bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34 25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 26#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
d2e4c1e6
DB
174#define BPF_MAP_KEY_POISON (1ULL << 63)
175#define BPF_MAP_KEY_SEEN (1ULL << 62)
176
c93552c4
DB
177#define BPF_MAP_PTR_UNPRIV 1UL
178#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
179 POISON_POINTER_DELTA))
180#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181
182static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183{
d2e4c1e6 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
185}
186
187static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188{
d2e4c1e6 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
190}
191
192static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 const struct bpf_map *map, bool unpriv)
194{
195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
197 aux->map_ptr_state = (unsigned long)map |
198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199}
200
201static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202{
203 return aux->map_key_state & BPF_MAP_KEY_POISON;
204}
205
206static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207{
208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209}
210
211static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212{
213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214}
215
216static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217{
218 bool poisoned = bpf_map_key_poisoned(aux);
219
220 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 222}
fad73a1a 223
33ff9823
DB
224struct bpf_call_arg_meta {
225 struct bpf_map *map_ptr;
435faee1 226 bool raw_mode;
36bbef52 227 bool pkt_access;
435faee1
DB
228 int regno;
229 int access_size;
849fa506
YS
230 s64 msize_smax_value;
231 u64 msize_umax_value;
1b986589 232 int ref_obj_id;
d83525ca 233 int func_id;
a7658e1a 234 u32 btf_id;
33ff9823
DB
235};
236
8580ac94
AS
237struct btf *btf_vmlinux;
238
cbd35700
AS
239static DEFINE_MUTEX(bpf_verifier_lock);
240
d9762e84
MKL
241static const struct bpf_line_info *
242find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243{
244 const struct bpf_line_info *linfo;
245 const struct bpf_prog *prog;
246 u32 i, nr_linfo;
247
248 prog = env->prog;
249 nr_linfo = prog->aux->nr_linfo;
250
251 if (!nr_linfo || insn_off >= prog->len)
252 return NULL;
253
254 linfo = prog->aux->linfo;
255 for (i = 1; i < nr_linfo; i++)
256 if (insn_off < linfo[i].insn_off)
257 break;
258
259 return &linfo[i - 1];
260}
261
77d2e05a
MKL
262void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 va_list args)
cbd35700 264{
a2a7d570 265 unsigned int n;
cbd35700 266
a2a7d570 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
268
269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 "verifier log line truncated - local buffer too short\n");
271
272 n = min(log->len_total - log->len_used - 1, n);
273 log->kbuf[n] = '\0';
274
8580ac94
AS
275 if (log->level == BPF_LOG_KERNEL) {
276 pr_err("BPF:%s\n", log->kbuf);
277 return;
278 }
a2a7d570
JK
279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 log->len_used += n;
281 else
282 log->ubuf = NULL;
cbd35700 283}
abe08840
JO
284
285/* log_level controls verbosity level of eBPF verifier.
286 * bpf_verifier_log_write() is used to dump the verification trace to the log,
287 * so the user can figure out what's wrong with the program
430e68d1 288 */
abe08840
JO
289__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 const char *fmt, ...)
291{
292 va_list args;
293
77d2e05a
MKL
294 if (!bpf_verifier_log_needed(&env->log))
295 return;
296
abe08840 297 va_start(args, fmt);
77d2e05a 298 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
299 va_end(args);
300}
301EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302
303__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304{
77d2e05a 305 struct bpf_verifier_env *env = private_data;
abe08840
JO
306 va_list args;
307
77d2e05a
MKL
308 if (!bpf_verifier_log_needed(&env->log))
309 return;
310
abe08840 311 va_start(args, fmt);
77d2e05a 312 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
313 va_end(args);
314}
cbd35700 315
9e15db66
AS
316__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 const char *fmt, ...)
318{
319 va_list args;
320
321 if (!bpf_verifier_log_needed(log))
322 return;
323
324 va_start(args, fmt);
325 bpf_verifier_vlog(log, fmt, args);
326 va_end(args);
327}
328
d9762e84
MKL
329static const char *ltrim(const char *s)
330{
331 while (isspace(*s))
332 s++;
333
334 return s;
335}
336
337__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 u32 insn_off,
339 const char *prefix_fmt, ...)
340{
341 const struct bpf_line_info *linfo;
342
343 if (!bpf_verifier_log_needed(&env->log))
344 return;
345
346 linfo = find_linfo(env, insn_off);
347 if (!linfo || linfo == env->prev_linfo)
348 return;
349
350 if (prefix_fmt) {
351 va_list args;
352
353 va_start(args, prefix_fmt);
354 bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 va_end(args);
356 }
357
358 verbose(env, "%s\n",
359 ltrim(btf_name_by_offset(env->prog->aux->btf,
360 linfo->line_off)));
361
362 env->prev_linfo = linfo;
363}
364
de8f3a83
DB
365static bool type_is_pkt_pointer(enum bpf_reg_type type)
366{
367 return type == PTR_TO_PACKET ||
368 type == PTR_TO_PACKET_META;
369}
370
46f8bc92
MKL
371static bool type_is_sk_pointer(enum bpf_reg_type type)
372{
373 return type == PTR_TO_SOCKET ||
655a51e5 374 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
375 type == PTR_TO_TCP_SOCK ||
376 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
377}
378
840b9615
JS
379static bool reg_type_may_be_null(enum bpf_reg_type type)
380{
fd978bf7 381 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 382 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
383 type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
385}
386
d83525ca
AS
387static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388{
389 return reg->type == PTR_TO_MAP_VALUE &&
390 map_value_has_spin_lock(reg->map_ptr);
391}
392
cba368c1
MKL
393static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394{
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCKET_OR_NULL ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_TCP_SOCK_OR_NULL;
399}
400
1b986589 401static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 402{
1b986589 403 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
404}
405
406/* Determine whether the function releases some resources allocated by another
407 * function call. The first reference type argument will be assumed to be
408 * released by release_reference().
409 */
410static bool is_release_function(enum bpf_func_id func_id)
411{
6acc9b43 412 return func_id == BPF_FUNC_sk_release;
840b9615
JS
413}
414
46f8bc92
MKL
415static bool is_acquire_function(enum bpf_func_id func_id)
416{
417 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
418 func_id == BPF_FUNC_sk_lookup_udp ||
419 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
420}
421
1b986589
MKL
422static bool is_ptr_cast_function(enum bpf_func_id func_id)
423{
424 return func_id == BPF_FUNC_tcp_sock ||
425 func_id == BPF_FUNC_sk_fullsock;
426}
427
17a52670
AS
428/* string representation of 'enum bpf_reg_type' */
429static const char * const reg_type_str[] = {
430 [NOT_INIT] = "?",
f1174f77 431 [SCALAR_VALUE] = "inv",
17a52670
AS
432 [PTR_TO_CTX] = "ctx",
433 [CONST_PTR_TO_MAP] = "map_ptr",
434 [PTR_TO_MAP_VALUE] = "map_value",
435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 436 [PTR_TO_STACK] = "fp",
969bf05e 437 [PTR_TO_PACKET] = "pkt",
de8f3a83 438 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 439 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 440 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
441 [PTR_TO_SOCKET] = "sock",
442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
443 [PTR_TO_SOCK_COMMON] = "sock_common",
444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
445 [PTR_TO_TCP_SOCK] = "tcp_sock",
446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 447 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 448 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 449 [PTR_TO_BTF_ID] = "ptr_",
17a52670
AS
450};
451
8efea21d
EC
452static char slot_type_char[] = {
453 [STACK_INVALID] = '?',
454 [STACK_SPILL] = 'r',
455 [STACK_MISC] = 'm',
456 [STACK_ZERO] = '0',
457};
458
4e92024a
AS
459static void print_liveness(struct bpf_verifier_env *env,
460 enum bpf_reg_liveness live)
461{
9242b5f5 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
463 verbose(env, "_");
464 if (live & REG_LIVE_READ)
465 verbose(env, "r");
466 if (live & REG_LIVE_WRITTEN)
467 verbose(env, "w");
9242b5f5
AS
468 if (live & REG_LIVE_DONE)
469 verbose(env, "D");
4e92024a
AS
470}
471
f4d7e40a
AS
472static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 const struct bpf_reg_state *reg)
474{
475 struct bpf_verifier_state *cur = env->cur_state;
476
477 return cur->frame[reg->frameno];
478}
479
9e15db66
AS
480const char *kernel_type_name(u32 id)
481{
482 return btf_name_by_offset(btf_vmlinux,
483 btf_type_by_id(btf_vmlinux, id)->name_off);
484}
485
61bd5218 486static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 487 const struct bpf_func_state *state)
17a52670 488{
f4d7e40a 489 const struct bpf_reg_state *reg;
17a52670
AS
490 enum bpf_reg_type t;
491 int i;
492
f4d7e40a
AS
493 if (state->frameno)
494 verbose(env, " frame%d:", state->frameno);
17a52670 495 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
496 reg = &state->regs[i];
497 t = reg->type;
17a52670
AS
498 if (t == NOT_INIT)
499 continue;
4e92024a
AS
500 verbose(env, " R%d", i);
501 print_liveness(env, reg->live);
502 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
503 if (t == SCALAR_VALUE && reg->precise)
504 verbose(env, "P");
f1174f77
EC
505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 tnum_is_const(reg->var_off)) {
507 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 508 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 509 } else {
9e15db66
AS
510 if (t == PTR_TO_BTF_ID)
511 verbose(env, "%s", kernel_type_name(reg->btf_id));
cba368c1
MKL
512 verbose(env, "(id=%d", reg->id);
513 if (reg_type_may_be_refcounted_or_null(t))
514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 515 if (t != SCALAR_VALUE)
61bd5218 516 verbose(env, ",off=%d", reg->off);
de8f3a83 517 if (type_is_pkt_pointer(t))
61bd5218 518 verbose(env, ",r=%d", reg->range);
f1174f77
EC
519 else if (t == CONST_PTR_TO_MAP ||
520 t == PTR_TO_MAP_VALUE ||
521 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 522 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
523 reg->map_ptr->key_size,
524 reg->map_ptr->value_size);
7d1238f2
EC
525 if (tnum_is_const(reg->var_off)) {
526 /* Typically an immediate SCALAR_VALUE, but
527 * could be a pointer whose offset is too big
528 * for reg->off
529 */
61bd5218 530 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
531 } else {
532 if (reg->smin_value != reg->umin_value &&
533 reg->smin_value != S64_MIN)
61bd5218 534 verbose(env, ",smin_value=%lld",
7d1238f2
EC
535 (long long)reg->smin_value);
536 if (reg->smax_value != reg->umax_value &&
537 reg->smax_value != S64_MAX)
61bd5218 538 verbose(env, ",smax_value=%lld",
7d1238f2
EC
539 (long long)reg->smax_value);
540 if (reg->umin_value != 0)
61bd5218 541 verbose(env, ",umin_value=%llu",
7d1238f2
EC
542 (unsigned long long)reg->umin_value);
543 if (reg->umax_value != U64_MAX)
61bd5218 544 verbose(env, ",umax_value=%llu",
7d1238f2
EC
545 (unsigned long long)reg->umax_value);
546 if (!tnum_is_unknown(reg->var_off)) {
547 char tn_buf[48];
f1174f77 548
7d1238f2 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 550 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 551 }
f1174f77 552 }
61bd5218 553 verbose(env, ")");
f1174f77 554 }
17a52670 555 }
638f5b90 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
557 char types_buf[BPF_REG_SIZE + 1];
558 bool valid = false;
559 int j;
560
561 for (j = 0; j < BPF_REG_SIZE; j++) {
562 if (state->stack[i].slot_type[j] != STACK_INVALID)
563 valid = true;
564 types_buf[j] = slot_type_char[
565 state->stack[i].slot_type[j]];
566 }
567 types_buf[BPF_REG_SIZE] = 0;
568 if (!valid)
569 continue;
570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
572 if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 reg = &state->stack[i].spilled_ptr;
574 t = reg->type;
575 verbose(env, "=%s", reg_type_str[t]);
576 if (t == SCALAR_VALUE && reg->precise)
577 verbose(env, "P");
578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 verbose(env, "%lld", reg->var_off.value + reg->off);
580 } else {
8efea21d 581 verbose(env, "=%s", types_buf);
b5dc0163 582 }
17a52670 583 }
fd978bf7
JS
584 if (state->acquired_refs && state->refs[0].id) {
585 verbose(env, " refs=%d", state->refs[0].id);
586 for (i = 1; i < state->acquired_refs; i++)
587 if (state->refs[i].id)
588 verbose(env, ",%d", state->refs[i].id);
589 }
61bd5218 590 verbose(env, "\n");
17a52670
AS
591}
592
84dbf350
JS
593#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
594static int copy_##NAME##_state(struct bpf_func_state *dst, \
595 const struct bpf_func_state *src) \
596{ \
597 if (!src->FIELD) \
598 return 0; \
599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
600 /* internal bug, make state invalid to reject the program */ \
601 memset(dst, 0, sizeof(*dst)); \
602 return -EFAULT; \
603 } \
604 memcpy(dst->FIELD, src->FIELD, \
605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
606 return 0; \
638f5b90 607}
fd978bf7
JS
608/* copy_reference_state() */
609COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
610/* copy_stack_state() */
611COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612#undef COPY_STATE_FN
613
614#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
615static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 bool copy_old) \
617{ \
618 u32 old_size = state->COUNT; \
619 struct bpf_##NAME##_state *new_##FIELD; \
620 int slot = size / SIZE; \
621 \
622 if (size <= old_size || !size) { \
623 if (copy_old) \
624 return 0; \
625 state->COUNT = slot * SIZE; \
626 if (!size && old_size) { \
627 kfree(state->FIELD); \
628 state->FIELD = NULL; \
629 } \
630 return 0; \
631 } \
632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 GFP_KERNEL); \
634 if (!new_##FIELD) \
635 return -ENOMEM; \
636 if (copy_old) { \
637 if (state->FIELD) \
638 memcpy(new_##FIELD, state->FIELD, \
639 sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 memset(new_##FIELD + old_size / SIZE, 0, \
641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 } \
643 state->COUNT = slot * SIZE; \
644 kfree(state->FIELD); \
645 state->FIELD = new_##FIELD; \
646 return 0; \
647}
fd978bf7
JS
648/* realloc_reference_state() */
649REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
650/* realloc_stack_state() */
651REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652#undef REALLOC_STATE_FN
638f5b90
AS
653
654/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 656 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658 * which realloc_stack_state() copies over. It points to previous
659 * bpf_verifier_state which is never reallocated.
638f5b90 660 */
fd978bf7
JS
661static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 int refs_size, bool copy_old)
638f5b90 663{
fd978bf7
JS
664 int err = realloc_reference_state(state, refs_size, copy_old);
665 if (err)
666 return err;
667 return realloc_stack_state(state, stack_size, copy_old);
668}
669
670/* Acquire a pointer id from the env and update the state->refs to include
671 * this new pointer reference.
672 * On success, returns a valid pointer id to associate with the register
673 * On failure, returns a negative errno.
638f5b90 674 */
fd978bf7 675static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 676{
fd978bf7
JS
677 struct bpf_func_state *state = cur_func(env);
678 int new_ofs = state->acquired_refs;
679 int id, err;
680
681 err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 if (err)
683 return err;
684 id = ++env->id_gen;
685 state->refs[new_ofs].id = id;
686 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 687
fd978bf7
JS
688 return id;
689}
690
691/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 692static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
693{
694 int i, last_idx;
695
fd978bf7
JS
696 last_idx = state->acquired_refs - 1;
697 for (i = 0; i < state->acquired_refs; i++) {
698 if (state->refs[i].id == ptr_id) {
699 if (last_idx && i != last_idx)
700 memcpy(&state->refs[i], &state->refs[last_idx],
701 sizeof(*state->refs));
702 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 state->acquired_refs--;
638f5b90 704 return 0;
638f5b90 705 }
638f5b90 706 }
46f8bc92 707 return -EINVAL;
fd978bf7
JS
708}
709
710static int transfer_reference_state(struct bpf_func_state *dst,
711 struct bpf_func_state *src)
712{
713 int err = realloc_reference_state(dst, src->acquired_refs, false);
714 if (err)
715 return err;
716 err = copy_reference_state(dst, src);
717 if (err)
718 return err;
638f5b90
AS
719 return 0;
720}
721
f4d7e40a
AS
722static void free_func_state(struct bpf_func_state *state)
723{
5896351e
AS
724 if (!state)
725 return;
fd978bf7 726 kfree(state->refs);
f4d7e40a
AS
727 kfree(state->stack);
728 kfree(state);
729}
730
b5dc0163
AS
731static void clear_jmp_history(struct bpf_verifier_state *state)
732{
733 kfree(state->jmp_history);
734 state->jmp_history = NULL;
735 state->jmp_history_cnt = 0;
736}
737
1969db47
AS
738static void free_verifier_state(struct bpf_verifier_state *state,
739 bool free_self)
638f5b90 740{
f4d7e40a
AS
741 int i;
742
743 for (i = 0; i <= state->curframe; i++) {
744 free_func_state(state->frame[i]);
745 state->frame[i] = NULL;
746 }
b5dc0163 747 clear_jmp_history(state);
1969db47
AS
748 if (free_self)
749 kfree(state);
638f5b90
AS
750}
751
752/* copy verifier state from src to dst growing dst stack space
753 * when necessary to accommodate larger src stack
754 */
f4d7e40a
AS
755static int copy_func_state(struct bpf_func_state *dst,
756 const struct bpf_func_state *src)
638f5b90
AS
757{
758 int err;
759
fd978bf7
JS
760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 false);
762 if (err)
763 return err;
764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 err = copy_reference_state(dst, src);
638f5b90
AS
766 if (err)
767 return err;
638f5b90
AS
768 return copy_stack_state(dst, src);
769}
770
f4d7e40a
AS
771static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 const struct bpf_verifier_state *src)
773{
774 struct bpf_func_state *dst;
b5dc0163 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
776 int i, err;
777
b5dc0163
AS
778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 kfree(dst_state->jmp_history);
780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 if (!dst_state->jmp_history)
782 return -ENOMEM;
783 }
784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 dst_state->jmp_history_cnt = src->jmp_history_cnt;
786
f4d7e40a
AS
787 /* if dst has more stack frames then src frame, free them */
788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 free_func_state(dst_state->frame[i]);
790 dst_state->frame[i] = NULL;
791 }
979d63d5 792 dst_state->speculative = src->speculative;
f4d7e40a 793 dst_state->curframe = src->curframe;
d83525ca 794 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
795 dst_state->branches = src->branches;
796 dst_state->parent = src->parent;
b5dc0163
AS
797 dst_state->first_insn_idx = src->first_insn_idx;
798 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
799 for (i = 0; i <= src->curframe; i++) {
800 dst = dst_state->frame[i];
801 if (!dst) {
802 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 if (!dst)
804 return -ENOMEM;
805 dst_state->frame[i] = dst;
806 }
807 err = copy_func_state(dst, src->frame[i]);
808 if (err)
809 return err;
810 }
811 return 0;
812}
813
2589726d
AS
814static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815{
816 while (st) {
817 u32 br = --st->branches;
818
819 /* WARN_ON(br > 1) technically makes sense here,
820 * but see comment in push_stack(), hence:
821 */
822 WARN_ONCE((int)br < 0,
823 "BUG update_branch_counts:branches_to_explore=%d\n",
824 br);
825 if (br)
826 break;
827 st = st->parent;
828 }
829}
830
638f5b90
AS
831static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 int *insn_idx)
833{
834 struct bpf_verifier_state *cur = env->cur_state;
835 struct bpf_verifier_stack_elem *elem, *head = env->head;
836 int err;
17a52670
AS
837
838 if (env->head == NULL)
638f5b90 839 return -ENOENT;
17a52670 840
638f5b90
AS
841 if (cur) {
842 err = copy_verifier_state(cur, &head->st);
843 if (err)
844 return err;
845 }
846 if (insn_idx)
847 *insn_idx = head->insn_idx;
17a52670 848 if (prev_insn_idx)
638f5b90
AS
849 *prev_insn_idx = head->prev_insn_idx;
850 elem = head->next;
1969db47 851 free_verifier_state(&head->st, false);
638f5b90 852 kfree(head);
17a52670
AS
853 env->head = elem;
854 env->stack_size--;
638f5b90 855 return 0;
17a52670
AS
856}
857
58e2af8b 858static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
859 int insn_idx, int prev_insn_idx,
860 bool speculative)
17a52670 861{
638f5b90 862 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 863 struct bpf_verifier_stack_elem *elem;
638f5b90 864 int err;
17a52670 865
638f5b90 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
867 if (!elem)
868 goto err;
869
17a52670
AS
870 elem->insn_idx = insn_idx;
871 elem->prev_insn_idx = prev_insn_idx;
872 elem->next = env->head;
873 env->head = elem;
874 env->stack_size++;
1969db47
AS
875 err = copy_verifier_state(&elem->st, cur);
876 if (err)
877 goto err;
979d63d5 878 elem->st.speculative |= speculative;
b285fcb7
AS
879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 verbose(env, "The sequence of %d jumps is too complex.\n",
881 env->stack_size);
17a52670
AS
882 goto err;
883 }
2589726d
AS
884 if (elem->st.parent) {
885 ++elem->st.parent->branches;
886 /* WARN_ON(branches > 2) technically makes sense here,
887 * but
888 * 1. speculative states will bump 'branches' for non-branch
889 * instructions
890 * 2. is_state_visited() heuristics may decide not to create
891 * a new state for a sequence of branches and all such current
892 * and cloned states will be pointing to a single parent state
893 * which might have large 'branches' count.
894 */
895 }
17a52670
AS
896 return &elem->st;
897err:
5896351e
AS
898 free_verifier_state(env->cur_state, true);
899 env->cur_state = NULL;
17a52670 900 /* pop all elements and return */
638f5b90 901 while (!pop_stack(env, NULL, NULL));
17a52670
AS
902 return NULL;
903}
904
905#define CALLER_SAVED_REGS 6
906static const int caller_saved[CALLER_SAVED_REGS] = {
907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908};
909
f54c7898
DB
910static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 struct bpf_reg_state *reg);
f1174f77 912
b03c9f9f
EC
913/* Mark the unknown part of a register (variable offset or scalar value) as
914 * known to have the value @imm.
915 */
916static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917{
a9c676bc
AS
918 /* Clear id, off, and union(map_ptr, range) */
919 memset(((u8 *)reg) + sizeof(reg->type), 0,
920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
921 reg->var_off = tnum_const(imm);
922 reg->smin_value = (s64)imm;
923 reg->smax_value = (s64)imm;
924 reg->umin_value = imm;
925 reg->umax_value = imm;
926}
927
f1174f77
EC
928/* Mark the 'variable offset' part of a register as zero. This should be
929 * used only on registers holding a pointer type.
930 */
931static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 932{
b03c9f9f 933 __mark_reg_known(reg, 0);
f1174f77 934}
a9789ef9 935
cc2b14d5
AS
936static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937{
938 __mark_reg_known(reg, 0);
cc2b14d5
AS
939 reg->type = SCALAR_VALUE;
940}
941
61bd5218
JK
942static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
947 /* Something bad happened, let's kill all regs */
948 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 949 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
950 return;
951 }
952 __mark_reg_known_zero(regs + regno);
953}
954
de8f3a83
DB
955static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956{
957 return type_is_pkt_pointer(reg->type);
958}
959
960static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961{
962 return reg_is_pkt_pointer(reg) ||
963 reg->type == PTR_TO_PACKET_END;
964}
965
966/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 enum bpf_reg_type which)
969{
970 /* The register can already have a range from prior markings.
971 * This is fine as long as it hasn't been advanced from its
972 * origin.
973 */
974 return reg->type == which &&
975 reg->id == 0 &&
976 reg->off == 0 &&
977 tnum_equals_const(reg->var_off, 0);
978}
979
b03c9f9f
EC
980/* Attempts to improve min/max values based on var_off information */
981static void __update_reg_bounds(struct bpf_reg_state *reg)
982{
983 /* min signed is max(sign bit) | min(other bits) */
984 reg->smin_value = max_t(s64, reg->smin_value,
985 reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 /* max signed is min(sign bit) | max(other bits) */
987 reg->smax_value = min_t(s64, reg->smax_value,
988 reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 reg->umax_value = min(reg->umax_value,
991 reg->var_off.value | reg->var_off.mask);
992}
993
994/* Uses signed min/max values to inform unsigned, and vice-versa */
995static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996{
997 /* Learn sign from signed bounds.
998 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 * are the same, so combine. This works even in the negative case, e.g.
1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 */
1002 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 reg->umin_value);
1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 reg->umax_value);
1007 return;
1008 }
1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1010 * boundary, so we must be careful.
1011 */
1012 if ((s64)reg->umax_value >= 0) {
1013 /* Positive. We can't learn anything from the smin, but smax
1014 * is positive, hence safe.
1015 */
1016 reg->smin_value = reg->umin_value;
1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 reg->umax_value);
1019 } else if ((s64)reg->umin_value < 0) {
1020 /* Negative. We can't learn anything from the smax, but smin
1021 * is negative, hence safe.
1022 */
1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 reg->umin_value);
1025 reg->smax_value = reg->umax_value;
1026 }
1027}
1028
1029/* Attempts to improve var_off based on unsigned min/max information */
1030static void __reg_bound_offset(struct bpf_reg_state *reg)
1031{
1032 reg->var_off = tnum_intersect(reg->var_off,
1033 tnum_range(reg->umin_value,
1034 reg->umax_value));
1035}
1036
581738a6
YS
1037static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038{
1039 u64 mask = 0xffffFFFF;
1040 struct tnum range = tnum_range(reg->umin_value & mask,
1041 reg->umax_value & mask);
1042 struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044
1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046}
1047
b03c9f9f
EC
1048/* Reset the min/max bounds of a register */
1049static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050{
1051 reg->smin_value = S64_MIN;
1052 reg->smax_value = S64_MAX;
1053 reg->umin_value = 0;
1054 reg->umax_value = U64_MAX;
1055}
1056
f1174f77 1057/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1058static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 struct bpf_reg_state *reg)
f1174f77 1060{
a9c676bc
AS
1061 /*
1062 * Clear type, id, off, and union(map_ptr, range) and
1063 * padding between 'type' and union
1064 */
1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1066 reg->type = SCALAR_VALUE;
f1174f77 1067 reg->var_off = tnum_unknown;
f4d7e40a 1068 reg->frameno = 0;
f54c7898
DB
1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 true : false;
b03c9f9f 1071 __mark_reg_unbounded(reg);
f1174f77
EC
1072}
1073
61bd5218
JK
1074static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1076{
1077 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1079 /* Something bad happened, let's kill all regs except FP */
1080 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1081 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1082 return;
1083 }
f54c7898 1084 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1085}
1086
f54c7898
DB
1087static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 struct bpf_reg_state *reg)
f1174f77 1089{
f54c7898 1090 __mark_reg_unknown(env, reg);
f1174f77
EC
1091 reg->type = NOT_INIT;
1092}
1093
61bd5218
JK
1094static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1096{
1097 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1099 /* Something bad happened, let's kill all regs except FP */
1100 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1101 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1102 return;
1103 }
f54c7898 1104 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1105}
1106
5327ed3d 1107#define DEF_NOT_SUBREG (0)
61bd5218 1108static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1109 struct bpf_func_state *state)
17a52670 1110{
f4d7e40a 1111 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1112 int i;
1113
dc503a8a 1114 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1115 mark_reg_not_init(env, regs, i);
dc503a8a 1116 regs[i].live = REG_LIVE_NONE;
679c782d 1117 regs[i].parent = NULL;
5327ed3d 1118 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1119 }
17a52670
AS
1120
1121 /* frame pointer */
f1174f77 1122 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1123 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1124 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1125
1126 /* 1st arg to a function */
1127 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1128 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1129}
1130
f4d7e40a
AS
1131#define BPF_MAIN_FUNC (-1)
1132static void init_func_state(struct bpf_verifier_env *env,
1133 struct bpf_func_state *state,
1134 int callsite, int frameno, int subprogno)
1135{
1136 state->callsite = callsite;
1137 state->frameno = frameno;
1138 state->subprogno = subprogno;
1139 init_reg_state(env, state);
1140}
1141
17a52670
AS
1142enum reg_arg_type {
1143 SRC_OP, /* register is used as source operand */
1144 DST_OP, /* register is used as destination operand */
1145 DST_OP_NO_MARK /* same as above, check only, don't mark */
1146};
1147
cc8b0b92
AS
1148static int cmp_subprogs(const void *a, const void *b)
1149{
9c8105bd
JW
1150 return ((struct bpf_subprog_info *)a)->start -
1151 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1152}
1153
1154static int find_subprog(struct bpf_verifier_env *env, int off)
1155{
9c8105bd 1156 struct bpf_subprog_info *p;
cc8b0b92 1157
9c8105bd
JW
1158 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1159 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1160 if (!p)
1161 return -ENOENT;
9c8105bd 1162 return p - env->subprog_info;
cc8b0b92
AS
1163
1164}
1165
1166static int add_subprog(struct bpf_verifier_env *env, int off)
1167{
1168 int insn_cnt = env->prog->len;
1169 int ret;
1170
1171 if (off >= insn_cnt || off < 0) {
1172 verbose(env, "call to invalid destination\n");
1173 return -EINVAL;
1174 }
1175 ret = find_subprog(env, off);
1176 if (ret >= 0)
1177 return 0;
4cb3d99c 1178 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1179 verbose(env, "too many subprograms\n");
1180 return -E2BIG;
1181 }
9c8105bd
JW
1182 env->subprog_info[env->subprog_cnt++].start = off;
1183 sort(env->subprog_info, env->subprog_cnt,
1184 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1185 return 0;
1186}
1187
1188static int check_subprogs(struct bpf_verifier_env *env)
1189{
1190 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1191 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1192 struct bpf_insn *insn = env->prog->insnsi;
1193 int insn_cnt = env->prog->len;
1194
f910cefa
JW
1195 /* Add entry function. */
1196 ret = add_subprog(env, 0);
1197 if (ret < 0)
1198 return ret;
1199
cc8b0b92
AS
1200 /* determine subprog starts. The end is one before the next starts */
1201 for (i = 0; i < insn_cnt; i++) {
1202 if (insn[i].code != (BPF_JMP | BPF_CALL))
1203 continue;
1204 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1205 continue;
1206 if (!env->allow_ptr_leaks) {
1207 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1208 return -EPERM;
1209 }
cc8b0b92
AS
1210 ret = add_subprog(env, i + insn[i].imm + 1);
1211 if (ret < 0)
1212 return ret;
1213 }
1214
4cb3d99c
JW
1215 /* Add a fake 'exit' subprog which could simplify subprog iteration
1216 * logic. 'subprog_cnt' should not be increased.
1217 */
1218 subprog[env->subprog_cnt].start = insn_cnt;
1219
06ee7115 1220 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1221 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1222 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1223
1224 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1225 subprog_start = subprog[cur_subprog].start;
1226 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1227 for (i = 0; i < insn_cnt; i++) {
1228 u8 code = insn[i].code;
1229
092ed096 1230 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1231 goto next;
1232 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1233 goto next;
1234 off = i + insn[i].off + 1;
1235 if (off < subprog_start || off >= subprog_end) {
1236 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1237 return -EINVAL;
1238 }
1239next:
1240 if (i == subprog_end - 1) {
1241 /* to avoid fall-through from one subprog into another
1242 * the last insn of the subprog should be either exit
1243 * or unconditional jump back
1244 */
1245 if (code != (BPF_JMP | BPF_EXIT) &&
1246 code != (BPF_JMP | BPF_JA)) {
1247 verbose(env, "last insn is not an exit or jmp\n");
1248 return -EINVAL;
1249 }
1250 subprog_start = subprog_end;
4cb3d99c
JW
1251 cur_subprog++;
1252 if (cur_subprog < env->subprog_cnt)
9c8105bd 1253 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1254 }
1255 }
1256 return 0;
1257}
1258
679c782d
EC
1259/* Parentage chain of this register (or stack slot) should take care of all
1260 * issues like callee-saved registers, stack slot allocation time, etc.
1261 */
f4d7e40a 1262static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1263 const struct bpf_reg_state *state,
5327ed3d 1264 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1265{
1266 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1267 int cnt = 0;
dc503a8a
EC
1268
1269 while (parent) {
1270 /* if read wasn't screened by an earlier write ... */
679c782d 1271 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1272 break;
9242b5f5
AS
1273 if (parent->live & REG_LIVE_DONE) {
1274 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1275 reg_type_str[parent->type],
1276 parent->var_off.value, parent->off);
1277 return -EFAULT;
1278 }
5327ed3d
JW
1279 /* The first condition is more likely to be true than the
1280 * second, checked it first.
1281 */
1282 if ((parent->live & REG_LIVE_READ) == flag ||
1283 parent->live & REG_LIVE_READ64)
25af32da
AS
1284 /* The parentage chain never changes and
1285 * this parent was already marked as LIVE_READ.
1286 * There is no need to keep walking the chain again and
1287 * keep re-marking all parents as LIVE_READ.
1288 * This case happens when the same register is read
1289 * multiple times without writes into it in-between.
5327ed3d
JW
1290 * Also, if parent has the stronger REG_LIVE_READ64 set,
1291 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1292 */
1293 break;
dc503a8a 1294 /* ... then we depend on parent's value */
5327ed3d
JW
1295 parent->live |= flag;
1296 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1297 if (flag == REG_LIVE_READ64)
1298 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1299 state = parent;
1300 parent = state->parent;
f4d7e40a 1301 writes = true;
06ee7115 1302 cnt++;
dc503a8a 1303 }
06ee7115
AS
1304
1305 if (env->longest_mark_read_walk < cnt)
1306 env->longest_mark_read_walk = cnt;
f4d7e40a 1307 return 0;
dc503a8a
EC
1308}
1309
5327ed3d
JW
1310/* This function is supposed to be used by the following 32-bit optimization
1311 * code only. It returns TRUE if the source or destination register operates
1312 * on 64-bit, otherwise return FALSE.
1313 */
1314static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1315 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1316{
1317 u8 code, class, op;
1318
1319 code = insn->code;
1320 class = BPF_CLASS(code);
1321 op = BPF_OP(code);
1322 if (class == BPF_JMP) {
1323 /* BPF_EXIT for "main" will reach here. Return TRUE
1324 * conservatively.
1325 */
1326 if (op == BPF_EXIT)
1327 return true;
1328 if (op == BPF_CALL) {
1329 /* BPF to BPF call will reach here because of marking
1330 * caller saved clobber with DST_OP_NO_MARK for which we
1331 * don't care the register def because they are anyway
1332 * marked as NOT_INIT already.
1333 */
1334 if (insn->src_reg == BPF_PSEUDO_CALL)
1335 return false;
1336 /* Helper call will reach here because of arg type
1337 * check, conservatively return TRUE.
1338 */
1339 if (t == SRC_OP)
1340 return true;
1341
1342 return false;
1343 }
1344 }
1345
1346 if (class == BPF_ALU64 || class == BPF_JMP ||
1347 /* BPF_END always use BPF_ALU class. */
1348 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1349 return true;
1350
1351 if (class == BPF_ALU || class == BPF_JMP32)
1352 return false;
1353
1354 if (class == BPF_LDX) {
1355 if (t != SRC_OP)
1356 return BPF_SIZE(code) == BPF_DW;
1357 /* LDX source must be ptr. */
1358 return true;
1359 }
1360
1361 if (class == BPF_STX) {
1362 if (reg->type != SCALAR_VALUE)
1363 return true;
1364 return BPF_SIZE(code) == BPF_DW;
1365 }
1366
1367 if (class == BPF_LD) {
1368 u8 mode = BPF_MODE(code);
1369
1370 /* LD_IMM64 */
1371 if (mode == BPF_IMM)
1372 return true;
1373
1374 /* Both LD_IND and LD_ABS return 32-bit data. */
1375 if (t != SRC_OP)
1376 return false;
1377
1378 /* Implicit ctx ptr. */
1379 if (regno == BPF_REG_6)
1380 return true;
1381
1382 /* Explicit source could be any width. */
1383 return true;
1384 }
1385
1386 if (class == BPF_ST)
1387 /* The only source register for BPF_ST is a ptr. */
1388 return true;
1389
1390 /* Conservatively return true at default. */
1391 return true;
1392}
1393
b325fbca
JW
1394/* Return TRUE if INSN doesn't have explicit value define. */
1395static bool insn_no_def(struct bpf_insn *insn)
1396{
1397 u8 class = BPF_CLASS(insn->code);
1398
1399 return (class == BPF_JMP || class == BPF_JMP32 ||
1400 class == BPF_STX || class == BPF_ST);
1401}
1402
1403/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1404static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1405{
1406 if (insn_no_def(insn))
1407 return false;
1408
1409 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1410}
1411
5327ed3d
JW
1412static void mark_insn_zext(struct bpf_verifier_env *env,
1413 struct bpf_reg_state *reg)
1414{
1415 s32 def_idx = reg->subreg_def;
1416
1417 if (def_idx == DEF_NOT_SUBREG)
1418 return;
1419
1420 env->insn_aux_data[def_idx - 1].zext_dst = true;
1421 /* The dst will be zero extended, so won't be sub-register anymore. */
1422 reg->subreg_def = DEF_NOT_SUBREG;
1423}
1424
dc503a8a 1425static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1426 enum reg_arg_type t)
1427{
f4d7e40a
AS
1428 struct bpf_verifier_state *vstate = env->cur_state;
1429 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1430 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1431 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1432 bool rw64;
dc503a8a 1433
17a52670 1434 if (regno >= MAX_BPF_REG) {
61bd5218 1435 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1436 return -EINVAL;
1437 }
1438
c342dc10 1439 reg = &regs[regno];
5327ed3d 1440 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1441 if (t == SRC_OP) {
1442 /* check whether register used as source operand can be read */
c342dc10 1443 if (reg->type == NOT_INIT) {
61bd5218 1444 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1445 return -EACCES;
1446 }
679c782d 1447 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1448 if (regno == BPF_REG_FP)
1449 return 0;
1450
5327ed3d
JW
1451 if (rw64)
1452 mark_insn_zext(env, reg);
1453
1454 return mark_reg_read(env, reg, reg->parent,
1455 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1456 } else {
1457 /* check whether register used as dest operand can be written to */
1458 if (regno == BPF_REG_FP) {
61bd5218 1459 verbose(env, "frame pointer is read only\n");
17a52670
AS
1460 return -EACCES;
1461 }
c342dc10 1462 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1463 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1464 if (t == DST_OP)
61bd5218 1465 mark_reg_unknown(env, regs, regno);
17a52670
AS
1466 }
1467 return 0;
1468}
1469
b5dc0163
AS
1470/* for any branch, call, exit record the history of jmps in the given state */
1471static int push_jmp_history(struct bpf_verifier_env *env,
1472 struct bpf_verifier_state *cur)
1473{
1474 u32 cnt = cur->jmp_history_cnt;
1475 struct bpf_idx_pair *p;
1476
1477 cnt++;
1478 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1479 if (!p)
1480 return -ENOMEM;
1481 p[cnt - 1].idx = env->insn_idx;
1482 p[cnt - 1].prev_idx = env->prev_insn_idx;
1483 cur->jmp_history = p;
1484 cur->jmp_history_cnt = cnt;
1485 return 0;
1486}
1487
1488/* Backtrack one insn at a time. If idx is not at the top of recorded
1489 * history then previous instruction came from straight line execution.
