bpf: track references based on is_acquire_func
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
838e9690 14#include <uapi/linux/btf.h>
51580e79
AS
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/slab.h>
18#include <linux/bpf.h>
838e9690 19#include <linux/btf.h>
58e2af8b 20#include <linux/bpf_verifier.h>
51580e79
AS
21#include <linux/filter.h>
22#include <net/netlink.h>
23#include <linux/file.h>
24#include <linux/vmalloc.h>
ebb676da 25#include <linux/stringify.h>
cc8b0b92
AS
26#include <linux/bsearch.h>
27#include <linux/sort.h>
c195651e 28#include <linux/perf_event.h>
d9762e84 29#include <linux/ctype.h>
51580e79 30
f4ac7e0b
JK
31#include "disasm.h"
32
00176a34
JK
33static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34#define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36#define BPF_MAP_TYPE(_id, _ops)
37#include <linux/bpf_types.h>
38#undef BPF_PROG_TYPE
39#undef BPF_MAP_TYPE
40};
41
51580e79
AS
42/* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
eba38a96 54 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
f1174f77 82 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 83 * means the register has some value, but it's not a valid pointer.
f1174f77 84 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
85 *
86 * When verifier sees load or store instructions the type of base register
c64b7983
JS
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
51580e79
AS
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
165 */
166
17a52670 167/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 168struct bpf_verifier_stack_elem {
17a52670
AS
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
58e2af8b 173 struct bpf_verifier_state st;
17a52670
AS
174 int insn_idx;
175 int prev_insn_idx;
58e2af8b 176 struct bpf_verifier_stack_elem *next;
cbd35700
AS
177};
178
8e17c1b1 179#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151 180#define BPF_COMPLEXITY_LIMIT_STACK 1024
ceefbc96 181#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 182
c93552c4
DB
183#define BPF_MAP_PTR_UNPRIV 1UL
184#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
185 POISON_POINTER_DELTA))
186#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187
188static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189{
190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191}
192
193static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194{
195 return aux->map_state & BPF_MAP_PTR_UNPRIV;
196}
197
198static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 const struct bpf_map *map, bool unpriv)
200{
201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 unpriv |= bpf_map_ptr_unpriv(aux);
203 aux->map_state = (unsigned long)map |
204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205}
fad73a1a 206
33ff9823
DB
207struct bpf_call_arg_meta {
208 struct bpf_map *map_ptr;
435faee1 209 bool raw_mode;
36bbef52 210 bool pkt_access;
435faee1
DB
211 int regno;
212 int access_size;
849fa506
YS
213 s64 msize_smax_value;
214 u64 msize_umax_value;
1b986589 215 int ref_obj_id;
d83525ca 216 int func_id;
33ff9823
DB
217};
218
cbd35700
AS
219static DEFINE_MUTEX(bpf_verifier_lock);
220
d9762e84
MKL
221static const struct bpf_line_info *
222find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223{
224 const struct bpf_line_info *linfo;
225 const struct bpf_prog *prog;
226 u32 i, nr_linfo;
227
228 prog = env->prog;
229 nr_linfo = prog->aux->nr_linfo;
230
231 if (!nr_linfo || insn_off >= prog->len)
232 return NULL;
233
234 linfo = prog->aux->linfo;
235 for (i = 1; i < nr_linfo; i++)
236 if (insn_off < linfo[i].insn_off)
237 break;
238
239 return &linfo[i - 1];
240}
241
77d2e05a
MKL
242void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
243 va_list args)
cbd35700 244{
a2a7d570 245 unsigned int n;
cbd35700 246
a2a7d570 247 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
248
249 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
250 "verifier log line truncated - local buffer too short\n");
251
252 n = min(log->len_total - log->len_used - 1, n);
253 log->kbuf[n] = '\0';
254
255 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
256 log->len_used += n;
257 else
258 log->ubuf = NULL;
cbd35700 259}
abe08840
JO
260
261/* log_level controls verbosity level of eBPF verifier.
262 * bpf_verifier_log_write() is used to dump the verification trace to the log,
263 * so the user can figure out what's wrong with the program
430e68d1 264 */
abe08840
JO
265__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
266 const char *fmt, ...)
