selftests: bpf: verifier: add tests for JSET interpretation
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
8e17c1b1 179#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151 180#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
195 return aux->map_state & BPF_MAP_PTR_UNPRIV;
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
203 aux->map_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
fad73a1a 206
33ff9823
DB
207struct bpf_call_arg_meta {
208 struct bpf_map *map_ptr;
435faee1 209 bool raw_mode;
36bbef52 210 bool pkt_access;
435faee1
DB
211 int regno;
212 int access_size;
849fa506
YS
213 s64 msize_smax_value;
214 u64 msize_umax_value;
fd978bf7 215 int ptr_id;
33ff9823
DB
216};
217
cbd35700
AS
218static DEFINE_MUTEX(bpf_verifier_lock);
219
d9762e84
MKL
220static const struct bpf_line_info *
221find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222{
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239}
240
77d2e05a
MKL
241void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
cbd35700 243{
a2a7d570 244 unsigned int n;
cbd35700 245
a2a7d570 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
cbd35700 258}
abe08840
JO
259
260/* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
430e68d1 263 */
abe08840
JO
264__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266{
267 va_list args;
268
77d2e05a
MKL
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
abe08840 272 va_start(args, fmt);
77d2e05a 273 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
274 va_end(args);
275}
276EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279{
77d2e05a 280 struct bpf_verifier_env *env = private_data;
abe08840
JO
281 va_list args;
282
77d2e05a
MKL
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
abe08840 286 va_start(args, fmt);
77d2e05a 287 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
288 va_end(args);
289}
cbd35700 290
d9762e84
MKL
291static const char *ltrim(const char *s)
292{
293 while (isspace(*s))
294 s++;
295
296 return s;
297}
298
299__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302{
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325}
326
de8f3a83
DB
327static bool type_is_pkt_pointer(enum bpf_reg_type type)
328{
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7
JS
335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 type == PTR_TO_SOCKET_OR_NULL;
337}
338
339static bool type_is_refcounted(enum bpf_reg_type type)
340{
341 return type == PTR_TO_SOCKET;
342}
343
344static bool type_is_refcounted_or_null(enum bpf_reg_type type)
345{
346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
347}
348
349static bool reg_is_refcounted(const struct bpf_reg_state *reg)
350{
351 return type_is_refcounted(reg->type);
352}
353
354static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
355{
356 return type_is_refcounted_or_null(reg->type);
357}
358
359static bool arg_type_is_refcounted(enum bpf_arg_type type)
360{
361 return type == ARG_PTR_TO_SOCKET;
362}
363
364/* Determine whether the function releases some resources allocated by another
365 * function call. The first reference type argument will be assumed to be
366 * released by release_reference().
367 */
368static bool is_release_function(enum bpf_func_id func_id)
369{
6acc9b43 370 return func_id == BPF_FUNC_sk_release;
840b9615
JS
371}
372
17a52670
AS
373/* string representation of 'enum bpf_reg_type' */
374static const char * const reg_type_str[] = {
375 [NOT_INIT] = "?",
f1174f77 376 [SCALAR_VALUE] = "inv",
17a52670
AS
377 [PTR_TO_CTX] = "ctx",
378 [CONST_PTR_TO_MAP] = "map_ptr",
379 [PTR_TO_MAP_VALUE] = "map_value",
380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 381 [PTR_TO_STACK] = "fp",
969bf05e 382 [PTR_TO_PACKET] = "pkt",
de8f3a83 383 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 384 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 385 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
386 [PTR_TO_SOCKET] = "sock",
387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
388};
389
8efea21d
EC
390static char slot_type_char[] = {
391 [STACK_INVALID] = '?',
392 [STACK_SPILL] = 'r',
393 [STACK_MISC] = 'm',
394 [STACK_ZERO] = '0',
395};
396
4e92024a
AS
397static void print_liveness(struct bpf_verifier_env *env,
398 enum bpf_reg_liveness live)
399{
9242b5f5 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
401 verbose(env, "_");
402 if (live & REG_LIVE_READ)
403 verbose(env, "r");
404 if (live & REG_LIVE_WRITTEN)
405 verbose(env, "w");
9242b5f5
AS
406 if (live & REG_LIVE_DONE)
407 verbose(env, "D");
4e92024a
AS
408}
409
f4d7e40a
AS
410static struct bpf_func_state *func(struct bpf_verifier_env *env,
411 const struct bpf_reg_state *reg)
412{
413 struct bpf_verifier_state *cur = env->cur_state;
414
415 return cur->frame[reg->frameno];
416}
417
61bd5218 418static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 419 const struct bpf_func_state *state)
17a52670 420{
f4d7e40a 421 const struct bpf_reg_state *reg;
17a52670
AS
422 enum bpf_reg_type t;
423 int i;
424
f4d7e40a
AS
425 if (state->frameno)
426 verbose(env, " frame%d:", state->frameno);
17a52670 427 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
428 reg = &state->regs[i];
429 t = reg->type;
17a52670
AS
430 if (t == NOT_INIT)
431 continue;
4e92024a
AS
432 verbose(env, " R%d", i);
433 print_liveness(env, reg->live);
434 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
436 tnum_is_const(reg->var_off)) {
437 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 438 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
439 if (t == PTR_TO_STACK)
440 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 441 } else {
61bd5218 442 verbose(env, "(id=%d", reg->id);
f1174f77 443 if (t != SCALAR_VALUE)
61bd5218 444 verbose(env, ",off=%d", reg->off);
de8f3a83 445 if (type_is_pkt_pointer(t))
61bd5218 446 verbose(env, ",r=%d", reg->range);
f1174f77
EC
447 else if (t == CONST_PTR_TO_MAP ||
448 t == PTR_TO_MAP_VALUE ||
449 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 450 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
451 reg->map_ptr->key_size,
452 reg->map_ptr->value_size);
7d1238f2
EC
453 if (tnum_is_const(reg->var_off)) {
454 /* Typically an immediate SCALAR_VALUE, but
455 * could be a pointer whose offset is too big
456 * for reg->off
457 */
61bd5218 458 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
459 } else {
460 if (reg->smin_value != reg->umin_value &&
461 reg->smin_value != S64_MIN)
61bd5218 462 verbose(env, ",smin_value=%lld",
7d1238f2
EC
463 (long long)reg->smin_value);
464 if (reg->smax_value != reg->umax_value &&
465 reg->smax_value != S64_MAX)
61bd5218 466 verbose(env, ",smax_value=%lld",
7d1238f2
EC
467 (long long)reg->smax_value);
468 if (reg->umin_value != 0)
61bd5218 469 verbose(env, ",umin_value=%llu",
7d1238f2
EC
470 (unsigned long long)reg->umin_value);
471 if (reg->umax_value != U64_MAX)
61bd5218 472 verbose(env, ",umax_value=%llu",
7d1238f2
EC
473 (unsigned long long)reg->umax_value);
474 if (!tnum_is_unknown(reg->var_off)) {
475 char tn_buf[48];
f1174f77 476
7d1238f2 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 478 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 479 }
f1174f77 480 }
61bd5218 481 verbose(env, ")");
f1174f77 482 }
17a52670 483 }
638f5b90 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
485 char types_buf[BPF_REG_SIZE + 1];
486 bool valid = false;
487 int j;
488
489 for (j = 0; j < BPF_REG_SIZE; j++) {
490 if (state->stack[i].slot_type[j] != STACK_INVALID)
491 valid = true;
492 types_buf[j] = slot_type_char[
493 state->stack[i].slot_type[j]];
494 }
495 types_buf[BPF_REG_SIZE] = 0;
496 if (!valid)
497 continue;
498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
499 print_liveness(env, state->stack[i].spilled_ptr.live);
500 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 501 verbose(env, "=%s",
638f5b90 502 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
503 else
504 verbose(env, "=%s", types_buf);
17a52670 505 }
fd978bf7
JS
506 if (state->acquired_refs && state->refs[0].id) {
507 verbose(env, " refs=%d", state->refs[0].id);
508 for (i = 1; i < state->acquired_refs; i++)
509 if (state->refs[i].id)
510 verbose(env, ",%d", state->refs[i].id);
511 }
61bd5218 512 verbose(env, "\n");
17a52670
AS
513}
514
84dbf350
JS
515#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
516static int copy_##NAME##_state(struct bpf_func_state *dst, \
517 const struct bpf_func_state *src) \
518{ \
519 if (!src->FIELD) \
520 return 0; \
521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
522 /* internal bug, make state invalid to reject the program */ \
523 memset(dst, 0, sizeof(*dst)); \
524 return -EFAULT; \
525 } \
526 memcpy(dst->FIELD, src->FIELD, \
527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
528 return 0; \
638f5b90 529}
fd978bf7
JS
530/* copy_reference_state() */
531COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
532/* copy_stack_state() */
533COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
534#undef COPY_STATE_FN
535
536#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
537static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
538 bool copy_old) \
539{ \
540 u32 old_size = state->COUNT; \
541 struct bpf_##NAME##_state *new_##FIELD; \
542 int slot = size / SIZE; \
543 \
544 if (size <= old_size || !size) { \
545 if (copy_old) \
546 return 0; \
547 state->COUNT = slot * SIZE; \
548 if (!size && old_size) { \
549 kfree(state->FIELD); \
550 state->FIELD = NULL; \
551 } \
552 return 0; \
553 } \
554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
555 GFP_KERNEL); \
556 if (!new_##FIELD) \
557 return -ENOMEM; \
558 if (copy_old) { \
559 if (state->FIELD) \
560 memcpy(new_##FIELD, state->FIELD, \
561 sizeof(*new_##FIELD) * (old_size / SIZE)); \
562 memset(new_##FIELD + old_size / SIZE, 0, \
563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
564 } \
565 state->COUNT = slot * SIZE; \
566 kfree(state->FIELD); \
567 state->FIELD = new_##FIELD; \
568 return 0; \
569}
fd978bf7
JS
570/* realloc_reference_state() */
571REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
572/* realloc_stack_state() */
573REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
574#undef REALLOC_STATE_FN
638f5b90
AS
575
576/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
577 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 578 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
580 * which realloc_stack_state() copies over. It points to previous
581 * bpf_verifier_state which is never reallocated.
638f5b90 582 */
fd978bf7
JS
583static int realloc_func_state(struct bpf_func_state *state, int stack_size,
584 int refs_size, bool copy_old)
638f5b90 585{
fd978bf7
JS
586 int err = realloc_reference_state(state, refs_size, copy_old);
587 if (err)
588 return err;
589 return realloc_stack_state(state, stack_size, copy_old);
590}
591
592/* Acquire a pointer id from the env and update the state->refs to include
593 * this new pointer reference.
594 * On success, returns a valid pointer id to associate with the register
595 * On failure, returns a negative errno.
638f5b90 596 */
fd978bf7 597static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 598{
fd978bf7
JS
599 struct bpf_func_state *state = cur_func(env);
600 int new_ofs = state->acquired_refs;
601 int id, err;
602
603 err = realloc_reference_state(state, state->acquired_refs + 1, true);
604 if (err)
605 return err;
606 id = ++env->id_gen;
607 state->refs[new_ofs].id = id;
608 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 609
fd978bf7
JS
610 return id;
611}
612
613/* release function corresponding to acquire_reference_state(). Idempotent. */
614static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
615{
616 int i, last_idx;
617
618 if (!ptr_id)
619 return -EFAULT;
620
621 last_idx = state->acquired_refs - 1;
622 for (i = 0; i < state->acquired_refs; i++) {
623 if (state->refs[i].id == ptr_id) {
624 if (last_idx && i != last_idx)
625 memcpy(&state->refs[i], &state->refs[last_idx],
626 sizeof(*state->refs));
627 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
628 state->acquired_refs--;
638f5b90 629 return 0;
638f5b90 630 }
638f5b90 631 }
fd978bf7
JS
632 return -EFAULT;
633}
634
635/* variation on the above for cases where we expect that there must be an
636 * outstanding reference for the specified ptr_id.
637 */
638static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
639{
640 struct bpf_func_state *state = cur_func(env);
641 int err;
642
643 err = __release_reference_state(state, ptr_id);
644 if (WARN_ON_ONCE(err != 0))
645 verbose(env, "verifier internal error: can't release reference\n");
646 return err;
647}
648
649static int transfer_reference_state(struct bpf_func_state *dst,
650 struct bpf_func_state *src)
651{
652 int err = realloc_reference_state(dst, src->acquired_refs, false);
653 if (err)
654 return err;
655 err = copy_reference_state(dst, src);
656 if (err)
657 return err;
638f5b90
AS
658 return 0;
659}
660
f4d7e40a
AS
661static void free_func_state(struct bpf_func_state *state)
662{
5896351e
AS
663 if (!state)
664 return;
fd978bf7 665 kfree(state->refs);
f4d7e40a
AS
666 kfree(state->stack);
667 kfree(state);
668}
669
1969db47
AS
670static void free_verifier_state(struct bpf_verifier_state *state,
671 bool free_self)
638f5b90 672{
f4d7e40a
AS
673 int i;
674
675 for (i = 0; i <= state->curframe; i++) {
676 free_func_state(state->frame[i]);
677 state->frame[i] = NULL;
678 }
1969db47
AS
679 if (free_self)
680 kfree(state);
638f5b90
AS
681}
682
683/* copy verifier state from src to dst growing dst stack space
684 * when necessary to accommodate larger src stack
685 */
f4d7e40a
AS
686static int copy_func_state(struct bpf_func_state *dst,
687 const struct bpf_func_state *src)
638f5b90
AS
688{
689 int err;
690
fd978bf7
JS
691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
692 false);
693 if (err)
694 return err;
695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
696 err = copy_reference_state(dst, src);
638f5b90
AS
697 if (err)
698 return err;
638f5b90
AS
699 return copy_stack_state(dst, src);
700}
701
f4d7e40a
AS
702static int copy_verifier_state(struct bpf_verifier_state *dst_state,
703 const struct bpf_verifier_state *src)
704{
705 struct bpf_func_state *dst;
706 int i, err;
707
708 /* if dst has more stack frames then src frame, free them */
709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
710 free_func_state(dst_state->frame[i]);
711 dst_state->frame[i] = NULL;
712 }
713 dst_state->curframe = src->curframe;
f4d7e40a
AS
714 for (i = 0; i <= src->curframe; i++) {
715 dst = dst_state->frame[i];
716 if (!dst) {
717 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
718 if (!dst)
719 return -ENOMEM;
720 dst_state->frame[i] = dst;
721 }
722 err = copy_func_state(dst, src->frame[i]);
723 if (err)
724 return err;
725 }
726 return 0;
727}
728
638f5b90
AS
729static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
730 int *insn_idx)
731{
732 struct bpf_verifier_state *cur = env->cur_state;
733 struct bpf_verifier_stack_elem *elem, *head = env->head;
734 int err;
17a52670
AS
735
736 if (env->head == NULL)
638f5b90 737 return -ENOENT;
17a52670 738
638f5b90
AS
739 if (cur) {
740 err = copy_verifier_state(cur, &head->st);
741 if (err)
742 return err;
743 }
744 if (insn_idx)
745 *insn_idx = head->insn_idx;
17a52670 746 if (prev_insn_idx)
638f5b90
AS
747 *prev_insn_idx = head->prev_insn_idx;
748 elem = head->next;
1969db47 749 free_verifier_state(&head->st, false);
638f5b90 750 kfree(head);
17a52670
AS
751 env->head = elem;
752 env->stack_size--;
638f5b90 753 return 0;
17a52670
AS
754}
755
58e2af8b
JK
756static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
757 int insn_idx, int prev_insn_idx)
17a52670 758{
638f5b90 759 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 760 struct bpf_verifier_stack_elem *elem;
638f5b90 761 int err;
17a52670 762
638f5b90 763 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
764 if (!elem)
765 goto err;
766
17a52670
AS
767 elem->insn_idx = insn_idx;
768 elem->prev_insn_idx = prev_insn_idx;
769 elem->next = env->head;
770 env->head = elem;
771 env->stack_size++;
1969db47
AS
772 err = copy_verifier_state(&elem->st, cur);
773 if (err)
774 goto err;
07016151 775 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 776 verbose(env, "BPF program is too complex\n");
17a52670
AS
777 goto err;
778 }
779 return &elem->st;
780err:
5896351e
AS
781 free_verifier_state(env->cur_state, true);
782 env->cur_state = NULL;
17a52670 783 /* pop all elements and return */
638f5b90 784 while (!pop_stack(env, NULL, NULL));
17a52670
AS
785 return NULL;
786}
787
788#define CALLER_SAVED_REGS 6
789static const int caller_saved[CALLER_SAVED_REGS] = {
790 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
791};
792
f1174f77
EC
793static void __mark_reg_not_init(struct bpf_reg_state *reg);
794
b03c9f9f
EC
795/* Mark the unknown part of a register (variable offset or scalar value) as
796 * known to have the value @imm.
797 */
798static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
799{
a9c676bc
AS
800 /* Clear id, off, and union(map_ptr, range) */
801 memset(((u8 *)reg) + sizeof(reg->type), 0,
802 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
803 reg->var_off = tnum_const(imm);
804 reg->smin_value = (s64)imm;
805 reg->smax_value = (s64)imm;
806 reg->umin_value = imm;
807 reg->umax_value = imm;
808}
809
f1174f77
EC
810/* Mark the 'variable offset' part of a register as zero. This should be
811 * used only on registers holding a pointer type.
812 */
813static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 814{
b03c9f9f 815 __mark_reg_known(reg, 0);
f1174f77 816}
a9789ef9 817
cc2b14d5
AS
818static void __mark_reg_const_zero(struct bpf_reg_state *reg)
819{
820 __mark_reg_known(reg, 0);
cc2b14d5
AS
821 reg->type = SCALAR_VALUE;
822}
823
61bd5218
JK
824static void mark_reg_known_zero(struct bpf_verifier_env *env,
825 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
826{
827 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 828 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
829 /* Something bad happened, let's kill all regs */
830 for (regno = 0; regno < MAX_BPF_REG; regno++)
831 __mark_reg_not_init(regs + regno);
832 return;
833 }
834 __mark_reg_known_zero(regs + regno);
835}
836
de8f3a83
DB
837static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
838{
839 return type_is_pkt_pointer(reg->type);
840}
841
842static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
843{
844 return reg_is_pkt_pointer(reg) ||
845 reg->type == PTR_TO_PACKET_END;
846}
847
848/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
849static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
850 enum bpf_reg_type which)
851{
852 /* The register can already have a range from prior markings.
853 * This is fine as long as it hasn't been advanced from its
854 * origin.
855 */
856 return reg->type == which &&
857 reg->id == 0 &&
858 reg->off == 0 &&
859 tnum_equals_const(reg->var_off, 0);
860}
861
b03c9f9f
EC
862/* Attempts to improve min/max values based on var_off information */
863static void __update_reg_bounds(struct bpf_reg_state *reg)
864{
865 /* min signed is max(sign bit) | min(other bits) */
866 reg->smin_value = max_t(s64, reg->smin_value,
867 reg->var_off.value | (reg->var_off.mask & S64_MIN));
868 /* max signed is min(sign bit) | max(other bits) */
869 reg->smax_value = min_t(s64, reg->smax_value,
870 reg->var_off.value | (reg->var_off.mask & S64_MAX));
871 reg->umin_value = max(reg->umin_value, reg->var_off.value);
872 reg->umax_value = min(reg->umax_value,
873 reg->var_off.value | reg->var_off.mask);
874}
875
876/* Uses signed min/max values to inform unsigned, and vice-versa */
877static void __reg_deduce_bounds(struct bpf_reg_state *reg)
878{
879 /* Learn sign from signed bounds.
880 * If we cannot cross the sign boundary, then signed and unsigned bounds
881 * are the same, so combine. This works even in the negative case, e.g.
882 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
883 */
884 if (reg->smin_value >= 0 || reg->smax_value < 0) {
885 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
886 reg->umin_value);
887 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
888 reg->umax_value);
889 return;
890 }
891 /* Learn sign from unsigned bounds. Signed bounds cross the sign
892 * boundary, so we must be careful.
893 */
894 if ((s64)reg->umax_value >= 0) {
895 /* Positive. We can't learn anything from the smin, but smax
896 * is positive, hence safe.
897 */
898 reg->smin_value = reg->umin_value;
899 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
900 reg->umax_value);
901 } else if ((s64)reg->umin_value < 0) {
902 /* Negative. We can't learn anything from the smax, but smin
903 * is negative, hence safe.
904 */
905 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
906 reg->umin_value);
907 reg->smax_value = reg->umax_value;
908 }
909}
910
911/* Attempts to improve var_off based on unsigned min/max information */
912static void __reg_bound_offset(struct bpf_reg_state *reg)
913{
914 reg->var_off = tnum_intersect(reg->var_off,
915 tnum_range(reg->umin_value,
916 reg->umax_value));
917}
918
919/* Reset the min/max bounds of a register */
920static void __mark_reg_unbounded(struct bpf_reg_state *reg)
921{
922 reg->smin_value = S64_MIN;
923 reg->smax_value = S64_MAX;
924 reg->umin_value = 0;
925 reg->umax_value = U64_MAX;
926}
927
f1174f77
EC
928/* Mark a register as having a completely unknown (scalar) value. */
929static void __mark_reg_unknown(struct bpf_reg_state *reg)
930{
a9c676bc
AS
931 /*
932 * Clear type, id, off, and union(map_ptr, range) and
933 * padding between 'type' and union
934 */
935 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 936 reg->type = SCALAR_VALUE;
f1174f77 937 reg->var_off = tnum_unknown;
f4d7e40a 938 reg->frameno = 0;
b03c9f9f 939 __mark_reg_unbounded(reg);
f1174f77
EC
940}
941
61bd5218
JK
942static void mark_reg_unknown(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
947 /* Something bad happened, let's kill all regs except FP */
948 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
949 __mark_reg_not_init(regs + regno);
950 return;
951 }
952 __mark_reg_unknown(regs + regno);
953}
954
955static void __mark_reg_not_init(struct bpf_reg_state *reg)
956{
957 __mark_reg_unknown(reg);
958 reg->type = NOT_INIT;
959}
960
61bd5218
JK
961static void mark_reg_not_init(struct bpf_verifier_env *env,
962 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
963{
964 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 965 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
966 /* Something bad happened, let's kill all regs except FP */
967 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
968 __mark_reg_not_init(regs + regno);
969 return;
970 }
971 __mark_reg_not_init(regs + regno);
a9789ef9
DB
972}
973
61bd5218 974static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 975 struct bpf_func_state *state)
17a52670 976{
f4d7e40a 977 struct bpf_reg_state *regs = state->regs;
17a52670
AS
978 int i;
979
dc503a8a 980 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 981 mark_reg_not_init(env, regs, i);
dc503a8a 982 regs[i].live = REG_LIVE_NONE;
679c782d 983 regs[i].parent = NULL;
dc503a8a 984 }
17a52670
AS
985
986 /* frame pointer */
f1174f77 987 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 988 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 989 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
990
991 /* 1st arg to a function */
992 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 993 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
994}
995
f4d7e40a
AS
996#define BPF_MAIN_FUNC (-1)
997static void init_func_state(struct bpf_verifier_env *env,
998 struct bpf_func_state *state,
999 int callsite, int frameno, int subprogno)
1000{
1001 state->callsite = callsite;
1002 state->frameno = frameno;
1003 state->subprogno = subprogno;
1004 init_reg_state(env, state);
1005}
1006
17a52670
AS
1007enum reg_arg_type {
1008 SRC_OP, /* register is used as source operand */
1009 DST_OP, /* register is used as destination operand */
1010 DST_OP_NO_MARK /* same as above, check only, don't mark */
1011};
1012
cc8b0b92
AS
1013static int cmp_subprogs(const void *a, const void *b)
1014{
9c8105bd
JW
1015 return ((struct bpf_subprog_info *)a)->start -
1016 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1017}
1018
1019static int find_subprog(struct bpf_verifier_env *env, int off)
1020{
9c8105bd 1021 struct bpf_subprog_info *p;
cc8b0b92 1022
9c8105bd
JW
1023 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1024 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1025 if (!p)
1026 return -ENOENT;
9c8105bd 1027 return p - env->subprog_info;
cc8b0b92
AS
1028
1029}
1030
1031static int add_subprog(struct bpf_verifier_env *env, int off)
1032{
1033 int insn_cnt = env->prog->len;
1034 int ret;
1035
1036 if (off >= insn_cnt || off < 0) {
1037 verbose(env, "call to invalid destination\n");
1038 return -EINVAL;
1039 }
1040 ret = find_subprog(env, off);
1041 if (ret >= 0)
1042 return 0;
4cb3d99c 1043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1044 verbose(env, "too many subprograms\n");
1045 return -E2BIG;
1046 }
9c8105bd
JW
1047 env->subprog_info[env->subprog_cnt++].start = off;
1048 sort(env->subprog_info, env->subprog_cnt,
1049 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1050 return 0;
1051}
1052
1053static int check_subprogs(struct bpf_verifier_env *env)
1054{
1055 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1056 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1057 struct bpf_insn *insn = env->prog->insnsi;
1058 int insn_cnt = env->prog->len;
1059
f910cefa
JW
1060 /* Add entry function. */
1061 ret = add_subprog(env, 0);
1062 if (ret < 0)
1063 return ret;
1064
cc8b0b92
AS
1065 /* determine subprog starts. The end is one before the next starts */
1066 for (i = 0; i < insn_cnt; i++) {
1067 if (insn[i].code != (BPF_JMP | BPF_CALL))
1068 continue;
1069 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1070 continue;
1071 if (!env->allow_ptr_leaks) {
1072 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1073 return -EPERM;
1074 }
cc8b0b92
AS
1075 ret = add_subprog(env, i + insn[i].imm + 1);
1076 if (ret < 0)
1077 return ret;
1078 }
1079
4cb3d99c
JW
1080 /* Add a fake 'exit' subprog which could simplify subprog iteration
1081 * logic. 'subprog_cnt' should not be increased.
1082 */
1083 subprog[env->subprog_cnt].start = insn_cnt;
1084
cc8b0b92
AS
1085 if (env->log.level > 1)
1086 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1087 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1088
1089 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1090 subprog_start = subprog[cur_subprog].start;
1091 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1092 for (i = 0; i < insn_cnt; i++) {
1093 u8 code = insn[i].code;
1094
1095 if (BPF_CLASS(code) != BPF_JMP)
1096 goto next;
1097 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1098 goto next;
1099 off = i + insn[i].off + 1;
1100 if (off < subprog_start || off >= subprog_end) {
1101 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1102 return -EINVAL;
1103 }
1104next:
1105 if (i == subprog_end - 1) {
1106 /* to avoid fall-through from one subprog into another
1107 * the last insn of the subprog should be either exit
1108 * or unconditional jump back
1109 */
1110 if (code != (BPF_JMP | BPF_EXIT) &&
1111 code != (BPF_JMP | BPF_JA)) {
1112 verbose(env, "last insn is not an exit or jmp\n");
1113 return -EINVAL;
1114 }
1115 subprog_start = subprog_end;
4cb3d99c
JW
1116 cur_subprog++;
1117 if (cur_subprog < env->subprog_cnt)
9c8105bd 1118 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1119 }
1120 }
1121 return 0;
1122}
1123
679c782d
EC
1124/* Parentage chain of this register (or stack slot) should take care of all
1125 * issues like callee-saved registers, stack slot allocation time, etc.