1490 */
1491static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1492 u32 *history)
1493{
1494 u32 cnt = *history;
1495
1496 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1497 i = st->jmp_history[cnt - 1].prev_idx;
1498 (*history)--;
1499 } else {
1500 i--;
1501 }
1502 return i;
1503}
1504
1505/* For given verifier state backtrack_insn() is called from the last insn to
1506 * the first insn. Its purpose is to compute a bitmask of registers and
1507 * stack slots that needs precision in the parent verifier state.
1508 */
1509static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1510 u32 *reg_mask, u64 *stack_mask)
1511{
1512 const struct bpf_insn_cbs cbs = {
1513 .cb_print = verbose,
1514 .private_data = env,
1515 };
1516 struct bpf_insn *insn = env->prog->insnsi + idx;
1517 u8 class = BPF_CLASS(insn->code);
1518 u8 opcode = BPF_OP(insn->code);
1519 u8 mode = BPF_MODE(insn->code);
1520 u32 dreg = 1u << insn->dst_reg;
1521 u32 sreg = 1u << insn->src_reg;
1522 u32 spi;
1523
1524 if (insn->code == 0)
1525 return 0;
1526 if (env->log.level & BPF_LOG_LEVEL) {
1527 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1528 verbose(env, "%d: ", idx);
1529 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1530 }
1531
1532 if (class == BPF_ALU || class == BPF_ALU64) {
1533 if (!(*reg_mask & dreg))
1534 return 0;
1535 if (opcode == BPF_MOV) {
1536 if (BPF_SRC(insn->code) == BPF_X) {
1537 /* dreg = sreg
1538 * dreg needs precision after this insn
1539 * sreg needs precision before this insn
1540 */
1541 *reg_mask &= ~dreg;
1542 *reg_mask |= sreg;
1543 } else {
1544 /* dreg = K
1545 * dreg needs precision after this insn.
1546 * Corresponding register is already marked
1547 * as precise=true in this verifier state.
1548 * No further markings in parent are necessary
1549 */
1550 *reg_mask &= ~dreg;
1551 }
1552 } else {
1553 if (BPF_SRC(insn->code) == BPF_X) {
1554 /* dreg += sreg
1555 * both dreg and sreg need precision
1556 * before this insn
1557 */
1558 *reg_mask |= sreg;
1559 } /* else dreg += K
1560 * dreg still needs precision before this insn
1561 */
1562 }
1563 } else if (class == BPF_LDX) {
1564 if (!(*reg_mask & dreg))
1565 return 0;
1566 *reg_mask &= ~dreg;
1567
1568 /* scalars can only be spilled into stack w/o losing precision.
1569 * Load from any other memory can be zero extended.
1570 * The desire to keep that precision is already indicated
1571 * by 'precise' mark in corresponding register of this state.
1572 * No further tracking necessary.
1573 */
1574 if (insn->src_reg != BPF_REG_FP)
1575 return 0;
1576 if (BPF_SIZE(insn->code) != BPF_DW)
1577 return 0;
1578
1579 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1580 * that [fp - off] slot contains scalar that needs to be
1581 * tracked with precision
1582 */
1583 spi = (-insn->off - 1) / BPF_REG_SIZE;
1584 if (spi >= 64) {
1585 verbose(env, "BUG spi %d\n", spi);
1586 WARN_ONCE(1, "verifier backtracking bug");
1587 return -EFAULT;
1588 }
1589 *stack_mask |= 1ull << spi;
b3b50f05 1590 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1591 if (*reg_mask & dreg)
b3b50f05 1592 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1593 * to access memory. It means backtracking
1594 * encountered a case of pointer subtraction.
1595 */
1596 return -ENOTSUPP;
1597 /* scalars can only be spilled into stack */
1598 if (insn->dst_reg != BPF_REG_FP)
1599 return 0;
1600 if (BPF_SIZE(insn->code) != BPF_DW)
1601 return 0;
1602 spi = (-insn->off - 1) / BPF_REG_SIZE;
1603 if (spi >= 64) {
1604 verbose(env, "BUG spi %d\n", spi);
1605 WARN_ONCE(1, "verifier backtracking bug");
1606 return -EFAULT;
1607 }
1608 if (!(*stack_mask & (1ull << spi)))
1609 return 0;
1610 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1611 if (class == BPF_STX)
1612 *reg_mask |= sreg;
b5dc0163
AS
1613 } else if (class == BPF_JMP || class == BPF_JMP32) {
1614 if (opcode == BPF_CALL) {
1615 if (insn->src_reg == BPF_PSEUDO_CALL)
1616 return -ENOTSUPP;
1617 /* regular helper call sets R0 */
1618 *reg_mask &= ~1;
1619 if (*reg_mask & 0x3f) {
1620 /* if backtracing was looking for registers R1-R5
1621 * they should have been found already.
1622 */
1623 verbose(env, "BUG regs %x\n", *reg_mask);
1624 WARN_ONCE(1, "verifier backtracking bug");
1625 return -EFAULT;
1626 }
1627 } else if (opcode == BPF_EXIT) {
1628 return -ENOTSUPP;
1629 }
1630 } else if (class == BPF_LD) {
1631 if (!(*reg_mask & dreg))
1632 return 0;
1633 *reg_mask &= ~dreg;
1634 /* It's ld_imm64 or ld_abs or ld_ind.
1635 * For ld_imm64 no further tracking of precision
1636 * into parent is necessary
1637 */
1638 if (mode == BPF_IND || mode == BPF_ABS)
1639 /* to be analyzed */
1640 return -ENOTSUPP;
b5dc0163
AS
1641 }
1642 return 0;
1643}
1644
1645/* the scalar precision tracking algorithm:
1646 * . at the start all registers have precise=false.
1647 * . scalar ranges are tracked as normal through alu and jmp insns.
1648 * . once precise value of the scalar register is used in:
1649 * . ptr + scalar alu
1650 * . if (scalar cond K|scalar)
1651 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1652 * backtrack through the verifier states and mark all registers and
1653 * stack slots with spilled constants that these scalar regisers
1654 * should be precise.
1655 * . during state pruning two registers (or spilled stack slots)
1656 * are equivalent if both are not precise.
1657 *
1658 * Note the verifier cannot simply walk register parentage chain,
1659 * since many different registers and stack slots could have been
1660 * used to compute single precise scalar.
1661 *
1662 * The approach of starting with precise=true for all registers and then
1663 * backtrack to mark a register as not precise when the verifier detects
1664 * that program doesn't care about specific value (e.g., when helper
1665 * takes register as ARG_ANYTHING parameter) is not safe.
1666 *
1667 * It's ok to walk single parentage chain of the verifier states.
1668 * It's possible that this backtracking will go all the way till 1st insn.
1669 * All other branches will be explored for needing precision later.
1670 *
1671 * The backtracking needs to deal with cases like:
1672 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1673 * r9 -= r8
1674 * r5 = r9
1675 * if r5 > 0x79f goto pc+7
1676 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1677 * r5 += 1
1678 * ...
1679 * call bpf_perf_event_output#25
1680 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1681 *
1682 * and this case:
1683 * r6 = 1
1684 * call foo // uses callee's r6 inside to compute r0
1685 * r0 += r6
1686 * if r0 == 0 goto
1687 *
1688 * to track above reg_mask/stack_mask needs to be independent for each frame.
1689 *
1690 * Also if parent's curframe > frame where backtracking started,
1691 * the verifier need to mark registers in both frames, otherwise callees
1692 * may incorrectly prune callers. This is similar to
1693 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1694 *
1695 * For now backtracking falls back into conservative marking.
1696 */
1697static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1698 struct bpf_verifier_state *st)
1699{
1700 struct bpf_func_state *func;
1701 struct bpf_reg_state *reg;
1702 int i, j;
1703
1704 /* big hammer: mark all scalars precise in this path.
1705 * pop_stack may still get !precise scalars.
1706 */
1707 for (; st; st = st->parent)
1708 for (i = 0; i <= st->curframe; i++) {
1709 func = st->frame[i];
1710 for (j = 0; j < BPF_REG_FP; j++) {
1711 reg = &func->regs[j];
1712 if (reg->type != SCALAR_VALUE)
1713 continue;
1714 reg->precise = true;
1715 }
1716 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1717 if (func->stack[j].slot_type[0] != STACK_SPILL)
1718 continue;
1719 reg = &func->stack[j].spilled_ptr;
1720 if (reg->type != SCALAR_VALUE)
1721 continue;
1722 reg->precise = true;
1723 }
1724 }
1725}
1726
a3ce685d
AS
1727static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1728 int spi)
b5dc0163
AS
1729{
1730 struct bpf_verifier_state *st = env->cur_state;
1731 int first_idx = st->first_insn_idx;
1732 int last_idx = env->insn_idx;
1733 struct bpf_func_state *func;
1734 struct bpf_reg_state *reg;
a3ce685d
AS
1735 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1736 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1737 bool skip_first = true;
a3ce685d 1738 bool new_marks = false;
b5dc0163
AS
1739 int i, err;
1740
1741 if (!env->allow_ptr_leaks)
1742 /* backtracking is root only for now */
1743 return 0;
1744
1745 func = st->frame[st->curframe];
a3ce685d
AS
1746 if (regno >= 0) {
1747 reg = &func->regs[regno];
1748 if (reg->type != SCALAR_VALUE) {
1749 WARN_ONCE(1, "backtracing misuse");
1750 return -EFAULT;
1751 }
1752 if (!reg->precise)
1753 new_marks = true;
1754 else
1755 reg_mask = 0;
1756 reg->precise = true;
b5dc0163 1757 }
b5dc0163 1758
a3ce685d
AS
1759 while (spi >= 0) {
1760 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1761 stack_mask = 0;
1762 break;
1763 }
1764 reg = &func->stack[spi].spilled_ptr;
1765 if (reg->type != SCALAR_VALUE) {
1766 stack_mask = 0;
1767 break;
1768 }
1769 if (!reg->precise)
1770 new_marks = true;
1771 else
1772 stack_mask = 0;
1773 reg->precise = true;
1774 break;
1775 }
1776
1777 if (!new_marks)
1778 return 0;
1779 if (!reg_mask && !stack_mask)
1780 return 0;
b5dc0163
AS
1781 for (;;) {
1782 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1783 u32 history = st->jmp_history_cnt;
1784
1785 if (env->log.level & BPF_LOG_LEVEL)
1786 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1787 for (i = last_idx;;) {
1788 if (skip_first) {
1789 err = 0;
1790 skip_first = false;
1791 } else {
1792 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1793 }
1794 if (err == -ENOTSUPP) {
1795 mark_all_scalars_precise(env, st);
1796 return 0;
1797 } else if (err) {
1798 return err;
1799 }
1800 if (!reg_mask && !stack_mask)
1801 /* Found assignment(s) into tracked register in this state.
1802 * Since this state is already marked, just return.
1803 * Nothing to be tracked further in the parent state.
1804 */
1805 return 0;
1806 if (i == first_idx)
1807 break;
1808 i = get_prev_insn_idx(st, i, &history);
1809 if (i >= env->prog->len) {
1810 /* This can happen if backtracking reached insn 0
1811 * and there are still reg_mask or stack_mask
1812 * to backtrack.
1813 * It means the backtracking missed the spot where
1814 * particular register was initialized with a constant.
1815 */
1816 verbose(env, "BUG backtracking idx %d\n", i);
1817 WARN_ONCE(1, "verifier backtracking bug");
1818 return -EFAULT;
1819 }
1820 }
1821 st = st->parent;
1822 if (!st)
1823 break;
1824
a3ce685d 1825 new_marks = false;
b5dc0163
AS
1826 func = st->frame[st->curframe];
1827 bitmap_from_u64(mask, reg_mask);
1828 for_each_set_bit(i, mask, 32) {
1829 reg = &func->regs[i];
a3ce685d
AS
1830 if (reg->type != SCALAR_VALUE) {
1831 reg_mask &= ~(1u << i);
b5dc0163 1832 continue;
a3ce685d 1833 }
b5dc0163
AS
1834 if (!reg->precise)
1835 new_marks = true;
1836 reg->precise = true;
1837 }
1838
1839 bitmap_from_u64(mask, stack_mask);
1840 for_each_set_bit(i, mask, 64) {
1841 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
1842 /* the sequence of instructions:
1843 * 2: (bf) r3 = r10
1844 * 3: (7b) *(u64 *)(r3 -8) = r0
1845 * 4: (79) r4 = *(u64 *)(r10 -8)
1846 * doesn't contain jmps. It's backtracked
1847 * as a single block.
1848 * During backtracking insn 3 is not recognized as
1849 * stack access, so at the end of backtracking
1850 * stack slot fp-8 is still marked in stack_mask.
1851 * However the parent state may not have accessed
1852 * fp-8 and it's "unallocated" stack space.
1853 * In such case fallback to conservative.
b5dc0163 1854 */
2339cd6c
AS
1855 mark_all_scalars_precise(env, st);
1856 return 0;
b5dc0163
AS
1857 }
1858
a3ce685d
AS
1859 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1860 stack_mask &= ~(1ull << i);
b5dc0163 1861 continue;
a3ce685d 1862 }
b5dc0163 1863 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1864 if (reg->type != SCALAR_VALUE) {
1865 stack_mask &= ~(1ull << i);
b5dc0163 1866 continue;
a3ce685d 1867 }
b5dc0163
AS
1868 if (!reg->precise)
1869 new_marks = true;
1870 reg->precise = true;
1871 }
1872 if (env->log.level & BPF_LOG_LEVEL) {
1873 print_verifier_state(env, func);
1874 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1875 new_marks ? "didn't have" : "already had",
1876 reg_mask, stack_mask);
1877 }
1878
a3ce685d
AS
1879 if (!reg_mask && !stack_mask)
1880 break;
b5dc0163
AS
1881 if (!new_marks)
1882 break;
1883
1884 last_idx = st->last_insn_idx;
1885 first_idx = st->first_insn_idx;
1886 }
1887 return 0;
1888}
1889
a3ce685d
AS
1890static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1891{
1892 return __mark_chain_precision(env, regno, -1);
1893}
1894
1895static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1896{
1897 return __mark_chain_precision(env, -1, spi);
1898}
b5dc0163 1899
1be7f75d
AS
1900static bool is_spillable_regtype(enum bpf_reg_type type)
1901{
1902 switch (type) {
1903 case PTR_TO_MAP_VALUE:
1904 case PTR_TO_MAP_VALUE_OR_NULL:
1905 case PTR_TO_STACK:
1906 case PTR_TO_CTX:
969bf05e 1907 case PTR_TO_PACKET:
de8f3a83 1908 case PTR_TO_PACKET_META:
969bf05e 1909 case PTR_TO_PACKET_END:
d58e468b 1910 case PTR_TO_FLOW_KEYS:
1be7f75d 1911 case CONST_PTR_TO_MAP:
c64b7983
JS
1912 case PTR_TO_SOCKET:
1913 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1914 case PTR_TO_SOCK_COMMON:
1915 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1916 case PTR_TO_TCP_SOCK:
1917 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1918 case PTR_TO_XDP_SOCK:
65726b5b 1919 case PTR_TO_BTF_ID:
1be7f75d
AS
1920 return true;
1921 default:
1922 return false;
1923 }
1924}
1925
cc2b14d5
AS
1926/* Does this register contain a constant zero? */
1927static bool register_is_null(struct bpf_reg_state *reg)
1928{
1929 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1930}
1931
f7cf25b2
AS
1932static bool register_is_const(struct bpf_reg_state *reg)
1933{
1934 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1935}
1936
1937static void save_register_state(struct bpf_func_state *state,
1938 int spi, struct bpf_reg_state *reg)
1939{
1940 int i;
1941
1942 state->stack[spi].spilled_ptr = *reg;
1943 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1944
1945 for (i = 0; i < BPF_REG_SIZE; i++)
1946 state->stack[spi].slot_type[i] = STACK_SPILL;
1947}
1948
17a52670
AS
1949/* check_stack_read/write functions track spill/fill of registers,
1950 * stack boundary and alignment are checked in check_mem_access()
1951 */
61bd5218 1952static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1953 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1954 int off, int size, int value_regno, int insn_idx)
17a52670 1955{
f4d7e40a 1956 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1957 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1958 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1959 struct bpf_reg_state *reg = NULL;
638f5b90 1960
f4d7e40a 1961 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1962 state->acquired_refs, true);
638f5b90
AS
1963 if (err)
1964 return err;
9c399760
AS
1965 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1966 * so it's aligned access and [off, off + size) are within stack limits
1967 */
638f5b90
AS
1968 if (!env->allow_ptr_leaks &&
1969 state->stack[spi].slot_type[0] == STACK_SPILL &&
1970 size != BPF_REG_SIZE) {
1971 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1972 return -EACCES;
1973 }
17a52670 1974
f4d7e40a 1975 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1976 if (value_regno >= 0)
1977 reg = &cur->regs[value_regno];
17a52670 1978
f7cf25b2
AS
1979 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1980 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1981 if (dst_reg != BPF_REG_FP) {
1982 /* The backtracking logic can only recognize explicit
1983 * stack slot address like [fp - 8]. Other spill of
1984 * scalar via different register has to be conervative.
1985 * Backtrack from here and mark all registers as precise
1986 * that contributed into 'reg' being a constant.
1987 */
1988 err = mark_chain_precision(env, value_regno);
1989 if (err)
1990 return err;
1991 }
f7cf25b2
AS
1992 save_register_state(state, spi, reg);
1993 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1994 /* register containing pointer is being spilled into stack */
9c399760 1995 if (size != BPF_REG_SIZE) {
f7cf25b2 1996 verbose_linfo(env, insn_idx, "; ");
61bd5218 1997 verbose(env, "invalid size of register spill\n");
17a52670
AS
1998 return -EACCES;
1999 }
2000
f7cf25b2 2001 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2002 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2003 return -EINVAL;
2004 }
2005
f7cf25b2
AS
2006 if (!env->allow_ptr_leaks) {
2007 bool sanitize = false;
17a52670 2008
f7cf25b2
AS
2009 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2010 register_is_const(&state->stack[spi].spilled_ptr))
2011 sanitize = true;
2012 for (i = 0; i < BPF_REG_SIZE; i++)
2013 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2014 sanitize = true;
2015 break;
2016 }
2017 if (sanitize) {
af86ca4e
AS
2018 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2019 int soff = (-spi - 1) * BPF_REG_SIZE;
2020
2021 /* detected reuse of integer stack slot with a pointer
2022 * which means either llvm is reusing stack slot or
2023 * an attacker is trying to exploit CVE-2018-3639
2024 * (speculative store bypass)
2025 * Have to sanitize that slot with preemptive
2026 * store of zero.
2027 */
2028 if (*poff && *poff != soff) {
2029 /* disallow programs where single insn stores
2030 * into two different stack slots, since verifier
2031 * cannot sanitize them
2032 */
2033 verbose(env,
2034 "insn %d cannot access two stack slots fp%d and fp%d",
2035 insn_idx, *poff, soff);
2036 return -EINVAL;
2037 }
2038 *poff = soff;
2039 }
af86ca4e 2040 }
f7cf25b2 2041 save_register_state(state, spi, reg);
9c399760 2042 } else {
cc2b14d5
AS
2043 u8 type = STACK_MISC;
2044
679c782d
EC
2045 /* regular write of data into stack destroys any spilled ptr */
2046 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2047 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2048 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2049 for (i = 0; i < BPF_REG_SIZE; i++)
2050 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2051
cc2b14d5
AS
2052 /* only mark the slot as written if all 8 bytes were written
2053 * otherwise read propagation may incorrectly stop too soon
2054 * when stack slots are partially written.
2055 * This heuristic means that read propagation will be
2056 * conservative, since it will add reg_live_read marks
2057 * to stack slots all the way to first state when programs
2058 * writes+reads less than 8 bytes
2059 */
2060 if (size == BPF_REG_SIZE)
2061 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2062
2063 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2064 if (reg && register_is_null(reg)) {
2065 /* backtracking doesn't work for STACK_ZERO yet. */
2066 err = mark_chain_precision(env, value_regno);
2067 if (err)
2068 return err;
cc2b14d5 2069 type = STACK_ZERO;
b5dc0163 2070 }
cc2b14d5 2071
0bae2d4d 2072 /* Mark slots affected by this stack write. */
9c399760 2073 for (i = 0; i < size; i++)
638f5b90 2074 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2075 type;
17a52670
AS
2076 }
2077 return 0;
2078}
2079
61bd5218 2080static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2081 struct bpf_func_state *reg_state /* func where register points to */,
2082 int off, int size, int value_regno)
17a52670 2083{
f4d7e40a
AS
2084 struct bpf_verifier_state *vstate = env->cur_state;
2085 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2086 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2087 struct bpf_reg_state *reg;
638f5b90 2088 u8 *stype;
17a52670 2089
f4d7e40a 2090 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2091 verbose(env, "invalid read from stack off %d+0 size %d\n",
2092 off, size);
2093 return -EACCES;
2094 }
f4d7e40a 2095 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2096 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2097
638f5b90 2098 if (stype[0] == STACK_SPILL) {
9c399760 2099 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2100 if (reg->type != SCALAR_VALUE) {
2101 verbose_linfo(env, env->insn_idx, "; ");
2102 verbose(env, "invalid size of register fill\n");
2103 return -EACCES;
2104 }
2105 if (value_regno >= 0) {
2106 mark_reg_unknown(env, state->regs, value_regno);
2107 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2108 }
2109 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2110 return 0;
17a52670 2111 }
9c399760 2112 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2113 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2114 verbose(env, "corrupted spill memory\n");
17a52670
AS
2115 return -EACCES;
2116 }
2117 }
2118
dc503a8a 2119 if (value_regno >= 0) {
17a52670 2120 /* restore register state from stack */
f7cf25b2 2121 state->regs[value_regno] = *reg;
2f18f62e
AS
2122 /* mark reg as written since spilled pointer state likely
2123 * has its liveness marks cleared by is_state_visited()
2124 * which resets stack/reg liveness for state transitions
2125 */
2126 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2127 }
f7cf25b2 2128 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2129 } else {
cc2b14d5
AS
2130 int zeros = 0;
2131
17a52670 2132 for (i = 0; i < size; i++) {
cc2b14d5
AS
2133 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2134 continue;
2135 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2136 zeros++;
2137 continue;
17a52670 2138 }
cc2b14d5
AS
2139 verbose(env, "invalid read from stack off %d+%d size %d\n",
2140 off, i, size);
2141 return -EACCES;
2142 }
f7cf25b2 2143 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2144 if (value_regno >= 0) {
2145 if (zeros == size) {
2146 /* any size read into register is zero extended,
2147 * so the whole register == const_zero
2148 */
2149 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2150 /* backtracking doesn't support STACK_ZERO yet,
2151 * so mark it precise here, so that later
2152 * backtracking can stop here.
2153 * Backtracking may not need this if this register
2154 * doesn't participate in pointer adjustment.
2155 * Forward propagation of precise flag is not
2156 * necessary either. This mark is only to stop
2157 * backtracking. Any register that contributed
2158 * to const 0 was marked precise before spill.
2159 */
2160 state->regs[value_regno].precise = true;
cc2b14d5
AS
2161 } else {
2162 /* have read misc data from the stack */
2163 mark_reg_unknown(env, state->regs, value_regno);
2164 }
2165 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2166 }
17a52670 2167 }
f7cf25b2 2168 return 0;
17a52670
AS
2169}
2170
e4298d25
DB
2171static int check_stack_access(struct bpf_verifier_env *env,
2172 const struct bpf_reg_state *reg,
2173 int off, int size)
2174{
2175 /* Stack accesses must be at a fixed offset, so that we
2176 * can determine what type of data were returned. See
2177 * check_stack_read().
2178 */
2179 if (!tnum_is_const(reg->var_off)) {
2180 char tn_buf[48];
2181
2182 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2183 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2184 tn_buf, off, size);
2185 return -EACCES;
2186 }
2187
2188 if (off >= 0 || off < -MAX_BPF_STACK) {
2189 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2190 return -EACCES;
2191 }
2192
2193 return 0;
2194}
2195
591fe988
DB
2196static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2197 int off, int size, enum bpf_access_type type)
2198{
2199 struct bpf_reg_state *regs = cur_regs(env);
2200 struct bpf_map *map = regs[regno].map_ptr;
2201 u32 cap = bpf_map_flags_to_cap(map);
2202
2203 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2204 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2205 map->value_size, off, size);
2206 return -EACCES;
2207 }
2208
2209 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2210 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2211 map->value_size, off, size);
2212 return -EACCES;
2213 }
2214
2215 return 0;
2216}
2217
17a52670 2218/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2219static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2220 int size, bool zero_size_allowed)
17a52670 2221{
638f5b90
AS
2222 struct bpf_reg_state *regs = cur_regs(env);
2223 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2224
9fd29c08
YS
2225 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2226 off + size > map->value_size) {
61bd5218 2227 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2228 map->value_size, off, size);
2229 return -EACCES;
2230 }
2231 return 0;
2232}
2233
f1174f77
EC
2234/* check read/write into a map element with possible variable offset */
2235static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2236 int off, int size, bool zero_size_allowed)
dbcfe5f7 2237{
f4d7e40a
AS
2238 struct bpf_verifier_state *vstate = env->cur_state;
2239 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2240 struct bpf_reg_state *reg = &state->regs[regno];
2241 int err;
2242
f1174f77
EC
2243 /* We may have adjusted the register to this map value, so we
2244 * need to try adding each of min_value and max_value to off
2245 * to make sure our theoretical access will be safe.
dbcfe5f7 2246 */
06ee7115 2247 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2248 print_verifier_state(env, state);
b7137c4e 2249
dbcfe5f7
GB
2250 /* The minimum value is only important with signed
2251 * comparisons where we can't assume the floor of a
2252 * value is 0. If we are using signed variables for our
2253 * index'es we need to make sure that whatever we use
2254 * will have a set floor within our range.
2255 */
b7137c4e
DB
2256 if (reg->smin_value < 0 &&
2257 (reg->smin_value == S64_MIN ||
2258 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2259 reg->smin_value + off < 0)) {
61bd5218 2260 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2261 regno);
2262 return -EACCES;
2263 }
9fd29c08
YS
2264 err = __check_map_access(env, regno, reg->smin_value + off, size,
2265 zero_size_allowed);
dbcfe5f7 2266 if (err) {
61bd5218
JK
2267 verbose(env, "R%d min value is outside of the array range\n",
2268 regno);
dbcfe5f7
GB
2269 return err;
2270 }
2271
b03c9f9f
EC
2272 /* If we haven't set a max value then we need to bail since we can't be
2273 * sure we won't do bad things.
2274 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2275 */
b03c9f9f 2276 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2277 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2278 regno);
2279 return -EACCES;
2280 }
9fd29c08
YS
2281 err = __check_map_access(env, regno, reg->umax_value + off, size,
2282 zero_size_allowed);
f1174f77 2283 if (err)
61bd5218
JK
2284 verbose(env, "R%d max value is outside of the array range\n",
2285 regno);
d83525ca
AS
2286
2287 if (map_value_has_spin_lock(reg->map_ptr)) {
2288 u32 lock = reg->map_ptr->spin_lock_off;
2289
2290 /* if any part of struct bpf_spin_lock can be touched by
2291 * load/store reject this program.
2292 * To check that [x1, x2) overlaps with [y1, y2)
2293 * it is sufficient to check x1 < y2 && y1 < x2.
2294 */
2295 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2296 lock < reg->umax_value + off + size) {
2297 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2298 return -EACCES;
2299 }
2300 }
f1174f77 2301 return err;
dbcfe5f7
GB
2302}
2303
969bf05e
AS
2304#define MAX_PACKET_OFF 0xffff
2305
58e2af8b 2306static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2307 const struct bpf_call_arg_meta *meta,
2308 enum bpf_access_type t)
4acf6c0b 2309{
36bbef52 2310 switch (env->prog->type) {
5d66fa7d 2311 /* Program types only with direct read access go here! */
3a0af8fd
TG
2312 case BPF_PROG_TYPE_LWT_IN:
2313 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2314 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2315 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2316 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2317 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2318 if (t == BPF_WRITE)
2319 return false;
7e57fbb2 2320 /* fallthrough */
5d66fa7d
DB
2321
2322 /* Program types with direct read + write access go here! */
36bbef52
DB
2323 case BPF_PROG_TYPE_SCHED_CLS:
2324 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2325 case BPF_PROG_TYPE_XDP:
3a0af8fd 2326 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2327 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2328 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2329 if (meta)
2330 return meta->pkt_access;
2331
2332 env->seen_direct_write = true;
4acf6c0b 2333 return true;
0d01da6a
SF
2334
2335 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2336 if (t == BPF_WRITE)
2337 env->seen_direct_write = true;
2338
2339 return true;
2340
4acf6c0b
BB
2341 default:
2342 return false;
2343 }
2344}
2345
f1174f77 2346static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2347 int off, int size, bool zero_size_allowed)
969bf05e 2348{
638f5b90 2349 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2350 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2351
9fd29c08
YS
2352 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2353 (u64)off + size > reg->range) {
61bd5218 2354 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2355 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2356 return -EACCES;
2357 }
2358 return 0;
2359}
2360
f1174f77 2361static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2362 int size, bool zero_size_allowed)
f1174f77 2363{
638f5b90 2364 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2365 struct bpf_reg_state *reg = &regs[regno];
2366 int err;
2367
2368 /* We may have added a variable offset to the packet pointer; but any
2369 * reg->range we have comes after that. We are only checking the fixed
2370 * offset.
2371 */
2372
2373 /* We don't allow negative numbers, because we aren't tracking enough
2374 * detail to prove they're safe.
2375 */
b03c9f9f 2376 if (reg->smin_value < 0) {
61bd5218 2377 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2378 regno);
2379 return -EACCES;
2380 }
9fd29c08 2381 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2382 if (err) {
61bd5218 2383 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2384 return err;
2385 }
e647815a
JW
2386
2387 /* __check_packet_access has made sure "off + size - 1" is within u16.
2388 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2389 * otherwise find_good_pkt_pointers would have refused to set range info
2390 * that __check_packet_access would have rejected this pkt access.
2391 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2392 */
2393 env->prog->aux->max_pkt_offset =
2394 max_t(u32, env->prog->aux->max_pkt_offset,
2395 off + reg->umax_value + size - 1);
2396
f1174f77
EC
2397 return err;
2398}
2399
2400/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2401static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66
AS
2402 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2403 u32 *btf_id)
17a52670 2404{
f96da094
DB
2405 struct bpf_insn_access_aux info = {
2406 .reg_type = *reg_type,
9e15db66 2407 .log = &env->log,
f96da094 2408 };
31fd8581 2409
4f9218aa 2410 if (env->ops->is_valid_access &&
5e43f899 2411 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2412 /* A non zero info.ctx_field_size indicates that this field is a
2413 * candidate for later verifier transformation to load the whole
2414 * field and then apply a mask when accessed with a narrower
2415 * access than actual ctx access size. A zero info.ctx_field_size
2416 * will only allow for whole field access and rejects any other
2417 * type of narrower access.
31fd8581 2418 */
23994631 2419 *reg_type = info.reg_type;
31fd8581 2420
9e15db66
AS
2421 if (*reg_type == PTR_TO_BTF_ID)
2422 *btf_id = info.btf_id;
2423 else
2424 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2425 /* remember the offset of last byte accessed in ctx */
2426 if (env->prog->aux->max_ctx_offset < off + size)
2427 env->prog->aux->max_ctx_offset = off + size;
17a52670 2428 return 0;
32bbe007 2429 }
17a52670 2430
61bd5218 2431 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2432 return -EACCES;
2433}
2434
d58e468b
PP
2435static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2436 int size)
2437{
2438 if (size < 0 || off < 0 ||
2439 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2440 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2441 off, size);
2442 return -EACCES;
2443 }
2444 return 0;
2445}
2446
5f456649
MKL
2447static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2448 u32 regno, int off, int size,
2449 enum bpf_access_type t)
c64b7983
JS
2450{
2451 struct bpf_reg_state *regs = cur_regs(env);
2452 struct bpf_reg_state *reg = &regs[regno];
5f456649 2453 struct bpf_insn_access_aux info = {};
46f8bc92 2454 bool valid;
c64b7983
JS
2455
2456 if (reg->smin_value < 0) {
2457 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2458 regno);
2459 return -EACCES;
2460 }
2461
46f8bc92
MKL
2462 switch (reg->type) {
2463 case PTR_TO_SOCK_COMMON:
2464 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2465 break;
2466 case PTR_TO_SOCKET:
2467 valid = bpf_sock_is_valid_access(off, size, t, &info);
2468 break;
655a51e5
MKL
2469 case PTR_TO_TCP_SOCK:
2470 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2471 break;
fada7fdc
JL
2472 case PTR_TO_XDP_SOCK:
2473 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2474 break;
46f8bc92
MKL
2475 default:
2476 valid = false;
c64b7983
JS
2477 }
2478
5f456649 2479
46f8bc92
MKL
2480 if (valid) {
2481 env->insn_aux_data[insn_idx].ctx_field_size =
2482 info.ctx_field_size;
2483 return 0;
2484 }
2485
2486 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2487 regno, reg_type_str[reg->type], off, size);
2488
2489 return -EACCES;
c64b7983
JS
2490}
2491
4cabc5b1
DB
2492static bool __is_pointer_value(bool allow_ptr_leaks,
2493 const struct bpf_reg_state *reg)
1be7f75d 2494{
4cabc5b1 2495 if (allow_ptr_leaks)
1be7f75d
AS
2496 return false;
2497
f1174f77 2498 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2499}
2500
2a159c6f
DB
2501static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2502{
2503 return cur_regs(env) + regno;
2504}
2505
4cabc5b1
DB
2506static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2507{
2a159c6f 2508 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2509}
2510
f37a8cb8
DB
2511static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2512{
2a159c6f 2513 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2514
46f8bc92
MKL
2515 return reg->type == PTR_TO_CTX;
2516}
2517
2518static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2519{
2520 const struct bpf_reg_state *reg = reg_state(env, regno);
2521
2522 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2523}
2524
ca369602
DB
2525static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2526{
2a159c6f 2527 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2528
2529 return type_is_pkt_pointer(reg->type);
2530}
2531
4b5defde
DB
2532static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2533{
2534 const struct bpf_reg_state *reg = reg_state(env, regno);
2535
2536 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2537 return reg->type == PTR_TO_FLOW_KEYS;
2538}
2539
61bd5218
JK
2540static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2541 const struct bpf_reg_state *reg,
d1174416 2542 int off, int size, bool strict)
969bf05e 2543{
f1174f77 2544 struct tnum reg_off;
e07b98d9 2545 int ip_align;
d1174416
DM
2546
2547 /* Byte size accesses are always allowed. */
2548 if (!strict || size == 1)
2549 return 0;
2550
e4eda884
DM
2551 /* For platforms that do not have a Kconfig enabling
2552 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2553 * NET_IP_ALIGN is universally set to '2'. And on platforms
2554 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2555 * to this code only in strict mode where we want to emulate
2556 * the NET_IP_ALIGN==2 checking. Therefore use an
2557 * unconditional IP align value of '2'.
e07b98d9 2558 */
e4eda884 2559 ip_align = 2;
f1174f77
EC
2560
2561 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2562 if (!tnum_is_aligned(reg_off, size)) {
2563 char tn_buf[48];
2564
2565 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2566 verbose(env,
2567 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2568 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2569 return -EACCES;
2570 }
79adffcd 2571
969bf05e
AS
2572 return 0;
2573}
2574
61bd5218
JK
2575static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2576 const struct bpf_reg_state *reg,
f1174f77
EC
2577 const char *pointer_desc,
2578 int off, int size, bool strict)
79adffcd 2579{
f1174f77
EC
2580 struct tnum reg_off;
2581
2582 /* Byte size accesses are always allowed. */
2583 if (!strict || size == 1)
2584 return 0;
2585
2586 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2587 if (!tnum_is_aligned(reg_off, size)) {
2588 char tn_buf[48];
2589
2590 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2591 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2592 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2593 return -EACCES;
2594 }
2595
969bf05e
AS
2596 return 0;
2597}
2598
e07b98d9 2599static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2600 const struct bpf_reg_state *reg, int off,
2601 int size, bool strict_alignment_once)
79adffcd 2602{
ca369602 2603 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2604 const char *pointer_desc = "";
d1174416 2605
79adffcd
DB
2606 switch (reg->type) {
2607 case PTR_TO_PACKET:
de8f3a83
DB
2608 case PTR_TO_PACKET_META:
2609 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2610 * right in front, treat it the very same way.
2611 */
61bd5218 2612 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2613 case PTR_TO_FLOW_KEYS:
2614 pointer_desc = "flow keys ";
2615 break;
f1174f77
EC
2616 case PTR_TO_MAP_VALUE:
2617 pointer_desc = "value ";
2618 break;
2619 case PTR_TO_CTX:
2620 pointer_desc = "context ";
2621 break;
2622 case PTR_TO_STACK:
2623 pointer_desc = "stack ";
a5ec6ae1
JH
2624 /* The stack spill tracking logic in check_stack_write()
2625 * and check_stack_read() relies on stack accesses being
2626 * aligned.
2627 */
2628 strict = true;
f1174f77 2629 break;
c64b7983
JS
2630 case PTR_TO_SOCKET:
2631 pointer_desc = "sock ";
2632 break;
46f8bc92
MKL
2633 case PTR_TO_SOCK_COMMON:
2634 pointer_desc = "sock_common ";
2635 break;
655a51e5
MKL
2636 case PTR_TO_TCP_SOCK:
2637 pointer_desc = "tcp_sock ";
2638 break;
fada7fdc
JL
2639 case PTR_TO_XDP_SOCK:
2640 pointer_desc = "xdp_sock ";
2641 break;
79adffcd 2642 default:
f1174f77 2643 break;
79adffcd 2644 }
61bd5218
JK
2645 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2646 strict);
79adffcd
DB
2647}
2648
f4d7e40a
AS
2649static int update_stack_depth(struct bpf_verifier_env *env,
2650 const struct bpf_func_state *func,
2651 int off)
2652{
9c8105bd 2653 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2654
2655 if (stack >= -off)
2656 return 0;
2657
2658 /* update known max for given subprogram */
9c8105bd 2659 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2660 return 0;
2661}
f4d7e40a 2662
70a87ffe
AS
2663/* starting from main bpf function walk all instructions of the function
2664 * and recursively walk all callees that given function can call.
2665 * Ignore jump and exit insns.
2666 * Since recursion is prevented by check_cfg() this algorithm
2667 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2668 */
2669static int check_max_stack_depth(struct bpf_verifier_env *env)
2670{
9c8105bd
JW
2671 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2672 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2673 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2674 int ret_insn[MAX_CALL_FRAMES];
2675 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2676
70a87ffe
AS
2677process_func:
2678 /* round up to 32-bytes, since this is granularity
2679 * of interpreter stack size
2680 */
9c8105bd 2681 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2682 if (depth > MAX_BPF_STACK) {
f4d7e40a 2683 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2684 frame + 1, depth);
f4d7e40a
AS
2685 return -EACCES;
2686 }
70a87ffe 2687continue_func:
4cb3d99c 2688 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2689 for (; i < subprog_end; i++) {
2690 if (insn[i].code != (BPF_JMP | BPF_CALL))
2691 continue;
2692 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2693 continue;
2694 /* remember insn and function to return to */
2695 ret_insn[frame] = i + 1;
9c8105bd 2696 ret_prog[frame] = idx;
70a87ffe
AS
2697
2698 /* find the callee */
2699 i = i + insn[i].imm + 1;
9c8105bd
JW
2700 idx = find_subprog(env, i);
2701 if (idx < 0) {
70a87ffe
AS
2702 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2703 i);
2704 return -EFAULT;
2705 }
70a87ffe
AS
2706 frame++;
2707 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2708 verbose(env, "the call stack of %d frames is too deep !\n",
2709 frame);
2710 return -E2BIG;
70a87ffe
AS
2711 }
2712 goto process_func;
2713 }
2714 /* end of for() loop means the last insn of the 'subprog'
2715 * was reached. Doesn't matter whether it was JA or EXIT
2716 */
2717 if (frame == 0)
2718 return 0;
9c8105bd 2719 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2720 frame--;
2721 i = ret_insn[frame];
9c8105bd 2722 idx = ret_prog[frame];
70a87ffe 2723 goto continue_func;
f4d7e40a
AS
2724}
2725
19d28fbd 2726#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2727static int get_callee_stack_depth(struct bpf_verifier_env *env,
2728 const struct bpf_insn *insn, int idx)
2729{
2730 int start = idx + insn->imm + 1, subprog;
2731
2732 subprog = find_subprog(env, start);
2733 if (subprog < 0) {
2734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2735 start);
2736 return -EFAULT;
2737 }
9c8105bd 2738 return env->subprog_info[subprog].stack_depth;
1ea47e01 2739}
19d28fbd 2740#endif
1ea47e01 2741
58990d1f
DB
2742static int check_ctx_reg(struct bpf_verifier_env *env,
2743 const struct bpf_reg_state *reg, int regno)
2744{
2745 /* Access to ctx or passing it to a helper is only allowed in
2746 * its original, unmodified form.