267{
268 va_list args;
269
77d2e05a
MKL
270 if (!bpf_verifier_log_needed(&env->log))
271 return;
272
abe08840 273 va_start(args, fmt);
77d2e05a 274 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
275 va_end(args);
276}
277EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278
279__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280{
77d2e05a 281 struct bpf_verifier_env *env = private_data;
abe08840
JO
282 va_list args;
283
77d2e05a
MKL
284 if (!bpf_verifier_log_needed(&env->log))
285 return;
286
abe08840 287 va_start(args, fmt);
77d2e05a 288 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
289 va_end(args);
290}
cbd35700 291
d9762e84
MKL
292static const char *ltrim(const char *s)
293{
294 while (isspace(*s))
295 s++;
296
297 return s;
298}
299
300__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 u32 insn_off,
302 const char *prefix_fmt, ...)
303{
304 const struct bpf_line_info *linfo;
305
306 if (!bpf_verifier_log_needed(&env->log))
307 return;
308
309 linfo = find_linfo(env, insn_off);
310 if (!linfo || linfo == env->prev_linfo)
311 return;
312
313 if (prefix_fmt) {
314 va_list args;
315
316 va_start(args, prefix_fmt);
317 bpf_verifier_vlog(&env->log, prefix_fmt, args);
318 va_end(args);
319 }
320
321 verbose(env, "%s\n",
322 ltrim(btf_name_by_offset(env->prog->aux->btf,
323 linfo->line_off)));
324
325 env->prev_linfo = linfo;
326}
327
de8f3a83
DB
328static bool type_is_pkt_pointer(enum bpf_reg_type type)
329{
330 return type == PTR_TO_PACKET ||
331 type == PTR_TO_PACKET_META;
332}
333
46f8bc92
MKL
334static bool type_is_sk_pointer(enum bpf_reg_type type)
335{
336 return type == PTR_TO_SOCKET ||
655a51e5
MKL
337 type == PTR_TO_SOCK_COMMON ||
338 type == PTR_TO_TCP_SOCK;
46f8bc92
MKL
339}
340
840b9615
JS
341static bool reg_type_may_be_null(enum bpf_reg_type type)
342{
fd978bf7 343 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 344 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
345 type == PTR_TO_SOCK_COMMON_OR_NULL ||
346 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
347}
348
d83525ca
AS
349static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
350{
351 return reg->type == PTR_TO_MAP_VALUE &&
352 map_value_has_spin_lock(reg->map_ptr);
353}
354
1b986589 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 356{
1b986589 357 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
358}
359
360/* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
363 */
364static bool is_release_function(enum bpf_func_id func_id)
365{
6acc9b43 366 return func_id == BPF_FUNC_sk_release;
840b9615
JS
367}
368
46f8bc92
MKL
369static bool is_acquire_function(enum bpf_func_id func_id)
370{
371 return func_id == BPF_FUNC_sk_lookup_tcp ||
372 func_id == BPF_FUNC_sk_lookup_udp;
373}
374
1b986589
MKL
375static bool is_ptr_cast_function(enum bpf_func_id func_id)
376{
377 return func_id == BPF_FUNC_tcp_sock ||
378 func_id == BPF_FUNC_sk_fullsock;
379}
380
17a52670
AS
381/* string representation of 'enum bpf_reg_type' */
382static const char * const reg_type_str[] = {
383 [NOT_INIT] = "?",
f1174f77 384 [SCALAR_VALUE] = "inv",
17a52670
AS
385 [PTR_TO_CTX] = "ctx",
386 [CONST_PTR_TO_MAP] = "map_ptr",
387 [PTR_TO_MAP_VALUE] = "map_value",
388 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 389 [PTR_TO_STACK] = "fp",
969bf05e 390 [PTR_TO_PACKET] = "pkt",
de8f3a83 391 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 392 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 393 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
394 [PTR_TO_SOCKET] = "sock",
395 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
396 [PTR_TO_SOCK_COMMON] = "sock_common",
397 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
398 [PTR_TO_TCP_SOCK] = "tcp_sock",
399 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
17a52670
AS
400};
401
8efea21d
EC
402static char slot_type_char[] = {
403 [STACK_INVALID] = '?',
404 [STACK_SPILL] = 'r',
405 [STACK_MISC] = 'm',
406 [STACK_ZERO] = '0',
407};
408
4e92024a
AS
409static void print_liveness(struct bpf_verifier_env *env,
410 enum bpf_reg_liveness live)
411{
9242b5f5 412 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
413 verbose(env, "_");
414 if (live & REG_LIVE_READ)
415 verbose(env, "r");
416 if (live & REG_LIVE_WRITTEN)
417 verbose(env, "w");
9242b5f5
AS
