037 dst_reg->smax_value = S64_MAX;
5038 /* If we might shift our top bit out, then we know nothing */
5039 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5040 dst_reg->umin_value = 0;
5041 dst_reg->umax_value = U64_MAX;
d1174416 5042 } else {
b03c9f9f
EC
5043 dst_reg->umin_value <<= umin_val;
5044 dst_reg->umax_value <<= umax_val;
d1174416 5045 }
afbe1a5b 5046 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5047 /* We may learn something more from the var_off */
5048 __update_reg_bounds(dst_reg);
48461135
JB
5049 break;
5050 case BPF_RSH:
468f6eaf
JH
5051 if (umax_val >= insn_bitness) {
5052 /* Shifts greater than 31 or 63 are undefined.
5053 * This includes shifts by a negative number.
b03c9f9f 5054 */
61bd5218 5055 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5056 break;
5057 }
4374f256
EC
5058 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5059 * be negative, then either:
5060 * 1) src_reg might be zero, so the sign bit of the result is
5061 * unknown, so we lose our signed bounds
5062 * 2) it's known negative, thus the unsigned bounds capture the
5063 * signed bounds
5064 * 3) the signed bounds cross zero, so they tell us nothing
5065 * about the result
5066 * If the value in dst_reg is known nonnegative, then again the
5067 * unsigned bounts capture the signed bounds.
5068 * Thus, in all cases it suffices to blow away our signed bounds
5069 * and rely on inferring new ones from the unsigned bounds and
5070 * var_off of the result.
5071 */
5072 dst_reg->smin_value = S64_MIN;
5073 dst_reg->smax_value = S64_MAX;
afbe1a5b 5074 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5075 dst_reg->umin_value >>= umax_val;
5076 dst_reg->umax_value >>= umin_val;
5077 /* We may learn something more from the var_off */
5078 __update_reg_bounds(dst_reg);
48461135 5079 break;
9cbe1f5a
YS
5080 case BPF_ARSH:
5081 if (umax_val >= insn_bitness) {
5082 /* Shifts greater than 31 or 63 are undefined.
5083 * This includes shifts by a negative number.
5084 */
5085 mark_reg_unknown(env, regs, insn->dst_reg);
5086 break;
5087 }
5088
5089 /* Upon reaching here, src_known is true and
5090 * umax_val is equal to umin_val.
5091 */
5092 dst_reg->smin_value >>= umin_val;
5093 dst_reg->smax_value >>= umin_val;
5094 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
5095
5096 /* blow away the dst_reg umin_value/umax_value and rely on
5097 * dst_reg var_off to refine the result.
5098 */
5099 dst_reg->umin_value = 0;
5100 dst_reg->umax_value = U64_MAX;
5101 __update_reg_bounds(dst_reg);
5102 break;
48461135 5103 default:
61bd5218 5104 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
5105 break;
5106 }
5107
468f6eaf
JH
5108 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5109 /* 32-bit ALU ops are (32,32)->32 */
5110 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
5111 }
5112
b03c9f9f
EC
5113 __reg_deduce_bounds(dst_reg);
5114 __reg_bound_offset(dst_reg);
f1174f77
EC
5115 return 0;
5116}
5117
5118/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5119 * and var_off.
5120 */
5121static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5122 struct bpf_insn *insn)
5123{
f4d7e40a
AS
5124 struct bpf_verifier_state *vstate = env->cur_state;
5125 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5126 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
5127 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5128 u8 opcode = BPF_OP(insn->code);
b5dc0163 5129 int err;
f1174f77
EC
5130
5131 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
5132 src_reg = NULL;
5133 if (dst_reg->type != SCALAR_VALUE)
5134 ptr_reg = dst_reg;
5135 if (BPF_SRC(insn->code) == BPF_X) {
5136 src_reg = &regs[insn->src_reg];
f1174f77
EC
5137 if (src_reg->type != SCALAR_VALUE) {
5138 if (dst_reg->type != SCALAR_VALUE) {
5139 /* Combining two pointers by any ALU op yields
82abbf8d
AS
5140 * an arbitrary scalar. Disallow all math except
5141 * pointer subtraction
f1174f77 5142 */
dd066823 5143 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
5144 mark_reg_unknown(env, regs, insn->dst_reg);
5145 return 0;
f1174f77 5146 }
82abbf8d
AS
5147 verbose(env, "R%d pointer %s pointer prohibited\n",
5148 insn->dst_reg,
5149 bpf_alu_string[opcode >> 4]);
5150 return -EACCES;
f1174f77
EC
5151 } else {
5152 /* scalar += pointer
5153 * This is legal, but we have to reverse our
5154 * src/dest handling in computing the range
5155 */
b5dc0163
AS
5156 err = mark_chain_precision(env, insn->dst_reg);
5157 if (err)
5158 return err;
82abbf8d
AS
5159 return adjust_ptr_min_max_vals(env, insn,
5160 src_reg, dst_reg);
f1174f77
EC
5161 }
5162 } else if (ptr_reg) {
5163 /* pointer += scalar */
b5dc0163
AS
5164 err = mark_chain_precision(env, insn->src_reg);
5165 if (err)
5166 return err;
82abbf8d
AS
5167 return adjust_ptr_min_max_vals(env, insn,
5168 dst_reg, src_reg);
f1174f77
EC
5169 }
5170 } else {
5171 /* Pretend the src is a reg with a known value, since we only
5172 * need to be able to read from this state.
5173 */
5174 off_reg.type = SCALAR_VALUE;
b03c9f9f 5175 __mark_reg_known(&off_reg, insn->imm);
f1174f77 5176 src_reg = &off_reg;
82abbf8d
AS
5177 if (ptr_reg) /* pointer += K */
5178 return adjust_ptr_min_max_vals(env, insn,
5179 ptr_reg, src_reg);
f1174f77
EC
5180 }
5181
5182 /* Got here implies adding two SCALAR_VALUEs */
5183 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 5184 print_verifier_state(env, state);
61bd5218 5185 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
5186 return -EINVAL;
5187 }
5188 if (WARN_ON(!src_reg)) {
f4d7e40a 5189 print_verifier_state(env, state);
61bd5218 5190 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
5191 return -EINVAL;
5192 }
5193 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
5194}
5195
17a52670 5196/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 5197static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5198{
638f5b90 5199 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
5200 u8 opcode = BPF_OP(insn->code);
5201 int err;
5202
5203 if (opcode == BPF_END || opcode == BPF_NEG) {
5204 if (opcode == BPF_NEG) {
5205 if (BPF_SRC(insn->code) != 0 ||
5206 insn->src_reg != BPF_REG_0 ||
5207 insn->off != 0 || insn->imm != 0) {
61bd5218 5208 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
5209 return -EINVAL;
5210 }
5211 } else {
5212 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
5213 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5214 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 5215 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
5216 return -EINVAL;
5217 }
5218 }
5219
5220 /* check src operand */
dc503a8a 5221 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5222 if (err)
5223 return err;
5224
1be7f75d 5225 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 5226 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
5227 insn->dst_reg);
5228 return -EACCES;
5229 }
5230
17a52670 5231 /* check dest operand */
dc503a8a 5232 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5233 if (err)
5234 return err;
5235
5236 } else if (opcode == BPF_MOV) {
5237
5238 if (BPF_SRC(insn->code) == BPF_X) {
5239 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5240 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5241 return -EINVAL;
5242 }
5243
5244 /* check src operand */
dc503a8a 5245 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5246 if (err)
5247 return err;
5248 } else {
5249 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5250 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5251 return -EINVAL;
5252 }
5253 }
5254
fbeb1603
AF
5255 /* check dest operand, mark as required later */
5256 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5257 if (err)
5258 return err;
5259
5260 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
5261 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5262 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5263
17a52670
AS
5264 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5265 /* case: R1 = R2
5266 * copy register state to dest reg
5267 */
e434b8cd
JW
5268 *dst_reg = *src_reg;
5269 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5270 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 5271 } else {
f1174f77 5272 /* R1 = (u32) R2 */
1be7f75d 5273 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
5274 verbose(env,
5275 "R%d partial copy of pointer\n",
1be7f75d
AS
5276 insn->src_reg);
5277 return -EACCES;
e434b8cd
JW
5278 } else if (src_reg->type == SCALAR_VALUE) {
5279 *dst_reg = *src_reg;
5280 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5281 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5282 } else {
5283 mark_reg_unknown(env, regs,
5284 insn->dst_reg);
1be7f75d 5285 }
e434b8cd 5286 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5287 }
5288 } else {
5289 /* case: R = imm
5290 * remember the value we stored into this reg
5291 */
fbeb1603
AF
5292 /* clear any state __mark_reg_known doesn't set */
5293 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5294 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5295 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5296 __mark_reg_known(regs + insn->dst_reg,
5297 insn->imm);
5298 } else {
5299 __mark_reg_known(regs + insn->dst_reg,
5300 (u32)insn->imm);
5301 }
17a52670
AS
5302 }
5303
5304 } else if (opcode > BPF_END) {
61bd5218 5305 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5306 return -EINVAL;
5307
5308 } else { /* all other ALU ops: and, sub, xor, add, ... */
5309
17a52670
AS
5310 if (BPF_SRC(insn->code) == BPF_X) {
5311 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5312 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5313 return -EINVAL;
5314 }
5315 /* check src1 operand */
dc503a8a 5316 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5317 if (err)
5318 return err;
5319 } else {
5320 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5321 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5322 return -EINVAL;
5323 }
5324 }
5325
5326 /* check src2 operand */
dc503a8a 5327 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5328 if (err)
5329 return err;
5330
5331 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5332 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5333 verbose(env, "div by zero\n");
17a52670
AS
5334 return -EINVAL;
5335 }
5336
229394e8
RV
5337 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5338 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5339 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5340
5341 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5342 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5343 return -EINVAL;
5344 }
5345 }
5346
1a0dc1ac 5347 /* check dest operand */
dc503a8a 5348 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5349 if (err)
5350 return err;
5351
f1174f77 5352 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5353 }
5354
5355 return 0;
5356}
5357
c6a9efa1
PC
5358static void __find_good_pkt_pointers(struct bpf_func_state *state,
5359 struct bpf_reg_state *dst_reg,
5360 enum bpf_reg_type type, u16 new_range)
5361{
5362 struct bpf_reg_state *reg;
5363 int i;
5364
5365 for (i = 0; i < MAX_BPF_REG; i++) {
5366 reg = &state->regs[i];
5367 if (reg->type == type && reg->id == dst_reg->id)
5368 /* keep the maximum range already checked */
5369 reg->range = max(reg->range, new_range);
5370 }
5371
5372 bpf_for_each_spilled_reg(i, state, reg) {
5373 if (!reg)
5374 continue;
5375 if (reg->type == type && reg->id == dst_reg->id)
5376 reg->range = max(reg->range, new_range);
5377 }
5378}
5379
f4d7e40a 5380static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5381 struct bpf_reg_state *dst_reg,
f8ddadc4 5382 enum bpf_reg_type type,
fb2a311a 5383 bool range_right_open)
969bf05e 5384{
fb2a311a 5385 u16 new_range;
c6a9efa1 5386 int i;
2d2be8ca 5387
fb2a311a
DB
5388 if (dst_reg->off < 0 ||
5389 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5390 /* This doesn't give us any range */
5391 return;
5392
b03c9f9f
EC
5393 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5394 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5395 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5396 * than pkt_end, but that's because it's also less than pkt.
5397 */
5398 return;
5399
fb2a311a
DB
5400 new_range = dst_reg->off;
5401 if (range_right_open)
5402 new_range--;
5403
5404 /* Examples for register markings:
2d2be8ca 5405 *
fb2a311a 5406 * pkt_data in dst register:
2d2be8ca
DB
5407 *
5408 * r2 = r3;
5409 * r2 += 8;
5410 * if (r2 > pkt_end) goto <handle exception>
5411 * <access okay>
5412 *
b4e432f1
DB
5413 * r2 = r3;
5414 * r2 += 8;
5415 * if (r2 < pkt_end) goto <access okay>
5416 * <handle exception>
5417 *
2d2be8ca
DB
5418 * Where:
5419 * r2 == dst_reg, pkt_end == src_reg
5420 * r2=pkt(id=n,off=8,r=0)
5421 * r3=pkt(id=n,off=0,r=0)
5422 *
fb2a311a 5423 * pkt_data in src register:
2d2be8ca
DB
5424 *
5425 * r2 = r3;
5426 * r2 += 8;
5427 * if (pkt_end >= r2) goto <access okay>
5428 * <handle exception>
5429 *
b4e432f1
DB
5430 * r2 = r3;
5431 * r2 += 8;
5432 * if (pkt_end <= r2) goto <handle exception>
5433 * <access okay>
5434 *
2d2be8ca
DB
5435 * Where:
5436 * pkt_end == dst_reg, r2 == src_reg
5437 * r2=pkt(id=n,off=8,r=0)
5438 * r3=pkt(id=n,off=0,r=0)
5439 *
5440 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5441 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5442 * and [r3, r3 + 8-1) respectively is safe to access depending on
5443 * the check.
969bf05e 5444 */
2d2be8ca 5445
f1174f77
EC
5446 /* If our ids match, then we must have the same max_value. And we
5447 * don't care about the other reg's fixed offset, since if it's too big
5448 * the range won't allow anything.
5449 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5450 */
c6a9efa1
PC
5451 for (i = 0; i <= vstate->curframe; i++)
5452 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5453 new_range);
969bf05e
AS
5454}
5455
4f7b3e82
AS
5456/* compute branch direction of the expression "if (reg opcode val) goto target;"
5457 * and return:
5458 * 1 - branch will be taken and "goto target" will be executed
5459 * 0 - branch will not be taken and fall-through to next insn
5460 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5461 */
092ed096
JW
5462static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5463 bool is_jmp32)
4f7b3e82 5464{
092ed096 5465 struct bpf_reg_state reg_lo;
a72dafaf
JW
5466 s64 sval;
5467
4f7b3e82
AS
5468 if (__is_pointer_value(false, reg))
5469 return -1;
5470
092ed096
JW
5471 if (is_jmp32) {
5472 reg_lo = *reg;
5473 reg = &reg_lo;
5474 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5475 * could truncate high bits and update umin/umax according to
5476 * information of low bits.
5477 */
5478 coerce_reg_to_size(reg, 4);
5479 /* smin/smax need special handling. For example, after coerce,
5480 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5481 * used as operand to JMP32. It is a negative number from s32's
5482 * point of view, while it is a positive number when seen as
5483 * s64. The smin/smax are kept as s64, therefore, when used with
5484 * JMP32, they need to be transformed into s32, then sign
5485 * extended back to s64.
5486 *
5487 * Also, smin/smax were copied from umin/umax. If umin/umax has
5488 * different sign bit, then min/max relationship doesn't
5489 * maintain after casting into s32, for this case, set smin/smax
5490 * to safest range.
5491 */
5492 if ((reg->umax_value ^ reg->umin_value) &
5493 (1ULL << 31)) {
5494 reg->smin_value = S32_MIN;
5495 reg->smax_value = S32_MAX;
5496 }
5497 reg->smin_value = (s64)(s32)reg->smin_value;
5498 reg->smax_value = (s64)(s32)reg->smax_value;
5499
5500 val = (u32)val;
5501 sval = (s64)(s32)val;
5502 } else {
5503 sval = (s64)val;
5504 }
a72dafaf 5505
4f7b3e82
AS
5506 switch (opcode) {
5507 case BPF_JEQ:
5508 if (tnum_is_const(reg->var_off))
5509 return !!tnum_equals_const(reg->var_off, val);
5510 break;
5511 case BPF_JNE:
5512 if (tnum_is_const(reg->var_off))
5513 return !tnum_equals_const(reg->var_off, val);
5514 break;
960ea056
JK
5515 case BPF_JSET:
5516 if ((~reg->var_off.mask & reg->var_off.value) & val)
5517 return 1;
5518 if (!((reg->var_off.mask | reg->var_off.value) & val))
5519 return 0;
5520 break;
4f7b3e82
AS
5521 case BPF_JGT:
5522 if (reg->umin_value > val)
5523 return 1;
5524 else if (reg->umax_value <= val)
5525 return 0;
5526 break;
5527 case BPF_JSGT:
a72dafaf 5528 if (reg->smin_value > sval)
4f7b3e82 5529 return 1;
a72dafaf 5530 else if (reg->smax_value < sval)
4f7b3e82
AS
5531 return 0;
5532 break;
5533 case BPF_JLT:
5534 if (reg->umax_value < val)
5535 return 1;
5536 else if (reg->umin_value >= val)
5537 return 0;
5538 break;
5539 case BPF_JSLT:
a72dafaf 5540 if (reg->smax_value < sval)
4f7b3e82 5541 return 1;
a72dafaf 5542 else if (reg->smin_value >= sval)
4f7b3e82
AS
5543 return 0;
5544 break;
5545 case BPF_JGE:
5546 if (reg->umin_value >= val)
5547 return 1;
5548 else if (reg->umax_value < val)
5549 return 0;
5550 break;
5551 case BPF_JSGE:
a72dafaf 5552 if (reg->smin_value >= sval)
4f7b3e82 5553 return 1;
a72dafaf 5554 else if (reg->smax_value < sval)
4f7b3e82
AS
5555 return 0;
5556 break;
5557 case BPF_JLE:
5558 if (reg->umax_value <= val)
5559 return 1;
5560 else if (reg->umin_value > val)
5561 return 0;
5562 break;
5563 case BPF_JSLE:
a72dafaf 5564 if (reg->smax_value <= sval)
4f7b3e82 5565 return 1;
a72dafaf 5566 else if (reg->smin_value > sval)
4f7b3e82
AS
5567 return 0;
5568 break;
5569 }
5570
5571 return -1;
5572}
5573
092ed096
JW
5574/* Generate min value of the high 32-bit from TNUM info. */
5575static u64 gen_hi_min(struct tnum var)
5576{
5577 return var.value & ~0xffffffffULL;
5578}
5579
5580/* Generate max value of the high 32-bit from TNUM info. */
5581static u64 gen_hi_max(struct tnum var)
5582{
5583 return (var.value | var.mask) & ~0xffffffffULL;
5584}
5585
5586/* Return true if VAL is compared with a s64 sign extended from s32, and they
5587 * are with the same signedness.
5588 */
5589static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5590{
5591 return ((s32)sval >= 0 &&
5592 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5593 ((s32)sval < 0 &&
5594 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5595}
5596
48461135
JB
5597/* Adjusts the register min/max values in the case that the dst_reg is the
5598 * variable register that we are working on, and src_reg is a constant or we're
5599 * simply doing a BPF_K check.
f1174f77 5600 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5601 */
5602static void reg_set_min_max(struct bpf_reg_state *true_reg,
5603 struct bpf_reg_state *false_reg, u64 val,
092ed096 5604 u8 opcode, bool is_jmp32)
48461135 5605{
a72dafaf
JW
5606 s64 sval;
5607
f1174f77
EC
5608 /* If the dst_reg is a pointer, we can't learn anything about its
5609 * variable offset from the compare (unless src_reg were a pointer into
5610 * the same object, but we don't bother with that.
5611 * Since false_reg and true_reg have the same type by construction, we
5612 * only need to check one of them for pointerness.
5613 */
5614 if (__is_pointer_value(false, false_reg))
5615 return;
4cabc5b1 5616
092ed096
JW
5617 val = is_jmp32 ? (u32)val : val;
5618 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5619
48461135
JB
5620 switch (opcode) {
5621 case BPF_JEQ:
48461135 5622 case BPF_JNE:
a72dafaf
JW
5623 {
5624 struct bpf_reg_state *reg =
5625 opcode == BPF_JEQ ? true_reg : false_reg;
5626
5627 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5628 * if it is true we know the value for sure. Likewise for
5629 * BPF_JNE.
48461135 5630 */
092ed096
JW
5631 if (is_jmp32) {
5632 u64 old_v = reg->var_off.value;
5633 u64 hi_mask = ~0xffffffffULL;
5634
5635 reg->var_off.value = (old_v & hi_mask) | val;
5636 reg->var_off.mask &= hi_mask;
5637 } else {
5638 __mark_reg_known(reg, val);
5639 }
48461135 5640 break;
a72dafaf 5641 }
960ea056
JK
5642 case BPF_JSET:
5643 false_reg->var_off = tnum_and(false_reg->var_off,
5644 tnum_const(~val));
5645 if (is_power_of_2(val))
5646 true_reg->var_off = tnum_or(true_reg->var_off,
5647 tnum_const(val));
5648 break;
48461135 5649 case BPF_JGE:
a72dafaf
JW
5650 case BPF_JGT:
5651 {
5652 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5653 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5654
092ed096
JW
5655 if (is_jmp32) {
5656 false_umax += gen_hi_max(false_reg->var_off);
5657 true_umin += gen_hi_min(true_reg->var_off);
5658 }
a72dafaf
JW
5659 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5660 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5661 break;
a72dafaf 5662 }
48461135 5663 case BPF_JSGE:
a72dafaf
JW
5664 case BPF_JSGT:
5665 {
5666 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5667 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5668
092ed096
JW
5669 /* If the full s64 was not sign-extended from s32 then don't
5670 * deduct further info.