2747 */
2748
2749 if (reg->off) {
2750 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2751 regno, reg->off);
2752 return -EACCES;
2753 }
2754
2755 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2756 char tn_buf[48];
2757
2758 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2759 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2760 return -EACCES;
2761 }
2762
2763 return 0;
2764}
2765
9df1c28b
MM
2766static int check_tp_buffer_access(struct bpf_verifier_env *env,
2767 const struct bpf_reg_state *reg,
2768 int regno, int off, int size)
2769{
2770 if (off < 0) {
2771 verbose(env,
2772 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2773 regno, off, size);
2774 return -EACCES;
2775 }
2776 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2777 char tn_buf[48];
2778
2779 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2780 verbose(env,
2781 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2782 regno, off, tn_buf);
2783 return -EACCES;
2784 }
2785 if (off + size > env->prog->aux->max_tp_access)
2786 env->prog->aux->max_tp_access = off + size;
2787
2788 return 0;
2789}
2790
2791
0c17d1d2
JH
2792/* truncate register to smaller size (in bytes)
2793 * must be called with size < BPF_REG_SIZE
2794 */
2795static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2796{
2797 u64 mask;
2798
2799 /* clear high bits in bit representation */
2800 reg->var_off = tnum_cast(reg->var_off, size);
2801
2802 /* fix arithmetic bounds */
2803 mask = ((u64)1 << (size * 8)) - 1;
2804 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2805 reg->umin_value &= mask;
2806 reg->umax_value &= mask;
2807 } else {
2808 reg->umin_value = 0;
2809 reg->umax_value = mask;
2810 }
2811 reg->smin_value = reg->umin_value;
2812 reg->smax_value = reg->umax_value;
2813}
2814
a23740ec
AN
2815static bool bpf_map_is_rdonly(const struct bpf_map *map)
2816{
2817 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2818}
2819
2820static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2821{
2822 void *ptr;
2823 u64 addr;
2824 int err;
2825
2826 err = map->ops->map_direct_value_addr(map, &addr, off);
2827 if (err)
2828 return err;
2dedd7d2 2829 ptr = (void *)(long)addr + off;
a23740ec
AN
2830
2831 switch (size) {
2832 case sizeof(u8):
2833 *val = (u64)*(u8 *)ptr;
2834 break;
2835 case sizeof(u16):
2836 *val = (u64)*(u16 *)ptr;
2837 break;
2838 case sizeof(u32):
2839 *val = (u64)*(u32 *)ptr;
2840 break;
2841 case sizeof(u64):
2842 *val = *(u64 *)ptr;
2843 break;
2844 default:
2845 return -EINVAL;
2846 }
2847 return 0;
2848}
2849
9e15db66
AS
2850static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2851 struct bpf_reg_state *regs,
2852 int regno, int off, int size,
2853 enum bpf_access_type atype,
2854 int value_regno)
2855{
2856 struct bpf_reg_state *reg = regs + regno;
2857 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2858 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2859 u32 btf_id;
2860 int ret;
2861
9e15db66
AS
2862 if (off < 0) {
2863 verbose(env,
2864 "R%d is ptr_%s invalid negative access: off=%d\n",
2865 regno, tname, off);
2866 return -EACCES;
2867 }
2868 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2869 char tn_buf[48];
2870
2871 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2872 verbose(env,
2873 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2874 regno, tname, off, tn_buf);
2875 return -EACCES;
2876 }
2877
27ae7997
MKL
2878 if (env->ops->btf_struct_access) {
2879 ret = env->ops->btf_struct_access(&env->log, t, off, size,
2880 atype, &btf_id);
2881 } else {
2882 if (atype != BPF_READ) {
2883 verbose(env, "only read is supported\n");
2884 return -EACCES;
2885 }
2886
2887 ret = btf_struct_access(&env->log, t, off, size, atype,
2888 &btf_id);
2889 }
2890
9e15db66
AS
2891 if (ret < 0)
2892 return ret;
2893
27ae7997
MKL
2894 if (atype == BPF_READ) {
2895 if (ret == SCALAR_VALUE) {
2896 mark_reg_unknown(env, regs, value_regno);
2897 return 0;
2898 }
2899 mark_reg_known_zero(env, regs, value_regno);
2900 regs[value_regno].type = PTR_TO_BTF_ID;
2901 regs[value_regno].btf_id = btf_id;
9e15db66 2902 }
27ae7997 2903
9e15db66
AS
2904 return 0;
2905}
2906
17a52670
AS
2907/* check whether memory at (regno + off) is accessible for t = (read | write)
2908 * if t==write, value_regno is a register which value is stored into memory
2909 * if t==read, value_regno is a register which will receive the value from memory
2910 * if t==write && value_regno==-1, some unknown value is stored into memory
2911 * if t==read && value_regno==-1, don't care what we read from memory
2912 */
ca369602
DB
2913static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2914 int off, int bpf_size, enum bpf_access_type t,
2915 int value_regno, bool strict_alignment_once)
17a52670 2916{
638f5b90
AS
2917 struct bpf_reg_state *regs = cur_regs(env);
2918 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2919 struct bpf_func_state *state;
17a52670
AS
2920 int size, err = 0;
2921
2922 size = bpf_size_to_bytes(bpf_size);
2923 if (size < 0)
2924 return size;
2925
f1174f77 2926 /* alignment checks will add in reg->off themselves */
ca369602 2927 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2928 if (err)
2929 return err;
17a52670 2930
f1174f77
EC
2931 /* for access checks, reg->off is just part of off */
2932 off += reg->off;
2933
2934 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2935 if (t == BPF_WRITE && value_regno >= 0 &&
2936 is_pointer_value(env, value_regno)) {
61bd5218 2937 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2938 return -EACCES;
2939 }
591fe988
DB
2940 err = check_map_access_type(env, regno, off, size, t);
2941 if (err)
2942 return err;
9fd29c08 2943 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
2944 if (!err && t == BPF_READ && value_regno >= 0) {
2945 struct bpf_map *map = reg->map_ptr;
2946
2947 /* if map is read-only, track its contents as scalars */
2948 if (tnum_is_const(reg->var_off) &&
2949 bpf_map_is_rdonly(map) &&
2950 map->ops->map_direct_value_addr) {
2951 int map_off = off + reg->var_off.value;
2952 u64 val = 0;
2953
2954 err = bpf_map_direct_read(map, map_off, size,
2955 &val);
2956 if (err)
2957 return err;
2958
2959 regs[value_regno].type = SCALAR_VALUE;
2960 __mark_reg_known(&regs[value_regno], val);
2961 } else {
2962 mark_reg_unknown(env, regs, value_regno);
2963 }
2964 }
1a0dc1ac 2965 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2966 enum bpf_reg_type reg_type = SCALAR_VALUE;
9e15db66 2967 u32 btf_id = 0;
19de99f7 2968
1be7f75d
AS
2969 if (t == BPF_WRITE && value_regno >= 0 &&
2970 is_pointer_value(env, value_regno)) {
61bd5218 2971 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2972 return -EACCES;
2973 }
f1174f77 2974
58990d1f
DB
2975 err = check_ctx_reg(env, reg, regno);
2976 if (err < 0)
2977 return err;
2978
9e15db66
AS
2979 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2980 if (err)
2981 verbose_linfo(env, insn_idx, "; ");
969bf05e 2982 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2983 /* ctx access returns either a scalar, or a
de8f3a83
DB
2984 * PTR_TO_PACKET[_META,_END]. In the latter
2985 * case, we know the offset is zero.
f1174f77 2986 */
46f8bc92 2987 if (reg_type == SCALAR_VALUE) {
638f5b90 2988 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2989 } else {
638f5b90 2990 mark_reg_known_zero(env, regs,
61bd5218 2991 value_regno);
46f8bc92
MKL
2992 if (reg_type_may_be_null(reg_type))
2993 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2994 /* A load of ctx field could have different
2995 * actual load size with the one encoded in the
2996 * insn. When the dst is PTR, it is for sure not
2997 * a sub-register.
2998 */
2999 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
9e15db66
AS
3000 if (reg_type == PTR_TO_BTF_ID)
3001 regs[value_regno].btf_id = btf_id;
46f8bc92 3002 }
638f5b90 3003 regs[value_regno].type = reg_type;
969bf05e 3004 }
17a52670 3005
f1174f77 3006 } else if (reg->type == PTR_TO_STACK) {
f1174f77 3007 off += reg->var_off.value;
e4298d25
DB
3008 err = check_stack_access(env, reg, off, size);
3009 if (err)
3010 return err;
8726679a 3011
f4d7e40a
AS
3012 state = func(env, reg);
3013 err = update_stack_depth(env, state, off);
3014 if (err)
3015 return err;
8726679a 3016
638f5b90 3017 if (t == BPF_WRITE)
61bd5218 3018 err = check_stack_write(env, state, off, size,
af86ca4e 3019 value_regno, insn_idx);
638f5b90 3020 else
61bd5218
JK
3021 err = check_stack_read(env, state, off, size,
3022 value_regno);
de8f3a83 3023 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 3024 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 3025 verbose(env, "cannot write into packet\n");
969bf05e
AS
3026 return -EACCES;
3027 }
4acf6c0b
BB
3028 if (t == BPF_WRITE && value_regno >= 0 &&
3029 is_pointer_value(env, value_regno)) {
61bd5218
JK
3030 verbose(env, "R%d leaks addr into packet\n",
3031 value_regno);
4acf6c0b
BB
3032 return -EACCES;
3033 }
9fd29c08 3034 err = check_packet_access(env, regno, off, size, false);
969bf05e 3035 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 3036 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
3037 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3038 if (t == BPF_WRITE && value_regno >= 0 &&
3039 is_pointer_value(env, value_regno)) {
3040 verbose(env, "R%d leaks addr into flow keys\n",
3041 value_regno);
3042 return -EACCES;
3043 }
3044
3045 err = check_flow_keys_access(env, off, size);
3046 if (!err && t == BPF_READ && value_regno >= 0)
3047 mark_reg_unknown(env, regs, value_regno);
46f8bc92 3048 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 3049 if (t == BPF_WRITE) {
46f8bc92
MKL
3050 verbose(env, "R%d cannot write into %s\n",
3051 regno, reg_type_str[reg->type]);
c64b7983
JS
3052 return -EACCES;
3053 }
5f456649 3054 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
3055 if (!err && value_regno >= 0)
3056 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
3057 } else if (reg->type == PTR_TO_TP_BUFFER) {
3058 err = check_tp_buffer_access(env, reg, regno, off, size);
3059 if (!err && t == BPF_READ && value_regno >= 0)
3060 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
3061 } else if (reg->type == PTR_TO_BTF_ID) {
3062 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3063 value_regno);
17a52670 3064 } else {
61bd5218
JK
3065 verbose(env, "R%d invalid mem access '%s'\n", regno,
3066 reg_type_str[reg->type]);
17a52670
AS
3067 return -EACCES;
3068 }
969bf05e 3069
f1174f77 3070 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 3071 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 3072 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 3073 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 3074 }
17a52670
AS
3075 return err;
3076}
3077
31fd8581 3078static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 3079{
17a52670
AS
3080 int err;
3081
3082 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3083 insn->imm != 0) {
61bd5218 3084 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
3085 return -EINVAL;
3086 }
3087
3088 /* check src1 operand */
dc503a8a 3089 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3090 if (err)
3091 return err;
3092
3093 /* check src2 operand */
dc503a8a 3094 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3095 if (err)
3096 return err;
3097
6bdf6abc 3098 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3099 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
3100 return -EACCES;
3101 }
3102
ca369602 3103 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 3104 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
3105 is_flow_key_reg(env, insn->dst_reg) ||
3106 is_sk_reg(env, insn->dst_reg)) {
ca369602 3107 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
3108 insn->dst_reg,
3109 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
3110 return -EACCES;
3111 }
3112
17a52670 3113 /* check whether atomic_add can read the memory */
31fd8581 3114 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3115 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
3116 if (err)
3117 return err;
3118
3119 /* check whether atomic_add can write into the same memory */
31fd8581 3120 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 3121 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
3122}
3123
2011fccf
AI
3124static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3125 int off, int access_size,
3126 bool zero_size_allowed)
3127{
3128 struct bpf_reg_state *reg = reg_state(env, regno);
3129
3130 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3131 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3132 if (tnum_is_const(reg->var_off)) {
3133 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3134 regno, off, access_size);
3135 } else {
3136 char tn_buf[48];
3137
3138 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3139 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3140 regno, tn_buf, access_size);
3141 }
3142 return -EACCES;
3143 }
3144 return 0;
3145}
3146
17a52670
AS
3147/* when register 'regno' is passed into function that will read 'access_size'
3148 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
3149 * and all elements of stack are initialized.
3150 * Unlike most pointer bounds-checking functions, this one doesn't take an
3151 * 'off' argument, so it has to add in reg->off itself.
17a52670 3152 */
58e2af8b 3153static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
3154 int access_size, bool zero_size_allowed,
3155 struct bpf_call_arg_meta *meta)
17a52670 3156{
2a159c6f 3157 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 3158 struct bpf_func_state *state = func(env, reg);
f7cf25b2 3159 int err, min_off, max_off, i, j, slot, spi;
17a52670 3160
914cb781 3161 if (reg->type != PTR_TO_STACK) {
f1174f77 3162 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 3163 if (zero_size_allowed && access_size == 0 &&
914cb781 3164 register_is_null(reg))
8e2fe1d9
DB
3165 return 0;
3166
61bd5218 3167 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 3168 reg_type_str[reg->type],
8e2fe1d9 3169 reg_type_str[PTR_TO_STACK]);
17a52670 3170 return -EACCES;
8e2fe1d9 3171 }
17a52670 3172
2011fccf
AI
3173 if (tnum_is_const(reg->var_off)) {
3174 min_off = max_off = reg->var_off.value + reg->off;
3175 err = __check_stack_boundary(env, regno, min_off, access_size,
3176 zero_size_allowed);
3177 if (err)
3178 return err;
3179 } else {
088ec26d
AI
3180 /* Variable offset is prohibited for unprivileged mode for
3181 * simplicity since it requires corresponding support in
3182 * Spectre masking for stack ALU.
3183 * See also retrieve_ptr_limit().
3184 */
3185 if (!env->allow_ptr_leaks) {
3186 char tn_buf[48];
f1174f77 3187
088ec26d
AI
3188 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3189 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3190 regno, tn_buf);
3191 return -EACCES;
3192 }
f2bcd05e
AI
3193 /* Only initialized buffer on stack is allowed to be accessed
3194 * with variable offset. With uninitialized buffer it's hard to
3195 * guarantee that whole memory is marked as initialized on
3196 * helper return since specific bounds are unknown what may
3197 * cause uninitialized stack leaking.
3198 */
3199 if (meta && meta->raw_mode)
3200 meta = NULL;
3201
107c26a7
AI
3202 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3203 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3204 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3205 regno);
3206 return -EACCES;
3207 }
2011fccf 3208 min_off = reg->smin_value + reg->off;
107c26a7 3209 max_off = reg->smax_value + reg->off;
2011fccf
AI
3210 err = __check_stack_boundary(env, regno, min_off, access_size,
3211 zero_size_allowed);
107c26a7
AI
3212 if (err) {
3213 verbose(env, "R%d min value is outside of stack bound\n",
3214 regno);
2011fccf 3215 return err;
107c26a7 3216 }
2011fccf
AI
3217 err = __check_stack_boundary(env, regno, max_off, access_size,
3218 zero_size_allowed);
107c26a7
AI
3219 if (err) {
3220 verbose(env, "R%d max value is outside of stack bound\n",
3221 regno);
2011fccf 3222 return err;
107c26a7 3223 }
17a52670
AS
3224 }
3225
435faee1
DB
3226 if (meta && meta->raw_mode) {
3227 meta->access_size = access_size;
3228 meta->regno = regno;
3229 return 0;
3230 }
3231
2011fccf 3232 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3233 u8 *stype;
3234
2011fccf 3235 slot = -i - 1;
638f5b90 3236 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3237 if (state->allocated_stack <= slot)
3238 goto err;
3239 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3240 if (*stype == STACK_MISC)
3241 goto mark;
3242 if (*stype == STACK_ZERO) {
3243 /* helper can write anything into the stack */
3244 *stype = STACK_MISC;
3245 goto mark;
17a52670 3246 }
f7cf25b2
AS
3247 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3248 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
f54c7898 3249 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
f7cf25b2
AS
3250 for (j = 0; j < BPF_REG_SIZE; j++)
3251 state->stack[spi].slot_type[j] = STACK_MISC;
3252 goto mark;
3253 }
3254
cc2b14d5 3255err:
2011fccf
AI
3256 if (tnum_is_const(reg->var_off)) {
3257 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3258 min_off, i - min_off, access_size);
3259 } else {
3260 char tn_buf[48];
3261
3262 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3263 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3264 tn_buf, i - min_off, access_size);
3265 }
cc2b14d5
AS
3266 return -EACCES;
3267mark:
3268 /* reading any byte out of 8-byte 'spill_slot' will cause
3269 * the whole slot to be marked as 'read'
3270 */
679c782d 3271 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3272 state->stack[spi].spilled_ptr.parent,
3273 REG_LIVE_READ64);
17a52670 3274 }
2011fccf 3275 return update_stack_depth(env, state, min_off);
17a52670
AS
3276}
3277
06c1c049
GB
3278static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3279 int access_size, bool zero_size_allowed,
3280 struct bpf_call_arg_meta *meta)
3281{
638f5b90 3282 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3283
f1174f77 3284 switch (reg->type) {
06c1c049 3285 case PTR_TO_PACKET:
de8f3a83 3286 case PTR_TO_PACKET_META:
9fd29c08
YS
3287 return check_packet_access(env, regno, reg->off, access_size,
3288 zero_size_allowed);
06c1c049 3289 case PTR_TO_MAP_VALUE:
591fe988
DB
3290 if (check_map_access_type(env, regno, reg->off, access_size,
3291 meta && meta->raw_mode ? BPF_WRITE :
3292 BPF_READ))
3293 return -EACCES;
9fd29c08
YS
3294 return check_map_access(env, regno, reg->off, access_size,
3295 zero_size_allowed);
f1174f77 3296 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3297 return check_stack_boundary(env, regno, access_size,
3298 zero_size_allowed, meta);
3299 }
3300}
3301
d83525ca
AS
3302/* Implementation details:
3303 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3304 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3305 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3306 * value_or_null->value transition, since the verifier only cares about
3307 * the range of access to valid map value pointer and doesn't care about actual
3308 * address of the map element.
3309 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3310 * reg->id > 0 after value_or_null->value transition. By doing so
3311 * two bpf_map_lookups will be considered two different pointers that
3312 * point to different bpf_spin_locks.
3313 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3314 * dead-locks.
3315 * Since only one bpf_spin_lock is allowed the checks are simpler than
3316 * reg_is_refcounted() logic. The verifier needs to remember only
3317 * one spin_lock instead of array of acquired_refs.
3318 * cur_state->active_spin_lock remembers which map value element got locked
3319 * and clears it after bpf_spin_unlock.
3320 */
3321static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3322 bool is_lock)
3323{
3324 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3325 struct bpf_verifier_state *cur = env->cur_state;
3326 bool is_const = tnum_is_const(reg->var_off);
3327 struct bpf_map *map = reg->map_ptr;
3328 u64 val = reg->var_off.value;
3329
3330 if (reg->type != PTR_TO_MAP_VALUE) {
3331 verbose(env, "R%d is not a pointer to map_value\n", regno);
3332 return -EINVAL;
3333 }
3334 if (!is_const) {
3335 verbose(env,
3336 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3337 regno);
3338 return -EINVAL;
3339 }
3340 if (!map->btf) {
3341 verbose(env,
3342 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3343 map->name);
3344 return -EINVAL;
3345 }
3346 if (!map_value_has_spin_lock(map)) {
3347 if (map->spin_lock_off == -E2BIG)
3348 verbose(env,
3349 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3350 map->name);
3351 else if (map->spin_lock_off == -ENOENT)
3352 verbose(env,
3353 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3354 map->name);
3355 else
3356 verbose(env,
3357 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3358 map->name);
3359 return -EINVAL;
3360 }
3361 if (map->spin_lock_off != val + reg->off) {
3362 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3363 val + reg->off);
3364 return -EINVAL;
3365 }
3366 if (is_lock) {
3367 if (cur->active_spin_lock) {
3368 verbose(env,
3369 "Locking two bpf_spin_locks are not allowed\n");
3370 return -EINVAL;
3371 }
3372 cur->active_spin_lock = reg->id;
3373 } else {
3374 if (!cur->active_spin_lock) {
3375 verbose(env, "bpf_spin_unlock without taking a lock\n");
3376 return -EINVAL;
3377 }
3378 if (cur->active_spin_lock != reg->id) {
3379 verbose(env, "bpf_spin_unlock of different lock\n");
3380 return -EINVAL;
3381 }
3382 cur->active_spin_lock = 0;
3383 }
3384 return 0;
3385}
3386
90133415
DB
3387static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3388{
3389 return type == ARG_PTR_TO_MEM ||
3390 type == ARG_PTR_TO_MEM_OR_NULL ||
3391 type == ARG_PTR_TO_UNINIT_MEM;
3392}
3393
3394static bool arg_type_is_mem_size(enum bpf_arg_type type)
3395{
3396 return type == ARG_CONST_SIZE ||
3397 type == ARG_CONST_SIZE_OR_ZERO;
3398}
3399
57c3bb72
AI
3400static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3401{
3402 return type == ARG_PTR_TO_INT ||
3403 type == ARG_PTR_TO_LONG;
3404}
3405
3406static int int_ptr_type_to_size(enum bpf_arg_type type)
3407{
3408 if (type == ARG_PTR_TO_INT)
3409 return sizeof(u32);
3410 else if (type == ARG_PTR_TO_LONG)
3411 return sizeof(u64);
3412
3413 return -EINVAL;
3414}
3415
58e2af8b 3416static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3417 enum bpf_arg_type arg_type,
3418 struct bpf_call_arg_meta *meta)
17a52670 3419{
638f5b90 3420 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3421 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3422 int err = 0;
3423
80f1d68c 3424 if (arg_type == ARG_DONTCARE)
17a52670
AS
3425 return 0;
3426
dc503a8a
EC
3427 err = check_reg_arg(env, regno, SRC_OP);
3428 if (err)
3429 return err;
17a52670 3430
1be7f75d
AS
3431 if (arg_type == ARG_ANYTHING) {
3432 if (is_pointer_value(env, regno)) {
61bd5218
JK
3433 verbose(env, "R%d leaks addr into helper function\n",
3434 regno);
1be7f75d
AS
3435 return -EACCES;
3436 }
80f1d68c 3437 return 0;
1be7f75d 3438 }
80f1d68c 3439
de8f3a83 3440 if (type_is_pkt_pointer(type) &&
3a0af8fd 3441 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3442 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3443 return -EACCES;
3444 }
3445
8e2fe1d9 3446 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3447 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3448 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3449 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3450 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3451 if (register_is_null(reg) &&
3452 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3453 /* final test in check_stack_boundary() */;
3454 else if (!type_is_pkt_pointer(type) &&
3455 type != PTR_TO_MAP_VALUE &&
3456 type != expected_type)
6841de8b 3457 goto err_type;
39f19ebb
AS
3458 } else if (arg_type == ARG_CONST_SIZE ||
3459 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3460 expected_type = SCALAR_VALUE;
3461 if (type != expected_type)
6841de8b 3462 goto err_type;
17a52670
AS
3463 } else if (arg_type == ARG_CONST_MAP_PTR) {
3464 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3465 if (type != expected_type)
3466 goto err_type;
608cd71a
AS
3467 } else if (arg_type == ARG_PTR_TO_CTX) {
3468 expected_type = PTR_TO_CTX;
6841de8b
AS
3469 if (type != expected_type)
3470 goto err_type;
58990d1f
DB
3471 err = check_ctx_reg(env, reg, regno);
3472 if (err < 0)
3473 return err;
46f8bc92
MKL
3474 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3475 expected_type = PTR_TO_SOCK_COMMON;
3476 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3477 if (!type_is_sk_pointer(type))
3478 goto err_type;
1b986589
MKL
3479 if (reg->ref_obj_id) {
3480 if (meta->ref_obj_id) {
3481 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3482 regno, reg->ref_obj_id,
3483 meta->ref_obj_id);
3484 return -EFAULT;
3485 }
3486 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3487 }
6ac99e8f
MKL
3488 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3489 expected_type = PTR_TO_SOCKET;
3490 if (type != expected_type)
3491 goto err_type;
a7658e1a
AS
3492 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3493 expected_type = PTR_TO_BTF_ID;
3494 if (type != expected_type)
3495 goto err_type;
3496 if (reg->btf_id != meta->btf_id) {
3497 verbose(env, "Helper has type %s got %s in R%d\n",
3498 kernel_type_name(meta->btf_id),
3499 kernel_type_name(reg->btf_id), regno);
3500
3501 return -EACCES;
3502 }
3503 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3504 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3505 regno);
3506 return -EACCES;
3507 }
d83525ca
AS
3508 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3509 if (meta->func_id == BPF_FUNC_spin_lock) {
3510 if (process_spin_lock(env, regno, true))
3511 return -EACCES;
3512 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3513 if (process_spin_lock(env, regno, false))
3514 return -EACCES;
3515 } else {
3516 verbose(env, "verifier internal error\n");
3517 return -EFAULT;
3518 }
90133415 3519 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3520 expected_type = PTR_TO_STACK;
3521 /* One exception here. In case function allows for NULL to be
f1174f77 3522 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3523 * happens during stack boundary checking.
3524 */
914cb781 3525 if (register_is_null(reg) &&
db1ac496 3526 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3527 /* final test in check_stack_boundary() */;
de8f3a83
DB
3528 else if (!type_is_pkt_pointer(type) &&
3529 type != PTR_TO_MAP_VALUE &&
f1174f77 3530 type != expected_type)
6841de8b 3531 goto err_type;
39f19ebb 3532 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3533 } else if (arg_type_is_int_ptr(arg_type)) {
3534 expected_type = PTR_TO_STACK;
3535 if (!type_is_pkt_pointer(type) &&
3536 type != PTR_TO_MAP_VALUE &&
3537 type != expected_type)
3538 goto err_type;
17a52670 3539 } else {
61bd5218 3540 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3541 return -EFAULT;
3542 }
3543
17a52670
AS
3544 if (arg_type == ARG_CONST_MAP_PTR) {
3545 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3546 meta->map_ptr = reg->map_ptr;
17a52670
AS
3547 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3548 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3549 * check that [key, key + map->key_size) are within
3550 * stack limits and initialized
3551 */
33ff9823 3552 if (!meta->map_ptr) {
17a52670
AS
3553 /* in function declaration map_ptr must come before
3554 * map_key, so that it's verified and known before
3555 * we have to check map_key here. Otherwise it means
3556 * that kernel subsystem misconfigured verifier
3557 */
61bd5218 3558 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3559 return -EACCES;
3560 }
d71962f3
PC
3561 err = check_helper_mem_access(env, regno,
3562 meta->map_ptr->key_size, false,
3563 NULL);
2ea864c5 3564 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3565 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3566 !register_is_null(reg)) ||
2ea864c5 3567 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3568 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3569 * check [value, value + map->value_size) validity
3570 */
33ff9823 3571 if (!meta->map_ptr) {
17a52670 3572 /* kernel subsystem misconfigured verifier */
61bd5218 3573 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3574 return -EACCES;
3575 }
2ea864c5 3576 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3577 err = check_helper_mem_access(env, regno,
3578 meta->map_ptr->value_size, false,
2ea864c5 3579 meta);
90133415 3580 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3581 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3582
849fa506
YS
3583 /* remember the mem_size which may be used later
3584 * to refine return values.
3585 */
3586 meta->msize_smax_value = reg->smax_value;
3587 meta->msize_umax_value = reg->umax_value;
3588
f1174f77
EC
3589 /* The register is SCALAR_VALUE; the access check
3590 * happens using its boundaries.
06c1c049 3591 */
f1174f77 3592 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3593 /* For unprivileged variable accesses, disable raw
3594 * mode so that the program is required to
3595 * initialize all the memory that the helper could
3596 * just partially fill up.
3597 */
3598 meta = NULL;
3599
b03c9f9f 3600 if (reg->smin_value < 0) {
61bd5218 3601 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3602 regno);
3603 return -EACCES;
3604 }
06c1c049 3605
b03c9f9f 3606 if (reg->umin_value == 0) {
f1174f77
EC
3607 err = check_helper_mem_access(env, regno - 1, 0,
3608 zero_size_allowed,
3609 meta);
06c1c049
GB
3610 if (err)
3611 return err;
06c1c049 3612 }
f1174f77 3613
b03c9f9f 3614 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3615 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3616 regno);
3617 return -EACCES;
3618 }
3619 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3620 reg->umax_value,
f1174f77 3621 zero_size_allowed, meta);
b5dc0163
AS
3622 if (!err)
3623 err = mark_chain_precision(env, regno);
57c3bb72
AI
3624 } else if (arg_type_is_int_ptr(arg_type)) {
3625 int size = int_ptr_type_to_size(arg_type);
3626
3627 err = check_helper_mem_access(env, regno, size, false, meta);
3628 if (err)
3629 return err;
3630 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3631 }
3632
3633 return err;
6841de8b 3634err_type:
61bd5218 3635 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3636 reg_type_str[type], reg_type_str[expected_type]);
3637 return -EACCES;
17a52670
AS
3638}
3639
61bd5218
JK
3640static int check_map_func_compatibility(struct bpf_verifier_env *env,
3641 struct bpf_map *map, int func_id)
35578d79 3642{
35578d79
KX
3643 if (!map)
3644 return 0;
3645
6aff67c8
AS
3646 /* We need a two way check, first is from map perspective ... */
3647 switch (map->map_type) {
3648 case BPF_MAP_TYPE_PROG_ARRAY:
3649 if (func_id != BPF_FUNC_tail_call)
3650 goto error;
3651 break;
3652 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3653 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 3654 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 3655 func_id != BPF_FUNC_skb_output &&
908432ca 3656 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3657 goto error;
3658 break;
3659 case BPF_MAP_TYPE_STACK_TRACE:
3660 if (func_id != BPF_FUNC_get_stackid)
3661 goto error;
3662 break;
4ed8ec52 3663 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3664 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3665 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3666 goto error;
3667 break;
cd339431 3668 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3669 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3670 if (func_id != BPF_FUNC_get_local_storage)
3671 goto error;
3672 break;
546ac1ff 3673 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3674 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3675 if (func_id != BPF_FUNC_redirect_map &&
3676 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3677 goto error;
3678 break;
fbfc504a
BT
3679 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3680 * appear.
3681 */
6710e112
JDB
3682 case BPF_MAP_TYPE_CPUMAP:
3683 if (func_id != BPF_FUNC_redirect_map)
3684 goto error;
3685 break;
fada7fdc
JL
3686 case BPF_MAP_TYPE_XSKMAP:
3687 if (func_id != BPF_FUNC_redirect_map &&
3688 func_id != BPF_FUNC_map_lookup_elem)
3689 goto error;
3690 break;
56f668df 3691 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3692 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3693 if (func_id != BPF_FUNC_map_lookup_elem)
3694 goto error;
16a43625 3695 break;
174a79ff
JF
3696 case BPF_MAP_TYPE_SOCKMAP:
3697 if (func_id != BPF_FUNC_sk_redirect_map &&
3698 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3699 func_id != BPF_FUNC_map_delete_elem &&
3700 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3701 goto error;
3702 break;
81110384
JF
3703 case BPF_MAP_TYPE_SOCKHASH:
3704 if (func_id != BPF_FUNC_sk_redirect_hash &&
3705 func_id != BPF_FUNC_sock_hash_update &&
3706 func_id != BPF_FUNC_map_delete_elem &&
3707 func_id != BPF_FUNC_msg_redirect_hash)
3708 goto error;
3709 break;
2dbb9b9e
MKL
3710 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3711 if (func_id != BPF_FUNC_sk_select_reuseport)
3712 goto error;
3713 break;
f1a2e44a
MV
3714 case BPF_MAP_TYPE_QUEUE:
3715 case BPF_MAP_TYPE_STACK:
3716 if (func_id != BPF_FUNC_map_peek_elem &&
3717 func_id != BPF_FUNC_map_pop_elem &&
3718 func_id != BPF_FUNC_map_push_elem)
3719 goto error;
3720 break;
6ac99e8f
MKL
3721 case BPF_MAP_TYPE_SK_STORAGE:
3722 if (func_id != BPF_FUNC_sk_storage_get &&
3723 func_id != BPF_FUNC_sk_storage_delete)
3724 goto error;
3725 break;
6aff67c8
AS
3726 default:
3727 break;
3728 }
3729
3730 /* ... and second from the function itself. */
3731 switch (func_id) {
3732 case BPF_FUNC_tail_call:
3733 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3734 goto error;
f910cefa 3735 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3736 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3737 return -EINVAL;
3738 }
6aff67c8
AS
3739 break;
3740 case BPF_FUNC_perf_event_read:
3741 case BPF_FUNC_perf_event_output:
908432ca 3742 case BPF_FUNC_perf_event_read_value:
a7658e1a 3743 case BPF_FUNC_skb_output:
6aff67c8
AS
3744 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3745 goto error;
3746 break;
3747 case BPF_FUNC_get_stackid:
3748 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3749 goto error;
3750 break;
60d20f91 3751 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3752 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3753 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3754 goto error;
3755 break;
97f91a7c 3756 case BPF_FUNC_redirect_map:
9c270af3 3757 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3758 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3759 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3760 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3761 goto error;
3762 break;
174a79ff 3763 case BPF_FUNC_sk_redirect_map:
4f738adb 3764 case BPF_FUNC_msg_redirect_map:
81110384 3765 case BPF_FUNC_sock_map_update:
174a79ff
JF
3766 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3767 goto error;
3768 break;
81110384
JF
3769 case BPF_FUNC_sk_redirect_hash:
3770 case BPF_FUNC_msg_redirect_hash:
3771 case BPF_FUNC_sock_hash_update:
3772 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3773 goto error;
3774 break;
cd339431 3775 case BPF_FUNC_get_local_storage:
b741f163
RG
3776 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3777 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3778 goto error;
3779 break;
2dbb9b9e
MKL
3780 case BPF_FUNC_sk_select_reuseport:
3781 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3782 goto error;
3783 break;
f1a2e44a
MV
3784 case BPF_FUNC_map_peek_elem:
3785 case BPF_FUNC_map_pop_elem:
3786 case BPF_FUNC_map_push_elem:
3787 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3788 map->map_type != BPF_MAP_TYPE_STACK)
3789 goto error;
3790 break;
6ac99e8f
MKL
3791 case BPF_FUNC_sk_storage_get:
3792 case BPF_FUNC_sk_storage_delete:
3793 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3794 goto error;
3795 break;
6aff67c8
AS
3796 default:
3797 break;
35578d79
KX
3798 }
3799
3800 return 0;
6aff67c8 3801error:
61bd5218 3802 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3803 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3804 return -EINVAL;
35578d79
KX
3805}
3806
90133415 3807static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3808{
3809 int count = 0;
3810
39f19ebb 3811 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3812 count++;
39f19ebb 3813 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3814 count++;
39f19ebb 3815 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3816 count++;
39f19ebb 3817 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3818 count++;
39f19ebb 3819 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3820 count++;
3821
90133415
DB
3822 /* We only support one arg being in raw mode at the moment,
3823 * which is sufficient for the helper functions we have
3824 * right now.
3825 */
3826 return count <= 1;
3827}
3828
3829static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3830 enum bpf_arg_type arg_next)
3831{
3832 return (arg_type_is_mem_ptr(arg_curr) &&
3833 !arg_type_is_mem_size(arg_next)) ||
3834 (!arg_type_is_mem_ptr(arg_curr) &&
3835 arg_type_is_mem_size(arg_next));
3836}
3837
3838static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3839{
3840 /* bpf_xxx(..., buf, len) call will access 'len'
3841 * bytes from memory 'buf'. Both arg types need
3842 * to be paired, so make sure there's no buggy
3843 * helper function specification.
3844 */
3845 if (arg_type_is_mem_size(fn->arg1_type) ||
3846 arg_type_is_mem_ptr(fn->arg5_type) ||
3847 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3848 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3849 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3850 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3851 return false;
3852
3853 return true;
3854}
3855
1b986589 3856static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3857{
3858 int count = 0;
3859
1b986589 3860 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3861 count++;
1b986589 3862 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3863 count++;
1b986589 3864 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3865 count++;
1b986589 3866 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3867 count++;
1b986589 3868 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3869 count++;
3870
1b986589
MKL
3871 /* A reference acquiring function cannot acquire
3872 * another refcounted ptr.
3873 */
3874 if (is_acquire_function(func_id) && count)
3875 return false;
3876
fd978bf7
JS
3877 /* We only support one arg being unreferenced at the moment,
3878 * which is sufficient for the helper functions we have right now.
3879 */
3880 return count <= 1;
3881}
3882
1b986589 3883static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3884{
3885 return check_raw_mode_ok(fn) &&
fd978bf7 3886 check_arg_pair_ok(fn) &&
1b986589 3887 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3888}
3889
de8f3a83
DB
3890/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3891 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3892 */
f4d7e40a
AS
3893static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3894 struct bpf_func_state *state)
969bf05e 3895{
58e2af8b 3896 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3897 int i;
3898
3899 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3900 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3901 mark_reg_unknown(env, regs, i);
969bf05e 3902
f3709f69
JS
3903 bpf_for_each_spilled_reg(i, state, reg) {
3904 if (!reg)
969bf05e 3905 continue;
de8f3a83 3906 if (reg_is_pkt_pointer_any(reg))
f54c7898 3907 __mark_reg_unknown(env, reg);
969bf05e
AS
3908 }
3909}
3910
f4d7e40a
AS
3911static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3912{
3913 struct bpf_verifier_state *vstate = env->cur_state;
3914 int i;
3915
3916 for (i = 0; i <= vstate->curframe; i++)
3917 __clear_all_pkt_pointers(env, vstate->frame[i]);
3918}
3919
fd978bf7 3920static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3921 struct bpf_func_state *state,
3922 int ref_obj_id)
fd978bf7
JS
3923{
3924 struct bpf_reg_state *regs = state->regs, *reg;
3925 int i;
3926
3927 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3928 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3929 mark_reg_unknown(env, regs, i);
3930
3931 bpf_for_each_spilled_reg(i, state, reg) {
3932 if (!reg)
3933 continue;
1b986589 3934 if (reg->ref_obj_id == ref_obj_id)
f54c7898 3935 __mark_reg_unknown(env, reg);
fd978bf7
JS
3936 }
3937}
3938
3939/* The pointer with the specified id has released its reference to kernel
3940 * resources. Identify all copies of the same pointer and clear the reference.