418 if (live & REG_LIVE_DONE)
419 verbose(env, "D");
4e92024a
AS
420}
421
f4d7e40a
AS
422static struct bpf_func_state *func(struct bpf_verifier_env *env,
423 const struct bpf_reg_state *reg)
424{
425 struct bpf_verifier_state *cur = env->cur_state;
426
427 return cur->frame[reg->frameno];
428}
429
61bd5218 430static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 431 const struct bpf_func_state *state)
17a52670 432{
f4d7e40a 433 const struct bpf_reg_state *reg;
17a52670
AS
434 enum bpf_reg_type t;
435 int i;
436
f4d7e40a
AS
437 if (state->frameno)
438 verbose(env, " frame%d:", state->frameno);
17a52670 439 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
440 reg = &state->regs[i];
441 t = reg->type;
17a52670
AS
442 if (t == NOT_INIT)
443 continue;
4e92024a
AS
444 verbose(env, " R%d", i);
445 print_liveness(env, reg->live);
446 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
447 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
448 tnum_is_const(reg->var_off)) {
449 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 450 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
451 if (t == PTR_TO_STACK)
452 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 453 } else {
1b986589
MKL
454 verbose(env, "(id=%d ref_obj_id=%d", reg->id,
455 reg->ref_obj_id);
f1174f77 456 if (t != SCALAR_VALUE)
61bd5218 457 verbose(env, ",off=%d", reg->off);
de8f3a83 458 if (type_is_pkt_pointer(t))
61bd5218 459 verbose(env, ",r=%d", reg->range);
f1174f77
EC
460 else if (t == CONST_PTR_TO_MAP ||
461 t == PTR_TO_MAP_VALUE ||
462 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 463 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
464 reg->map_ptr->key_size,
465 reg->map_ptr->value_size);
7d1238f2
EC
466 if (tnum_is_const(reg->var_off)) {
467 /* Typically an immediate SCALAR_VALUE, but
468 * could be a pointer whose offset is too big
469 * for reg->off
470 */
61bd5218 471 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
472 } else {
473 if (reg->smin_value != reg->umin_value &&
474 reg->smin_value != S64_MIN)
61bd5218 475 verbose(env, ",smin_value=%lld",
7d1238f2
EC
476 (long long)reg->smin_value);
477 if (reg->smax_value != reg->umax_value &&
478 reg->smax_value != S64_MAX)
61bd5218 479 verbose(env, ",smax_value=%lld",
7d1238f2
EC
480 (long long)reg->smax_value);
481 if (reg->umin_value != 0)
61bd5218 482 verbose(env, ",umin_value=%llu",
7d1238f2
EC
483 (unsigned long long)reg->umin_value);
484 if (reg->umax_value != U64_MAX)
61bd5218 485 verbose(env, ",umax_value=%llu",
7d1238f2
EC
486 (unsigned long long)reg->umax_value);
487 if (!tnum_is_unknown(reg->var_off)) {
488 char tn_buf[48];
f1174f77 489
7d1238f2 490 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 491 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 492 }
f1174f77 493 }
61bd5218 494 verbose(env, ")");
f1174f77 495 }
17a52670 496 }
638f5b90 497 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
498 char types_buf[BPF_REG_SIZE + 1];
499 bool valid = false;
500 int j;
501
502 for (j = 0; j < BPF_REG_SIZE; j++) {
503 if (state->stack[i].slot_type[j] != STACK_INVALID)
504 valid = true;
505 types_buf[j] = slot_type_char[
506 state->stack[i].slot_type[j]];
507 }
508 types_buf[BPF_REG_SIZE] = 0;
509 if (!valid)
510 continue;
511 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
512 print_liveness(env, state->stack[i].spilled_ptr.live);
513 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 514 verbose(env, "=%s",
638f5b90 515 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
516 else
517 verbose(env, "=%s", types_buf);
17a52670 518 }
fd978bf7
JS
519 if (state->acquired_refs && state->refs[0].id) {
520 verbose(env, " refs=%d", state->refs[0].id);
521 for (i = 1; i < state->acquired_refs; i++)
522 if (state->refs[i].id)
523 verbose(env, ",%d", state->refs[i].id);
524 }
61bd5218 525 verbose(env, "\n");
17a52670
AS
526}
527
84dbf350
JS
528#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
529static int copy_##NAME##_state(struct bpf_func_state *dst, \
530 const struct bpf_func_state *src) \
531{ \
532 if (!src->FIELD) \
533 return 0; \
534 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
535 /* internal bug, make state invalid to reject the program */ \
536 memset(dst, 0, sizeof(*dst)); \
537 return -EFAULT; \
538 } \
539 memcpy(dst->FIELD, src->FIELD, \