5671 */
5672 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5673 break;
a72dafaf
JW
5674 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5675 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5676 break;
a72dafaf 5677 }
b4e432f1 5678 case BPF_JLE:
a72dafaf
JW
5679 case BPF_JLT:
5680 {
5681 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5682 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5683
092ed096
JW
5684 if (is_jmp32) {
5685 false_umin += gen_hi_min(false_reg->var_off);
5686 true_umax += gen_hi_max(true_reg->var_off);
5687 }
a72dafaf
JW
5688 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5689 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5690 break;
a72dafaf 5691 }
b4e432f1 5692 case BPF_JSLE:
a72dafaf
JW
5693 case BPF_JSLT:
5694 {
5695 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5696 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5697
092ed096
JW
5698 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5699 break;
a72dafaf
JW
5700 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5701 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5702 break;
a72dafaf 5703 }
48461135
JB
5704 default:
5705 break;
5706 }
5707
b03c9f9f
EC
5708 __reg_deduce_bounds(false_reg);
5709 __reg_deduce_bounds(true_reg);
5710 /* We might have learned some bits from the bounds. */
5711 __reg_bound_offset(false_reg);
5712 __reg_bound_offset(true_reg);
581738a6
YS
5713 if (is_jmp32) {
5714 __reg_bound_offset32(false_reg);
5715 __reg_bound_offset32(true_reg);
5716 }
b03c9f9f
EC
5717 /* Intersecting with the old var_off might have improved our bounds
5718 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5719 * then new var_off is (0; 0x7f...fc) which improves our umax.
5720 */
5721 __update_reg_bounds(false_reg);
5722 __update_reg_bounds(true_reg);
48461135
JB
5723}
5724
f1174f77
EC
5725/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5726 * the variable reg.
48461135
JB
5727 */
5728static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5729 struct bpf_reg_state *false_reg, u64 val,
092ed096 5730 u8 opcode, bool is_jmp32)
48461135 5731{
a72dafaf
JW
5732 s64 sval;
5733
f1174f77
EC
5734 if (__is_pointer_value(false, false_reg))
5735 return;
4cabc5b1 5736
092ed096
JW
5737 val = is_jmp32 ? (u32)val : val;
5738 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5739
48461135
JB
5740 switch (opcode) {
5741 case BPF_JEQ:
48461135 5742 case BPF_JNE:
a72dafaf
JW
5743 {
5744 struct bpf_reg_state *reg =
5745 opcode == BPF_JEQ ? true_reg : false_reg;
5746
092ed096
JW
5747 if (is_jmp32) {
5748 u64 old_v = reg->var_off.value;
5749 u64 hi_mask = ~0xffffffffULL;
5750
5751 reg->var_off.value = (old_v & hi_mask) | val;
5752 reg->var_off.mask &= hi_mask;
5753 } else {
5754 __mark_reg_known(reg, val);
5755 }
48461135 5756 break;
a72dafaf 5757 }
960ea056
JK
5758 case BPF_JSET:
5759 false_reg->var_off = tnum_and(false_reg->var_off,
5760 tnum_const(~val));
5761 if (is_power_of_2(val))
5762 true_reg->var_off = tnum_or(true_reg->var_off,
5763 tnum_const(val));
5764 break;
48461135 5765 case BPF_JGE:
a72dafaf
JW
5766 case BPF_JGT:
5767 {
5768 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5769 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5770
092ed096
JW
5771 if (is_jmp32) {
5772 false_umin += gen_hi_min(false_reg->var_off);
5773 true_umax += gen_hi_max(true_reg->var_off);
5774 }
a72dafaf
JW
5775 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5776 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5777 break;
a72dafaf 5778 }
48461135 5779 case BPF_JSGE:
a72dafaf
JW
5780 case BPF_JSGT:
5781 {
5782 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5783 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5784
092ed096
JW
5785 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5786 break;
a72dafaf
JW
5787 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5788 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5789 break;
a72dafaf 5790 }
b4e432f1 5791 case BPF_JLE:
a72dafaf
JW
5792 case BPF_JLT:
5793 {
5794 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5795 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5796
092ed096
JW
5797 if (is_jmp32) {
5798 false_umax += gen_hi_max(false_reg->var_off);
5799 true_umin += gen_hi_min(true_reg->var_off);
5800 }
a72dafaf
JW
5801 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5802 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5803 break;
a72dafaf 5804 }
b4e432f1 5805 case BPF_JSLE:
a72dafaf
JW
5806 case BPF_JSLT:
5807 {
5808 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5809 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5810
092ed096
JW
5811 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5812 break;
a72dafaf
JW
5813 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5814 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5815 break;
a72dafaf 5816 }
48461135
JB
5817 default:
5818 break;
5819 }
5820
b03c9f9f
EC
5821 __reg_deduce_bounds(false_reg);
5822 __reg_deduce_bounds(true_reg);
5823 /* We might have learned some bits from the bounds. */
5824 __reg_bound_offset(false_reg);
5825 __reg_bound_offset(true_reg);
581738a6
YS
5826 if (is_jmp32) {
5827 __reg_bound_offset32(false_reg);
5828 __reg_bound_offset32(true_reg);
5829 }
b03c9f9f
EC
5830 /* Intersecting with the old var_off might have improved our bounds
5831 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5832 * then new var_off is (0; 0x7f...fc) which improves our umax.
5833 */
5834 __update_reg_bounds(false_reg);
5835 __update_reg_bounds(true_reg);
f1174f77
EC
5836}
5837
5838/* Regs are known to be equal, so intersect their min/max/var_off */
5839static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5840 struct bpf_reg_state *dst_reg)
5841{
b03c9f9f
EC
5842 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5843 dst_reg->umin_value);
5844 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5845 dst_reg->umax_value);
5846 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5847 dst_reg->smin_value);
5848 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5849 dst_reg->smax_value);
f1174f77
EC
5850 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5851 dst_reg->var_off);
b03c9f9f
EC
5852 /* We might have learned new bounds from the var_off. */
5853 __update_reg_bounds(src_reg);
5854 __update_reg_bounds(dst_reg);
5855 /* We might have learned something about the sign bit. */
5856 __reg_deduce_bounds(src_reg);
5857 __reg_deduce_bounds(dst_reg);
5858 /* We might have learned some bits from the bounds. */
5859 __reg_bound_offset(src_reg);
5860 __reg_bound_offset(dst_reg);
5861 /* Intersecting with the old var_off might have improved our bounds
5862 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5863 * then new var_off is (0; 0x7f...fc) which improves our umax.
5864 */
5865 __update_reg_bounds(src_reg);
5866 __update_reg_bounds(dst_reg);
f1174f77
EC
5867}
5868
5869static void reg_combine_min_max(struct bpf_reg_state *true_src,
5870 struct bpf_reg_state *true_dst,
5871 struct bpf_reg_state *false_src,
5872 struct bpf_reg_state *false_dst,
5873 u8 opcode)
5874{
5875 switch (opcode) {
5876 case BPF_JEQ:
5877 __reg_combine_min_max(true_src, true_dst);
5878 break;
5879 case BPF_JNE:
5880 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5881 break;
4cabc5b1 5882 }
48461135
JB
5883}
5884
fd978bf7
JS
5885static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5886 struct bpf_reg_state *reg, u32 id,
840b9615 5887 bool is_null)
57a09bf0 5888{
840b9615 5889 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5890 /* Old offset (both fixed and variable parts) should
5891 * have been known-zero, because we don't allow pointer
5892 * arithmetic on pointers that might be NULL.
5893 */
b03c9f9f
EC
5894 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5895 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5896 reg->off)) {
b03c9f9f
EC
5897 __mark_reg_known_zero(reg);
5898 reg->off = 0;
f1174f77
EC
5899 }
5900 if (is_null) {
5901 reg->type = SCALAR_VALUE;
840b9615
JS
5902 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5903 if (reg->map_ptr->inner_map_meta) {
5904 reg->type = CONST_PTR_TO_MAP;
5905 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5906 } else if (reg->map_ptr->map_type ==
5907 BPF_MAP_TYPE_XSKMAP) {
5908 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5909 } else {
5910 reg->type = PTR_TO_MAP_VALUE;
5911 }
c64b7983
JS
5912 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5913 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5914 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5915 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5916 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5917 reg->type = PTR_TO_TCP_SOCK;
56f668df 5918 }
1b986589
MKL
5919 if (is_null) {
5920 /* We don't need id and ref_obj_id from this point
5921 * onwards anymore, thus we should better reset it,
5922 * so that state pruning has chances to take effect.
5923 */
5924 reg->id = 0;
5925 reg->ref_obj_id = 0;
5926 } else if (!reg_may_point_to_spin_lock(reg)) {
5927 /* For not-NULL ptr, reg->ref_obj_id will be reset
5928 * in release_reg_references().
5929 *
5930 * reg->id is still used by spin_lock ptr. Other
5931 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5932 */
5933 reg->id = 0;
56f668df 5934 }
57a09bf0
TG
5935 }
5936}
5937
c6a9efa1
PC
5938static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5939 bool is_null)
5940{
5941 struct bpf_reg_state *reg;
5942 int i;
5943
5944 for (i = 0; i < MAX_BPF_REG; i++)
5945 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5946
5947 bpf_for_each_spilled_reg(i, state, reg) {
5948 if (!reg)
5949 continue;
5950 mark_ptr_or_null_reg(state, reg, id, is_null);
5951 }
5952}
5953
57a09bf0
TG
5954/* The logic is similar to find_good_pkt_pointers(), both could eventually
5955 * be folded together at some point.
5956 */
840b9615
JS
5957static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5958 bool is_null)
57a09bf0 5959{
f4d7e40a 5960 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5961 struct bpf_reg_state *regs = state->regs;
1b986589 5962 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5963 u32 id = regs[regno].id;
c6a9efa1 5964 int i;
57a09bf0 5965
1b986589
MKL
5966 if (ref_obj_id && ref_obj_id == id && is_null)
5967 /* regs[regno] is in the " == NULL" branch.
5968 * No one could have freed the reference state before
5969 * doing the NULL check.
5970 */
5971 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5972
c6a9efa1
PC
5973 for (i = 0; i <= vstate->curframe; i++)
5974 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5975}
5976
5beca081
DB
5977static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5978 struct bpf_reg_state *dst_reg,
5979 struct bpf_reg_state *src_reg,
5980 struct bpf_verifier_state *this_branch,
5981 struct bpf_verifier_state *other_branch)
5982{
5983 if (BPF_SRC(insn->code) != BPF_X)
5984 return false;
5985
092ed096
JW
5986 /* Pointers are always 64-bit. */
5987 if (BPF_CLASS(insn->code) == BPF_JMP32)
5988 return false;
5989
5beca081
DB
5990 switch (BPF_OP(insn->code)) {
5991 case BPF_JGT:
5992 if ((dst_reg->type == PTR_TO_PACKET &&
5993 src_reg->type == PTR_TO_PACKET_END) ||
5994 (dst_reg->type == PTR_TO_PACKET_META &&
5995 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5996 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5997 find_good_pkt_pointers(this_branch, dst_reg,
5998 dst_reg->type, false);
5999 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6000 src_reg->type == PTR_TO_PACKET) ||
6001 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6002 src_reg->type == PTR_TO_PACKET_META)) {
6003 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6004 find_good_pkt_pointers(other_branch, src_reg,
6005 src_reg->type, true);
6006 } else {
6007 return false;
6008 }
6009 break;
6010 case BPF_JLT:
6011 if ((dst_reg->type == PTR_TO_PACKET &&
6012 src_reg->type == PTR_TO_PACKET_END) ||
6013 (dst_reg->type == PTR_TO_PACKET_META &&
6014 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6015 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6016 find_good_pkt_pointers(other_branch, dst_reg,
6017 dst_reg->type, true);
6018 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6019 src_reg->type == PTR_TO_PACKET) ||
6020 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6021 src_reg->type == PTR_TO_PACKET_META)) {
6022 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6023 find_good_pkt_pointers(this_branch, src_reg,
6024 src_reg->type, false);
6025 } else {
6026 return false;
6027 }
6028 break;
6029 case BPF_JGE:
6030 if ((dst_reg->type == PTR_TO_PACKET &&
6031 src_reg->type == PTR_TO_PACKET_END) ||
6032 (dst_reg->type == PTR_TO_PACKET_META &&
6033 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6034 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6035 find_good_pkt_pointers(this_branch, dst_reg,
6036 dst_reg->type, true);
6037 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6038 src_reg->type == PTR_TO_PACKET) ||
6039 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6040 src_reg->type == PTR_TO_PACKET_META)) {
6041 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6042 find_good_pkt_pointers(other_branch, src_reg,
6043 src_reg->type, false);
6044 } else {
6045 return false;
6046 }
6047 break;
6048 case BPF_JLE:
6049 if ((dst_reg->type == PTR_TO_PACKET &&
6050 src_reg->type == PTR_TO_PACKET_END) ||
6051 (dst_reg->type == PTR_TO_PACKET_META &&
6052 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6053 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6054 find_good_pkt_pointers(other_branch, dst_reg,
6055 dst_reg->type, false);
6056 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6057 src_reg->type == PTR_TO_PACKET) ||
6058 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6059 src_reg->type == PTR_TO_PACKET_META)) {
6060 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6061 find_good_pkt_pointers(this_branch, src_reg,
6062 src_reg->type, true);
6063 } else {
6064 return false;
6065 }
6066 break;
6067 default:
6068 return false;
6069 }
6070
6071 return true;
6072}
6073
58e2af8b 6074static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
6075 struct bpf_insn *insn, int *insn_idx)
6076{
f4d7e40a
AS
6077 struct bpf_verifier_state *this_branch = env->cur_state;
6078 struct bpf_verifier_state *other_branch;
6079 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 6080 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 6081 u8 opcode = BPF_OP(insn->code);
092ed096 6082 bool is_jmp32;
fb8d251e 6083 int pred = -1;
17a52670
AS
6084 int err;
6085
092ed096
JW
6086 /* Only conditional jumps are expected to reach here. */
6087 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6088 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
6089 return -EINVAL;
6090 }
6091
6092 if (BPF_SRC(insn->code) == BPF_X) {
6093 if (insn->imm != 0) {
092ed096 6094 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6095 return -EINVAL;
6096 }
6097
6098 /* check src1 operand */
dc503a8a 6099 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6100 if (err)
6101 return err;
1be7f75d
AS
6102
6103 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6104 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
6105 insn->src_reg);
6106 return -EACCES;
6107 }
fb8d251e 6108 src_reg = &regs[insn->src_reg];
17a52670
AS
6109 } else {
6110 if (insn->src_reg != BPF_REG_0) {
092ed096 6111 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6112 return -EINVAL;
6113 }
6114 }
6115
6116 /* check src2 operand */
dc503a8a 6117 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6118 if (err)
6119 return err;
6120
1a0dc1ac 6121 dst_reg = &regs[insn->dst_reg];
092ed096 6122 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 6123
fb8d251e
AS
6124 if (BPF_SRC(insn->code) == BPF_K)
6125 pred = is_branch_taken(dst_reg, insn->imm,
6126 opcode, is_jmp32);
6127 else if (src_reg->type == SCALAR_VALUE &&
6128 tnum_is_const(src_reg->var_off))
6129 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6130 opcode, is_jmp32);
b5dc0163
AS
6131 if (pred >= 0) {
6132 err = mark_chain_precision(env, insn->dst_reg);
6133 if (BPF_SRC(insn->code) == BPF_X && !err)
6134 err = mark_chain_precision(env, insn->src_reg);
6135 if (err)
6136 return err;
6137 }
fb8d251e
AS
6138 if (pred == 1) {
6139 /* only follow the goto, ignore fall-through */
6140 *insn_idx += insn->off;
6141 return 0;
6142 } else if (pred == 0) {
6143 /* only follow fall-through branch, since
6144 * that's where the program will go
6145 */
6146 return 0;
17a52670
AS
6147 }
6148
979d63d5
DB
6149 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6150 false);
17a52670
AS
6151 if (!other_branch)
6152 return -EFAULT;
f4d7e40a 6153 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 6154
48461135
JB
6155 /* detect if we are comparing against a constant value so we can adjust
6156 * our min/max values for our dst register.
f1174f77
EC
6157 * this is only legit if both are scalars (or pointers to the same
6158 * object, I suppose, but we don't support that right now), because
6159 * otherwise the different base pointers mean the offsets aren't
6160 * comparable.
48461135
JB
6161 */
6162 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
6163 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6164 struct bpf_reg_state lo_reg0 = *dst_reg;
6165 struct bpf_reg_state lo_reg1 = *src_reg;
6166 struct bpf_reg_state *src_lo, *dst_lo;
6167
6168 dst_lo = &lo_reg0;
6169 src_lo = &lo_reg1;
6170 coerce_reg_to_size(dst_lo, 4);
6171 coerce_reg_to_size(src_lo, 4);
6172
f1174f77 6173 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
6174 src_reg->type == SCALAR_VALUE) {
6175 if (tnum_is_const(src_reg->var_off) ||
6176 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 6177 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
6178 dst_reg,
6179 is_jmp32
6180 ? src_lo->var_off.value
6181 : src_reg->var_off.value,
6182 opcode, is_jmp32);
6183 else if (tnum_is_const(dst_reg->var_off) ||
6184 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 6185 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
6186 src_reg,
6187 is_jmp32
6188 ? dst_lo->var_off.value
6189 : dst_reg->var_off.value,
6190 opcode, is_jmp32);
6191 else if (!is_jmp32 &&
6192 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 6193 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
6194 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6195 &other_branch_regs[insn->dst_reg],
092ed096 6196 src_reg, dst_reg, opcode);
f1174f77
EC
6197 }
6198 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 6199 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 6200 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
6201 }
6202
092ed096
JW
6203 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6204 * NOTE: these optimizations below are related with pointer comparison
6205 * which will never be JMP32.
6206 */
6207 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 6208 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
6209 reg_type_may_be_null(dst_reg->type)) {
6210 /* Mark all identical registers in each branch as either
57a09bf0
TG
6211 * safe or unknown depending R == 0 or R != 0 conditional.
6212 */
840b9615
JS
6213 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6214 opcode == BPF_JNE);
6215 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6216 opcode == BPF_JEQ);
5beca081
DB
6217 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6218 this_branch, other_branch) &&
6219 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
6220 verbose(env, "R%d pointer comparison prohibited\n",
6221 insn->dst_reg);
1be7f75d 6222 return -EACCES;
17a52670 6223 }
06ee7115 6224 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 6225 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
6226 return 0;
6227}
6228
17a52670 6229/* verify BPF_LD_IMM64 instruction */
58e2af8b 6230static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6231{
d8eca5bb 6232 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 6233 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 6234 struct bpf_map *map;
17a52670
AS
6235 int err;
6236
6237 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 6238 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
6239 return -EINVAL;
6240 }
6241 if (insn->off != 0) {
61bd5218 6242 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
6243 return -EINVAL;
6244 }
6245
dc503a8a 6246 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6247 if (err)
6248 return err;
6249
6b173873 6250 if (insn->src_reg == 0) {
6b173873
JK
6251 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6252
f1174f77 6253 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 6254 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 6255 return 0;
6b173873 6256 }
17a52670 6257
d8eca5bb
DB
6258 map = env->used_maps[aux->map_index];
6259 mark_reg_known_zero(env, regs, insn->dst_reg);
6260 regs[insn->dst_reg].map_ptr = map;
6261
6262 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6263 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6264 regs[insn->dst_reg].off = aux->map_off;
6265 if (map_value_has_spin_lock(map))
6266 regs[insn->dst_reg].id = ++env->id_gen;
6267 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6268 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6269 } else {
6270 verbose(env, "bpf verifier is misconfigured\n");
6271 return -EINVAL;
6272 }
17a52670 6273
17a52670
AS
6274 return 0;
6275}
6276
96be4325
DB
6277static bool may_access_skb(enum bpf_prog_type type)
6278{
6279 switch (type) {
6280 case BPF_PROG_TYPE_SOCKET_FILTER:
6281 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 6282 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
6283 return true;
6284 default:
6285 return false;
6286 }
6287}
6288
ddd872bc
AS
6289/* verify safety of LD_ABS|LD_IND instructions:
6290 * - they can only appear in the programs where ctx == skb
6291 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6292 * preserve R6-R9, and store return value into R0
6293 *
6294 * Implicit input:
6295 * ctx == skb == R6 == CTX
6296 *
6297 * Explicit input:
6298 * SRC == any register
6299 * IMM == 32-bit immediate
6300 *
6301 * Output:
6302 * R0 - 8/16/32-bit skb data converted to cpu endianness
6303 */
58e2af8b 6304static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6305{
638f5b90 6306 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6307 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6308 int i, err;
6309
24701ece 6310 if (!may_access_skb(env->prog->type)) {
61bd5218 6311 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6312 return -EINVAL;
6313 }
6314
e0cea7ce
DB
6315 if (!env->ops->gen_ld_abs) {
6316 verbose(env, "bpf verifier is misconfigured\n");
6317 return -EINVAL;
6318 }
6319
f910cefa 6320 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6321 /* when program has LD_ABS insn JITs and interpreter assume
6322 * that r1 == ctx == skb which is not the case for callees
6323 * that can have arbitrary arguments. It's problematic
6324 * for main prog as well since JITs would need to analyze
6325 * all functions in order to make proper register save/restore
6326 * decisions in the main prog. Hence disallow LD_ABS with calls
6327 */
6328 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6329 return -EINVAL;
6330 }
6331
ddd872bc 6332 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6333 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6334 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6335 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6336 return -EINVAL;
6337 }
6338
6339 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6340 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6341 if (err)
6342 return err;
6343
fd978bf7
JS
6344 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6345 * gen_ld_abs() may terminate the program at runtime, leading to
6346 * reference leak.