3941 */
3942static int release_reference(struct bpf_verifier_env *env,
1b986589 3943 int ref_obj_id)
fd978bf7
JS
3944{
3945 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3946 int err;
fd978bf7
JS
3947 int i;
3948
1b986589
MKL
3949 err = release_reference_state(cur_func(env), ref_obj_id);
3950 if (err)
3951 return err;
3952
fd978bf7 3953 for (i = 0; i <= vstate->curframe; i++)
1b986589 3954 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3955
1b986589 3956 return 0;
fd978bf7
JS
3957}
3958
f4d7e40a
AS
3959static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3960 int *insn_idx)
3961{
3962 struct bpf_verifier_state *state = env->cur_state;
3963 struct bpf_func_state *caller, *callee;
fd978bf7 3964 int i, err, subprog, target_insn;
f4d7e40a 3965
aada9ce6 3966 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3967 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3968 state->curframe + 2);
f4d7e40a
AS
3969 return -E2BIG;
3970 }
3971
3972 target_insn = *insn_idx + insn->imm;
3973 subprog = find_subprog(env, target_insn + 1);
3974 if (subprog < 0) {
3975 verbose(env, "verifier bug. No program starts at insn %d\n",
3976 target_insn + 1);
3977 return -EFAULT;
3978 }
3979
3980 caller = state->frame[state->curframe];
3981 if (state->frame[state->curframe + 1]) {
3982 verbose(env, "verifier bug. Frame %d already allocated\n",
3983 state->curframe + 1);
3984 return -EFAULT;
3985 }
3986
3987 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3988 if (!callee)
3989 return -ENOMEM;
3990 state->frame[state->curframe + 1] = callee;
3991
3992 /* callee cannot access r0, r6 - r9 for reading and has to write
3993 * into its own stack before reading from it.
3994 * callee can read/write into caller's stack
3995 */
3996 init_func_state(env, callee,
3997 /* remember the callsite, it will be used by bpf_exit */
3998 *insn_idx /* callsite */,
3999 state->curframe + 1 /* frameno within this callchain */,
f910cefa 4000 subprog /* subprog number within this prog */);
f4d7e40a 4001
fd978bf7
JS
4002 /* Transfer references to the callee */
4003 err = transfer_reference_state(callee, caller);
4004 if (err)
4005 return err;
4006
679c782d
EC
4007 /* copy r1 - r5 args that callee can access. The copy includes parent
4008 * pointers, which connects us up to the liveness chain
4009 */
f4d7e40a
AS
4010 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4011 callee->regs[i] = caller->regs[i];
4012
679c782d 4013 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
4014 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4015 mark_reg_not_init(env, caller->regs, caller_saved[i]);
4016 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4017 }
4018
4019 /* only increment it after check_reg_arg() finished */
4020 state->curframe++;
4021
8c1b6e69
AS
4022 if (btf_check_func_arg_match(env, subprog))
4023 return -EINVAL;
4024
f4d7e40a
AS
4025 /* and go analyze first insn of the callee */
4026 *insn_idx = target_insn;
4027
06ee7115 4028 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4029 verbose(env, "caller:\n");
4030 print_verifier_state(env, caller);
4031 verbose(env, "callee:\n");
4032 print_verifier_state(env, callee);
4033 }
4034 return 0;
4035}
4036
4037static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4038{
4039 struct bpf_verifier_state *state = env->cur_state;
4040 struct bpf_func_state *caller, *callee;
4041 struct bpf_reg_state *r0;
fd978bf7 4042 int err;
f4d7e40a
AS
4043
4044 callee = state->frame[state->curframe];
4045 r0 = &callee->regs[BPF_REG_0];
4046 if (r0->type == PTR_TO_STACK) {
4047 /* technically it's ok to return caller's stack pointer
4048 * (or caller's caller's pointer) back to the caller,
4049 * since these pointers are valid. Only current stack
4050 * pointer will be invalid as soon as function exits,
4051 * but let's be conservative
4052 */
4053 verbose(env, "cannot return stack pointer to the caller\n");
4054 return -EINVAL;
4055 }
4056
4057 state->curframe--;
4058 caller = state->frame[state->curframe];
4059 /* return to the caller whatever r0 had in the callee */
4060 caller->regs[BPF_REG_0] = *r0;
4061
fd978bf7
JS
4062 /* Transfer references to the caller */
4063 err = transfer_reference_state(caller, callee);
4064 if (err)
4065 return err;
4066
f4d7e40a 4067 *insn_idx = callee->callsite + 1;
06ee7115 4068 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
4069 verbose(env, "returning from callee:\n");
4070 print_verifier_state(env, callee);
4071 verbose(env, "to caller at %d:\n", *insn_idx);
4072 print_verifier_state(env, caller);
4073 }
4074 /* clear everything in the callee */
4075 free_func_state(callee);
4076 state->frame[state->curframe + 1] = NULL;
4077 return 0;
4078}
4079
849fa506
YS
4080static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4081 int func_id,
4082 struct bpf_call_arg_meta *meta)
4083{
4084 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4085
4086 if (ret_type != RET_INTEGER ||
4087 (func_id != BPF_FUNC_get_stack &&
4088 func_id != BPF_FUNC_probe_read_str))
4089 return;
4090
4091 ret_reg->smax_value = meta->msize_smax_value;
4092 ret_reg->umax_value = meta->msize_umax_value;
4093 __reg_deduce_bounds(ret_reg);
4094 __reg_bound_offset(ret_reg);
4095}
4096
c93552c4
DB
4097static int
4098record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4099 int func_id, int insn_idx)
4100{
4101 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 4102 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
4103
4104 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
4105 func_id != BPF_FUNC_map_lookup_elem &&
4106 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
4107 func_id != BPF_FUNC_map_delete_elem &&
4108 func_id != BPF_FUNC_map_push_elem &&
4109 func_id != BPF_FUNC_map_pop_elem &&
4110 func_id != BPF_FUNC_map_peek_elem)
c93552c4 4111 return 0;
09772d92 4112
591fe988 4113 if (map == NULL) {
c93552c4
DB
4114 verbose(env, "kernel subsystem misconfigured verifier\n");
4115 return -EINVAL;
4116 }
4117
591fe988
DB
4118 /* In case of read-only, some additional restrictions
4119 * need to be applied in order to prevent altering the
4120 * state of the map from program side.
4121 */
4122 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4123 (func_id == BPF_FUNC_map_delete_elem ||
4124 func_id == BPF_FUNC_map_update_elem ||
4125 func_id == BPF_FUNC_map_push_elem ||
4126 func_id == BPF_FUNC_map_pop_elem)) {
4127 verbose(env, "write into map forbidden\n");
4128 return -EACCES;
4129 }
4130
d2e4c1e6 4131 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4
DB
4132 bpf_map_ptr_store(aux, meta->map_ptr,
4133 meta->map_ptr->unpriv_array);
d2e4c1e6 4134 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4
DB
4135 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4136 meta->map_ptr->unpriv_array);
4137 return 0;
4138}
4139
d2e4c1e6
DB
4140static int
4141record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4142 int func_id, int insn_idx)
4143{
4144 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4145 struct bpf_reg_state *regs = cur_regs(env), *reg;
4146 struct bpf_map *map = meta->map_ptr;
4147 struct tnum range;
4148 u64 val;
cc52d914 4149 int err;
d2e4c1e6
DB
4150
4151 if (func_id != BPF_FUNC_tail_call)
4152 return 0;
4153 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4154 verbose(env, "kernel subsystem misconfigured verifier\n");
4155 return -EINVAL;
4156 }
4157
4158 range = tnum_range(0, map->max_entries - 1);
4159 reg = &regs[BPF_REG_3];
4160
4161 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4162 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4163 return 0;
4164 }
4165
cc52d914
DB
4166 err = mark_chain_precision(env, BPF_REG_3);
4167 if (err)
4168 return err;
4169
d2e4c1e6
DB
4170 val = reg->var_off.value;
4171 if (bpf_map_key_unseen(aux))
4172 bpf_map_key_store(aux, val);
4173 else if (!bpf_map_key_poisoned(aux) &&
4174 bpf_map_key_immediate(aux) != val)
4175 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4176 return 0;
4177}
4178
fd978bf7
JS
4179static int check_reference_leak(struct bpf_verifier_env *env)
4180{
4181 struct bpf_func_state *state = cur_func(env);
4182 int i;
4183
4184 for (i = 0; i < state->acquired_refs; i++) {
4185 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4186 state->refs[i].id, state->refs[i].insn_idx);
4187 }
4188 return state->acquired_refs ? -EINVAL : 0;
4189}
4190
f4d7e40a 4191static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 4192{
17a52670 4193 const struct bpf_func_proto *fn = NULL;
638f5b90 4194 struct bpf_reg_state *regs;
33ff9823 4195 struct bpf_call_arg_meta meta;
969bf05e 4196 bool changes_data;
17a52670
AS
4197 int i, err;
4198
4199 /* find function prototype */
4200 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
4201 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4202 func_id);
17a52670
AS
4203 return -EINVAL;
4204 }
4205
00176a34 4206 if (env->ops->get_func_proto)
5e43f899 4207 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 4208 if (!fn) {
61bd5218
JK
4209 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4210 func_id);
17a52670
AS
4211 return -EINVAL;
4212 }
4213
4214 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 4215 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 4216 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
4217 return -EINVAL;
4218 }
4219
04514d13 4220 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 4221 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
4222 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4223 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4224 func_id_name(func_id), func_id);
4225 return -EINVAL;
4226 }
969bf05e 4227
33ff9823 4228 memset(&meta, 0, sizeof(meta));
36bbef52 4229 meta.pkt_access = fn->pkt_access;
33ff9823 4230
1b986589 4231 err = check_func_proto(fn, func_id);
435faee1 4232 if (err) {
61bd5218 4233 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 4234 func_id_name(func_id), func_id);
435faee1
DB
4235 return err;
4236 }
4237
d83525ca 4238 meta.func_id = func_id;
17a52670 4239 /* check args */
a7658e1a 4240 for (i = 0; i < 5; i++) {
9cc31b3a
AS
4241 err = btf_resolve_helper_id(&env->log, fn, i);
4242 if (err > 0)
4243 meta.btf_id = err;
a7658e1a
AS
4244 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4245 if (err)
4246 return err;
4247 }
17a52670 4248
c93552c4
DB
4249 err = record_func_map(env, &meta, func_id, insn_idx);
4250 if (err)
4251 return err;
4252
d2e4c1e6
DB
4253 err = record_func_key(env, &meta, func_id, insn_idx);
4254 if (err)
4255 return err;
4256
435faee1
DB
4257 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4258 * is inferred from register state.
4259 */
4260 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4261 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4262 BPF_WRITE, -1, false);
435faee1
DB
4263 if (err)
4264 return err;
4265 }
4266
fd978bf7
JS
4267 if (func_id == BPF_FUNC_tail_call) {
4268 err = check_reference_leak(env);
4269 if (err) {
4270 verbose(env, "tail_call would lead to reference leak\n");
4271 return err;
4272 }
4273 } else if (is_release_function(func_id)) {
1b986589 4274 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4275 if (err) {
4276 verbose(env, "func %s#%d reference has not been acquired before\n",
4277 func_id_name(func_id), func_id);
fd978bf7 4278 return err;
46f8bc92 4279 }
fd978bf7
JS
4280 }
4281
638f5b90 4282 regs = cur_regs(env);
cd339431
RG
4283
4284 /* check that flags argument in get_local_storage(map, flags) is 0,
4285 * this is required because get_local_storage() can't return an error.
4286 */
4287 if (func_id == BPF_FUNC_get_local_storage &&
4288 !register_is_null(&regs[BPF_REG_2])) {
4289 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4290 return -EINVAL;
4291 }
4292
17a52670 4293 /* reset caller saved regs */
dc503a8a 4294 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4295 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4296 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4297 }
17a52670 4298
5327ed3d
JW
4299 /* helper call returns 64-bit value. */
4300 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4301
dc503a8a 4302 /* update return register (already marked as written above) */
17a52670 4303 if (fn->ret_type == RET_INTEGER) {
f1174f77 4304 /* sets type to SCALAR_VALUE */
61bd5218 4305 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4306 } else if (fn->ret_type == RET_VOID) {
4307 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4308 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4309 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4310 /* There is no offset yet applied, variable or fixed */
61bd5218 4311 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4312 /* remember map_ptr, so that check_map_access()
4313 * can check 'value_size' boundary of memory access
4314 * to map element returned from bpf_map_lookup_elem()
4315 */
33ff9823 4316 if (meta.map_ptr == NULL) {
61bd5218
JK
4317 verbose(env,
4318 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4319 return -EINVAL;
4320 }
33ff9823 4321 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4322 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4323 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4324 if (map_value_has_spin_lock(meta.map_ptr))
4325 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4326 } else {
4327 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4328 regs[BPF_REG_0].id = ++env->id_gen;
4329 }
c64b7983
JS
4330 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4331 mark_reg_known_zero(env, regs, BPF_REG_0);
4332 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4333 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4334 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4335 mark_reg_known_zero(env, regs, BPF_REG_0);
4336 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4337 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4338 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4339 mark_reg_known_zero(env, regs, BPF_REG_0);
4340 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4341 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4342 } else {
61bd5218 4343 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4344 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4345 return -EINVAL;
4346 }
04fd61ab 4347
0f3adc28 4348 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4349 /* For release_reference() */
4350 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4351 } else if (is_acquire_function(func_id)) {
4352 int id = acquire_reference_state(env, insn_idx);
4353
4354 if (id < 0)
4355 return id;
4356 /* For mark_ptr_or_null_reg() */
4357 regs[BPF_REG_0].id = id;
4358 /* For release_reference() */
4359 regs[BPF_REG_0].ref_obj_id = id;
4360 }
1b986589 4361
849fa506
YS
4362 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4363
61bd5218 4364 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4365 if (err)
4366 return err;
04fd61ab 4367
c195651e
YS
4368 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4369 const char *err_str;
4370
4371#ifdef CONFIG_PERF_EVENTS
4372 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4373 err_str = "cannot get callchain buffer for func %s#%d\n";
4374#else
4375 err = -ENOTSUPP;
4376 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4377#endif
4378 if (err) {
4379 verbose(env, err_str, func_id_name(func_id), func_id);
4380 return err;
4381 }
4382
4383 env->prog->has_callchain_buf = true;
4384 }
4385
969bf05e
AS
4386 if (changes_data)
4387 clear_all_pkt_pointers(env);
4388 return 0;
4389}
4390
b03c9f9f
EC
4391static bool signed_add_overflows(s64 a, s64 b)
4392{
4393 /* Do the add in u64, where overflow is well-defined */
4394 s64 res = (s64)((u64)a + (u64)b);
4395
4396 if (b < 0)
4397 return res > a;
4398 return res < a;
4399}
4400
4401static bool signed_sub_overflows(s64 a, s64 b)
4402{
4403 /* Do the sub in u64, where overflow is well-defined */
4404 s64 res = (s64)((u64)a - (u64)b);
4405
4406 if (b < 0)
4407 return res < a;
4408 return res > a;
969bf05e
AS
4409}
4410
bb7f0f98
AS
4411static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4412 const struct bpf_reg_state *reg,
4413 enum bpf_reg_type type)
4414{
4415 bool known = tnum_is_const(reg->var_off);
4416 s64 val = reg->var_off.value;
4417 s64 smin = reg->smin_value;
4418
4419 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4420 verbose(env, "math between %s pointer and %lld is not allowed\n",
4421 reg_type_str[type], val);
4422 return false;
4423 }
4424
4425 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4426 verbose(env, "%s pointer offset %d is not allowed\n",
4427 reg_type_str[type], reg->off);
4428 return false;
4429 }
4430
4431 if (smin == S64_MIN) {
4432 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4433 reg_type_str[type]);
4434 return false;
4435 }
4436
4437 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4438 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4439 smin, reg_type_str[type]);
4440 return false;
4441 }
4442
4443 return true;
4444}
4445
979d63d5
DB
4446static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4447{
4448 return &env->insn_aux_data[env->insn_idx];
4449}
4450
4451static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4452 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4453{
4454 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4455 (opcode == BPF_SUB && !off_is_neg);
4456 u32 off;
4457
4458 switch (ptr_reg->type) {
4459 case PTR_TO_STACK:
088ec26d
AI
4460 /* Indirect variable offset stack access is prohibited in
4461 * unprivileged mode so it's not handled here.
4462 */
979d63d5
DB
4463 off = ptr_reg->off + ptr_reg->var_off.value;
4464 if (mask_to_left)
4465 *ptr_limit = MAX_BPF_STACK + off;
4466 else
4467 *ptr_limit = -off;
4468 return 0;
4469 case PTR_TO_MAP_VALUE:
4470 if (mask_to_left) {
4471 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4472 } else {
4473 off = ptr_reg->smin_value + ptr_reg->off;
4474 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4475 }
4476 return 0;
4477 default:
4478 return -EINVAL;
4479 }
4480}
4481
d3bd7413
DB
4482static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4483 const struct bpf_insn *insn)
4484{
4485 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4486}
4487
4488static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4489 u32 alu_state, u32 alu_limit)
4490{
4491 /* If we arrived here from different branches with different
4492 * state or limits to sanitize, then this won't work.
4493 */
4494 if (aux->alu_state &&
4495 (aux->alu_state != alu_state ||
4496 aux->alu_limit != alu_limit))
4497 return -EACCES;
4498
4499 /* Corresponding fixup done in fixup_bpf_calls(). */
4500 aux->alu_state = alu_state;
4501 aux->alu_limit = alu_limit;
4502 return 0;
4503}
4504
4505static int sanitize_val_alu(struct bpf_verifier_env *env,
4506 struct bpf_insn *insn)
4507{
4508 struct bpf_insn_aux_data *aux = cur_aux(env);
4509
4510 if (can_skip_alu_sanitation(env, insn))
4511 return 0;
4512
4513 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4514}
4515
979d63d5
DB
4516static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4517 struct bpf_insn *insn,
4518 const struct bpf_reg_state *ptr_reg,
4519 struct bpf_reg_state *dst_reg,
4520 bool off_is_neg)
4521{
4522 struct bpf_verifier_state *vstate = env->cur_state;
4523 struct bpf_insn_aux_data *aux = cur_aux(env);
4524 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4525 u8 opcode = BPF_OP(insn->code);
4526 u32 alu_state, alu_limit;
4527 struct bpf_reg_state tmp;
4528 bool ret;
4529
d3bd7413 4530 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4531 return 0;
4532
4533 /* We already marked aux for masking from non-speculative
4534 * paths, thus we got here in the first place. We only care
4535 * to explore bad access from here.
4536 */
4537 if (vstate->speculative)
4538 goto do_sim;
4539
4540 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4541 alu_state |= ptr_is_dst_reg ?
4542 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4543
4544 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4545 return 0;
d3bd7413 4546 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4547 return -EACCES;
979d63d5
DB
4548do_sim:
4549 /* Simulate and find potential out-of-bounds access under
4550 * speculative execution from truncation as a result of
4551 * masking when off was not within expected range. If off
4552 * sits in dst, then we temporarily need to move ptr there
4553 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4554 * for cases where we use K-based arithmetic in one direction
4555 * and truncated reg-based in the other in order to explore
4556 * bad access.
4557 */
4558 if (!ptr_is_dst_reg) {
4559 tmp = *dst_reg;
4560 *dst_reg = *ptr_reg;
4561 }
4562 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4563 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4564 *dst_reg = tmp;
4565 return !ret ? -EFAULT : 0;
4566}
4567
f1174f77 4568/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4569 * Caller should also handle BPF_MOV case separately.
4570 * If we return -EACCES, caller may want to try again treating pointer as a
4571 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4572 */
4573static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4574 struct bpf_insn *insn,
4575 const struct bpf_reg_state *ptr_reg,
4576 const struct bpf_reg_state *off_reg)
969bf05e 4577{
f4d7e40a
AS
4578 struct bpf_verifier_state *vstate = env->cur_state;
4579 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4580 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4581 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4582 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4583 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4584 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4585 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4586 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4587 u8 opcode = BPF_OP(insn->code);
979d63d5 4588 int ret;
969bf05e 4589
f1174f77 4590 dst_reg = &regs[dst];
969bf05e 4591
6f16101e
DB
4592 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4593 smin_val > smax_val || umin_val > umax_val) {
4594 /* Taint dst register if offset had invalid bounds derived from
4595 * e.g. dead branches.
4596 */
f54c7898 4597 __mark_reg_unknown(env, dst_reg);
6f16101e 4598 return 0;
f1174f77
EC
4599 }
4600
4601 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4602 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4603 verbose(env,
4604 "R%d 32-bit pointer arithmetic prohibited\n",
4605 dst);
f1174f77 4606 return -EACCES;
969bf05e
AS
4607 }
4608
aad2eeaf
JS
4609 switch (ptr_reg->type) {
4610 case PTR_TO_MAP_VALUE_OR_NULL:
4611 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4612 dst, reg_type_str[ptr_reg->type]);
f1174f77 4613 return -EACCES;
aad2eeaf
JS
4614 case CONST_PTR_TO_MAP:
4615 case PTR_TO_PACKET_END:
c64b7983
JS
4616 case PTR_TO_SOCKET:
4617 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4618 case PTR_TO_SOCK_COMMON:
4619 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4620 case PTR_TO_TCP_SOCK:
4621 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4622 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4623 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4624 dst, reg_type_str[ptr_reg->type]);
f1174f77 4625 return -EACCES;
9d7eceed
DB
4626 case PTR_TO_MAP_VALUE:
4627 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4628 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4629 off_reg == dst_reg ? dst : src);
4630 return -EACCES;
4631 }
4632 /* fall-through */
aad2eeaf
JS
4633 default:
4634 break;
f1174f77
EC
4635 }
4636
4637 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4638 * The id may be overwritten later if we create a new variable offset.
969bf05e 4639 */
f1174f77
EC
4640 dst_reg->type = ptr_reg->type;
4641 dst_reg->id = ptr_reg->id;
969bf05e 4642
bb7f0f98
AS
4643 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4644 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4645 return -EINVAL;
4646
f1174f77
EC
4647 switch (opcode) {
4648 case BPF_ADD:
979d63d5
DB
4649 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4650 if (ret < 0) {
4651 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4652 return ret;
4653 }
f1174f77
EC
4654 /* We can take a fixed offset as long as it doesn't overflow
4655 * the s32 'off' field
969bf05e 4656 */
b03c9f9f
EC
4657 if (known && (ptr_reg->off + smin_val ==
4658 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4659 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4660 dst_reg->smin_value = smin_ptr;
4661 dst_reg->smax_value = smax_ptr;
4662 dst_reg->umin_value = umin_ptr;
4663 dst_reg->umax_value = umax_ptr;
f1174f77 4664 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4665 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4666 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4667 break;
4668 }
f1174f77
EC
4669 /* A new variable offset is created. Note that off_reg->off
4670 * == 0, since it's a scalar.
4671 * dst_reg gets the pointer type and since some positive
4672 * integer value was added to the pointer, give it a new 'id'
4673 * if it's a PTR_TO_PACKET.
4674 * this creates a new 'base' pointer, off_reg (variable) gets
4675 * added into the variable offset, and we copy the fixed offset
4676 * from ptr_reg.
969bf05e 4677 */
b03c9f9f
EC
4678 if (signed_add_overflows(smin_ptr, smin_val) ||
4679 signed_add_overflows(smax_ptr, smax_val)) {
4680 dst_reg->smin_value = S64_MIN;
4681 dst_reg->smax_value = S64_MAX;
4682 } else {
4683 dst_reg->smin_value = smin_ptr + smin_val;
4684 dst_reg->smax_value = smax_ptr + smax_val;
4685 }
4686 if (umin_ptr + umin_val < umin_ptr ||
4687 umax_ptr + umax_val < umax_ptr) {
4688 dst_reg->umin_value = 0;
4689 dst_reg->umax_value = U64_MAX;
4690 } else {
4691 dst_reg->umin_value = umin_ptr + umin_val;
4692 dst_reg->umax_value = umax_ptr + umax_val;
4693 }
f1174f77
EC
4694 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4695 dst_reg->off = ptr_reg->off;
0962590e 4696 dst_reg->raw = ptr_reg->raw;
de8f3a83 4697 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4698 dst_reg->id = ++env->id_gen;
4699 /* something was added to pkt_ptr, set range to zero */
0962590e 4700 dst_reg->raw = 0;
f1174f77
EC
4701 }
4702 break;
4703 case BPF_SUB:
979d63d5
DB
4704 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4705 if (ret < 0) {
4706 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4707 return ret;
4708 }
f1174f77
EC
4709 if (dst_reg == off_reg) {
4710 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4711 verbose(env, "R%d tried to subtract pointer from scalar\n",
4712 dst);
f1174f77
EC
4713 return -EACCES;
4714 }
4715 /* We don't allow subtraction from FP, because (according to
4716 * test_verifier.c test "invalid fp arithmetic", JITs might not
4717 * be able to deal with it.
969bf05e 4718 */
f1174f77 4719 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4720 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4721 dst);
f1174f77
EC
4722 return -EACCES;
4723 }
b03c9f9f
EC
4724 if (known && (ptr_reg->off - smin_val ==
4725 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4726 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4727 dst_reg->smin_value = smin_ptr;
4728 dst_reg->smax_value = smax_ptr;
4729 dst_reg->umin_value = umin_ptr;
4730 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4731 dst_reg->var_off = ptr_reg->var_off;
4732 dst_reg->id = ptr_reg->id;
b03c9f9f 4733 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4734 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4735 break;
4736 }
f1174f77
EC
4737 /* A new variable offset is created. If the subtrahend is known
4738 * nonnegative, then any reg->range we had before is still good.
969bf05e 4739 */
b03c9f9f
EC
4740 if (signed_sub_overflows(smin_ptr, smax_val) ||
4741 signed_sub_overflows(smax_ptr, smin_val)) {
4742 /* Overflow possible, we know nothing */
4743 dst_reg->smin_value = S64_MIN;
4744 dst_reg->smax_value = S64_MAX;
4745 } else {
4746 dst_reg->smin_value = smin_ptr - smax_val;
4747 dst_reg->smax_value = smax_ptr - smin_val;
4748 }
4749 if (umin_ptr < umax_val) {
4750 /* Overflow possible, we know nothing */
4751 dst_reg->umin_value = 0;
4752 dst_reg->umax_value = U64_MAX;
4753 } else {
4754 /* Cannot overflow (as long as bounds are consistent) */
4755 dst_reg->umin_value = umin_ptr - umax_val;
4756 dst_reg->umax_value = umax_ptr - umin_val;
4757 }
f1174f77
EC
4758 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4759 dst_reg->off = ptr_reg->off;
0962590e 4760 dst_reg->raw = ptr_reg->raw;
de8f3a83 4761 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4762 dst_reg->id = ++env->id_gen;
4763 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4764 if (smin_val < 0)
0962590e 4765 dst_reg->raw = 0;
43188702 4766 }
f1174f77
EC
4767 break;
4768 case BPF_AND:
4769 case BPF_OR:
4770 case BPF_XOR:
82abbf8d
AS
4771 /* bitwise ops on pointers are troublesome, prohibit. */
4772 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4773 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4774 return -EACCES;
4775 default:
4776 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4777 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4778 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4779 return -EACCES;
43188702
JF
4780 }
4781
bb7f0f98
AS
4782 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4783 return -EINVAL;
4784
b03c9f9f
EC
4785 __update_reg_bounds(dst_reg);
4786 __reg_deduce_bounds(dst_reg);
4787 __reg_bound_offset(dst_reg);
0d6303db
DB
4788
4789 /* For unprivileged we require that resulting offset must be in bounds
4790 * in order to be able to sanitize access later on.
4791 */
e4298d25
DB
4792 if (!env->allow_ptr_leaks) {
4793 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4794 check_map_access(env, dst, dst_reg->off, 1, false)) {
4795 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4796 "prohibited for !root\n", dst);
4797 return -EACCES;
4798 } else if (dst_reg->type == PTR_TO_STACK &&
4799 check_stack_access(env, dst_reg, dst_reg->off +
4800 dst_reg->var_off.value, 1)) {
4801 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4802 "prohibited for !root\n", dst);
4803 return -EACCES;
4804 }
0d6303db
DB
4805 }
4806
43188702
JF
4807 return 0;
4808}
4809
468f6eaf
JH
4810/* WARNING: This function does calculations on 64-bit values, but the actual
4811 * execution may occur on 32-bit values. Therefore, things like bitshifts
4812 * need extra checks in the 32-bit case.
4813 */
f1174f77
EC
4814static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4815 struct bpf_insn *insn,
4816 struct bpf_reg_state *dst_reg,
4817 struct bpf_reg_state src_reg)
969bf05e 4818{
638f5b90 4819 struct bpf_reg_state *regs = cur_regs(env);
48461135 4820 u8 opcode = BPF_OP(insn->code);
f1174f77 4821 bool src_known, dst_known;
b03c9f9f
EC
4822 s64 smin_val, smax_val;
4823 u64 umin_val, umax_val;
468f6eaf 4824 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4825 u32 dst = insn->dst_reg;
4826 int ret;
48461135 4827
b799207e
JH
4828 if (insn_bitness == 32) {
4829 /* Relevant for 32-bit RSH: Information can propagate towards
4830 * LSB, so it isn't sufficient to only truncate the output to
4831 * 32 bits.
4832 */
4833 coerce_reg_to_size(dst_reg, 4);
4834 coerce_reg_to_size(&src_reg, 4);
4835 }
4836
b03c9f9f
EC
4837 smin_val = src_reg.smin_value;
4838 smax_val = src_reg.smax_value;
4839 umin_val = src_reg.umin_value;
4840 umax_val = src_reg.umax_value;
f1174f77
EC
4841 src_known = tnum_is_const(src_reg.var_off);
4842 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4843
6f16101e
DB
4844 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4845 smin_val > smax_val || umin_val > umax_val) {
4846 /* Taint dst register if offset had invalid bounds derived from
4847 * e.g. dead branches.
4848 */
f54c7898 4849 __mark_reg_unknown(env, dst_reg);
6f16101e
DB
4850 return 0;
4851 }
4852
bb7f0f98
AS
4853 if (!src_known &&
4854 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 4855 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
4856 return 0;
4857 }
4858
48461135
JB
4859 switch (opcode) {
4860 case BPF_ADD:
d3bd7413
DB
4861 ret = sanitize_val_alu(env, insn);
4862 if (ret < 0) {
4863 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4864 return ret;
4865 }
b03c9f9f
EC
4866 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4867 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4868 dst_reg->smin_value = S64_MIN;
4869 dst_reg->smax_value = S64_MAX;
4870 } else {
4871 dst_reg->smin_value += smin_val;
4872 dst_reg->smax_value += smax_val;
4873 }
4874 if (dst_reg->umin_value + umin_val < umin_val ||
4875 dst_reg->umax_value + umax_val < umax_val) {
4876 dst_reg->umin_value = 0;
4877 dst_reg->umax_value = U64_MAX;
4878 } else {
4879 dst_reg->umin_value += umin_val;
4880 dst_reg->umax_value += umax_val;
4881 }
f1174f77 4882 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4883 break;
4884 case BPF_SUB:
d3bd7413
DB
4885 ret = sanitize_val_alu(env, insn);
4886 if (ret < 0) {
4887 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4888 return ret;
4889 }
b03c9f9f
EC
4890 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4891 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4892 /* Overflow possible, we know nothing */
4893 dst_reg->smin_value = S64_MIN;
4894 dst_reg->smax_value = S64_MAX;
4895 } else {
4896 dst_reg->smin_value -= smax_val;
4897 dst_reg->smax_value -= smin_val;
4898 }
4899 if (dst_reg->umin_value < umax_val) {
4900 /* Overflow possible, we know nothing */
4901 dst_reg->umin_value = 0;
4902 dst_reg->umax_value = U64_MAX;
4903 } else {
4904 /* Cannot overflow (as long as bounds are consistent) */
4905 dst_reg->umin_value -= umax_val;
4906 dst_reg->umax_value -= umin_val;
4907 }
f1174f77 4908 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4909 break;
4910 case BPF_MUL:
b03c9f9f
EC
4911 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4912 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4913 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4914 __mark_reg_unbounded(dst_reg);
4915 __update_reg_bounds(dst_reg);
f1174f77
EC
4916 break;
4917 }
b03c9f9f
EC
4918 /* Both values are positive, so we can work with unsigned and
4919 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4920 */
b03c9f9f
EC
4921 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4922 /* Potential overflow, we know nothing */
4923 __mark_reg_unbounded(dst_reg);
4924 /* (except what we can learn from the var_off) */
4925 __update_reg_bounds(dst_reg);
4926 break;
4927 }
4928 dst_reg->umin_value *= umin_val;
4929 dst_reg->umax_value *= umax_val;
4930 if (dst_reg->umax_value > S64_MAX) {
4931 /* Overflow possible, we know nothing */
4932 dst_reg->smin_value = S64_MIN;
4933 dst_reg->smax_value = S64_MAX;
4934 } else {
4935 dst_reg->smin_value = dst_reg->umin_value;
4936 dst_reg->smax_value = dst_reg->umax_value;
4937 }
48461135
JB
4938 break;
4939 case BPF_AND:
f1174f77 4940 if (src_known && dst_known) {
b03c9f9f
EC
4941 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4942 src_reg.var_off.value);
f1174f77
EC
4943 break;
4944 }
b03c9f9f
EC
4945 /* We get our minimum from the var_off, since that's inherently
4946 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4947 */
f1174f77 4948 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4949 dst_reg->umin_value = dst_reg->var_off.value;
4950 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4951 if (dst_reg->smin_value < 0 || smin_val < 0) {
4952 /* Lose signed bounds when ANDing negative numbers,
4953 * ain't nobody got time for that.
4954 */
4955 dst_reg->smin_value = S64_MIN;
4956 dst_reg->smax_value = S64_MAX;
4957 } else {
4958 /* ANDing two positives gives a positive, so safe to
4959 * cast result into s64.
4960 */
4961 dst_reg->smin_value = dst_reg->umin_value;
4962 dst_reg->smax_value = dst_reg->umax_value;
4963 }
4964 /* We may learn something more from the var_off */
4965 __update_reg_bounds(dst_reg);
f1174f77
EC
4966 break;
4967 case BPF_OR:
4968 if (src_known && dst_known) {
b03c9f9f
EC
4969 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4970 src_reg.var_off.value);
f1174f77
EC
4971 break;
4972 }
b03c9f9f
EC
4973 /* We get our maximum from the var_off, and our minimum is the
4974 * maximum of the operands' minima
f1174f77
EC
4975 */
4976 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4977 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4978 dst_reg->umax_value = dst_reg->var_off.value |
4979 dst_reg->var_off.mask;
4980 if (dst_reg->smin_value < 0 || smin_val < 0) {
4981 /* Lose signed bounds when ORing negative numbers,
4982 * ain't nobody got time for that.
4983 */
4984 dst_reg->smin_value = S64_MIN;
4985 dst_reg->smax_value = S64_MAX;
f1174f77 4986 } else {
b03c9f9f
EC
4987 /* ORing two positives gives a positive, so safe to
4988 * cast result into s64.
4989 */
4990 dst_reg->smin_value = dst_reg->umin_value;
4991 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4992 }
b03c9f9f
EC
4993 /* We may learn something more from the var_off */
4994 __update_reg_bounds(dst_reg);
48461135
JB
4995 break;
4996 case BPF_LSH:
468f6eaf
JH
4997 if (umax_val >= insn_bitness) {
4998 /* Shifts greater than 31 or 63 are undefined.
4999 * This includes shifts by a negative number.
b03c9f9f 5000 */
61bd5218 5001 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5002 break;
5003 }
b03c9f9f
EC
5004 /* We lose all sign bit information (except what we can pick
5005 * up from var_off)
48461135 5006 */
b03c9f9f
EC
5007 dst_reg->smin_value = S64_MIN;
5008 dst_reg->smax_value = S64_MAX;
5009 /* If we might shift our top bit out, then we know nothing */
5010 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5011 dst_reg->umin_value = 0;
5012 dst_reg->umax_value = U64_MAX;
d1174416 5013 } else {
b03c9f9f
EC
5014 dst_reg->umin_value <<= umin_val;
5015 dst_reg->umax_value <<= umax_val;
d1174416 5016 }
afbe1a5b 5017 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5018 /* We may learn something more from the var_off */
5019 __update_reg_bounds(dst_reg);
48461135
JB
5020 break;
5021 case BPF_RSH:
468f6eaf
JH
5022 if (umax_val >= insn_bitness) {
5023 /* Shifts greater than 31 or 63 are undefined.
5024 * This includes shifts by a negative number.
b03c9f9f 5025 */
61bd5218 5026 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
5027 break;
5028 }
4374f256
EC
5029 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5030 * be negative, then either:
5031 * 1) src_reg might be zero, so the sign bit of the result is
5032 * unknown, so we lose our signed bounds
5033 * 2) it's known negative, thus the unsigned bounds capture the
5034 * signed bounds
5035 * 3) the signed bounds cross zero, so they tell us nothing
5036 * about the result
5037 * If the value in dst_reg is known nonnegative, then again the
5038 * unsigned bounts capture the signed bounds.
5039 * Thus, in all cases it suffices to blow away our signed bounds
5040 * and rely on inferring new ones from the unsigned bounds and
5041 * var_off of the result.
5042 */
5043 dst_reg->smin_value = S64_MIN;
5044 dst_reg->smax_value = S64_MAX;
afbe1a5b 5045 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
5046 dst_reg->umin_value >>= umax_val;
5047 dst_reg->umax_value >>= umin_val;
5048 /* We may learn something more from the var_off */
5049 __update_reg_bounds(dst_reg);
48461135 5050 break;
9cbe1f5a
YS
5051 case BPF_ARSH:
5052 if (umax_val >= insn_bitness) {
5053 /* Shifts greater than 31 or 63 are undefined.
5054 * This includes shifts by a negative number.
5055 */
5056 mark_reg_unknown(env, regs, insn->dst_reg);
5057 break;
5058 }
5059
5060 /* Upon reaching here, src_known is true and
5061 * umax_val is equal to umin_val.
5062 */
5063 dst_reg->smin_value >>= umin_val;
5064 dst_reg->smax_value >>= umin_val;
5065 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
5066
5067 /* blow away the dst_reg umin_value/umax_value and rely on
5068 * dst_reg var_off to refine the result.
5069 */
5070 dst_reg->umin_value = 0;
5071 dst_reg->umax_value = U64_MAX;
5072 __update_reg_bounds(dst_reg);
5073 break;
48461135 5074 default:
61bd5218 5075 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
5076 break;
5077 }
5078
468f6eaf
JH
5079 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5080 /* 32-bit ALU ops are (32,32)->32 */
5081 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
5082 }
5083
b03c9f9f
EC
5084 __reg_deduce_bounds(dst_reg);
5085 __reg_bound_offset(dst_reg);
f1174f77
EC
5086 return 0;
5087}
5088
5089/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5090 * and var_off.