1126 */
f4d7e40a 1127static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1128 const struct bpf_reg_state *state,
1129 struct bpf_reg_state *parent)
f4d7e40a
AS
1130{
1131 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1132
1133 while (parent) {
1134 /* if read wasn't screened by an earlier write ... */
679c782d 1135 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1136 break;
9242b5f5
AS
1137 if (parent->live & REG_LIVE_DONE) {
1138 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1139 reg_type_str[parent->type],
1140 parent->var_off.value, parent->off);
1141 return -EFAULT;
1142 }
dc503a8a 1143 /* ... then we depend on parent's value */
679c782d 1144 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1145 state = parent;
1146 parent = state->parent;
f4d7e40a 1147 writes = true;
dc503a8a 1148 }
f4d7e40a 1149 return 0;
dc503a8a
EC
1150}
1151
1152static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1153 enum reg_arg_type t)
1154{
f4d7e40a
AS
1155 struct bpf_verifier_state *vstate = env->cur_state;
1156 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1157 struct bpf_reg_state *regs = state->regs;
dc503a8a 1158
17a52670 1159 if (regno >= MAX_BPF_REG) {
61bd5218 1160 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1161 return -EINVAL;
1162 }
1163
1164 if (t == SRC_OP) {
1165 /* check whether register used as source operand can be read */
1166 if (regs[regno].type == NOT_INIT) {
61bd5218 1167 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1168 return -EACCES;
1169 }
679c782d
EC
1170 /* We don't need to worry about FP liveness because it's read-only */
1171 if (regno != BPF_REG_FP)
1172 return mark_reg_read(env, &regs[regno],
1173 regs[regno].parent);
17a52670
AS
1174 } else {
1175 /* check whether register used as dest operand can be written to */
1176 if (regno == BPF_REG_FP) {
61bd5218 1177 verbose(env, "frame pointer is read only\n");
17a52670
AS
1178 return -EACCES;
1179 }
dc503a8a 1180 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1181 if (t == DST_OP)
61bd5218 1182 mark_reg_unknown(env, regs, regno);
17a52670
AS
1183 }
1184 return 0;
1185}
1186
1be7f75d
AS
1187static bool is_spillable_regtype(enum bpf_reg_type type)
1188{
1189 switch (type) {
1190 case PTR_TO_MAP_VALUE:
1191 case PTR_TO_MAP_VALUE_OR_NULL:
1192 case PTR_TO_STACK:
1193 case PTR_TO_CTX:
969bf05e 1194 case PTR_TO_PACKET:
de8f3a83 1195 case PTR_TO_PACKET_META:
969bf05e 1196 case PTR_TO_PACKET_END:
d58e468b 1197 case PTR_TO_FLOW_KEYS:
1be7f75d 1198 case CONST_PTR_TO_MAP:
c64b7983
JS
1199 case PTR_TO_SOCKET:
1200 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1201 return true;
1202 default:
1203 return false;
1204 }
1205}
1206
cc2b14d5
AS
1207/* Does this register contain a constant zero? */
1208static bool register_is_null(struct bpf_reg_state *reg)
1209{
1210 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1211}
1212
17a52670
AS
1213/* check_stack_read/write functions track spill/fill of registers,
1214 * stack boundary and alignment are checked in check_mem_access()
1215 */
61bd5218 1216static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1217 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1218 int off, int size, int value_regno, int insn_idx)
17a52670 1219{
f4d7e40a 1220 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1221 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1222 enum bpf_reg_type type;
638f5b90 1223
f4d7e40a 1224 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1225 state->acquired_refs, true);
638f5b90
AS
1226 if (err)
1227 return err;
9c399760
AS
1228 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1229 * so it's aligned access and [off, off + size) are within stack limits
1230 */
638f5b90
AS
1231 if (!env->allow_ptr_leaks &&
1232 state->stack[spi].slot_type[0] == STACK_SPILL &&
1233 size != BPF_REG_SIZE) {
1234 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1235 return -EACCES;
1236 }
17a52670 1237
f4d7e40a 1238 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1239 if (value_regno >= 0 &&
f4d7e40a 1240 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1241
1242 /* register containing pointer is being spilled into stack */
9c399760 1243 if (size != BPF_REG_SIZE) {
61bd5218 1244 verbose(env, "invalid size of register spill\n");
17a52670
AS
1245 return -EACCES;
1246 }
1247
f4d7e40a
AS
1248 if (state != cur && type == PTR_TO_STACK) {
1249 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1250 return -EINVAL;
1251 }
1252
17a52670 1253 /* save register state */
f4d7e40a 1254 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1255 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1256
af86ca4e
AS
1257 for (i = 0; i < BPF_REG_SIZE; i++) {
1258 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1259 !env->allow_ptr_leaks) {
1260 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1261 int soff = (-spi - 1) * BPF_REG_SIZE;
1262
1263 /* detected reuse of integer stack slot with a pointer
1264 * which means either llvm is reusing stack slot or
1265 * an attacker is trying to exploit CVE-2018-3639
1266 * (speculative store bypass)
1267 * Have to sanitize that slot with preemptive
1268 * store of zero.
1269 */
1270 if (*poff && *poff != soff) {
1271 /* disallow programs where single insn stores
1272 * into two different stack slots, since verifier
1273 * cannot sanitize them
1274 */
1275 verbose(env,
1276 "insn %d cannot access two stack slots fp%d and fp%d",
1277 insn_idx, *poff, soff);
1278 return -EINVAL;
1279 }
1280 *poff = soff;
1281 }
638f5b90 1282 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1283 }
9c399760 1284 } else {
cc2b14d5
AS
1285 u8 type = STACK_MISC;
1286
679c782d
EC
1287 /* regular write of data into stack destroys any spilled ptr */
1288 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1289 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1290 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1291 for (i = 0; i < BPF_REG_SIZE; i++)
1292 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1293
cc2b14d5
AS
1294 /* only mark the slot as written if all 8 bytes were written
1295 * otherwise read propagation may incorrectly stop too soon
1296 * when stack slots are partially written.
1297 * This heuristic means that read propagation will be
1298 * conservative, since it will add reg_live_read marks
1299 * to stack slots all the way to first state when programs
1300 * writes+reads less than 8 bytes
1301 */
1302 if (size == BPF_REG_SIZE)
1303 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1304
1305 /* when we zero initialize stack slots mark them as such */
1306 if (value_regno >= 0 &&
1307 register_is_null(&cur->regs[value_regno]))
1308 type = STACK_ZERO;
1309
0bae2d4d 1310 /* Mark slots affected by this stack write. */
9c399760 1311 for (i = 0; i < size; i++)
638f5b90 1312 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1313 type;
17a52670
AS
1314 }
1315 return 0;
1316}
1317
61bd5218 1318static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1319 struct bpf_func_state *reg_state /* func where register points to */,
1320 int off, int size, int value_regno)
17a52670 1321{
f4d7e40a
AS
1322 struct bpf_verifier_state *vstate = env->cur_state;
1323 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1324 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1325 u8 *stype;
17a52670 1326
f4d7e40a 1327 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1328 verbose(env, "invalid read from stack off %d+0 size %d\n",
1329 off, size);
1330 return -EACCES;
1331 }
f4d7e40a 1332 stype = reg_state->stack[spi].slot_type;
17a52670 1333
638f5b90 1334 if (stype[0] == STACK_SPILL) {
9c399760 1335 if (size != BPF_REG_SIZE) {
61bd5218 1336 verbose(env, "invalid size of register spill\n");
17a52670
AS
1337 return -EACCES;
1338 }
9c399760 1339 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1340 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1341 verbose(env, "corrupted spill memory\n");
17a52670
AS
1342 return -EACCES;
1343 }
1344 }
1345
dc503a8a 1346 if (value_regno >= 0) {
17a52670 1347 /* restore register state from stack */
f4d7e40a 1348 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1349 /* mark reg as written since spilled pointer state likely
1350 * has its liveness marks cleared by is_state_visited()
1351 * which resets stack/reg liveness for state transitions
1352 */
1353 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1354 }
679c782d
EC
1355 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1356 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1357 return 0;
1358 } else {
cc2b14d5
AS
1359 int zeros = 0;
1360
17a52670 1361 for (i = 0; i < size; i++) {
cc2b14d5
AS
1362 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1363 continue;
1364 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1365 zeros++;
1366 continue;
17a52670 1367 }
cc2b14d5
AS
1368 verbose(env, "invalid read from stack off %d+%d size %d\n",
1369 off, i, size);
1370 return -EACCES;
1371 }
679c782d
EC
1372 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1373 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1374 if (value_regno >= 0) {
1375 if (zeros == size) {
1376 /* any size read into register is zero extended,
1377 * so the whole register == const_zero
1378 */
1379 __mark_reg_const_zero(&state->regs[value_regno]);
1380 } else {
1381 /* have read misc data from the stack */
1382 mark_reg_unknown(env, state->regs, value_regno);
1383 }
1384 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1385 }
17a52670
AS
1386 return 0;
1387 }
1388}
1389
1390/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1391static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1392 int size, bool zero_size_allowed)
17a52670 1393{
638f5b90
AS
1394 struct bpf_reg_state *regs = cur_regs(env);
1395 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1396
9fd29c08
YS
1397 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1398 off + size > map->value_size) {
61bd5218 1399 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1400 map->value_size, off, size);
1401 return -EACCES;
1402 }
1403 return 0;
1404}
1405
f1174f77
EC
1406/* check read/write into a map element with possible variable offset */
1407static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1408 int off, int size, bool zero_size_allowed)
dbcfe5f7 1409{
f4d7e40a
AS
1410 struct bpf_verifier_state *vstate = env->cur_state;
1411 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1412 struct bpf_reg_state *reg = &state->regs[regno];
1413 int err;
1414
f1174f77
EC
1415 /* We may have adjusted the register to this map value, so we
1416 * need to try adding each of min_value and max_value to off
1417 * to make sure our theoretical access will be safe.
dbcfe5f7 1418 */
61bd5218
JK
1419 if (env->log.level)
1420 print_verifier_state(env, state);
dbcfe5f7
GB
1421 /* The minimum value is only important with signed
1422 * comparisons where we can't assume the floor of a
1423 * value is 0. If we are using signed variables for our
1424 * index'es we need to make sure that whatever we use
1425 * will have a set floor within our range.
1426 */
b03c9f9f 1427 if (reg->smin_value < 0) {
61bd5218 1428 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1429 regno);
1430 return -EACCES;
1431 }
9fd29c08
YS
1432 err = __check_map_access(env, regno, reg->smin_value + off, size,
1433 zero_size_allowed);
dbcfe5f7 1434 if (err) {
61bd5218
JK
1435 verbose(env, "R%d min value is outside of the array range\n",
1436 regno);
dbcfe5f7
GB
1437 return err;
1438 }
1439
b03c9f9f
EC
1440 /* If we haven't set a max value then we need to bail since we can't be
1441 * sure we won't do bad things.
1442 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1443 */
b03c9f9f 1444 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1445 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1446 regno);
1447 return -EACCES;
1448 }
9fd29c08
YS
1449 err = __check_map_access(env, regno, reg->umax_value + off, size,
1450 zero_size_allowed);
f1174f77 1451 if (err)
61bd5218
JK
1452 verbose(env, "R%d max value is outside of the array range\n",
1453 regno);
f1174f77 1454 return err;
dbcfe5f7
GB
1455}
1456
969bf05e
AS
1457#define MAX_PACKET_OFF 0xffff
1458
58e2af8b 1459static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1460 const struct bpf_call_arg_meta *meta,
1461 enum bpf_access_type t)
4acf6c0b 1462{
36bbef52 1463 switch (env->prog->type) {
5d66fa7d 1464 /* Program types only with direct read access go here! */
3a0af8fd
TG
1465 case BPF_PROG_TYPE_LWT_IN:
1466 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1467 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1468 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1469 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1470 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1471 if (t == BPF_WRITE)
1472 return false;
7e57fbb2 1473 /* fallthrough */
5d66fa7d
DB
1474
1475 /* Program types with direct read + write access go here! */
36bbef52
DB
1476 case BPF_PROG_TYPE_SCHED_CLS:
1477 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1478 case BPF_PROG_TYPE_XDP:
3a0af8fd 1479 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1480 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1481 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1482 if (meta)
1483 return meta->pkt_access;
1484
1485 env->seen_direct_write = true;
4acf6c0b
BB
1486 return true;
1487 default:
1488 return false;
1489 }
1490}
1491
f1174f77 1492static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1493 int off, int size, bool zero_size_allowed)
969bf05e 1494{
638f5b90 1495 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1496 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1497
9fd29c08
YS
1498 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1499 (u64)off + size > reg->range) {
61bd5218 1500 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1501 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1502 return -EACCES;
1503 }
1504 return 0;
1505}
1506
f1174f77 1507static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1508 int size, bool zero_size_allowed)
f1174f77 1509{
638f5b90 1510 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1511 struct bpf_reg_state *reg = &regs[regno];
1512 int err;
1513
1514 /* We may have added a variable offset to the packet pointer; but any
1515 * reg->range we have comes after that. We are only checking the fixed
1516 * offset.
1517 */
1518
1519 /* We don't allow negative numbers, because we aren't tracking enough
1520 * detail to prove they're safe.
1521 */
b03c9f9f 1522 if (reg->smin_value < 0) {
61bd5218 1523 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1524 regno);
1525 return -EACCES;
1526 }
9fd29c08 1527 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1528 if (err) {
61bd5218 1529 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1530 return err;
1531 }
e647815a
JW
1532
1533 /* __check_packet_access has made sure "off + size - 1" is within u16.
1534 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1535 * otherwise find_good_pkt_pointers would have refused to set range info
1536 * that __check_packet_access would have rejected this pkt access.
1537 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1538 */
1539 env->prog->aux->max_pkt_offset =
1540 max_t(u32, env->prog->aux->max_pkt_offset,
1541 off + reg->umax_value + size - 1);
1542
f1174f77
EC
1543 return err;
1544}
1545
1546/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1547static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1548 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1549{
f96da094
DB
1550 struct bpf_insn_access_aux info = {
1551 .reg_type = *reg_type,
1552 };
31fd8581 1553
4f9218aa 1554 if (env->ops->is_valid_access &&
5e43f899 1555 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1556 /* A non zero info.ctx_field_size indicates that this field is a
1557 * candidate for later verifier transformation to load the whole
1558 * field and then apply a mask when accessed with a narrower
1559 * access than actual ctx access size. A zero info.ctx_field_size
1560 * will only allow for whole field access and rejects any other
1561 * type of narrower access.
31fd8581 1562 */
23994631 1563 *reg_type = info.reg_type;
31fd8581 1564
4f9218aa 1565 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1566 /* remember the offset of last byte accessed in ctx */
1567 if (env->prog->aux->max_ctx_offset < off + size)
1568 env->prog->aux->max_ctx_offset = off + size;
17a52670 1569 return 0;
32bbe007 1570 }
17a52670 1571
61bd5218 1572 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1573 return -EACCES;
1574}
1575
d58e468b
PP
1576static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1577 int size)
1578{
1579 if (size < 0 || off < 0 ||
1580 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1581 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1582 off, size);
1583 return -EACCES;
1584 }
1585 return 0;
1586}
1587
c64b7983
JS
1588static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1589 int size, enum bpf_access_type t)
1590{
1591 struct bpf_reg_state *regs = cur_regs(env);
1592 struct bpf_reg_state *reg = &regs[regno];
1593 struct bpf_insn_access_aux info;
1594
1595 if (reg->smin_value < 0) {
1596 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1597 regno);
1598 return -EACCES;
1599 }
1600
1601 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1602 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1603 off, size);
1604 return -EACCES;
1605 }
1606
1607 return 0;
1608}
1609
4cabc5b1
DB
1610static bool __is_pointer_value(bool allow_ptr_leaks,
1611 const struct bpf_reg_state *reg)
1be7f75d 1612{
4cabc5b1 1613 if (allow_ptr_leaks)
1be7f75d
AS
1614 return false;
1615
f1174f77 1616 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1617}
1618
2a159c6f
DB
1619static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1620{
1621 return cur_regs(env) + regno;
1622}
1623
4cabc5b1
DB
1624static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1625{
2a159c6f 1626 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1627}
1628
f37a8cb8
DB
1629static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1630{
2a159c6f 1631 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1632
fd978bf7
JS
1633 return reg->type == PTR_TO_CTX ||
1634 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1635}
1636
ca369602
DB
1637static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1638{
2a159c6f 1639 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1640
1641 return type_is_pkt_pointer(reg->type);
1642}
1643
4b5defde
DB
1644static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1645{
1646 const struct bpf_reg_state *reg = reg_state(env, regno);
1647
1648 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1649 return reg->type == PTR_TO_FLOW_KEYS;
1650}
1651
61bd5218
JK
1652static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1653 const struct bpf_reg_state *reg,
d1174416 1654 int off, int size, bool strict)
969bf05e 1655{
f1174f77 1656 struct tnum reg_off;
e07b98d9 1657 int ip_align;
d1174416
DM
1658
1659 /* Byte size accesses are always allowed. */
1660 if (!strict || size == 1)
1661 return 0;
1662
e4eda884
DM
1663 /* For platforms that do not have a Kconfig enabling
1664 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1665 * NET_IP_ALIGN is universally set to '2'. And on platforms
1666 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1667 * to this code only in strict mode where we want to emulate
1668 * the NET_IP_ALIGN==2 checking. Therefore use an
1669 * unconditional IP align value of '2'.
e07b98d9 1670 */
e4eda884 1671 ip_align = 2;
f1174f77
EC
1672
1673 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1674 if (!tnum_is_aligned(reg_off, size)) {
1675 char tn_buf[48];
1676
1677 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1678 verbose(env,
1679 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1680 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1681 return -EACCES;
1682 }
79adffcd 1683
969bf05e
AS
1684 return 0;
1685}
1686
61bd5218
JK
1687static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1688 const struct bpf_reg_state *reg,
f1174f77
EC
1689 const char *pointer_desc,
1690 int off, int size, bool strict)
79adffcd 1691{
f1174f77
EC
1692 struct tnum reg_off;
1693
1694 /* Byte size accesses are always allowed. */
1695 if (!strict || size == 1)
1696 return 0;
1697
1698 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1699 if (!tnum_is_aligned(reg_off, size)) {
1700 char tn_buf[48];
1701
1702 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1703 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1704 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1705 return -EACCES;
1706 }
1707
969bf05e
AS
1708 return 0;
1709}
1710
e07b98d9 1711static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1712 const struct bpf_reg_state *reg, int off,
1713 int size, bool strict_alignment_once)
79adffcd 1714{
ca369602 1715 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1716 const char *pointer_desc = "";
d1174416 1717
79adffcd
DB
1718 switch (reg->type) {
1719 case PTR_TO_PACKET:
de8f3a83
DB
1720 case PTR_TO_PACKET_META:
1721 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1722 * right in front, treat it the very same way.
1723 */
61bd5218 1724 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1725 case PTR_TO_FLOW_KEYS:
1726 pointer_desc = "flow keys ";
1727 break;
f1174f77
EC
1728 case PTR_TO_MAP_VALUE:
1729 pointer_desc = "value ";
1730 break;
1731 case PTR_TO_CTX:
1732 pointer_desc = "context ";
1733 break;
1734 case PTR_TO_STACK:
1735 pointer_desc = "stack ";
a5ec6ae1
JH
1736 /* The stack spill tracking logic in check_stack_write()
1737 * and check_stack_read() relies on stack accesses being
1738 * aligned.
1739 */
1740 strict = true;
f1174f77 1741 break;
c64b7983
JS
1742 case PTR_TO_SOCKET:
1743 pointer_desc = "sock ";
1744 break;
79adffcd 1745 default:
f1174f77 1746 break;
79adffcd 1747 }
61bd5218
JK
1748 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1749 strict);
79adffcd
DB
1750}
1751
f4d7e40a
AS
1752static int update_stack_depth(struct bpf_verifier_env *env,
1753 const struct bpf_func_state *func,
1754 int off)
1755{
9c8105bd 1756 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1757
1758 if (stack >= -off)
1759 return 0;
1760
1761 /* update known max for given subprogram */
9c8105bd 1762 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1763 return 0;
1764}
f4d7e40a 1765
70a87ffe
AS
1766/* starting from main bpf function walk all instructions of the function
1767 * and recursively walk all callees that given function can call.
1768 * Ignore jump and exit insns.
1769 * Since recursion is prevented by check_cfg() this algorithm
1770 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1771 */
1772static int check_max_stack_depth(struct bpf_verifier_env *env)
1773{
9c8105bd
JW
1774 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1775 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1776 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1777 int ret_insn[MAX_CALL_FRAMES];
1778 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1779
70a87ffe
AS
1780process_func:
1781 /* round up to 32-bytes, since this is granularity
1782 * of interpreter stack size
1783 */
9c8105bd 1784 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1785 if (depth > MAX_BPF_STACK) {
f4d7e40a 1786 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1787 frame + 1, depth);
f4d7e40a
AS
1788 return -EACCES;
1789 }
70a87ffe 1790continue_func:
4cb3d99c 1791 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1792 for (; i < subprog_end; i++) {
1793 if (insn[i].code != (BPF_JMP | BPF_CALL))
1794 continue;
1795 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1796 continue;
1797 /* remember insn and function to return to */
1798 ret_insn[frame] = i + 1;
9c8105bd 1799 ret_prog[frame] = idx;
70a87ffe
AS
1800
1801 /* find the callee */
1802 i = i + insn[i].imm + 1;
9c8105bd
JW
1803 idx = find_subprog(env, i);
1804 if (idx < 0) {
70a87ffe
AS
1805 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1806 i);
1807 return -EFAULT;
1808 }
70a87ffe
AS
1809 frame++;
1810 if (frame >= MAX_CALL_FRAMES) {
1811 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1812 return -EFAULT;
1813 }
1814 goto process_func;
1815 }
1816 /* end of for() loop means the last insn of the 'subprog'
1817 * was reached. Doesn't matter whether it was JA or EXIT
1818 */
1819 if (frame == 0)
1820 return 0;
9c8105bd 1821 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1822 frame--;
1823 i = ret_insn[frame];
9c8105bd 1824 idx = ret_prog[frame];
70a87ffe 1825 goto continue_func;
f4d7e40a
AS
1826}
1827
19d28fbd 1828#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1829static int get_callee_stack_depth(struct bpf_verifier_env *env,
1830 const struct bpf_insn *insn, int idx)
1831{
1832 int start = idx + insn->imm + 1, subprog;
1833
1834 subprog = find_subprog(env, start);
1835 if (subprog < 0) {
1836 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1837 start);
1838 return -EFAULT;
1839 }
9c8105bd 1840 return env->subprog_info[subprog].stack_depth;
1ea47e01 1841}
19d28fbd 1842#endif
1ea47e01 1843
58990d1f
DB
1844static int check_ctx_reg(struct bpf_verifier_env *env,
1845 const struct bpf_reg_state *reg, int regno)
1846{
1847 /* Access to ctx or passing it to a helper is only allowed in
1848 * its original, unmodified form.
1849 */
1850
1851 if (reg->off) {
1852 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1853 regno, reg->off);
1854 return -EACCES;
1855 }
1856
1857 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1858 char tn_buf[48];
1859
1860 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1861 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1862 return -EACCES;
1863 }
1864
1865 return 0;
1866}
1867
0c17d1d2
JH
1868/* truncate register to smaller size (in bytes)
1869 * must be called with size < BPF_REG_SIZE
1870 */
1871static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1872{
1873 u64 mask;
1874
1875 /* clear high bits in bit representation */
1876 reg->var_off = tnum_cast(reg->var_off, size);
1877
1878 /* fix arithmetic bounds */
1879 mask = ((u64)1 << (size * 8)) - 1;
1880 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1881 reg->umin_value &= mask;
1882 reg->umax_value &= mask;
1883 } else {
1884 reg->umin_value = 0;
1885 reg->umax_value = mask;
1886 }
1887 reg->smin_value = reg->umin_value;
1888 reg->smax_value = reg->umax_value;
1889}
1890
17a52670
AS
1891/* check whether memory at (regno + off) is accessible for t = (read | write)
1892 * if t==write, value_regno is a register which value is stored into memory
1893 * if t==read, value_regno is a register which will receive the value from memory
1894 * if t==write && value_regno==-1, some unknown value is stored into memory
1895 * if t==read && value_regno==-1, don't care what we read from memory
1896 */
ca369602
DB
1897static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1898 int off, int bpf_size, enum bpf_access_type t,
1899 int value_regno, bool strict_alignment_once)
17a52670 1900{
638f5b90
AS
1901 struct bpf_reg_state *regs = cur_regs(env);
1902 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1903 struct bpf_func_state *state;
17a52670
AS
1904 int size, err = 0;
1905
1906 size = bpf_size_to_bytes(bpf_size);
1907 if (size < 0)
1908 return size;
1909
f1174f77 1910 /* alignment checks will add in reg->off themselves */
ca369602 1911 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1912 if (err)
1913 return err;
17a52670 1914
f1174f77
EC
1915 /* for access checks, reg->off is just part of off */
1916 off += reg->off;
1917
1918 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1919 if (t == BPF_WRITE && value_regno >= 0 &&
1920 is_pointer_value(env, value_regno)) {
61bd5218 1921 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1922 return -EACCES;
1923 }
48461135 1924
9fd29c08 1925 err = check_map_access(env, regno, off, size, false);
17a52670 1926 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1927 mark_reg_unknown(env, regs, value_regno);
17a52670 1928
1a0dc1ac 1929 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1930 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1931
1be7f75d
AS
1932 if (t == BPF_WRITE && value_regno >= 0 &&
1933 is_pointer_value(env, value_regno)) {
61bd5218 1934 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1935 return -EACCES;
1936 }
f1174f77 1937
58990d1f
DB
1938 err = check_ctx_reg(env, reg, regno);
1939 if (err < 0)
1940 return err;
1941
31fd8581 1942 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1943 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1944 /* ctx access returns either a scalar, or a
de8f3a83
DB
1945 * PTR_TO_PACKET[_META,_END]. In the latter
1946 * case, we know the offset is zero.
f1174f77
EC
1947 */
1948 if (reg_type == SCALAR_VALUE)
638f5b90 1949 mark_reg_unknown(env, regs, value_regno);
f1174f77 1950 else
638f5b90 1951 mark_reg_known_zero(env, regs,
61bd5218 1952 value_regno);
638f5b90 1953 regs[value_regno].type = reg_type;
969bf05e 1954 }
17a52670 1955
f1174f77
EC
1956 } else if (reg->type == PTR_TO_STACK) {
1957 /* stack accesses must be at a fixed offset, so that we can
1958 * determine what type of data were returned.
1959 * See check_stack_read().