540 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
541 return 0; \
638f5b90 542}
fd978bf7
JS
543/* copy_reference_state() */
544COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
545/* copy_stack_state() */
546COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
547#undef COPY_STATE_FN
548
549#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
550static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
551 bool copy_old) \
552{ \
553 u32 old_size = state->COUNT; \
554 struct bpf_##NAME##_state *new_##FIELD; \
555 int slot = size / SIZE; \
556 \
557 if (size <= old_size || !size) { \
558 if (copy_old) \
559 return 0; \
560 state->COUNT = slot * SIZE; \
561 if (!size && old_size) { \
562 kfree(state->FIELD); \
563 state->FIELD = NULL; \
564 } \
565 return 0; \
566 } \
567 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
568 GFP_KERNEL); \
569 if (!new_##FIELD) \
570 return -ENOMEM; \
571 if (copy_old) { \
572 if (state->FIELD) \
573 memcpy(new_##FIELD, state->FIELD, \
574 sizeof(*new_##FIELD) * (old_size / SIZE)); \
575 memset(new_##FIELD + old_size / SIZE, 0, \
576 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
577 } \
578 state->COUNT = slot * SIZE; \
579 kfree(state->FIELD); \
580 state->FIELD = new_##FIELD; \
581 return 0; \
582}
fd978bf7
JS
583/* realloc_reference_state() */
584REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
585/* realloc_stack_state() */
586REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
587#undef REALLOC_STATE_FN
638f5b90
AS
588
589/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
590 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 591 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
592 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
593 * which realloc_stack_state() copies over. It points to previous
594 * bpf_verifier_state which is never reallocated.
638f5b90 595 */
fd978bf7
JS
596static int realloc_func_state(struct bpf_func_state *state, int stack_size,
597 int refs_size, bool copy_old)
638f5b90 598{
fd978bf7
JS
599 int err = realloc_reference_state(state, refs_size, copy_old);
600 if (err)
601 return err;
602 return realloc_stack_state(state, stack_size, copy_old);
603}
604
605/* Acquire a pointer id from the env and update the state->refs to include
606 * this new pointer reference.
607 * On success, returns a valid pointer id to associate with the register
608 * On failure, returns a negative errno.
638f5b90 609 */
fd978bf7 610static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 611{
fd978bf7
JS
612 struct bpf_func_state *state = cur_func(env);
613 int new_ofs = state->acquired_refs;
614 int id, err;
615
616 err = realloc_reference_state(state, state->acquired_refs + 1, true);
617 if (err)
618 return err;
619 id = ++env->id_gen;
620 state->refs[new_ofs].id = id;
621 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 622
fd978bf7
JS
623 return id;
624}
625
626/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 627static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
628{
629 int i, last_idx;
630
fd978bf7
JS
631 last_idx = state->acquired_refs - 1;
632 for (i = 0; i < state->acquired_refs; i++) {
633 if (state->refs[i].id == ptr_id) {
634 if (last_idx && i != last_idx)
635 memcpy(&state->refs[i], &state->refs[last_idx],
636 sizeof(*state->refs));
637 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
638 state->acquired_refs--;
638f5b90 639 return 0;
638f5b90 640 }
638f5b90 641 }
46f8bc92 642 return -EINVAL;
fd978bf7
JS
643}
644
645static int transfer_reference_state(struct bpf_func_state *dst,
646 struct bpf_func_state *src)
647{
648 int err = realloc_reference_state(dst, src->acquired_refs, false);
649 if (err)
650 return err;
651 err = copy_reference_state(dst, src);
652 if (err)
653 return err;
638f5b90
AS
654 return 0;
655}
656
f4d7e40a
AS
657static void free_func_state(struct bpf_func_state *state)
658{
5896351e
AS
659 if (!state)
660 return;
fd978bf7 661 kfree(state->refs);
f4d7e40a
AS
662 kfree(state->stack);
663 kfree(state);
664}
665
1969db47
AS
666static void free_verifier_state(struct bpf_verifier_state *state,
667 bool free_self)
638f5b90 668{
f4d7e40a
AS
669 int i;
670
671 for (i = 0; i <= state->curframe; i++) {
672 free_func_state(state->frame[i]);
673 state->frame[i] = NULL;