5091 */
5092static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5093 struct bpf_insn *insn)
5094{
f4d7e40a
AS
5095 struct bpf_verifier_state *vstate = env->cur_state;
5096 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5097 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
5098 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5099 u8 opcode = BPF_OP(insn->code);
b5dc0163 5100 int err;
f1174f77
EC
5101
5102 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
5103 src_reg = NULL;
5104 if (dst_reg->type != SCALAR_VALUE)
5105 ptr_reg = dst_reg;
5106 if (BPF_SRC(insn->code) == BPF_X) {
5107 src_reg = &regs[insn->src_reg];
f1174f77
EC
5108 if (src_reg->type != SCALAR_VALUE) {
5109 if (dst_reg->type != SCALAR_VALUE) {
5110 /* Combining two pointers by any ALU op yields
82abbf8d
AS
5111 * an arbitrary scalar. Disallow all math except
5112 * pointer subtraction
f1174f77 5113 */
dd066823 5114 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
5115 mark_reg_unknown(env, regs, insn->dst_reg);
5116 return 0;
f1174f77 5117 }
82abbf8d
AS
5118 verbose(env, "R%d pointer %s pointer prohibited\n",
5119 insn->dst_reg,
5120 bpf_alu_string[opcode >> 4]);
5121 return -EACCES;
f1174f77
EC
5122 } else {
5123 /* scalar += pointer
5124 * This is legal, but we have to reverse our
5125 * src/dest handling in computing the range
5126 */
b5dc0163
AS
5127 err = mark_chain_precision(env, insn->dst_reg);
5128 if (err)
5129 return err;
82abbf8d
AS
5130 return adjust_ptr_min_max_vals(env, insn,
5131 src_reg, dst_reg);
f1174f77
EC
5132 }
5133 } else if (ptr_reg) {
5134 /* pointer += scalar */
b5dc0163
AS
5135 err = mark_chain_precision(env, insn->src_reg);
5136 if (err)
5137 return err;
82abbf8d
AS
5138 return adjust_ptr_min_max_vals(env, insn,
5139 dst_reg, src_reg);
f1174f77
EC
5140 }
5141 } else {
5142 /* Pretend the src is a reg with a known value, since we only
5143 * need to be able to read from this state.
5144 */
5145 off_reg.type = SCALAR_VALUE;
b03c9f9f 5146 __mark_reg_known(&off_reg, insn->imm);
f1174f77 5147 src_reg = &off_reg;
82abbf8d
AS
5148 if (ptr_reg) /* pointer += K */
5149 return adjust_ptr_min_max_vals(env, insn,
5150 ptr_reg, src_reg);
f1174f77
EC
5151 }
5152
5153 /* Got here implies adding two SCALAR_VALUEs */
5154 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 5155 print_verifier_state(env, state);
61bd5218 5156 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
5157 return -EINVAL;
5158 }
5159 if (WARN_ON(!src_reg)) {
f4d7e40a 5160 print_verifier_state(env, state);
61bd5218 5161 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
5162 return -EINVAL;
5163 }
5164 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
5165}
5166
17a52670 5167/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 5168static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5169{
638f5b90 5170 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
5171 u8 opcode = BPF_OP(insn->code);
5172 int err;
5173
5174 if (opcode == BPF_END || opcode == BPF_NEG) {
5175 if (opcode == BPF_NEG) {
5176 if (BPF_SRC(insn->code) != 0 ||
5177 insn->src_reg != BPF_REG_0 ||
5178 insn->off != 0 || insn->imm != 0) {
61bd5218 5179 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
5180 return -EINVAL;
5181 }
5182 } else {
5183 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
5184 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5185 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 5186 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
5187 return -EINVAL;
5188 }
5189 }
5190
5191 /* check src operand */
dc503a8a 5192 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5193 if (err)
5194 return err;
5195
1be7f75d 5196 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 5197 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
5198 insn->dst_reg);
5199 return -EACCES;
5200 }
5201
17a52670 5202 /* check dest operand */
dc503a8a 5203 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5204 if (err)
5205 return err;
5206
5207 } else if (opcode == BPF_MOV) {
5208
5209 if (BPF_SRC(insn->code) == BPF_X) {
5210 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5211 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5212 return -EINVAL;
5213 }
5214
5215 /* check src operand */
dc503a8a 5216 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5217 if (err)
5218 return err;
5219 } else {
5220 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5221 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
5222 return -EINVAL;
5223 }
5224 }
5225
fbeb1603
AF
5226 /* check dest operand, mark as required later */
5227 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5228 if (err)
5229 return err;
5230
5231 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
5232 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5233 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5234
17a52670
AS
5235 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5236 /* case: R1 = R2
5237 * copy register state to dest reg
5238 */
e434b8cd
JW
5239 *dst_reg = *src_reg;
5240 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5241 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 5242 } else {
f1174f77 5243 /* R1 = (u32) R2 */
1be7f75d 5244 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
5245 verbose(env,
5246 "R%d partial copy of pointer\n",
1be7f75d
AS
5247 insn->src_reg);
5248 return -EACCES;
e434b8cd
JW
5249 } else if (src_reg->type == SCALAR_VALUE) {
5250 *dst_reg = *src_reg;
5251 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 5252 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
5253 } else {
5254 mark_reg_unknown(env, regs,
5255 insn->dst_reg);
1be7f75d 5256 }
e434b8cd 5257 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5258 }
5259 } else {
5260 /* case: R = imm
5261 * remember the value we stored into this reg
5262 */
fbeb1603
AF
5263 /* clear any state __mark_reg_known doesn't set */
5264 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5265 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5266 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5267 __mark_reg_known(regs + insn->dst_reg,
5268 insn->imm);
5269 } else {
5270 __mark_reg_known(regs + insn->dst_reg,
5271 (u32)insn->imm);
5272 }
17a52670
AS
5273 }
5274
5275 } else if (opcode > BPF_END) {
61bd5218 5276 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5277 return -EINVAL;
5278
5279 } else { /* all other ALU ops: and, sub, xor, add, ... */
5280
17a52670
AS
5281 if (BPF_SRC(insn->code) == BPF_X) {
5282 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5283 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5284 return -EINVAL;
5285 }
5286 /* check src1 operand */
dc503a8a 5287 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5288 if (err)
5289 return err;
5290 } else {
5291 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5292 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5293 return -EINVAL;
5294 }
5295 }
5296
5297 /* check src2 operand */
dc503a8a 5298 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5299 if (err)
5300 return err;
5301
5302 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5303 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5304 verbose(env, "div by zero\n");
17a52670
AS
5305 return -EINVAL;
5306 }
5307
229394e8
RV
5308 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5309 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5310 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5311
5312 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5313 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5314 return -EINVAL;
5315 }
5316 }
5317
1a0dc1ac 5318 /* check dest operand */
dc503a8a 5319 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5320 if (err)
5321 return err;
5322
f1174f77 5323 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5324 }
5325
5326 return 0;
5327}
5328
c6a9efa1
PC
5329static void __find_good_pkt_pointers(struct bpf_func_state *state,
5330 struct bpf_reg_state *dst_reg,
5331 enum bpf_reg_type type, u16 new_range)
5332{
5333 struct bpf_reg_state *reg;
5334 int i;
5335
5336 for (i = 0; i < MAX_BPF_REG; i++) {
5337 reg = &state->regs[i];
5338 if (reg->type == type && reg->id == dst_reg->id)
5339 /* keep the maximum range already checked */
5340 reg->range = max(reg->range, new_range);
5341 }
5342
5343 bpf_for_each_spilled_reg(i, state, reg) {
5344 if (!reg)
5345 continue;
5346 if (reg->type == type && reg->id == dst_reg->id)
5347 reg->range = max(reg->range, new_range);
5348 }
5349}
5350
f4d7e40a 5351static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5352 struct bpf_reg_state *dst_reg,
f8ddadc4 5353 enum bpf_reg_type type,
fb2a311a 5354 bool range_right_open)
969bf05e 5355{
fb2a311a 5356 u16 new_range;
c6a9efa1 5357 int i;
2d2be8ca 5358
fb2a311a
DB
5359 if (dst_reg->off < 0 ||
5360 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5361 /* This doesn't give us any range */
5362 return;
5363
b03c9f9f
EC
5364 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5365 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5366 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5367 * than pkt_end, but that's because it's also less than pkt.
5368 */
5369 return;
5370
fb2a311a
DB
5371 new_range = dst_reg->off;
5372 if (range_right_open)
5373 new_range--;
5374
5375 /* Examples for register markings:
2d2be8ca 5376 *
fb2a311a 5377 * pkt_data in dst register:
2d2be8ca
DB
5378 *
5379 * r2 = r3;
5380 * r2 += 8;
5381 * if (r2 > pkt_end) goto <handle exception>
5382 * <access okay>
5383 *
b4e432f1
DB
5384 * r2 = r3;
5385 * r2 += 8;
5386 * if (r2 < pkt_end) goto <access okay>
5387 * <handle exception>
5388 *
2d2be8ca
DB
5389 * Where:
5390 * r2 == dst_reg, pkt_end == src_reg
5391 * r2=pkt(id=n,off=8,r=0)
5392 * r3=pkt(id=n,off=0,r=0)
5393 *
fb2a311a 5394 * pkt_data in src register:
2d2be8ca
DB
5395 *
5396 * r2 = r3;
5397 * r2 += 8;
5398 * if (pkt_end >= r2) goto <access okay>
5399 * <handle exception>
5400 *
b4e432f1
DB
5401 * r2 = r3;
5402 * r2 += 8;
5403 * if (pkt_end <= r2) goto <handle exception>
5404 * <access okay>
5405 *
2d2be8ca
DB
5406 * Where:
5407 * pkt_end == dst_reg, r2 == src_reg
5408 * r2=pkt(id=n,off=8,r=0)
5409 * r3=pkt(id=n,off=0,r=0)
5410 *
5411 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5412 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5413 * and [r3, r3 + 8-1) respectively is safe to access depending on
5414 * the check.
969bf05e 5415 */
2d2be8ca 5416
f1174f77
EC
5417 /* If our ids match, then we must have the same max_value. And we
5418 * don't care about the other reg's fixed offset, since if it's too big
5419 * the range won't allow anything.
5420 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5421 */
c6a9efa1
PC
5422 for (i = 0; i <= vstate->curframe; i++)
5423 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5424 new_range);
969bf05e
AS
5425}
5426
4f7b3e82
AS
5427/* compute branch direction of the expression "if (reg opcode val) goto target;"
5428 * and return:
5429 * 1 - branch will be taken and "goto target" will be executed
5430 * 0 - branch will not be taken and fall-through to next insn
5431 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5432 */
092ed096
JW
5433static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5434 bool is_jmp32)
4f7b3e82 5435{
092ed096 5436 struct bpf_reg_state reg_lo;
a72dafaf
JW
5437 s64 sval;
5438
4f7b3e82
AS
5439 if (__is_pointer_value(false, reg))
5440 return -1;
5441
092ed096
JW
5442 if (is_jmp32) {
5443 reg_lo = *reg;
5444 reg = &reg_lo;
5445 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5446 * could truncate high bits and update umin/umax according to
5447 * information of low bits.
5448 */
5449 coerce_reg_to_size(reg, 4);
5450 /* smin/smax need special handling. For example, after coerce,
5451 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5452 * used as operand to JMP32. It is a negative number from s32's
5453 * point of view, while it is a positive number when seen as
5454 * s64. The smin/smax are kept as s64, therefore, when used with
5455 * JMP32, they need to be transformed into s32, then sign
5456 * extended back to s64.
5457 *
5458 * Also, smin/smax were copied from umin/umax. If umin/umax has
5459 * different sign bit, then min/max relationship doesn't
5460 * maintain after casting into s32, for this case, set smin/smax
5461 * to safest range.
5462 */
5463 if ((reg->umax_value ^ reg->umin_value) &
5464 (1ULL << 31)) {
5465 reg->smin_value = S32_MIN;
5466 reg->smax_value = S32_MAX;
5467 }
5468 reg->smin_value = (s64)(s32)reg->smin_value;
5469 reg->smax_value = (s64)(s32)reg->smax_value;
5470
5471 val = (u32)val;
5472 sval = (s64)(s32)val;
5473 } else {
5474 sval = (s64)val;
5475 }
a72dafaf 5476
4f7b3e82
AS
5477 switch (opcode) {
5478 case BPF_JEQ:
5479 if (tnum_is_const(reg->var_off))
5480 return !!tnum_equals_const(reg->var_off, val);
5481 break;
5482 case BPF_JNE:
5483 if (tnum_is_const(reg->var_off))
5484 return !tnum_equals_const(reg->var_off, val);
5485 break;
960ea056
JK
5486 case BPF_JSET:
5487 if ((~reg->var_off.mask & reg->var_off.value) & val)
5488 return 1;
5489 if (!((reg->var_off.mask | reg->var_off.value) & val))
5490 return 0;
5491 break;
4f7b3e82
AS
5492 case BPF_JGT:
5493 if (reg->umin_value > val)
5494 return 1;
5495 else if (reg->umax_value <= val)
5496 return 0;
5497 break;
5498 case BPF_JSGT:
a72dafaf 5499 if (reg->smin_value > sval)
4f7b3e82 5500 return 1;
a72dafaf 5501 else if (reg->smax_value < sval)
4f7b3e82
AS
5502 return 0;
5503 break;
5504 case BPF_JLT:
5505 if (reg->umax_value < val)
5506 return 1;
5507 else if (reg->umin_value >= val)
5508 return 0;
5509 break;
5510 case BPF_JSLT:
a72dafaf 5511 if (reg->smax_value < sval)
4f7b3e82 5512 return 1;
a72dafaf 5513 else if (reg->smin_value >= sval)
4f7b3e82
AS
5514 return 0;
5515 break;
5516 case BPF_JGE:
5517 if (reg->umin_value >= val)
5518 return 1;
5519 else if (reg->umax_value < val)
5520 return 0;
5521 break;
5522 case BPF_JSGE:
a72dafaf 5523 if (reg->smin_value >= sval)
4f7b3e82 5524 return 1;
a72dafaf 5525 else if (reg->smax_value < sval)
4f7b3e82
AS
5526 return 0;
5527 break;
5528 case BPF_JLE:
5529 if (reg->umax_value <= val)
5530 return 1;
5531 else if (reg->umin_value > val)
5532 return 0;
5533 break;
5534 case BPF_JSLE:
a72dafaf 5535 if (reg->smax_value <= sval)
4f7b3e82 5536 return 1;
a72dafaf 5537 else if (reg->smin_value > sval)
4f7b3e82
AS
5538 return 0;
5539 break;
5540 }
5541
5542 return -1;
5543}
5544
092ed096
JW
5545/* Generate min value of the high 32-bit from TNUM info. */
5546static u64 gen_hi_min(struct tnum var)
5547{
5548 return var.value & ~0xffffffffULL;
5549}
5550
5551/* Generate max value of the high 32-bit from TNUM info. */
5552static u64 gen_hi_max(struct tnum var)
5553{
5554 return (var.value | var.mask) & ~0xffffffffULL;
5555}
5556
5557/* Return true if VAL is compared with a s64 sign extended from s32, and they
5558 * are with the same signedness.
5559 */
5560static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5561{
5562 return ((s32)sval >= 0 &&
5563 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5564 ((s32)sval < 0 &&
5565 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5566}
5567
48461135
JB
5568/* Adjusts the register min/max values in the case that the dst_reg is the
5569 * variable register that we are working on, and src_reg is a constant or we're
5570 * simply doing a BPF_K check.
f1174f77 5571 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5572 */
5573static void reg_set_min_max(struct bpf_reg_state *true_reg,
5574 struct bpf_reg_state *false_reg, u64 val,
092ed096 5575 u8 opcode, bool is_jmp32)
48461135 5576{
a72dafaf
JW
5577 s64 sval;
5578
f1174f77
EC
5579 /* If the dst_reg is a pointer, we can't learn anything about its
5580 * variable offset from the compare (unless src_reg were a pointer into
5581 * the same object, but we don't bother with that.
5582 * Since false_reg and true_reg have the same type by construction, we
5583 * only need to check one of them for pointerness.
5584 */
5585 if (__is_pointer_value(false, false_reg))
5586 return;
4cabc5b1 5587
092ed096
JW
5588 val = is_jmp32 ? (u32)val : val;
5589 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5590
48461135
JB
5591 switch (opcode) {
5592 case BPF_JEQ:
48461135 5593 case BPF_JNE:
a72dafaf
JW
5594 {
5595 struct bpf_reg_state *reg =
5596 opcode == BPF_JEQ ? true_reg : false_reg;
5597
5598 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5599 * if it is true we know the value for sure. Likewise for
5600 * BPF_JNE.
48461135 5601 */
092ed096
JW
5602 if (is_jmp32) {
5603 u64 old_v = reg->var_off.value;
5604 u64 hi_mask = ~0xffffffffULL;
5605
5606 reg->var_off.value = (old_v & hi_mask) | val;
5607 reg->var_off.mask &= hi_mask;
5608 } else {
5609 __mark_reg_known(reg, val);
5610 }
48461135 5611 break;
a72dafaf 5612 }
960ea056
JK
5613 case BPF_JSET:
5614 false_reg->var_off = tnum_and(false_reg->var_off,
5615 tnum_const(~val));
5616 if (is_power_of_2(val))
5617 true_reg->var_off = tnum_or(true_reg->var_off,
5618 tnum_const(val));
5619 break;
48461135 5620 case BPF_JGE:
a72dafaf
JW
5621 case BPF_JGT:
5622 {
5623 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5624 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5625
092ed096
JW
5626 if (is_jmp32) {
5627 false_umax += gen_hi_max(false_reg->var_off);
5628 true_umin += gen_hi_min(true_reg->var_off);
5629 }
a72dafaf
JW
5630 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5631 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5632 break;
a72dafaf 5633 }
48461135 5634 case BPF_JSGE:
a72dafaf
JW
5635 case BPF_JSGT:
5636 {
5637 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5638 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5639
092ed096
JW
5640 /* If the full s64 was not sign-extended from s32 then don't
5641 * deduct further info.
5642 */
5643 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5644 break;
a72dafaf
JW
5645 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5646 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5647 break;
a72dafaf 5648 }
b4e432f1 5649 case BPF_JLE:
a72dafaf
JW
5650 case BPF_JLT:
5651 {
5652 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5653 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5654
092ed096
JW
5655 if (is_jmp32) {
5656 false_umin += gen_hi_min(false_reg->var_off);
5657 true_umax += gen_hi_max(true_reg->var_off);
5658 }
a72dafaf
JW
5659 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5660 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5661 break;
a72dafaf 5662 }
b4e432f1 5663 case BPF_JSLE:
a72dafaf
JW
5664 case BPF_JSLT:
5665 {
5666 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5667 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5668
092ed096
JW
5669 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5670 break;
a72dafaf
JW
5671 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5672 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5673 break;
a72dafaf 5674 }
48461135
JB
5675 default:
5676 break;
5677 }
5678
b03c9f9f
EC
5679 __reg_deduce_bounds(false_reg);
5680 __reg_deduce_bounds(true_reg);
5681 /* We might have learned some bits from the bounds. */
5682 __reg_bound_offset(false_reg);
5683 __reg_bound_offset(true_reg);
581738a6
YS
5684 if (is_jmp32) {
5685 __reg_bound_offset32(false_reg);
5686 __reg_bound_offset32(true_reg);
5687 }
b03c9f9f
EC
5688 /* Intersecting with the old var_off might have improved our bounds
5689 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5690 * then new var_off is (0; 0x7f...fc) which improves our umax.
5691 */
5692 __update_reg_bounds(false_reg);
5693 __update_reg_bounds(true_reg);
48461135
JB
5694}
5695
f1174f77
EC
5696/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5697 * the variable reg.
48461135
JB
5698 */
5699static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5700 struct bpf_reg_state *false_reg, u64 val,
092ed096 5701 u8 opcode, bool is_jmp32)
48461135 5702{
a72dafaf
JW
5703 s64 sval;
5704
f1174f77
EC
5705 if (__is_pointer_value(false, false_reg))
5706 return;
4cabc5b1 5707
092ed096
JW
5708 val = is_jmp32 ? (u32)val : val;
5709 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5710
48461135
JB
5711 switch (opcode) {
5712 case BPF_JEQ:
48461135 5713 case BPF_JNE:
a72dafaf
JW
5714 {
5715 struct bpf_reg_state *reg =
5716 opcode == BPF_JEQ ? true_reg : false_reg;
5717
092ed096
JW
5718 if (is_jmp32) {
5719 u64 old_v = reg->var_off.value;
5720 u64 hi_mask = ~0xffffffffULL;
5721
5722 reg->var_off.value = (old_v & hi_mask) | val;
5723 reg->var_off.mask &= hi_mask;
5724 } else {
5725 __mark_reg_known(reg, val);
5726 }
48461135 5727 break;
a72dafaf 5728 }
960ea056
JK
5729 case BPF_JSET:
5730 false_reg->var_off = tnum_and(false_reg->var_off,
5731 tnum_const(~val));
5732 if (is_power_of_2(val))
5733 true_reg->var_off = tnum_or(true_reg->var_off,
5734 tnum_const(val));
5735 break;
48461135 5736 case BPF_JGE:
a72dafaf
JW
5737 case BPF_JGT:
5738 {
5739 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5740 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5741
092ed096
JW
5742 if (is_jmp32) {
5743 false_umin += gen_hi_min(false_reg->var_off);
5744 true_umax += gen_hi_max(true_reg->var_off);
5745 }
a72dafaf
JW
5746 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5747 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5748 break;
a72dafaf 5749 }
48461135 5750 case BPF_JSGE:
a72dafaf
JW
5751 case BPF_JSGT:
5752 {
5753 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5754 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5755
092ed096
JW
5756 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5757 break;
a72dafaf
JW
5758 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5759 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5760 break;
a72dafaf 5761 }
b4e432f1 5762 case BPF_JLE:
a72dafaf
JW
5763 case BPF_JLT:
5764 {
5765 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5766 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5767
092ed096
JW
5768 if (is_jmp32) {
5769 false_umax += gen_hi_max(false_reg->var_off);
5770 true_umin += gen_hi_min(true_reg->var_off);
5771 }
a72dafaf
JW
5772 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5773 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5774 break;
a72dafaf 5775 }
b4e432f1 5776 case BPF_JSLE:
a72dafaf
JW
5777 case BPF_JSLT:
5778 {
5779 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5780 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5781
092ed096
JW
5782 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5783 break;
a72dafaf
JW
5784 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5785 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5786 break;
a72dafaf 5787 }
48461135
JB
5788 default:
5789 break;
5790 }
5791
b03c9f9f
EC
5792 __reg_deduce_bounds(false_reg);
5793 __reg_deduce_bounds(true_reg);
5794 /* We might have learned some bits from the bounds. */
5795 __reg_bound_offset(false_reg);
5796 __reg_bound_offset(true_reg);
581738a6
YS
5797 if (is_jmp32) {
5798 __reg_bound_offset32(false_reg);
5799 __reg_bound_offset32(true_reg);
5800 }
b03c9f9f
EC
5801 /* Intersecting with the old var_off might have improved our bounds
5802 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5803 * then new var_off is (0; 0x7f...fc) which improves our umax.
5804 */
5805 __update_reg_bounds(false_reg);
5806 __update_reg_bounds(true_reg);
f1174f77
EC
5807}
5808
5809/* Regs are known to be equal, so intersect their min/max/var_off */
5810static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5811 struct bpf_reg_state *dst_reg)
5812{
b03c9f9f
EC
5813 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5814 dst_reg->umin_value);
5815 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5816 dst_reg->umax_value);
5817 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5818 dst_reg->smin_value);
5819 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5820 dst_reg->smax_value);
f1174f77
EC
5821 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5822 dst_reg->var_off);
b03c9f9f
EC
5823 /* We might have learned new bounds from the var_off. */
5824 __update_reg_bounds(src_reg);
5825 __update_reg_bounds(dst_reg);
5826 /* We might have learned something about the sign bit. */
5827 __reg_deduce_bounds(src_reg);
5828 __reg_deduce_bounds(dst_reg);
5829 /* We might have learned some bits from the bounds. */
5830 __reg_bound_offset(src_reg);
5831 __reg_bound_offset(dst_reg);
5832 /* Intersecting with the old var_off might have improved our bounds
5833 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5834 * then new var_off is (0; 0x7f...fc) which improves our umax.
5835 */
5836 __update_reg_bounds(src_reg);
5837 __update_reg_bounds(dst_reg);
f1174f77
EC
5838}
5839
5840static void reg_combine_min_max(struct bpf_reg_state *true_src,
5841 struct bpf_reg_state *true_dst,
5842 struct bpf_reg_state *false_src,
5843 struct bpf_reg_state *false_dst,
5844 u8 opcode)
5845{
5846 switch (opcode) {
5847 case BPF_JEQ:
5848 __reg_combine_min_max(true_src, true_dst);
5849 break;
5850 case BPF_JNE:
5851 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5852 break;
4cabc5b1 5853 }
48461135
JB
5854}
5855
fd978bf7
JS
5856static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5857 struct bpf_reg_state *reg, u32 id,
840b9615 5858 bool is_null)
57a09bf0 5859{
840b9615 5860 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5861 /* Old offset (both fixed and variable parts) should
5862 * have been known-zero, because we don't allow pointer
5863 * arithmetic on pointers that might be NULL.
5864 */
b03c9f9f
EC
5865 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5866 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5867 reg->off)) {
b03c9f9f
EC
5868 __mark_reg_known_zero(reg);
5869 reg->off = 0;
f1174f77
EC
5870 }
5871 if (is_null) {
5872 reg->type = SCALAR_VALUE;
840b9615
JS
5873 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5874 if (reg->map_ptr->inner_map_meta) {
5875 reg->type = CONST_PTR_TO_MAP;
5876 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5877 } else if (reg->map_ptr->map_type ==
5878 BPF_MAP_TYPE_XSKMAP) {
5879 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5880 } else {
5881 reg->type = PTR_TO_MAP_VALUE;
5882 }
c64b7983
JS
5883 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5884 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5885 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5886 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5887 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5888 reg->type = PTR_TO_TCP_SOCK;
56f668df 5889 }
1b986589
MKL
5890 if (is_null) {
5891 /* We don't need id and ref_obj_id from this point
5892 * onwards anymore, thus we should better reset it,
5893 * so that state pruning has chances to take effect.
5894 */
5895 reg->id = 0;
5896 reg->ref_obj_id = 0;
5897 } else if (!reg_may_point_to_spin_lock(reg)) {
5898 /* For not-NULL ptr, reg->ref_obj_id will be reset
5899 * in release_reg_references().
5900 *
5901 * reg->id is still used by spin_lock ptr. Other
5902 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5903 */
5904 reg->id = 0;
56f668df 5905 }
57a09bf0
TG
5906 }
5907}
5908
c6a9efa1
PC
5909static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5910 bool is_null)
5911{
5912 struct bpf_reg_state *reg;
5913 int i;
5914
5915 for (i = 0; i < MAX_BPF_REG; i++)
5916 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5917
5918 bpf_for_each_spilled_reg(i, state, reg) {
5919 if (!reg)
5920 continue;
5921 mark_ptr_or_null_reg(state, reg, id, is_null);
5922 }
5923}
5924
57a09bf0
TG
5925/* The logic is similar to find_good_pkt_pointers(), both could eventually
5926 * be folded together at some point.
5927 */
840b9615
JS
5928static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5929 bool is_null)
57a09bf0 5930{
f4d7e40a 5931 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5932 struct bpf_reg_state *regs = state->regs;
1b986589 5933 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5934 u32 id = regs[regno].id;
c6a9efa1 5935 int i;
57a09bf0 5936
1b986589
MKL
5937 if (ref_obj_id && ref_obj_id == id && is_null)
5938 /* regs[regno] is in the " == NULL" branch.
5939 * No one could have freed the reference state before
5940 * doing the NULL check.
5941 */
5942 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5943
c6a9efa1
PC
5944 for (i = 0; i <= vstate->curframe; i++)
5945 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5946}
5947
5beca081
DB
5948static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5949 struct bpf_reg_state *dst_reg,
5950 struct bpf_reg_state *src_reg,
5951 struct bpf_verifier_state *this_branch,
5952 struct bpf_verifier_state *other_branch)
5953{
5954 if (BPF_SRC(insn->code) != BPF_X)
5955 return false;
5956
092ed096
JW
5957 /* Pointers are always 64-bit. */
5958 if (BPF_CLASS(insn->code) == BPF_JMP32)
5959 return false;
5960
5beca081
DB
5961 switch (BPF_OP(insn->code)) {
5962 case BPF_JGT:
5963 if ((dst_reg->type == PTR_TO_PACKET &&
5964 src_reg->type == PTR_TO_PACKET_END) ||
5965 (dst_reg->type == PTR_TO_PACKET_META &&
5966 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5967 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5968 find_good_pkt_pointers(this_branch, dst_reg,
5969 dst_reg->type, false);
5970 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5971 src_reg->type == PTR_TO_PACKET) ||
5972 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5973 src_reg->type == PTR_TO_PACKET_META)) {
5974 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5975 find_good_pkt_pointers(other_branch, src_reg,
5976 src_reg->type, true);
5977 } else {
5978 return false;
5979 }
5980 break;
5981 case BPF_JLT:
5982 if ((dst_reg->type == PTR_TO_PACKET &&
5983 src_reg->type == PTR_TO_PACKET_END) ||
5984 (dst_reg->type == PTR_TO_PACKET_META &&
5985 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5986 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5987 find_good_pkt_pointers(other_branch, dst_reg,
5988 dst_reg->type, true);
5989 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5990 src_reg->type == PTR_TO_PACKET) ||
5991 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5992 src_reg->type == PTR_TO_PACKET_META)) {
5993 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5994 find_good_pkt_pointers(this_branch, src_reg,
5995 src_reg->type, false);
5996 } else {
5997 return false;
5998 }
5999 break;
6000 case BPF_JGE:
6001 if ((dst_reg->type == PTR_TO_PACKET &&
6002 src_reg->type == PTR_TO_PACKET_END) ||
6003 (dst_reg->type == PTR_TO_PACKET_META &&
6004 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6005 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6006 find_good_pkt_pointers(this_branch, dst_reg,
6007 dst_reg->type, true);
6008 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6009 src_reg->type == PTR_TO_PACKET) ||
6010 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6011 src_reg->type == PTR_TO_PACKET_META)) {
6012 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6013 find_good_pkt_pointers(other_branch, src_reg,
6014 src_reg->type, false);
6015 } else {
6016 return false;
6017 }
6018 break;
6019 case BPF_JLE:
6020 if ((dst_reg->type == PTR_TO_PACKET &&
6021 src_reg->type == PTR_TO_PACKET_END) ||
6022 (dst_reg->type == PTR_TO_PACKET_META &&
6023 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6024 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6025 find_good_pkt_pointers(other_branch, dst_reg,
6026 dst_reg->type, false);
6027 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6028 src_reg->type == PTR_TO_PACKET) ||
6029 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6030 src_reg->type == PTR_TO_PACKET_META)) {
6031 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6032 find_good_pkt_pointers(this_branch, src_reg,
6033 src_reg->type, true);
6034 } else {
6035 return false;
6036 }
6037 break;
6038 default:
6039 return false;
6040 }
6041
6042 return true;
6043}
6044
58e2af8b 6045static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
6046 struct bpf_insn *insn, int *insn_idx)
6047{
f4d7e40a
AS
6048 struct bpf_verifier_state *this_branch = env->cur_state;
6049 struct bpf_verifier_state *other_branch;
6050 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 6051 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 6052 u8 opcode = BPF_OP(insn->code);
092ed096 6053 bool is_jmp32;
fb8d251e 6054 int pred = -1;
17a52670
AS
6055 int err;
6056
092ed096
JW
6057 /* Only conditional jumps are expected to reach here. */
6058 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6059 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
6060 return -EINVAL;
6061 }
6062
6063 if (BPF_SRC(insn->code) == BPF_X) {
6064 if (insn->imm != 0) {
092ed096 6065 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6066 return -EINVAL;
6067 }
6068
6069 /* check src1 operand */
dc503a8a 6070 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6071 if (err)
6072 return err;
1be7f75d
AS
6073
6074 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 6075 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
6076 insn->src_reg);
6077 return -EACCES;
6078 }
fb8d251e 6079 src_reg = &regs[insn->src_reg];
17a52670
AS
6080 } else {
6081 if (insn->src_reg != BPF_REG_0) {
092ed096 6082 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
6083 return -EINVAL;
6084 }
6085 }
6086
6087 /* check src2 operand */
dc503a8a 6088 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6089 if (err)
6090 return err;
6091
1a0dc1ac 6092 dst_reg = &regs[insn->dst_reg];
092ed096 6093 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 6094
fb8d251e
AS
6095 if (BPF_SRC(insn->code) == BPF_K)
6096 pred = is_branch_taken(dst_reg, insn->imm,
6097 opcode, is_jmp32);
6098 else if (src_reg->type == SCALAR_VALUE &&
6099 tnum_is_const(src_reg->var_off))
6100 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6101 opcode, is_jmp32);
b5dc0163
AS
6102 if (pred >= 0) {
6103 err = mark_chain_precision(env, insn->dst_reg);
6104 if (BPF_SRC(insn->code) == BPF_X && !err)
6105 err = mark_chain_precision(env, insn->src_reg);
6106 if (err)
6107 return err;
6108 }
fb8d251e
AS
6109 if (pred == 1) {
6110 /* only follow the goto, ignore fall-through */
6111 *insn_idx += insn->off;
6112 return 0;
6113 } else if (pred == 0) {
6114 /* only follow fall-through branch, since
6115 * that's where the program will go
6116 */
6117 return 0;
17a52670
AS
6118 }
6119
979d63d5
DB
6120 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6121 false);
17a52670
AS
6122 if (!other_branch)
6123 return -EFAULT;
f4d7e40a 6124 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 6125
48461135
JB
6126 /* detect if we are comparing against a constant value so we can adjust
6127 * our min/max values for our dst register.
f1174f77
EC
6128 * this is only legit if both are scalars (or pointers to the same
6129 * object, I suppose, but we don't support that right now), because
6130 * otherwise the different base pointers mean the offsets aren't
6131 * comparable.
48461135
JB
6132 */
6133 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
6134 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6135 struct bpf_reg_state lo_reg0 = *dst_reg;
6136 struct bpf_reg_state lo_reg1 = *src_reg;
6137 struct bpf_reg_state *src_lo, *dst_lo;
6138
6139 dst_lo = &lo_reg0;
6140 src_lo = &lo_reg1;
6141 coerce_reg_to_size(dst_lo, 4);
6142 coerce_reg_to_size(src_lo, 4);
6143
f1174f77 6144 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
6145 src_reg->type == SCALAR_VALUE) {
6146 if (tnum_is_const(src_reg->var_off) ||
6147 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 6148 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
6149 dst_reg,
6150 is_jmp32
6151 ? src_lo->var_off.value
6152 : src_reg->var_off.value,
6153 opcode, is_jmp32);
6154 else if (tnum_is_const(dst_reg->var_off) ||
6155 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 6156 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
6157 src_reg,
6158 is_jmp32
6159 ? dst_lo->var_off.value
6160 : dst_reg->var_off.value,
6161 opcode, is_jmp32);
6162 else if (!is_jmp32 &&
6163 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 6164 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
6165 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6166 &other_branch_regs[insn->dst_reg],
092ed096 6167 src_reg, dst_reg, opcode);
f1174f77
EC
6168 }
6169 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 6170 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 6171 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
6172 }
6173
092ed096
JW
6174 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6175 * NOTE: these optimizations below are related with pointer comparison
6176 * which will never be JMP32.
6177 */
6178 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 6179 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
6180 reg_type_may_be_null(dst_reg->type)) {
6181 /* Mark all identical registers in each branch as either
57a09bf0
TG
6182 * safe or unknown depending R == 0 or R != 0 conditional.
6183 */
840b9615
JS
6184 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6185 opcode == BPF_JNE);
6186 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6187 opcode == BPF_JEQ);
5beca081
DB
6188 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6189 this_branch, other_branch) &&
6190 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
6191 verbose(env, "R%d pointer comparison prohibited\n",
6192 insn->dst_reg);
1be7f75d 6193 return -EACCES;
17a52670 6194 }
06ee7115 6195 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 6196 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
6197 return 0;
6198}
6199
17a52670 6200/* verify BPF_LD_IMM64 instruction */
58e2af8b 6201static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 6202{
d8eca5bb 6203 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 6204 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 6205 struct bpf_map *map;
17a52670
AS
6206 int err;
6207
6208 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 6209 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
6210 return -EINVAL;
6211 }
6212 if (insn->off != 0) {
61bd5218 6213 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
6214 return -EINVAL;
6215 }
6216
dc503a8a 6217 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
6218 if (err)
6219 return err;
6220
6b173873 6221 if (insn->src_reg == 0) {
6b173873
JK
6222 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6223
f1174f77 6224 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 6225 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 6226 return 0;
6b173873 6227 }
17a52670 6228
d8eca5bb
DB
6229 map = env->used_maps[aux->map_index];
6230 mark_reg_known_zero(env, regs, insn->dst_reg);
6231 regs[insn->dst_reg].map_ptr = map;
6232
6233 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6234 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6235 regs[insn->dst_reg].off = aux->map_off;
6236 if (map_value_has_spin_lock(map))
6237 regs[insn->dst_reg].id = ++env->id_gen;
6238 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6239 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6240 } else {
6241 verbose(env, "bpf verifier is misconfigured\n");
6242 return -EINVAL;
6243 }
17a52670 6244
17a52670
AS
6245 return 0;
6246}
6247
96be4325
DB
6248static bool may_access_skb(enum bpf_prog_type type)
6249{
6250 switch (type) {
6251 case BPF_PROG_TYPE_SOCKET_FILTER:
6252 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 6253 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
6254 return true;
6255 default:
6256 return false;
6257 }
6258}
6259
ddd872bc
AS
6260/* verify safety of LD_ABS|LD_IND instructions:
6261 * - they can only appear in the programs where ctx == skb
6262 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6263 * preserve R6-R9, and store return value into R0
6264 *
6265 * Implicit input:
6266 * ctx == skb == R6 == CTX
6267 *
6268 * Explicit input:
6269 * SRC == any register
6270 * IMM == 32-bit immediate
6271 *
6272 * Output:
6273 * R0 - 8/16/32-bit skb data converted to cpu endianness
6274 */
58e2af8b 6275static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6276{
638f5b90 6277 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6278 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6279 int i, err;
6280
24701ece 6281 if (!may_access_skb(env->prog->type)) {
61bd5218 6282 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6283 return -EINVAL;
6284 }
6285
e0cea7ce
DB
6286 if (!env->ops->gen_ld_abs) {
6287 verbose(env, "bpf verifier is misconfigured\n");
6288 return -EINVAL;
6289 }
6290
f910cefa 6291 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6292 /* when program has LD_ABS insn JITs and interpreter assume
6293 * that r1 == ctx == skb which is not the case for callees
6294 * that can have arbitrary arguments. It's problematic
6295 * for main prog as well since JITs would need to analyze
6296 * all functions in order to make proper register save/restore
6297 * decisions in the main prog. Hence disallow LD_ABS with calls
6298 */
6299 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6300 return -EINVAL;
6301 }
6302
ddd872bc 6303 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6304 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6305 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6306 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6307 return -EINVAL;
6308 }
6309
6310 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6311 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6312 if (err)
6313 return err;
6314
fd978bf7
JS
6315 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6316 * gen_ld_abs() may terminate the program at runtime, leading to
6317 * reference leak.