1960 */
1961 if (!tnum_is_const(reg->var_off)) {
1962 char tn_buf[48];
1963
1964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1965 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1966 tn_buf, off, size);
1967 return -EACCES;
1968 }
1969 off += reg->var_off.value;
17a52670 1970 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1971 verbose(env, "invalid stack off=%d size=%d\n", off,
1972 size);
17a52670
AS
1973 return -EACCES;
1974 }
8726679a 1975
f4d7e40a
AS
1976 state = func(env, reg);
1977 err = update_stack_depth(env, state, off);
1978 if (err)
1979 return err;
8726679a 1980
638f5b90 1981 if (t == BPF_WRITE)
61bd5218 1982 err = check_stack_write(env, state, off, size,
af86ca4e 1983 value_regno, insn_idx);
638f5b90 1984 else
61bd5218
JK
1985 err = check_stack_read(env, state, off, size,
1986 value_regno);
de8f3a83 1987 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1988 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1989 verbose(env, "cannot write into packet\n");
969bf05e
AS
1990 return -EACCES;
1991 }
4acf6c0b
BB
1992 if (t == BPF_WRITE && value_regno >= 0 &&
1993 is_pointer_value(env, value_regno)) {
61bd5218
JK
1994 verbose(env, "R%d leaks addr into packet\n",
1995 value_regno);
4acf6c0b
BB
1996 return -EACCES;
1997 }
9fd29c08 1998 err = check_packet_access(env, regno, off, size, false);
969bf05e 1999 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2000 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2001 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2002 if (t == BPF_WRITE && value_regno >= 0 &&
2003 is_pointer_value(env, value_regno)) {
2004 verbose(env, "R%d leaks addr into flow keys\n",
2005 value_regno);
2006 return -EACCES;
2007 }
2008
2009 err = check_flow_keys_access(env, off, size);
2010 if (!err && t == BPF_READ && value_regno >= 0)
2011 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
2012 } else if (reg->type == PTR_TO_SOCKET) {
2013 if (t == BPF_WRITE) {
2014 verbose(env, "cannot write into socket\n");
2015 return -EACCES;
2016 }
2017 err = check_sock_access(env, regno, off, size, t);
2018 if (!err && value_regno >= 0)
2019 mark_reg_unknown(env, regs, value_regno);
17a52670 2020 } else {
61bd5218
JK
2021 verbose(env, "R%d invalid mem access '%s'\n", regno,
2022 reg_type_str[reg->type]);
17a52670
AS
2023 return -EACCES;
2024 }
969bf05e 2025
f1174f77 2026 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2027 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2028 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2029 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2030 }
17a52670
AS
2031 return err;
2032}
2033
31fd8581 2034static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2035{
17a52670
AS
2036 int err;
2037
2038 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2039 insn->imm != 0) {
61bd5218 2040 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2041 return -EINVAL;
2042 }
2043
2044 /* check src1 operand */
dc503a8a 2045 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2046 if (err)
2047 return err;
2048
2049 /* check src2 operand */
dc503a8a 2050 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2051 if (err)
2052 return err;
2053
6bdf6abc 2054 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2055 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2056 return -EACCES;
2057 }
2058
ca369602 2059 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde
DB
2060 is_pkt_reg(env, insn->dst_reg) ||
2061 is_flow_key_reg(env, insn->dst_reg)) {
ca369602 2062 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2063 insn->dst_reg,
2064 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2065 return -EACCES;
2066 }
2067
17a52670 2068 /* check whether atomic_add can read the memory */
31fd8581 2069 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2070 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2071 if (err)
2072 return err;
2073
2074 /* check whether atomic_add can write into the same memory */
31fd8581 2075 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2076 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2077}
2078
2079/* when register 'regno' is passed into function that will read 'access_size'
2080 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2081 * and all elements of stack are initialized.
2082 * Unlike most pointer bounds-checking functions, this one doesn't take an
2083 * 'off' argument, so it has to add in reg->off itself.
17a52670 2084 */
58e2af8b 2085static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2086 int access_size, bool zero_size_allowed,
2087 struct bpf_call_arg_meta *meta)
17a52670 2088{
2a159c6f 2089 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2090 struct bpf_func_state *state = func(env, reg);
638f5b90 2091 int off, i, slot, spi;
17a52670 2092
914cb781 2093 if (reg->type != PTR_TO_STACK) {
f1174f77 2094 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2095 if (zero_size_allowed && access_size == 0 &&
914cb781 2096 register_is_null(reg))
8e2fe1d9
DB
2097 return 0;
2098
61bd5218 2099 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2100 reg_type_str[reg->type],
8e2fe1d9 2101 reg_type_str[PTR_TO_STACK]);
17a52670 2102 return -EACCES;
8e2fe1d9 2103 }
17a52670 2104
f1174f77 2105 /* Only allow fixed-offset stack reads */
914cb781 2106 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2107 char tn_buf[48];
2108
914cb781 2109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2110 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2111 regno, tn_buf);
ea25f914 2112 return -EACCES;
f1174f77 2113 }
914cb781 2114 off = reg->off + reg->var_off.value;
17a52670 2115 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2116 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2117 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2118 regno, off, access_size);
2119 return -EACCES;
2120 }
2121
435faee1
DB
2122 if (meta && meta->raw_mode) {
2123 meta->access_size = access_size;
2124 meta->regno = regno;
2125 return 0;
2126 }
2127
17a52670 2128 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2129 u8 *stype;
2130
638f5b90
AS
2131 slot = -(off + i) - 1;
2132 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2133 if (state->allocated_stack <= slot)
2134 goto err;
2135 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2136 if (*stype == STACK_MISC)
2137 goto mark;
2138 if (*stype == STACK_ZERO) {
2139 /* helper can write anything into the stack */
2140 *stype = STACK_MISC;
2141 goto mark;
17a52670 2142 }
cc2b14d5
AS
2143err:
2144 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2145 off, i, access_size);
2146 return -EACCES;
2147mark:
2148 /* reading any byte out of 8-byte 'spill_slot' will cause
2149 * the whole slot to be marked as 'read'
2150 */
679c782d
EC
2151 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2152 state->stack[spi].spilled_ptr.parent);
17a52670 2153 }
f4d7e40a 2154 return update_stack_depth(env, state, off);
17a52670
AS
2155}
2156
06c1c049
GB
2157static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2158 int access_size, bool zero_size_allowed,
2159 struct bpf_call_arg_meta *meta)
2160{
638f5b90 2161 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2162
f1174f77 2163 switch (reg->type) {
06c1c049 2164 case PTR_TO_PACKET:
de8f3a83 2165 case PTR_TO_PACKET_META:
9fd29c08
YS
2166 return check_packet_access(env, regno, reg->off, access_size,
2167 zero_size_allowed);
06c1c049 2168 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2169 return check_map_access(env, regno, reg->off, access_size,
2170 zero_size_allowed);
f1174f77 2171 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2172 return check_stack_boundary(env, regno, access_size,
2173 zero_size_allowed, meta);
2174 }
2175}
2176
90133415
DB
2177static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2178{
2179 return type == ARG_PTR_TO_MEM ||
2180 type == ARG_PTR_TO_MEM_OR_NULL ||
2181 type == ARG_PTR_TO_UNINIT_MEM;
2182}
2183
2184static bool arg_type_is_mem_size(enum bpf_arg_type type)
2185{
2186 return type == ARG_CONST_SIZE ||
2187 type == ARG_CONST_SIZE_OR_ZERO;
2188}
2189
58e2af8b 2190static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2191 enum bpf_arg_type arg_type,
2192 struct bpf_call_arg_meta *meta)
17a52670 2193{
638f5b90 2194 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2195 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2196 int err = 0;
2197
80f1d68c 2198 if (arg_type == ARG_DONTCARE)
17a52670
AS
2199 return 0;
2200
dc503a8a
EC
2201 err = check_reg_arg(env, regno, SRC_OP);
2202 if (err)
2203 return err;
17a52670 2204
1be7f75d
AS
2205 if (arg_type == ARG_ANYTHING) {
2206 if (is_pointer_value(env, regno)) {
61bd5218
JK
2207 verbose(env, "R%d leaks addr into helper function\n",
2208 regno);
1be7f75d
AS
2209 return -EACCES;
2210 }
80f1d68c 2211 return 0;
1be7f75d 2212 }
80f1d68c 2213
de8f3a83 2214 if (type_is_pkt_pointer(type) &&
3a0af8fd 2215 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2216 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2217 return -EACCES;
2218 }
2219
8e2fe1d9 2220 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2221 arg_type == ARG_PTR_TO_MAP_VALUE ||
2222 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2223 expected_type = PTR_TO_STACK;
d71962f3 2224 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2225 type != expected_type)
6841de8b 2226 goto err_type;
39f19ebb
AS
2227 } else if (arg_type == ARG_CONST_SIZE ||
2228 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2229 expected_type = SCALAR_VALUE;
2230 if (type != expected_type)
6841de8b 2231 goto err_type;
17a52670
AS
2232 } else if (arg_type == ARG_CONST_MAP_PTR) {
2233 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2234 if (type != expected_type)
2235 goto err_type;
608cd71a
AS
2236 } else if (arg_type == ARG_PTR_TO_CTX) {
2237 expected_type = PTR_TO_CTX;
6841de8b
AS
2238 if (type != expected_type)
2239 goto err_type;
58990d1f
DB
2240 err = check_ctx_reg(env, reg, regno);
2241 if (err < 0)
2242 return err;
c64b7983
JS
2243 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2244 expected_type = PTR_TO_SOCKET;
2245 if (type != expected_type)
2246 goto err_type;
fd978bf7
JS
2247 if (meta->ptr_id || !reg->id) {
2248 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2249 meta->ptr_id, reg->id);
2250 return -EFAULT;
2251 }
2252 meta->ptr_id = reg->id;
90133415 2253 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2254 expected_type = PTR_TO_STACK;
2255 /* One exception here. In case function allows for NULL to be
f1174f77 2256 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2257 * happens during stack boundary checking.
2258 */
914cb781 2259 if (register_is_null(reg) &&
db1ac496 2260 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2261 /* final test in check_stack_boundary() */;
de8f3a83
DB
2262 else if (!type_is_pkt_pointer(type) &&
2263 type != PTR_TO_MAP_VALUE &&
f1174f77 2264 type != expected_type)
6841de8b 2265 goto err_type;
39f19ebb 2266 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2267 } else {
61bd5218 2268 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2269 return -EFAULT;
2270 }
2271
17a52670
AS
2272 if (arg_type == ARG_CONST_MAP_PTR) {
2273 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2274 meta->map_ptr = reg->map_ptr;
17a52670
AS
2275 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2276 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2277 * check that [key, key + map->key_size) are within
2278 * stack limits and initialized
2279 */
33ff9823 2280 if (!meta->map_ptr) {
17a52670
AS
2281 /* in function declaration map_ptr must come before
2282 * map_key, so that it's verified and known before
2283 * we have to check map_key here. Otherwise it means
2284 * that kernel subsystem misconfigured verifier
2285 */
61bd5218 2286 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2287 return -EACCES;
2288 }
d71962f3
PC
2289 err = check_helper_mem_access(env, regno,
2290 meta->map_ptr->key_size, false,
2291 NULL);
2ea864c5
MV
2292 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2293 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2294 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2295 * check [value, value + map->value_size) validity
2296 */
33ff9823 2297 if (!meta->map_ptr) {
17a52670 2298 /* kernel subsystem misconfigured verifier */
61bd5218 2299 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2300 return -EACCES;
2301 }
2ea864c5 2302 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2303 err = check_helper_mem_access(env, regno,
2304 meta->map_ptr->value_size, false,
2ea864c5 2305 meta);
90133415 2306 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2307 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2308
849fa506
YS
2309 /* remember the mem_size which may be used later
2310 * to refine return values.
2311 */
2312 meta->msize_smax_value = reg->smax_value;
2313 meta->msize_umax_value = reg->umax_value;
2314
f1174f77
EC
2315 /* The register is SCALAR_VALUE; the access check
2316 * happens using its boundaries.
06c1c049 2317 */
f1174f77 2318 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2319 /* For unprivileged variable accesses, disable raw
2320 * mode so that the program is required to
2321 * initialize all the memory that the helper could
2322 * just partially fill up.
2323 */
2324 meta = NULL;
2325
b03c9f9f 2326 if (reg->smin_value < 0) {
61bd5218 2327 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2328 regno);
2329 return -EACCES;
2330 }
06c1c049 2331
b03c9f9f 2332 if (reg->umin_value == 0) {
f1174f77
EC
2333 err = check_helper_mem_access(env, regno - 1, 0,
2334 zero_size_allowed,
2335 meta);
06c1c049
GB
2336 if (err)
2337 return err;
06c1c049 2338 }
f1174f77 2339
b03c9f9f 2340 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2341 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2342 regno);
2343 return -EACCES;
2344 }
2345 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2346 reg->umax_value,
f1174f77 2347 zero_size_allowed, meta);
17a52670
AS
2348 }
2349
2350 return err;
6841de8b 2351err_type:
61bd5218 2352 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2353 reg_type_str[type], reg_type_str[expected_type]);
2354 return -EACCES;
17a52670
AS
2355}
2356
61bd5218
JK
2357static int check_map_func_compatibility(struct bpf_verifier_env *env,
2358 struct bpf_map *map, int func_id)
35578d79 2359{
35578d79
KX
2360 if (!map)
2361 return 0;
2362
6aff67c8
AS
2363 /* We need a two way check, first is from map perspective ... */
2364 switch (map->map_type) {
2365 case BPF_MAP_TYPE_PROG_ARRAY:
2366 if (func_id != BPF_FUNC_tail_call)
2367 goto error;
2368 break;
2369 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2370 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2371 func_id != BPF_FUNC_perf_event_output &&
2372 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2373 goto error;
2374 break;
2375 case BPF_MAP_TYPE_STACK_TRACE:
2376 if (func_id != BPF_FUNC_get_stackid)
2377 goto error;
2378 break;
4ed8ec52 2379 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2380 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2381 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2382 goto error;
2383 break;
cd339431 2384 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2385 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2386 if (func_id != BPF_FUNC_get_local_storage)
2387 goto error;
2388 break;
546ac1ff
JF
2389 /* devmap returns a pointer to a live net_device ifindex that we cannot
2390 * allow to be modified from bpf side. So do not allow lookup elements
2391 * for now.
2392 */
2393 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2394 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2395 goto error;
2396 break;
fbfc504a
BT
2397 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2398 * appear.
2399 */
6710e112 2400 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2401 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2402 if (func_id != BPF_FUNC_redirect_map)
2403 goto error;
2404 break;
56f668df 2405 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2406 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2407 if (func_id != BPF_FUNC_map_lookup_elem)
2408 goto error;
16a43625 2409 break;
174a79ff
JF
2410 case BPF_MAP_TYPE_SOCKMAP:
2411 if (func_id != BPF_FUNC_sk_redirect_map &&
2412 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2413 func_id != BPF_FUNC_map_delete_elem &&
2414 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2415 goto error;
2416 break;
81110384
JF
2417 case BPF_MAP_TYPE_SOCKHASH:
2418 if (func_id != BPF_FUNC_sk_redirect_hash &&
2419 func_id != BPF_FUNC_sock_hash_update &&
2420 func_id != BPF_FUNC_map_delete_elem &&
2421 func_id != BPF_FUNC_msg_redirect_hash)
2422 goto error;
2423 break;
2dbb9b9e
MKL
2424 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2425 if (func_id != BPF_FUNC_sk_select_reuseport)
2426 goto error;
2427 break;
f1a2e44a
MV
2428 case BPF_MAP_TYPE_QUEUE:
2429 case BPF_MAP_TYPE_STACK:
2430 if (func_id != BPF_FUNC_map_peek_elem &&
2431 func_id != BPF_FUNC_map_pop_elem &&
2432 func_id != BPF_FUNC_map_push_elem)
2433 goto error;
2434 break;
6aff67c8
AS
2435 default:
2436 break;
2437 }
2438
2439 /* ... and second from the function itself. */
2440 switch (func_id) {
2441 case BPF_FUNC_tail_call:
2442 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2443 goto error;
f910cefa 2444 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2445 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2446 return -EINVAL;
2447 }
6aff67c8
AS
2448 break;
2449 case BPF_FUNC_perf_event_read:
2450 case BPF_FUNC_perf_event_output:
908432ca 2451 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2452 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2453 goto error;
2454 break;
2455 case BPF_FUNC_get_stackid:
2456 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2457 goto error;
2458 break;
60d20f91 2459 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2460 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2461 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2462 goto error;
2463 break;
97f91a7c 2464 case BPF_FUNC_redirect_map:
9c270af3 2465 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2466 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2467 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2468 goto error;
2469 break;
174a79ff 2470 case BPF_FUNC_sk_redirect_map:
4f738adb 2471 case BPF_FUNC_msg_redirect_map:
81110384 2472 case BPF_FUNC_sock_map_update:
174a79ff
JF
2473 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2474 goto error;
2475 break;
81110384
JF
2476 case BPF_FUNC_sk_redirect_hash:
2477 case BPF_FUNC_msg_redirect_hash:
2478 case BPF_FUNC_sock_hash_update:
2479 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2480 goto error;
2481 break;
cd339431 2482 case BPF_FUNC_get_local_storage:
b741f163
RG
2483 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2484 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2485 goto error;
2486 break;
2dbb9b9e
MKL
2487 case BPF_FUNC_sk_select_reuseport:
2488 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2489 goto error;
2490 break;
f1a2e44a
MV
2491 case BPF_FUNC_map_peek_elem:
2492 case BPF_FUNC_map_pop_elem:
2493 case BPF_FUNC_map_push_elem:
2494 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2495 map->map_type != BPF_MAP_TYPE_STACK)
2496 goto error;
2497 break;
6aff67c8
AS
2498 default:
2499 break;
35578d79
KX
2500 }
2501
2502 return 0;
6aff67c8 2503error:
61bd5218 2504 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2505 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2506 return -EINVAL;
35578d79
KX
2507}
2508
90133415 2509static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2510{
2511 int count = 0;
2512
39f19ebb 2513 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2514 count++;
39f19ebb 2515 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2516 count++;
39f19ebb 2517 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2518 count++;
39f19ebb 2519 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2520 count++;
39f19ebb 2521 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2522 count++;
2523
90133415
DB
2524 /* We only support one arg being in raw mode at the moment,
2525 * which is sufficient for the helper functions we have
2526 * right now.
2527 */
2528 return count <= 1;
2529}
2530
2531static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2532 enum bpf_arg_type arg_next)
2533{
2534 return (arg_type_is_mem_ptr(arg_curr) &&
2535 !arg_type_is_mem_size(arg_next)) ||
2536 (!arg_type_is_mem_ptr(arg_curr) &&
2537 arg_type_is_mem_size(arg_next));
2538}
2539
2540static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2541{
2542 /* bpf_xxx(..., buf, len) call will access 'len'
2543 * bytes from memory 'buf'. Both arg types need
2544 * to be paired, so make sure there's no buggy
2545 * helper function specification.
2546 */
2547 if (arg_type_is_mem_size(fn->arg1_type) ||
2548 arg_type_is_mem_ptr(fn->arg5_type) ||
2549 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2550 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2551 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2552 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2553 return false;
2554
2555 return true;
2556}
2557
fd978bf7
JS
2558static bool check_refcount_ok(const struct bpf_func_proto *fn)
2559{
2560 int count = 0;
2561
2562 if (arg_type_is_refcounted(fn->arg1_type))
2563 count++;
2564 if (arg_type_is_refcounted(fn->arg2_type))
2565 count++;
2566 if (arg_type_is_refcounted(fn->arg3_type))
2567 count++;
2568 if (arg_type_is_refcounted(fn->arg4_type))
2569 count++;
2570 if (arg_type_is_refcounted(fn->arg5_type))
2571 count++;
2572
2573 /* We only support one arg being unreferenced at the moment,
2574 * which is sufficient for the helper functions we have right now.
2575 */
2576 return count <= 1;
2577}
2578
90133415
DB
2579static int check_func_proto(const struct bpf_func_proto *fn)
2580{
2581 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2582 check_arg_pair_ok(fn) &&
2583 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2584}
2585
de8f3a83
DB
2586/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2587 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2588 */
f4d7e40a
AS
2589static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2590 struct bpf_func_state *state)
969bf05e 2591{
58e2af8b 2592 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2593 int i;
2594
2595 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2596 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2597 mark_reg_unknown(env, regs, i);
969bf05e 2598
f3709f69
JS
2599 bpf_for_each_spilled_reg(i, state, reg) {
2600 if (!reg)
969bf05e 2601 continue;
de8f3a83
DB
2602 if (reg_is_pkt_pointer_any(reg))
2603 __mark_reg_unknown(reg);
969bf05e
AS
2604 }
2605}
2606
f4d7e40a
AS
2607static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2608{
2609 struct bpf_verifier_state *vstate = env->cur_state;
2610 int i;
2611
2612 for (i = 0; i <= vstate->curframe; i++)
2613 __clear_all_pkt_pointers(env, vstate->frame[i]);
2614}
2615
fd978bf7
JS
2616static void release_reg_references(struct bpf_verifier_env *env,
2617 struct bpf_func_state *state, int id)
2618{
2619 struct bpf_reg_state *regs = state->regs, *reg;
2620 int i;
2621
2622 for (i = 0; i < MAX_BPF_REG; i++)
2623 if (regs[i].id == id)
2624 mark_reg_unknown(env, regs, i);
2625
2626 bpf_for_each_spilled_reg(i, state, reg) {
2627 if (!reg)
2628 continue;
2629 if (reg_is_refcounted(reg) && reg->id == id)
2630 __mark_reg_unknown(reg);
2631 }
2632}
2633
2634/* The pointer with the specified id has released its reference to kernel
2635 * resources. Identify all copies of the same pointer and clear the reference.
2636 */
2637static int release_reference(struct bpf_verifier_env *env,
2638 struct bpf_call_arg_meta *meta)
2639{
2640 struct bpf_verifier_state *vstate = env->cur_state;
2641 int i;
2642
2643 for (i = 0; i <= vstate->curframe; i++)
2644 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2645
2646 return release_reference_state(env, meta->ptr_id);
2647}
2648
f4d7e40a
AS
2649static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2650 int *insn_idx)
2651{
2652 struct bpf_verifier_state *state = env->cur_state;
2653 struct bpf_func_state *caller, *callee;
fd978bf7 2654 int i, err, subprog, target_insn;
f4d7e40a 2655
aada9ce6 2656 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2657 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2658 state->curframe + 2);
f4d7e40a
AS
2659 return -E2BIG;
2660 }
2661
2662 target_insn = *insn_idx + insn->imm;
2663 subprog = find_subprog(env, target_insn + 1);
2664 if (subprog < 0) {
2665 verbose(env, "verifier bug. No program starts at insn %d\n",
2666 target_insn + 1);
2667 return -EFAULT;
2668 }
2669
2670 caller = state->frame[state->curframe];
2671 if (state->frame[state->curframe + 1]) {
2672 verbose(env, "verifier bug. Frame %d already allocated\n",
2673 state->curframe + 1);
2674 return -EFAULT;
2675 }
2676
2677 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2678 if (!callee)
2679 return -ENOMEM;
2680 state->frame[state->curframe + 1] = callee;
2681
2682 /* callee cannot access r0, r6 - r9 for reading and has to write
2683 * into its own stack before reading from it.
2684 * callee can read/write into caller's stack
2685 */
2686 init_func_state(env, callee,
2687 /* remember the callsite, it will be used by bpf_exit */
2688 *insn_idx /* callsite */,
2689 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2690 subprog /* subprog number within this prog */);
f4d7e40a 2691
fd978bf7
JS
2692 /* Transfer references to the callee */
2693 err = transfer_reference_state(callee, caller);
2694 if (err)
2695 return err;
2696
679c782d
EC
2697 /* copy r1 - r5 args that callee can access. The copy includes parent
2698 * pointers, which connects us up to the liveness chain
2699 */
f4d7e40a
AS
2700 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2701 callee->regs[i] = caller->regs[i];
2702
679c782d 2703 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2704 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2705 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2706 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2707 }
2708
2709 /* only increment it after check_reg_arg() finished */
2710 state->curframe++;
2711
2712 /* and go analyze first insn of the callee */
2713 *insn_idx = target_insn;
2714
2715 if (env->log.level) {
2716 verbose(env, "caller:\n");
2717 print_verifier_state(env, caller);
2718 verbose(env, "callee:\n");
2719 print_verifier_state(env, callee);
2720 }
2721 return 0;
2722}
2723
2724static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2725{
2726 struct bpf_verifier_state *state = env->cur_state;
2727 struct bpf_func_state *caller, *callee;
2728 struct bpf_reg_state *r0;
fd978bf7 2729 int err;
f4d7e40a
AS
2730
2731 callee = state->frame[state->curframe];
2732 r0 = &callee->regs[BPF_REG_0];
2733 if (r0->type == PTR_TO_STACK) {
2734 /* technically it's ok to return caller's stack pointer
2735 * (or caller's caller's pointer) back to the caller,
2736 * since these pointers are valid. Only current stack
2737 * pointer will be invalid as soon as function exits,
2738 * but let's be conservative
2739 */
2740 verbose(env, "cannot return stack pointer to the caller\n");
2741 return -EINVAL;
2742 }
2743
2744 state->curframe--;
2745 caller = state->frame[state->curframe];
2746 /* return to the caller whatever r0 had in the callee */
2747 caller->regs[BPF_REG_0] = *r0;
2748
fd978bf7
JS
2749 /* Transfer references to the caller */
2750 err = transfer_reference_state(caller, callee);
2751 if (err)
2752 return err;
2753
f4d7e40a
AS
2754 *insn_idx = callee->callsite + 1;
2755 if (env->log.level) {
2756 verbose(env, "returning from callee:\n");
2757 print_verifier_state(env, callee);
2758 verbose(env, "to caller at %d:\n", *insn_idx);
2759 print_verifier_state(env, caller);
2760 }
2761 /* clear everything in the callee */
2762 free_func_state(callee);
2763 state->frame[state->curframe + 1] = NULL;
2764 return 0;
2765}
2766
849fa506
YS
2767static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2768 int func_id,
2769 struct bpf_call_arg_meta *meta)
2770{
2771 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2772
2773 if (ret_type != RET_INTEGER ||
2774 (func_id != BPF_FUNC_get_stack &&
2775 func_id != BPF_FUNC_probe_read_str))
2776 return;
2777
2778 ret_reg->smax_value = meta->msize_smax_value;
2779 ret_reg->umax_value = meta->msize_umax_value;
2780 __reg_deduce_bounds(ret_reg);
2781 __reg_bound_offset(ret_reg);
2782}
2783
c93552c4
DB
2784static int
2785record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2786 int func_id, int insn_idx)
2787{
2788 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2789
2790 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2791 func_id != BPF_FUNC_map_lookup_elem &&
2792 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2793 func_id != BPF_FUNC_map_delete_elem &&
2794 func_id != BPF_FUNC_map_push_elem &&
2795 func_id != BPF_FUNC_map_pop_elem &&
2796 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2797 return 0;
09772d92 2798
c93552c4
DB
2799 if (meta->map_ptr == NULL) {
2800 verbose(env, "kernel subsystem misconfigured verifier\n");
2801 return -EINVAL;
2802 }
2803
2804 if (!BPF_MAP_PTR(aux->map_state))
2805 bpf_map_ptr_store(aux, meta->map_ptr,
2806 meta->map_ptr->unpriv_array);
2807 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2808 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2809 meta->map_ptr->unpriv_array);
2810 return 0;
2811}
2812
fd978bf7
JS
2813static int check_reference_leak(struct bpf_verifier_env *env)
2814{
2815 struct bpf_func_state *state = cur_func(env);
2816 int i;
2817
2818 for (i = 0; i < state->acquired_refs; i++) {
2819 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2820 state->refs[i].id, state->refs[i].insn_idx);
2821 }
2822 return state->acquired_refs ? -EINVAL : 0;
2823}
2824
f4d7e40a 2825static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2826{
17a52670 2827 const struct bpf_func_proto *fn = NULL;
638f5b90 2828 struct bpf_reg_state *regs;
33ff9823 2829 struct bpf_call_arg_meta meta;
969bf05e 2830 bool changes_data;
17a52670
AS
2831 int i, err;
2832
2833 /* find function prototype */
2834 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2835 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2836 func_id);
17a52670
AS
2837 return -EINVAL;
2838 }
2839
00176a34 2840 if (env->ops->get_func_proto)
5e43f899 2841 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2842 if (!fn) {
61bd5218
JK
2843 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2844 func_id);
17a52670
AS
2845 return -EINVAL;
2846 }
2847
2848 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2849 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2850 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2851 return -EINVAL;
2852 }
2853
04514d13 2854 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2855 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2856 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2857 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2858 func_id_name(func_id), func_id);
2859 return -EINVAL;
2860 }
969bf05e 2861
33ff9823 2862 memset(&meta, 0, sizeof(meta));
36bbef52 2863 meta.pkt_access = fn->pkt_access;
33ff9823 2864
90133415 2865 err = check_func_proto(fn);
435faee1 2866 if (err) {
61bd5218 2867 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2868 func_id_name(func_id), func_id);
435faee1
DB
2869 return err;
2870 }
2871
17a52670 2872 /* check args */
33ff9823 2873 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2874 if (err)
2875 return err;
33ff9823 2876 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2877 if (err)
2878 return err;
33ff9823 2879 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2880 if (err)
2881 return err;
33ff9823 2882 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2883 if (err)
2884 return err;
33ff9823 2885 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2886 if (err)
2887 return err;
2888
c93552c4
DB
2889 err = record_func_map(env, &meta, func_id, insn_idx);
2890 if (err)
2891 return err;
2892
435faee1
DB
2893 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2894 * is inferred from register state.