6347 */
6348 err = check_reference_leak(env);
6349 if (err) {
6350 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6351 return err;
6352 }
6353
d83525ca
AS
6354 if (env->cur_state->active_spin_lock) {
6355 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6356 return -EINVAL;
6357 }
6358
ddd872bc 6359 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6360 verbose(env,
6361 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6362 return -EINVAL;
6363 }
6364
6365 if (mode == BPF_IND) {
6366 /* check explicit source operand */
dc503a8a 6367 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6368 if (err)
6369 return err;
6370 }
6371
6372 /* reset caller saved regs to unreadable */
dc503a8a 6373 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6374 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6375 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6376 }
ddd872bc
AS
6377
6378 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6379 * the value fetched from the packet.
6380 * Already marked as written above.
ddd872bc 6381 */
61bd5218 6382 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6383 /* ld_abs load up to 32-bit skb data. */
6384 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6385 return 0;
6386}
6387
390ee7e2
AS
6388static int check_return_code(struct bpf_verifier_env *env)
6389{
5cf1e914 6390 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 6391 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
6392 struct bpf_reg_state *reg;
6393 struct tnum range = tnum_range(0, 1);
27ae7997
MKL
6394 int err;
6395
6396 /* The struct_ops func-ptr's return type could be "void" */
6397 if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS &&
6398 !prog->aux->attach_func_proto->type)
6399 return 0;
6400
6401 /* eBPF calling convetion is such that R0 is used
6402 * to return the value from eBPF program.
6403 * Make sure that it's readable at this time
6404 * of bpf_exit, which means that program wrote
6405 * something into it earlier
6406 */
6407 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6408 if (err)
6409 return err;
6410
6411 if (is_pointer_value(env, BPF_REG_0)) {
6412 verbose(env, "R0 leaks addr as return value\n");
6413 return -EACCES;
6414 }
390ee7e2
AS
6415
6416 switch (env->prog->type) {
983695fa
DB
6417 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6418 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6419 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6420 range = tnum_range(1, 1);
ed4ed404 6421 break;
390ee7e2 6422 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6423 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6424 range = tnum_range(0, 3);
6425 enforce_attach_type_range = tnum_range(2, 3);
6426 }
ed4ed404 6427 break;
390ee7e2
AS
6428 case BPF_PROG_TYPE_CGROUP_SOCK:
6429 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6430 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6431 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6432 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 6433 break;
15ab09bd
AS
6434 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6435 if (!env->prog->aux->attach_btf_id)
6436 return 0;
6437 range = tnum_const(0);
6438 break;
390ee7e2
AS
6439 default:
6440 return 0;
6441 }
6442
638f5b90 6443 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6444 if (reg->type != SCALAR_VALUE) {
61bd5218 6445 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6446 reg_type_str[reg->type]);
6447 return -EINVAL;
6448 }
6449
6450 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6451 char tn_buf[48];
6452
61bd5218 6453 verbose(env, "At program exit the register R0 ");
390ee7e2 6454 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6455 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6456 verbose(env, "has value %s", tn_buf);
390ee7e2 6457 } else {
61bd5218 6458 verbose(env, "has unknown scalar value");
390ee7e2 6459 }
5cf1e914 6460 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6461 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6462 return -EINVAL;
6463 }
5cf1e914 6464
6465 if (!tnum_is_unknown(enforce_attach_type_range) &&
6466 tnum_in(enforce_attach_type_range, reg->var_off))
6467 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6468 return 0;
6469}
6470
475fb78f
AS
6471/* non-recursive DFS pseudo code
6472 * 1 procedure DFS-iterative(G,v):
6473 * 2 label v as discovered
6474 * 3 let S be a stack
6475 * 4 S.push(v)
6476 * 5 while S is not empty
6477 * 6 t <- S.pop()
6478 * 7 if t is what we're looking for:
6479 * 8 return t
6480 * 9 for all edges e in G.adjacentEdges(t) do
6481 * 10 if edge e is already labelled
6482 * 11 continue with the next edge
6483 * 12 w <- G.adjacentVertex(t,e)
6484 * 13 if vertex w is not discovered and not explored
6485 * 14 label e as tree-edge
6486 * 15 label w as discovered
6487 * 16 S.push(w)
6488 * 17 continue at 5
6489 * 18 else if vertex w is discovered
6490 * 19 label e as back-edge
6491 * 20 else
6492 * 21 // vertex w is explored
6493 * 22 label e as forward- or cross-edge
6494 * 23 label t as explored
6495 * 24 S.pop()
6496 *
6497 * convention:
6498 * 0x10 - discovered
6499 * 0x11 - discovered and fall-through edge labelled
6500 * 0x12 - discovered and fall-through and branch edges labelled
6501 * 0x20 - explored
6502 */
6503
6504enum {
6505 DISCOVERED = 0x10,
6506 EXPLORED = 0x20,
6507 FALLTHROUGH = 1,
6508 BRANCH = 2,
6509};
6510
dc2a4ebc
AS
6511static u32 state_htab_size(struct bpf_verifier_env *env)
6512{
6513 return env->prog->len;
6514}
6515
5d839021
AS
6516static struct bpf_verifier_state_list **explored_state(
6517 struct bpf_verifier_env *env,
6518 int idx)
6519{
dc2a4ebc
AS
6520 struct bpf_verifier_state *cur = env->cur_state;
6521 struct bpf_func_state *state = cur->frame[cur->curframe];
6522
6523 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6524}
6525
6526static void init_explored_state(struct bpf_verifier_env *env, int idx)
6527{
a8f500af 6528 env->insn_aux_data[idx].prune_point = true;
5d839021 6529}
f1bca824 6530
475fb78f
AS
6531/* t, w, e - match pseudo-code above:
6532 * t - index of current instruction
6533 * w - next instruction
6534 * e - edge
6535 */
2589726d
AS
6536static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6537 bool loop_ok)
475fb78f 6538{
7df737e9
AS
6539 int *insn_stack = env->cfg.insn_stack;
6540 int *insn_state = env->cfg.insn_state;
6541
475fb78f
AS
6542 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6543 return 0;
6544
6545 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6546 return 0;
6547
6548 if (w < 0 || w >= env->prog->len) {
d9762e84 6549 verbose_linfo(env, t, "%d: ", t);
61bd5218 6550 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6551 return -EINVAL;
6552 }
6553
f1bca824
AS
6554 if (e == BRANCH)
6555 /* mark branch target for state pruning */
5d839021 6556 init_explored_state(env, w);
f1bca824 6557
475fb78f
AS
6558 if (insn_state[w] == 0) {
6559 /* tree-edge */
6560 insn_state[t] = DISCOVERED | e;
6561 insn_state[w] = DISCOVERED;
7df737e9 6562 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6563 return -E2BIG;
7df737e9 6564 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6565 return 1;
6566 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6567 if (loop_ok && env->allow_ptr_leaks)
6568 return 0;
d9762e84
MKL
6569 verbose_linfo(env, t, "%d: ", t);
6570 verbose_linfo(env, w, "%d: ", w);
61bd5218 6571 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6572 return -EINVAL;
6573 } else if (insn_state[w] == EXPLORED) {
6574 /* forward- or cross-edge */
6575 insn_state[t] = DISCOVERED | e;
6576 } else {
61bd5218 6577 verbose(env, "insn state internal bug\n");
475fb78f
AS
6578 return -EFAULT;
6579 }
6580 return 0;
6581}
6582
6583/* non-recursive depth-first-search to detect loops in BPF program
6584 * loop == back-edge in directed graph
6585 */
58e2af8b 6586static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6587{
6588 struct bpf_insn *insns = env->prog->insnsi;
6589 int insn_cnt = env->prog->len;
7df737e9 6590 int *insn_stack, *insn_state;
475fb78f
AS
6591 int ret = 0;
6592 int i, t;
6593
7df737e9 6594 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6595 if (!insn_state)
6596 return -ENOMEM;
6597
7df737e9 6598 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6599 if (!insn_stack) {
71dde681 6600 kvfree(insn_state);
475fb78f
AS
6601 return -ENOMEM;
6602 }
6603
6604 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6605 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6606 env->cfg.cur_stack = 1;
475fb78f
AS
6607
6608peek_stack:
7df737e9 6609 if (env->cfg.cur_stack == 0)
475fb78f 6610 goto check_state;
7df737e9 6611 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6612
092ed096
JW
6613 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6614 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6615 u8 opcode = BPF_OP(insns[t].code);
6616
6617 if (opcode == BPF_EXIT) {
6618 goto mark_explored;
6619 } else if (opcode == BPF_CALL) {
2589726d 6620 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6621 if (ret == 1)
6622 goto peek_stack;
6623 else if (ret < 0)
6624 goto err_free;
07016151 6625 if (t + 1 < insn_cnt)
5d839021 6626 init_explored_state(env, t + 1);
cc8b0b92 6627 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6628 init_explored_state(env, t);
2589726d
AS
6629 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6630 env, false);
cc8b0b92
AS
6631 if (ret == 1)
6632 goto peek_stack;
6633 else if (ret < 0)
6634 goto err_free;
6635 }
475fb78f
AS
6636 } else if (opcode == BPF_JA) {
6637 if (BPF_SRC(insns[t].code) != BPF_K) {
6638 ret = -EINVAL;
6639 goto err_free;
6640 }
6641 /* unconditional jump with single edge */
6642 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6643 FALLTHROUGH, env, true);
475fb78f
AS
6644 if (ret == 1)
6645 goto peek_stack;
6646 else if (ret < 0)
6647 goto err_free;
b5dc0163
AS
6648 /* unconditional jmp is not a good pruning point,
6649 * but it's marked, since backtracking needs
6650 * to record jmp history in is_state_visited().
6651 */
6652 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6653 /* tell verifier to check for equivalent states
6654 * after every call and jump
6655 */
c3de6317 6656 if (t + 1 < insn_cnt)
5d839021 6657 init_explored_state(env, t + 1);
475fb78f
AS
6658 } else {
6659 /* conditional jump with two edges */
5d839021 6660 init_explored_state(env, t);
2589726d 6661 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6662 if (ret == 1)
6663 goto peek_stack;
6664 else if (ret < 0)
6665 goto err_free;
6666
2589726d 6667 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6668 if (ret == 1)
6669 goto peek_stack;
6670 else if (ret < 0)
6671 goto err_free;
6672 }
6673 } else {
6674 /* all other non-branch instructions with single
6675 * fall-through edge
6676 */
2589726d 6677 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6678 if (ret == 1)
6679 goto peek_stack;
6680 else if (ret < 0)
6681 goto err_free;
6682 }
6683
6684mark_explored:
6685 insn_state[t] = EXPLORED;
7df737e9 6686 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6687 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6688 ret = -EFAULT;
6689 goto err_free;
6690 }
6691 goto peek_stack;
6692
6693check_state:
6694 for (i = 0; i < insn_cnt; i++) {
6695 if (insn_state[i] != EXPLORED) {
61bd5218 6696 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6697 ret = -EINVAL;
6698 goto err_free;
6699 }
6700 }
6701 ret = 0; /* cfg looks good */
6702
6703err_free:
71dde681
AS
6704 kvfree(insn_state);
6705 kvfree(insn_stack);
7df737e9 6706 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6707 return ret;
6708}
6709
838e9690
YS
6710/* The minimum supported BTF func info size */
6711#define MIN_BPF_FUNCINFO_SIZE 8
6712#define MAX_FUNCINFO_REC_SIZE 252
6713
c454a46b
MKL
6714static int check_btf_func(struct bpf_verifier_env *env,
6715 const union bpf_attr *attr,
6716 union bpf_attr __user *uattr)
838e9690 6717{
d0b2818e 6718 u32 i, nfuncs, urec_size, min_size;
838e9690 6719 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6720 struct bpf_func_info *krecord;
8c1b6e69 6721 struct bpf_func_info_aux *info_aux = NULL;
838e9690 6722 const struct btf_type *type;
c454a46b
MKL
6723 struct bpf_prog *prog;
6724 const struct btf *btf;
838e9690 6725 void __user *urecord;
d0b2818e 6726 u32 prev_offset = 0;
838e9690
YS
6727 int ret = 0;
6728
6729 nfuncs = attr->func_info_cnt;
6730 if (!nfuncs)
6731 return 0;
6732
6733 if (nfuncs != env->subprog_cnt) {
6734 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6735 return -EINVAL;
6736 }
6737
6738 urec_size = attr->func_info_rec_size;
6739 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6740 urec_size > MAX_FUNCINFO_REC_SIZE ||
6741 urec_size % sizeof(u32)) {
6742 verbose(env, "invalid func info rec size %u\n", urec_size);
6743 return -EINVAL;
6744 }
6745
c454a46b
MKL
6746 prog = env->prog;
6747 btf = prog->aux->btf;
838e9690
YS
6748
6749 urecord = u64_to_user_ptr(attr->func_info);
6750 min_size = min_t(u32, krec_size, urec_size);
6751
ba64e7d8 6752 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6753 if (!krecord)
6754 return -ENOMEM;
8c1b6e69
AS
6755 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6756 if (!info_aux)
6757 goto err_free;
ba64e7d8 6758
838e9690
YS
6759 for (i = 0; i < nfuncs; i++) {
6760 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6761 if (ret) {
6762 if (ret == -E2BIG) {
6763 verbose(env, "nonzero tailing record in func info");
6764 /* set the size kernel expects so loader can zero
6765 * out the rest of the record.
6766 */
6767 if (put_user(min_size, &uattr->func_info_rec_size))
6768 ret = -EFAULT;
6769 }
c454a46b 6770 goto err_free;
838e9690
YS
6771 }
6772
ba64e7d8 6773 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6774 ret = -EFAULT;
c454a46b 6775 goto err_free;
838e9690
YS
6776 }
6777
d30d42e0 6778 /* check insn_off */
838e9690 6779 if (i == 0) {
d30d42e0 6780 if (krecord[i].insn_off) {
838e9690 6781 verbose(env,
d30d42e0
MKL
6782 "nonzero insn_off %u for the first func info record",
6783 krecord[i].insn_off);
838e9690 6784 ret = -EINVAL;
c454a46b 6785 goto err_free;
838e9690 6786 }
d30d42e0 6787 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6788 verbose(env,
6789 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6790 krecord[i].insn_off, prev_offset);
838e9690 6791 ret = -EINVAL;
c454a46b 6792 goto err_free;
838e9690
YS
6793 }
6794
d30d42e0 6795 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6796 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6797 ret = -EINVAL;
c454a46b 6798 goto err_free;
838e9690
YS
6799 }
6800
6801 /* check type_id */
ba64e7d8 6802 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 6803 if (!type || !btf_type_is_func(type)) {
838e9690 6804 verbose(env, "invalid type id %d in func info",
ba64e7d8 6805 krecord[i].type_id);
838e9690 6806 ret = -EINVAL;
c454a46b 6807 goto err_free;
838e9690 6808 }
51c39bb1 6809 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
d30d42e0 6810 prev_offset = krecord[i].insn_off;
838e9690
YS
6811 urecord += urec_size;
6812 }
6813
ba64e7d8
YS
6814 prog->aux->func_info = krecord;
6815 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 6816 prog->aux->func_info_aux = info_aux;
838e9690
YS
6817 return 0;
6818
c454a46b 6819err_free:
ba64e7d8 6820 kvfree(krecord);
8c1b6e69 6821 kfree(info_aux);
838e9690
YS
6822 return ret;
6823}
6824
ba64e7d8
YS
6825static void adjust_btf_func(struct bpf_verifier_env *env)
6826{
8c1b6e69 6827 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
6828 int i;
6829
8c1b6e69 6830 if (!aux->func_info)
ba64e7d8
YS
6831 return;
6832
6833 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 6834 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6835}
6836
c454a46b
MKL
6837#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6838 sizeof(((struct bpf_line_info *)(0))->line_col))
6839#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6840
6841static int check_btf_line(struct bpf_verifier_env *env,
6842 const union bpf_attr *attr,
6843 union bpf_attr __user *uattr)
6844{
6845 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6846 struct bpf_subprog_info *sub;
6847 struct bpf_line_info *linfo;
6848 struct bpf_prog *prog;
6849 const struct btf *btf;
6850 void __user *ulinfo;
6851 int err;
6852
6853 nr_linfo = attr->line_info_cnt;
6854 if (!nr_linfo)
6855 return 0;
6856
6857 rec_size = attr->line_info_rec_size;
6858 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6859 rec_size > MAX_LINEINFO_REC_SIZE ||
6860 rec_size & (sizeof(u32) - 1))
6861 return -EINVAL;
6862
6863 /* Need to zero it in case the userspace may
6864 * pass in a smaller bpf_line_info object.
6865 */
6866 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6867 GFP_KERNEL | __GFP_NOWARN);
6868 if (!linfo)
6869 return -ENOMEM;
6870
6871 prog = env->prog;
6872 btf = prog->aux->btf;
6873
6874 s = 0;
6875 sub = env->subprog_info;
6876 ulinfo = u64_to_user_ptr(attr->line_info);
6877 expected_size = sizeof(struct bpf_line_info);
6878 ncopy = min_t(u32, expected_size, rec_size);
6879 for (i = 0; i < nr_linfo; i++) {
6880 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6881 if (err) {
6882 if (err == -E2BIG) {
6883 verbose(env, "nonzero tailing record in line_info");
6884 if (put_user(expected_size,
6885 &uattr->line_info_rec_size))
6886 err = -EFAULT;
6887 }
6888 goto err_free;
6889 }
6890
6891 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6892 err = -EFAULT;
6893 goto err_free;
6894 }
6895
6896 /*
6897 * Check insn_off to ensure
6898 * 1) strictly increasing AND
6899 * 2) bounded by prog->len
6900 *
6901 * The linfo[0].insn_off == 0 check logically falls into
6902 * the later "missing bpf_line_info for func..." case
6903 * because the first linfo[0].insn_off must be the
6904 * first sub also and the first sub must have
6905 * subprog_info[0].start == 0.
6906 */
6907 if ((i && linfo[i].insn_off <= prev_offset) ||
6908 linfo[i].insn_off >= prog->len) {
6909 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6910 i, linfo[i].insn_off, prev_offset,
6911 prog->len);
6912 err = -EINVAL;
6913 goto err_free;
6914 }
6915
fdbaa0be
MKL
6916 if (!prog->insnsi[linfo[i].insn_off].code) {
6917 verbose(env,
6918 "Invalid insn code at line_info[%u].insn_off\n",
6919 i);
6920 err = -EINVAL;
6921 goto err_free;
6922 }
6923
23127b33
MKL
6924 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6925 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6926 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6927 err = -EINVAL;
6928 goto err_free;
6929 }
6930
6931 if (s != env->subprog_cnt) {
6932 if (linfo[i].insn_off == sub[s].start) {
6933 sub[s].linfo_idx = i;
6934 s++;
6935 } else if (sub[s].start < linfo[i].insn_off) {
6936 verbose(env, "missing bpf_line_info for func#%u\n", s);
6937 err = -EINVAL;
6938 goto err_free;
6939 }
6940 }
6941
6942 prev_offset = linfo[i].insn_off;
6943 ulinfo += rec_size;
6944 }
6945
6946 if (s != env->subprog_cnt) {
6947 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6948 env->subprog_cnt - s, s);
6949 err = -EINVAL;
6950 goto err_free;
6951 }
6952
6953 prog->aux->linfo = linfo;
6954 prog->aux->nr_linfo = nr_linfo;
6955
6956 return 0;
6957
6958err_free:
6959 kvfree(linfo);
6960 return err;
6961}
6962
6963static int check_btf_info(struct bpf_verifier_env *env,
6964 const union bpf_attr *attr,
6965 union bpf_attr __user *uattr)
6966{
6967 struct btf *btf;
6968 int err;
6969
6970 if (!attr->func_info_cnt && !attr->line_info_cnt)
6971 return 0;
6972
6973 btf = btf_get_by_fd(attr->prog_btf_fd);
6974 if (IS_ERR(btf))
6975 return PTR_ERR(btf);
6976 env->prog->aux->btf = btf;
6977
6978 err = check_btf_func(env, attr, uattr);
6979 if (err)
6980 return err;
6981
6982 err = check_btf_line(env, attr, uattr);
6983 if (err)
6984 return err;
6985
6986 return 0;
ba64e7d8
YS
6987}
6988
f1174f77
EC
6989/* check %cur's range satisfies %old's */
6990static bool range_within(struct bpf_reg_state *old,
6991 struct bpf_reg_state *cur)
6992{
b03c9f9f
EC
6993 return old->umin_value <= cur->umin_value &&
6994 old->umax_value >= cur->umax_value &&
6995 old->smin_value <= cur->smin_value &&
6996 old->smax_value >= cur->smax_value;
f1174f77
EC
6997}
6998
6999/* Maximum number of register states that can exist at once */
7000#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7001struct idpair {
7002 u32 old;
7003 u32 cur;
7004};
7005
7006/* If in the old state two registers had the same id, then they need to have
7007 * the same id in the new state as well. But that id could be different from
7008 * the old state, so we need to track the mapping from old to new ids.