6318 */
6319 err = check_reference_leak(env);
6320 if (err) {
6321 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6322 return err;
6323 }
6324
d83525ca
AS
6325 if (env->cur_state->active_spin_lock) {
6326 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6327 return -EINVAL;
6328 }
6329
ddd872bc 6330 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6331 verbose(env,
6332 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6333 return -EINVAL;
6334 }
6335
6336 if (mode == BPF_IND) {
6337 /* check explicit source operand */
dc503a8a 6338 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6339 if (err)
6340 return err;
6341 }
6342
6343 /* reset caller saved regs to unreadable */
dc503a8a 6344 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6345 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6346 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6347 }
ddd872bc
AS
6348
6349 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6350 * the value fetched from the packet.
6351 * Already marked as written above.
ddd872bc 6352 */
61bd5218 6353 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6354 /* ld_abs load up to 32-bit skb data. */
6355 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6356 return 0;
6357}
6358
390ee7e2
AS
6359static int check_return_code(struct bpf_verifier_env *env)
6360{
5cf1e914 6361 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 6362 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
6363 struct bpf_reg_state *reg;
6364 struct tnum range = tnum_range(0, 1);
27ae7997
MKL
6365 int err;
6366
6367 /* The struct_ops func-ptr's return type could be "void" */
6368 if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS &&
6369 !prog->aux->attach_func_proto->type)
6370 return 0;
6371
6372 /* eBPF calling convetion is such that R0 is used
6373 * to return the value from eBPF program.
6374 * Make sure that it's readable at this time
6375 * of bpf_exit, which means that program wrote
6376 * something into it earlier
6377 */
6378 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6379 if (err)
6380 return err;
6381
6382 if (is_pointer_value(env, BPF_REG_0)) {
6383 verbose(env, "R0 leaks addr as return value\n");
6384 return -EACCES;
6385 }
390ee7e2
AS
6386
6387 switch (env->prog->type) {
983695fa
DB
6388 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6389 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6390 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6391 range = tnum_range(1, 1);
ed4ed404 6392 break;
390ee7e2 6393 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6394 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6395 range = tnum_range(0, 3);
6396 enforce_attach_type_range = tnum_range(2, 3);
6397 }
ed4ed404 6398 break;
390ee7e2
AS
6399 case BPF_PROG_TYPE_CGROUP_SOCK:
6400 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6401 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6402 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6403 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 6404 break;
15ab09bd
AS
6405 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6406 if (!env->prog->aux->attach_btf_id)
6407 return 0;
6408 range = tnum_const(0);
6409 break;
390ee7e2
AS
6410 default:
6411 return 0;
6412 }
6413
638f5b90 6414 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6415 if (reg->type != SCALAR_VALUE) {
61bd5218 6416 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6417 reg_type_str[reg->type]);
6418 return -EINVAL;
6419 }
6420
6421 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6422 char tn_buf[48];
6423
61bd5218 6424 verbose(env, "At program exit the register R0 ");
390ee7e2 6425 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6427 verbose(env, "has value %s", tn_buf);
390ee7e2 6428 } else {
61bd5218 6429 verbose(env, "has unknown scalar value");
390ee7e2 6430 }
5cf1e914 6431 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6432 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6433 return -EINVAL;
6434 }
5cf1e914 6435
6436 if (!tnum_is_unknown(enforce_attach_type_range) &&
6437 tnum_in(enforce_attach_type_range, reg->var_off))
6438 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6439 return 0;
6440}
6441
475fb78f
AS
6442/* non-recursive DFS pseudo code
6443 * 1 procedure DFS-iterative(G,v):
6444 * 2 label v as discovered
6445 * 3 let S be a stack
6446 * 4 S.push(v)
6447 * 5 while S is not empty
6448 * 6 t <- S.pop()
6449 * 7 if t is what we're looking for:
6450 * 8 return t
6451 * 9 for all edges e in G.adjacentEdges(t) do
6452 * 10 if edge e is already labelled
6453 * 11 continue with the next edge
6454 * 12 w <- G.adjacentVertex(t,e)
6455 * 13 if vertex w is not discovered and not explored
6456 * 14 label e as tree-edge
6457 * 15 label w as discovered
6458 * 16 S.push(w)
6459 * 17 continue at 5
6460 * 18 else if vertex w is discovered
6461 * 19 label e as back-edge
6462 * 20 else
6463 * 21 // vertex w is explored
6464 * 22 label e as forward- or cross-edge
6465 * 23 label t as explored
6466 * 24 S.pop()
6467 *
6468 * convention:
6469 * 0x10 - discovered
6470 * 0x11 - discovered and fall-through edge labelled
6471 * 0x12 - discovered and fall-through and branch edges labelled
6472 * 0x20 - explored
6473 */
6474
6475enum {
6476 DISCOVERED = 0x10,
6477 EXPLORED = 0x20,
6478 FALLTHROUGH = 1,
6479 BRANCH = 2,
6480};
6481
dc2a4ebc
AS
6482static u32 state_htab_size(struct bpf_verifier_env *env)
6483{
6484 return env->prog->len;
6485}
6486
5d839021
AS
6487static struct bpf_verifier_state_list **explored_state(
6488 struct bpf_verifier_env *env,
6489 int idx)
6490{
dc2a4ebc
AS
6491 struct bpf_verifier_state *cur = env->cur_state;
6492 struct bpf_func_state *state = cur->frame[cur->curframe];
6493
6494 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6495}
6496
6497static void init_explored_state(struct bpf_verifier_env *env, int idx)
6498{
a8f500af 6499 env->insn_aux_data[idx].prune_point = true;
5d839021 6500}
f1bca824 6501
475fb78f
AS
6502/* t, w, e - match pseudo-code above:
6503 * t - index of current instruction
6504 * w - next instruction
6505 * e - edge
6506 */
2589726d
AS
6507static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6508 bool loop_ok)
475fb78f 6509{
7df737e9
AS
6510 int *insn_stack = env->cfg.insn_stack;
6511 int *insn_state = env->cfg.insn_state;
6512
475fb78f
AS
6513 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6514 return 0;
6515
6516 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6517 return 0;
6518
6519 if (w < 0 || w >= env->prog->len) {
d9762e84 6520 verbose_linfo(env, t, "%d: ", t);
61bd5218 6521 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6522 return -EINVAL;
6523 }
6524
f1bca824
AS
6525 if (e == BRANCH)
6526 /* mark branch target for state pruning */
5d839021 6527 init_explored_state(env, w);
f1bca824 6528
475fb78f
AS
6529 if (insn_state[w] == 0) {
6530 /* tree-edge */
6531 insn_state[t] = DISCOVERED | e;
6532 insn_state[w] = DISCOVERED;
7df737e9 6533 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6534 return -E2BIG;
7df737e9 6535 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6536 return 1;
6537 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6538 if (loop_ok && env->allow_ptr_leaks)
6539 return 0;
d9762e84
MKL
6540 verbose_linfo(env, t, "%d: ", t);
6541 verbose_linfo(env, w, "%d: ", w);
61bd5218 6542 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6543 return -EINVAL;
6544 } else if (insn_state[w] == EXPLORED) {
6545 /* forward- or cross-edge */
6546 insn_state[t] = DISCOVERED | e;
6547 } else {
61bd5218 6548 verbose(env, "insn state internal bug\n");
475fb78f
AS
6549 return -EFAULT;
6550 }
6551 return 0;
6552}
6553
6554/* non-recursive depth-first-search to detect loops in BPF program
6555 * loop == back-edge in directed graph
6556 */
58e2af8b 6557static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6558{
6559 struct bpf_insn *insns = env->prog->insnsi;
6560 int insn_cnt = env->prog->len;
7df737e9 6561 int *insn_stack, *insn_state;
475fb78f
AS
6562 int ret = 0;
6563 int i, t;
6564
7df737e9 6565 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6566 if (!insn_state)
6567 return -ENOMEM;
6568
7df737e9 6569 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6570 if (!insn_stack) {
71dde681 6571 kvfree(insn_state);
475fb78f
AS
6572 return -ENOMEM;
6573 }
6574
6575 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6576 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6577 env->cfg.cur_stack = 1;
475fb78f
AS
6578
6579peek_stack:
7df737e9 6580 if (env->cfg.cur_stack == 0)
475fb78f 6581 goto check_state;
7df737e9 6582 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6583
092ed096
JW
6584 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6585 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6586 u8 opcode = BPF_OP(insns[t].code);
6587
6588 if (opcode == BPF_EXIT) {
6589 goto mark_explored;
6590 } else if (opcode == BPF_CALL) {
2589726d 6591 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6592 if (ret == 1)
6593 goto peek_stack;
6594 else if (ret < 0)
6595 goto err_free;
07016151 6596 if (t + 1 < insn_cnt)
5d839021 6597 init_explored_state(env, t + 1);
cc8b0b92 6598 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6599 init_explored_state(env, t);
2589726d
AS
6600 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6601 env, false);
cc8b0b92
AS
6602 if (ret == 1)
6603 goto peek_stack;
6604 else if (ret < 0)
6605 goto err_free;
6606 }
475fb78f
AS
6607 } else if (opcode == BPF_JA) {
6608 if (BPF_SRC(insns[t].code) != BPF_K) {
6609 ret = -EINVAL;
6610 goto err_free;
6611 }
6612 /* unconditional jump with single edge */
6613 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6614 FALLTHROUGH, env, true);
475fb78f
AS
6615 if (ret == 1)
6616 goto peek_stack;
6617 else if (ret < 0)
6618 goto err_free;
b5dc0163
AS
6619 /* unconditional jmp is not a good pruning point,
6620 * but it's marked, since backtracking needs
6621 * to record jmp history in is_state_visited().
6622 */
6623 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6624 /* tell verifier to check for equivalent states
6625 * after every call and jump
6626 */
c3de6317 6627 if (t + 1 < insn_cnt)
5d839021 6628 init_explored_state(env, t + 1);
475fb78f
AS
6629 } else {
6630 /* conditional jump with two edges */
5d839021 6631 init_explored_state(env, t);
2589726d 6632 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6633 if (ret == 1)
6634 goto peek_stack;
6635 else if (ret < 0)
6636 goto err_free;
6637
2589726d 6638 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6639 if (ret == 1)
6640 goto peek_stack;
6641 else if (ret < 0)
6642 goto err_free;
6643 }
6644 } else {
6645 /* all other non-branch instructions with single
6646 * fall-through edge
6647 */
2589726d 6648 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6649 if (ret == 1)
6650 goto peek_stack;
6651 else if (ret < 0)
6652 goto err_free;
6653 }
6654
6655mark_explored:
6656 insn_state[t] = EXPLORED;
7df737e9 6657 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6658 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6659 ret = -EFAULT;
6660 goto err_free;
6661 }
6662 goto peek_stack;
6663
6664check_state:
6665 for (i = 0; i < insn_cnt; i++) {
6666 if (insn_state[i] != EXPLORED) {
61bd5218 6667 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6668 ret = -EINVAL;
6669 goto err_free;
6670 }
6671 }
6672 ret = 0; /* cfg looks good */
6673
6674err_free:
71dde681
AS
6675 kvfree(insn_state);
6676 kvfree(insn_stack);
7df737e9 6677 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6678 return ret;
6679}
6680
838e9690
YS
6681/* The minimum supported BTF func info size */
6682#define MIN_BPF_FUNCINFO_SIZE 8
6683#define MAX_FUNCINFO_REC_SIZE 252
6684
c454a46b
MKL
6685static int check_btf_func(struct bpf_verifier_env *env,
6686 const union bpf_attr *attr,
6687 union bpf_attr __user *uattr)
838e9690 6688{
d0b2818e 6689 u32 i, nfuncs, urec_size, min_size;
838e9690 6690 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6691 struct bpf_func_info *krecord;
8c1b6e69 6692 struct bpf_func_info_aux *info_aux = NULL;
838e9690 6693 const struct btf_type *type;
c454a46b
MKL
6694 struct bpf_prog *prog;
6695 const struct btf *btf;
838e9690 6696 void __user *urecord;
d0b2818e 6697 u32 prev_offset = 0;
838e9690
YS
6698 int ret = 0;
6699
6700 nfuncs = attr->func_info_cnt;
6701 if (!nfuncs)
6702 return 0;
6703
6704 if (nfuncs != env->subprog_cnt) {
6705 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6706 return -EINVAL;
6707 }
6708
6709 urec_size = attr->func_info_rec_size;
6710 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6711 urec_size > MAX_FUNCINFO_REC_SIZE ||
6712 urec_size % sizeof(u32)) {
6713 verbose(env, "invalid func info rec size %u\n", urec_size);
6714 return -EINVAL;
6715 }
6716
c454a46b
MKL
6717 prog = env->prog;
6718 btf = prog->aux->btf;
838e9690
YS
6719
6720 urecord = u64_to_user_ptr(attr->func_info);
6721 min_size = min_t(u32, krec_size, urec_size);
6722
ba64e7d8 6723 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6724 if (!krecord)
6725 return -ENOMEM;
8c1b6e69
AS
6726 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6727 if (!info_aux)
6728 goto err_free;
ba64e7d8 6729
838e9690
YS
6730 for (i = 0; i < nfuncs; i++) {
6731 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6732 if (ret) {
6733 if (ret == -E2BIG) {
6734 verbose(env, "nonzero tailing record in func info");
6735 /* set the size kernel expects so loader can zero
6736 * out the rest of the record.
6737 */
6738 if (put_user(min_size, &uattr->func_info_rec_size))
6739 ret = -EFAULT;
6740 }
c454a46b 6741 goto err_free;
838e9690
YS
6742 }
6743
ba64e7d8 6744 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6745 ret = -EFAULT;
c454a46b 6746 goto err_free;
838e9690
YS
6747 }
6748
d30d42e0 6749 /* check insn_off */
838e9690 6750 if (i == 0) {
d30d42e0 6751 if (krecord[i].insn_off) {
838e9690 6752 verbose(env,
d30d42e0
MKL
6753 "nonzero insn_off %u for the first func info record",
6754 krecord[i].insn_off);
838e9690 6755 ret = -EINVAL;
c454a46b 6756 goto err_free;
838e9690 6757 }
d30d42e0 6758 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6759 verbose(env,
6760 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6761 krecord[i].insn_off, prev_offset);
838e9690 6762 ret = -EINVAL;
c454a46b 6763 goto err_free;
838e9690
YS
6764 }
6765
d30d42e0 6766 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6767 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6768 ret = -EINVAL;
c454a46b 6769 goto err_free;
838e9690
YS
6770 }
6771
6772 /* check type_id */
ba64e7d8 6773 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6774 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6775 verbose(env, "invalid type id %d in func info",
ba64e7d8 6776 krecord[i].type_id);
838e9690 6777 ret = -EINVAL;
c454a46b 6778 goto err_free;
838e9690 6779 }
d30d42e0 6780 prev_offset = krecord[i].insn_off;
838e9690
YS
6781 urecord += urec_size;
6782 }
6783
ba64e7d8
YS
6784 prog->aux->func_info = krecord;
6785 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 6786 prog->aux->func_info_aux = info_aux;
838e9690
YS
6787 return 0;
6788
c454a46b 6789err_free:
ba64e7d8 6790 kvfree(krecord);
8c1b6e69 6791 kfree(info_aux);
838e9690
YS
6792 return ret;
6793}
6794
ba64e7d8
YS
6795static void adjust_btf_func(struct bpf_verifier_env *env)
6796{
8c1b6e69 6797 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
6798 int i;
6799
8c1b6e69 6800 if (!aux->func_info)
ba64e7d8
YS
6801 return;
6802
6803 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 6804 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6805}
6806
c454a46b
MKL
6807#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6808 sizeof(((struct bpf_line_info *)(0))->line_col))
6809#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6810
6811static int check_btf_line(struct bpf_verifier_env *env,
6812 const union bpf_attr *attr,
6813 union bpf_attr __user *uattr)
6814{
6815 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6816 struct bpf_subprog_info *sub;
6817 struct bpf_line_info *linfo;
6818 struct bpf_prog *prog;
6819 const struct btf *btf;
6820 void __user *ulinfo;
6821 int err;
6822
6823 nr_linfo = attr->line_info_cnt;
6824 if (!nr_linfo)
6825 return 0;
6826
6827 rec_size = attr->line_info_rec_size;
6828 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6829 rec_size > MAX_LINEINFO_REC_SIZE ||
6830 rec_size & (sizeof(u32) - 1))
6831 return -EINVAL;
6832
6833 /* Need to zero it in case the userspace may
6834 * pass in a smaller bpf_line_info object.
6835 */
6836 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6837 GFP_KERNEL | __GFP_NOWARN);
6838 if (!linfo)
6839 return -ENOMEM;
6840
6841 prog = env->prog;
6842 btf = prog->aux->btf;
6843
6844 s = 0;
6845 sub = env->subprog_info;
6846 ulinfo = u64_to_user_ptr(attr->line_info);
6847 expected_size = sizeof(struct bpf_line_info);
6848 ncopy = min_t(u32, expected_size, rec_size);
6849 for (i = 0; i < nr_linfo; i++) {
6850 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6851 if (err) {
6852 if (err == -E2BIG) {
6853 verbose(env, "nonzero tailing record in line_info");
6854 if (put_user(expected_size,
6855 &uattr->line_info_rec_size))
6856 err = -EFAULT;
6857 }
6858 goto err_free;
6859 }
6860
6861 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6862 err = -EFAULT;
6863 goto err_free;
6864 }
6865
6866 /*
6867 * Check insn_off to ensure
6868 * 1) strictly increasing AND
6869 * 2) bounded by prog->len
6870 *
6871 * The linfo[0].insn_off == 0 check logically falls into
6872 * the later "missing bpf_line_info for func..." case
6873 * because the first linfo[0].insn_off must be the
6874 * first sub also and the first sub must have
6875 * subprog_info[0].start == 0.
6876 */
6877 if ((i && linfo[i].insn_off <= prev_offset) ||
6878 linfo[i].insn_off >= prog->len) {
6879 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6880 i, linfo[i].insn_off, prev_offset,
6881 prog->len);
6882 err = -EINVAL;
6883 goto err_free;
6884 }
6885
fdbaa0be
MKL
6886 if (!prog->insnsi[linfo[i].insn_off].code) {
6887 verbose(env,
6888 "Invalid insn code at line_info[%u].insn_off\n",
6889 i);
6890 err = -EINVAL;
6891 goto err_free;
6892 }
6893
23127b33
MKL
6894 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6895 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6896 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6897 err = -EINVAL;
6898 goto err_free;
6899 }
6900
6901 if (s != env->subprog_cnt) {
6902 if (linfo[i].insn_off == sub[s].start) {
6903 sub[s].linfo_idx = i;
6904 s++;
6905 } else if (sub[s].start < linfo[i].insn_off) {
6906 verbose(env, "missing bpf_line_info for func#%u\n", s);
6907 err = -EINVAL;
6908 goto err_free;
6909 }
6910 }
6911
6912 prev_offset = linfo[i].insn_off;
6913 ulinfo += rec_size;
6914 }
6915
6916 if (s != env->subprog_cnt) {
6917 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6918 env->subprog_cnt - s, s);
6919 err = -EINVAL;
6920 goto err_free;
6921 }
6922
6923 prog->aux->linfo = linfo;
6924 prog->aux->nr_linfo = nr_linfo;
6925
6926 return 0;
6927
6928err_free:
6929 kvfree(linfo);
6930 return err;
6931}
6932
6933static int check_btf_info(struct bpf_verifier_env *env,
6934 const union bpf_attr *attr,
6935 union bpf_attr __user *uattr)
6936{
6937 struct btf *btf;
6938 int err;
6939
6940 if (!attr->func_info_cnt && !attr->line_info_cnt)
6941 return 0;
6942
6943 btf = btf_get_by_fd(attr->prog_btf_fd);
6944 if (IS_ERR(btf))
6945 return PTR_ERR(btf);
6946 env->prog->aux->btf = btf;
6947
6948 err = check_btf_func(env, attr, uattr);
6949 if (err)
6950 return err;
6951
6952 err = check_btf_line(env, attr, uattr);
6953 if (err)
6954 return err;
6955
6956 return 0;
ba64e7d8
YS
6957}
6958
f1174f77
EC
6959/* check %cur's range satisfies %old's */
6960static bool range_within(struct bpf_reg_state *old,
6961 struct bpf_reg_state *cur)
6962{
b03c9f9f
EC
6963 return old->umin_value <= cur->umin_value &&
6964 old->umax_value >= cur->umax_value &&
6965 old->smin_value <= cur->smin_value &&
6966 old->smax_value >= cur->smax_value;
f1174f77
EC
6967}
6968
6969/* Maximum number of register states that can exist at once */
6970#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6971struct idpair {
6972 u32 old;
6973 u32 cur;
6974};
6975
6976/* If in the old state two registers had the same id, then they need to have
6977 * the same id in the new state as well. But that id could be different from
6978 * the old state, so we need to track the mapping from old to new ids.
6979 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6980 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6981 * regs with a different old id could still have new id 9, we don't care about
6982 * that.
6983 * So we look through our idmap to see if this old id has been seen before. If
6984 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6985 */
f1174f77 6986static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6987{
f1174f77 6988 unsigned int i;
969bf05e 6989
f1174f77
EC
6990 for (i = 0; i < ID_MAP_SIZE; i++) {
6991 if (!idmap[i].old) {
6992 /* Reached an empty slot; haven't seen this id before */
6993 idmap[i].old = old_id;
6994 idmap[i].cur = cur_id;
6995 return true;
6996 }
6997 if (idmap[i].old == old_id)
6998 return idmap[i].cur == cur_id;
6999 }
7000 /* We ran out of idmap slots, which should be impossible */
7001 WARN_ON_ONCE(1);
7002 return false;
7003}
7004
9242b5f5
AS
7005static void clean_func_state(struct bpf_verifier_env *env,
7006 struct bpf_func_state *st)
7007{
7008 enum bpf_reg_liveness live;
7009 int i, j;
7010
7011 for (i = 0; i < BPF_REG_FP; i++) {
7012 live = st->regs[i].live;
7013 /* liveness must not touch this register anymore */
7014 st->regs[i].live |= REG_LIVE_DONE;
7015 if (!(live & REG_LIVE_READ))
7016 /* since the register is unused, clear its state
7017 * to make further comparison simpler
7018 */
f54c7898 7019 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
7020 }
7021
7022 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7023 live = st->stack[i].spilled_ptr.live;
7024 /* liveness must not touch this stack slot anymore */
7025 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7026 if (!(live & REG_LIVE_READ)) {
f54c7898 7027 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
7028 for (j = 0; j < BPF_REG_SIZE; j++)
7029 st->stack[i].slot_type[j] = STACK_INVALID;
7030 }
7031 }
7032}
7033
7034static void clean_verifier_state(struct bpf_verifier_env *env,
7035 struct bpf_verifier_state *st)
7036{
7037 int i;
7038
7039 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7040 /* all regs in this state in all frames were already marked */
7041 return;
7042
7043 for (i = 0; i <= st->curframe; i++)
7044 clean_func_state(env, st->frame[i]);
7045}
7046
7047/* the parentage chains form a tree.
7048 * the verifier states are added to state lists at given insn and
7049 * pushed into state stack for future exploration.
7050 * when the verifier reaches bpf_exit insn some of the verifer states
7051 * stored in the state lists have their final liveness state already,
7052 * but a lot of states will get revised from liveness point of view when
7053 * the verifier explores other branches.
7054 * Example:
7055 * 1: r0 = 1
7056 * 2: if r1 == 100 goto pc+1
7057 * 3: r0 = 2
7058 * 4: exit
7059 * when the verifier reaches exit insn the register r0 in the state list of
7060 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7061 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7062 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7063 *
7064 * Since the verifier pushes the branch states as it sees them while exploring
7065 * the program the condition of walking the branch instruction for the second
7066 * time means that all states below this branch were already explored and
7067 * their final liveness markes are already propagated.
7068 * Hence when the verifier completes the search of state list in is_state_visited()
7069 * we can call this clean_live_states() function to mark all liveness states
7070 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7071 * will not be used.
7072 * This function also clears the registers and stack for states that !READ
7073 * to simplify state merging.
7074 *
7075 * Important note here that walking the same branch instruction in the callee
7076 * doesn't meant that the states are DONE. The verifier has to compare
7077 * the callsites
7078 */
7079static void clean_live_states(struct bpf_verifier_env *env, int insn,
7080 struct bpf_verifier_state *cur)
7081{
7082 struct bpf_verifier_state_list *sl;
7083 int i;
7084
5d839021 7085 sl = *explored_state(env, insn);
a8f500af 7086 while (sl) {
2589726d
AS
7087 if (sl->state.branches)
7088 goto next;
dc2a4ebc
AS
7089 if (sl->state.insn_idx != insn ||
7090 sl->state.curframe != cur->curframe)
9242b5f5
AS
7091 goto next;
7092 for (i = 0; i <= cur->curframe; i++)
7093 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7094 goto next;
7095 clean_verifier_state(env, &sl->state);
7096next:
7097 sl = sl->next;
7098 }
7099}
7100
f1174f77 7101/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
7102static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7103 struct idpair *idmap)
f1174f77 7104{
f4d7e40a
AS
7105 bool equal;
7106
dc503a8a
EC
7107 if (!(rold->live & REG_LIVE_READ))
7108 /* explored state didn't use this */
7109 return true;
7110
679c782d 7111 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
7112
7113 if (rold->type == PTR_TO_STACK)
7114 /* two stack pointers are equal only if they're pointing to
7115 * the same stack frame, since fp-8 in foo != fp-8 in bar
7116 */
7117 return equal && rold->frameno == rcur->frameno;
7118
7119 if (equal)
969bf05e
AS
7120 return true;
7121
f1174f77
EC
7122 if (rold->type == NOT_INIT)
7123 /* explored state can't have used this */
969bf05e 7124 return true;
f1174f77
EC
7125 if (rcur->type == NOT_INIT)
7126 return false;
7127 switch (rold->type) {
7128 case SCALAR_VALUE:
7129 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
7130 if (!rold->precise && !rcur->precise)
7131 return true;
f1174f77
EC
7132 /* new val must satisfy old val knowledge */
7133 return range_within(rold, rcur) &&
7134 tnum_in(rold->var_off, rcur->var_off);
7135 } else {
179d1c56
JH
7136 /* We're trying to use a pointer in place of a scalar.
7137 * Even if the scalar was unbounded, this could lead to
7138 * pointer leaks because scalars are allowed to leak
7139 * while pointers are not. We could make this safe in
7140 * special cases if root is calling us, but it's
7141 * probably not worth the hassle.
f1174f77 7142 */
179d1c56 7143 return false;
f1174f77
EC
7144 }
7145 case PTR_TO_MAP_VALUE:
1b688a19
EC
7146 /* If the new min/max/var_off satisfy the old ones and
7147 * everything else matches, we are OK.
d83525ca
AS
7148 * 'id' is not compared, since it's only used for maps with
7149 * bpf_spin_lock inside map element and in such cases if
7150 * the rest of the prog is valid for one map element then
7151 * it's valid for all map elements regardless of the key
7152 * used in bpf_map_lookup()
1b688a19
EC
7153 */
7154 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7155 range_within(rold, rcur) &&
7156 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
7157 case PTR_TO_MAP_VALUE_OR_NULL:
7158 /* a PTR_TO_MAP_VALUE could be safe to use as a
7159 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7160 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7161 * checked, doing so could have affected others with the same
7162 * id, and we can't check for that because we lost the id when
7163 * we converted to a PTR_TO_MAP_VALUE.
7164 */
7165 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7166 return false;
7167 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7168 return false;
7169 /* Check our ids match any regs they're supposed to */
7170 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 7171 case PTR_TO_PACKET_META:
f1174f77 7172 case PTR_TO_PACKET:
de8f3a83 7173 if (rcur->type != rold->type)
f1174f77
EC
7174 return false;
7175 /* We must have at least as much range as the old ptr
7176 * did, so that any accesses which were safe before are
7177 * still safe. This is true even if old range < old off,
7178 * since someone could have accessed through (ptr - k), or
7179 * even done ptr -= k in a register, to get a safe access.
7180 */
7181 if (rold->range > rcur->range)
7182 return false;
7183 /* If the offsets don't match, we can't trust our alignment;
7184 * nor can we be sure that we won't fall out of range.
7185 */
7186 if (rold->off != rcur->off)
7187 return false;
7188 /* id relations must be preserved */
7189 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7190 return false;
7191 /* new val must satisfy old val knowledge */
7192 return range_within(rold, rcur) &&
7193 tnum_in(rold->var_off, rcur->var_off);
7194 case PTR_TO_CTX:
7195 case CONST_PTR_TO_MAP:
f1174f77 7196 case PTR_TO_PACKET_END:
d58e468b 7197 case PTR_TO_FLOW_KEYS:
c64b7983
JS
7198 case PTR_TO_SOCKET:
7199 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7200 case PTR_TO_SOCK_COMMON:
7201 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7202 case PTR_TO_TCP_SOCK:
7203 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7204 case PTR_TO_XDP_SOCK:
f1174f77
EC
7205 /* Only valid matches are exact, which memcmp() above
7206 * would have accepted
7207 */
7208 default:
7209 /* Don't know what's going on, just say it's not safe */
7210 return false;
7211 }
969bf05e 7212
f1174f77
EC
7213 /* Shouldn't get here; if we do, say it's not safe */
7214 WARN_ON_ONCE(1);
969bf05e
AS
7215 return false;
7216}
7217
f4d7e40a
AS
7218static bool stacksafe(struct bpf_func_state *old,
7219 struct bpf_func_state *cur,
638f5b90
AS
7220 struct idpair *idmap)
7221{
7222 int i, spi;
7223
638f5b90
AS
7224 /* walk slots of the explored stack and ignore any additional
7225 * slots in the current stack, since explored(safe) state
7226 * didn't use them
7227 */
7228 for (i = 0; i < old->allocated_stack; i++) {
7229 spi = i / BPF_REG_SIZE;
7230
b233920c
AS
7231 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7232 i += BPF_REG_SIZE - 1;
cc2b14d5 7233 /* explored state didn't use this */
fd05e57b 7234 continue;
b233920c 7235 }
cc2b14d5 7236
638f5b90
AS
7237 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7238 continue;
19e2dbb7
AS
7239
7240 /* explored stack has more populated slots than current stack
7241 * and these slots were used
7242 */
7243 if (i >= cur->allocated_stack)
7244 return false;
7245
cc2b14d5
AS
7246 /* if old state was safe with misc data in the stack
7247 * it will be safe with zero-initialized stack.
7248 * The opposite is not true
7249 */
7250 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7251 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7252 continue;
638f5b90
AS
7253 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7254 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7255 /* Ex: old explored (safe) state has STACK_SPILL in
7256 * this stack slot, but current has has STACK_MISC ->
7257 * this verifier states are not equivalent,
7258 * return false to continue verification of this path
7259 */
7260 return false;
7261 if (i % BPF_REG_SIZE)
7262 continue;
7263 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7264 continue;
7265 if (!regsafe(&old->stack[spi].spilled_ptr,
7266 &cur->stack[spi].spilled_ptr,
7267 idmap))
7268 /* when explored and current stack slot are both storing
7269 * spilled registers, check that stored pointers types
7270 * are the same as well.
7271 * Ex: explored safe path could have stored
7272 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7273 * but current path has stored:
7274 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7275 * such verifier states are not equivalent.
7276 * return false to continue verification of this path
7277 */
7278 return false;
7279 }
7280 return true;
7281}
7282
fd978bf7
JS
7283static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7284{
7285 if (old->acquired_refs != cur->acquired_refs)
7286 return false;
7287 return !memcmp(old->refs, cur->refs,
7288 sizeof(*old->refs) * old->acquired_refs);
7289}
7290
f1bca824
AS
7291/* compare two verifier states
7292 *
7293 * all states stored in state_list are known to be valid, since
7294 * verifier reached 'bpf_exit' instruction through them
7295 *
7296 * this function is called when verifier exploring different branches of
7297 * execution popped from the state stack. If it sees an old state that has
7298 * more strict register state and more strict stack state then this execution
7299 * branch doesn't need to be explored further, since verifier already
7300 * concluded that more strict state leads to valid finish.
7301 *
7302 * Therefore two states are equivalent if register state is more conservative
7303 * and explored stack state is more conservative than the current one.
7304 * Example:
7305 * explored current
7306 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7307 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7308 *
7309 * In other words if current stack state (one being explored) has more
7310 * valid slots than old one that already passed validation, it means
7311 * the verifier can stop exploring and conclude that current state is valid too
7312 *
7313 * Similarly with registers. If explored state has register type as invalid
7314 * whereas register type in current state is meaningful, it means that
7315 * the current state will reach 'bpf_exit' instruction safely
7316 */
f4d7e40a
AS
7317static bool func_states_equal(struct bpf_func_state *old,
7318 struct bpf_func_state *cur)
f1bca824 7319{
f1174f77
EC
7320 struct idpair *idmap;
7321 bool ret = false;
f1bca824
AS
7322 int i;
7323
f1174f77
EC
7324 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7325 /* If we failed to allocate the idmap, just say it's not safe */
7326 if (!idmap)
1a0dc1ac 7327 return false;
f1174f77
EC
7328
7329 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7330 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7331 goto out_free;
f1bca824
AS
7332 }
7333
638f5b90
AS
7334 if (!stacksafe(old, cur, idmap))
7335 goto out_free;
fd978bf7
JS
7336
7337 if (!refsafe(old, cur))
7338 goto out_free;
f1174f77
EC
7339 ret = true;
7340out_free:
7341 kfree(idmap);
7342 return ret;
f1bca824
AS
7343}
7344
f4d7e40a
AS
7345static bool states_equal(struct bpf_verifier_env *env,
7346 struct bpf_verifier_state *old,
7347 struct bpf_verifier_state *cur)
7348{
7349 int i;
7350
7351 if (old->curframe != cur->curframe)
7352 return false;
7353
979d63d5
DB
7354 /* Verification state from speculative execution simulation
7355 * must never prune a non-speculative execution one.
7356 */
7357 if (old->speculative && !cur->speculative)
7358 return false;
7359
d83525ca
AS
7360 if (old->active_spin_lock != cur->active_spin_lock)
7361 return false;
7362
f4d7e40a
AS
7363 /* for states to be equal callsites have to be the same
7364 * and all frame states need to be equivalent
7365 */
7366 for (i = 0; i <= old->curframe; i++) {
7367 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7368 return false;
7369 if (!func_states_equal(old->frame[i], cur->frame[i]))
7370 return false;
7371 }
7372 return true;
7373}
7374
5327ed3d
JW
7375/* Return 0 if no propagation happened. Return negative error code if error
7376 * happened. Otherwise, return the propagated bit.
7377 */
55e7f3b5
JW
7378static int propagate_liveness_reg(struct bpf_verifier_env *env,
7379 struct bpf_reg_state *reg,
7380 struct bpf_reg_state *parent_reg)
7381{
5327ed3d
JW
7382 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7383 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7384 int err;
7385
5327ed3d
JW
7386 /* When comes here, read flags of PARENT_REG or REG could be any of
7387 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7388 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7389 */
7390 if (parent_flag == REG_LIVE_READ64 ||
7391 /* Or if there is no read flag from REG. */
7392 !flag ||
7393 /* Or if the read flag from REG is the same as PARENT_REG. */
7394 parent_flag == flag)
55e7f3b5
JW
7395 return 0;
7396
5327ed3d 7397 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7398 if (err)
7399 return err;
7400
5327ed3d 7401 return flag;
55e7f3b5
JW
7402}
7403
8e9cd9ce 7404/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7405 * straight-line code between a state and its parent. When we arrive at an
7406 * equivalent state (jump target or such) we didn't arrive by the straight-line
7407 * code, so read marks in the state must propagate to the parent regardless
7408 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7409 * in mark_reg_read() is for.
8e9cd9ce 7410 */
f4d7e40a
AS
7411static int propagate_liveness(struct bpf_verifier_env *env,
7412 const struct bpf_verifier_state *vstate,
7413 struct bpf_verifier_state *vparent)
dc503a8a 7414{
3f8cafa4 7415 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7416 struct bpf_func_state *state, *parent;
3f8cafa4 7417 int i, frame, err = 0;
dc503a8a 7418
f4d7e40a
AS
7419 if (vparent->curframe != vstate->curframe) {
7420 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7421 vparent->curframe, vstate->curframe);
7422 return -EFAULT;
7423 }
dc503a8a
EC
7424 /* Propagate read liveness of registers... */
7425 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7426 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7427 parent = vparent->frame[frame];
7428 state = vstate->frame[frame];
7429 parent_reg = parent->regs;
7430 state_reg = state->regs;
83d16312
JK
7431 /* We don't need to worry about FP liveness, it's read-only */
7432 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7433 err = propagate_liveness_reg(env, &state_reg[i],
7434 &parent_reg[i]);
5327ed3d 7435 if (err < 0)
3f8cafa4 7436 return err;
5327ed3d
JW
7437 if (err == REG_LIVE_READ64)
7438 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7439 }
f4d7e40a 7440
1b04aee7 7441 /* Propagate stack slots. */
f4d7e40a
AS
7442 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7443 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7444 parent_reg = &parent->stack[i].spilled_ptr;
7445 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7446 err = propagate_liveness_reg(env, state_reg,
7447 parent_reg);
5327ed3d 7448 if (err < 0)
3f8cafa4 7449 return err;
dc503a8a
EC
7450 }
7451 }
5327ed3d 7452 return 0;
dc503a8a
EC
7453}
7454
a3ce685d
AS
7455/* find precise scalars in the previous equivalent state and
7456 * propagate them into the current state
7457 */
7458static int propagate_precision(struct bpf_verifier_env *env,
7459 const struct bpf_verifier_state *old)
7460{
7461 struct bpf_reg_state *state_reg;
7462 struct bpf_func_state *state;
7463 int i, err = 0;
7464
7465 state = old->frame[old->curframe];
7466 state_reg = state->regs;
7467 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7468 if (state_reg->type != SCALAR_VALUE ||
7469 !state_reg->precise)
7470 continue;
7471 if (env->log.level & BPF_LOG_LEVEL2)
7472 verbose(env, "propagating r%d\n", i);
7473 err = mark_chain_precision(env, i);
7474 if (err < 0)
7475 return err;
7476 }
7477
7478 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7479 if (state->stack[i].slot_type[0] != STACK_SPILL)
7480 continue;
7481 state_reg = &state->stack[i].spilled_ptr;
7482 if (state_reg->type != SCALAR_VALUE ||
7483 !state_reg->precise)
7484 continue;
7485 if (env->log.level & BPF_LOG_LEVEL2)
7486 verbose(env, "propagating fp%d\n",
7487 (-i - 1) * BPF_REG_SIZE);
7488 err = mark_chain_precision_stack(env, i);
7489 if (err < 0)
7490 return err;
7491 }
7492 return 0;
7493}
7494
2589726d
AS
7495static bool states_maybe_looping(struct bpf_verifier_state *old,
7496 struct bpf_verifier_state *cur)
7497{
7498 struct bpf_func_state *fold, *fcur;
7499 int i, fr = cur->curframe;
7500
7501 if (old->curframe != fr)
7502 return false;
7503
7504 fold = old->frame[fr];
7505 fcur = cur->frame[fr];
7506 for (i = 0; i < MAX_BPF_REG; i++)
7507 if (memcmp(&fold->regs[i], &fcur->regs[i],
7508 offsetof(struct bpf_reg_state, parent)))
7509 return false;
7510 return true;
7511}
7512
7513
58e2af8b 7514static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7515{
58e2af8b 7516 struct bpf_verifier_state_list *new_sl;
9f4686c4 7517 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7518 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7519 int i, j, err, states_cnt = 0;
10d274e8 7520 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 7521
b5dc0163 7522 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7523 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7524 /* this 'insn_idx' instruction wasn't marked, so we will not
7525 * be doing state search here
7526 */
7527 return 0;
7528
2589726d
AS
7529 /* bpf progs typically have pruning point every 4 instructions
7530 * http://vger.kernel.org/bpfconf2019.html#session-1
7531 * Do not add new state for future pruning if the verifier hasn't seen
7532 * at least 2 jumps and at least 8 instructions.