2895 */
2896 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2897 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2898 BPF_WRITE, -1, false);
435faee1
DB
2899 if (err)
2900 return err;
2901 }
2902
fd978bf7
JS
2903 if (func_id == BPF_FUNC_tail_call) {
2904 err = check_reference_leak(env);
2905 if (err) {
2906 verbose(env, "tail_call would lead to reference leak\n");
2907 return err;
2908 }
2909 } else if (is_release_function(func_id)) {
2910 err = release_reference(env, &meta);
2911 if (err)
2912 return err;
2913 }
2914
638f5b90 2915 regs = cur_regs(env);
cd339431
RG
2916
2917 /* check that flags argument in get_local_storage(map, flags) is 0,
2918 * this is required because get_local_storage() can't return an error.
2919 */
2920 if (func_id == BPF_FUNC_get_local_storage &&
2921 !register_is_null(&regs[BPF_REG_2])) {
2922 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2923 return -EINVAL;
2924 }
2925
17a52670 2926 /* reset caller saved regs */
dc503a8a 2927 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2928 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2929 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2930 }
17a52670 2931
dc503a8a 2932 /* update return register (already marked as written above) */
17a52670 2933 if (fn->ret_type == RET_INTEGER) {
f1174f77 2934 /* sets type to SCALAR_VALUE */
61bd5218 2935 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2936 } else if (fn->ret_type == RET_VOID) {
2937 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2938 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2939 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 2940 /* There is no offset yet applied, variable or fixed */
61bd5218 2941 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2942 /* remember map_ptr, so that check_map_access()
2943 * can check 'value_size' boundary of memory access
2944 * to map element returned from bpf_map_lookup_elem()
2945 */
33ff9823 2946 if (meta.map_ptr == NULL) {
61bd5218
JK
2947 verbose(env,
2948 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2949 return -EINVAL;
2950 }
33ff9823 2951 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
2952 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2953 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2954 } else {
2955 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2956 regs[BPF_REG_0].id = ++env->id_gen;
2957 }
c64b7983 2958 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2959 int id = acquire_reference_state(env, insn_idx);
2960 if (id < 0)
2961 return id;
c64b7983
JS
2962 mark_reg_known_zero(env, regs, BPF_REG_0);
2963 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2964 regs[BPF_REG_0].id = id;
17a52670 2965 } else {
61bd5218 2966 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2967 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2968 return -EINVAL;
2969 }
04fd61ab 2970
849fa506
YS
2971 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2972
61bd5218 2973 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2974 if (err)
2975 return err;
04fd61ab 2976
c195651e
YS
2977 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2978 const char *err_str;
2979
2980#ifdef CONFIG_PERF_EVENTS
2981 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2982 err_str = "cannot get callchain buffer for func %s#%d\n";
2983#else
2984 err = -ENOTSUPP;
2985 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2986#endif
2987 if (err) {
2988 verbose(env, err_str, func_id_name(func_id), func_id);
2989 return err;
2990 }
2991
2992 env->prog->has_callchain_buf = true;
2993 }
2994
969bf05e
AS
2995 if (changes_data)
2996 clear_all_pkt_pointers(env);
2997 return 0;
2998}
2999
b03c9f9f
EC
3000static bool signed_add_overflows(s64 a, s64 b)
3001{
3002 /* Do the add in u64, where overflow is well-defined */
3003 s64 res = (s64)((u64)a + (u64)b);
3004
3005 if (b < 0)
3006 return res > a;
3007 return res < a;
3008}
3009
3010static bool signed_sub_overflows(s64 a, s64 b)
3011{
3012 /* Do the sub in u64, where overflow is well-defined */
3013 s64 res = (s64)((u64)a - (u64)b);
3014
3015 if (b < 0)
3016 return res < a;
3017 return res > a;
969bf05e
AS
3018}
3019
bb7f0f98
AS
3020static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3021 const struct bpf_reg_state *reg,
3022 enum bpf_reg_type type)
3023{
3024 bool known = tnum_is_const(reg->var_off);
3025 s64 val = reg->var_off.value;
3026 s64 smin = reg->smin_value;
3027
3028 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3029 verbose(env, "math between %s pointer and %lld is not allowed\n",
3030 reg_type_str[type], val);
3031 return false;
3032 }
3033
3034 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3035 verbose(env, "%s pointer offset %d is not allowed\n",
3036 reg_type_str[type], reg->off);
3037 return false;
3038 }
3039
3040 if (smin == S64_MIN) {
3041 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3042 reg_type_str[type]);
3043 return false;
3044 }
3045
3046 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3047 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3048 smin, reg_type_str[type]);
3049 return false;
3050 }
3051
3052 return true;
3053}
3054
f1174f77 3055/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3056 * Caller should also handle BPF_MOV case separately.
3057 * If we return -EACCES, caller may want to try again treating pointer as a
3058 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3059 */
3060static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3061 struct bpf_insn *insn,
3062 const struct bpf_reg_state *ptr_reg,
3063 const struct bpf_reg_state *off_reg)
969bf05e 3064{
f4d7e40a
AS
3065 struct bpf_verifier_state *vstate = env->cur_state;
3066 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3067 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3068 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3069 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3070 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3071 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3072 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 3073 u8 opcode = BPF_OP(insn->code);
f1174f77 3074 u32 dst = insn->dst_reg;
969bf05e 3075
f1174f77 3076 dst_reg = &regs[dst];
969bf05e 3077
6f16101e
DB
3078 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3079 smin_val > smax_val || umin_val > umax_val) {
3080 /* Taint dst register if offset had invalid bounds derived from
3081 * e.g. dead branches.
3082 */
3083 __mark_reg_unknown(dst_reg);
3084 return 0;
f1174f77
EC
3085 }
3086
3087 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3088 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3089 verbose(env,
3090 "R%d 32-bit pointer arithmetic prohibited\n",
3091 dst);
f1174f77 3092 return -EACCES;
969bf05e
AS
3093 }
3094
aad2eeaf
JS
3095 switch (ptr_reg->type) {
3096 case PTR_TO_MAP_VALUE_OR_NULL:
3097 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3098 dst, reg_type_str[ptr_reg->type]);
f1174f77 3099 return -EACCES;
aad2eeaf
JS
3100 case CONST_PTR_TO_MAP:
3101 case PTR_TO_PACKET_END:
c64b7983
JS
3102 case PTR_TO_SOCKET:
3103 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
3104 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3105 dst, reg_type_str[ptr_reg->type]);
f1174f77 3106 return -EACCES;
aad2eeaf
JS
3107 default:
3108 break;
f1174f77
EC
3109 }
3110
3111 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3112 * The id may be overwritten later if we create a new variable offset.
969bf05e 3113 */
f1174f77
EC
3114 dst_reg->type = ptr_reg->type;
3115 dst_reg->id = ptr_reg->id;
969bf05e 3116
bb7f0f98
AS
3117 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3118 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3119 return -EINVAL;
3120
f1174f77
EC
3121 switch (opcode) {
3122 case BPF_ADD:
3123 /* We can take a fixed offset as long as it doesn't overflow
3124 * the s32 'off' field
969bf05e 3125 */
b03c9f9f
EC
3126 if (known && (ptr_reg->off + smin_val ==
3127 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3128 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3129 dst_reg->smin_value = smin_ptr;
3130 dst_reg->smax_value = smax_ptr;
3131 dst_reg->umin_value = umin_ptr;
3132 dst_reg->umax_value = umax_ptr;
f1174f77 3133 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3134 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3135 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3136 break;
3137 }
f1174f77
EC
3138 /* A new variable offset is created. Note that off_reg->off
3139 * == 0, since it's a scalar.
3140 * dst_reg gets the pointer type and since some positive
3141 * integer value was added to the pointer, give it a new 'id'
3142 * if it's a PTR_TO_PACKET.
3143 * this creates a new 'base' pointer, off_reg (variable) gets
3144 * added into the variable offset, and we copy the fixed offset
3145 * from ptr_reg.
969bf05e 3146 */
b03c9f9f
EC
3147 if (signed_add_overflows(smin_ptr, smin_val) ||
3148 signed_add_overflows(smax_ptr, smax_val)) {
3149 dst_reg->smin_value = S64_MIN;
3150 dst_reg->smax_value = S64_MAX;
3151 } else {
3152 dst_reg->smin_value = smin_ptr + smin_val;
3153 dst_reg->smax_value = smax_ptr + smax_val;
3154 }
3155 if (umin_ptr + umin_val < umin_ptr ||
3156 umax_ptr + umax_val < umax_ptr) {
3157 dst_reg->umin_value = 0;
3158 dst_reg->umax_value = U64_MAX;
3159 } else {
3160 dst_reg->umin_value = umin_ptr + umin_val;
3161 dst_reg->umax_value = umax_ptr + umax_val;
3162 }
f1174f77
EC
3163 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3164 dst_reg->off = ptr_reg->off;
0962590e 3165 dst_reg->raw = ptr_reg->raw;
de8f3a83 3166 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3167 dst_reg->id = ++env->id_gen;
3168 /* something was added to pkt_ptr, set range to zero */
0962590e 3169 dst_reg->raw = 0;
f1174f77
EC
3170 }
3171 break;
3172 case BPF_SUB:
3173 if (dst_reg == off_reg) {
3174 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3175 verbose(env, "R%d tried to subtract pointer from scalar\n",
3176 dst);
f1174f77
EC
3177 return -EACCES;
3178 }
3179 /* We don't allow subtraction from FP, because (according to
3180 * test_verifier.c test "invalid fp arithmetic", JITs might not
3181 * be able to deal with it.
969bf05e 3182 */
f1174f77 3183 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3184 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3185 dst);
f1174f77
EC
3186 return -EACCES;
3187 }
b03c9f9f
EC
3188 if (known && (ptr_reg->off - smin_val ==
3189 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3190 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3191 dst_reg->smin_value = smin_ptr;
3192 dst_reg->smax_value = smax_ptr;
3193 dst_reg->umin_value = umin_ptr;
3194 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3195 dst_reg->var_off = ptr_reg->var_off;
3196 dst_reg->id = ptr_reg->id;
b03c9f9f 3197 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3198 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3199 break;
3200 }
f1174f77
EC
3201 /* A new variable offset is created. If the subtrahend is known
3202 * nonnegative, then any reg->range we had before is still good.
969bf05e 3203 */
b03c9f9f
EC
3204 if (signed_sub_overflows(smin_ptr, smax_val) ||
3205 signed_sub_overflows(smax_ptr, smin_val)) {
3206 /* Overflow possible, we know nothing */
3207 dst_reg->smin_value = S64_MIN;
3208 dst_reg->smax_value = S64_MAX;
3209 } else {
3210 dst_reg->smin_value = smin_ptr - smax_val;
3211 dst_reg->smax_value = smax_ptr - smin_val;
3212 }
3213 if (umin_ptr < umax_val) {
3214 /* Overflow possible, we know nothing */
3215 dst_reg->umin_value = 0;
3216 dst_reg->umax_value = U64_MAX;
3217 } else {
3218 /* Cannot overflow (as long as bounds are consistent) */
3219 dst_reg->umin_value = umin_ptr - umax_val;
3220 dst_reg->umax_value = umax_ptr - umin_val;
3221 }
f1174f77
EC
3222 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3223 dst_reg->off = ptr_reg->off;
0962590e 3224 dst_reg->raw = ptr_reg->raw;
de8f3a83 3225 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3226 dst_reg->id = ++env->id_gen;
3227 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3228 if (smin_val < 0)
0962590e 3229 dst_reg->raw = 0;
43188702 3230 }
f1174f77
EC
3231 break;
3232 case BPF_AND:
3233 case BPF_OR:
3234 case BPF_XOR:
82abbf8d
AS
3235 /* bitwise ops on pointers are troublesome, prohibit. */
3236 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3237 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3238 return -EACCES;
3239 default:
3240 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3241 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3242 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3243 return -EACCES;
43188702
JF
3244 }
3245
bb7f0f98
AS
3246 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3247 return -EINVAL;
3248
b03c9f9f
EC
3249 __update_reg_bounds(dst_reg);
3250 __reg_deduce_bounds(dst_reg);
3251 __reg_bound_offset(dst_reg);
43188702
JF
3252 return 0;
3253}
3254
468f6eaf
JH
3255/* WARNING: This function does calculations on 64-bit values, but the actual
3256 * execution may occur on 32-bit values. Therefore, things like bitshifts
3257 * need extra checks in the 32-bit case.
3258 */
f1174f77
EC
3259static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3260 struct bpf_insn *insn,
3261 struct bpf_reg_state *dst_reg,
3262 struct bpf_reg_state src_reg)
969bf05e 3263{
638f5b90 3264 struct bpf_reg_state *regs = cur_regs(env);
48461135 3265 u8 opcode = BPF_OP(insn->code);
f1174f77 3266 bool src_known, dst_known;
b03c9f9f
EC
3267 s64 smin_val, smax_val;
3268 u64 umin_val, umax_val;
468f6eaf 3269 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3270
b799207e
JH
3271 if (insn_bitness == 32) {
3272 /* Relevant for 32-bit RSH: Information can propagate towards
3273 * LSB, so it isn't sufficient to only truncate the output to
3274 * 32 bits.
3275 */
3276 coerce_reg_to_size(dst_reg, 4);
3277 coerce_reg_to_size(&src_reg, 4);
3278 }
3279
b03c9f9f
EC
3280 smin_val = src_reg.smin_value;
3281 smax_val = src_reg.smax_value;
3282 umin_val = src_reg.umin_value;
3283 umax_val = src_reg.umax_value;
f1174f77
EC
3284 src_known = tnum_is_const(src_reg.var_off);
3285 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3286
6f16101e
DB
3287 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3288 smin_val > smax_val || umin_val > umax_val) {
3289 /* Taint dst register if offset had invalid bounds derived from
3290 * e.g. dead branches.
3291 */
3292 __mark_reg_unknown(dst_reg);
3293 return 0;
3294 }
3295
bb7f0f98
AS
3296 if (!src_known &&
3297 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3298 __mark_reg_unknown(dst_reg);
3299 return 0;
3300 }
3301
48461135
JB
3302 switch (opcode) {
3303 case BPF_ADD:
b03c9f9f
EC
3304 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3305 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3306 dst_reg->smin_value = S64_MIN;
3307 dst_reg->smax_value = S64_MAX;
3308 } else {
3309 dst_reg->smin_value += smin_val;
3310 dst_reg->smax_value += smax_val;
3311 }
3312 if (dst_reg->umin_value + umin_val < umin_val ||
3313 dst_reg->umax_value + umax_val < umax_val) {
3314 dst_reg->umin_value = 0;
3315 dst_reg->umax_value = U64_MAX;
3316 } else {
3317 dst_reg->umin_value += umin_val;
3318 dst_reg->umax_value += umax_val;
3319 }
f1174f77 3320 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3321 break;
3322 case BPF_SUB:
b03c9f9f
EC
3323 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3324 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3325 /* Overflow possible, we know nothing */
3326 dst_reg->smin_value = S64_MIN;
3327 dst_reg->smax_value = S64_MAX;
3328 } else {
3329 dst_reg->smin_value -= smax_val;
3330 dst_reg->smax_value -= smin_val;
3331 }
3332 if (dst_reg->umin_value < umax_val) {
3333 /* Overflow possible, we know nothing */
3334 dst_reg->umin_value = 0;
3335 dst_reg->umax_value = U64_MAX;
3336 } else {
3337 /* Cannot overflow (as long as bounds are consistent) */
3338 dst_reg->umin_value -= umax_val;
3339 dst_reg->umax_value -= umin_val;
3340 }
f1174f77 3341 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3342 break;
3343 case BPF_MUL:
b03c9f9f
EC
3344 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3345 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3346 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3347 __mark_reg_unbounded(dst_reg);
3348 __update_reg_bounds(dst_reg);
f1174f77
EC
3349 break;
3350 }
b03c9f9f
EC
3351 /* Both values are positive, so we can work with unsigned and
3352 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3353 */
b03c9f9f
EC
3354 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3355 /* Potential overflow, we know nothing */
3356 __mark_reg_unbounded(dst_reg);
3357 /* (except what we can learn from the var_off) */
3358 __update_reg_bounds(dst_reg);
3359 break;
3360 }
3361 dst_reg->umin_value *= umin_val;
3362 dst_reg->umax_value *= umax_val;
3363 if (dst_reg->umax_value > S64_MAX) {
3364 /* Overflow possible, we know nothing */
3365 dst_reg->smin_value = S64_MIN;
3366 dst_reg->smax_value = S64_MAX;
3367 } else {
3368 dst_reg->smin_value = dst_reg->umin_value;
3369 dst_reg->smax_value = dst_reg->umax_value;
3370 }
48461135
JB
3371 break;
3372 case BPF_AND:
f1174f77 3373 if (src_known && dst_known) {
b03c9f9f
EC
3374 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3375 src_reg.var_off.value);
f1174f77
EC
3376 break;
3377 }
b03c9f9f
EC
3378 /* We get our minimum from the var_off, since that's inherently
3379 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3380 */
f1174f77 3381 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3382 dst_reg->umin_value = dst_reg->var_off.value;
3383 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3384 if (dst_reg->smin_value < 0 || smin_val < 0) {
3385 /* Lose signed bounds when ANDing negative numbers,
3386 * ain't nobody got time for that.
3387 */
3388 dst_reg->smin_value = S64_MIN;
3389 dst_reg->smax_value = S64_MAX;
3390 } else {
3391 /* ANDing two positives gives a positive, so safe to
3392 * cast result into s64.
3393 */
3394 dst_reg->smin_value = dst_reg->umin_value;
3395 dst_reg->smax_value = dst_reg->umax_value;
3396 }
3397 /* We may learn something more from the var_off */
3398 __update_reg_bounds(dst_reg);
f1174f77
EC
3399 break;
3400 case BPF_OR:
3401 if (src_known && dst_known) {
b03c9f9f
EC
3402 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3403 src_reg.var_off.value);
f1174f77
EC
3404 break;
3405 }
b03c9f9f
EC
3406 /* We get our maximum from the var_off, and our minimum is the
3407 * maximum of the operands' minima
f1174f77
EC
3408 */
3409 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3410 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3411 dst_reg->umax_value = dst_reg->var_off.value |
3412 dst_reg->var_off.mask;
3413 if (dst_reg->smin_value < 0 || smin_val < 0) {
3414 /* Lose signed bounds when ORing negative numbers,
3415 * ain't nobody got time for that.
3416 */
3417 dst_reg->smin_value = S64_MIN;
3418 dst_reg->smax_value = S64_MAX;
f1174f77 3419 } else {
b03c9f9f
EC
3420 /* ORing two positives gives a positive, so safe to
3421 * cast result into s64.
3422 */
3423 dst_reg->smin_value = dst_reg->umin_value;
3424 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3425 }
b03c9f9f
EC
3426 /* We may learn something more from the var_off */
3427 __update_reg_bounds(dst_reg);
48461135
JB
3428 break;
3429 case BPF_LSH:
468f6eaf
JH
3430 if (umax_val >= insn_bitness) {
3431 /* Shifts greater than 31 or 63 are undefined.
3432 * This includes shifts by a negative number.
b03c9f9f 3433 */
61bd5218 3434 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3435 break;
3436 }
b03c9f9f
EC
3437 /* We lose all sign bit information (except what we can pick
3438 * up from var_off)
48461135 3439 */
b03c9f9f
EC
3440 dst_reg->smin_value = S64_MIN;
3441 dst_reg->smax_value = S64_MAX;
3442 /* If we might shift our top bit out, then we know nothing */
3443 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3444 dst_reg->umin_value = 0;
3445 dst_reg->umax_value = U64_MAX;
d1174416 3446 } else {
b03c9f9f
EC
3447 dst_reg->umin_value <<= umin_val;
3448 dst_reg->umax_value <<= umax_val;
d1174416 3449 }
afbe1a5b 3450 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3451 /* We may learn something more from the var_off */
3452 __update_reg_bounds(dst_reg);
48461135
JB
3453 break;
3454 case BPF_RSH:
468f6eaf
JH
3455 if (umax_val >= insn_bitness) {
3456 /* Shifts greater than 31 or 63 are undefined.
3457 * This includes shifts by a negative number.
b03c9f9f 3458 */
61bd5218 3459 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3460 break;
3461 }
4374f256
EC
3462 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3463 * be negative, then either:
3464 * 1) src_reg might be zero, so the sign bit of the result is
3465 * unknown, so we lose our signed bounds
3466 * 2) it's known negative, thus the unsigned bounds capture the
3467 * signed bounds
3468 * 3) the signed bounds cross zero, so they tell us nothing
3469 * about the result
3470 * If the value in dst_reg is known nonnegative, then again the
3471 * unsigned bounts capture the signed bounds.
3472 * Thus, in all cases it suffices to blow away our signed bounds
3473 * and rely on inferring new ones from the unsigned bounds and
3474 * var_off of the result.
3475 */
3476 dst_reg->smin_value = S64_MIN;
3477 dst_reg->smax_value = S64_MAX;
afbe1a5b 3478 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3479 dst_reg->umin_value >>= umax_val;
3480 dst_reg->umax_value >>= umin_val;
3481 /* We may learn something more from the var_off */
3482 __update_reg_bounds(dst_reg);
48461135 3483 break;
9cbe1f5a
YS
3484 case BPF_ARSH:
3485 if (umax_val >= insn_bitness) {
3486 /* Shifts greater than 31 or 63 are undefined.
3487 * This includes shifts by a negative number.
3488 */
3489 mark_reg_unknown(env, regs, insn->dst_reg);
3490 break;
3491 }
3492
3493 /* Upon reaching here, src_known is true and
3494 * umax_val is equal to umin_val.
3495 */
3496 dst_reg->smin_value >>= umin_val;
3497 dst_reg->smax_value >>= umin_val;
3498 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3499
3500 /* blow away the dst_reg umin_value/umax_value and rely on
3501 * dst_reg var_off to refine the result.
3502 */
3503 dst_reg->umin_value = 0;
3504 dst_reg->umax_value = U64_MAX;
3505 __update_reg_bounds(dst_reg);
3506 break;
48461135 3507 default:
61bd5218 3508 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3509 break;
3510 }
3511
468f6eaf
JH
3512 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3513 /* 32-bit ALU ops are (32,32)->32 */
3514 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3515 }
3516
b03c9f9f
EC
3517 __reg_deduce_bounds(dst_reg);
3518 __reg_bound_offset(dst_reg);
f1174f77
EC
3519 return 0;
3520}
3521
3522/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3523 * and var_off.
3524 */
3525static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3526 struct bpf_insn *insn)
3527{
f4d7e40a
AS
3528 struct bpf_verifier_state *vstate = env->cur_state;
3529 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3530 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3531 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3532 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3533
3534 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3535 src_reg = NULL;
3536 if (dst_reg->type != SCALAR_VALUE)
3537 ptr_reg = dst_reg;
3538 if (BPF_SRC(insn->code) == BPF_X) {
3539 src_reg = &regs[insn->src_reg];
f1174f77
EC
3540 if (src_reg->type != SCALAR_VALUE) {
3541 if (dst_reg->type != SCALAR_VALUE) {
3542 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3543 * an arbitrary scalar. Disallow all math except
3544 * pointer subtraction
f1174f77 3545 */
dd066823 3546 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3547 mark_reg_unknown(env, regs, insn->dst_reg);
3548 return 0;
f1174f77 3549 }
82abbf8d
AS
3550 verbose(env, "R%d pointer %s pointer prohibited\n",
3551 insn->dst_reg,
3552 bpf_alu_string[opcode >> 4]);
3553 return -EACCES;
f1174f77
EC
3554 } else {
3555 /* scalar += pointer
3556 * This is legal, but we have to reverse our
3557 * src/dest handling in computing the range
3558 */
82abbf8d
AS
3559 return adjust_ptr_min_max_vals(env, insn,
3560 src_reg, dst_reg);
f1174f77
EC
3561 }
3562 } else if (ptr_reg) {
3563 /* pointer += scalar */
82abbf8d
AS
3564 return adjust_ptr_min_max_vals(env, insn,
3565 dst_reg, src_reg);
f1174f77
EC
3566 }
3567 } else {
3568 /* Pretend the src is a reg with a known value, since we only
3569 * need to be able to read from this state.