7009 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7010 * regs with old id 5 must also have new id 9 for the new state to be safe. But
7011 * regs with a different old id could still have new id 9, we don't care about
7012 * that.
7013 * So we look through our idmap to see if this old id has been seen before. If
7014 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 7015 */
f1174f77 7016static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 7017{
f1174f77 7018 unsigned int i;
969bf05e 7019
f1174f77
EC
7020 for (i = 0; i < ID_MAP_SIZE; i++) {
7021 if (!idmap[i].old) {
7022 /* Reached an empty slot; haven't seen this id before */
7023 idmap[i].old = old_id;
7024 idmap[i].cur = cur_id;
7025 return true;
7026 }
7027 if (idmap[i].old == old_id)
7028 return idmap[i].cur == cur_id;
7029 }
7030 /* We ran out of idmap slots, which should be impossible */
7031 WARN_ON_ONCE(1);
7032 return false;
7033}
7034
9242b5f5
AS
7035static void clean_func_state(struct bpf_verifier_env *env,
7036 struct bpf_func_state *st)
7037{
7038 enum bpf_reg_liveness live;
7039 int i, j;
7040
7041 for (i = 0; i < BPF_REG_FP; i++) {
7042 live = st->regs[i].live;
7043 /* liveness must not touch this register anymore */
7044 st->regs[i].live |= REG_LIVE_DONE;
7045 if (!(live & REG_LIVE_READ))
7046 /* since the register is unused, clear its state
7047 * to make further comparison simpler
7048 */
f54c7898 7049 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
7050 }
7051
7052 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7053 live = st->stack[i].spilled_ptr.live;
7054 /* liveness must not touch this stack slot anymore */
7055 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7056 if (!(live & REG_LIVE_READ)) {
f54c7898 7057 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
7058 for (j = 0; j < BPF_REG_SIZE; j++)
7059 st->stack[i].slot_type[j] = STACK_INVALID;
7060 }
7061 }
7062}
7063
7064static void clean_verifier_state(struct bpf_verifier_env *env,
7065 struct bpf_verifier_state *st)
7066{
7067 int i;
7068
7069 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7070 /* all regs in this state in all frames were already marked */
7071 return;
7072
7073 for (i = 0; i <= st->curframe; i++)
7074 clean_func_state(env, st->frame[i]);
7075}
7076
7077/* the parentage chains form a tree.
7078 * the verifier states are added to state lists at given insn and
7079 * pushed into state stack for future exploration.
7080 * when the verifier reaches bpf_exit insn some of the verifer states
7081 * stored in the state lists have their final liveness state already,
7082 * but a lot of states will get revised from liveness point of view when
7083 * the verifier explores other branches.
7084 * Example:
7085 * 1: r0 = 1
7086 * 2: if r1 == 100 goto pc+1
7087 * 3: r0 = 2
7088 * 4: exit
7089 * when the verifier reaches exit insn the register r0 in the state list of
7090 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7091 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7092 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7093 *
7094 * Since the verifier pushes the branch states as it sees them while exploring
7095 * the program the condition of walking the branch instruction for the second
7096 * time means that all states below this branch were already explored and
7097 * their final liveness markes are already propagated.
7098 * Hence when the verifier completes the search of state list in is_state_visited()
7099 * we can call this clean_live_states() function to mark all liveness states
7100 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7101 * will not be used.
7102 * This function also clears the registers and stack for states that !READ
7103 * to simplify state merging.
7104 *
7105 * Important note here that walking the same branch instruction in the callee
7106 * doesn't meant that the states are DONE. The verifier has to compare
7107 * the callsites
7108 */
7109static void clean_live_states(struct bpf_verifier_env *env, int insn,
7110 struct bpf_verifier_state *cur)
7111{
7112 struct bpf_verifier_state_list *sl;
7113 int i;
7114
5d839021 7115 sl = *explored_state(env, insn);
a8f500af 7116 while (sl) {
2589726d
AS
7117 if (sl->state.branches)
7118 goto next;
dc2a4ebc
AS
7119 if (sl->state.insn_idx != insn ||
7120 sl->state.curframe != cur->curframe)
9242b5f5
AS
7121 goto next;
7122 for (i = 0; i <= cur->curframe; i++)
7123 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7124 goto next;
7125 clean_verifier_state(env, &sl->state);
7126next:
7127 sl = sl->next;
7128 }
7129}
7130
f1174f77 7131/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
7132static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7133 struct idpair *idmap)
f1174f77 7134{
f4d7e40a
AS
7135 bool equal;
7136
dc503a8a
EC
7137 if (!(rold->live & REG_LIVE_READ))
7138 /* explored state didn't use this */
7139 return true;
7140
679c782d 7141 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
7142
7143 if (rold->type == PTR_TO_STACK)
7144 /* two stack pointers are equal only if they're pointing to
7145 * the same stack frame, since fp-8 in foo != fp-8 in bar
7146 */
7147 return equal && rold->frameno == rcur->frameno;
7148
7149 if (equal)
969bf05e
AS
7150 return true;
7151
f1174f77
EC
7152 if (rold->type == NOT_INIT)
7153 /* explored state can't have used this */
969bf05e 7154 return true;
f1174f77
EC
7155 if (rcur->type == NOT_INIT)
7156 return false;
7157 switch (rold->type) {
7158 case SCALAR_VALUE:
7159 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
7160 if (!rold->precise && !rcur->precise)
7161 return true;
f1174f77
EC
7162 /* new val must satisfy old val knowledge */
7163 return range_within(rold, rcur) &&
7164 tnum_in(rold->var_off, rcur->var_off);
7165 } else {
179d1c56
JH
7166 /* We're trying to use a pointer in place of a scalar.
7167 * Even if the scalar was unbounded, this could lead to
7168 * pointer leaks because scalars are allowed to leak
7169 * while pointers are not. We could make this safe in
7170 * special cases if root is calling us, but it's
7171 * probably not worth the hassle.
f1174f77 7172 */
179d1c56 7173 return false;
f1174f77
EC
7174 }
7175 case PTR_TO_MAP_VALUE:
1b688a19
EC
7176 /* If the new min/max/var_off satisfy the old ones and
7177 * everything else matches, we are OK.
d83525ca
AS
7178 * 'id' is not compared, since it's only used for maps with
7179 * bpf_spin_lock inside map element and in such cases if
7180 * the rest of the prog is valid for one map element then
7181 * it's valid for all map elements regardless of the key
7182 * used in bpf_map_lookup()
1b688a19
EC
7183 */
7184 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7185 range_within(rold, rcur) &&
7186 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
7187 case PTR_TO_MAP_VALUE_OR_NULL:
7188 /* a PTR_TO_MAP_VALUE could be safe to use as a
7189 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7190 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7191 * checked, doing so could have affected others with the same
7192 * id, and we can't check for that because we lost the id when
7193 * we converted to a PTR_TO_MAP_VALUE.
7194 */
7195 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7196 return false;
7197 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7198 return false;
7199 /* Check our ids match any regs they're supposed to */
7200 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 7201 case PTR_TO_PACKET_META:
f1174f77 7202 case PTR_TO_PACKET:
de8f3a83 7203 if (rcur->type != rold->type)
f1174f77
EC
7204 return false;
7205 /* We must have at least as much range as the old ptr
7206 * did, so that any accesses which were safe before are
7207 * still safe. This is true even if old range < old off,
7208 * since someone could have accessed through (ptr - k), or
7209 * even done ptr -= k in a register, to get a safe access.
7210 */
7211 if (rold->range > rcur->range)
7212 return false;
7213 /* If the offsets don't match, we can't trust our alignment;
7214 * nor can we be sure that we won't fall out of range.
7215 */
7216 if (rold->off != rcur->off)
7217 return false;
7218 /* id relations must be preserved */
7219 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7220 return false;
7221 /* new val must satisfy old val knowledge */
7222 return range_within(rold, rcur) &&
7223 tnum_in(rold->var_off, rcur->var_off);
7224 case PTR_TO_CTX:
7225 case CONST_PTR_TO_MAP:
f1174f77 7226 case PTR_TO_PACKET_END:
d58e468b 7227 case PTR_TO_FLOW_KEYS:
c64b7983
JS
7228 case PTR_TO_SOCKET:
7229 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7230 case PTR_TO_SOCK_COMMON:
7231 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7232 case PTR_TO_TCP_SOCK:
7233 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7234 case PTR_TO_XDP_SOCK:
f1174f77
EC
7235 /* Only valid matches are exact, which memcmp() above
7236 * would have accepted
7237 */
7238 default:
7239 /* Don't know what's going on, just say it's not safe */
7240 return false;
7241 }
969bf05e 7242
f1174f77
EC
7243 /* Shouldn't get here; if we do, say it's not safe */
7244 WARN_ON_ONCE(1);
969bf05e
AS
7245 return false;
7246}
7247
f4d7e40a
AS
7248static bool stacksafe(struct bpf_func_state *old,
7249 struct bpf_func_state *cur,
638f5b90
AS
7250 struct idpair *idmap)
7251{
7252 int i, spi;
7253
638f5b90
AS
7254 /* walk slots of the explored stack and ignore any additional
7255 * slots in the current stack, since explored(safe) state
7256 * didn't use them
7257 */
7258 for (i = 0; i < old->allocated_stack; i++) {
7259 spi = i / BPF_REG_SIZE;
7260
b233920c
AS
7261 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7262 i += BPF_REG_SIZE - 1;
cc2b14d5 7263 /* explored state didn't use this */
fd05e57b 7264 continue;
b233920c 7265 }
cc2b14d5 7266
638f5b90
AS
7267 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7268 continue;
19e2dbb7
AS
7269
7270 /* explored stack has more populated slots than current stack
7271 * and these slots were used
7272 */
7273 if (i >= cur->allocated_stack)
7274 return false;
7275
cc2b14d5
AS
7276 /* if old state was safe with misc data in the stack
7277 * it will be safe with zero-initialized stack.
7278 * The opposite is not true
7279 */
7280 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7281 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7282 continue;
638f5b90
AS
7283 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7284 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7285 /* Ex: old explored (safe) state has STACK_SPILL in
7286 * this stack slot, but current has has STACK_MISC ->
7287 * this verifier states are not equivalent,
7288 * return false to continue verification of this path
7289 */
7290 return false;
7291 if (i % BPF_REG_SIZE)
7292 continue;
7293 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7294 continue;
7295 if (!regsafe(&old->stack[spi].spilled_ptr,
7296 &cur->stack[spi].spilled_ptr,
7297 idmap))
7298 /* when explored and current stack slot are both storing
7299 * spilled registers, check that stored pointers types
7300 * are the same as well.
7301 * Ex: explored safe path could have stored
7302 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7303 * but current path has stored:
7304 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7305 * such verifier states are not equivalent.
7306 * return false to continue verification of this path
7307 */
7308 return false;
7309 }
7310 return true;
7311}
7312
fd978bf7
JS
7313static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7314{
7315 if (old->acquired_refs != cur->acquired_refs)
7316 return false;
7317 return !memcmp(old->refs, cur->refs,
7318 sizeof(*old->refs) * old->acquired_refs);
7319}
7320
f1bca824
AS
7321/* compare two verifier states
7322 *
7323 * all states stored in state_list are known to be valid, since
7324 * verifier reached 'bpf_exit' instruction through them
7325 *
7326 * this function is called when verifier exploring different branches of
7327 * execution popped from the state stack. If it sees an old state that has
7328 * more strict register state and more strict stack state then this execution
7329 * branch doesn't need to be explored further, since verifier already
7330 * concluded that more strict state leads to valid finish.
7331 *
7332 * Therefore two states are equivalent if register state is more conservative
7333 * and explored stack state is more conservative than the current one.
7334 * Example:
7335 * explored current
7336 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7337 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7338 *
7339 * In other words if current stack state (one being explored) has more
7340 * valid slots than old one that already passed validation, it means
7341 * the verifier can stop exploring and conclude that current state is valid too
7342 *
7343 * Similarly with registers. If explored state has register type as invalid
7344 * whereas register type in current state is meaningful, it means that
7345 * the current state will reach 'bpf_exit' instruction safely
7346 */
f4d7e40a
AS
7347static bool func_states_equal(struct bpf_func_state *old,
7348 struct bpf_func_state *cur)
f1bca824 7349{
f1174f77
EC
7350 struct idpair *idmap;
7351 bool ret = false;
f1bca824
AS
7352 int i;
7353
f1174f77
EC
7354 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7355 /* If we failed to allocate the idmap, just say it's not safe */
7356 if (!idmap)
1a0dc1ac 7357 return false;
f1174f77
EC
7358
7359 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7360 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7361 goto out_free;
f1bca824
AS
7362 }
7363
638f5b90
AS
7364 if (!stacksafe(old, cur, idmap))
7365 goto out_free;
fd978bf7
JS
7366
7367 if (!refsafe(old, cur))
7368 goto out_free;
f1174f77
EC
7369 ret = true;
7370out_free:
7371 kfree(idmap);
7372 return ret;
f1bca824
AS
7373}
7374
f4d7e40a
AS
7375static bool states_equal(struct bpf_verifier_env *env,
7376 struct bpf_verifier_state *old,
7377 struct bpf_verifier_state *cur)
7378{
7379 int i;
7380
7381 if (old->curframe != cur->curframe)
7382 return false;
7383
979d63d5
DB
7384 /* Verification state from speculative execution simulation
7385 * must never prune a non-speculative execution one.
7386 */
7387 if (old->speculative && !cur->speculative)
7388 return false;
7389
d83525ca
AS
7390 if (old->active_spin_lock != cur->active_spin_lock)
7391 return false;
7392
f4d7e40a
AS
7393 /* for states to be equal callsites have to be the same
7394 * and all frame states need to be equivalent
7395 */
7396 for (i = 0; i <= old->curframe; i++) {
7397 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7398 return false;
7399 if (!func_states_equal(old->frame[i], cur->frame[i]))
7400 return false;
7401 }
7402 return true;
7403}
7404
5327ed3d
JW
7405/* Return 0 if no propagation happened. Return negative error code if error
7406 * happened. Otherwise, return the propagated bit.
7407 */
55e7f3b5
JW
7408static int propagate_liveness_reg(struct bpf_verifier_env *env,
7409 struct bpf_reg_state *reg,
7410 struct bpf_reg_state *parent_reg)
7411{
5327ed3d
JW
7412 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7413 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7414 int err;
7415
5327ed3d
JW
7416 /* When comes here, read flags of PARENT_REG or REG could be any of
7417 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7418 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7419 */
7420 if (parent_flag == REG_LIVE_READ64 ||
7421 /* Or if there is no read flag from REG. */
7422 !flag ||
7423 /* Or if the read flag from REG is the same as PARENT_REG. */
7424 parent_flag == flag)
55e7f3b5
JW
7425 return 0;
7426
5327ed3d 7427 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7428 if (err)
7429 return err;
7430
5327ed3d 7431 return flag;
55e7f3b5
JW
7432}
7433
8e9cd9ce 7434/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7435 * straight-line code between a state and its parent. When we arrive at an
7436 * equivalent state (jump target or such) we didn't arrive by the straight-line
7437 * code, so read marks in the state must propagate to the parent regardless
7438 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7439 * in mark_reg_read() is for.
8e9cd9ce 7440 */
f4d7e40a
AS
7441static int propagate_liveness(struct bpf_verifier_env *env,
7442 const struct bpf_verifier_state *vstate,
7443 struct bpf_verifier_state *vparent)
dc503a8a 7444{
3f8cafa4 7445 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7446 struct bpf_func_state *state, *parent;
3f8cafa4 7447 int i, frame, err = 0;
dc503a8a 7448
f4d7e40a
AS
7449 if (vparent->curframe != vstate->curframe) {
7450 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7451 vparent->curframe, vstate->curframe);
7452 return -EFAULT;
7453 }
dc503a8a
EC
7454 /* Propagate read liveness of registers... */
7455 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7456 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7457 parent = vparent->frame[frame];
7458 state = vstate->frame[frame];
7459 parent_reg = parent->regs;
7460 state_reg = state->regs;
83d16312
JK
7461 /* We don't need to worry about FP liveness, it's read-only */
7462 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7463 err = propagate_liveness_reg(env, &state_reg[i],
7464 &parent_reg[i]);
5327ed3d 7465 if (err < 0)
3f8cafa4 7466 return err;
5327ed3d
JW
7467 if (err == REG_LIVE_READ64)
7468 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7469 }
f4d7e40a 7470
1b04aee7 7471 /* Propagate stack slots. */
f4d7e40a
AS
7472 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7473 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7474 parent_reg = &parent->stack[i].spilled_ptr;
7475 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7476 err = propagate_liveness_reg(env, state_reg,
7477 parent_reg);
5327ed3d 7478 if (err < 0)
3f8cafa4 7479 return err;
dc503a8a
EC
7480 }
7481 }
5327ed3d 7482 return 0;
dc503a8a
EC
7483}
7484
a3ce685d
AS
7485/* find precise scalars in the previous equivalent state and
7486 * propagate them into the current state
7487 */
7488static int propagate_precision(struct bpf_verifier_env *env,
7489 const struct bpf_verifier_state *old)
7490{
7491 struct bpf_reg_state *state_reg;
7492 struct bpf_func_state *state;
7493 int i, err = 0;
7494
7495 state = old->frame[old->curframe];
7496 state_reg = state->regs;
7497 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7498 if (state_reg->type != SCALAR_VALUE ||
7499 !state_reg->precise)
7500 continue;
7501 if (env->log.level & BPF_LOG_LEVEL2)
7502 verbose(env, "propagating r%d\n", i);
7503 err = mark_chain_precision(env, i);
7504 if (err < 0)
7505 return err;
7506 }
7507
7508 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7509 if (state->stack[i].slot_type[0] != STACK_SPILL)
7510 continue;
7511 state_reg = &state->stack[i].spilled_ptr;
7512 if (state_reg->type != SCALAR_VALUE ||
7513 !state_reg->precise)
7514 continue;
7515 if (env->log.level & BPF_LOG_LEVEL2)
7516 verbose(env, "propagating fp%d\n",
7517 (-i - 1) * BPF_REG_SIZE);
7518 err = mark_chain_precision_stack(env, i);
7519 if (err < 0)
7520 return err;
7521 }
7522 return 0;
7523}
7524
2589726d
AS
7525static bool states_maybe_looping(struct bpf_verifier_state *old,
7526 struct bpf_verifier_state *cur)
7527{
7528 struct bpf_func_state *fold, *fcur;
7529 int i, fr = cur->curframe;
7530
7531 if (old->curframe != fr)
7532 return false;
7533
7534 fold = old->frame[fr];
7535 fcur = cur->frame[fr];
7536 for (i = 0; i < MAX_BPF_REG; i++)
7537 if (memcmp(&fold->regs[i], &fcur->regs[i],
7538 offsetof(struct bpf_reg_state, parent)))
7539 return false;
7540 return true;
7541}
7542
7543
58e2af8b 7544static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7545{
58e2af8b 7546 struct bpf_verifier_state_list *new_sl;
9f4686c4 7547 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7548 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7549 int i, j, err, states_cnt = 0;
10d274e8 7550 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 7551
b5dc0163 7552 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7553 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7554 /* this 'insn_idx' instruction wasn't marked, so we will not
7555 * be doing state search here
7556 */
7557 return 0;
7558
2589726d
AS
7559 /* bpf progs typically have pruning point every 4 instructions
7560 * http://vger.kernel.org/bpfconf2019.html#session-1
7561 * Do not add new state for future pruning if the verifier hasn't seen
7562 * at least 2 jumps and at least 8 instructions.
7563 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7564 * In tests that amounts to up to 50% reduction into total verifier
7565 * memory consumption and 20% verifier time speedup.