7533 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7534 * In tests that amounts to up to 50% reduction into total verifier
7535 * memory consumption and 20% verifier time speedup.
7536 */
7537 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7538 env->insn_processed - env->prev_insn_processed >= 8)
7539 add_new_state = true;
7540
a8f500af
AS
7541 pprev = explored_state(env, insn_idx);
7542 sl = *pprev;
7543
9242b5f5
AS
7544 clean_live_states(env, insn_idx, cur);
7545
a8f500af 7546 while (sl) {
dc2a4ebc
AS
7547 states_cnt++;
7548 if (sl->state.insn_idx != insn_idx)
7549 goto next;
2589726d
AS
7550 if (sl->state.branches) {
7551 if (states_maybe_looping(&sl->state, cur) &&
7552 states_equal(env, &sl->state, cur)) {
7553 verbose_linfo(env, insn_idx, "; ");
7554 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7555 return -EINVAL;
7556 }
7557 /* if the verifier is processing a loop, avoid adding new state
7558 * too often, since different loop iterations have distinct
7559 * states and may not help future pruning.
7560 * This threshold shouldn't be too low to make sure that
7561 * a loop with large bound will be rejected quickly.
7562 * The most abusive loop will be:
7563 * r1 += 1
7564 * if r1 < 1000000 goto pc-2
7565 * 1M insn_procssed limit / 100 == 10k peak states.
7566 * This threshold shouldn't be too high either, since states
7567 * at the end of the loop are likely to be useful in pruning.
7568 */
7569 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7570 env->insn_processed - env->prev_insn_processed < 100)
7571 add_new_state = false;
7572 goto miss;
7573 }
638f5b90 7574 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7575 sl->hit_cnt++;
f1bca824 7576 /* reached equivalent register/stack state,
dc503a8a
EC
7577 * prune the search.
7578 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7579 * If we have any write marks in env->cur_state, they
7580 * will prevent corresponding reads in the continuation
7581 * from reaching our parent (an explored_state). Our
7582 * own state will get the read marks recorded, but
7583 * they'll be immediately forgotten as we're pruning
7584 * this state and will pop a new one.
f1bca824 7585 */
f4d7e40a 7586 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7587
7588 /* if previous state reached the exit with precision and
7589 * current state is equivalent to it (except precsion marks)
7590 * the precision needs to be propagated back in
7591 * the current state.
7592 */
7593 err = err ? : push_jmp_history(env, cur);
7594 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7595 if (err)
7596 return err;
f1bca824 7597 return 1;
dc503a8a 7598 }
2589726d
AS
7599miss:
7600 /* when new state is not going to be added do not increase miss count.
7601 * Otherwise several loop iterations will remove the state
7602 * recorded earlier. The goal of these heuristics is to have
7603 * states from some iterations of the loop (some in the beginning
7604 * and some at the end) to help pruning.
7605 */
7606 if (add_new_state)
7607 sl->miss_cnt++;
9f4686c4
AS
7608 /* heuristic to determine whether this state is beneficial
7609 * to keep checking from state equivalence point of view.
7610 * Higher numbers increase max_states_per_insn and verification time,
7611 * but do not meaningfully decrease insn_processed.
7612 */
7613 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7614 /* the state is unlikely to be useful. Remove it to
7615 * speed up verification
7616 */
7617 *pprev = sl->next;
7618 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7619 u32 br = sl->state.branches;
7620
7621 WARN_ONCE(br,
7622 "BUG live_done but branches_to_explore %d\n",
7623 br);
9f4686c4
AS
7624 free_verifier_state(&sl->state, false);
7625 kfree(sl);
7626 env->peak_states--;
7627 } else {
7628 /* cannot free this state, since parentage chain may
7629 * walk it later. Add it for free_list instead to
7630 * be freed at the end of verification
7631 */
7632 sl->next = env->free_list;
7633 env->free_list = sl;
7634 }
7635 sl = *pprev;
7636 continue;
7637 }
dc2a4ebc 7638next:
9f4686c4
AS
7639 pprev = &sl->next;
7640 sl = *pprev;
f1bca824
AS
7641 }
7642
06ee7115
AS
7643 if (env->max_states_per_insn < states_cnt)
7644 env->max_states_per_insn = states_cnt;
7645
ceefbc96 7646 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7647 return push_jmp_history(env, cur);
ceefbc96 7648
2589726d 7649 if (!add_new_state)
b5dc0163 7650 return push_jmp_history(env, cur);
ceefbc96 7651
2589726d
AS
7652 /* There were no equivalent states, remember the current one.
7653 * Technically the current state is not proven to be safe yet,
f4d7e40a 7654 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7655 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7656 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7657 * again on the way to bpf_exit.
7658 * When looping the sl->state.branches will be > 0 and this state
7659 * will not be considered for equivalence until branches == 0.
f1bca824 7660 */
638f5b90 7661 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7662 if (!new_sl)
7663 return -ENOMEM;
06ee7115
AS
7664 env->total_states++;
7665 env->peak_states++;
2589726d
AS
7666 env->prev_jmps_processed = env->jmps_processed;
7667 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7668
7669 /* add new state to the head of linked list */
679c782d
EC
7670 new = &new_sl->state;
7671 err = copy_verifier_state(new, cur);
1969db47 7672 if (err) {
679c782d 7673 free_verifier_state(new, false);
1969db47
AS
7674 kfree(new_sl);
7675 return err;
7676 }
dc2a4ebc 7677 new->insn_idx = insn_idx;
2589726d
AS
7678 WARN_ONCE(new->branches != 1,
7679 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7680
2589726d 7681 cur->parent = new;
b5dc0163
AS
7682 cur->first_insn_idx = insn_idx;
7683 clear_jmp_history(cur);
5d839021
AS
7684 new_sl->next = *explored_state(env, insn_idx);
7685 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7686 /* connect new state to parentage chain. Current frame needs all
7687 * registers connected. Only r6 - r9 of the callers are alive (pushed
7688 * to the stack implicitly by JITs) so in callers' frames connect just
7689 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7690 * the state of the call instruction (with WRITTEN set), and r0 comes
7691 * from callee with its full parentage chain, anyway.
7692 */
8e9cd9ce
EC
7693 /* clear write marks in current state: the writes we did are not writes
7694 * our child did, so they don't screen off its reads from us.
7695 * (There are no read marks in current state, because reads always mark
7696 * their parent and current state never has children yet. Only
7697 * explored_states can get read marks.)
7698 */
eea1c227
AS
7699 for (j = 0; j <= cur->curframe; j++) {
7700 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7701 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7702 for (i = 0; i < BPF_REG_FP; i++)
7703 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7704 }
f4d7e40a
AS
7705
7706 /* all stack frames are accessible from callee, clear them all */
7707 for (j = 0; j <= cur->curframe; j++) {
7708 struct bpf_func_state *frame = cur->frame[j];
679c782d 7709 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7710
679c782d 7711 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7712 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7713 frame->stack[i].spilled_ptr.parent =
7714 &newframe->stack[i].spilled_ptr;
7715 }
f4d7e40a 7716 }
f1bca824
AS
7717 return 0;
7718}
7719
c64b7983
JS
7720/* Return true if it's OK to have the same insn return a different type. */
7721static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7722{
7723 switch (type) {
7724 case PTR_TO_CTX:
7725 case PTR_TO_SOCKET:
7726 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7727 case PTR_TO_SOCK_COMMON:
7728 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7729 case PTR_TO_TCP_SOCK:
7730 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7731 case PTR_TO_XDP_SOCK:
2a02759e 7732 case PTR_TO_BTF_ID:
c64b7983
JS
7733 return false;
7734 default:
7735 return true;
7736 }
7737}
7738
7739/* If an instruction was previously used with particular pointer types, then we
7740 * need to be careful to avoid cases such as the below, where it may be ok
7741 * for one branch accessing the pointer, but not ok for the other branch:
7742 *
7743 * R1 = sock_ptr
7744 * goto X;
7745 * ...
7746 * R1 = some_other_valid_ptr;
7747 * goto X;
7748 * ...
7749 * R2 = *(u32 *)(R1 + 0);
7750 */
7751static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7752{
7753 return src != prev && (!reg_type_mismatch_ok(src) ||
7754 !reg_type_mismatch_ok(prev));
7755}
7756
58e2af8b 7757static int do_check(struct bpf_verifier_env *env)
17a52670 7758{
638f5b90 7759 struct bpf_verifier_state *state;
17a52670 7760 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7761 struct bpf_reg_state *regs;
06ee7115 7762 int insn_cnt = env->prog->len;
17a52670 7763 bool do_print_state = false;
b5dc0163 7764 int prev_insn_idx = -1;
17a52670 7765
d9762e84
MKL
7766 env->prev_linfo = NULL;
7767
638f5b90
AS
7768 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7769 if (!state)
7770 return -ENOMEM;
f4d7e40a 7771 state->curframe = 0;
979d63d5 7772 state->speculative = false;
2589726d 7773 state->branches = 1;
f4d7e40a
AS
7774 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7775 if (!state->frame[0]) {
7776 kfree(state);
7777 return -ENOMEM;
7778 }
7779 env->cur_state = state;
7780 init_func_state(env, state->frame[0],
7781 BPF_MAIN_FUNC /* callsite */,
7782 0 /* frameno */,
7783 0 /* subprogno, zero == main subprog */);
c08435ec 7784
8c1b6e69
AS
7785 if (btf_check_func_arg_match(env, 0))
7786 return -EINVAL;
7787
17a52670
AS
7788 for (;;) {
7789 struct bpf_insn *insn;
7790 u8 class;
7791 int err;
7792
b5dc0163 7793 env->prev_insn_idx = prev_insn_idx;
c08435ec 7794 if (env->insn_idx >= insn_cnt) {
61bd5218 7795 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7796 env->insn_idx, insn_cnt);
17a52670
AS
7797 return -EFAULT;
7798 }
7799
c08435ec 7800 insn = &insns[env->insn_idx];
17a52670
AS
7801 class = BPF_CLASS(insn->code);
7802
06ee7115 7803 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7804 verbose(env,
7805 "BPF program is too large. Processed %d insn\n",
06ee7115 7806 env->insn_processed);
17a52670
AS
7807 return -E2BIG;
7808 }
7809
c08435ec 7810 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7811 if (err < 0)
7812 return err;
7813 if (err == 1) {
7814 /* found equivalent state, can prune the search */
06ee7115 7815 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7816 if (do_print_state)
979d63d5
DB
7817 verbose(env, "\nfrom %d to %d%s: safe\n",
7818 env->prev_insn_idx, env->insn_idx,
7819 env->cur_state->speculative ?
7820 " (speculative execution)" : "");
f1bca824 7821 else
c08435ec 7822 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7823 }
7824 goto process_bpf_exit;
7825 }
7826
c3494801
AS
7827 if (signal_pending(current))
7828 return -EAGAIN;
7829
3c2ce60b
DB
7830 if (need_resched())
7831 cond_resched();
7832
06ee7115
AS
7833 if (env->log.level & BPF_LOG_LEVEL2 ||
7834 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7835 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7836 verbose(env, "%d:", env->insn_idx);
c5fc9692 7837 else
979d63d5
DB
7838 verbose(env, "\nfrom %d to %d%s:",
7839 env->prev_insn_idx, env->insn_idx,
7840 env->cur_state->speculative ?
7841 " (speculative execution)" : "");
f4d7e40a 7842 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7843 do_print_state = false;
7844 }
7845
06ee7115 7846 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7847 const struct bpf_insn_cbs cbs = {
7848 .cb_print = verbose,
abe08840 7849 .private_data = env,
7105e828
DB
7850 };
7851
c08435ec
DB
7852 verbose_linfo(env, env->insn_idx, "; ");
7853 verbose(env, "%d: ", env->insn_idx);
abe08840 7854 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7855 }
7856
cae1927c 7857 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7858 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7859 env->prev_insn_idx);
cae1927c
JK
7860 if (err)
7861 return err;
7862 }
13a27dfc 7863
638f5b90 7864 regs = cur_regs(env);
c08435ec 7865 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7866 prev_insn_idx = env->insn_idx;
fd978bf7 7867
17a52670 7868 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7869 err = check_alu_op(env, insn);
17a52670
AS
7870 if (err)
7871 return err;
7872
7873 } else if (class == BPF_LDX) {
3df126f3 7874 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7875
7876 /* check for reserved fields is already done */
7877
17a52670 7878 /* check src operand */
dc503a8a 7879 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7880 if (err)
7881 return err;
7882
dc503a8a 7883 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7884 if (err)
7885 return err;
7886
725f9dcd
AS
7887 src_reg_type = regs[insn->src_reg].type;
7888
17a52670
AS
7889 /* check that memory (src_reg + off) is readable,
7890 * the state of dst_reg will be updated by this func
7891 */
c08435ec
DB
7892 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7893 insn->off, BPF_SIZE(insn->code),
7894 BPF_READ, insn->dst_reg, false);
17a52670
AS
7895 if (err)
7896 return err;
7897
c08435ec 7898 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7899
7900 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7901 /* saw a valid insn
7902 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7903 * save type to validate intersecting paths
9bac3d6d 7904 */
3df126f3 7905 *prev_src_type = src_reg_type;
9bac3d6d 7906
c64b7983 7907 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7908 /* ABuser program is trying to use the same insn
7909 * dst_reg = *(u32*) (src_reg + off)
7910 * with different pointer types:
7911 * src_reg == ctx in one branch and
7912 * src_reg == stack|map in some other branch.
7913 * Reject it.
7914 */
61bd5218 7915 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7916 return -EINVAL;
7917 }
7918
17a52670 7919 } else if (class == BPF_STX) {
3df126f3 7920 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7921
17a52670 7922 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7923 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7924 if (err)
7925 return err;
c08435ec 7926 env->insn_idx++;
17a52670
AS
7927 continue;
7928 }
7929
17a52670 7930 /* check src1 operand */
dc503a8a 7931 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7932 if (err)
7933 return err;
7934 /* check src2 operand */
dc503a8a 7935 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7936 if (err)
7937 return err;
7938
d691f9e8
AS
7939 dst_reg_type = regs[insn->dst_reg].type;
7940
17a52670 7941 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7942 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7943 insn->off, BPF_SIZE(insn->code),
7944 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7945 if (err)
7946 return err;
7947
c08435ec 7948 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7949
7950 if (*prev_dst_type == NOT_INIT) {
7951 *prev_dst_type = dst_reg_type;
c64b7983 7952 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7953 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7954 return -EINVAL;
7955 }
7956
17a52670
AS
7957 } else if (class == BPF_ST) {
7958 if (BPF_MODE(insn->code) != BPF_MEM ||
7959 insn->src_reg != BPF_REG_0) {
61bd5218 7960 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7961 return -EINVAL;
7962 }
7963 /* check src operand */
dc503a8a 7964 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7965 if (err)
7966 return err;
7967
f37a8cb8 7968 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7969 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7970 insn->dst_reg,
7971 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7972 return -EACCES;
7973 }
7974
17a52670 7975 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7976 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7977 insn->off, BPF_SIZE(insn->code),
7978 BPF_WRITE, -1, false);
17a52670
AS
7979 if (err)
7980 return err;
7981
092ed096 7982 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7983 u8 opcode = BPF_OP(insn->code);
7984
2589726d 7985 env->jmps_processed++;
17a52670
AS
7986 if (opcode == BPF_CALL) {
7987 if (BPF_SRC(insn->code) != BPF_K ||
7988 insn->off != 0 ||
f4d7e40a
AS
7989 (insn->src_reg != BPF_REG_0 &&
7990 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7991 insn->dst_reg != BPF_REG_0 ||
7992 class == BPF_JMP32) {
61bd5218 7993 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7994 return -EINVAL;
7995 }
7996
d83525ca
AS
7997 if (env->cur_state->active_spin_lock &&
7998 (insn->src_reg == BPF_PSEUDO_CALL ||
7999 insn->imm != BPF_FUNC_spin_unlock)) {
8000 verbose(env, "function calls are not allowed while holding a lock\n");
8001 return -EINVAL;
8002 }
f4d7e40a 8003 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 8004 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 8005 else
c08435ec 8006 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
8007 if (err)
8008 return err;
8009
8010 } else if (opcode == BPF_JA) {
8011 if (BPF_SRC(insn->code) != BPF_K ||
8012 insn->imm != 0 ||
8013 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8014 insn->dst_reg != BPF_REG_0 ||
8015 class == BPF_JMP32) {
61bd5218 8016 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
8017 return -EINVAL;
8018 }
8019
c08435ec 8020 env->insn_idx += insn->off + 1;
17a52670
AS
8021 continue;
8022
8023 } else if (opcode == BPF_EXIT) {
8024 if (BPF_SRC(insn->code) != BPF_K ||
8025 insn->imm != 0 ||
8026 insn->src_reg != BPF_REG_0 ||
092ed096
JW
8027 insn->dst_reg != BPF_REG_0 ||
8028 class == BPF_JMP32) {
61bd5218 8029 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
8030 return -EINVAL;
8031 }
8032
d83525ca
AS
8033 if (env->cur_state->active_spin_lock) {
8034 verbose(env, "bpf_spin_unlock is missing\n");
8035 return -EINVAL;
8036 }
8037
f4d7e40a
AS
8038 if (state->curframe) {
8039 /* exit from nested function */
c08435ec 8040 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
8041 if (err)
8042 return err;
8043 do_print_state = true;
8044 continue;
8045 }
8046
fd978bf7
JS
8047 err = check_reference_leak(env);
8048 if (err)
8049 return err;
8050
390ee7e2
AS
8051 err = check_return_code(env);
8052 if (err)
8053 return err;
f1bca824 8054process_bpf_exit:
2589726d 8055 update_branch_counts(env, env->cur_state);
b5dc0163 8056 err = pop_stack(env, &prev_insn_idx,
c08435ec 8057 &env->insn_idx);
638f5b90
AS
8058 if (err < 0) {
8059 if (err != -ENOENT)
8060 return err;
17a52670
AS
8061 break;
8062 } else {
8063 do_print_state = true;
8064 continue;
8065 }
8066 } else {
c08435ec 8067 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
8068 if (err)
8069 return err;
8070 }
8071 } else if (class == BPF_LD) {
8072 u8 mode = BPF_MODE(insn->code);
8073
8074 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
8075 err = check_ld_abs(env, insn);
8076 if (err)
8077 return err;
8078
17a52670
AS
8079 } else if (mode == BPF_IMM) {
8080 err = check_ld_imm(env, insn);
8081 if (err)
8082 return err;
8083
c08435ec
DB
8084 env->insn_idx++;
8085 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 8086 } else {
61bd5218 8087 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
8088 return -EINVAL;
8089 }
8090 } else {
61bd5218 8091 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
8092 return -EINVAL;
8093 }
8094
c08435ec 8095 env->insn_idx++;
17a52670
AS
8096 }
8097
9c8105bd 8098 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
8099 return 0;
8100}
8101
56f668df
MKL
8102static int check_map_prealloc(struct bpf_map *map)
8103{
8104 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
8105 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8106 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
8107 !(map->map_flags & BPF_F_NO_PREALLOC);
8108}
8109
d83525ca
AS
8110static bool is_tracing_prog_type(enum bpf_prog_type type)
8111{
8112 switch (type) {
8113 case BPF_PROG_TYPE_KPROBE:
8114 case BPF_PROG_TYPE_TRACEPOINT:
8115 case BPF_PROG_TYPE_PERF_EVENT:
8116 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8117 return true;
8118 default:
8119 return false;
8120 }
8121}
8122
61bd5218
JK
8123static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8124 struct bpf_map *map,
fdc15d38
AS
8125 struct bpf_prog *prog)
8126
8127{
56f668df
MKL
8128 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8129 * preallocated hash maps, since doing memory allocation
8130 * in overflow_handler can crash depending on where nmi got
8131 * triggered.
8132 */
8133 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8134 if (!check_map_prealloc(map)) {
61bd5218 8135 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
8136 return -EINVAL;
8137 }
8138 if (map->inner_map_meta &&
8139 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 8140 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
8141 return -EINVAL;
8142 }
fdc15d38 8143 }
a3884572 8144
d83525ca
AS
8145 if ((is_tracing_prog_type(prog->type) ||
8146 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8147 map_value_has_spin_lock(map)) {
8148 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8149 return -EINVAL;
8150 }
8151
a3884572 8152 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 8153 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
8154 verbose(env, "offload device mismatch between prog and map\n");
8155 return -EINVAL;
8156 }
8157
fdc15d38
AS
8158 return 0;
8159}
8160
b741f163
RG
8161static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8162{
8163 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8164 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8165}
8166
0246e64d
AS
8167/* look for pseudo eBPF instructions that access map FDs and
8168 * replace them with actual map pointers
8169 */
58e2af8b 8170static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
8171{
8172 struct bpf_insn *insn = env->prog->insnsi;
8173 int insn_cnt = env->prog->len;
fdc15d38 8174 int i, j, err;
0246e64d 8175
f1f7714e 8176 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
8177 if (err)
8178 return err;
8179
0246e64d 8180 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 8181 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 8182 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 8183 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
8184 return -EINVAL;
8185 }
8186
d691f9e8
AS
8187 if (BPF_CLASS(insn->code) == BPF_STX &&
8188 ((BPF_MODE(insn->code) != BPF_MEM &&
8189 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 8190 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
8191 return -EINVAL;
8192 }
8193
0246e64d 8194 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 8195 struct bpf_insn_aux_data *aux;
0246e64d
AS
8196 struct bpf_map *map;
8197 struct fd f;
d8eca5bb 8198 u64 addr;
0246e64d
AS
8199
8200 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8201 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8202 insn[1].off != 0) {
61bd5218 8203 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
8204 return -EINVAL;
8205 }
8206
d8eca5bb 8207 if (insn[0].src_reg == 0)
0246e64d
AS
8208 /* valid generic load 64-bit imm */
8209 goto next_insn;
8210
d8eca5bb
DB
8211 /* In final convert_pseudo_ld_imm64() step, this is
8212 * converted into regular 64-bit imm load insn.
8213 */
8214 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8215 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8216 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8217 insn[1].imm != 0)) {
8218 verbose(env,
8219 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
8220 return -EINVAL;
8221 }
8222
20182390 8223 f = fdget(insn[0].imm);
c2101297 8224 map = __bpf_map_get(f);
0246e64d 8225 if (IS_ERR(map)) {
61bd5218 8226 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 8227 insn[0].imm);
0246e64d
AS
8228 return PTR_ERR(map);
8229 }
8230
61bd5218 8231 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
8232 if (err) {
8233 fdput(f);
8234 return err;
8235 }
8236
d8eca5bb
DB
8237 aux = &env->insn_aux_data[i];
8238 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8239 addr = (unsigned long)map;
8240 } else {
8241 u32 off = insn[1].imm;
8242
8243 if (off >= BPF_MAX_VAR_OFF) {
8244 verbose(env, "direct value offset of %u is not allowed\n", off);
8245 fdput(f);
8246 return -EINVAL;
8247 }
8248
8249 if (!map->ops->map_direct_value_addr) {
8250 verbose(env, "no direct value access support for this map type\n");
8251 fdput(f);
8252 return -EINVAL;
8253 }
8254
8255 err = map->ops->map_direct_value_addr(map, &addr, off);
8256 if (err) {
8257 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8258 map->value_size, off);
8259 fdput(f);
8260 return err;
8261 }
8262
8263 aux->map_off = off;
8264 addr += off;
8265 }
8266
8267 insn[0].imm = (u32)addr;
8268 insn[1].imm = addr >> 32;
0246e64d
AS
8269
8270 /* check whether we recorded this map already */
d8eca5bb 8271 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 8272 if (env->used_maps[j] == map) {
d8eca5bb 8273 aux->map_index = j;
0246e64d
AS
8274 fdput(f);
8275 goto next_insn;
8276 }
d8eca5bb 8277 }
0246e64d
AS
8278
8279 if (env->used_map_cnt >= MAX_USED_MAPS) {
8280 fdput(f);
8281 return -E2BIG;
8282 }
8283
0246e64d
AS
8284 /* hold the map. If the program is rejected by verifier,
8285 * the map will be released by release_maps() or it
8286 * will be used by the valid program until it's unloaded
ab7f5bf0 8287 * and all maps are released in free_used_maps()
0246e64d 8288 */
1e0bd5a0 8289 bpf_map_inc(map);
d8eca5bb
DB
8290
8291 aux->map_index = env->used_map_cnt;
92117d84
AS
8292 env->used_maps[env->used_map_cnt++] = map;
8293
b741f163 8294 if (bpf_map_is_cgroup_storage(map) &&
e4730423 8295 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 8296 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8297 fdput(f);
8298 return -EBUSY;
8299 }
8300
0246e64d
AS
8301 fdput(f);
8302next_insn:
8303 insn++;
8304 i++;
5e581dad
DB
8305 continue;
8306 }
8307
8308 /* Basic sanity check before we invest more work here. */
8309 if (!bpf_opcode_in_insntable(insn->code)) {
8310 verbose(env, "unknown opcode %02x\n", insn->code);
8311 return -EINVAL;
0246e64d
AS
8312 }
8313 }
8314
8315 /* now all pseudo BPF_LD_IMM64 instructions load valid
8316 * 'struct bpf_map *' into a register instead of user map_fd.
8317 * These pointers will be used later by verifier to validate map access.
8318 */
8319 return 0;
8320}
8321
8322/* drop refcnt of maps used by the rejected program */
58e2af8b 8323static void release_maps(struct bpf_verifier_env *env)
0246e64d 8324{
a2ea0746
DB
8325 __bpf_free_used_maps(env->prog->aux, env->used_maps,
8326 env->used_map_cnt);
0246e64d
AS
8327}
8328
8329/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8330static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8331{
8332 struct bpf_insn *insn = env->prog->insnsi;
8333 int insn_cnt = env->prog->len;
8334 int i;
8335
8336 for (i = 0; i < insn_cnt; i++, insn++)
8337 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8338 insn->src_reg = 0;
8339}
8340
8041902d
AS
8341/* single env->prog->insni[off] instruction was replaced with the range
8342 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8343 * [0, off) and [off, end) to new locations, so the patched range stays zero
8344 */
b325fbca
JW
8345static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8346 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8347{
8348 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8349 struct bpf_insn *insn = new_prog->insnsi;
8350 u32 prog_len;
c131187d 8351 int i;
8041902d 8352
b325fbca
JW
8353 /* aux info at OFF always needs adjustment, no matter fast path
8354 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8355 * original insn at old prog.
8356 */
8357 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8358
8041902d
AS
8359 if (cnt == 1)
8360 return 0;
b325fbca 8361 prog_len = new_prog->len;
fad953ce
KC
8362 new_data = vzalloc(array_size(prog_len,
8363 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8364 if (!new_data)
8365 return -ENOMEM;
8366 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8367 memcpy(new_data + off + cnt - 1, old_data + off,
8368 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8369 for (i = off; i < off + cnt - 1; i++) {
c131187d 8370 new_data[i].seen = true;
b325fbca
JW
8371 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8372 }
8041902d
AS
8373 env->insn_aux_data = new_data;
8374 vfree(old_data);
8375 return 0;
8376}
8377
cc8b0b92
AS
8378static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8379{
8380 int i;
8381
8382 if (len == 1)
8383 return;
4cb3d99c
JW
8384 /* NOTE: fake 'exit' subprog should be updated as well. */
8385 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8386 if (env->subprog_info[i].start <= off)
cc8b0b92 8387 continue;
9c8105bd 8388 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8389 }
8390}
8391
8041902d
AS
8392static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8393 const struct bpf_insn *patch, u32 len)
8394{
8395 struct bpf_prog *new_prog;
8396
8397 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8398 if (IS_ERR(new_prog)) {
8399 if (PTR_ERR(new_prog) == -ERANGE)
8400 verbose(env,
8401 "insn %d cannot be patched due to 16-bit range\n",
8402 env->insn_aux_data[off].orig_idx);
8041902d 8403 return NULL;
4f73379e 8404 }
b325fbca 8405 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8406 return NULL;
cc8b0b92 8407 adjust_subprog_starts(env, off, len);
8041902d
AS
8408 return new_prog;
8409}
8410
52875a04
JK
8411static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8412 u32 off, u32 cnt)
8413{
8414 int i, j;
8415
8416 /* find first prog starting at or after off (first to remove) */
8417 for (i = 0; i < env->subprog_cnt; i++)
8418 if (env->subprog_info[i].start >= off)
8419 break;
8420 /* find first prog starting at or after off + cnt (first to stay) */
8421 for (j = i; j < env->subprog_cnt; j++)
8422 if (env->subprog_info[j].start >= off + cnt)
8423 break;
8424 /* if j doesn't start exactly at off + cnt, we are just removing
8425 * the front of previous prog
8426 */
8427 if (env->subprog_info[j].start != off + cnt)
8428 j--;
8429
8430 if (j > i) {
8431 struct bpf_prog_aux *aux = env->prog->aux;
8432 int move;
8433
8434 /* move fake 'exit' subprog as well */
8435 move = env->subprog_cnt + 1 - j;
8436
8437 memmove(env->subprog_info + i,
8438 env->subprog_info + j,
8439 sizeof(*env->subprog_info) * move);
8440 env->subprog_cnt -= j - i;
8441
8442 /* remove func_info */
8443 if (aux->func_info) {
8444 move = aux->func_info_cnt - j;
8445
8446 memmove(aux->func_info + i,
8447 aux->func_info + j,
8448 sizeof(*aux->func_info) * move);
8449 aux->func_info_cnt -= j - i;
8450 /* func_info->insn_off is set after all code rewrites,
8451 * in adjust_btf_func() - no need to adjust
8452 */
8453 }
8454 } else {
8455 /* convert i from "first prog to remove" to "first to adjust" */
8456 if (env->subprog_info[i].start == off)
8457 i++;
8458 }
8459
8460 /* update fake 'exit' subprog as well */
8461 for (; i <= env->subprog_cnt; i++)
8462 env->subprog_info[i].start -= cnt;
8463
8464 return 0;
8465}
8466
8467static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8468 u32 cnt)
8469{
8470 struct bpf_prog *prog = env->prog;
8471 u32 i, l_off, l_cnt, nr_linfo;
8472 struct bpf_line_info *linfo;
8473
8474 nr_linfo = prog->aux->nr_linfo;
8475 if (!nr_linfo)
8476 return 0;
8477
8478 linfo = prog->aux->linfo;
8479
8480 /* find first line info to remove, count lines to be removed */
8481 for (i = 0; i < nr_linfo; i++)
8482 if (linfo[i].insn_off >= off)
8483 break;
8484
8485 l_off = i;
8486 l_cnt = 0;
8487 for (; i < nr_linfo; i++)
8488 if (linfo[i].insn_off < off + cnt)
8489 l_cnt++;
8490 else
8491 break;
8492
8493 /* First live insn doesn't match first live linfo, it needs to "inherit"
8494 * last removed linfo. prog is already modified, so prog->len == off
8495 * means no live instructions after (tail of the program was removed).
8496 */
8497 if (prog->len != off && l_cnt &&
8498 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8499 l_cnt--;
8500 linfo[--i].insn_off = off + cnt;
8501 }
8502
8503 /* remove the line info which refer to the removed instructions */
8504 if (l_cnt) {
8505 memmove(linfo + l_off, linfo + i,
8506 sizeof(*linfo) * (nr_linfo - i));
8507
8508 prog->aux->nr_linfo -= l_cnt;
8509 nr_linfo = prog->aux->nr_linfo;
8510 }
8511
8512 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8513 for (i = l_off; i < nr_linfo; i++)
8514 linfo[i].insn_off -= cnt;
8515
8516 /* fix up all subprogs (incl. 'exit') which start >= off */
8517 for (i = 0; i <= env->subprog_cnt; i++)
8518 if (env->subprog_info[i].linfo_idx > l_off) {
8519 /* program may have started in the removed region but
8520 * may not be fully removed
8521 */
8522 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8523 env->subprog_info[i].linfo_idx -= l_cnt;
8524 else
8525 env->subprog_info[i].linfo_idx = l_off;
8526 }
8527
8528 return 0;
8529}
8530
8531static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8532{
8533 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8534 unsigned int orig_prog_len = env->prog->len;
8535 int err;
8536
08ca90af
JK
8537 if (bpf_prog_is_dev_bound(env->prog->aux))
8538 bpf_prog_offload_remove_insns(env, off, cnt);
8539
52875a04
JK
8540 err = bpf_remove_insns(env->prog, off, cnt);
8541 if (err)
8542 return err;
8543
8544 err = adjust_subprog_starts_after_remove(env, off, cnt);
8545 if (err)
8546 return err;
8547
8548 err = bpf_adj_linfo_after_remove(env, off, cnt);
8549 if (err)
8550 return err;
8551
8552 memmove(aux_data + off, aux_data + off + cnt,
8553 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8554
8555 return 0;
8556}
8557
2a5418a1
DB
8558/* The verifier does more data flow analysis than llvm and will not
8559 * explore branches that are dead at run time. Malicious programs can
8560 * have dead code too. Therefore replace all dead at-run-time code
8561 * with 'ja -1'.
8562 *
8563 * Just nops are not optimal, e.g. if they would sit at the end of the
8564 * program and through another bug we would manage to jump there, then
8565 * we'd execute beyond program memory otherwise. Returning exception
8566 * code also wouldn't work since we can have subprogs where the dead
8567 * code could be located.
c131187d
AS
8568 */
8569static void sanitize_dead_code(struct bpf_verifier_env *env)
8570{
8571 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8572 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8573 struct bpf_insn *insn = env->prog->insnsi;
8574 const int insn_cnt = env->prog->len;
8575 int i;
8576
8577 for (i = 0; i < insn_cnt; i++) {
8578 if (aux_data[i].seen)
8579 continue;
2a5418a1 8580 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8581 }
8582}
8583
e2ae4ca2
JK
8584static bool insn_is_cond_jump(u8 code)
8585{
8586 u8 op;
8587
092ed096
JW
8588 if (BPF_CLASS(code) == BPF_JMP32)
8589 return true;
8590
e2ae4ca2
JK
8591 if (BPF_CLASS(code) != BPF_JMP)
8592 return false;
8593
8594 op = BPF_OP(code);
8595 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8596}
8597
8598static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8599{
8600 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8601 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8602 struct bpf_insn *insn = env->prog->insnsi;
8603 const int insn_cnt = env->prog->len;
8604 int i;
8605
8606 for (i = 0; i < insn_cnt; i++, insn++) {
8607 if (!insn_is_cond_jump(insn->code))
8608 continue;
8609
8610 if (!aux_data[i + 1].seen)
8611 ja.off = insn->off;
8612 else if (!aux_data[i + 1 + insn->off].seen)
8613 ja.off = 0;
8614 else
8615 continue;
8616
08ca90af
JK
8617 if (bpf_prog_is_dev_bound(env->prog->aux))
8618 bpf_prog_offload_replace_insn(env, i, &ja);
8619
e2ae4ca2
JK
8620 memcpy(insn, &ja, sizeof(ja));
8621 }
8622}
8623
52875a04
JK
8624static int opt_remove_dead_code(struct bpf_verifier_env *env)
8625{
8626 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8627 int insn_cnt = env->prog->len;
8628 int i, err;
8629
8630 for (i = 0; i < insn_cnt; i++) {
8631 int j;
8632
8633 j = 0;
8634 while (i + j < insn_cnt && !aux_data[i + j].seen)
8635 j++;
8636 if (!j)
8637 continue;
8638
8639 err = verifier_remove_insns(env, i, j);
8640 if (err)
8641 return err;
8642 insn_cnt = env->prog->len;
8643 }
8644
8645 return 0;
8646}
8647
a1b14abc
JK
8648static int opt_remove_nops(struct bpf_verifier_env *env)
8649{
8650 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8651 struct bpf_insn *insn = env->prog->insnsi;
8652 int insn_cnt = env->prog->len;
8653 int i, err;
8654
8655 for (i = 0; i < insn_cnt; i++) {
8656 if (memcmp(&insn[i], &ja, sizeof(ja)))
8657 continue;
8658
8659 err = verifier_remove_insns(env, i, 1);
8660 if (err)
8661 return err;
8662 insn_cnt--;
8663 i--;
8664 }
8665
8666 return 0;
8667}
8668
d6c2308c
JW
8669static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8670 const union bpf_attr *attr)
a4b1d3c1 8671{
d6c2308c 8672 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8673 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8674 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8675 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8676 struct bpf_prog *new_prog;
d6c2308c 8677 bool rnd_hi32;
a4b1d3c1 8678
d6c2308c 8679 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8680 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8681 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8682 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8683 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8684 for (i = 0; i < len; i++) {
8685 int adj_idx = i + delta;
8686 struct bpf_insn insn;
8687
d6c2308c
JW
8688 insn = insns[adj_idx];
8689 if (!aux[adj_idx].zext_dst) {
8690 u8 code, class;
8691 u32 imm_rnd;
8692
8693 if (!rnd_hi32)
8694 continue;
8695
8696 code = insn.code;
8697 class = BPF_CLASS(code);
8698 if (insn_no_def(&insn))
8699 continue;
8700
8701 /* NOTE: arg "reg" (the fourth one) is only used for
8702 * BPF_STX which has been ruled out in above
8703 * check, it is safe to pass NULL here.
8704 */
8705 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8706 if (class == BPF_LD &&
8707 BPF_MODE(code) == BPF_IMM)
8708 i++;
8709 continue;
8710 }
8711
8712 /* ctx load could be transformed into wider load. */
8713 if (class == BPF_LDX &&
8714 aux[adj_idx].ptr_type == PTR_TO_CTX)
8715 continue;
8716
8717 imm_rnd = get_random_int();
8718 rnd_hi32_patch[0] = insn;
8719 rnd_hi32_patch[1].imm = imm_rnd;
8720 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8721 patch = rnd_hi32_patch;
8722 patch_len = 4;
8723 goto apply_patch_buffer;
8724 }
8725
8726 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8727 continue;
8728
a4b1d3c1
JW
8729 zext_patch[0] = insn;
8730 zext_patch[1].dst_reg = insn.dst_reg;
8731 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8732 patch = zext_patch;
8733 patch_len = 2;
8734apply_patch_buffer:
8735 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8736 if (!new_prog)
8737 return -ENOMEM;
8738 env->prog = new_prog;
8739 insns = new_prog->insnsi;
8740 aux = env->insn_aux_data;
d6c2308c 8741 delta += patch_len - 1;
a4b1d3c1
JW
8742 }
8743
8744 return 0;
8745}
8746
c64b7983
JS
8747/* convert load instructions that access fields of a context type into a
8748 * sequence of instructions that access fields of the underlying structure:
8749 * struct __sk_buff -> struct sk_buff
8750 * struct bpf_sock_ops -> struct sock
9bac3d6d 8751 */
58e2af8b 8752static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8753{
00176a34 8754 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8755 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8756 const int insn_cnt = env->prog->len;
36bbef52 8757 struct bpf_insn insn_buf[16], *insn;
46f53a65 8758 u32 target_size, size_default, off;
9bac3d6d 8759 struct bpf_prog *new_prog;
d691f9e8 8760 enum bpf_access_type type;
f96da094 8761 bool is_narrower_load;
9bac3d6d 8762
b09928b9
DB
8763 if (ops->gen_prologue || env->seen_direct_write) {
8764 if (!ops->gen_prologue) {
8765 verbose(env, "bpf verifier is misconfigured\n");
8766 return -EINVAL;
8767 }
36bbef52
DB
8768 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8769 env->prog);
8770 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8771 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8772 return -EINVAL;
8773 } else if (cnt) {
8041902d 8774 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8775 if (!new_prog)
8776 return -ENOMEM;
8041902d 8777
36bbef52 8778 env->prog = new_prog;
3df126f3 8779 delta += cnt - 1;
36bbef52
DB
8780 }
8781 }
8782
c64b7983 8783 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8784 return 0;
8785
3df126f3 8786 insn = env->prog->insnsi + delta;
36bbef52 8787
9bac3d6d 8788 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8789 bpf_convert_ctx_access_t convert_ctx_access;
8790
62c7989b
DB
8791 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8792 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8793 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8794 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8795 type = BPF_READ;
62c7989b
DB
8796 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8797 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8798 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8799 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8800 type = BPF_WRITE;
8801 else
9bac3d6d
AS
8802 continue;
8803
af86ca4e
AS
8804 if (type == BPF_WRITE &&
8805 env->insn_aux_data[i + delta].sanitize_stack_off) {
8806 struct bpf_insn patch[] = {
8807 /* Sanitize suspicious stack slot with zero.