3570 */
3571 off_reg.type = SCALAR_VALUE;
b03c9f9f 3572 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3573 src_reg = &off_reg;
82abbf8d
AS
3574 if (ptr_reg) /* pointer += K */
3575 return adjust_ptr_min_max_vals(env, insn,
3576 ptr_reg, src_reg);
f1174f77
EC
3577 }
3578
3579 /* Got here implies adding two SCALAR_VALUEs */
3580 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3581 print_verifier_state(env, state);
61bd5218 3582 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3583 return -EINVAL;
3584 }
3585 if (WARN_ON(!src_reg)) {
f4d7e40a 3586 print_verifier_state(env, state);
61bd5218 3587 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3588 return -EINVAL;
3589 }
3590 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3591}
3592
17a52670 3593/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3594static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3595{
638f5b90 3596 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3597 u8 opcode = BPF_OP(insn->code);
3598 int err;
3599
3600 if (opcode == BPF_END || opcode == BPF_NEG) {
3601 if (opcode == BPF_NEG) {
3602 if (BPF_SRC(insn->code) != 0 ||
3603 insn->src_reg != BPF_REG_0 ||
3604 insn->off != 0 || insn->imm != 0) {
61bd5218 3605 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3606 return -EINVAL;
3607 }
3608 } else {
3609 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3610 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3611 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3612 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3613 return -EINVAL;
3614 }
3615 }
3616
3617 /* check src operand */
dc503a8a 3618 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3619 if (err)
3620 return err;
3621
1be7f75d 3622 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3623 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3624 insn->dst_reg);
3625 return -EACCES;
3626 }
3627
17a52670 3628 /* check dest operand */
dc503a8a 3629 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3630 if (err)
3631 return err;
3632
3633 } else if (opcode == BPF_MOV) {
3634
3635 if (BPF_SRC(insn->code) == BPF_X) {
3636 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3637 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3638 return -EINVAL;
3639 }
3640
3641 /* check src operand */
dc503a8a 3642 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3643 if (err)
3644 return err;
3645 } else {
3646 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3647 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3648 return -EINVAL;
3649 }
3650 }
3651
fbeb1603
AF
3652 /* check dest operand, mark as required later */
3653 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3654 if (err)
3655 return err;
3656
3657 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
3658 struct bpf_reg_state *src_reg = regs + insn->src_reg;
3659 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
3660
17a52670
AS
3661 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3662 /* case: R1 = R2
3663 * copy register state to dest reg
3664 */
e434b8cd
JW
3665 *dst_reg = *src_reg;
3666 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 3667 } else {
f1174f77 3668 /* R1 = (u32) R2 */
1be7f75d 3669 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3670 verbose(env,
3671 "R%d partial copy of pointer\n",
1be7f75d
AS
3672 insn->src_reg);
3673 return -EACCES;
e434b8cd
JW
3674 } else if (src_reg->type == SCALAR_VALUE) {
3675 *dst_reg = *src_reg;
3676 dst_reg->live |= REG_LIVE_WRITTEN;
3677 } else {
3678 mark_reg_unknown(env, regs,
3679 insn->dst_reg);
1be7f75d 3680 }
e434b8cd 3681 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
3682 }
3683 } else {
3684 /* case: R = imm
3685 * remember the value we stored into this reg
3686 */
fbeb1603
AF
3687 /* clear any state __mark_reg_known doesn't set */
3688 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3689 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3690 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3691 __mark_reg_known(regs + insn->dst_reg,
3692 insn->imm);
3693 } else {
3694 __mark_reg_known(regs + insn->dst_reg,
3695 (u32)insn->imm);
3696 }
17a52670
AS
3697 }
3698
3699 } else if (opcode > BPF_END) {
61bd5218 3700 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3701 return -EINVAL;
3702
3703 } else { /* all other ALU ops: and, sub, xor, add, ... */
3704
17a52670
AS
3705 if (BPF_SRC(insn->code) == BPF_X) {
3706 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3707 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3708 return -EINVAL;
3709 }
3710 /* check src1 operand */
dc503a8a 3711 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3712 if (err)
3713 return err;
3714 } else {
3715 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3716 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3717 return -EINVAL;
3718 }
3719 }
3720
3721 /* check src2 operand */
dc503a8a 3722 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3723 if (err)
3724 return err;
3725
3726 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3727 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3728 verbose(env, "div by zero\n");
17a52670
AS
3729 return -EINVAL;
3730 }
3731
229394e8
RV
3732 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3733 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3734 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3735
3736 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3737 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3738 return -EINVAL;
3739 }
3740 }
3741
1a0dc1ac 3742 /* check dest operand */
dc503a8a 3743 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3744 if (err)
3745 return err;
3746
f1174f77 3747 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3748 }
3749
3750 return 0;
3751}
3752
f4d7e40a 3753static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3754 struct bpf_reg_state *dst_reg,
f8ddadc4 3755 enum bpf_reg_type type,
fb2a311a 3756 bool range_right_open)
969bf05e 3757{
f4d7e40a 3758 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3759 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3760 u16 new_range;
f4d7e40a 3761 int i, j;
2d2be8ca 3762
fb2a311a
DB
3763 if (dst_reg->off < 0 ||
3764 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3765 /* This doesn't give us any range */
3766 return;
3767
b03c9f9f
EC
3768 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3769 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3770 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3771 * than pkt_end, but that's because it's also less than pkt.
3772 */
3773 return;
3774
fb2a311a
DB
3775 new_range = dst_reg->off;
3776 if (range_right_open)
3777 new_range--;
3778
3779 /* Examples for register markings:
2d2be8ca 3780 *
fb2a311a 3781 * pkt_data in dst register:
2d2be8ca
DB
3782 *
3783 * r2 = r3;
3784 * r2 += 8;
3785 * if (r2 > pkt_end) goto <handle exception>
3786 * <access okay>
3787 *
b4e432f1
DB
3788 * r2 = r3;
3789 * r2 += 8;
3790 * if (r2 < pkt_end) goto <access okay>
3791 * <handle exception>
3792 *
2d2be8ca
DB
3793 * Where:
3794 * r2 == dst_reg, pkt_end == src_reg
3795 * r2=pkt(id=n,off=8,r=0)
3796 * r3=pkt(id=n,off=0,r=0)
3797 *
fb2a311a 3798 * pkt_data in src register:
2d2be8ca
DB
3799 *
3800 * r2 = r3;
3801 * r2 += 8;
3802 * if (pkt_end >= r2) goto <access okay>
3803 * <handle exception>
3804 *
b4e432f1
DB
3805 * r2 = r3;
3806 * r2 += 8;
3807 * if (pkt_end <= r2) goto <handle exception>
3808 * <access okay>
3809 *
2d2be8ca
DB
3810 * Where:
3811 * pkt_end == dst_reg, r2 == src_reg
3812 * r2=pkt(id=n,off=8,r=0)
3813 * r3=pkt(id=n,off=0,r=0)
3814 *
3815 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3816 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3817 * and [r3, r3 + 8-1) respectively is safe to access depending on
3818 * the check.
969bf05e 3819 */
2d2be8ca 3820
f1174f77
EC
3821 /* If our ids match, then we must have the same max_value. And we
3822 * don't care about the other reg's fixed offset, since if it's too big
3823 * the range won't allow anything.
3824 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3825 */
969bf05e 3826 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3827 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3828 /* keep the maximum range already checked */
fb2a311a 3829 regs[i].range = max(regs[i].range, new_range);
969bf05e 3830
f4d7e40a
AS
3831 for (j = 0; j <= vstate->curframe; j++) {
3832 state = vstate->frame[j];
f3709f69
JS
3833 bpf_for_each_spilled_reg(i, state, reg) {
3834 if (!reg)
f4d7e40a 3835 continue;
f4d7e40a
AS
3836 if (reg->type == type && reg->id == dst_reg->id)
3837 reg->range = max(reg->range, new_range);
3838 }
969bf05e
AS
3839 }
3840}
3841
4f7b3e82
AS
3842/* compute branch direction of the expression "if (reg opcode val) goto target;"
3843 * and return:
3844 * 1 - branch will be taken and "goto target" will be executed
3845 * 0 - branch will not be taken and fall-through to next insn
3846 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
3847 */
3848static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
3849{
3850 if (__is_pointer_value(false, reg))
3851 return -1;
3852
3853 switch (opcode) {
3854 case BPF_JEQ:
3855 if (tnum_is_const(reg->var_off))
3856 return !!tnum_equals_const(reg->var_off, val);
3857 break;
3858 case BPF_JNE:
3859 if (tnum_is_const(reg->var_off))
3860 return !tnum_equals_const(reg->var_off, val);
3861 break;
960ea056
JK
3862 case BPF_JSET:
3863 if ((~reg->var_off.mask & reg->var_off.value) & val)
3864 return 1;
3865 if (!((reg->var_off.mask | reg->var_off.value) & val))
3866 return 0;
3867 break;
4f7b3e82
AS
3868 case BPF_JGT:
3869 if (reg->umin_value > val)
3870 return 1;
3871 else if (reg->umax_value <= val)
3872 return 0;
3873 break;
3874 case BPF_JSGT:
3875 if (reg->smin_value > (s64)val)
3876 return 1;
3877 else if (reg->smax_value < (s64)val)
3878 return 0;
3879 break;
3880 case BPF_JLT:
3881 if (reg->umax_value < val)
3882 return 1;
3883 else if (reg->umin_value >= val)
3884 return 0;
3885 break;
3886 case BPF_JSLT:
3887 if (reg->smax_value < (s64)val)
3888 return 1;
3889 else if (reg->smin_value >= (s64)val)
3890 return 0;
3891 break;
3892 case BPF_JGE:
3893 if (reg->umin_value >= val)
3894 return 1;
3895 else if (reg->umax_value < val)
3896 return 0;
3897 break;
3898 case BPF_JSGE:
3899 if (reg->smin_value >= (s64)val)
3900 return 1;
3901 else if (reg->smax_value < (s64)val)
3902 return 0;
3903 break;
3904 case BPF_JLE:
3905 if (reg->umax_value <= val)
3906 return 1;
3907 else if (reg->umin_value > val)
3908 return 0;
3909 break;
3910 case BPF_JSLE:
3911 if (reg->smax_value <= (s64)val)
3912 return 1;
3913 else if (reg->smin_value > (s64)val)
3914 return 0;
3915 break;
3916 }
3917
3918 return -1;
3919}
3920
48461135
JB
3921/* Adjusts the register min/max values in the case that the dst_reg is the
3922 * variable register that we are working on, and src_reg is a constant or we're
3923 * simply doing a BPF_K check.
f1174f77 3924 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3925 */
3926static void reg_set_min_max(struct bpf_reg_state *true_reg,
3927 struct bpf_reg_state *false_reg, u64 val,
3928 u8 opcode)
3929{
f1174f77
EC
3930 /* If the dst_reg is a pointer, we can't learn anything about its
3931 * variable offset from the compare (unless src_reg were a pointer into
3932 * the same object, but we don't bother with that.
3933 * Since false_reg and true_reg have the same type by construction, we
3934 * only need to check one of them for pointerness.
3935 */
3936 if (__is_pointer_value(false, false_reg))
3937 return;
4cabc5b1 3938
48461135
JB
3939 switch (opcode) {
3940 case BPF_JEQ:
3941 /* If this is false then we know nothing Jon Snow, but if it is
3942 * true then we know for sure.
3943 */
b03c9f9f 3944 __mark_reg_known(true_reg, val);
48461135
JB
3945 break;
3946 case BPF_JNE:
3947 /* If this is true we know nothing Jon Snow, but if it is false
3948 * we know the value for sure;
3949 */
b03c9f9f 3950 __mark_reg_known(false_reg, val);
48461135 3951 break;
960ea056
JK
3952 case BPF_JSET:
3953 false_reg->var_off = tnum_and(false_reg->var_off,
3954 tnum_const(~val));
3955 if (is_power_of_2(val))
3956 true_reg->var_off = tnum_or(true_reg->var_off,
3957 tnum_const(val));
3958 break;
48461135 3959 case BPF_JGT:
b03c9f9f
EC
3960 false_reg->umax_value = min(false_reg->umax_value, val);
3961 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3962 break;
48461135 3963 case BPF_JSGT:
b03c9f9f
EC
3964 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3965 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3966 break;
b4e432f1
DB
3967 case BPF_JLT:
3968 false_reg->umin_value = max(false_reg->umin_value, val);
3969 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3970 break;
3971 case BPF_JSLT:
3972 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3973 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3974 break;
48461135 3975 case BPF_JGE:
b03c9f9f
EC
3976 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3977 true_reg->umin_value = max(true_reg->umin_value, val);
3978 break;
48461135 3979 case BPF_JSGE:
b03c9f9f
EC
3980 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3981 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3982 break;
b4e432f1
DB
3983 case BPF_JLE:
3984 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3985 true_reg->umax_value = min(true_reg->umax_value, val);
3986 break;
3987 case BPF_JSLE:
3988 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3989 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3990 break;
48461135
JB
3991 default:
3992 break;
3993 }
3994
b03c9f9f
EC
3995 __reg_deduce_bounds(false_reg);
3996 __reg_deduce_bounds(true_reg);
3997 /* We might have learned some bits from the bounds. */
3998 __reg_bound_offset(false_reg);
3999 __reg_bound_offset(true_reg);
4000 /* Intersecting with the old var_off might have improved our bounds
4001 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4002 * then new var_off is (0; 0x7f...fc) which improves our umax.
4003 */
4004 __update_reg_bounds(false_reg);
4005 __update_reg_bounds(true_reg);
48461135
JB
4006}
4007
f1174f77
EC
4008/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4009 * the variable reg.
48461135
JB
4010 */
4011static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4012 struct bpf_reg_state *false_reg, u64 val,
4013 u8 opcode)
4014{
f1174f77
EC
4015 if (__is_pointer_value(false, false_reg))
4016 return;
4cabc5b1 4017
48461135
JB
4018 switch (opcode) {
4019 case BPF_JEQ:
4020 /* If this is false then we know nothing Jon Snow, but if it is
4021 * true then we know for sure.
4022 */
b03c9f9f 4023 __mark_reg_known(true_reg, val);
48461135
JB
4024 break;
4025 case BPF_JNE:
4026 /* If this is true we know nothing Jon Snow, but if it is false
4027 * we know the value for sure;
4028 */
b03c9f9f 4029 __mark_reg_known(false_reg, val);
48461135 4030 break;
960ea056
JK
4031 case BPF_JSET:
4032 false_reg->var_off = tnum_and(false_reg->var_off,
4033 tnum_const(~val));
4034 if (is_power_of_2(val))
4035 true_reg->var_off = tnum_or(true_reg->var_off,
4036 tnum_const(val));
4037 break;
48461135 4038 case BPF_JGT:
b03c9f9f
EC
4039 true_reg->umax_value = min(true_reg->umax_value, val - 1);
4040 false_reg->umin_value = max(false_reg->umin_value, val);
4041 break;
48461135 4042 case BPF_JSGT:
b03c9f9f
EC
4043 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
4044 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 4045 break;
b4e432f1
DB
4046 case BPF_JLT:
4047 true_reg->umin_value = max(true_reg->umin_value, val + 1);
4048 false_reg->umax_value = min(false_reg->umax_value, val);
4049 break;
4050 case BPF_JSLT:
4051 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
4052 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
4053 break;
48461135 4054 case BPF_JGE:
b03c9f9f
EC
4055 true_reg->umax_value = min(true_reg->umax_value, val);
4056 false_reg->umin_value = max(false_reg->umin_value, val + 1);
4057 break;
48461135 4058 case BPF_JSGE:
b03c9f9f
EC
4059 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
4060 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 4061 break;
b4e432f1
DB
4062 case BPF_JLE:
4063 true_reg->umin_value = max(true_reg->umin_value, val);
4064 false_reg->umax_value = min(false_reg->umax_value, val - 1);
4065 break;
4066 case BPF_JSLE:
4067 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
4068 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
4069 break;
48461135
JB
4070 default:
4071 break;
4072 }
4073
b03c9f9f
EC
4074 __reg_deduce_bounds(false_reg);
4075 __reg_deduce_bounds(true_reg);
4076 /* We might have learned some bits from the bounds. */
4077 __reg_bound_offset(false_reg);
4078 __reg_bound_offset(true_reg);
4079 /* Intersecting with the old var_off might have improved our bounds
4080 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4081 * then new var_off is (0; 0x7f...fc) which improves our umax.
4082 */
4083 __update_reg_bounds(false_reg);
4084 __update_reg_bounds(true_reg);
f1174f77
EC
4085}
4086
4087/* Regs are known to be equal, so intersect their min/max/var_off */
4088static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4089 struct bpf_reg_state *dst_reg)
4090{
b03c9f9f
EC
4091 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4092 dst_reg->umin_value);
4093 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4094 dst_reg->umax_value);
4095 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4096 dst_reg->smin_value);
4097 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4098 dst_reg->smax_value);
f1174f77
EC
4099 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4100 dst_reg->var_off);
b03c9f9f
EC
4101 /* We might have learned new bounds from the var_off. */
4102 __update_reg_bounds(src_reg);
4103 __update_reg_bounds(dst_reg);
4104 /* We might have learned something about the sign bit. */
4105 __reg_deduce_bounds(src_reg);
4106 __reg_deduce_bounds(dst_reg);
4107 /* We might have learned some bits from the bounds. */
4108 __reg_bound_offset(src_reg);
4109 __reg_bound_offset(dst_reg);
4110 /* Intersecting with the old var_off might have improved our bounds
4111 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4112 * then new var_off is (0; 0x7f...fc) which improves our umax.
4113 */
4114 __update_reg_bounds(src_reg);
4115 __update_reg_bounds(dst_reg);
f1174f77
EC
4116}
4117
4118static void reg_combine_min_max(struct bpf_reg_state *true_src,
4119 struct bpf_reg_state *true_dst,
4120 struct bpf_reg_state *false_src,
4121 struct bpf_reg_state *false_dst,
4122 u8 opcode)
4123{
4124 switch (opcode) {
4125 case BPF_JEQ:
4126 __reg_combine_min_max(true_src, true_dst);
4127 break;
4128 case BPF_JNE:
4129 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4130 break;
4cabc5b1 4131 }
48461135
JB
4132}
4133
fd978bf7
JS
4134static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4135 struct bpf_reg_state *reg, u32 id,
840b9615 4136 bool is_null)
57a09bf0 4137{
840b9615 4138 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4139 /* Old offset (both fixed and variable parts) should
4140 * have been known-zero, because we don't allow pointer
4141 * arithmetic on pointers that might be NULL.
4142 */
b03c9f9f
EC
4143 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4144 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4145 reg->off)) {
b03c9f9f
EC
4146 __mark_reg_known_zero(reg);
4147 reg->off = 0;
f1174f77
EC
4148 }
4149 if (is_null) {
4150 reg->type = SCALAR_VALUE;
840b9615
JS
4151 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4152 if (reg->map_ptr->inner_map_meta) {
4153 reg->type = CONST_PTR_TO_MAP;
4154 reg->map_ptr = reg->map_ptr->inner_map_meta;
4155 } else {
4156 reg->type = PTR_TO_MAP_VALUE;
4157 }
c64b7983
JS
4158 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4159 reg->type = PTR_TO_SOCKET;
56f668df 4160 }
fd978bf7
JS
4161 if (is_null || !reg_is_refcounted(reg)) {
4162 /* We don't need id from this point onwards anymore,
4163 * thus we should better reset it, so that state
4164 * pruning has chances to take effect.
4165 */
4166 reg->id = 0;
56f668df 4167 }
57a09bf0
TG
4168 }
4169}
4170
4171/* The logic is similar to find_good_pkt_pointers(), both could eventually
4172 * be folded together at some point.
4173 */
840b9615
JS
4174static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4175 bool is_null)
57a09bf0 4176{
f4d7e40a 4177 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4178 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 4179 u32 id = regs[regno].id;
f4d7e40a 4180 int i, j;
57a09bf0 4181
fd978bf7
JS
4182 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
4183 __release_reference_state(state, id);
4184
57a09bf0 4185 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4186 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4187
f4d7e40a
AS
4188 for (j = 0; j <= vstate->curframe; j++) {
4189 state = vstate->frame[j];
f3709f69
JS
4190 bpf_for_each_spilled_reg(i, state, reg) {
4191 if (!reg)
f4d7e40a 4192 continue;
fd978bf7 4193 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4194 }
57a09bf0
TG
4195 }
4196}
4197
5beca081
DB
4198static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4199 struct bpf_reg_state *dst_reg,
4200 struct bpf_reg_state *src_reg,
4201 struct bpf_verifier_state *this_branch,
4202 struct bpf_verifier_state *other_branch)
4203{
4204 if (BPF_SRC(insn->code) != BPF_X)
4205 return false;
4206
4207 switch (BPF_OP(insn->code)) {
4208 case BPF_JGT:
4209 if ((dst_reg->type == PTR_TO_PACKET &&
4210 src_reg->type == PTR_TO_PACKET_END) ||
4211 (dst_reg->type == PTR_TO_PACKET_META &&
4212 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4213 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4214 find_good_pkt_pointers(this_branch, dst_reg,
4215 dst_reg->type, false);
4216 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4217 src_reg->type == PTR_TO_PACKET) ||
4218 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4219 src_reg->type == PTR_TO_PACKET_META)) {
4220 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4221 find_good_pkt_pointers(other_branch, src_reg,
4222 src_reg->type, true);
4223 } else {
4224 return false;
4225 }
4226 break;
4227 case BPF_JLT:
4228 if ((dst_reg->type == PTR_TO_PACKET &&
4229 src_reg->type == PTR_TO_PACKET_END) ||
4230 (dst_reg->type == PTR_TO_PACKET_META &&
4231 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4232 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4233 find_good_pkt_pointers(other_branch, dst_reg,
4234 dst_reg->type, true);
4235 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4236 src_reg->type == PTR_TO_PACKET) ||
4237 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4238 src_reg->type == PTR_TO_PACKET_META)) {
4239 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4240 find_good_pkt_pointers(this_branch, src_reg,
4241 src_reg->type, false);
4242 } else {
4243 return false;
4244 }
4245 break;
4246 case BPF_JGE:
4247 if ((dst_reg->type == PTR_TO_PACKET &&
4248 src_reg->type == PTR_TO_PACKET_END) ||
4249 (dst_reg->type == PTR_TO_PACKET_META &&
4250 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4251 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4252 find_good_pkt_pointers(this_branch, dst_reg,
4253 dst_reg->type, true);
4254 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4255 src_reg->type == PTR_TO_PACKET) ||
4256 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4257 src_reg->type == PTR_TO_PACKET_META)) {
4258 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4259 find_good_pkt_pointers(other_branch, src_reg,
4260 src_reg->type, false);
4261 } else {
4262 return false;
4263 }
4264 break;
4265 case BPF_JLE:
4266 if ((dst_reg->type == PTR_TO_PACKET &&
4267 src_reg->type == PTR_TO_PACKET_END) ||
4268 (dst_reg->type == PTR_TO_PACKET_META &&
4269 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4270 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4271 find_good_pkt_pointers(other_branch, dst_reg,
4272 dst_reg->type, false);
4273 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4274 src_reg->type == PTR_TO_PACKET) ||
4275 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4276 src_reg->type == PTR_TO_PACKET_META)) {
4277 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4278 find_good_pkt_pointers(this_branch, src_reg,
4279 src_reg->type, true);
4280 } else {
4281 return false;
4282 }
4283 break;
4284 default:
4285 return false;
4286 }
4287
4288 return true;
4289}
4290
58e2af8b 4291static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4292 struct bpf_insn *insn, int *insn_idx)
4293{
f4d7e40a
AS
4294 struct bpf_verifier_state *this_branch = env->cur_state;
4295 struct bpf_verifier_state *other_branch;
4296 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4297 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4298 u8 opcode = BPF_OP(insn->code);
4299 int err;
4300
b4e432f1 4301 if (opcode > BPF_JSLE) {
61bd5218 4302 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4303 return -EINVAL;
4304 }
4305
4306 if (BPF_SRC(insn->code) == BPF_X) {
4307 if (insn->imm != 0) {
61bd5218 4308 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4309 return -EINVAL;
4310 }
4311
4312 /* check src1 operand */
dc503a8a 4313 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4314 if (err)
4315 return err;
1be7f75d
AS
4316
4317 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4318 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4319 insn->src_reg);
4320 return -EACCES;
4321 }
17a52670
AS
4322 } else {
4323 if (insn->src_reg != BPF_REG_0) {
61bd5218 4324 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4325 return -EINVAL;
4326 }
4327 }
4328
4329 /* check src2 operand */
dc503a8a 4330 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4331 if (err)
4332 return err;
4333
1a0dc1ac
AS
4334 dst_reg = &regs[insn->dst_reg];
4335
4f7b3e82
AS
4336 if (BPF_SRC(insn->code) == BPF_K) {
4337 int pred = is_branch_taken(dst_reg, insn->imm, opcode);
4338
4339 if (pred == 1) {
4340 /* only follow the goto, ignore fall-through */
17a52670
AS
4341 *insn_idx += insn->off;
4342 return 0;
4f7b3e82
AS
4343 } else if (pred == 0) {
4344 /* only follow fall-through branch, since
17a52670
AS
4345 * that's where the program will go
4346 */
4347 return 0;
4348 }
4349 }
4350
4351 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4352 if (!other_branch)
4353 return -EFAULT;
f4d7e40a 4354 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4355
48461135
JB
4356 /* detect if we are comparing against a constant value so we can adjust
4357 * our min/max values for our dst register.
f1174f77
EC
4358 * this is only legit if both are scalars (or pointers to the same
4359 * object, I suppose, but we don't support that right now), because
4360 * otherwise the different base pointers mean the offsets aren't
4361 * comparable.
48461135
JB
4362 */
4363 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4364 if (dst_reg->type == SCALAR_VALUE &&
4365 regs[insn->src_reg].type == SCALAR_VALUE) {
4366 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4367 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4368 dst_reg, regs[insn->src_reg].var_off.value,
4369 opcode);
4370 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4371 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4372 &regs[insn->src_reg],
4373 dst_reg->var_off.value, opcode);
4374 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4375 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4376 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4377 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4378 &regs[insn->src_reg],
4379 &regs[insn->dst_reg], opcode);
4380 }
4381 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4382 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4383 dst_reg, insn->imm, opcode);
4384 }
4385
58e2af8b 4386 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4387 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4388 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4389 reg_type_may_be_null(dst_reg->type)) {
4390 /* Mark all identical registers in each branch as either
57a09bf0
TG
4391 * safe or unknown depending R == 0 or R != 0 conditional.
4392 */
840b9615
JS
4393 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4394 opcode == BPF_JNE);
4395 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4396 opcode == BPF_JEQ);
5beca081
DB
4397 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4398 this_branch, other_branch) &&
4399 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4400 verbose(env, "R%d pointer comparison prohibited\n",
4401 insn->dst_reg);
1be7f75d 4402 return -EACCES;
17a52670 4403 }
61bd5218 4404 if (env->log.level)
f4d7e40a 4405 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4406 return 0;
4407}
4408
0246e64d
AS
4409/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4410static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4411{
4412 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4413
4414 return (struct bpf_map *) (unsigned long) imm64;
4415}
4416
17a52670 4417/* verify BPF_LD_IMM64 instruction */
58e2af8b 4418static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4419{
638f5b90 4420 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4421 int err;
4422
4423 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4424 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4425 return -EINVAL;
4426 }
4427 if (insn->off != 0) {
61bd5218 4428 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4429 return -EINVAL;
4430 }
4431
dc503a8a 4432 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4433 if (err)
4434 return err;
4435
6b173873 4436 if (insn->src_reg == 0) {
6b173873
JK
4437 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4438
f1174f77 4439 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4440 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4441 return 0;
6b173873 4442 }
17a52670
AS
4443
4444 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4445 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4446
4447 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4448 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4449 return 0;
4450}
4451
96be4325
DB
4452static bool may_access_skb(enum bpf_prog_type type)
4453{
4454 switch (type) {
4455 case BPF_PROG_TYPE_SOCKET_FILTER:
4456 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4457 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4458 return true;
4459 default:
4460 return false;
4461 }
4462}
4463
ddd872bc
AS
4464/* verify safety of LD_ABS|LD_IND instructions:
4465 * - they can only appear in the programs where ctx == skb
4466 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4467 * preserve R6-R9, and store return value into R0
4468 *
4469 * Implicit input:
4470 * ctx == skb == R6 == CTX
4471 *
4472 * Explicit input:
4473 * SRC == any register
4474 * IMM == 32-bit immediate
4475 *
4476 * Output:
4477 * R0 - 8/16/32-bit skb data converted to cpu endianness
4478 */
58e2af8b 4479static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4480{
638f5b90 4481 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4482 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4483 int i, err;
4484
24701ece 4485 if (!may_access_skb(env->prog->type)) {
61bd5218 4486 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4487 return -EINVAL;
4488 }
4489
e0cea7ce
DB
4490 if (!env->ops->gen_ld_abs) {
4491 verbose(env, "bpf verifier is misconfigured\n");
4492 return -EINVAL;
4493 }
4494
f910cefa 4495 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4496 /* when program has LD_ABS insn JITs and interpreter assume
4497 * that r1 == ctx == skb which is not the case for callees
4498 * that can have arbitrary arguments. It's problematic
4499 * for main prog as well since JITs would need to analyze
4500 * all functions in order to make proper register save/restore
4501 * decisions in the main prog. Hence disallow LD_ABS with calls
4502 */
4503 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4504 return -EINVAL;
4505 }
4506
ddd872bc 4507 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4508 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4509 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4510 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4511 return -EINVAL;
4512 }
4513
4514 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4515 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4516 if (err)
4517 return err;
4518
fd978bf7
JS
4519 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4520 * gen_ld_abs() may terminate the program at runtime, leading to
4521 * reference leak.