7566 */
7567 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7568 env->insn_processed - env->prev_insn_processed >= 8)
7569 add_new_state = true;
7570
a8f500af
AS
7571 pprev = explored_state(env, insn_idx);
7572 sl = *pprev;
7573
9242b5f5
AS
7574 clean_live_states(env, insn_idx, cur);
7575
a8f500af 7576 while (sl) {
dc2a4ebc
AS
7577 states_cnt++;
7578 if (sl->state.insn_idx != insn_idx)
7579 goto next;
2589726d
AS
7580 if (sl->state.branches) {
7581 if (states_maybe_looping(&sl->state, cur) &&
7582 states_equal(env, &sl->state, cur)) {
7583 verbose_linfo(env, insn_idx, "; ");
7584 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7585 return -EINVAL;
7586 }
7587 /* if the verifier is processing a loop, avoid adding new state
7588 * too often, since different loop iterations have distinct
7589 * states and may not help future pruning.
7590 * This threshold shouldn't be too low to make sure that
7591 * a loop with large bound will be rejected quickly.
7592 * The most abusive loop will be:
7593 * r1 += 1
7594 * if r1 < 1000000 goto pc-2
7595 * 1M insn_procssed limit / 100 == 10k peak states.
7596 * This threshold shouldn't be too high either, since states
7597 * at the end of the loop are likely to be useful in pruning.
7598 */
7599 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7600 env->insn_processed - env->prev_insn_processed < 100)
7601 add_new_state = false;
7602 goto miss;
7603 }
638f5b90 7604 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7605 sl->hit_cnt++;
f1bca824 7606 /* reached equivalent register/stack state,
dc503a8a
EC
7607 * prune the search.
7608 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7609 * If we have any write marks in env->cur_state, they
7610 * will prevent corresponding reads in the continuation
7611 * from reaching our parent (an explored_state). Our
7612 * own state will get the read marks recorded, but
7613 * they'll be immediately forgotten as we're pruning
7614 * this state and will pop a new one.
f1bca824 7615 */
f4d7e40a 7616 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7617
7618 /* if previous state reached the exit with precision and
7619 * current state is equivalent to it (except precsion marks)
7620 * the precision needs to be propagated back in
7621 * the current state.
7622 */
7623 err = err ? : push_jmp_history(env, cur);
7624 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7625 if (err)
7626 return err;
f1bca824 7627 return 1;
dc503a8a 7628 }
2589726d
AS
7629miss:
7630 /* when new state is not going to be added do not increase miss count.
7631 * Otherwise several loop iterations will remove the state
7632 * recorded earlier. The goal of these heuristics is to have
7633 * states from some iterations of the loop (some in the beginning
7634 * and some at the end) to help pruning.
7635 */
7636 if (add_new_state)
7637 sl->miss_cnt++;
9f4686c4
AS
7638 /* heuristic to determine whether this state is beneficial
7639 * to keep checking from state equivalence point of view.
7640 * Higher numbers increase max_states_per_insn and verification time,
7641 * but do not meaningfully decrease insn_processed.
7642 */
7643 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7644 /* the state is unlikely to be useful. Remove it to
7645 * speed up verification
7646 */
7647 *pprev = sl->next;
7648 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7649 u32 br = sl->state.branches;
7650
7651 WARN_ONCE(br,
7652 "BUG live_done but branches_to_explore %d\n",
7653 br);
9f4686c4
AS
7654 free_verifier_state(&sl->state, false);
7655 kfree(sl);
7656 env->peak_states--;
7657 } else {
7658 /* cannot free this state, since parentage chain may
7659 * walk it later. Add it for free_list instead to
7660 * be freed at the end of verification
7661 */
7662 sl->next = env->free_list;
7663 env->free_list = sl;
7664 }
7665 sl = *pprev;
7666 continue;
7667 }
dc2a4ebc 7668next:
9f4686c4
AS
7669 pprev = &sl->next;
7670 sl = *pprev;
f1bca824
AS
7671 }
7672
06ee7115
AS
7673 if (env->max_states_per_insn < states_cnt)
7674 env->max_states_per_insn = states_cnt;
7675
ceefbc96 7676 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7677 return push_jmp_history(env, cur);
ceefbc96 7678
2589726d 7679 if (!add_new_state)
b5dc0163 7680 return push_jmp_history(env, cur);
ceefbc96 7681
2589726d
AS
7682 /* There were no equivalent states, remember the current one.
7683 * Technically the current state is not proven to be safe yet,
f4d7e40a 7684 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7685 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7686 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7687 * again on the way to bpf_exit.
7688 * When looping the sl->state.branches will be > 0 and this state
7689 * will not be considered for equivalence until branches == 0.
f1bca824 7690 */
638f5b90 7691 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7692 if (!new_sl)
7693 return -ENOMEM;
06ee7115
AS
7694 env->total_states++;
7695 env->peak_states++;
2589726d
AS
7696 env->prev_jmps_processed = env->jmps_processed;
7697 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7698
7699 /* add new state to the head of linked list */
679c782d
EC
7700 new = &new_sl->state;
7701 err = copy_verifier_state(new, cur);
1969db47 7702 if (err) {
679c782d 7703 free_verifier_state(new, false);
1969db47
AS
7704 kfree(new_sl);
7705 return err;
7706 }
dc2a4ebc 7707 new->insn_idx = insn_idx;
2589726d
AS
7708 WARN_ONCE(new->branches != 1,
7709 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7710
2589726d 7711 cur->parent = new;
b5dc0163
AS
7712 cur->first_insn_idx = insn_idx;
7713 clear_jmp_history(cur);
5d839021
AS
7714 new_sl->next = *explored_state(env, insn_idx);
7715 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7716 /* connect new state to parentage chain. Current frame needs all
7717 * registers connected. Only r6 - r9 of the callers are alive (pushed
7718 * to the stack implicitly by JITs) so in callers' frames connect just
7719 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7720 * the state of the call instruction (with WRITTEN set), and r0 comes
7721 * from callee with its full parentage chain, anyway.
7722 */
8e9cd9ce
EC
7723 /* clear write marks in current state: the writes we did are not writes
7724 * our child did, so they don't screen off its reads from us.
7725 * (There are no read marks in current state, because reads always mark
7726 * their parent and current state never has children yet. Only
7727 * explored_states can get read marks.)
7728 */
eea1c227
AS
7729 for (j = 0; j <= cur->curframe; j++) {
7730 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7731 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7732 for (i = 0; i < BPF_REG_FP; i++)
7733 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7734 }
f4d7e40a
AS
7735
7736 /* all stack frames are accessible from callee, clear them all */
7737 for (j = 0; j <= cur->curframe; j++) {
7738 struct bpf_func_state *frame = cur->frame[j];
679c782d 7739 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7740
679c782d 7741 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7742 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7743 frame->stack[i].spilled_ptr.parent =
7744 &newframe->stack[i].spilled_ptr;
7745 }
f4d7e40a 7746 }
f1bca824
AS
7747 return 0;
7748}
7749
c64b7983
JS
7750/* Return true if it's OK to have the same insn return a different type. */
7751static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7752{
7753 switch (type) {
7754 case PTR_TO_CTX:
7755 case PTR_TO_SOCKET:
7756 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7757 case PTR_TO_SOCK_COMMON:
7758 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7759 case PTR_TO_TCP_SOCK:
7760 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7761 case PTR_TO_XDP_SOCK:
2a02759e 7762 case PTR_TO_BTF_ID:
c64b7983
JS
7763 return false;
7764 default:
7765 return true;
7766 }
7767}
7768
7769/* If an instruction was previously used with particular pointer types, then we
7770 * need to be careful to avoid cases such as the below, where it may be ok
7771 * for one branch accessing the pointer, but not ok for the other branch:
7772 *
7773 * R1 = sock_ptr
7774 * goto X;
7775 * ...
7776 * R1 = some_other_valid_ptr;
7777 * goto X;
7778 * ...
7779 * R2 = *(u32 *)(R1 + 0);
7780 */
7781static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7782{
7783 return src != prev && (!reg_type_mismatch_ok(src) ||
7784 !reg_type_mismatch_ok(prev));
7785}
7786
58e2af8b 7787static int do_check(struct bpf_verifier_env *env)
17a52670 7788{
51c39bb1 7789 struct bpf_verifier_state *state = env->cur_state;
17a52670 7790 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7791 struct bpf_reg_state *regs;
06ee7115 7792 int insn_cnt = env->prog->len;
17a52670 7793 bool do_print_state = false;
b5dc0163 7794 int prev_insn_idx = -1;
17a52670 7795
17a52670
AS
7796 for (;;) {
7797 struct bpf_insn *insn;
7798 u8 class;
7799 int err;
7800
b5dc0163 7801 env->prev_insn_idx = prev_insn_idx;
c08435ec 7802 if (env->insn_idx >= insn_cnt) {
61bd5218 7803 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7804 env->insn_idx, insn_cnt);
17a52670
AS
7805 return -EFAULT;
7806 }
7807
c08435ec 7808 insn = &insns[env->insn_idx];
17a52670
AS
7809 class = BPF_CLASS(insn->code);
7810
06ee7115 7811 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7812 verbose(env,
7813 "BPF program is too large. Processed %d insn\n",
06ee7115 7814 env->insn_processed);
17a52670
AS
7815 return -E2BIG;
7816 }
7817
c08435ec 7818 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7819 if (err < 0)
7820 return err;
7821 if (err == 1) {
7822 /* found equivalent state, can prune the search */
06ee7115 7823 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7824 if (do_print_state)
979d63d5
DB
7825 verbose(env, "\nfrom %d to %d%s: safe\n",
7826 env->prev_insn_idx, env->insn_idx,
7827 env->cur_state->speculative ?
7828 " (speculative execution)" : "");
f1bca824 7829 else
c08435ec 7830 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7831 }
7832 goto process_bpf_exit;
7833 }
7834
c3494801
AS
7835 if (signal_pending(current))
7836 return -EAGAIN;
7837
3c2ce60b
DB
7838 if (need_resched())
7839 cond_resched();
7840
06ee7115
AS
7841 if (env->log.level & BPF_LOG_LEVEL2 ||
7842 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7843 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7844 verbose(env, "%d:", env->insn_idx);
c5fc9692 7845 else
979d63d5
DB
7846 verbose(env, "\nfrom %d to %d%s:",
7847 env->prev_insn_idx, env->insn_idx,
7848 env->cur_state->speculative ?
7849 " (speculative execution)" : "");
f4d7e40a 7850 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7851 do_print_state = false;
7852 }
7853
06ee7115 7854 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7855 const struct bpf_insn_cbs cbs = {
7856 .cb_print = verbose,
abe08840 7857 .private_data = env,
7105e828
DB
7858 };
7859
c08435ec
DB
7860 verbose_linfo(env, env->insn_idx, "; ");
7861 verbose(env, "%d: ", env->insn_idx);
abe08840 7862 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7863 }
7864
cae1927c 7865 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7866 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7867 env->prev_insn_idx);
cae1927c
JK
7868 if (err)
7869 return err;
7870 }
13a27dfc 7871
638f5b90 7872 regs = cur_regs(env);
51c39bb1 7873 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 7874 prev_insn_idx = env->insn_idx;
fd978bf7 7875
17a52670 7876 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7877 err = check_alu_op(env, insn);
17a52670
AS
7878 if (err)
7879 return err;
7880
7881 } else if (class == BPF_LDX) {
3df126f3 7882 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7883
7884 /* check for reserved fields is already done */
7885
17a52670 7886 /* check src operand */
dc503a8a 7887 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7888 if (err)
7889 return err;
7890
dc503a8a 7891 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7892 if (err)
7893 return err;
7894
725f9dcd
AS
7895 src_reg_type = regs[insn->src_reg].type;
7896
17a52670
AS
7897 /* check that memory (src_reg + off) is readable,
7898 * the state of dst_reg will be updated by this func
7899 */
c08435ec
DB
7900 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7901 insn->off, BPF_SIZE(insn->code),
7902 BPF_READ, insn->dst_reg, false);
17a52670
AS
7903 if (err)
7904 return err;
7905
c08435ec 7906 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7907
7908 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7909 /* saw a valid insn
7910 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7911 * save type to validate intersecting paths
9bac3d6d 7912 */
3df126f3 7913 *prev_src_type = src_reg_type;
9bac3d6d 7914
c64b7983 7915 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7916 /* ABuser program is trying to use the same insn
7917 * dst_reg = *(u32*) (src_reg + off)
7918 * with different pointer types:
7919 * src_reg == ctx in one branch and
7920 * src_reg == stack|map in some other branch.
7921 * Reject it.
7922 */
61bd5218 7923 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7924 return -EINVAL;
7925 }
7926
17a52670 7927 } else if (class == BPF_STX) {
3df126f3 7928 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7929
17a52670 7930 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7931 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7932 if (err)
7933 return err;
c08435ec 7934 env->insn_idx++;
17a52670
AS
7935 continue;
7936 }
7937
17a52670 7938 /* check src1 operand */
dc503a8a 7939 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7940 if (err)
7941 return err;
7942 /* check src2 operand */
dc503a8a 7943 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7944 if (err)
7945 return err;
7946
d691f9e8
AS
7947 dst_reg_type = regs[insn->dst_reg].type;
7948
17a52670 7949 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7950 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7951 insn->off, BPF_SIZE(insn->code),
7952 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7953 if (err)
7954 return err;
7955
c08435ec 7956 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7957
7958 if (*prev_dst_type == NOT_INIT) {
7959 *prev_dst_type = dst_reg_type;
c64b7983 7960 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7961 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7962 return -EINVAL;
7963 }
7964
17a52670
AS
7965 } else if (class == BPF_ST) {
7966 if (BPF_MODE(insn->code) != BPF_MEM ||
7967 insn->src_reg != BPF_REG_0) {
61bd5218 7968 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7969 return -EINVAL;
7970 }
7971 /* check src operand */
dc503a8a 7972 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7973 if (err)
7974 return err;
7975
f37a8cb8 7976 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7977 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7978 insn->dst_reg,
7979 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7980 return -EACCES;
7981 }
7982
17a52670 7983 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7984 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7985 insn->off, BPF_SIZE(insn->code),
7986 BPF_WRITE, -1, false);
17a52670
AS
7987 if (err)
7988 return err;
7989
092ed096 7990 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7991 u8 opcode = BPF_OP(insn->code);
7992
2589726d 7993 env->jmps_processed++;
17a52670
AS
7994 if (opcode == BPF_CALL) {
7995 if (BPF_SRC(insn->code) != BPF_K ||
7996 insn->off != 0 ||
f4d7e40a
AS
7997 (insn->src_reg != BPF_REG_0 &&
7998 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7999 insn->dst_reg != BPF_REG_0 ||
8000 class == BPF_JMP32) {
61bd5218 8001 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
8002 return -EINVAL;
8003 }
8004
d83525ca
AS
8005 if (env->cur_state->active_spin_lock &&
8006 (insn->src_reg == BPF_PSEUDO_CALL ||
8007 insn->imm != BPF_FUNC_spin_unlock)) {
8008 verbose(env, "function calls are not allowed while holding a lock\n");
8009 return -EINVAL;
8010 }
f4d7e40a 8011 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 8012 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 8013 else
c08435ec 8014 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
8015 if (err)
8016 return err;
8017
8018 } else if (opcode == BPF_JA) {
8019 if (BPF_SRC(insn->code) != BPF_K ||
8020 insn->imm != 0 ||
8021 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8022 insn->dst_reg != BPF_REG_0 ||
8023 class == BPF_JMP32) {
61bd5218 8024 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
8025 return -EINVAL;
8026 }
8027
c08435ec 8028 env->insn_idx += insn->off + 1;
17a52670
AS
8029 continue;
8030
8031 } else if (opcode == BPF_EXIT) {
8032 if (BPF_SRC(insn->code) != BPF_K ||
8033 insn->imm != 0 ||
8034 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8035 insn->dst_reg != BPF_REG_0 ||
8036 class == BPF_JMP32) {
61bd5218 8037 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
8038 return -EINVAL;
8039 }
8040
d83525ca
AS
8041 if (env->cur_state->active_spin_lock) {
8042 verbose(env, "bpf_spin_unlock is missing\n");
8043 return -EINVAL;
8044 }
8045
f4d7e40a
AS
8046 if (state->curframe) {
8047 /* exit from nested function */
c08435ec 8048 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
8049 if (err)
8050 return err;
8051 do_print_state = true;
8052 continue;
8053 }
8054
fd978bf7
JS
8055 err = check_reference_leak(env);
8056 if (err)
8057 return err;
8058
390ee7e2
AS
8059 err = check_return_code(env);
8060 if (err)
8061 return err;
f1bca824 8062process_bpf_exit:
2589726d 8063 update_branch_counts(env, env->cur_state);
b5dc0163 8064 err = pop_stack(env, &prev_insn_idx,
c08435ec 8065 &env->insn_idx);
638f5b90
AS
8066 if (err < 0) {
8067 if (err != -ENOENT)
8068 return err;
17a52670
AS
8069 break;
8070 } else {
8071 do_print_state = true;
8072 continue;
8073 }
8074 } else {
c08435ec 8075 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
8076 if (err)
8077 return err;
8078 }
8079 } else if (class == BPF_LD) {
8080 u8 mode = BPF_MODE(insn->code);
8081
8082 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
8083 err = check_ld_abs(env, insn);
8084 if (err)
8085 return err;
8086
17a52670
AS
8087 } else if (mode == BPF_IMM) {
8088 err = check_ld_imm(env, insn);
8089 if (err)
8090 return err;
8091
c08435ec 8092 env->insn_idx++;
51c39bb1 8093 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 8094 } else {
61bd5218 8095 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
8096 return -EINVAL;
8097 }
8098 } else {
61bd5218 8099 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
8100 return -EINVAL;
8101 }
8102
c08435ec 8103 env->insn_idx++;
17a52670
AS
8104 }
8105
8106 return 0;
8107}
8108
56f668df
MKL
8109static int check_map_prealloc(struct bpf_map *map)
8110{
8111 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
8112 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8113 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
8114 !(map->map_flags & BPF_F_NO_PREALLOC);
8115}
8116
d83525ca
AS
8117static bool is_tracing_prog_type(enum bpf_prog_type type)
8118{
8119 switch (type) {
8120 case BPF_PROG_TYPE_KPROBE:
8121 case BPF_PROG_TYPE_TRACEPOINT:
8122 case BPF_PROG_TYPE_PERF_EVENT:
8123 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8124 return true;
8125 default:
8126 return false;
8127 }
8128}
8129
61bd5218
JK
8130static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8131 struct bpf_map *map,
fdc15d38
AS
8132 struct bpf_prog *prog)
8133
8134{
56f668df
MKL
8135 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8136 * preallocated hash maps, since doing memory allocation
8137 * in overflow_handler can crash depending on where nmi got
8138 * triggered.
8139 */
8140 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8141 if (!check_map_prealloc(map)) {
61bd5218 8142 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
8143 return -EINVAL;
8144 }
8145 if (map->inner_map_meta &&
8146 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 8147 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
8148 return -EINVAL;
8149 }
fdc15d38 8150 }
a3884572 8151
d83525ca
AS
8152 if ((is_tracing_prog_type(prog->type) ||
8153 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8154 map_value_has_spin_lock(map)) {
8155 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8156 return -EINVAL;
8157 }
8158
a3884572 8159 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 8160 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
8161 verbose(env, "offload device mismatch between prog and map\n");
8162 return -EINVAL;
8163 }
8164
85d33df3
MKL
8165 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8166 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8167 return -EINVAL;
8168 }
8169
fdc15d38
AS
8170 return 0;
8171}
8172
b741f163
RG
8173static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8174{
8175 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8176 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8177}
8178
0246e64d
AS
8179/* look for pseudo eBPF instructions that access map FDs and
8180 * replace them with actual map pointers
8181 */
58e2af8b 8182static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
8183{
8184 struct bpf_insn *insn = env->prog->insnsi;
8185 int insn_cnt = env->prog->len;
fdc15d38 8186 int i, j, err;
0246e64d 8187
f1f7714e 8188 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
8189 if (err)
8190 return err;
8191
0246e64d 8192 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 8193 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 8194 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 8195 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
8196 return -EINVAL;
8197 }
8198
d691f9e8
AS
8199 if (BPF_CLASS(insn->code) == BPF_STX &&
8200 ((BPF_MODE(insn->code) != BPF_MEM &&
8201 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 8202 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
8203 return -EINVAL;
8204 }
8205
0246e64d 8206 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 8207 struct bpf_insn_aux_data *aux;
0246e64d
AS
8208 struct bpf_map *map;
8209 struct fd f;
d8eca5bb 8210 u64 addr;
0246e64d
AS
8211
8212 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8213 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8214 insn[1].off != 0) {
61bd5218 8215 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
8216 return -EINVAL;
8217 }
8218
d8eca5bb 8219 if (insn[0].src_reg == 0)
0246e64d
AS
8220 /* valid generic load 64-bit imm */
8221 goto next_insn;
8222
d8eca5bb
DB
8223 /* In final convert_pseudo_ld_imm64() step, this is
8224 * converted into regular 64-bit imm load insn.