8808 * There are no memory dependencies for this store,
8809 * since it's only using frame pointer and immediate
8810 * constant of zero
8811 */
8812 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8813 env->insn_aux_data[i + delta].sanitize_stack_off,
8814 0),
8815 /* the original STX instruction will immediately
8816 * overwrite the same stack slot with appropriate value
8817 */
8818 *insn,
8819 };
8820
8821 cnt = ARRAY_SIZE(patch);
8822 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8823 if (!new_prog)
8824 return -ENOMEM;
8825
8826 delta += cnt - 1;
8827 env->prog = new_prog;
8828 insn = new_prog->insnsi + i + delta;
8829 continue;
8830 }
8831
c64b7983
JS
8832 switch (env->insn_aux_data[i + delta].ptr_type) {
8833 case PTR_TO_CTX:
8834 if (!ops->convert_ctx_access)
8835 continue;
8836 convert_ctx_access = ops->convert_ctx_access;
8837 break;
8838 case PTR_TO_SOCKET:
46f8bc92 8839 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8840 convert_ctx_access = bpf_sock_convert_ctx_access;
8841 break;
655a51e5
MKL
8842 case PTR_TO_TCP_SOCK:
8843 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8844 break;
fada7fdc
JL
8845 case PTR_TO_XDP_SOCK:
8846 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8847 break;
2a02759e 8848 case PTR_TO_BTF_ID:
27ae7997
MKL
8849 if (type == BPF_READ) {
8850 insn->code = BPF_LDX | BPF_PROBE_MEM |
8851 BPF_SIZE((insn)->code);
8852 env->prog->aux->num_exentries++;
8853 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
8854 verbose(env, "Writes through BTF pointers are not allowed\n");
8855 return -EINVAL;
8856 }
2a02759e 8857 continue;
c64b7983 8858 default:
9bac3d6d 8859 continue;
c64b7983 8860 }
9bac3d6d 8861
31fd8581 8862 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8863 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8864
8865 /* If the read access is a narrower load of the field,
8866 * convert to a 4/8-byte load, to minimum program type specific
8867 * convert_ctx_access changes. If conversion is successful,
8868 * we will apply proper mask to the result.
8869 */
f96da094 8870 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8871 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8872 off = insn->off;
31fd8581 8873 if (is_narrower_load) {
f96da094
DB
8874 u8 size_code;
8875
8876 if (type == BPF_WRITE) {
61bd5218 8877 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8878 return -EINVAL;
8879 }
31fd8581 8880
f96da094 8881 size_code = BPF_H;
31fd8581
YS
8882 if (ctx_field_size == 4)
8883 size_code = BPF_W;
8884 else if (ctx_field_size == 8)
8885 size_code = BPF_DW;
f96da094 8886
bc23105c 8887 insn->off = off & ~(size_default - 1);
31fd8581
YS
8888 insn->code = BPF_LDX | BPF_MEM | size_code;
8889 }
f96da094
DB
8890
8891 target_size = 0;
c64b7983
JS
8892 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8893 &target_size);
f96da094
DB
8894 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8895 (ctx_field_size && !target_size)) {
61bd5218 8896 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8897 return -EINVAL;
8898 }
f96da094
DB
8899
8900 if (is_narrower_load && size < target_size) {
d895a0f1
IL
8901 u8 shift = bpf_ctx_narrow_access_offset(
8902 off, size, size_default) * 8;
46f53a65
AI
8903 if (ctx_field_size <= 4) {
8904 if (shift)
8905 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8906 insn->dst_reg,
8907 shift);
31fd8581 8908 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8909 (1 << size * 8) - 1);
46f53a65
AI
8910 } else {
8911 if (shift)
8912 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8913 insn->dst_reg,
8914 shift);
31fd8581 8915 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8916 (1ULL << size * 8) - 1);
46f53a65 8917 }
31fd8581 8918 }
9bac3d6d 8919
8041902d 8920 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8921 if (!new_prog)
8922 return -ENOMEM;
8923
3df126f3 8924 delta += cnt - 1;
9bac3d6d
AS
8925
8926 /* keep walking new program and skip insns we just inserted */
8927 env->prog = new_prog;
3df126f3 8928 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8929 }
8930
8931 return 0;
8932}
8933
1c2a088a
AS
8934static int jit_subprogs(struct bpf_verifier_env *env)
8935{
8936 struct bpf_prog *prog = env->prog, **func, *tmp;
8937 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8938 struct bpf_insn *insn;
1c2a088a 8939 void *old_bpf_func;
c454a46b 8940 int err;
1c2a088a 8941
f910cefa 8942 if (env->subprog_cnt <= 1)
1c2a088a
AS
8943 return 0;
8944
7105e828 8945 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8946 if (insn->code != (BPF_JMP | BPF_CALL) ||
8947 insn->src_reg != BPF_PSEUDO_CALL)
8948 continue;
c7a89784
DB
8949 /* Upon error here we cannot fall back to interpreter but
8950 * need a hard reject of the program. Thus -EFAULT is
8951 * propagated in any case.
8952 */
1c2a088a
AS
8953 subprog = find_subprog(env, i + insn->imm + 1);
8954 if (subprog < 0) {
8955 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8956 i + insn->imm + 1);
8957 return -EFAULT;
8958 }
8959 /* temporarily remember subprog id inside insn instead of
8960 * aux_data, since next loop will split up all insns into funcs
8961 */
f910cefa 8962 insn->off = subprog;
1c2a088a
AS
8963 /* remember original imm in case JIT fails and fallback
8964 * to interpreter will be needed
8965 */
8966 env->insn_aux_data[i].call_imm = insn->imm;
8967 /* point imm to __bpf_call_base+1 from JITs point of view */
8968 insn->imm = 1;
8969 }
8970
c454a46b
MKL
8971 err = bpf_prog_alloc_jited_linfo(prog);
8972 if (err)
8973 goto out_undo_insn;
8974
8975 err = -ENOMEM;
6396bb22 8976 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8977 if (!func)
c7a89784 8978 goto out_undo_insn;
1c2a088a 8979
f910cefa 8980 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8981 subprog_start = subprog_end;
4cb3d99c 8982 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8983
8984 len = subprog_end - subprog_start;
492ecee8
AS
8985 /* BPF_PROG_RUN doesn't call subprogs directly,
8986 * hence main prog stats include the runtime of subprogs.
8987 * subprogs don't have IDs and not reachable via prog_get_next_id
8988 * func[i]->aux->stats will never be accessed and stays NULL
8989 */
8990 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8991 if (!func[i])
8992 goto out_free;
8993 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8994 len * sizeof(struct bpf_insn));
4f74d809 8995 func[i]->type = prog->type;
1c2a088a 8996 func[i]->len = len;
4f74d809
DB
8997 if (bpf_prog_calc_tag(func[i]))
8998 goto out_free;
1c2a088a 8999 func[i]->is_func = 1;
ba64e7d8
YS
9000 func[i]->aux->func_idx = i;
9001 /* the btf and func_info will be freed only at prog->aux */
9002 func[i]->aux->btf = prog->aux->btf;
9003 func[i]->aux->func_info = prog->aux->func_info;
9004
1c2a088a
AS
9005 /* Use bpf_prog_F_tag to indicate functions in stack traces.
9006 * Long term would need debug info to populate names
9007 */
9008 func[i]->aux->name[0] = 'F';
9c8105bd 9009 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 9010 func[i]->jit_requested = 1;
c454a46b
MKL
9011 func[i]->aux->linfo = prog->aux->linfo;
9012 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9013 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9014 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
9015 func[i] = bpf_int_jit_compile(func[i]);
9016 if (!func[i]->jited) {
9017 err = -ENOTSUPP;
9018 goto out_free;
9019 }
9020 cond_resched();
9021 }
9022 /* at this point all bpf functions were successfully JITed
9023 * now populate all bpf_calls with correct addresses and
9024 * run last pass of JIT
9025 */
f910cefa 9026 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9027 insn = func[i]->insnsi;
9028 for (j = 0; j < func[i]->len; j++, insn++) {
9029 if (insn->code != (BPF_JMP | BPF_CALL) ||
9030 insn->src_reg != BPF_PSEUDO_CALL)
9031 continue;
9032 subprog = insn->off;
0d306c31
PB
9033 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9034 __bpf_call_base;
1c2a088a 9035 }
2162fed4
SD
9036
9037 /* we use the aux data to keep a list of the start addresses
9038 * of the JITed images for each function in the program
9039 *
9040 * for some architectures, such as powerpc64, the imm field
9041 * might not be large enough to hold the offset of the start
9042 * address of the callee's JITed image from __bpf_call_base
9043 *
9044 * in such cases, we can lookup the start address of a callee
9045 * by using its subprog id, available from the off field of
9046 * the call instruction, as an index for this list
9047 */
9048 func[i]->aux->func = func;
9049 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 9050 }
f910cefa 9051 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9052 old_bpf_func = func[i]->bpf_func;
9053 tmp = bpf_int_jit_compile(func[i]);
9054 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9055 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 9056 err = -ENOTSUPP;
1c2a088a
AS
9057 goto out_free;
9058 }
9059 cond_resched();
9060 }
9061
9062 /* finally lock prog and jit images for all functions and
9063 * populate kallsysm
9064 */
f910cefa 9065 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
9066 bpf_prog_lock_ro(func[i]);
9067 bpf_prog_kallsyms_add(func[i]);
9068 }
7105e828
DB
9069
9070 /* Last step: make now unused interpreter insns from main
9071 * prog consistent for later dump requests, so they can
9072 * later look the same as if they were interpreted only.
9073 */
9074 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
9075 if (insn->code != (BPF_JMP | BPF_CALL) ||
9076 insn->src_reg != BPF_PSEUDO_CALL)
9077 continue;
9078 insn->off = env->insn_aux_data[i].call_imm;
9079 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 9080 insn->imm = subprog;
7105e828
DB
9081 }
9082
1c2a088a
AS
9083 prog->jited = 1;
9084 prog->bpf_func = func[0]->bpf_func;
9085 prog->aux->func = func;
f910cefa 9086 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 9087 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
9088 return 0;
9089out_free:
f910cefa 9090 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
9091 if (func[i])
9092 bpf_jit_free(func[i]);
9093 kfree(func);
c7a89784 9094out_undo_insn:
1c2a088a
AS
9095 /* cleanup main prog to be interpreted */
9096 prog->jit_requested = 0;
9097 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9098 if (insn->code != (BPF_JMP | BPF_CALL) ||
9099 insn->src_reg != BPF_PSEUDO_CALL)
9100 continue;
9101 insn->off = 0;
9102 insn->imm = env->insn_aux_data[i].call_imm;
9103 }
c454a46b 9104 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
9105 return err;
9106}
9107
1ea47e01
AS
9108static int fixup_call_args(struct bpf_verifier_env *env)
9109{
19d28fbd 9110#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9111 struct bpf_prog *prog = env->prog;
9112 struct bpf_insn *insn = prog->insnsi;
9113 int i, depth;
19d28fbd 9114#endif
e4052d06 9115 int err = 0;
1ea47e01 9116
e4052d06
QM
9117 if (env->prog->jit_requested &&
9118 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
9119 err = jit_subprogs(env);
9120 if (err == 0)
1c2a088a 9121 return 0;
c7a89784
DB
9122 if (err == -EFAULT)
9123 return err;
19d28fbd
DM
9124 }
9125#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
9126 for (i = 0; i < prog->len; i++, insn++) {
9127 if (insn->code != (BPF_JMP | BPF_CALL) ||
9128 insn->src_reg != BPF_PSEUDO_CALL)
9129 continue;
9130 depth = get_callee_stack_depth(env, insn, i);
9131 if (depth < 0)
9132 return depth;
9133 bpf_patch_call_args(insn, depth);
9134 }
19d28fbd
DM
9135 err = 0;
9136#endif
9137 return err;
1ea47e01
AS
9138}
9139
79741b3b 9140/* fixup insn->imm field of bpf_call instructions
81ed18ab 9141 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
9142 *
9143 * this function is called after eBPF program passed verification
9144 */
79741b3b 9145static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 9146{
79741b3b 9147 struct bpf_prog *prog = env->prog;
d2e4c1e6 9148 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 9149 struct bpf_insn *insn = prog->insnsi;
e245c5c6 9150 const struct bpf_func_proto *fn;
79741b3b 9151 const int insn_cnt = prog->len;
09772d92 9152 const struct bpf_map_ops *ops;
c93552c4 9153 struct bpf_insn_aux_data *aux;
81ed18ab
AS
9154 struct bpf_insn insn_buf[16];
9155 struct bpf_prog *new_prog;
9156 struct bpf_map *map_ptr;
d2e4c1e6 9157 int i, ret, cnt, delta = 0;
e245c5c6 9158
79741b3b 9159 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
9160 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9161 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9162 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 9163 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
9164 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9165 struct bpf_insn mask_and_div[] = {
9166 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9167 /* Rx div 0 -> 0 */
9168 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9169 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9170 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9171 *insn,
9172 };
9173 struct bpf_insn mask_and_mod[] = {
9174 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9175 /* Rx mod 0 -> Rx */
9176 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9177 *insn,
9178 };
9179 struct bpf_insn *patchlet;
9180
9181 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9182 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9183 patchlet = mask_and_div + (is64 ? 1 : 0);
9184 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9185 } else {
9186 patchlet = mask_and_mod + (is64 ? 1 : 0);
9187 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9188 }
9189
9190 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
9191 if (!new_prog)
9192 return -ENOMEM;
9193
9194 delta += cnt - 1;
9195 env->prog = prog = new_prog;
9196 insn = new_prog->insnsi + i + delta;
9197 continue;
9198 }
9199
e0cea7ce
DB
9200 if (BPF_CLASS(insn->code) == BPF_LD &&
9201 (BPF_MODE(insn->code) == BPF_ABS ||
9202 BPF_MODE(insn->code) == BPF_IND)) {
9203 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9204 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9205 verbose(env, "bpf verifier is misconfigured\n");
9206 return -EINVAL;
9207 }
9208
9209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9210 if (!new_prog)
9211 return -ENOMEM;
9212
9213 delta += cnt - 1;
9214 env->prog = prog = new_prog;
9215 insn = new_prog->insnsi + i + delta;
9216 continue;
9217 }
9218
979d63d5
DB
9219 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9220 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9221 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9222 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9223 struct bpf_insn insn_buf[16];
9224 struct bpf_insn *patch = &insn_buf[0];
9225 bool issrc, isneg;
9226 u32 off_reg;
9227
9228 aux = &env->insn_aux_data[i + delta];
3612af78
DB
9229 if (!aux->alu_state ||
9230 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
9231 continue;
9232
9233 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9234 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9235 BPF_ALU_SANITIZE_SRC;
9236
9237 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9238 if (isneg)
9239 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9240 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9241 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9242 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9243 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9244 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9245 if (issrc) {
9246 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9247 off_reg);
9248 insn->src_reg = BPF_REG_AX;
9249 } else {
9250 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9251 BPF_REG_AX);
9252 }
9253 if (isneg)
9254 insn->code = insn->code == code_add ?
9255 code_sub : code_add;
9256 *patch++ = *insn;
9257 if (issrc && isneg)
9258 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9259 cnt = patch - insn_buf;
9260
9261 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9262 if (!new_prog)
9263 return -ENOMEM;
9264
9265 delta += cnt - 1;
9266 env->prog = prog = new_prog;
9267 insn = new_prog->insnsi + i + delta;
9268 continue;
9269 }
9270
79741b3b
AS
9271 if (insn->code != (BPF_JMP | BPF_CALL))
9272 continue;
cc8b0b92
AS
9273 if (insn->src_reg == BPF_PSEUDO_CALL)
9274 continue;
e245c5c6 9275
79741b3b
AS
9276 if (insn->imm == BPF_FUNC_get_route_realm)
9277 prog->dst_needed = 1;
9278 if (insn->imm == BPF_FUNC_get_prandom_u32)
9279 bpf_user_rnd_init_once();
9802d865
JB
9280 if (insn->imm == BPF_FUNC_override_return)
9281 prog->kprobe_override = 1;
79741b3b 9282 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9283 /* If we tail call into other programs, we
9284 * cannot make any assumptions since they can
9285 * be replaced dynamically during runtime in
9286 * the program array.
9287 */
9288 prog->cb_access = 1;
80a58d02 9289 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9290 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9291
79741b3b
AS
9292 /* mark bpf_tail_call as different opcode to avoid
9293 * conditional branch in the interpeter for every normal
9294 * call and to prevent accidental JITing by JIT compiler
9295 * that doesn't support bpf_tail_call yet
e245c5c6 9296 */
79741b3b 9297 insn->imm = 0;
71189fa9 9298 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9299
c93552c4 9300 aux = &env->insn_aux_data[i + delta];
cc52d914
DB
9301 if (env->allow_ptr_leaks && !expect_blinding &&
9302 prog->jit_requested &&
d2e4c1e6
DB
9303 !bpf_map_key_poisoned(aux) &&
9304 !bpf_map_ptr_poisoned(aux) &&
9305 !bpf_map_ptr_unpriv(aux)) {
9306 struct bpf_jit_poke_descriptor desc = {
9307 .reason = BPF_POKE_REASON_TAIL_CALL,
9308 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9309 .tail_call.key = bpf_map_key_immediate(aux),
9310 };
9311
9312 ret = bpf_jit_add_poke_descriptor(prog, &desc);
9313 if (ret < 0) {
9314 verbose(env, "adding tail call poke descriptor failed\n");
9315 return ret;
9316 }
9317
9318 insn->imm = ret + 1;
9319 continue;
9320 }
9321
c93552c4
DB
9322 if (!bpf_map_ptr_unpriv(aux))
9323 continue;
9324
b2157399
AS
9325 /* instead of changing every JIT dealing with tail_call
9326 * emit two extra insns:
9327 * if (index >= max_entries) goto out;
9328 * index &= array->index_mask;
9329 * to avoid out-of-bounds cpu speculation
9330 */
c93552c4 9331 if (bpf_map_ptr_poisoned(aux)) {
40950343 9332 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9333 return -EINVAL;
9334 }
c93552c4 9335
d2e4c1e6 9336 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
9337 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9338 map_ptr->max_entries, 2);
9339 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9340 container_of(map_ptr,
9341 struct bpf_array,
9342 map)->index_mask);
9343 insn_buf[2] = *insn;
9344 cnt = 3;
9345 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9346 if (!new_prog)
9347 return -ENOMEM;
9348
9349 delta += cnt - 1;
9350 env->prog = prog = new_prog;
9351 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9352 continue;
9353 }
e245c5c6 9354
89c63074 9355 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9356 * and other inlining handlers are currently limited to 64 bit
9357 * only.
89c63074 9358 */
60b58afc 9359 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9360 (insn->imm == BPF_FUNC_map_lookup_elem ||
9361 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9362 insn->imm == BPF_FUNC_map_delete_elem ||
9363 insn->imm == BPF_FUNC_map_push_elem ||
9364 insn->imm == BPF_FUNC_map_pop_elem ||
9365 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9366 aux = &env->insn_aux_data[i + delta];
9367 if (bpf_map_ptr_poisoned(aux))
9368 goto patch_call_imm;
9369
d2e4c1e6 9370 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
9371 ops = map_ptr->ops;
9372 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9373 ops->map_gen_lookup) {
9374 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9375 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9376 verbose(env, "bpf verifier is misconfigured\n");
9377 return -EINVAL;
9378 }
81ed18ab 9379
09772d92
DB
9380 new_prog = bpf_patch_insn_data(env, i + delta,
9381 insn_buf, cnt);
9382 if (!new_prog)
9383 return -ENOMEM;
81ed18ab 9384
09772d92
DB
9385 delta += cnt - 1;
9386 env->prog = prog = new_prog;
9387 insn = new_prog->insnsi + i + delta;
9388 continue;
9389 }
81ed18ab 9390
09772d92
DB
9391 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9392 (void *(*)(struct bpf_map *map, void *key))NULL));
9393 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9394 (int (*)(struct bpf_map *map, void *key))NULL));
9395 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9396 (int (*)(struct bpf_map *map, void *key, void *value,
9397 u64 flags))NULL));
84430d42
DB
9398 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9399 (int (*)(struct bpf_map *map, void *value,
9400 u64 flags))NULL));
9401 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9402 (int (*)(struct bpf_map *map, void *value))NULL));
9403 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9404 (int (*)(struct bpf_map *map, void *value))NULL));
9405
09772d92
DB
9406 switch (insn->imm) {
9407 case BPF_FUNC_map_lookup_elem:
9408 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9409 __bpf_call_base;
9410 continue;
9411 case BPF_FUNC_map_update_elem:
9412 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9413 __bpf_call_base;
9414 continue;
9415 case BPF_FUNC_map_delete_elem:
9416 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9417 __bpf_call_base;
9418 continue;
84430d42
DB
9419 case BPF_FUNC_map_push_elem:
9420 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9421 __bpf_call_base;
9422 continue;
9423 case BPF_FUNC_map_pop_elem:
9424 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9425 __bpf_call_base;
9426 continue;
9427 case BPF_FUNC_map_peek_elem:
9428 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9429 __bpf_call_base;
9430 continue;
09772d92 9431 }
81ed18ab 9432
09772d92 9433 goto patch_call_imm;
81ed18ab
AS
9434 }
9435
9436patch_call_imm:
5e43f899 9437 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9438 /* all functions that have prototype and verifier allowed
9439 * programs to call them, must be real in-kernel functions
9440 */
9441 if (!fn->func) {
61bd5218
JK
9442 verbose(env,
9443 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9444 func_id_name(insn->imm), insn->imm);
9445 return -EFAULT;
e245c5c6 9446 }
79741b3b 9447 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9448 }
e245c5c6 9449
d2e4c1e6
DB
9450 /* Since poke tab is now finalized, publish aux to tracker. */
9451 for (i = 0; i < prog->aux->size_poke_tab; i++) {
9452 map_ptr = prog->aux->poke_tab[i].tail_call.map;
9453 if (!map_ptr->ops->map_poke_track ||
9454 !map_ptr->ops->map_poke_untrack ||
9455 !map_ptr->ops->map_poke_run) {
9456 verbose(env, "bpf verifier is misconfigured\n");
9457 return -EINVAL;
9458 }
9459
9460 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9461 if (ret < 0) {
9462 verbose(env, "tracking tail call prog failed\n");
9463 return ret;
9464 }
9465 }
9466
79741b3b
AS
9467 return 0;
9468}
e245c5c6 9469
58e2af8b 9470static void free_states(struct bpf_verifier_env *env)
f1bca824 9471{
58e2af8b 9472 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9473 int i;
9474
9f4686c4
AS
9475 sl = env->free_list;
9476 while (sl) {
9477 sln = sl->next;
9478 free_verifier_state(&sl->state, false);
9479 kfree(sl);
9480 sl = sln;
9481 }
9482
f1bca824
AS
9483 if (!env->explored_states)
9484 return;
9485
dc2a4ebc 9486 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9487 sl = env->explored_states[i];
9488
a8f500af
AS
9489 while (sl) {
9490 sln = sl->next;
9491 free_verifier_state(&sl->state, false);
9492 kfree(sl);
9493 sl = sln;
9494 }
f1bca824
AS
9495 }
9496
71dde681 9497 kvfree(env->explored_states);
f1bca824
AS
9498}
9499
06ee7115
AS
9500static void print_verification_stats(struct bpf_verifier_env *env)
9501{
9502 int i;
9503
9504 if (env->log.level & BPF_LOG_STATS) {
9505 verbose(env, "verification time %lld usec\n",
9506 div_u64(env->verification_time, 1000));
9507 verbose(env, "stack depth ");
9508 for (i = 0; i < env->subprog_cnt; i++) {
9509 u32 depth = env->subprog_info[i].stack_depth;
9510
9511 verbose(env, "%d", depth);
9512 if (i + 1 < env->subprog_cnt)
9513 verbose(env, "+");
9514 }
9515 verbose(env, "\n");
9516 }
9517 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9518 "total_states %d peak_states %d mark_read %d\n",
9519 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9520 env->max_states_per_insn, env->total_states,
9521 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9522}
9523
27ae7997
MKL
9524static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
9525{
9526 const struct btf_type *t, *func_proto;
9527 const struct bpf_struct_ops *st_ops;
9528 const struct btf_member *member;
9529 struct bpf_prog *prog = env->prog;
9530 u32 btf_id, member_idx;
9531 const char *mname;
9532
9533 btf_id = prog->aux->attach_btf_id;
9534 st_ops = bpf_struct_ops_find(btf_id);
9535 if (!st_ops) {
9536 verbose(env, "attach_btf_id %u is not a supported struct\n",
9537 btf_id);
9538 return -ENOTSUPP;
9539 }
9540
9541 t = st_ops->type;
9542 member_idx = prog->expected_attach_type;
9543 if (member_idx >= btf_type_vlen(t)) {
9544 verbose(env, "attach to invalid member idx %u of struct %s\n",
9545 member_idx, st_ops->name);
9546 return -EINVAL;
9547 }
9548
9549 member = &btf_type_member(t)[member_idx];
9550 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
9551 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
9552 NULL);
9553 if (!func_proto) {
9554 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
9555 mname, member_idx, st_ops->name);
9556 return -EINVAL;
9557 }
9558
9559 if (st_ops->check_member) {
9560 int err = st_ops->check_member(t, member);
9561
9562 if (err) {
9563 verbose(env, "attach to unsupported member %s of struct %s\n",
9564 mname, st_ops->name);
9565 return err;
9566 }
9567 }
9568
9569 prog->aux->attach_func_proto = func_proto;
9570 prog->aux->attach_func_name = mname;
9571 env->ops = st_ops->verifier_ops;
9572
9573 return 0;
9574}
9575
38207291
MKL
9576static int check_attach_btf_id(struct bpf_verifier_env *env)
9577{
9578 struct bpf_prog *prog = env->prog;
5b92a28a 9579 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
38207291 9580 u32 btf_id = prog->aux->attach_btf_id;
f1b9509c 9581 const char prefix[] = "btf_trace_";
5b92a28a 9582 int ret = 0, subprog = -1, i;
fec56f58 9583 struct bpf_trampoline *tr;
38207291 9584 const struct btf_type *t;
5b92a28a 9585 bool conservative = true;
38207291 9586 const char *tname;
5b92a28a 9587 struct btf *btf;
fec56f58 9588 long addr;
5b92a28a 9589 u64 key;
38207291 9590
27ae7997
MKL
9591 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
9592 return check_struct_ops_btf_id(env);
9593
f1b9509c
AS
9594 if (prog->type != BPF_PROG_TYPE_TRACING)
9595 return 0;
38207291 9596
f1b9509c
AS
9597 if (!btf_id) {
9598 verbose(env, "Tracing programs must provide btf_id\n");
9599 return -EINVAL;
9600 }
5b92a28a
AS
9601 btf = bpf_prog_get_target_btf(prog);
9602 if (!btf) {
9603 verbose(env,
9604 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9605 return -EINVAL;
9606 }
9607 t = btf_type_by_id(btf, btf_id);
f1b9509c
AS
9608 if (!t) {
9609 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9610 return -EINVAL;
9611 }
5b92a28a 9612 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c
AS
9613 if (!tname) {
9614 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9615 return -EINVAL;
9616 }
5b92a28a
AS
9617 if (tgt_prog) {
9618 struct bpf_prog_aux *aux = tgt_prog->aux;
9619
9620 for (i = 0; i < aux->func_info_cnt; i++)
9621 if (aux->func_info[i].type_id == btf_id) {
9622 subprog = i;
9623 break;
9624 }
9625 if (subprog == -1) {
9626 verbose(env, "Subprog %s doesn't exist\n", tname);
9627 return -EINVAL;
9628 }
9629 conservative = aux->func_info_aux[subprog].unreliable;
9630 key = ((u64)aux->id) << 32 | btf_id;
9631 } else {
9632 key = btf_id;
9633 }
f1b9509c
AS
9634
9635 switch (prog->expected_attach_type) {
9636 case BPF_TRACE_RAW_TP:
5b92a28a
AS
9637 if (tgt_prog) {
9638 verbose(env,
9639 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9640 return -EINVAL;
9641 }
38207291
MKL
9642 if (!btf_type_is_typedef(t)) {
9643 verbose(env, "attach_btf_id %u is not a typedef\n",
9644 btf_id);
9645 return -EINVAL;
9646 }
f1b9509c 9647 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
38207291
MKL
9648 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9649 btf_id, tname);
9650 return -EINVAL;
9651 }
9652 tname += sizeof(prefix) - 1;
5b92a28a 9653 t = btf_type_by_id(btf, t->type);
38207291
MKL
9654 if (!btf_type_is_ptr(t))
9655 /* should never happen in valid vmlinux build */
9656 return -EINVAL;
5b92a28a 9657 t = btf_type_by_id(btf, t->type);
38207291
MKL
9658 if (!btf_type_is_func_proto(t))
9659 /* should never happen in valid vmlinux build */
9660 return -EINVAL;
9661
9662 /* remember two read only pointers that are valid for
9663 * the life time of the kernel
9664 */
9665 prog->aux->attach_func_name = tname;
9666 prog->aux->attach_func_proto = t;
9667 prog->aux->attach_btf_trace = true;
f1b9509c 9668 return 0;
fec56f58
AS
9669 case BPF_TRACE_FENTRY:
9670 case BPF_TRACE_FEXIT:
9671 if (!btf_type_is_func(t)) {
9672 verbose(env, "attach_btf_id %u is not a function\n",
9673 btf_id);
9674 return -EINVAL;
9675 }
5b92a28a 9676 t = btf_type_by_id(btf, t->type);
fec56f58
AS
9677 if (!btf_type_is_func_proto(t))
9678 return -EINVAL;
5b92a28a 9679 tr = bpf_trampoline_lookup(key);
fec56f58
AS
9680 if (!tr)
9681 return -ENOMEM;
9682 prog->aux->attach_func_name = tname;
5b92a28a 9683 /* t is either vmlinux type or another program's type */
fec56f58
AS
9684 prog->aux->attach_func_proto = t;
9685 mutex_lock(&tr->mutex);
9686 if (tr->func.addr) {
9687 prog->aux->trampoline = tr;
9688 goto out;
9689 }
5b92a28a
AS
9690 if (tgt_prog && conservative) {
9691 prog->aux->attach_func_proto = NULL;
9692 t = NULL;
9693 }
9694 ret = btf_distill_func_proto(&env->log, btf, t,
fec56f58
AS
9695 tname, &tr->func.model);
9696 if (ret < 0)
9697 goto out;
5b92a28a
AS
9698 if (tgt_prog) {
9699 if (!tgt_prog->jited) {
9700 /* for now */
9701 verbose(env, "Can trace only JITed BPF progs\n");
9702 ret = -EINVAL;
9703 goto out;
9704 }
9705 if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
9706 /* prevent cycles */
9707 verbose(env, "Cannot recursively attach\n");
9708 ret = -EINVAL;
9709 goto out;
9710 }
e9eeec58
YS
9711 if (subprog == 0)
9712 addr = (long) tgt_prog->bpf_func;
9713 else
9714 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
9715 } else {
9716 addr = kallsyms_lookup_name(tname);
9717 if (!addr) {
9718 verbose(env,
9719 "The address of function %s cannot be found\n",
9720 tname);
9721 ret = -ENOENT;
9722 goto out;
9723 }
fec56f58
AS
9724 }
9725 tr->func.addr = (void *)addr;
9726 prog->aux->trampoline = tr;
9727out:
9728 mutex_unlock(&tr->mutex);
9729 if (ret)
9730 bpf_trampoline_put(tr);
9731 return ret;
f1b9509c
AS
9732 default:
9733 return -EINVAL;
38207291 9734 }
38207291
MKL
9735}
9736
838e9690
YS
9737int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9738 union bpf_attr __user *uattr)
51580e79 9739{
06ee7115 9740 u64 start_time = ktime_get_ns();
58e2af8b 9741 struct bpf_verifier_env *env;
b9193c1b 9742 struct bpf_verifier_log *log;
9e4c24e7 9743 int i, len, ret = -EINVAL;
e2ae4ca2 9744 bool is_priv;
51580e79 9745
eba0c929
AB
9746 /* no program is valid */
9747 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9748 return -EINVAL;
9749
58e2af8b 9750 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9751 * allocate/free it every time bpf_check() is called
9752 */
58e2af8b 9753 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9754 if (!env)
9755 return -ENOMEM;
61bd5218 9756 log = &env->log;
cbd35700 9757
9e4c24e7 9758 len = (*prog)->len;
fad953ce 9759 env->insn_aux_data =
9e4c24e7 9760 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9761 ret = -ENOMEM;
9762 if (!env->insn_aux_data)
9763 goto err_free_env;
9e4c24e7
JK
9764 for (i = 0; i < len; i++)
9765 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9766 env->prog = *prog;
00176a34 9767 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9768 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9769
8580ac94
AS
9770 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9771 mutex_lock(&bpf_verifier_lock);
9772 if (!btf_vmlinux)
9773 btf_vmlinux = btf_parse_vmlinux();
9774 mutex_unlock(&bpf_verifier_lock);
9775 }
9776
cbd35700 9777 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9778 if (!is_priv)
9779 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9780
9781 if (attr->log_level || attr->log_buf || attr->log_size) {
9782 /* user requested verbose verifier output
9783 * and supplied buffer to store the verification trace
9784 */
e7bf8249
JK
9785 log->level = attr->log_level;
9786 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9787 log->len_total = attr->log_size;
cbd35700
AS
9788
9789 ret = -EINVAL;
e7bf8249 9790 /* log attributes have to be sane */
7a9f5c65 9791 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9792 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9793 goto err_unlock;
cbd35700 9794 }
1ad2f583 9795
8580ac94
AS
9796 if (IS_ERR(btf_vmlinux)) {
9797 /* Either gcc or pahole or kernel are broken. */
9798 verbose(env, "in-kernel BTF is malformed\n");
9799 ret = PTR_ERR(btf_vmlinux);
38207291 9800 goto skip_full_check;
8580ac94
AS
9801 }
9802
38207291
MKL
9803 ret = check_attach_btf_id(env);
9804 if (ret)
9805 goto skip_full_check;
9806
1ad2f583
DB
9807 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9808 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9809 env->strict_alignment = true;
e9ee9efc
DM
9810 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9811 env->strict_alignment = false;
cbd35700 9812
e2ae4ca2
JK
9813 env->allow_ptr_leaks = is_priv;
9814
10d274e8
AS
9815 if (is_priv)
9816 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9817
f4e3ec0d
JK
9818 ret = replace_map_fd_with_map_ptr(env);
9819 if (ret < 0)
9820 goto skip_full_check;
9821
cae1927c 9822 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9823 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9824 if (ret)
f4e3ec0d 9825 goto skip_full_check;
ab3f0063
JK
9826 }
9827
dc2a4ebc 9828 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9829 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9830 GFP_USER);
9831 ret = -ENOMEM;
9832 if (!env->explored_states)
9833 goto skip_full_check;
9834
d9762e84 9835 ret = check_subprogs(env);
475fb78f
AS
9836 if (ret < 0)
9837 goto skip_full_check;
9838
c454a46b 9839 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9840 if (ret < 0)
9841 goto skip_full_check;
9842
d9762e84
MKL
9843 ret = check_cfg(env);
9844 if (ret < 0)
9845 goto skip_full_check;
9846
17a52670 9847 ret = do_check(env);
8c01c4f8
CG
9848 if (env->cur_state) {
9849 free_verifier_state(env->cur_state, true);
9850 env->cur_state = NULL;
9851 }
cbd35700 9852
c941ce9c
QM
9853 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9854 ret = bpf_prog_offload_finalize(env);
9855
0246e64d 9856skip_full_check:
638f5b90 9857 while (!pop_stack(env, NULL, NULL));
f1bca824 9858 free_states(env);
0246e64d 9859
c131187d 9860 if (ret == 0)
9b38c405 9861 ret = check_max_stack_depth(env);
c131187d 9862
9b38c405 9863 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9864 if (is_priv) {
9865 if (ret == 0)
9866 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9867 if (ret == 0)
9868 ret = opt_remove_dead_code(env);
a1b14abc
JK
9869 if (ret == 0)
9870 ret = opt_remove_nops(env);
52875a04
JK
9871 } else {
9872 if (ret == 0)
9873 sanitize_dead_code(env);
e2ae4ca2
JK
9874 }
9875
9bac3d6d
AS
9876 if (ret == 0)
9877 /* program is valid, convert *(u32*)(ctx + off) accesses */
9878 ret = convert_ctx_accesses(env);
9879
e245c5c6 9880 if (ret == 0)
79741b3b 9881 ret = fixup_bpf_calls(env);
e245c5c6 9882
a4b1d3c1
JW
9883 /* do 32-bit optimization after insn patching has done so those patched
9884 * insns could be handled correctly.
9885 */
d6c2308c
JW
9886 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9887 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9888 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9889 : false;
a4b1d3c1
JW
9890 }
9891
1ea47e01
AS
9892 if (ret == 0)
9893 ret = fixup_call_args(env);
9894
06ee7115
AS
9895 env->verification_time = ktime_get_ns() - start_time;
9896 print_verification_stats(env);
9897
a2a7d570 9898 if (log->level && bpf_verifier_log_full(log))
cbd35700 9899 ret = -ENOSPC;
a2a7d570 9900 if (log->level && !log->ubuf) {
cbd35700 9901 ret = -EFAULT;
a2a7d570 9902 goto err_release_maps;
cbd35700
AS
9903 }
9904
0246e64d
AS
9905 if (ret == 0 && env->used_map_cnt) {
9906 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9907 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9908 sizeof(env->used_maps[0]),
9909 GFP_KERNEL);
0246e64d 9910
9bac3d6d 9911 if (!env->prog->aux->used_maps) {
0246e64d 9912 ret = -ENOMEM;
a2a7d570 9913 goto err_release_maps;
0246e64d
AS
9914 }
9915
9bac3d6d 9916 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9917 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9918 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9919
9920 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9921 * bpf_ld_imm64 instructions
9922 */
9923 convert_pseudo_ld_imm64(env);
9924 }
cbd35700 9925
ba64e7d8
YS
9926 if (ret == 0)
9927 adjust_btf_func(env);
9928
a2a7d570 9929err_release_maps:
9bac3d6d 9930 if (!env->prog->aux->used_maps)
0246e64d 9931 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9932 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9933 */
9934 release_maps(env);
9bac3d6d 9935 *prog = env->prog;
3df126f3 9936err_unlock:
45a73c17
AS
9937 if (!is_priv)
9938 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9939 vfree(env->insn_aux_data);
9940err_free_env:
9941 kfree(env);
51580e79
AS
9942 return ret;
9943}