4522 */
4523 err = check_reference_leak(env);
4524 if (err) {
4525 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4526 return err;
4527 }
4528
ddd872bc 4529 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4530 verbose(env,
4531 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4532 return -EINVAL;
4533 }
4534
4535 if (mode == BPF_IND) {
4536 /* check explicit source operand */
dc503a8a 4537 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4538 if (err)
4539 return err;
4540 }
4541
4542 /* reset caller saved regs to unreadable */
dc503a8a 4543 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4544 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4545 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4546 }
ddd872bc
AS
4547
4548 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4549 * the value fetched from the packet.
4550 * Already marked as written above.
ddd872bc 4551 */
61bd5218 4552 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4553 return 0;
4554}
4555
390ee7e2
AS
4556static int check_return_code(struct bpf_verifier_env *env)
4557{
4558 struct bpf_reg_state *reg;
4559 struct tnum range = tnum_range(0, 1);
4560
4561 switch (env->prog->type) {
4562 case BPF_PROG_TYPE_CGROUP_SKB:
4563 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4564 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4565 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4566 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4567 break;
4568 default:
4569 return 0;
4570 }
4571
638f5b90 4572 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4573 if (reg->type != SCALAR_VALUE) {
61bd5218 4574 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4575 reg_type_str[reg->type]);
4576 return -EINVAL;
4577 }
4578
4579 if (!tnum_in(range, reg->var_off)) {
61bd5218 4580 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4581 if (!tnum_is_unknown(reg->var_off)) {
4582 char tn_buf[48];
4583
4584 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4585 verbose(env, "has value %s", tn_buf);
390ee7e2 4586 } else {
61bd5218 4587 verbose(env, "has unknown scalar value");
390ee7e2 4588 }
61bd5218 4589 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4590 return -EINVAL;
4591 }
4592 return 0;
4593}
4594
475fb78f
AS
4595/* non-recursive DFS pseudo code
4596 * 1 procedure DFS-iterative(G,v):
4597 * 2 label v as discovered
4598 * 3 let S be a stack
4599 * 4 S.push(v)
4600 * 5 while S is not empty
4601 * 6 t <- S.pop()
4602 * 7 if t is what we're looking for:
4603 * 8 return t
4604 * 9 for all edges e in G.adjacentEdges(t) do
4605 * 10 if edge e is already labelled
4606 * 11 continue with the next edge
4607 * 12 w <- G.adjacentVertex(t,e)
4608 * 13 if vertex w is not discovered and not explored
4609 * 14 label e as tree-edge
4610 * 15 label w as discovered
4611 * 16 S.push(w)
4612 * 17 continue at 5
4613 * 18 else if vertex w is discovered
4614 * 19 label e as back-edge
4615 * 20 else
4616 * 21 // vertex w is explored
4617 * 22 label e as forward- or cross-edge
4618 * 23 label t as explored
4619 * 24 S.pop()
4620 *
4621 * convention:
4622 * 0x10 - discovered
4623 * 0x11 - discovered and fall-through edge labelled
4624 * 0x12 - discovered and fall-through and branch edges labelled
4625 * 0x20 - explored
4626 */
4627
4628enum {
4629 DISCOVERED = 0x10,
4630 EXPLORED = 0x20,
4631 FALLTHROUGH = 1,
4632 BRANCH = 2,
4633};
4634
58e2af8b 4635#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4636
475fb78f
AS
4637static int *insn_stack; /* stack of insns to process */
4638static int cur_stack; /* current stack index */
4639static int *insn_state;
4640
4641/* t, w, e - match pseudo-code above:
4642 * t - index of current instruction
4643 * w - next instruction
4644 * e - edge
4645 */
58e2af8b 4646static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4647{
4648 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4649 return 0;
4650
4651 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4652 return 0;
4653
4654 if (w < 0 || w >= env->prog->len) {
d9762e84 4655 verbose_linfo(env, t, "%d: ", t);
61bd5218 4656 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4657 return -EINVAL;
4658 }
4659
f1bca824
AS
4660 if (e == BRANCH)
4661 /* mark branch target for state pruning */
4662 env->explored_states[w] = STATE_LIST_MARK;
4663
475fb78f
AS
4664 if (insn_state[w] == 0) {
4665 /* tree-edge */
4666 insn_state[t] = DISCOVERED | e;
4667 insn_state[w] = DISCOVERED;
4668 if (cur_stack >= env->prog->len)
4669 return -E2BIG;
4670 insn_stack[cur_stack++] = w;
4671 return 1;
4672 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
4673 verbose_linfo(env, t, "%d: ", t);
4674 verbose_linfo(env, w, "%d: ", w);
61bd5218 4675 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4676 return -EINVAL;
4677 } else if (insn_state[w] == EXPLORED) {
4678 /* forward- or cross-edge */
4679 insn_state[t] = DISCOVERED | e;
4680 } else {
61bd5218 4681 verbose(env, "insn state internal bug\n");
475fb78f
AS
4682 return -EFAULT;
4683 }
4684 return 0;
4685}
4686
4687/* non-recursive depth-first-search to detect loops in BPF program
4688 * loop == back-edge in directed graph
4689 */
58e2af8b 4690static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4691{
4692 struct bpf_insn *insns = env->prog->insnsi;
4693 int insn_cnt = env->prog->len;
4694 int ret = 0;
4695 int i, t;
4696
4697 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4698 if (!insn_state)
4699 return -ENOMEM;
4700
4701 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4702 if (!insn_stack) {
4703 kfree(insn_state);
4704 return -ENOMEM;
4705 }
4706
4707 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4708 insn_stack[0] = 0; /* 0 is the first instruction */
4709 cur_stack = 1;
4710
4711peek_stack:
4712 if (cur_stack == 0)
4713 goto check_state;
4714 t = insn_stack[cur_stack - 1];
4715
4716 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4717 u8 opcode = BPF_OP(insns[t].code);
4718
4719 if (opcode == BPF_EXIT) {
4720 goto mark_explored;
4721 } else if (opcode == BPF_CALL) {
4722 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4723 if (ret == 1)
4724 goto peek_stack;
4725 else if (ret < 0)
4726 goto err_free;
07016151
DB
4727 if (t + 1 < insn_cnt)
4728 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4729 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4730 env->explored_states[t] = STATE_LIST_MARK;
4731 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4732 if (ret == 1)
4733 goto peek_stack;
4734 else if (ret < 0)
4735 goto err_free;
4736 }
475fb78f
AS
4737 } else if (opcode == BPF_JA) {
4738 if (BPF_SRC(insns[t].code) != BPF_K) {
4739 ret = -EINVAL;
4740 goto err_free;
4741 }
4742 /* unconditional jump with single edge */
4743 ret = push_insn(t, t + insns[t].off + 1,
4744 FALLTHROUGH, env);
4745 if (ret == 1)
4746 goto peek_stack;
4747 else if (ret < 0)
4748 goto err_free;
f1bca824
AS
4749 /* tell verifier to check for equivalent states
4750 * after every call and jump
4751 */
c3de6317
AS
4752 if (t + 1 < insn_cnt)
4753 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4754 } else {
4755 /* conditional jump with two edges */
3c2ce60b 4756 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4757 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4758 if (ret == 1)
4759 goto peek_stack;
4760 else if (ret < 0)
4761 goto err_free;
4762
4763 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4764 if (ret == 1)
4765 goto peek_stack;
4766 else if (ret < 0)
4767 goto err_free;
4768 }
4769 } else {
4770 /* all other non-branch instructions with single
4771 * fall-through edge
4772 */
4773 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4774 if (ret == 1)
4775 goto peek_stack;
4776 else if (ret < 0)
4777 goto err_free;
4778 }
4779
4780mark_explored:
4781 insn_state[t] = EXPLORED;
4782 if (cur_stack-- <= 0) {
61bd5218 4783 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4784 ret = -EFAULT;
4785 goto err_free;
4786 }
4787 goto peek_stack;
4788
4789check_state:
4790 for (i = 0; i < insn_cnt; i++) {
4791 if (insn_state[i] != EXPLORED) {
61bd5218 4792 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4793 ret = -EINVAL;
4794 goto err_free;
4795 }
4796 }
4797 ret = 0; /* cfg looks good */
4798
4799err_free:
4800 kfree(insn_state);
4801 kfree(insn_stack);
4802 return ret;
4803}
4804
838e9690
YS
4805/* The minimum supported BTF func info size */
4806#define MIN_BPF_FUNCINFO_SIZE 8
4807#define MAX_FUNCINFO_REC_SIZE 252
4808
c454a46b
MKL
4809static int check_btf_func(struct bpf_verifier_env *env,
4810 const union bpf_attr *attr,
4811 union bpf_attr __user *uattr)
838e9690
YS
4812{
4813 u32 i, nfuncs, urec_size, min_size, prev_offset;
4814 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 4815 struct bpf_func_info *krecord;
838e9690 4816 const struct btf_type *type;
c454a46b
MKL
4817 struct bpf_prog *prog;
4818 const struct btf *btf;
838e9690 4819 void __user *urecord;
838e9690
YS
4820 int ret = 0;
4821
4822 nfuncs = attr->func_info_cnt;
4823 if (!nfuncs)
4824 return 0;
4825
4826 if (nfuncs != env->subprog_cnt) {
4827 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
4828 return -EINVAL;
4829 }
4830
4831 urec_size = attr->func_info_rec_size;
4832 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
4833 urec_size > MAX_FUNCINFO_REC_SIZE ||
4834 urec_size % sizeof(u32)) {
4835 verbose(env, "invalid func info rec size %u\n", urec_size);
4836 return -EINVAL;
4837 }
4838
c454a46b
MKL
4839 prog = env->prog;
4840 btf = prog->aux->btf;
838e9690
YS
4841
4842 urecord = u64_to_user_ptr(attr->func_info);
4843 min_size = min_t(u32, krec_size, urec_size);
4844
ba64e7d8 4845 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
4846 if (!krecord)
4847 return -ENOMEM;
ba64e7d8 4848
838e9690
YS
4849 for (i = 0; i < nfuncs; i++) {
4850 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
4851 if (ret) {
4852 if (ret == -E2BIG) {
4853 verbose(env, "nonzero tailing record in func info");
4854 /* set the size kernel expects so loader can zero
4855 * out the rest of the record.
4856 */
4857 if (put_user(min_size, &uattr->func_info_rec_size))
4858 ret = -EFAULT;
4859 }
c454a46b 4860 goto err_free;
838e9690
YS
4861 }
4862
ba64e7d8 4863 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 4864 ret = -EFAULT;
c454a46b 4865 goto err_free;
838e9690
YS
4866 }
4867
d30d42e0 4868 /* check insn_off */
838e9690 4869 if (i == 0) {
d30d42e0 4870 if (krecord[i].insn_off) {
838e9690 4871 verbose(env,
d30d42e0
MKL
4872 "nonzero insn_off %u for the first func info record",
4873 krecord[i].insn_off);
838e9690 4874 ret = -EINVAL;
c454a46b 4875 goto err_free;
838e9690 4876 }
d30d42e0 4877 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
4878 verbose(env,
4879 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 4880 krecord[i].insn_off, prev_offset);
838e9690 4881 ret = -EINVAL;
c454a46b 4882 goto err_free;
838e9690
YS
4883 }
4884
d30d42e0 4885 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
4886 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
4887 ret = -EINVAL;
c454a46b 4888 goto err_free;
838e9690
YS
4889 }
4890
4891 /* check type_id */
ba64e7d8 4892 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
4893 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
4894 verbose(env, "invalid type id %d in func info",
ba64e7d8 4895 krecord[i].type_id);
838e9690 4896 ret = -EINVAL;
c454a46b 4897 goto err_free;
838e9690
YS
4898 }
4899
d30d42e0 4900 prev_offset = krecord[i].insn_off;
838e9690
YS
4901 urecord += urec_size;
4902 }
4903
ba64e7d8
YS
4904 prog->aux->func_info = krecord;
4905 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
4906 return 0;
4907
c454a46b 4908err_free:
ba64e7d8 4909 kvfree(krecord);
838e9690
YS
4910 return ret;
4911}
4912
ba64e7d8
YS
4913static void adjust_btf_func(struct bpf_verifier_env *env)
4914{
4915 int i;
4916
4917 if (!env->prog->aux->func_info)
4918 return;
4919
4920 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 4921 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
4922}
4923
c454a46b
MKL
4924#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
4925 sizeof(((struct bpf_line_info *)(0))->line_col))
4926#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
4927
4928static int check_btf_line(struct bpf_verifier_env *env,
4929 const union bpf_attr *attr,
4930 union bpf_attr __user *uattr)
4931{
4932 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
4933 struct bpf_subprog_info *sub;
4934 struct bpf_line_info *linfo;
4935 struct bpf_prog *prog;
4936 const struct btf *btf;
4937 void __user *ulinfo;
4938 int err;
4939
4940 nr_linfo = attr->line_info_cnt;
4941 if (!nr_linfo)
4942 return 0;
4943
4944 rec_size = attr->line_info_rec_size;
4945 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
4946 rec_size > MAX_LINEINFO_REC_SIZE ||
4947 rec_size & (sizeof(u32) - 1))
4948 return -EINVAL;
4949
4950 /* Need to zero it in case the userspace may
4951 * pass in a smaller bpf_line_info object.
4952 */
4953 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
4954 GFP_KERNEL | __GFP_NOWARN);
4955 if (!linfo)
4956 return -ENOMEM;
4957
4958 prog = env->prog;
4959 btf = prog->aux->btf;
4960
4961 s = 0;
4962 sub = env->subprog_info;
4963 ulinfo = u64_to_user_ptr(attr->line_info);
4964 expected_size = sizeof(struct bpf_line_info);
4965 ncopy = min_t(u32, expected_size, rec_size);
4966 for (i = 0; i < nr_linfo; i++) {
4967 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
4968 if (err) {
4969 if (err == -E2BIG) {
4970 verbose(env, "nonzero tailing record in line_info");
4971 if (put_user(expected_size,
4972 &uattr->line_info_rec_size))
4973 err = -EFAULT;
4974 }
4975 goto err_free;
4976 }
4977
4978 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
4979 err = -EFAULT;
4980 goto err_free;
4981 }
4982
4983 /*
4984 * Check insn_off to ensure
4985 * 1) strictly increasing AND
4986 * 2) bounded by prog->len
4987 *
4988 * The linfo[0].insn_off == 0 check logically falls into
4989 * the later "missing bpf_line_info for func..." case
4990 * because the first linfo[0].insn_off must be the
4991 * first sub also and the first sub must have
4992 * subprog_info[0].start == 0.
4993 */
4994 if ((i && linfo[i].insn_off <= prev_offset) ||
4995 linfo[i].insn_off >= prog->len) {
4996 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
4997 i, linfo[i].insn_off, prev_offset,
4998 prog->len);
4999 err = -EINVAL;
5000 goto err_free;
5001 }
5002
fdbaa0be
MKL
5003 if (!prog->insnsi[linfo[i].insn_off].code) {
5004 verbose(env,
5005 "Invalid insn code at line_info[%u].insn_off\n",
5006 i);
5007 err = -EINVAL;
5008 goto err_free;
5009 }
5010
23127b33
MKL
5011 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5012 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5013 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5014 err = -EINVAL;
5015 goto err_free;
5016 }
5017
5018 if (s != env->subprog_cnt) {
5019 if (linfo[i].insn_off == sub[s].start) {
5020 sub[s].linfo_idx = i;
5021 s++;
5022 } else if (sub[s].start < linfo[i].insn_off) {
5023 verbose(env, "missing bpf_line_info for func#%u\n", s);
5024 err = -EINVAL;
5025 goto err_free;
5026 }
5027 }
5028
5029 prev_offset = linfo[i].insn_off;
5030 ulinfo += rec_size;
5031 }
5032
5033 if (s != env->subprog_cnt) {
5034 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5035 env->subprog_cnt - s, s);
5036 err = -EINVAL;
5037 goto err_free;
5038 }
5039
5040 prog->aux->linfo = linfo;
5041 prog->aux->nr_linfo = nr_linfo;
5042
5043 return 0;
5044
5045err_free:
5046 kvfree(linfo);
5047 return err;
5048}
5049
5050static int check_btf_info(struct bpf_verifier_env *env,
5051 const union bpf_attr *attr,
5052 union bpf_attr __user *uattr)
5053{
5054 struct btf *btf;
5055 int err;
5056
5057 if (!attr->func_info_cnt && !attr->line_info_cnt)
5058 return 0;
5059
5060 btf = btf_get_by_fd(attr->prog_btf_fd);
5061 if (IS_ERR(btf))
5062 return PTR_ERR(btf);
5063 env->prog->aux->btf = btf;
5064
5065 err = check_btf_func(env, attr, uattr);
5066 if (err)
5067 return err;
5068
5069 err = check_btf_line(env, attr, uattr);
5070 if (err)
5071 return err;
5072
5073 return 0;
ba64e7d8
YS
5074}
5075
f1174f77
EC
5076/* check %cur's range satisfies %old's */
5077static bool range_within(struct bpf_reg_state *old,
5078 struct bpf_reg_state *cur)
5079{
b03c9f9f
EC
5080 return old->umin_value <= cur->umin_value &&
5081 old->umax_value >= cur->umax_value &&
5082 old->smin_value <= cur->smin_value &&
5083 old->smax_value >= cur->smax_value;
f1174f77
EC
5084}
5085
5086/* Maximum number of register states that can exist at once */
5087#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5088struct idpair {
5089 u32 old;
5090 u32 cur;
5091};
5092
5093/* If in the old state two registers had the same id, then they need to have
5094 * the same id in the new state as well. But that id could be different from
5095 * the old state, so we need to track the mapping from old to new ids.
5096 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5097 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5098 * regs with a different old id could still have new id 9, we don't care about
5099 * that.
5100 * So we look through our idmap to see if this old id has been seen before. If
5101 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5102 */
f1174f77 5103static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5104{
f1174f77 5105 unsigned int i;
969bf05e 5106
f1174f77
EC
5107 for (i = 0; i < ID_MAP_SIZE; i++) {
5108 if (!idmap[i].old) {
5109 /* Reached an empty slot; haven't seen this id before */
5110 idmap[i].old = old_id;
5111 idmap[i].cur = cur_id;
5112 return true;
5113 }
5114 if (idmap[i].old == old_id)
5115 return idmap[i].cur == cur_id;
5116 }
5117 /* We ran out of idmap slots, which should be impossible */
5118 WARN_ON_ONCE(1);
5119 return false;
5120}
5121
9242b5f5
AS
5122static void clean_func_state(struct bpf_verifier_env *env,
5123 struct bpf_func_state *st)
5124{
5125 enum bpf_reg_liveness live;
5126 int i, j;
5127
5128 for (i = 0; i < BPF_REG_FP; i++) {
5129 live = st->regs[i].live;
5130 /* liveness must not touch this register anymore */
5131 st->regs[i].live |= REG_LIVE_DONE;
5132 if (!(live & REG_LIVE_READ))
5133 /* since the register is unused, clear its state
5134 * to make further comparison simpler
5135 */
5136 __mark_reg_not_init(&st->regs[i]);
5137 }
5138
5139 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5140 live = st->stack[i].spilled_ptr.live;
5141 /* liveness must not touch this stack slot anymore */
5142 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5143 if (!(live & REG_LIVE_READ)) {
5144 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5145 for (j = 0; j < BPF_REG_SIZE; j++)
5146 st->stack[i].slot_type[j] = STACK_INVALID;
5147 }
5148 }
5149}
5150
5151static void clean_verifier_state(struct bpf_verifier_env *env,
5152 struct bpf_verifier_state *st)
5153{
5154 int i;
5155
5156 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5157 /* all regs in this state in all frames were already marked */
5158 return;
5159
5160 for (i = 0; i <= st->curframe; i++)
5161 clean_func_state(env, st->frame[i]);
5162}
5163
5164/* the parentage chains form a tree.
5165 * the verifier states are added to state lists at given insn and
5166 * pushed into state stack for future exploration.
5167 * when the verifier reaches bpf_exit insn some of the verifer states
5168 * stored in the state lists have their final liveness state already,
5169 * but a lot of states will get revised from liveness point of view when
5170 * the verifier explores other branches.
5171 * Example:
5172 * 1: r0 = 1
5173 * 2: if r1 == 100 goto pc+1
5174 * 3: r0 = 2
5175 * 4: exit
5176 * when the verifier reaches exit insn the register r0 in the state list of
5177 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5178 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5179 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5180 *
5181 * Since the verifier pushes the branch states as it sees them while exploring
5182 * the program the condition of walking the branch instruction for the second
5183 * time means that all states below this branch were already explored and
5184 * their final liveness markes are already propagated.
5185 * Hence when the verifier completes the search of state list in is_state_visited()
5186 * we can call this clean_live_states() function to mark all liveness states
5187 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5188 * will not be used.
5189 * This function also clears the registers and stack for states that !READ
5190 * to simplify state merging.
5191 *
5192 * Important note here that walking the same branch instruction in the callee
5193 * doesn't meant that the states are DONE. The verifier has to compare
5194 * the callsites
5195 */
5196static void clean_live_states(struct bpf_verifier_env *env, int insn,
5197 struct bpf_verifier_state *cur)
5198{
5199 struct bpf_verifier_state_list *sl;
5200 int i;
5201
5202 sl = env->explored_states[insn];
5203 if (!sl)
5204 return;
5205
5206 while (sl != STATE_LIST_MARK) {
5207 if (sl->state.curframe != cur->curframe)
5208 goto next;
5209 for (i = 0; i <= cur->curframe; i++)
5210 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5211 goto next;
5212 clean_verifier_state(env, &sl->state);
5213next:
5214 sl = sl->next;
5215 }
5216}
5217
f1174f77 5218/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5219static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5220 struct idpair *idmap)
f1174f77 5221{
f4d7e40a
AS
5222 bool equal;
5223
dc503a8a
EC
5224 if (!(rold->live & REG_LIVE_READ))
5225 /* explored state didn't use this */
5226 return true;
5227
679c782d 5228 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5229
5230 if (rold->type == PTR_TO_STACK)
5231 /* two stack pointers are equal only if they're pointing to
5232 * the same stack frame, since fp-8 in foo != fp-8 in bar
5233 */
5234 return equal && rold->frameno == rcur->frameno;
5235
5236 if (equal)
969bf05e
AS
5237 return true;
5238
f1174f77
EC
5239 if (rold->type == NOT_INIT)
5240 /* explored state can't have used this */
969bf05e 5241 return true;
f1174f77
EC
5242 if (rcur->type == NOT_INIT)
5243 return false;
5244 switch (rold->type) {
5245 case SCALAR_VALUE:
5246 if (rcur->type == SCALAR_VALUE) {
5247 /* new val must satisfy old val knowledge */
5248 return range_within(rold, rcur) &&
5249 tnum_in(rold->var_off, rcur->var_off);
5250 } else {
179d1c56
JH
5251 /* We're trying to use a pointer in place of a scalar.
5252 * Even if the scalar was unbounded, this could lead to
5253 * pointer leaks because scalars are allowed to leak
5254 * while pointers are not. We could make this safe in
5255 * special cases if root is calling us, but it's
5256 * probably not worth the hassle.
f1174f77 5257 */
179d1c56 5258 return false;
f1174f77
EC
5259 }
5260 case PTR_TO_MAP_VALUE:
1b688a19
EC
5261 /* If the new min/max/var_off satisfy the old ones and
5262 * everything else matches, we are OK.
5263 * We don't care about the 'id' value, because nothing
5264 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
5265 */
5266 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5267 range_within(rold, rcur) &&
5268 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5269 case PTR_TO_MAP_VALUE_OR_NULL:
5270 /* a PTR_TO_MAP_VALUE could be safe to use as a
5271 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5272 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5273 * checked, doing so could have affected others with the same
5274 * id, and we can't check for that because we lost the id when
5275 * we converted to a PTR_TO_MAP_VALUE.
5276 */
5277 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5278 return false;
5279 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5280 return false;
5281 /* Check our ids match any regs they're supposed to */
5282 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5283 case PTR_TO_PACKET_META:
f1174f77 5284 case PTR_TO_PACKET:
de8f3a83 5285 if (rcur->type != rold->type)
f1174f77
EC
5286 return false;
5287 /* We must have at least as much range as the old ptr
5288 * did, so that any accesses which were safe before are
5289 * still safe. This is true even if old range < old off,
5290 * since someone could have accessed through (ptr - k), or
5291 * even done ptr -= k in a register, to get a safe access.
5292 */
5293 if (rold->range > rcur->range)
5294 return false;
5295 /* If the offsets don't match, we can't trust our alignment;
5296 * nor can we be sure that we won't fall out of range.
5297 */
5298 if (rold->off != rcur->off)
5299 return false;
5300 /* id relations must be preserved */
5301 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5302 return false;
5303 /* new val must satisfy old val knowledge */
5304 return range_within(rold, rcur) &&
5305 tnum_in(rold->var_off, rcur->var_off);
5306 case PTR_TO_CTX:
5307 case CONST_PTR_TO_MAP:
f1174f77 5308 case PTR_TO_PACKET_END:
d58e468b 5309 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5310 case PTR_TO_SOCKET:
5311 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
5312 /* Only valid matches are exact, which memcmp() above
5313 * would have accepted
5314 */
5315 default:
5316 /* Don't know what's going on, just say it's not safe */
5317 return false;
5318 }
969bf05e 5319
f1174f77
EC
5320 /* Shouldn't get here; if we do, say it's not safe */
5321 WARN_ON_ONCE(1);
969bf05e
AS
5322 return false;
5323}
5324
f4d7e40a
AS
5325static bool stacksafe(struct bpf_func_state *old,
5326 struct bpf_func_state *cur,
638f5b90
AS
5327 struct idpair *idmap)
5328{
5329 int i, spi;
5330
638f5b90
AS
5331 /* walk slots of the explored stack and ignore any additional
5332 * slots in the current stack, since explored(safe) state
5333 * didn't use them
5334 */
5335 for (i = 0; i < old->allocated_stack; i++) {
5336 spi = i / BPF_REG_SIZE;
5337
b233920c
AS
5338 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5339 i += BPF_REG_SIZE - 1;
cc2b14d5 5340 /* explored state didn't use this */
fd05e57b 5341 continue;
b233920c 5342 }
cc2b14d5 5343
638f5b90
AS
5344 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5345 continue;
19e2dbb7
AS
5346
5347 /* explored stack has more populated slots than current stack
5348 * and these slots were used
5349 */
5350 if (i >= cur->allocated_stack)
5351 return false;
5352
cc2b14d5
AS
5353 /* if old state was safe with misc data in the stack
5354 * it will be safe with zero-initialized stack.