8225 */
8226 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8227 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8228 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8229 insn[1].imm != 0)) {
8230 verbose(env,
8231 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
8232 return -EINVAL;
8233 }
8234
20182390 8235 f = fdget(insn[0].imm);
c2101297 8236 map = __bpf_map_get(f);
0246e64d 8237 if (IS_ERR(map)) {
61bd5218 8238 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 8239 insn[0].imm);
0246e64d
AS
8240 return PTR_ERR(map);
8241 }
8242
61bd5218 8243 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
8244 if (err) {
8245 fdput(f);
8246 return err;
8247 }
8248
d8eca5bb
DB
8249 aux = &env->insn_aux_data[i];
8250 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8251 addr = (unsigned long)map;
8252 } else {
8253 u32 off = insn[1].imm;
8254
8255 if (off >= BPF_MAX_VAR_OFF) {
8256 verbose(env, "direct value offset of %u is not allowed\n", off);
8257 fdput(f);
8258 return -EINVAL;
8259 }
8260
8261 if (!map->ops->map_direct_value_addr) {
8262 verbose(env, "no direct value access support for this map type\n");
8263 fdput(f);
8264 return -EINVAL;
8265 }
8266
8267 err = map->ops->map_direct_value_addr(map, &addr, off);
8268 if (err) {
8269 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8270 map->value_size, off);
8271 fdput(f);
8272 return err;
8273 }
8274
8275 aux->map_off = off;
8276 addr += off;
8277 }
8278
8279 insn[0].imm = (u32)addr;
8280 insn[1].imm = addr >> 32;
0246e64d
AS
8281
8282 /* check whether we recorded this map already */
d8eca5bb 8283 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 8284 if (env->used_maps[j] == map) {
d8eca5bb 8285 aux->map_index = j;
0246e64d
AS
8286 fdput(f);
8287 goto next_insn;
8288 }
d8eca5bb 8289 }
0246e64d
AS
8290
8291 if (env->used_map_cnt >= MAX_USED_MAPS) {
8292 fdput(f);
8293 return -E2BIG;
8294 }
8295
0246e64d
AS
8296 /* hold the map. If the program is rejected by verifier,
8297 * the map will be released by release_maps() or it
8298 * will be used by the valid program until it's unloaded
ab7f5bf0 8299 * and all maps are released in free_used_maps()
0246e64d 8300 */
1e0bd5a0 8301 bpf_map_inc(map);
d8eca5bb
DB
8302
8303 aux->map_index = env->used_map_cnt;
92117d84
AS
8304 env->used_maps[env->used_map_cnt++] = map;
8305
b741f163 8306 if (bpf_map_is_cgroup_storage(map) &&
e4730423 8307 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 8308 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8309 fdput(f);
8310 return -EBUSY;
8311 }
8312
0246e64d
AS
8313 fdput(f);
8314next_insn:
8315 insn++;
8316 i++;
5e581dad
DB
8317 continue;
8318 }
8319
8320 /* Basic sanity check before we invest more work here. */
8321 if (!bpf_opcode_in_insntable(insn->code)) {
8322 verbose(env, "unknown opcode %02x\n", insn->code);
8323 return -EINVAL;
0246e64d
AS
8324 }
8325 }
8326
8327 /* now all pseudo BPF_LD_IMM64 instructions load valid
8328 * 'struct bpf_map *' into a register instead of user map_fd.
8329 * These pointers will be used later by verifier to validate map access.
8330 */
8331 return 0;
8332}
8333
8334/* drop refcnt of maps used by the rejected program */
58e2af8b 8335static void release_maps(struct bpf_verifier_env *env)
0246e64d 8336{
a2ea0746
DB
8337 __bpf_free_used_maps(env->prog->aux, env->used_maps,
8338 env->used_map_cnt);
0246e64d
AS
8339}
8340
8341/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8342static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8343{
8344 struct bpf_insn *insn = env->prog->insnsi;
8345 int insn_cnt = env->prog->len;
8346 int i;
8347
8348 for (i = 0; i < insn_cnt; i++, insn++)
8349 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8350 insn->src_reg = 0;
8351}
8352
8041902d
AS
8353/* single env->prog->insni[off] instruction was replaced with the range
8354 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8355 * [0, off) and [off, end) to new locations, so the patched range stays zero
8356 */
b325fbca
JW
8357static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8358 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8359{
8360 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8361 struct bpf_insn *insn = new_prog->insnsi;
8362 u32 prog_len;
c131187d 8363 int i;
8041902d 8364
b325fbca
JW
8365 /* aux info at OFF always needs adjustment, no matter fast path
8366 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8367 * original insn at old prog.
8368 */
8369 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8370
8041902d
AS
8371 if (cnt == 1)
8372 return 0;
b325fbca 8373 prog_len = new_prog->len;
fad953ce
KC
8374 new_data = vzalloc(array_size(prog_len,
8375 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8376 if (!new_data)
8377 return -ENOMEM;
8378 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8379 memcpy(new_data + off + cnt - 1, old_data + off,
8380 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8381 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 8382 new_data[i].seen = env->pass_cnt;
b325fbca
JW
8383 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8384 }
8041902d
AS
8385 env->insn_aux_data = new_data;
8386 vfree(old_data);
8387 return 0;
8388}
8389
cc8b0b92
AS
8390static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8391{
8392 int i;
8393
8394 if (len == 1)
8395 return;
4cb3d99c
JW
8396 /* NOTE: fake 'exit' subprog should be updated as well. */
8397 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8398 if (env->subprog_info[i].start <= off)
cc8b0b92 8399 continue;
9c8105bd 8400 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8401 }
8402}
8403
8041902d
AS
8404static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8405 const struct bpf_insn *patch, u32 len)
8406{
8407 struct bpf_prog *new_prog;
8408
8409 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8410 if (IS_ERR(new_prog)) {
8411 if (PTR_ERR(new_prog) == -ERANGE)
8412 verbose(env,
8413 "insn %d cannot be patched due to 16-bit range\n",
8414 env->insn_aux_data[off].orig_idx);
8041902d 8415 return NULL;
4f73379e 8416 }
b325fbca 8417 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8418 return NULL;
cc8b0b92 8419 adjust_subprog_starts(env, off, len);
8041902d
AS
8420 return new_prog;
8421}
8422
52875a04
JK
8423static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8424 u32 off, u32 cnt)
8425{
8426 int i, j;
8427
8428 /* find first prog starting at or after off (first to remove) */
8429 for (i = 0; i < env->subprog_cnt; i++)
8430 if (env->subprog_info[i].start >= off)
8431 break;
8432 /* find first prog starting at or after off + cnt (first to stay) */
8433 for (j = i; j < env->subprog_cnt; j++)
8434 if (env->subprog_info[j].start >= off + cnt)
8435 break;
8436 /* if j doesn't start exactly at off + cnt, we are just removing
8437 * the front of previous prog
8438 */
8439 if (env->subprog_info[j].start != off + cnt)
8440 j--;
8441
8442 if (j > i) {
8443 struct bpf_prog_aux *aux = env->prog->aux;
8444 int move;
8445
8446 /* move fake 'exit' subprog as well */
8447 move = env->subprog_cnt + 1 - j;
8448
8449 memmove(env->subprog_info + i,
8450 env->subprog_info + j,
8451 sizeof(*env->subprog_info) * move);
8452 env->subprog_cnt -= j - i;
8453
8454 /* remove func_info */
8455 if (aux->func_info) {
8456 move = aux->func_info_cnt - j;
8457
8458 memmove(aux->func_info + i,
8459 aux->func_info + j,
8460 sizeof(*aux->func_info) * move);
8461 aux->func_info_cnt -= j - i;
8462 /* func_info->insn_off is set after all code rewrites,
8463 * in adjust_btf_func() - no need to adjust
8464 */
8465 }
8466 } else {
8467 /* convert i from "first prog to remove" to "first to adjust" */
8468 if (env->subprog_info[i].start == off)
8469 i++;
8470 }
8471
8472 /* update fake 'exit' subprog as well */
8473 for (; i <= env->subprog_cnt; i++)
8474 env->subprog_info[i].start -= cnt;
8475
8476 return 0;
8477}
8478
8479static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8480 u32 cnt)
8481{
8482 struct bpf_prog *prog = env->prog;
8483 u32 i, l_off, l_cnt, nr_linfo;
8484 struct bpf_line_info *linfo;
8485
8486 nr_linfo = prog->aux->nr_linfo;
8487 if (!nr_linfo)
8488 return 0;
8489
8490 linfo = prog->aux->linfo;
8491
8492 /* find first line info to remove, count lines to be removed */
8493 for (i = 0; i < nr_linfo; i++)
8494 if (linfo[i].insn_off >= off)
8495 break;
8496
8497 l_off = i;
8498 l_cnt = 0;
8499 for (; i < nr_linfo; i++)
8500 if (linfo[i].insn_off < off + cnt)
8501 l_cnt++;
8502 else
8503 break;
8504
8505 /* First live insn doesn't match first live linfo, it needs to "inherit"
8506 * last removed linfo. prog is already modified, so prog->len == off
8507 * means no live instructions after (tail of the program was removed).
8508 */
8509 if (prog->len != off && l_cnt &&
8510 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8511 l_cnt--;
8512 linfo[--i].insn_off = off + cnt;
8513 }
8514
8515 /* remove the line info which refer to the removed instructions */
8516 if (l_cnt) {
8517 memmove(linfo + l_off, linfo + i,
8518 sizeof(*linfo) * (nr_linfo - i));
8519
8520 prog->aux->nr_linfo -= l_cnt;
8521 nr_linfo = prog->aux->nr_linfo;
8522 }
8523
8524 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8525 for (i = l_off; i < nr_linfo; i++)
8526 linfo[i].insn_off -= cnt;
8527
8528 /* fix up all subprogs (incl. 'exit') which start >= off */
8529 for (i = 0; i <= env->subprog_cnt; i++)
8530 if (env->subprog_info[i].linfo_idx > l_off) {
8531 /* program may have started in the removed region but
8532 * may not be fully removed
8533 */
8534 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8535 env->subprog_info[i].linfo_idx -= l_cnt;
8536 else
8537 env->subprog_info[i].linfo_idx = l_off;
8538 }
8539
8540 return 0;
8541}
8542
8543static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8544{
8545 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8546 unsigned int orig_prog_len = env->prog->len;
8547 int err;
8548
08ca90af
JK
8549 if (bpf_prog_is_dev_bound(env->prog->aux))
8550 bpf_prog_offload_remove_insns(env, off, cnt);
8551
52875a04
JK
8552 err = bpf_remove_insns(env->prog, off, cnt);
8553 if (err)
8554 return err;
8555
8556 err = adjust_subprog_starts_after_remove(env, off, cnt);
8557 if (err)
8558 return err;
8559
8560 err = bpf_adj_linfo_after_remove(env, off, cnt);
8561 if (err)
8562 return err;
8563
8564 memmove(aux_data + off, aux_data + off + cnt,
8565 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8566
8567 return 0;
8568}
8569
2a5418a1
DB
8570/* The verifier does more data flow analysis than llvm and will not
8571 * explore branches that are dead at run time. Malicious programs can
8572 * have dead code too. Therefore replace all dead at-run-time code
8573 * with 'ja -1'.
8574 *
8575 * Just nops are not optimal, e.g. if they would sit at the end of the
8576 * program and through another bug we would manage to jump there, then
8577 * we'd execute beyond program memory otherwise. Returning exception
8578 * code also wouldn't work since we can have subprogs where the dead
8579 * code could be located.
c131187d
AS
8580 */
8581static void sanitize_dead_code(struct bpf_verifier_env *env)
8582{
8583 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8584 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8585 struct bpf_insn *insn = env->prog->insnsi;
8586 const int insn_cnt = env->prog->len;
8587 int i;
8588
8589 for (i = 0; i < insn_cnt; i++) {
8590 if (aux_data[i].seen)
8591 continue;
2a5418a1 8592 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8593 }
8594}
8595
e2ae4ca2
JK
8596static bool insn_is_cond_jump(u8 code)
8597{
8598 u8 op;
8599
092ed096
JW
8600 if (BPF_CLASS(code) == BPF_JMP32)
8601 return true;
8602
e2ae4ca2
JK
8603 if (BPF_CLASS(code) != BPF_JMP)
8604 return false;
8605
8606 op = BPF_OP(code);
8607 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8608}
8609
8610static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8611{
8612 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8613 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8614 struct bpf_insn *insn = env->prog->insnsi;
8615 const int insn_cnt = env->prog->len;
8616 int i;
8617
8618 for (i = 0; i < insn_cnt; i++, insn++) {
8619 if (!insn_is_cond_jump(insn->code))
8620 continue;
8621
8622 if (!aux_data[i + 1].seen)
8623 ja.off = insn->off;
8624 else if (!aux_data[i + 1 + insn->off].seen)
8625 ja.off = 0;
8626 else
8627 continue;
8628
08ca90af
JK
8629 if (bpf_prog_is_dev_bound(env->prog->aux))
8630 bpf_prog_offload_replace_insn(env, i, &ja);
8631
e2ae4ca2
JK
8632 memcpy(insn, &ja, sizeof(ja));
8633 }
8634}
8635
52875a04
JK
8636static int opt_remove_dead_code(struct bpf_verifier_env *env)
8637{
8638 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8639 int insn_cnt = env->prog->len;
8640 int i, err;
8641
8642 for (i = 0; i < insn_cnt; i++) {
8643 int j;
8644
8645 j = 0;
8646 while (i + j < insn_cnt && !aux_data[i + j].seen)
8647 j++;
8648 if (!j)
8649 continue;
8650
8651 err = verifier_remove_insns(env, i, j);
8652 if (err)
8653 return err;
8654 insn_cnt = env->prog->len;
8655 }
8656
8657 return 0;
8658}
8659
a1b14abc
JK
8660static int opt_remove_nops(struct bpf_verifier_env *env)
8661{
8662 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8663 struct bpf_insn *insn = env->prog->insnsi;
8664 int insn_cnt = env->prog->len;
8665 int i, err;
8666
8667 for (i = 0; i < insn_cnt; i++) {
8668 if (memcmp(&insn[i], &ja, sizeof(ja)))
8669 continue;
8670
8671 err = verifier_remove_insns(env, i, 1);
8672 if (err)
8673 return err;
8674 insn_cnt--;
8675 i--;
8676 }
8677
8678 return 0;
8679}
8680
d6c2308c
JW
8681static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8682 const union bpf_attr *attr)
a4b1d3c1 8683{
d6c2308c 8684 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8685 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8686 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8687 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8688 struct bpf_prog *new_prog;
d6c2308c 8689 bool rnd_hi32;
a4b1d3c1 8690
d6c2308c 8691 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8692 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8693 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8694 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8695 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8696 for (i = 0; i < len; i++) {
8697 int adj_idx = i + delta;
8698 struct bpf_insn insn;
8699
d6c2308c
JW
8700 insn = insns[adj_idx];
8701 if (!aux[adj_idx].zext_dst) {
8702 u8 code, class;
8703 u32 imm_rnd;
8704
8705 if (!rnd_hi32)
8706 continue;
8707
8708 code = insn.code;
8709 class = BPF_CLASS(code);
8710 if (insn_no_def(&insn))
8711 continue;
8712
8713 /* NOTE: arg "reg" (the fourth one) is only used for
8714 * BPF_STX which has been ruled out in above
8715 * check, it is safe to pass NULL here.
8716 */
8717 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8718 if (class == BPF_LD &&
8719 BPF_MODE(code) == BPF_IMM)
8720 i++;
8721 continue;
8722 }
8723
8724 /* ctx load could be transformed into wider load. */
8725 if (class == BPF_LDX &&
8726 aux[adj_idx].ptr_type == PTR_TO_CTX)
8727 continue;
8728
8729 imm_rnd = get_random_int();
8730 rnd_hi32_patch[0] = insn;
8731 rnd_hi32_patch[1].imm = imm_rnd;
8732 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8733 patch = rnd_hi32_patch;
8734 patch_len = 4;
8735 goto apply_patch_buffer;
8736 }
8737
8738 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8739 continue;
8740
a4b1d3c1
JW
8741 zext_patch[0] = insn;
8742 zext_patch[1].dst_reg = insn.dst_reg;
8743 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8744 patch = zext_patch;
8745 patch_len = 2;
8746apply_patch_buffer:
8747 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8748 if (!new_prog)
8749 return -ENOMEM;
8750 env->prog = new_prog;
8751 insns = new_prog->insnsi;
8752 aux = env->insn_aux_data;
d6c2308c 8753 delta += patch_len - 1;
a4b1d3c1
JW
8754 }
8755
8756 return 0;
8757}
8758
c64b7983
JS
8759/* convert load instructions that access fields of a context type into a
8760 * sequence of instructions that access fields of the underlying structure:
8761 * struct __sk_buff -> struct sk_buff
8762 * struct bpf_sock_ops -> struct sock
9bac3d6d 8763 */
58e2af8b 8764static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8765{
00176a34 8766 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8767 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8768 const int insn_cnt = env->prog->len;
36bbef52 8769 struct bpf_insn insn_buf[16], *insn;
46f53a65 8770 u32 target_size, size_default, off;
9bac3d6d 8771 struct bpf_prog *new_prog;
d691f9e8 8772 enum bpf_access_type type;
f96da094 8773 bool is_narrower_load;
9bac3d6d 8774
b09928b9
DB
8775 if (ops->gen_prologue || env->seen_direct_write) {
8776 if (!ops->gen_prologue) {
8777 verbose(env, "bpf verifier is misconfigured\n");
8778 return -EINVAL;
8779 }
36bbef52
DB
8780 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8781 env->prog);
8782 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8783 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8784 return -EINVAL;
8785 } else if (cnt) {
8041902d 8786 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8787 if (!new_prog)
8788 return -ENOMEM;
8041902d 8789
36bbef52 8790 env->prog = new_prog;
3df126f3 8791 delta += cnt - 1;
36bbef52
DB
8792 }
8793 }
8794
c64b7983 8795 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8796 return 0;
8797
3df126f3 8798 insn = env->prog->insnsi + delta;
36bbef52 8799
9bac3d6d 8800 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8801 bpf_convert_ctx_access_t convert_ctx_access;
8802
62c7989b
DB
8803 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8804 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8805 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8806 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8807 type = BPF_READ;
62c7989b
DB
8808 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8809 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8810 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8811 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8812 type = BPF_WRITE;
8813 else
9bac3d6d
AS
8814 continue;
8815
af86ca4e
AS
8816 if (type == BPF_WRITE &&
8817 env->insn_aux_data[i + delta].sanitize_stack_off) {
8818 struct bpf_insn patch[] = {
8819 /* Sanitize suspicious stack slot with zero.
8820 * There are no memory dependencies for this store,
8821 * since it's only using frame pointer and immediate
8822 * constant of zero
8823 */
8824 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8825 env->insn_aux_data[i + delta].sanitize_stack_off,
8826 0),
8827 /* the original STX instruction will immediately
8828 * overwrite the same stack slot with appropriate value
8829 */
8830 *insn,
8831 };
8832
8833 cnt = ARRAY_SIZE(patch);
8834 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8835 if (!new_prog)
8836 return -ENOMEM;
8837
8838 delta += cnt - 1;
8839 env->prog = new_prog;
8840 insn = new_prog->insnsi + i + delta;
8841 continue;
8842 }
8843
c64b7983
JS
8844 switch (env->insn_aux_data[i + delta].ptr_type) {
8845 case PTR_TO_CTX:
8846 if (!ops->convert_ctx_access)
8847 continue;
8848 convert_ctx_access = ops->convert_ctx_access;
8849 break;
8850 case PTR_TO_SOCKET:
46f8bc92 8851 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8852 convert_ctx_access = bpf_sock_convert_ctx_access;
8853 break;
655a51e5
MKL
8854 case PTR_TO_TCP_SOCK:
8855 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8856 break;
fada7fdc
JL
8857 case PTR_TO_XDP_SOCK:
8858 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8859 break;
2a02759e 8860 case PTR_TO_BTF_ID:
27ae7997
MKL
8861 if (type == BPF_READ) {
8862 insn->code = BPF_LDX | BPF_PROBE_MEM |
8863 BPF_SIZE((insn)->code);
8864 env->prog->aux->num_exentries++;
8865 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
8866 verbose(env, "Writes through BTF pointers are not allowed\n");
8867 return -EINVAL;
8868 }
2a02759e 8869 continue;
c64b7983 8870 default:
9bac3d6d 8871 continue;
c64b7983 8872 }
9bac3d6d 8873
31fd8581 8874 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8875 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8876
8877 /* If the read access is a narrower load of the field,
8878 * convert to a 4/8-byte load, to minimum program type specific
8879 * convert_ctx_access changes. If conversion is successful,
8880 * we will apply proper mask to the result.
8881 */
f96da094 8882 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8883 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8884 off = insn->off;
31fd8581 8885 if (is_narrower_load) {
f96da094
DB
8886 u8 size_code;
8887
8888 if (type == BPF_WRITE) {
61bd5218 8889 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8890 return -EINVAL;
8891 }
31fd8581 8892
f96da094 8893 size_code = BPF_H;
31fd8581
YS
8894 if (ctx_field_size == 4)
8895 size_code = BPF_W;
8896 else if (ctx_field_size == 8)
8897 size_code = BPF_DW;
f96da094 8898
bc23105c 8899 insn->off = off & ~(size_default - 1);
31fd8581
YS
8900 insn->code = BPF_LDX | BPF_MEM | size_code;
8901 }
f96da094
DB
8902
8903 target_size = 0;
c64b7983
JS
8904 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8905 &target_size);
f96da094
DB
8906 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8907 (ctx_field_size && !target_size)) {
61bd5218 8908 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8909 return -EINVAL;
8910 }
f96da094
DB
8911
8912 if (is_narrower_load && size < target_size) {
d895a0f1
IL
8913 u8 shift = bpf_ctx_narrow_access_offset(
8914 off, size, size_default) * 8;
46f53a65
AI
8915 if (ctx_field_size <= 4) {
8916 if (shift)
8917 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8918 insn->dst_reg,
8919 shift);
31fd8581 8920 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8921 (1 << size * 8) - 1);
46f53a65
AI
8922 } else {
8923 if (shift)
8924 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8925 insn->dst_reg,
8926 shift);
31fd8581 8927 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8928 (1ULL << size * 8) - 1);
46f53a65 8929 }
31fd8581 8930 }
9bac3d6d 8931
8041902d 8932 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8933 if (!new_prog)
8934 return -ENOMEM;
8935
3df126f3 8936 delta += cnt - 1;
9bac3d6d
AS
8937
8938 /* keep walking new program and skip insns we just inserted */
8939 env->prog = new_prog;
3df126f3 8940 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8941 }
8942
8943 return 0;
8944}
8945
1c2a088a
AS
8946static int jit_subprogs(struct bpf_verifier_env *env)
8947{
8948 struct bpf_prog *prog = env->prog, **func, *tmp;
8949 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8950 struct bpf_insn *insn;
1c2a088a 8951 void *old_bpf_func;
c454a46b 8952 int err;
1c2a088a 8953
f910cefa 8954 if (env->subprog_cnt <= 1)
1c2a088a
AS
8955 return 0;
8956
7105e828 8957 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8958 if (insn->code != (BPF_JMP | BPF_CALL) ||
8959 insn->src_reg != BPF_PSEUDO_CALL)
8960 continue;
c7a89784
DB
8961 /* Upon error here we cannot fall back to interpreter but
8962 * need a hard reject of the program. Thus -EFAULT is
8963 * propagated in any case.
8964 */
1c2a088a
AS
8965 subprog = find_subprog(env, i + insn->imm + 1);
8966 if (subprog < 0) {
8967 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8968 i + insn->imm + 1);
8969 return -EFAULT;
8970 }
8971 /* temporarily remember subprog id inside insn instead of
8972 * aux_data, since next loop will split up all insns into funcs
8973 */
f910cefa 8974 insn->off = subprog;
1c2a088a
AS
8975 /* remember original imm in case JIT fails and fallback
8976 * to interpreter will be needed
8977 */
8978 env->insn_aux_data[i].call_imm = insn->imm;
8979 /* point imm to __bpf_call_base+1 from JITs point of view */
8980 insn->imm = 1;
8981 }
8982
c454a46b
MKL
8983 err = bpf_prog_alloc_jited_linfo(prog);
8984 if (err)
8985 goto out_undo_insn;
8986
8987 err = -ENOMEM;
6396bb22 8988 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8989 if (!func)
c7a89784 8990 goto out_undo_insn;
1c2a088a 8991
f910cefa 8992 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8993 subprog_start = subprog_end;
4cb3d99c 8994 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8995
8996 len = subprog_end - subprog_start;
492ecee8
AS
8997 /* BPF_PROG_RUN doesn't call subprogs directly,
8998 * hence main prog stats include the runtime of subprogs.
8999 * subprogs don't have IDs and not reachable via prog_get_next_id
9000 * func[i]->aux->stats will never be accessed and stays NULL
9001 */
9002 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
9003 if (!func[i])
9004 goto out_free;
9005 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9006 len * sizeof(struct bpf_insn));
4f74d809 9007 func[i]->type = prog->type;
1c2a088a 9008 func[i]->len = len;
4f74d809
DB
9009 if (bpf_prog_calc_tag(func[i]))
9010 goto out_free;
1c2a088a 9011 func[i]->is_func = 1;
ba64e7d8
YS
9012 func[i]->aux->func_idx = i;
9013 /* the btf and func_info will be freed only at prog->aux */
9014 func[i]->aux->btf = prog->aux->btf;
9015 func[i]->aux->func_info = prog->aux->func_info;
9016
1c2a088a
AS
9017 /* Use bpf_prog_F_tag to indicate functions in stack traces.
9018 * Long term would need debug info to populate names
9019 */
9020 func[i]->aux->name[0] = 'F';
9c8105bd 9021 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 9022 func[i]->jit_requested = 1;
c454a46b
MKL
9023 func[i]->aux->linfo = prog->aux->linfo;
9024 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9025 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9026 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
9027 func[i] = bpf_int_jit_compile(func[i]);
9028 if (!func[i]->jited) {
9029 err = -ENOTSUPP;
9030 goto out_free;
9031 }
9032 cond_resched();
9033 }
9034 /* at this point all bpf functions were successfully JITed
9035 * now populate all bpf_calls with correct addresses and
9036 * run last pass of JIT
9037 */
f910cefa 9038 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9039 insn = func[i]->insnsi;
9040 for (j = 0; j < func[i]->len; j++, insn++) {
9041 if (insn->code != (BPF_JMP | BPF_CALL) ||
9042 insn->src_reg != BPF_PSEUDO_CALL)
9043 continue;
9044 subprog = insn->off;
0d306c31
PB
9045 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9046 __bpf_call_base;
1c2a088a 9047 }
2162fed4
SD
9048
9049 /* we use the aux data to keep a list of the start addresses
9050 * of the JITed images for each function in the program
9051 *
9052 * for some architectures, such as powerpc64, the imm field
9053 * might not be large enough to hold the offset of the start
9054 * address of the callee's JITed image from __bpf_call_base
9055 *
9056 * in such cases, we can lookup the start address of a callee
9057 * by using its subprog id, available from the off field of
9058 * the call instruction, as an index for this list
9059 */
9060 func[i]->aux->func = func;
9061 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 9062 }
f910cefa 9063 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9064 old_bpf_func = func[i]->bpf_func;
9065 tmp = bpf_int_jit_compile(func[i]);
9066 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9067 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 9068 err = -ENOTSUPP;
1c2a088a
AS
9069 goto out_free;
9070 }
9071 cond_resched();
9072 }
9073
9074 /* finally lock prog and jit images for all functions and
9075 * populate kallsysm
9076 */
f910cefa 9077 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9078 bpf_prog_lock_ro(func[i]);
9079 bpf_prog_kallsyms_add(func[i]);
9080 }
7105e828
DB
9081
9082 /* Last step: make now unused interpreter insns from main
9083 * prog consistent for later dump requests, so they can
9084 * later look the same as if they were interpreted only.
9085 */
9086 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
9087 if (insn->code != (BPF_JMP | BPF_CALL) ||
9088 insn->src_reg != BPF_PSEUDO_CALL)
9089 continue;
9090 insn->off = env->insn_aux_data[i].call_imm;
9091 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 9092 insn->imm = subprog;
7105e828
DB
9093 }
9094
1c2a088a
AS
9095 prog->jited = 1;
9096 prog->bpf_func = func[0]->bpf_func;
9097 prog->aux->func = func;
f910cefa 9098 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 9099 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
9100 return 0;
9101out_free:
f910cefa 9102 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
9103 if (func[i])
9104 bpf_jit_free(func[i]);
9105 kfree(func);
c7a89784 9106out_undo_insn:
1c2a088a
AS
9107 /* cleanup main prog to be interpreted */
9108 prog->jit_requested = 0;
9109 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9110 if (insn->code != (BPF_JMP | BPF_CALL) ||
9111 insn->src_reg != BPF_PSEUDO_CALL)
9112 continue;
9113 insn->off = 0;
9114 insn->imm = env->insn_aux_data[i].call_imm;
9115 }
c454a46b 9116 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
9117 return err;
9118}
9119
1ea47e01
AS
9120static int fixup_call_args(struct bpf_verifier_env *env)
9121{
19d28fbd 9122#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9123 struct bpf_prog *prog = env->prog;
9124 struct bpf_insn *insn = prog->insnsi;
9125 int i, depth;
19d28fbd 9126#endif
e4052d06 9127 int err = 0;
1ea47e01 9128
e4052d06
QM
9129 if (env->prog->jit_requested &&
9130 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
9131 err = jit_subprogs(env);
9132 if (err == 0)
1c2a088a 9133 return 0;
c7a89784
DB
9134 if (err == -EFAULT)
9135 return err;
19d28fbd
DM
9136 }
9137#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9138 for (i = 0; i < prog->len; i++, insn++) {
9139 if (insn->code != (BPF_JMP | BPF_CALL) ||
9140 insn->src_reg != BPF_PSEUDO_CALL)
9141 continue;
9142 depth = get_callee_stack_depth(env, insn, i);
9143 if (depth < 0)
9144 return depth;
9145 bpf_patch_call_args(insn, depth);
9146 }
19d28fbd
DM
9147 err = 0;
9148#endif
9149 return err;
1ea47e01
AS
9150}
9151
79741b3b 9152/* fixup insn->imm field of bpf_call instructions
81ed18ab 9153 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
9154 *
9155 * this function is called after eBPF program passed verification
9156 */
79741b3b 9157static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 9158{
79741b3b 9159 struct bpf_prog *prog = env->prog;
d2e4c1e6 9160 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 9161 struct bpf_insn *insn = prog->insnsi;
e245c5c6 9162 const struct bpf_func_proto *fn;
79741b3b 9163 const int insn_cnt = prog->len;
09772d92 9164 const struct bpf_map_ops *ops;
c93552c4 9165 struct bpf_insn_aux_data *aux;
81ed18ab
AS
9166 struct bpf_insn insn_buf[16];
9167 struct bpf_prog *new_prog;
9168 struct bpf_map *map_ptr;
d2e4c1e6 9169 int i, ret, cnt, delta = 0;
e245c5c6 9170
79741b3b 9171 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
9172 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9173 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9174 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 9175 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
9176 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9177 struct bpf_insn mask_and_div[] = {
9178 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9179 /* Rx div 0 -> 0 */
9180 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9181 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9182 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9183 *insn,
9184 };
9185 struct bpf_insn mask_and_mod[] = {
9186 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9187 /* Rx mod 0 -> Rx */
9188 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9189 *insn,
9190 };
9191 struct bpf_insn *patchlet;
9192
9193 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9194 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9195 patchlet = mask_and_div + (is64 ? 1 : 0);
9196 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9197 } else {
9198 patchlet = mask_and_mod + (is64 ? 1 : 0);
9199 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9200 }
9201
9202 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
9203 if (!new_prog)
9204 return -ENOMEM;
9205
9206 delta += cnt - 1;
9207 env->prog = prog = new_prog;
9208 insn = new_prog->insnsi + i + delta;
9209 continue;
9210 }
9211
e0cea7ce
DB
9212 if (BPF_CLASS(insn->code) == BPF_LD &&
9213 (BPF_MODE(insn->code) == BPF_ABS ||
9214 BPF_MODE(insn->code) == BPF_IND)) {
9215 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9216 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9217 verbose(env, "bpf verifier is misconfigured\n");
9218 return -EINVAL;
9219 }
9220
9221 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9222 if (!new_prog)
9223 return -ENOMEM;
9224
9225 delta += cnt - 1;
9226 env->prog = prog = new_prog;
9227 insn = new_prog->insnsi + i + delta;
9228 continue;
9229 }
9230
979d63d5
DB
9231 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9232 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9233 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9234 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9235 struct bpf_insn insn_buf[16];
9236 struct bpf_insn *patch = &insn_buf[0];
9237 bool issrc, isneg;
9238 u32 off_reg;
9239
9240 aux = &env->insn_aux_data[i + delta];
3612af78
DB
9241 if (!aux->alu_state ||
9242 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
9243 continue;
9244
9245 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9246 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9247 BPF_ALU_SANITIZE_SRC;
9248
9249 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9250 if (isneg)
9251 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9252 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9253 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9254 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9255 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9256 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9257 if (issrc) {
9258 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9259 off_reg);
9260 insn->src_reg = BPF_REG_AX;
9261 } else {
9262 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9263 BPF_REG_AX);
9264 }
9265 if (isneg)
9266 insn->code = insn->code == code_add ?
9267 code_sub : code_add;
9268 *patch++ = *insn;
9269 if (issrc && isneg)
9270 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9271 cnt = patch - insn_buf;
9272
9273 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9274 if (!new_prog)
9275 return -ENOMEM;
9276
9277 delta += cnt - 1;
9278 env->prog = prog = new_prog;
9279 insn = new_prog->insnsi + i + delta;
9280 continue;
9281 }
9282
79741b3b
AS
9283 if (insn->code != (BPF_JMP | BPF_CALL))
9284 continue;
cc8b0b92
AS
9285 if (insn->src_reg == BPF_PSEUDO_CALL)
9286 continue;
e245c5c6 9287
79741b3b
AS
9288 if (insn->imm == BPF_FUNC_get_route_realm)
9289 prog->dst_needed = 1;
9290 if (insn->imm == BPF_FUNC_get_prandom_u32)
9291 bpf_user_rnd_init_once();
9802d865
JB
9292 if (insn->imm == BPF_FUNC_override_return)
9293 prog->kprobe_override = 1;
79741b3b 9294 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9295 /* If we tail call into other programs, we
9296 * cannot make any assumptions since they can
9297 * be replaced dynamically during runtime in
9298 * the program array.
9299 */
9300 prog->cb_access = 1;
80a58d02 9301 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9302 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9303
79741b3b
AS
9304 /* mark bpf_tail_call as different opcode to avoid
9305 * conditional branch in the interpeter for every normal
9306 * call and to prevent accidental JITing by JIT compiler
9307 * that doesn't support bpf_tail_call yet
e245c5c6 9308 */
79741b3b 9309 insn->imm = 0;
71189fa9 9310 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9311
c93552c4 9312 aux = &env->insn_aux_data[i + delta];
cc52d914
DB
9313 if (env->allow_ptr_leaks && !expect_blinding &&
9314 prog->jit_requested &&
d2e4c1e6
DB
9315 !bpf_map_key_poisoned(aux) &&
9316 !bpf_map_ptr_poisoned(aux) &&
9317 !bpf_map_ptr_unpriv(aux)) {
9318 struct bpf_jit_poke_descriptor desc = {
9319 .reason = BPF_POKE_REASON_TAIL_CALL,
9320 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9321 .tail_call.key = bpf_map_key_immediate(aux),
9322 };
9323
9324 ret = bpf_jit_add_poke_descriptor(prog, &desc);
9325 if (ret < 0) {
9326 verbose(env, "adding tail call poke descriptor failed\n");
9327 return ret;
9328 }
9329
9330 insn->imm = ret + 1;
9331 continue;
9332 }
9333
c93552c4
DB
9334 if (!bpf_map_ptr_unpriv(aux))
9335 continue;
9336
b2157399
AS
9337 /* instead of changing every JIT dealing with tail_call
9338 * emit two extra insns:
9339 * if (index >= max_entries) goto out;
9340 * index &= array->index_mask;
9341 * to avoid out-of-bounds cpu speculation
9342 */
c93552c4 9343 if (bpf_map_ptr_poisoned(aux)) {
40950343 9344 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9345 return -EINVAL;
9346 }
c93552c4 9347
d2e4c1e6 9348 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
9349 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9350 map_ptr->max_entries, 2);
9351 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9352 container_of(map_ptr,
9353 struct bpf_array,
9354 map)->index_mask);
9355 insn_buf[2] = *insn;
9356 cnt = 3;
9357 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9358 if (!new_prog)
9359 return -ENOMEM;
9360
9361 delta += cnt - 1;
9362 env->prog = prog = new_prog;
9363 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9364 continue;
9365 }
e245c5c6 9366
89c63074 9367 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9368 * and other inlining handlers are currently limited to 64 bit
9369 * only.
89c63074 9370 */
60b58afc 9371 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9372 (insn->imm == BPF_FUNC_map_lookup_elem ||
9373 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9374 insn->imm == BPF_FUNC_map_delete_elem ||
9375 insn->imm == BPF_FUNC_map_push_elem ||
9376 insn->imm == BPF_FUNC_map_pop_elem ||
9377 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9378 aux = &env->insn_aux_data[i + delta];
9379 if (bpf_map_ptr_poisoned(aux))
9380 goto patch_call_imm;
9381
d2e4c1e6 9382 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
9383 ops = map_ptr->ops;
9384 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9385 ops->map_gen_lookup) {
9386 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9387 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9388 verbose(env, "bpf verifier is misconfigured\n");
9389 return -EINVAL;
9390 }
81ed18ab 9391
09772d92
DB
9392 new_prog = bpf_patch_insn_data(env, i + delta,
9393 insn_buf, cnt);
9394 if (!new_prog)
9395 return -ENOMEM;
81ed18ab 9396
09772d92
DB
9397 delta += cnt - 1;
9398 env->prog = prog = new_prog;
9399 insn = new_prog->insnsi + i + delta;
9400 continue;
9401 }
81ed18ab 9402
09772d92
DB
9403 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9404 (void *(*)(struct bpf_map *map, void *key))NULL));
9405 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9406 (int (*)(struct bpf_map *map, void *key))NULL));
9407 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9408 (int (*)(struct bpf_map *map, void *key, void *value,
9409 u64 flags))NULL));
84430d42
DB
9410 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9411 (int (*)(struct bpf_map *map, void *value,
9412 u64 flags))NULL));
9413 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9414 (int (*)(struct bpf_map *map, void *value))NULL));
9415 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9416 (int (*)(struct bpf_map *map, void *value))NULL));
9417
09772d92
DB
9418 switch (insn->imm) {
9419 case BPF_FUNC_map_lookup_elem:
9420 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9421 __bpf_call_base;
9422 continue;
9423 case BPF_FUNC_map_update_elem:
9424 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9425 __bpf_call_base;
9426 continue;
9427 case BPF_FUNC_map_delete_elem:
9428 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9429 __bpf_call_base;
9430 continue;
84430d42
DB
9431 case BPF_FUNC_map_push_elem:
9432 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9433 __bpf_call_base;
9434 continue;
9435 case BPF_FUNC_map_pop_elem:
9436 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9437 __bpf_call_base;
9438 continue;
9439 case BPF_FUNC_map_peek_elem:
9440 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9441 __bpf_call_base;
9442 continue;
09772d92 9443 }
81ed18ab 9444
09772d92 9445 goto patch_call_imm;
81ed18ab
AS
9446 }
9447
9448patch_call_imm:
5e43f899 9449 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9450 /* all functions that have prototype and verifier allowed
9451 * programs to call them, must be real in-kernel functions
9452 */
9453 if (!fn->func) {
61bd5218
JK
9454 verbose(env,
9455 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9456 func_id_name(insn->imm), insn->imm);
9457 return -EFAULT;
e245c5c6 9458 }
79741b3b 9459 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9460 }
e245c5c6 9461
d2e4c1e6
DB
9462 /* Since poke tab is now finalized, publish aux to tracker. */
9463 for (i = 0; i < prog->aux->size_poke_tab; i++) {
9464 map_ptr = prog->aux->poke_tab[i].tail_call.map;
9465 if (!map_ptr->ops->map_poke_track ||
9466 !map_ptr->ops->map_poke_untrack ||
9467 !map_ptr->ops->map_poke_run) {
9468 verbose(env, "bpf verifier is misconfigured\n");
9469 return -EINVAL;
9470 }
9471
9472 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9473 if (ret < 0) {
9474 verbose(env, "tracking tail call prog failed\n");
9475 return ret;
9476 }
9477 }
9478
79741b3b
AS
9479 return 0;
9480}
e245c5c6 9481
58e2af8b 9482static void free_states(struct bpf_verifier_env *env)
f1bca824 9483{
58e2af8b 9484 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9485 int i;
9486
9f4686c4
AS
9487 sl = env->free_list;
9488 while (sl) {
9489 sln = sl->next;
9490 free_verifier_state(&sl->state, false);
9491 kfree(sl);
9492 sl = sln;
9493 }
51c39bb1 9494 env->free_list = NULL;
9f4686c4 9495
f1bca824
AS
9496 if (!env->explored_states)
9497 return;
9498
dc2a4ebc 9499 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9500 sl = env->explored_states[i];
9501
a8f500af
AS
9502 while (sl) {
9503 sln = sl->next;
9504 free_verifier_state(&sl->state, false);
9505 kfree(sl);
9506 sl = sln;
9507 }
51c39bb1 9508 env->explored_states[i] = NULL;
f1bca824 9509 }
51c39bb1 9510}
f1bca824 9511
51c39bb1
AS
9512/* The verifier is using insn_aux_data[] to store temporary data during
9513 * verification and to store information for passes that run after the
9514 * verification like dead code sanitization. do_check_common() for subprogram N
9515 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
9516 * temporary data after do_check_common() finds that subprogram N cannot be
9517 * verified independently. pass_cnt counts the number of times
9518 * do_check_common() was run and insn->aux->seen tells the pass number
9519 * insn_aux_data was touched. These variables are compared to clear temporary
9520 * data from failed pass. For testing and experiments do_check_common() can be
9521 * run multiple times even when prior attempt to verify is unsuccessful.