5355 * The opposite is not true
5356 */
5357 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5358 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5359 continue;
638f5b90
AS
5360 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5361 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5362 /* Ex: old explored (safe) state has STACK_SPILL in
5363 * this stack slot, but current has has STACK_MISC ->
5364 * this verifier states are not equivalent,
5365 * return false to continue verification of this path
5366 */
5367 return false;
5368 if (i % BPF_REG_SIZE)
5369 continue;
5370 if (old->stack[spi].slot_type[0] != STACK_SPILL)
5371 continue;
5372 if (!regsafe(&old->stack[spi].spilled_ptr,
5373 &cur->stack[spi].spilled_ptr,
5374 idmap))
5375 /* when explored and current stack slot are both storing
5376 * spilled registers, check that stored pointers types
5377 * are the same as well.
5378 * Ex: explored safe path could have stored
5379 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5380 * but current path has stored:
5381 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5382 * such verifier states are not equivalent.
5383 * return false to continue verification of this path
5384 */
5385 return false;
5386 }
5387 return true;
5388}
5389
fd978bf7
JS
5390static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5391{
5392 if (old->acquired_refs != cur->acquired_refs)
5393 return false;
5394 return !memcmp(old->refs, cur->refs,
5395 sizeof(*old->refs) * old->acquired_refs);
5396}
5397
f1bca824
AS
5398/* compare two verifier states
5399 *
5400 * all states stored in state_list are known to be valid, since
5401 * verifier reached 'bpf_exit' instruction through them
5402 *
5403 * this function is called when verifier exploring different branches of
5404 * execution popped from the state stack. If it sees an old state that has
5405 * more strict register state and more strict stack state then this execution
5406 * branch doesn't need to be explored further, since verifier already
5407 * concluded that more strict state leads to valid finish.
5408 *
5409 * Therefore two states are equivalent if register state is more conservative
5410 * and explored stack state is more conservative than the current one.
5411 * Example:
5412 * explored current
5413 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5414 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5415 *
5416 * In other words if current stack state (one being explored) has more
5417 * valid slots than old one that already passed validation, it means
5418 * the verifier can stop exploring and conclude that current state is valid too
5419 *
5420 * Similarly with registers. If explored state has register type as invalid
5421 * whereas register type in current state is meaningful, it means that
5422 * the current state will reach 'bpf_exit' instruction safely
5423 */
f4d7e40a
AS
5424static bool func_states_equal(struct bpf_func_state *old,
5425 struct bpf_func_state *cur)
f1bca824 5426{
f1174f77
EC
5427 struct idpair *idmap;
5428 bool ret = false;
f1bca824
AS
5429 int i;
5430
f1174f77
EC
5431 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5432 /* If we failed to allocate the idmap, just say it's not safe */
5433 if (!idmap)
1a0dc1ac 5434 return false;
f1174f77
EC
5435
5436 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 5437 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 5438 goto out_free;
f1bca824
AS
5439 }
5440
638f5b90
AS
5441 if (!stacksafe(old, cur, idmap))
5442 goto out_free;
fd978bf7
JS
5443
5444 if (!refsafe(old, cur))
5445 goto out_free;
f1174f77
EC
5446 ret = true;
5447out_free:
5448 kfree(idmap);
5449 return ret;
f1bca824
AS
5450}
5451
f4d7e40a
AS
5452static bool states_equal(struct bpf_verifier_env *env,
5453 struct bpf_verifier_state *old,
5454 struct bpf_verifier_state *cur)
5455{
5456 int i;
5457
5458 if (old->curframe != cur->curframe)
5459 return false;
5460
5461 /* for states to be equal callsites have to be the same
5462 * and all frame states need to be equivalent
5463 */
5464 for (i = 0; i <= old->curframe; i++) {
5465 if (old->frame[i]->callsite != cur->frame[i]->callsite)
5466 return false;
5467 if (!func_states_equal(old->frame[i], cur->frame[i]))
5468 return false;
5469 }
5470 return true;
5471}
5472
8e9cd9ce 5473/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
5474 * straight-line code between a state and its parent. When we arrive at an
5475 * equivalent state (jump target or such) we didn't arrive by the straight-line
5476 * code, so read marks in the state must propagate to the parent regardless
5477 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 5478 * in mark_reg_read() is for.
8e9cd9ce 5479 */
f4d7e40a
AS
5480static int propagate_liveness(struct bpf_verifier_env *env,
5481 const struct bpf_verifier_state *vstate,
5482 struct bpf_verifier_state *vparent)
dc503a8a 5483{
f4d7e40a
AS
5484 int i, frame, err = 0;
5485 struct bpf_func_state *state, *parent;
dc503a8a 5486
f4d7e40a
AS
5487 if (vparent->curframe != vstate->curframe) {
5488 WARN(1, "propagate_live: parent frame %d current frame %d\n",
5489 vparent->curframe, vstate->curframe);
5490 return -EFAULT;
5491 }
dc503a8a
EC
5492 /* Propagate read liveness of registers... */
5493 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
5494 /* We don't need to worry about FP liveness because it's read-only */
5495 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 5496 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 5497 continue;
f4d7e40a 5498 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
5499 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
5500 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
5501 if (err)
5502 return err;
dc503a8a
EC
5503 }
5504 }
f4d7e40a 5505
dc503a8a 5506 /* ... and stack slots */
f4d7e40a
AS
5507 for (frame = 0; frame <= vstate->curframe; frame++) {
5508 state = vstate->frame[frame];
5509 parent = vparent->frame[frame];
5510 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
5511 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
5512 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
5513 continue;
5514 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
5515 mark_reg_read(env, &state->stack[i].spilled_ptr,
5516 &parent->stack[i].spilled_ptr);
dc503a8a
EC
5517 }
5518 }
f4d7e40a 5519 return err;
dc503a8a
EC
5520}
5521
58e2af8b 5522static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 5523{
58e2af8b
JK
5524 struct bpf_verifier_state_list *new_sl;
5525 struct bpf_verifier_state_list *sl;
679c782d 5526 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 5527 int i, j, err, states_cnt = 0;
f1bca824
AS
5528
5529 sl = env->explored_states[insn_idx];
5530 if (!sl)
5531 /* this 'insn_idx' instruction wasn't marked, so we will not
5532 * be doing state search here
5533 */
5534 return 0;
5535
9242b5f5
AS
5536 clean_live_states(env, insn_idx, cur);
5537
f1bca824 5538 while (sl != STATE_LIST_MARK) {
638f5b90 5539 if (states_equal(env, &sl->state, cur)) {
f1bca824 5540 /* reached equivalent register/stack state,
dc503a8a
EC
5541 * prune the search.
5542 * Registers read by the continuation are read by us.
8e9cd9ce
EC
5543 * If we have any write marks in env->cur_state, they
5544 * will prevent corresponding reads in the continuation
5545 * from reaching our parent (an explored_state). Our
5546 * own state will get the read marks recorded, but
5547 * they'll be immediately forgotten as we're pruning
5548 * this state and will pop a new one.
f1bca824 5549 */
f4d7e40a
AS
5550 err = propagate_liveness(env, &sl->state, cur);
5551 if (err)
5552 return err;
f1bca824 5553 return 1;
dc503a8a 5554 }
f1bca824 5555 sl = sl->next;
ceefbc96 5556 states_cnt++;
f1bca824
AS
5557 }
5558
ceefbc96
AS
5559 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
5560 return 0;
5561
f1bca824
AS
5562 /* there were no equivalent states, remember current one.
5563 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
5564 * but it will either reach outer most bpf_exit (which means it's safe)
5565 * or it will be rejected. Since there are no loops, we won't be
5566 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
5567 * again on the way to bpf_exit
f1bca824 5568 */
638f5b90 5569 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
5570 if (!new_sl)
5571 return -ENOMEM;
5572
5573 /* add new state to the head of linked list */
679c782d
EC
5574 new = &new_sl->state;
5575 err = copy_verifier_state(new, cur);
1969db47 5576 if (err) {
679c782d 5577 free_verifier_state(new, false);
1969db47
AS
5578 kfree(new_sl);
5579 return err;
5580 }
f1bca824
AS
5581 new_sl->next = env->explored_states[insn_idx];
5582 env->explored_states[insn_idx] = new_sl;
dc503a8a 5583 /* connect new state to parentage chain */
679c782d
EC
5584 for (i = 0; i < BPF_REG_FP; i++)
5585 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
5586 /* clear write marks in current state: the writes we did are not writes
5587 * our child did, so they don't screen off its reads from us.
5588 * (There are no read marks in current state, because reads always mark
5589 * their parent and current state never has children yet. Only
5590 * explored_states can get read marks.)
5591 */
dc503a8a 5592 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
5593 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
5594
5595 /* all stack frames are accessible from callee, clear them all */
5596 for (j = 0; j <= cur->curframe; j++) {
5597 struct bpf_func_state *frame = cur->frame[j];
679c782d 5598 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5599
679c782d 5600 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5601 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5602 frame->stack[i].spilled_ptr.parent =
5603 &newframe->stack[i].spilled_ptr;
5604 }
f4d7e40a 5605 }
f1bca824
AS
5606 return 0;
5607}
5608
c64b7983
JS
5609/* Return true if it's OK to have the same insn return a different type. */
5610static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5611{
5612 switch (type) {
5613 case PTR_TO_CTX:
5614 case PTR_TO_SOCKET:
5615 case PTR_TO_SOCKET_OR_NULL:
5616 return false;
5617 default:
5618 return true;
5619 }
5620}
5621
5622/* If an instruction was previously used with particular pointer types, then we
5623 * need to be careful to avoid cases such as the below, where it may be ok
5624 * for one branch accessing the pointer, but not ok for the other branch:
5625 *
5626 * R1 = sock_ptr
5627 * goto X;
5628 * ...
5629 * R1 = some_other_valid_ptr;
5630 * goto X;
5631 * ...
5632 * R2 = *(u32 *)(R1 + 0);
5633 */
5634static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5635{
5636 return src != prev && (!reg_type_mismatch_ok(src) ||
5637 !reg_type_mismatch_ok(prev));
5638}
5639
58e2af8b 5640static int do_check(struct bpf_verifier_env *env)
17a52670 5641{
638f5b90 5642 struct bpf_verifier_state *state;
17a52670 5643 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5644 struct bpf_reg_state *regs;
f4d7e40a 5645 int insn_cnt = env->prog->len, i;
17a52670
AS
5646 int insn_idx, prev_insn_idx = 0;
5647 int insn_processed = 0;
5648 bool do_print_state = false;
5649
d9762e84
MKL
5650 env->prev_linfo = NULL;
5651
638f5b90
AS
5652 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5653 if (!state)
5654 return -ENOMEM;
f4d7e40a 5655 state->curframe = 0;
f4d7e40a
AS
5656 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5657 if (!state->frame[0]) {
5658 kfree(state);
5659 return -ENOMEM;
5660 }
5661 env->cur_state = state;
5662 init_func_state(env, state->frame[0],
5663 BPF_MAIN_FUNC /* callsite */,
5664 0 /* frameno */,
5665 0 /* subprogno, zero == main subprog */);
17a52670
AS
5666 insn_idx = 0;
5667 for (;;) {
5668 struct bpf_insn *insn;
5669 u8 class;
5670 int err;
5671
5672 if (insn_idx >= insn_cnt) {
61bd5218 5673 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
5674 insn_idx, insn_cnt);
5675 return -EFAULT;
5676 }
5677
5678 insn = &insns[insn_idx];
5679 class = BPF_CLASS(insn->code);
5680
07016151 5681 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5682 verbose(env,
5683 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5684 insn_processed);
5685 return -E2BIG;
5686 }
5687
f1bca824
AS
5688 err = is_state_visited(env, insn_idx);
5689 if (err < 0)
5690 return err;
5691 if (err == 1) {
5692 /* found equivalent state, can prune the search */
61bd5218 5693 if (env->log.level) {
f1bca824 5694 if (do_print_state)
61bd5218 5695 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
5696 prev_insn_idx, insn_idx);
5697 else
61bd5218 5698 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
5699 }
5700 goto process_bpf_exit;
5701 }
5702
c3494801
AS
5703 if (signal_pending(current))
5704 return -EAGAIN;
5705
3c2ce60b
DB
5706 if (need_resched())
5707 cond_resched();
5708
61bd5218
JK
5709 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5710 if (env->log.level > 1)
5711 verbose(env, "%d:", insn_idx);
c5fc9692 5712 else
61bd5218 5713 verbose(env, "\nfrom %d to %d:",
c5fc9692 5714 prev_insn_idx, insn_idx);
f4d7e40a 5715 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5716 do_print_state = false;
5717 }
5718
61bd5218 5719 if (env->log.level) {
7105e828
DB
5720 const struct bpf_insn_cbs cbs = {
5721 .cb_print = verbose,
abe08840 5722 .private_data = env,
7105e828
DB
5723 };
5724
d9762e84 5725 verbose_linfo(env, insn_idx, "; ");
61bd5218 5726 verbose(env, "%d: ", insn_idx);
abe08840 5727 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5728 }
5729
cae1927c
JK
5730 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5731 err = bpf_prog_offload_verify_insn(env, insn_idx,
5732 prev_insn_idx);
5733 if (err)
5734 return err;
5735 }
13a27dfc 5736
638f5b90 5737 regs = cur_regs(env);
c131187d 5738 env->insn_aux_data[insn_idx].seen = true;
fd978bf7 5739
17a52670 5740 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5741 err = check_alu_op(env, insn);
17a52670
AS
5742 if (err)
5743 return err;
5744
5745 } else if (class == BPF_LDX) {
3df126f3 5746 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5747
5748 /* check for reserved fields is already done */
5749
17a52670 5750 /* check src operand */
dc503a8a 5751 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5752 if (err)
5753 return err;
5754
dc503a8a 5755 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5756 if (err)
5757 return err;
5758
725f9dcd
AS
5759 src_reg_type = regs[insn->src_reg].type;
5760
17a52670
AS
5761 /* check that memory (src_reg + off) is readable,
5762 * the state of dst_reg will be updated by this func
5763 */
31fd8581 5764 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 5765 BPF_SIZE(insn->code), BPF_READ,
ca369602 5766 insn->dst_reg, false);
17a52670
AS
5767 if (err)
5768 return err;
5769
3df126f3
JK
5770 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5771
5772 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5773 /* saw a valid insn
5774 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5775 * save type to validate intersecting paths
9bac3d6d 5776 */
3df126f3 5777 *prev_src_type = src_reg_type;
9bac3d6d 5778
c64b7983 5779 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5780 /* ABuser program is trying to use the same insn
5781 * dst_reg = *(u32*) (src_reg + off)
5782 * with different pointer types:
5783 * src_reg == ctx in one branch and
5784 * src_reg == stack|map in some other branch.
5785 * Reject it.
5786 */
61bd5218 5787 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5788 return -EINVAL;
5789 }
5790
17a52670 5791 } else if (class == BPF_STX) {
3df126f3 5792 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5793
17a52670 5794 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 5795 err = check_xadd(env, insn_idx, insn);
17a52670
AS
5796 if (err)
5797 return err;
5798 insn_idx++;
5799 continue;
5800 }
5801
17a52670 5802 /* check src1 operand */
dc503a8a 5803 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5804 if (err)
5805 return err;
5806 /* check src2 operand */
dc503a8a 5807 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5808 if (err)
5809 return err;
5810
d691f9e8
AS
5811 dst_reg_type = regs[insn->dst_reg].type;
5812
17a52670 5813 /* check that memory (dst_reg + off) is writeable */
31fd8581 5814 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5815 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5816 insn->src_reg, false);
17a52670
AS
5817 if (err)
5818 return err;
5819
3df126f3
JK
5820 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5821
5822 if (*prev_dst_type == NOT_INIT) {
5823 *prev_dst_type = dst_reg_type;
c64b7983 5824 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5825 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5826 return -EINVAL;
5827 }
5828
17a52670
AS
5829 } else if (class == BPF_ST) {
5830 if (BPF_MODE(insn->code) != BPF_MEM ||
5831 insn->src_reg != BPF_REG_0) {
61bd5218 5832 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5833 return -EINVAL;
5834 }
5835 /* check src operand */
dc503a8a 5836 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5837 if (err)
5838 return err;
5839
f37a8cb8 5840 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 5841 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
5842 insn->dst_reg,
5843 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
5844 return -EACCES;
5845 }
5846
17a52670 5847 /* check that memory (dst_reg + off) is writeable */
31fd8581 5848 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5849 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5850 -1, false);
17a52670
AS
5851 if (err)
5852 return err;
5853
5854 } else if (class == BPF_JMP) {
5855 u8 opcode = BPF_OP(insn->code);
5856
5857 if (opcode == BPF_CALL) {
5858 if (BPF_SRC(insn->code) != BPF_K ||
5859 insn->off != 0 ||
f4d7e40a
AS
5860 (insn->src_reg != BPF_REG_0 &&
5861 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5862 insn->dst_reg != BPF_REG_0) {
61bd5218 5863 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5864 return -EINVAL;
5865 }
5866
f4d7e40a
AS
5867 if (insn->src_reg == BPF_PSEUDO_CALL)
5868 err = check_func_call(env, insn, &insn_idx);
5869 else
5870 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
5871 if (err)
5872 return err;
5873
5874 } else if (opcode == BPF_JA) {
5875 if (BPF_SRC(insn->code) != BPF_K ||
5876 insn->imm != 0 ||
5877 insn->src_reg != BPF_REG_0 ||
5878 insn->dst_reg != BPF_REG_0) {
61bd5218 5879 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5880 return -EINVAL;
5881 }
5882
5883 insn_idx += insn->off + 1;
5884 continue;
5885
5886 } else if (opcode == BPF_EXIT) {
5887 if (BPF_SRC(insn->code) != BPF_K ||
5888 insn->imm != 0 ||
5889 insn->src_reg != BPF_REG_0 ||
5890 insn->dst_reg != BPF_REG_0) {
61bd5218 5891 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5892 return -EINVAL;
5893 }
5894
f4d7e40a
AS
5895 if (state->curframe) {
5896 /* exit from nested function */
5897 prev_insn_idx = insn_idx;
5898 err = prepare_func_exit(env, &insn_idx);
5899 if (err)
5900 return err;
5901 do_print_state = true;
5902 continue;
5903 }
5904
fd978bf7
JS
5905 err = check_reference_leak(env);
5906 if (err)
5907 return err;
5908
17a52670
AS
5909 /* eBPF calling convetion is such that R0 is used
5910 * to return the value from eBPF program.
5911 * Make sure that it's readable at this time
5912 * of bpf_exit, which means that program wrote
5913 * something into it earlier
5914 */
dc503a8a 5915 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5916 if (err)
5917 return err;
5918
1be7f75d 5919 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5920 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5921 return -EACCES;
5922 }
5923
390ee7e2
AS
5924 err = check_return_code(env);
5925 if (err)
5926 return err;
f1bca824 5927process_bpf_exit:
638f5b90
AS
5928 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5929 if (err < 0) {
5930 if (err != -ENOENT)
5931 return err;
17a52670
AS
5932 break;
5933 } else {
5934 do_print_state = true;
5935 continue;
5936 }
5937 } else {
5938 err = check_cond_jmp_op(env, insn, &insn_idx);
5939 if (err)
5940 return err;
5941 }
5942 } else if (class == BPF_LD) {
5943 u8 mode = BPF_MODE(insn->code);
5944
5945 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5946 err = check_ld_abs(env, insn);
5947 if (err)
5948 return err;
5949
17a52670
AS
5950 } else if (mode == BPF_IMM) {
5951 err = check_ld_imm(env, insn);
5952 if (err)
5953 return err;
5954
5955 insn_idx++;
c131187d 5956 env->insn_aux_data[insn_idx].seen = true;
17a52670 5957 } else {
61bd5218 5958 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5959 return -EINVAL;
5960 }
5961 } else {
61bd5218 5962 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5963 return -EINVAL;
5964 }
5965
5966 insn_idx++;
5967 }
5968
4bd95f4b
DB
5969 verbose(env, "processed %d insns (limit %d), stack depth ",
5970 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5971 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5972 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5973
5974 verbose(env, "%d", depth);
f910cefa 5975 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5976 verbose(env, "+");
5977 }
5978 verbose(env, "\n");
9c8105bd 5979 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5980 return 0;
5981}
5982
56f668df
MKL
5983static int check_map_prealloc(struct bpf_map *map)
5984{
5985 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5986 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5987 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5988 !(map->map_flags & BPF_F_NO_PREALLOC);
5989}
5990
61bd5218
JK
5991static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5992 struct bpf_map *map,
fdc15d38
AS
5993 struct bpf_prog *prog)
5994
5995{
56f668df
MKL
5996 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5997 * preallocated hash maps, since doing memory allocation
5998 * in overflow_handler can crash depending on where nmi got
5999 * triggered.
6000 */
6001 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6002 if (!check_map_prealloc(map)) {
61bd5218 6003 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
6004 return -EINVAL;
6005 }
6006 if (map->inner_map_meta &&
6007 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 6008 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
6009 return -EINVAL;
6010 }
fdc15d38 6011 }
a3884572
JK
6012
6013 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 6014 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
6015 verbose(env, "offload device mismatch between prog and map\n");
6016 return -EINVAL;
6017 }
6018
fdc15d38
AS
6019 return 0;
6020}
6021
b741f163
RG
6022static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6023{
6024 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6025 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6026}
6027
0246e64d
AS
6028/* look for pseudo eBPF instructions that access map FDs and
6029 * replace them with actual map pointers
6030 */
58e2af8b 6031static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
6032{
6033 struct bpf_insn *insn = env->prog->insnsi;
6034 int insn_cnt = env->prog->len;
fdc15d38 6035 int i, j, err;
0246e64d 6036
f1f7714e 6037 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
6038 if (err)
6039 return err;
6040
0246e64d 6041 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 6042 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 6043 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 6044 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
6045 return -EINVAL;
6046 }
6047
d691f9e8
AS
6048 if (BPF_CLASS(insn->code) == BPF_STX &&
6049 ((BPF_MODE(insn->code) != BPF_MEM &&
6050 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 6051 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
6052 return -EINVAL;
6053 }
6054
0246e64d
AS
6055 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6056 struct bpf_map *map;
6057 struct fd f;
6058
6059 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6060 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6061 insn[1].off != 0) {
61bd5218 6062 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
6063 return -EINVAL;
6064 }
6065
6066 if (insn->src_reg == 0)
6067 /* valid generic load 64-bit imm */
6068 goto next_insn;
6069
6070 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
6071 verbose(env,
6072 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
6073 return -EINVAL;
6074 }
6075
6076 f = fdget(insn->imm);
c2101297 6077 map = __bpf_map_get(f);
0246e64d 6078 if (IS_ERR(map)) {
61bd5218 6079 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 6080 insn->imm);
0246e64d
AS
6081 return PTR_ERR(map);
6082 }
6083
61bd5218 6084 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
6085 if (err) {
6086 fdput(f);
6087 return err;
6088 }
6089
0246e64d
AS
6090 /* store map pointer inside BPF_LD_IMM64 instruction */
6091 insn[0].imm = (u32) (unsigned long) map;
6092 insn[1].imm = ((u64) (unsigned long) map) >> 32;
6093
6094 /* check whether we recorded this map already */
6095 for (j = 0; j < env->used_map_cnt; j++)
6096 if (env->used_maps[j] == map) {
6097 fdput(f);
6098 goto next_insn;
6099 }
6100
6101 if (env->used_map_cnt >= MAX_USED_MAPS) {
6102 fdput(f);
6103 return -E2BIG;
6104 }
6105
0246e64d
AS
6106 /* hold the map. If the program is rejected by verifier,
6107 * the map will be released by release_maps() or it
6108 * will be used by the valid program until it's unloaded
ab7f5bf0 6109 * and all maps are released in free_used_maps()
0246e64d 6110 */
92117d84
AS
6111 map = bpf_map_inc(map, false);
6112 if (IS_ERR(map)) {
6113 fdput(f);
6114 return PTR_ERR(map);
6115 }
6116 env->used_maps[env->used_map_cnt++] = map;
6117
b741f163 6118 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 6119 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 6120 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
6121 fdput(f);
6122 return -EBUSY;
6123 }
6124
0246e64d
AS
6125 fdput(f);
6126next_insn:
6127 insn++;
6128 i++;
5e581dad
DB
6129 continue;
6130 }
6131
6132 /* Basic sanity check before we invest more work here. */
6133 if (!bpf_opcode_in_insntable(insn->code)) {
6134 verbose(env, "unknown opcode %02x\n", insn->code);
6135 return -EINVAL;
0246e64d
AS
6136 }
6137 }
6138
6139 /* now all pseudo BPF_LD_IMM64 instructions load valid
6140 * 'struct bpf_map *' into a register instead of user map_fd.
6141 * These pointers will be used later by verifier to validate map access.
6142 */
6143 return 0;
6144}
6145
6146/* drop refcnt of maps used by the rejected program */
58e2af8b 6147static void release_maps(struct bpf_verifier_env *env)
0246e64d 6148{
8bad74f9 6149 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6150 int i;
6151
8bad74f9
RG
6152 for_each_cgroup_storage_type(stype) {
6153 if (!env->prog->aux->cgroup_storage[stype])
6154 continue;
de9cbbaa 6155 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6156 env->prog->aux->cgroup_storage[stype]);
6157 }
de9cbbaa 6158
0246e64d
AS
6159 for (i = 0; i < env->used_map_cnt; i++)
6160 bpf_map_put(env->used_maps[i]);
6161}
6162
6163/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6164static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6165{
6166 struct bpf_insn *insn = env->prog->insnsi;
6167 int insn_cnt = env->prog->len;
6168 int i;
6169
6170 for (i = 0; i < insn_cnt; i++, insn++)
6171 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6172 insn->src_reg = 0;
6173}
6174
8041902d
AS
6175/* single env->prog->insni[off] instruction was replaced with the range
6176 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6177 * [0, off) and [off, end) to new locations, so the patched range stays zero
6178 */
6179static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6180 u32 off, u32 cnt)
6181{
6182 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6183 int i;
8041902d
AS
6184
6185 if (cnt == 1)
6186 return 0;
fad953ce
KC
6187 new_data = vzalloc(array_size(prog_len,
6188 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6189 if (!new_data)
6190 return -ENOMEM;
6191 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6192 memcpy(new_data + off + cnt - 1, old_data + off,
6193 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6194 for (i = off; i < off + cnt - 1; i++)
6195 new_data[i].seen = true;
8041902d
AS
6196 env->insn_aux_data = new_data;
6197 vfree(old_data);
6198 return 0;
6199}
6200
cc8b0b92
AS
6201static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6202{
6203 int i;
6204
6205 if (len == 1)
6206 return;
4cb3d99c
JW
6207 /* NOTE: fake 'exit' subprog should be updated as well. */
6208 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 6209 if (env->subprog_info[i].start <= off)
cc8b0b92 6210 continue;
9c8105bd 6211 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
6212 }
6213}
6214
8041902d
AS
6215static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6216 const struct bpf_insn *patch, u32 len)
6217{
6218 struct bpf_prog *new_prog;
6219
6220 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6221 if (!new_prog)
6222 return NULL;
6223 if (adjust_insn_aux_data(env, new_prog->len, off, len))
6224 return NULL;
cc8b0b92 6225 adjust_subprog_starts(env, off, len);
8041902d
AS
6226 return new_prog;
6227}
6228
2a5418a1
DB
6229/* The verifier does more data flow analysis than llvm and will not
6230 * explore branches that are dead at run time. Malicious programs can
6231 * have dead code too. Therefore replace all dead at-run-time code
6232 * with 'ja -1'.