9522 */
9523static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
9524{
9525 struct bpf_insn *insn = env->prog->insnsi;
9526 struct bpf_insn_aux_data *aux;
9527 int i, class;
9528
9529 for (i = 0; i < env->prog->len; i++) {
9530 class = BPF_CLASS(insn[i].code);
9531 if (class != BPF_LDX && class != BPF_STX)
9532 continue;
9533 aux = &env->insn_aux_data[i];
9534 if (aux->seen != env->pass_cnt)
9535 continue;
9536 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
9537 }
f1bca824
AS
9538}
9539
51c39bb1
AS
9540static int do_check_common(struct bpf_verifier_env *env, int subprog)
9541{
9542 struct bpf_verifier_state *state;
9543 struct bpf_reg_state *regs;
9544 int ret, i;
9545
9546 env->prev_linfo = NULL;
9547 env->pass_cnt++;
9548
9549 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
9550 if (!state)
9551 return -ENOMEM;
9552 state->curframe = 0;
9553 state->speculative = false;
9554 state->branches = 1;
9555 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
9556 if (!state->frame[0]) {
9557 kfree(state);
9558 return -ENOMEM;
9559 }
9560 env->cur_state = state;
9561 init_func_state(env, state->frame[0],
9562 BPF_MAIN_FUNC /* callsite */,
9563 0 /* frameno */,
9564 subprog);
9565
9566 regs = state->frame[state->curframe]->regs;
9567 if (subprog) {
9568 ret = btf_prepare_func_args(env, subprog, regs);
9569 if (ret)
9570 goto out;
9571 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
9572 if (regs[i].type == PTR_TO_CTX)
9573 mark_reg_known_zero(env, regs, i);
9574 else if (regs[i].type == SCALAR_VALUE)
9575 mark_reg_unknown(env, regs, i);
9576 }
9577 } else {
9578 /* 1st arg to a function */
9579 regs[BPF_REG_1].type = PTR_TO_CTX;
9580 mark_reg_known_zero(env, regs, BPF_REG_1);
9581 ret = btf_check_func_arg_match(env, subprog, regs);
9582 if (ret == -EFAULT)
9583 /* unlikely verifier bug. abort.
9584 * ret == 0 and ret < 0 are sadly acceptable for
9585 * main() function due to backward compatibility.
9586 * Like socket filter program may be written as:
9587 * int bpf_prog(struct pt_regs *ctx)
9588 * and never dereference that ctx in the program.
9589 * 'struct pt_regs' is a type mismatch for socket
9590 * filter that should be using 'struct __sk_buff'.
9591 */
9592 goto out;
9593 }
9594
9595 ret = do_check(env);
9596out:
f59bbfc2
AS
9597 /* check for NULL is necessary, since cur_state can be freed inside
9598 * do_check() under memory pressure.
9599 */
9600 if (env->cur_state) {
9601 free_verifier_state(env->cur_state, true);
9602 env->cur_state = NULL;
9603 }
51c39bb1
AS
9604 while (!pop_stack(env, NULL, NULL));
9605 free_states(env);
9606 if (ret)
9607 /* clean aux data in case subprog was rejected */
9608 sanitize_insn_aux_data(env);
9609 return ret;
9610}
9611
9612/* Verify all global functions in a BPF program one by one based on their BTF.
9613 * All global functions must pass verification. Otherwise the whole program is rejected.
9614 * Consider:
9615 * int bar(int);
9616 * int foo(int f)
9617 * {
9618 * return bar(f);
9619 * }
9620 * int bar(int b)
9621 * {
9622 * ...
9623 * }
9624 * foo() will be verified first for R1=any_scalar_value. During verification it
9625 * will be assumed that bar() already verified successfully and call to bar()
9626 * from foo() will be checked for type match only. Later bar() will be verified
9627 * independently to check that it's safe for R1=any_scalar_value.
9628 */
9629static int do_check_subprogs(struct bpf_verifier_env *env)
9630{
9631 struct bpf_prog_aux *aux = env->prog->aux;
9632 int i, ret;
9633
9634 if (!aux->func_info)
9635 return 0;
9636
9637 for (i = 1; i < env->subprog_cnt; i++) {
9638 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
9639 continue;
9640 env->insn_idx = env->subprog_info[i].start;
9641 WARN_ON_ONCE(env->insn_idx == 0);
9642 ret = do_check_common(env, i);
9643 if (ret) {
9644 return ret;
9645 } else if (env->log.level & BPF_LOG_LEVEL) {
9646 verbose(env,
9647 "Func#%d is safe for any args that match its prototype\n",
9648 i);
9649 }
9650 }
9651 return 0;
9652}
9653
9654static int do_check_main(struct bpf_verifier_env *env)
9655{
9656 int ret;
9657
9658 env->insn_idx = 0;
9659 ret = do_check_common(env, 0);
9660 if (!ret)
9661 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
9662 return ret;
9663}
9664
9665
06ee7115
AS
9666static void print_verification_stats(struct bpf_verifier_env *env)
9667{
9668 int i;
9669
9670 if (env->log.level & BPF_LOG_STATS) {
9671 verbose(env, "verification time %lld usec\n",
9672 div_u64(env->verification_time, 1000));
9673 verbose(env, "stack depth ");
9674 for (i = 0; i < env->subprog_cnt; i++) {
9675 u32 depth = env->subprog_info[i].stack_depth;
9676
9677 verbose(env, "%d", depth);
9678 if (i + 1 < env->subprog_cnt)
9679 verbose(env, "+");
9680 }
9681 verbose(env, "\n");
9682 }
9683 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9684 "total_states %d peak_states %d mark_read %d\n",
9685 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9686 env->max_states_per_insn, env->total_states,
9687 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9688}
9689
27ae7997
MKL
9690static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
9691{
9692 const struct btf_type *t, *func_proto;
9693 const struct bpf_struct_ops *st_ops;
9694 const struct btf_member *member;
9695 struct bpf_prog *prog = env->prog;
9696 u32 btf_id, member_idx;
9697 const char *mname;
9698
9699 btf_id = prog->aux->attach_btf_id;
9700 st_ops = bpf_struct_ops_find(btf_id);
9701 if (!st_ops) {
9702 verbose(env, "attach_btf_id %u is not a supported struct\n",
9703 btf_id);
9704 return -ENOTSUPP;
9705 }
9706
9707 t = st_ops->type;
9708 member_idx = prog->expected_attach_type;
9709 if (member_idx >= btf_type_vlen(t)) {
9710 verbose(env, "attach to invalid member idx %u of struct %s\n",
9711 member_idx, st_ops->name);
9712 return -EINVAL;
9713 }
9714
9715 member = &btf_type_member(t)[member_idx];
9716 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
9717 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
9718 NULL);
9719 if (!func_proto) {
9720 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
9721 mname, member_idx, st_ops->name);
9722 return -EINVAL;
9723 }
9724
9725 if (st_ops->check_member) {
9726 int err = st_ops->check_member(t, member);
9727
9728 if (err) {
9729 verbose(env, "attach to unsupported member %s of struct %s\n",
9730 mname, st_ops->name);
9731 return err;
9732 }
9733 }
9734
9735 prog->aux->attach_func_proto = func_proto;
9736 prog->aux->attach_func_name = mname;
9737 env->ops = st_ops->verifier_ops;
9738
9739 return 0;
9740}
9741
38207291
MKL
9742static int check_attach_btf_id(struct bpf_verifier_env *env)
9743{
9744 struct bpf_prog *prog = env->prog;
5b92a28a 9745 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 9746 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 9747 const char prefix[] = "btf_trace_";
5b92a28a 9748 int ret = 0, subprog = -1, i;
fec56f58 9749 struct bpf_trampoline *tr;
38207291 9750 const struct btf_type *t;
5b92a28a 9751 bool conservative = true;
38207291 9752 const char *tname;
5b92a28a 9753 struct btf *btf;
fec56f58 9754 long addr;
5b92a28a 9755 u64 key;
38207291 9756
27ae7997
MKL
9757 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
9758 return check_struct_ops_btf_id(env);
9759
f1b9509c
AS
9760 if (prog->type != BPF_PROG_TYPE_TRACING)
9761 return 0;
38207291 9762
f1b9509c
AS
9763 if (!btf_id) {
9764 verbose(env, "Tracing programs must provide btf_id\n");
9765 return -EINVAL;
9766 }
5b92a28a
AS
9767 btf = bpf_prog_get_target_btf(prog);
9768 if (!btf) {
9769 verbose(env,
9770 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9771 return -EINVAL;
9772 }
9773 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
9774 if (!t) {
9775 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9776 return -EINVAL;
9777 }
5b92a28a 9778 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
9779 if (!tname) {
9780 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9781 return -EINVAL;
9782 }
5b92a28a
AS
9783 if (tgt_prog) {
9784 struct bpf_prog_aux *aux = tgt_prog->aux;
9785
9786 for (i = 0; i < aux->func_info_cnt; i++)
9787 if (aux->func_info[i].type_id == btf_id) {
9788 subprog = i;
9789 break;
9790 }
9791 if (subprog == -1) {
9792 verbose(env, "Subprog %s doesn't exist\n", tname);
9793 return -EINVAL;
9794 }
9795 conservative = aux->func_info_aux[subprog].unreliable;
9796 key = ((u64)aux->id) << 32 | btf_id;
9797 } else {
9798 key = btf_id;
9799 }
f1b9509c
AS
9800
9801 switch (prog->expected_attach_type) {
9802 case BPF_TRACE_RAW_TP:
5b92a28a
AS
9803 if (tgt_prog) {
9804 verbose(env,
9805 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9806 return -EINVAL;
9807 }
38207291
MKL
9808 if (!btf_type_is_typedef(t)) {
9809 verbose(env, "attach_btf_id %u is not a typedef\n",
9810 btf_id);
9811 return -EINVAL;
9812 }
f1b9509c 9813 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
9814 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9815 btf_id, tname);
9816 return -EINVAL;
9817 }
9818 tname += sizeof(prefix) - 1;
5b92a28a 9819 t = btf_type_by_id(btf, t->type);
38207291
MKL
9820 if (!btf_type_is_ptr(t))
9821 /* should never happen in valid vmlinux build */
9822 return -EINVAL;
5b92a28a 9823 t = btf_type_by_id(btf, t->type);
38207291
MKL
9824 if (!btf_type_is_func_proto(t))
9825 /* should never happen in valid vmlinux build */
9826 return -EINVAL;
9827
9828 /* remember two read only pointers that are valid for
9829 * the life time of the kernel
9830 */
9831 prog->aux->attach_func_name = tname;
9832 prog->aux->attach_func_proto = t;
9833 prog->aux->attach_btf_trace = true;
f1b9509c 9834 return 0;
fec56f58
AS
9835 case BPF_TRACE_FENTRY:
9836 case BPF_TRACE_FEXIT:
9837 if (!btf_type_is_func(t)) {
9838 verbose(env, "attach_btf_id %u is not a function\n",
9839 btf_id);
9840 return -EINVAL;
9841 }
5b92a28a 9842 t = btf_type_by_id(btf, t->type);
fec56f58
AS
9843 if (!btf_type_is_func_proto(t))
9844 return -EINVAL;
5b92a28a 9845 tr = bpf_trampoline_lookup(key);
fec56f58
AS
9846 if (!tr)
9847 return -ENOMEM;
9848 prog->aux->attach_func_name = tname;
5b92a28a 9849 /* t is either vmlinux type or another program's type */
fec56f58
AS
9850 prog->aux->attach_func_proto = t;
9851 mutex_lock(&tr->mutex);
9852 if (tr->func.addr) {
9853 prog->aux->trampoline = tr;
9854 goto out;
9855 }
5b92a28a
AS
9856 if (tgt_prog && conservative) {
9857 prog->aux->attach_func_proto = NULL;
9858 t = NULL;
9859 }
9860 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
9861 tname, &tr->func.model);
9862 if (ret < 0)
9863 goto out;
5b92a28a
AS
9864 if (tgt_prog) {
9865 if (!tgt_prog->jited) {
9866 /* for now */
9867 verbose(env, "Can trace only JITed BPF progs\n");
9868 ret = -EINVAL;
9869 goto out;
9870 }
9871 if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
9872 /* prevent cycles */
9873 verbose(env, "Cannot recursively attach\n");
9874 ret = -EINVAL;
9875 goto out;
9876 }
e9eeec58
YS
9877 if (subprog == 0)
9878 addr = (long) tgt_prog->bpf_func;
9879 else
9880 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
9881 } else {
9882 addr = kallsyms_lookup_name(tname);
9883 if (!addr) {
9884 verbose(env,
9885 "The address of function %s cannot be found\n",
9886 tname);
9887 ret = -ENOENT;
9888 goto out;
9889 }
fec56f58
AS
9890 }
9891 tr->func.addr = (void *)addr;
9892 prog->aux->trampoline = tr;
9893out:
9894 mutex_unlock(&tr->mutex);
9895 if (ret)
9896 bpf_trampoline_put(tr);
9897 return ret;
f1b9509c
AS
9898 default:
9899 return -EINVAL;
38207291 9900 }
38207291
MKL
9901}
9902
838e9690
YS
9903int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9904 union bpf_attr __user *uattr)
51580e79 9905{
06ee7115 9906 u64 start_time = ktime_get_ns();
58e2af8b 9907 struct bpf_verifier_env *env;
b9193c1b 9908 struct bpf_verifier_log *log;
9e4c24e7 9909 int i, len, ret = -EINVAL;
e2ae4ca2 9910 bool is_priv;
51580e79 9911
eba0c929
AB
9912 /* no program is valid */
9913 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9914 return -EINVAL;
9915
58e2af8b 9916 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9917 * allocate/free it every time bpf_check() is called
9918 */
58e2af8b 9919 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9920 if (!env)
9921 return -ENOMEM;
61bd5218 9922 log = &env->log;
cbd35700 9923
9e4c24e7 9924 len = (*prog)->len;
fad953ce 9925 env->insn_aux_data =
9e4c24e7 9926 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9927 ret = -ENOMEM;
9928 if (!env->insn_aux_data)
9929 goto err_free_env;
9e4c24e7
JK
9930 for (i = 0; i < len; i++)
9931 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9932 env->prog = *prog;
00176a34 9933 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9934 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9935
8580ac94
AS
9936 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9937 mutex_lock(&bpf_verifier_lock);
9938 if (!btf_vmlinux)
9939 btf_vmlinux = btf_parse_vmlinux();
9940 mutex_unlock(&bpf_verifier_lock);
9941 }
9942
cbd35700 9943 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9944 if (!is_priv)
9945 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9946
9947 if (attr->log_level || attr->log_buf || attr->log_size) {
9948 /* user requested verbose verifier output
9949 * and supplied buffer to store the verification trace
9950 */
e7bf8249
JK
9951 log->level = attr->log_level;
9952 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9953 log->len_total = attr->log_size;
cbd35700
AS
9954
9955 ret = -EINVAL;
e7bf8249 9956 /* log attributes have to be sane */
7a9f5c65 9957 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9958 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9959 goto err_unlock;
cbd35700 9960 }
1ad2f583 9961
8580ac94
AS
9962 if (IS_ERR(btf_vmlinux)) {
9963 /* Either gcc or pahole or kernel are broken. */
9964 verbose(env, "in-kernel BTF is malformed\n");
9965 ret = PTR_ERR(btf_vmlinux);
38207291 9966 goto skip_full_check;
8580ac94
AS
9967 }
9968
38207291
MKL
9969 ret = check_attach_btf_id(env);
9970 if (ret)
9971 goto skip_full_check;
9972
1ad2f583
DB
9973 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9974 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9975 env->strict_alignment = true;
e9ee9efc
DM
9976 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9977 env->strict_alignment = false;
cbd35700 9978
e2ae4ca2
JK
9979 env->allow_ptr_leaks = is_priv;
9980
10d274e8
AS
9981 if (is_priv)
9982 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9983
f4e3ec0d
JK
9984 ret = replace_map_fd_with_map_ptr(env);
9985 if (ret < 0)
9986 goto skip_full_check;
9987
cae1927c 9988 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9989 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9990 if (ret)
f4e3ec0d 9991 goto skip_full_check;
ab3f0063
JK
9992 }
9993
dc2a4ebc 9994 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9995 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9996 GFP_USER);
9997 ret = -ENOMEM;
9998 if (!env->explored_states)
9999 goto skip_full_check;
10000
d9762e84 10001 ret = check_subprogs(env);
475fb78f
AS
10002 if (ret < 0)
10003 goto skip_full_check;
10004
c454a46b 10005 ret = check_btf_info(env, attr, uattr);
838e9690
YS
10006 if (ret < 0)
10007 goto skip_full_check;
10008
d9762e84
MKL
10009 ret = check_cfg(env);
10010 if (ret < 0)
10011 goto skip_full_check;
10012
51c39bb1
AS
10013 ret = do_check_subprogs(env);
10014 ret = ret ?: do_check_main(env);
cbd35700 10015
c941ce9c
QM
10016 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10017 ret = bpf_prog_offload_finalize(env);
10018
0246e64d 10019skip_full_check:
51c39bb1 10020 kvfree(env->explored_states);
0246e64d 10021
c131187d 10022 if (ret == 0)
9b38c405 10023 ret = check_max_stack_depth(env);
c131187d 10024
9b38c405 10025 /* instruction rewrites happen after this point */
e2ae4ca2
JK
10026 if (is_priv) {
10027 if (ret == 0)
10028 opt_hard_wire_dead_code_branches(env);
52875a04
JK
10029 if (ret == 0)
10030 ret = opt_remove_dead_code(env);
a1b14abc
JK
10031 if (ret == 0)
10032 ret = opt_remove_nops(env);
52875a04
JK
10033 } else {
10034 if (ret == 0)
10035 sanitize_dead_code(env);
e2ae4ca2
JK
10036 }
10037
9bac3d6d
AS
10038 if (ret == 0)
10039 /* program is valid, convert *(u32*)(ctx + off) accesses */
10040 ret = convert_ctx_accesses(env);
10041
e245c5c6 10042 if (ret == 0)
79741b3b 10043 ret = fixup_bpf_calls(env);
e245c5c6 10044
a4b1d3c1
JW
10045 /* do 32-bit optimization after insn patching has done so those patched
10046 * insns could be handled correctly.
10047 */
d6c2308c
JW
10048 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10049 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10050 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10051 : false;
a4b1d3c1
JW
10052 }
10053
1ea47e01
AS
10054 if (ret == 0)
10055 ret = fixup_call_args(env);
10056
06ee7115
AS
10057 env->verification_time = ktime_get_ns() - start_time;
10058 print_verification_stats(env);
10059
a2a7d570 10060 if (log->level && bpf_verifier_log_full(log))
cbd35700 10061 ret = -ENOSPC;
a2a7d570 10062 if (log->level && !log->ubuf) {
cbd35700 10063 ret = -EFAULT;
a2a7d570 10064 goto err_release_maps;
cbd35700
AS
10065 }
10066
0246e64d
AS
10067 if (ret == 0 && env->used_map_cnt) {
10068 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
10069 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10070 sizeof(env->used_maps[0]),
10071 GFP_KERNEL);
0246e64d 10072
9bac3d6d 10073 if (!env->prog->aux->used_maps) {
0246e64d 10074 ret = -ENOMEM;
a2a7d570 10075 goto err_release_maps;
0246e64d
AS
10076 }
10077
9bac3d6d 10078 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 10079 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 10080 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
10081
10082 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
10083 * bpf_ld_imm64 instructions
10084 */
10085 convert_pseudo_ld_imm64(env);
10086 }
cbd35700 10087
ba64e7d8
YS
10088 if (ret == 0)
10089 adjust_btf_func(env);
10090
a2a7d570 10091err_release_maps:
9bac3d6d 10092 if (!env->prog->aux->used_maps)
0246e64d 10093 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 10094 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
10095 */
10096 release_maps(env);
9bac3d6d 10097 *prog = env->prog;
3df126f3 10098err_unlock:
45a73c17
AS
10099 if (!is_priv)
10100 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
10101 vfree(env->insn_aux_data);
10102err_free_env:
10103 kfree(env);
51580e79
AS
10104 return ret;
10105}