6233 *
6234 * Just nops are not optimal, e.g. if they would sit at the end of the
6235 * program and through another bug we would manage to jump there, then
6236 * we'd execute beyond program memory otherwise. Returning exception
6237 * code also wouldn't work since we can have subprogs where the dead
6238 * code could be located.
c131187d
AS
6239 */
6240static void sanitize_dead_code(struct bpf_verifier_env *env)
6241{
6242 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 6243 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
6244 struct bpf_insn *insn = env->prog->insnsi;
6245 const int insn_cnt = env->prog->len;
6246 int i;
6247
6248 for (i = 0; i < insn_cnt; i++) {
6249 if (aux_data[i].seen)
6250 continue;
2a5418a1 6251 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
6252 }
6253}
6254
c64b7983
JS
6255/* convert load instructions that access fields of a context type into a
6256 * sequence of instructions that access fields of the underlying structure:
6257 * struct __sk_buff -> struct sk_buff
6258 * struct bpf_sock_ops -> struct sock
9bac3d6d 6259 */
58e2af8b 6260static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 6261{
00176a34 6262 const struct bpf_verifier_ops *ops = env->ops;
f96da094 6263 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 6264 const int insn_cnt = env->prog->len;
36bbef52 6265 struct bpf_insn insn_buf[16], *insn;
46f53a65 6266 u32 target_size, size_default, off;
9bac3d6d 6267 struct bpf_prog *new_prog;
d691f9e8 6268 enum bpf_access_type type;
f96da094 6269 bool is_narrower_load;
9bac3d6d 6270
b09928b9
DB
6271 if (ops->gen_prologue || env->seen_direct_write) {
6272 if (!ops->gen_prologue) {
6273 verbose(env, "bpf verifier is misconfigured\n");
6274 return -EINVAL;
6275 }
36bbef52
DB
6276 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
6277 env->prog);
6278 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 6279 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
6280 return -EINVAL;
6281 } else if (cnt) {
8041902d 6282 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
6283 if (!new_prog)
6284 return -ENOMEM;
8041902d 6285
36bbef52 6286 env->prog = new_prog;
3df126f3 6287 delta += cnt - 1;
36bbef52
DB
6288 }
6289 }
6290
c64b7983 6291 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
6292 return 0;
6293
3df126f3 6294 insn = env->prog->insnsi + delta;
36bbef52 6295
9bac3d6d 6296 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
6297 bpf_convert_ctx_access_t convert_ctx_access;
6298
62c7989b
DB
6299 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
6300 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
6301 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 6302 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 6303 type = BPF_READ;
62c7989b
DB
6304 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
6305 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
6306 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 6307 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
6308 type = BPF_WRITE;
6309 else
9bac3d6d
AS
6310 continue;
6311
af86ca4e
AS
6312 if (type == BPF_WRITE &&
6313 env->insn_aux_data[i + delta].sanitize_stack_off) {
6314 struct bpf_insn patch[] = {
6315 /* Sanitize suspicious stack slot with zero.
6316 * There are no memory dependencies for this store,
6317 * since it's only using frame pointer and immediate
6318 * constant of zero
6319 */
6320 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
6321 env->insn_aux_data[i + delta].sanitize_stack_off,
6322 0),
6323 /* the original STX instruction will immediately
6324 * overwrite the same stack slot with appropriate value
6325 */
6326 *insn,
6327 };
6328
6329 cnt = ARRAY_SIZE(patch);
6330 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
6331 if (!new_prog)
6332 return -ENOMEM;
6333
6334 delta += cnt - 1;
6335 env->prog = new_prog;
6336 insn = new_prog->insnsi + i + delta;
6337 continue;
6338 }
6339
c64b7983
JS
6340 switch (env->insn_aux_data[i + delta].ptr_type) {
6341 case PTR_TO_CTX:
6342 if (!ops->convert_ctx_access)
6343 continue;
6344 convert_ctx_access = ops->convert_ctx_access;
6345 break;
6346 case PTR_TO_SOCKET:
6347 convert_ctx_access = bpf_sock_convert_ctx_access;
6348 break;
6349 default:
9bac3d6d 6350 continue;
c64b7983 6351 }
9bac3d6d 6352
31fd8581 6353 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 6354 size = BPF_LDST_BYTES(insn);
31fd8581
YS
6355
6356 /* If the read access is a narrower load of the field,
6357 * convert to a 4/8-byte load, to minimum program type specific
6358 * convert_ctx_access changes. If conversion is successful,
6359 * we will apply proper mask to the result.
6360 */
f96da094 6361 is_narrower_load = size < ctx_field_size;
46f53a65
AI
6362 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
6363 off = insn->off;
31fd8581 6364 if (is_narrower_load) {
f96da094
DB
6365 u8 size_code;
6366
6367 if (type == BPF_WRITE) {
61bd5218 6368 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
6369 return -EINVAL;
6370 }
31fd8581 6371
f96da094 6372 size_code = BPF_H;
31fd8581
YS
6373 if (ctx_field_size == 4)
6374 size_code = BPF_W;
6375 else if (ctx_field_size == 8)
6376 size_code = BPF_DW;
f96da094 6377
bc23105c 6378 insn->off = off & ~(size_default - 1);
31fd8581
YS
6379 insn->code = BPF_LDX | BPF_MEM | size_code;
6380 }
f96da094
DB
6381
6382 target_size = 0;
c64b7983
JS
6383 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
6384 &target_size);
f96da094
DB
6385 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
6386 (ctx_field_size && !target_size)) {
61bd5218 6387 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
6388 return -EINVAL;
6389 }
f96da094
DB
6390
6391 if (is_narrower_load && size < target_size) {
46f53a65
AI
6392 u8 shift = (off & (size_default - 1)) * 8;
6393
6394 if (ctx_field_size <= 4) {
6395 if (shift)
6396 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
6397 insn->dst_reg,
6398 shift);
31fd8581 6399 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 6400 (1 << size * 8) - 1);
46f53a65
AI
6401 } else {
6402 if (shift)
6403 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
6404 insn->dst_reg,
6405 shift);
31fd8581 6406 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 6407 (1 << size * 8) - 1);
46f53a65 6408 }
31fd8581 6409 }
9bac3d6d 6410
8041902d 6411 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
6412 if (!new_prog)
6413 return -ENOMEM;
6414
3df126f3 6415 delta += cnt - 1;
9bac3d6d
AS
6416
6417 /* keep walking new program and skip insns we just inserted */
6418 env->prog = new_prog;
3df126f3 6419 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
6420 }
6421
6422 return 0;
6423}
6424
1c2a088a
AS
6425static int jit_subprogs(struct bpf_verifier_env *env)
6426{
6427 struct bpf_prog *prog = env->prog, **func, *tmp;
6428 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 6429 struct bpf_insn *insn;
1c2a088a 6430 void *old_bpf_func;
c454a46b 6431 int err;
1c2a088a 6432
f910cefa 6433 if (env->subprog_cnt <= 1)
1c2a088a
AS
6434 return 0;
6435
7105e828 6436 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
6437 if (insn->code != (BPF_JMP | BPF_CALL) ||
6438 insn->src_reg != BPF_PSEUDO_CALL)
6439 continue;
c7a89784
DB
6440 /* Upon error here we cannot fall back to interpreter but
6441 * need a hard reject of the program. Thus -EFAULT is
6442 * propagated in any case.
6443 */
1c2a088a
AS
6444 subprog = find_subprog(env, i + insn->imm + 1);
6445 if (subprog < 0) {
6446 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6447 i + insn->imm + 1);
6448 return -EFAULT;
6449 }
6450 /* temporarily remember subprog id inside insn instead of
6451 * aux_data, since next loop will split up all insns into funcs
6452 */
f910cefa 6453 insn->off = subprog;
1c2a088a
AS
6454 /* remember original imm in case JIT fails and fallback
6455 * to interpreter will be needed
6456 */
6457 env->insn_aux_data[i].call_imm = insn->imm;
6458 /* point imm to __bpf_call_base+1 from JITs point of view */
6459 insn->imm = 1;
6460 }
6461
c454a46b
MKL
6462 err = bpf_prog_alloc_jited_linfo(prog);
6463 if (err)
6464 goto out_undo_insn;
6465
6466 err = -ENOMEM;
6396bb22 6467 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 6468 if (!func)
c7a89784 6469 goto out_undo_insn;
1c2a088a 6470
f910cefa 6471 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 6472 subprog_start = subprog_end;
4cb3d99c 6473 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
6474
6475 len = subprog_end - subprog_start;
6476 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
6477 if (!func[i])
6478 goto out_free;
6479 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
6480 len * sizeof(struct bpf_insn));
4f74d809 6481 func[i]->type = prog->type;
1c2a088a 6482 func[i]->len = len;
4f74d809
DB
6483 if (bpf_prog_calc_tag(func[i]))
6484 goto out_free;
1c2a088a 6485 func[i]->is_func = 1;
ba64e7d8
YS
6486 func[i]->aux->func_idx = i;
6487 /* the btf and func_info will be freed only at prog->aux */
6488 func[i]->aux->btf = prog->aux->btf;
6489 func[i]->aux->func_info = prog->aux->func_info;
6490
1c2a088a
AS
6491 /* Use bpf_prog_F_tag to indicate functions in stack traces.
6492 * Long term would need debug info to populate names
6493 */
6494 func[i]->aux->name[0] = 'F';
9c8105bd 6495 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 6496 func[i]->jit_requested = 1;
c454a46b
MKL
6497 func[i]->aux->linfo = prog->aux->linfo;
6498 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
6499 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
6500 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
6501 func[i] = bpf_int_jit_compile(func[i]);
6502 if (!func[i]->jited) {
6503 err = -ENOTSUPP;
6504 goto out_free;
6505 }
6506 cond_resched();
6507 }
6508 /* at this point all bpf functions were successfully JITed
6509 * now populate all bpf_calls with correct addresses and
6510 * run last pass of JIT
6511 */
f910cefa 6512 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6513 insn = func[i]->insnsi;
6514 for (j = 0; j < func[i]->len; j++, insn++) {
6515 if (insn->code != (BPF_JMP | BPF_CALL) ||
6516 insn->src_reg != BPF_PSEUDO_CALL)
6517 continue;
6518 subprog = insn->off;
1c2a088a
AS
6519 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
6520 func[subprog]->bpf_func -
6521 __bpf_call_base;
6522 }
2162fed4
SD
6523
6524 /* we use the aux data to keep a list of the start addresses
6525 * of the JITed images for each function in the program
6526 *
6527 * for some architectures, such as powerpc64, the imm field
6528 * might not be large enough to hold the offset of the start
6529 * address of the callee's JITed image from __bpf_call_base
6530 *
6531 * in such cases, we can lookup the start address of a callee
6532 * by using its subprog id, available from the off field of
6533 * the call instruction, as an index for this list
6534 */
6535 func[i]->aux->func = func;
6536 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 6537 }
f910cefa 6538 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6539 old_bpf_func = func[i]->bpf_func;
6540 tmp = bpf_int_jit_compile(func[i]);
6541 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
6542 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 6543 err = -ENOTSUPP;
1c2a088a
AS
6544 goto out_free;
6545 }
6546 cond_resched();
6547 }
6548
6549 /* finally lock prog and jit images for all functions and
6550 * populate kallsysm
6551 */
f910cefa 6552 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
6553 bpf_prog_lock_ro(func[i]);
6554 bpf_prog_kallsyms_add(func[i]);
6555 }
7105e828
DB
6556
6557 /* Last step: make now unused interpreter insns from main
6558 * prog consistent for later dump requests, so they can
6559 * later look the same as if they were interpreted only.
6560 */
6561 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
6562 if (insn->code != (BPF_JMP | BPF_CALL) ||
6563 insn->src_reg != BPF_PSEUDO_CALL)
6564 continue;
6565 insn->off = env->insn_aux_data[i].call_imm;
6566 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 6567 insn->imm = subprog;
7105e828
DB
6568 }
6569
1c2a088a
AS
6570 prog->jited = 1;
6571 prog->bpf_func = func[0]->bpf_func;
6572 prog->aux->func = func;
f910cefa 6573 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 6574 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
6575 return 0;
6576out_free:
f910cefa 6577 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
6578 if (func[i])
6579 bpf_jit_free(func[i]);
6580 kfree(func);
c7a89784 6581out_undo_insn:
1c2a088a
AS
6582 /* cleanup main prog to be interpreted */
6583 prog->jit_requested = 0;
6584 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
6585 if (insn->code != (BPF_JMP | BPF_CALL) ||
6586 insn->src_reg != BPF_PSEUDO_CALL)
6587 continue;
6588 insn->off = 0;
6589 insn->imm = env->insn_aux_data[i].call_imm;
6590 }
c454a46b 6591 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
6592 return err;
6593}
6594
1ea47e01
AS
6595static int fixup_call_args(struct bpf_verifier_env *env)
6596{
19d28fbd 6597#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6598 struct bpf_prog *prog = env->prog;
6599 struct bpf_insn *insn = prog->insnsi;
6600 int i, depth;
19d28fbd 6601#endif
e4052d06 6602 int err = 0;
1ea47e01 6603
e4052d06
QM
6604 if (env->prog->jit_requested &&
6605 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
6606 err = jit_subprogs(env);
6607 if (err == 0)
1c2a088a 6608 return 0;
c7a89784
DB
6609 if (err == -EFAULT)
6610 return err;
19d28fbd
DM
6611 }
6612#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
6613 for (i = 0; i < prog->len; i++, insn++) {
6614 if (insn->code != (BPF_JMP | BPF_CALL) ||
6615 insn->src_reg != BPF_PSEUDO_CALL)
6616 continue;
6617 depth = get_callee_stack_depth(env, insn, i);
6618 if (depth < 0)
6619 return depth;
6620 bpf_patch_call_args(insn, depth);
6621 }
19d28fbd
DM
6622 err = 0;
6623#endif
6624 return err;
1ea47e01
AS
6625}
6626
79741b3b 6627/* fixup insn->imm field of bpf_call instructions
81ed18ab 6628 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
6629 *
6630 * this function is called after eBPF program passed verification
6631 */
79741b3b 6632static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 6633{
79741b3b
AS
6634 struct bpf_prog *prog = env->prog;
6635 struct bpf_insn *insn = prog->insnsi;
e245c5c6 6636 const struct bpf_func_proto *fn;
79741b3b 6637 const int insn_cnt = prog->len;
09772d92 6638 const struct bpf_map_ops *ops;
c93552c4 6639 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6640 struct bpf_insn insn_buf[16];
6641 struct bpf_prog *new_prog;
6642 struct bpf_map *map_ptr;
6643 int i, cnt, delta = 0;
e245c5c6 6644
79741b3b 6645 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6646 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6647 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6648 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6649 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6650 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6651 struct bpf_insn mask_and_div[] = {
6652 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6653 /* Rx div 0 -> 0 */
6654 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6655 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6656 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6657 *insn,
6658 };
6659 struct bpf_insn mask_and_mod[] = {
6660 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6661 /* Rx mod 0 -> Rx */
6662 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6663 *insn,
6664 };
6665 struct bpf_insn *patchlet;
6666
6667 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6668 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6669 patchlet = mask_and_div + (is64 ? 1 : 0);
6670 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6671 } else {
6672 patchlet = mask_and_mod + (is64 ? 1 : 0);
6673 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6674 }
6675
6676 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6677 if (!new_prog)
6678 return -ENOMEM;
6679
6680 delta += cnt - 1;
6681 env->prog = prog = new_prog;
6682 insn = new_prog->insnsi + i + delta;
6683 continue;
6684 }
6685
e0cea7ce
DB
6686 if (BPF_CLASS(insn->code) == BPF_LD &&
6687 (BPF_MODE(insn->code) == BPF_ABS ||
6688 BPF_MODE(insn->code) == BPF_IND)) {
6689 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6690 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6691 verbose(env, "bpf verifier is misconfigured\n");
6692 return -EINVAL;
6693 }
6694
6695 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6696 if (!new_prog)
6697 return -ENOMEM;
6698
6699 delta += cnt - 1;
6700 env->prog = prog = new_prog;
6701 insn = new_prog->insnsi + i + delta;
6702 continue;
6703 }
6704
79741b3b
AS
6705 if (insn->code != (BPF_JMP | BPF_CALL))
6706 continue;
cc8b0b92
AS
6707 if (insn->src_reg == BPF_PSEUDO_CALL)
6708 continue;
e245c5c6 6709
79741b3b
AS
6710 if (insn->imm == BPF_FUNC_get_route_realm)
6711 prog->dst_needed = 1;
6712 if (insn->imm == BPF_FUNC_get_prandom_u32)
6713 bpf_user_rnd_init_once();
9802d865
JB
6714 if (insn->imm == BPF_FUNC_override_return)
6715 prog->kprobe_override = 1;
79741b3b 6716 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6717 /* If we tail call into other programs, we
6718 * cannot make any assumptions since they can
6719 * be replaced dynamically during runtime in
6720 * the program array.
6721 */
6722 prog->cb_access = 1;
80a58d02 6723 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 6724 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 6725
79741b3b
AS
6726 /* mark bpf_tail_call as different opcode to avoid
6727 * conditional branch in the interpeter for every normal
6728 * call and to prevent accidental JITing by JIT compiler
6729 * that doesn't support bpf_tail_call yet
e245c5c6 6730 */
79741b3b 6731 insn->imm = 0;
71189fa9 6732 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6733
c93552c4
DB
6734 aux = &env->insn_aux_data[i + delta];
6735 if (!bpf_map_ptr_unpriv(aux))
6736 continue;
6737
b2157399
AS
6738 /* instead of changing every JIT dealing with tail_call
6739 * emit two extra insns:
6740 * if (index >= max_entries) goto out;
6741 * index &= array->index_mask;
6742 * to avoid out-of-bounds cpu speculation
6743 */
c93552c4 6744 if (bpf_map_ptr_poisoned(aux)) {
40950343 6745 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6746 return -EINVAL;
6747 }
c93552c4
DB
6748
6749 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6750 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6751 map_ptr->max_entries, 2);
6752 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6753 container_of(map_ptr,
6754 struct bpf_array,
6755 map)->index_mask);
6756 insn_buf[2] = *insn;
6757 cnt = 3;
6758 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6759 if (!new_prog)
6760 return -ENOMEM;
6761
6762 delta += cnt - 1;
6763 env->prog = prog = new_prog;
6764 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6765 continue;
6766 }
e245c5c6 6767
89c63074 6768 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6769 * and other inlining handlers are currently limited to 64 bit
6770 * only.
89c63074 6771 */
60b58afc 6772 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6773 (insn->imm == BPF_FUNC_map_lookup_elem ||
6774 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
6775 insn->imm == BPF_FUNC_map_delete_elem ||
6776 insn->imm == BPF_FUNC_map_push_elem ||
6777 insn->imm == BPF_FUNC_map_pop_elem ||
6778 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
6779 aux = &env->insn_aux_data[i + delta];
6780 if (bpf_map_ptr_poisoned(aux))
6781 goto patch_call_imm;
6782
6783 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6784 ops = map_ptr->ops;
6785 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6786 ops->map_gen_lookup) {
6787 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6788 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6789 verbose(env, "bpf verifier is misconfigured\n");
6790 return -EINVAL;
6791 }
81ed18ab 6792
09772d92
DB
6793 new_prog = bpf_patch_insn_data(env, i + delta,
6794 insn_buf, cnt);
6795 if (!new_prog)
6796 return -ENOMEM;
81ed18ab 6797
09772d92
DB
6798 delta += cnt - 1;
6799 env->prog = prog = new_prog;
6800 insn = new_prog->insnsi + i + delta;
6801 continue;
6802 }
81ed18ab 6803
09772d92
DB
6804 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6805 (void *(*)(struct bpf_map *map, void *key))NULL));
6806 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6807 (int (*)(struct bpf_map *map, void *key))NULL));
6808 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6809 (int (*)(struct bpf_map *map, void *key, void *value,
6810 u64 flags))NULL));
84430d42
DB
6811 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
6812 (int (*)(struct bpf_map *map, void *value,
6813 u64 flags))NULL));
6814 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
6815 (int (*)(struct bpf_map *map, void *value))NULL));
6816 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
6817 (int (*)(struct bpf_map *map, void *value))NULL));
6818
09772d92
DB
6819 switch (insn->imm) {
6820 case BPF_FUNC_map_lookup_elem:
6821 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6822 __bpf_call_base;
6823 continue;
6824 case BPF_FUNC_map_update_elem:
6825 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6826 __bpf_call_base;
6827 continue;
6828 case BPF_FUNC_map_delete_elem:
6829 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6830 __bpf_call_base;
6831 continue;
84430d42
DB
6832 case BPF_FUNC_map_push_elem:
6833 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
6834 __bpf_call_base;
6835 continue;
6836 case BPF_FUNC_map_pop_elem:
6837 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
6838 __bpf_call_base;
6839 continue;
6840 case BPF_FUNC_map_peek_elem:
6841 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
6842 __bpf_call_base;
6843 continue;
09772d92 6844 }
81ed18ab 6845
09772d92 6846 goto patch_call_imm;
81ed18ab
AS
6847 }
6848
6849patch_call_imm:
5e43f899 6850 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6851 /* all functions that have prototype and verifier allowed
6852 * programs to call them, must be real in-kernel functions
6853 */
6854 if (!fn->func) {
61bd5218
JK
6855 verbose(env,
6856 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6857 func_id_name(insn->imm), insn->imm);
6858 return -EFAULT;
e245c5c6 6859 }
79741b3b 6860 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6861 }
e245c5c6 6862
79741b3b
AS
6863 return 0;
6864}
e245c5c6 6865
58e2af8b 6866static void free_states(struct bpf_verifier_env *env)
f1bca824 6867{
58e2af8b 6868 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6869 int i;
6870
6871 if (!env->explored_states)
6872 return;
6873
6874 for (i = 0; i < env->prog->len; i++) {
6875 sl = env->explored_states[i];
6876
6877 if (sl)
6878 while (sl != STATE_LIST_MARK) {
6879 sln = sl->next;
1969db47 6880 free_verifier_state(&sl->state, false);
f1bca824
AS
6881 kfree(sl);
6882 sl = sln;
6883 }
6884 }
6885
6886 kfree(env->explored_states);
6887}
6888
838e9690
YS
6889int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
6890 union bpf_attr __user *uattr)
51580e79 6891{
58e2af8b 6892 struct bpf_verifier_env *env;
b9193c1b 6893 struct bpf_verifier_log *log;
51580e79
AS
6894 int ret = -EINVAL;
6895
eba0c929
AB
6896 /* no program is valid */
6897 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6898 return -EINVAL;
6899
58e2af8b 6900 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6901 * allocate/free it every time bpf_check() is called
6902 */
58e2af8b 6903 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6904 if (!env)
6905 return -ENOMEM;
61bd5218 6906 log = &env->log;
cbd35700 6907
fad953ce
KC
6908 env->insn_aux_data =
6909 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6910 (*prog)->len));
3df126f3
JK
6911 ret = -ENOMEM;
6912 if (!env->insn_aux_data)
6913 goto err_free_env;
9bac3d6d 6914 env->prog = *prog;
00176a34 6915 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6916
cbd35700
AS
6917 /* grab the mutex to protect few globals used by verifier */
6918 mutex_lock(&bpf_verifier_lock);
6919
6920 if (attr->log_level || attr->log_buf || attr->log_size) {
6921 /* user requested verbose verifier output
6922 * and supplied buffer to store the verification trace
6923 */
e7bf8249
JK
6924 log->level = attr->log_level;
6925 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6926 log->len_total = attr->log_size;
cbd35700
AS
6927
6928 ret = -EINVAL;
e7bf8249
JK
6929 /* log attributes have to be sane */
6930 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6931 !log->level || !log->ubuf)
3df126f3 6932 goto err_unlock;
cbd35700 6933 }
1ad2f583
DB
6934
6935 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6936 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6937 env->strict_alignment = true;
e9ee9efc
DM
6938 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
6939 env->strict_alignment = false;
cbd35700 6940
f4e3ec0d
JK
6941 ret = replace_map_fd_with_map_ptr(env);
6942 if (ret < 0)
6943 goto skip_full_check;
6944
cae1927c 6945 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 6946 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 6947 if (ret)
f4e3ec0d 6948 goto skip_full_check;
ab3f0063
JK
6949 }
6950
9bac3d6d 6951 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6952 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6953 GFP_USER);
6954 ret = -ENOMEM;
6955 if (!env->explored_states)
6956 goto skip_full_check;
6957
cc8b0b92
AS
6958 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6959
d9762e84 6960 ret = check_subprogs(env);
475fb78f
AS
6961 if (ret < 0)
6962 goto skip_full_check;
6963
c454a46b 6964 ret = check_btf_info(env, attr, uattr);
838e9690
YS
6965 if (ret < 0)
6966 goto skip_full_check;
6967
d9762e84
MKL
6968 ret = check_cfg(env);
6969 if (ret < 0)
6970 goto skip_full_check;
6971
17a52670 6972 ret = do_check(env);
8c01c4f8
CG
6973 if (env->cur_state) {
6974 free_verifier_state(env->cur_state, true);
6975 env->cur_state = NULL;
6976 }
cbd35700 6977
c941ce9c
QM
6978 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
6979 ret = bpf_prog_offload_finalize(env);
6980
0246e64d 6981skip_full_check:
638f5b90 6982 while (!pop_stack(env, NULL, NULL));
f1bca824 6983 free_states(env);
0246e64d 6984
c131187d
AS
6985 if (ret == 0)
6986 sanitize_dead_code(env);
6987
70a87ffe
AS
6988 if (ret == 0)
6989 ret = check_max_stack_depth(env);
6990
9bac3d6d
AS
6991 if (ret == 0)
6992 /* program is valid, convert *(u32*)(ctx + off) accesses */
6993 ret = convert_ctx_accesses(env);
6994
e245c5c6 6995 if (ret == 0)
79741b3b 6996 ret = fixup_bpf_calls(env);
e245c5c6 6997
1ea47e01
AS
6998 if (ret == 0)
6999 ret = fixup_call_args(env);
7000
a2a7d570 7001 if (log->level && bpf_verifier_log_full(log))
cbd35700 7002 ret = -ENOSPC;
a2a7d570 7003 if (log->level && !log->ubuf) {
cbd35700 7004 ret = -EFAULT;
a2a7d570 7005 goto err_release_maps;
cbd35700
AS
7006 }
7007
0246e64d
AS
7008 if (ret == 0 && env->used_map_cnt) {
7009 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
7010 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7011 sizeof(env->used_maps[0]),
7012 GFP_KERNEL);
0246e64d 7013
9bac3d6d 7014 if (!env->prog->aux->used_maps) {
0246e64d 7015 ret = -ENOMEM;
a2a7d570 7016 goto err_release_maps;
0246e64d
AS
7017 }
7018
9bac3d6d 7019 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 7020 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 7021 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
7022
7023 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
7024 * bpf_ld_imm64 instructions
7025 */
7026 convert_pseudo_ld_imm64(env);
7027 }
cbd35700 7028
ba64e7d8
YS
7029 if (ret == 0)
7030 adjust_btf_func(env);
7031
a2a7d570 7032err_release_maps:
9bac3d6d 7033 if (!env->prog->aux->used_maps)
0246e64d 7034 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 7035 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
7036 */
7037 release_maps(env);
9bac3d6d 7038 *prog = env->prog;
3df126f3 7039err_unlock:
cbd35700 7040 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
7041 vfree(env->insn_aux_data);
7042err_free_env:
7043 kfree(env);
51580e79
AS
7044 return ret;
7045}