674 }
1969db47
AS
675 if (free_self)
676 kfree(state);
638f5b90
AS
677}
678
679/* copy verifier state from src to dst growing dst stack space
680 * when necessary to accommodate larger src stack
681 */
f4d7e40a
AS
682static int copy_func_state(struct bpf_func_state *dst,
683 const struct bpf_func_state *src)
638f5b90
AS
684{
685 int err;
686
fd978bf7
JS
687 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
688 false);
689 if (err)
690 return err;
691 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
692 err = copy_reference_state(dst, src);
638f5b90
AS
693 if (err)
694 return err;
638f5b90
AS
695 return copy_stack_state(dst, src);
696}
697
f4d7e40a
AS
698static int copy_verifier_state(struct bpf_verifier_state *dst_state,
699 const struct bpf_verifier_state *src)
700{
701 struct bpf_func_state *dst;
702 int i, err;
703
704 /* if dst has more stack frames then src frame, free them */
705 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
706 free_func_state(dst_state->frame[i]);
707 dst_state->frame[i] = NULL;
708 }
979d63d5 709 dst_state->speculative = src->speculative;
f4d7e40a 710 dst_state->curframe = src->curframe;
d83525ca 711 dst_state->active_spin_lock = src->active_spin_lock;
f4d7e40a
AS
712 for (i = 0; i <= src->curframe; i++) {
713 dst = dst_state->frame[i];
714 if (!dst) {
715 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
716 if (!dst)
717 return -ENOMEM;
718 dst_state->frame[i] = dst;
719 }
720 err = copy_func_state(dst, src->frame[i]);
721 if (err)
722 return err;
723 }
724 return 0;
725}
726
638f5b90
AS
727static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
728 int *insn_idx)
729{
730 struct bpf_verifier_state *cur = env->cur_state;
731 struct bpf_verifier_stack_elem *elem, *head = env->head;
732 int err;
17a52670
AS
733
734 if (env->head == NULL)
638f5b90 735 return -ENOENT;
17a52670 736
638f5b90
AS
737 if (cur) {
738 err = copy_verifier_state(cur, &head->st);
739 if (err)
740 return err;
741 }
742 if (insn_idx)
743 *insn_idx = head->insn_idx;
17a52670 744 if (prev_insn_idx)
638f5b90
AS
745 *prev_insn_idx = head->prev_insn_idx;
746 elem = head->next;
1969db47 747 free_verifier_state(&head->st, false);
638f5b90 748 kfree(head);
17a52670
AS
749 env->head = elem;
750 env->stack_size--;
638f5b90 751 return 0;
17a52670
AS
752}
753
58e2af8b 754static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
755 int insn_idx, int prev_insn_idx,
756 bool speculative)
17a52670 757{
638f5b90 758 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 759 struct bpf_verifier_stack_elem *elem;
638f5b90 760 int err;
17a52670 761
638f5b90 762 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
763 if (!elem)
764 goto err;
765
17a52670
AS
766 elem->insn_idx = insn_idx;
767 elem->prev_insn_idx = prev_insn_idx;
768 elem->next = env->head;
769 env->head = elem;
770 env->stack_size++;
1969db47
AS
771 err = copy_verifier_state(&elem->st, cur);
772 if (err)
773 goto err;
979d63d5 774 elem->st.speculative |= speculative;
07016151 775 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 776 verbose(env, "BPF program is too complex\n");
17a52670
AS
777 goto err;
778 }
779 return &elem->st;
780err:
5896351e
AS
781 free_verifier_state(env->cur_state, true);
782 env->cur_state = NULL;
17a52670 783 /* pop all elements and return */
638f5b90 784 while (!pop_stack(env, NULL, NULL));
17a52670
AS
785 return NULL;
786}
787
788#define CALLER_SAVED_REGS 6
789static const int caller_saved[CALLER_SAVED_REGS] = {
790 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
791};
792
f1174f77
EC
793static void __mark_reg_not_init(struct bpf_reg_state *reg);
794
b03c9f9f
EC
795/* Mark the unknown part of a register (variable offset or scalar value) as
796 * known to have the value @imm.
797 */
798static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
799{
a9c676bc
AS
800 /* Clear id, off, and union(map_ptr, range) */
801 memset(((u8 *)reg) + sizeof(reg->type), 0,
802 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
803 reg->var_off = tnum_const(imm);
804 reg->smin_value = (s64)imm;
805 reg->smax_value = (s64)imm;
806 reg->umin_value = imm;
807 reg->umax_value = imm;
808}
809
f1174f77
EC
810/* Mark the 'variable offset' part of a register as zero. This should be
811 * used only on registers holding a pointer type.
812 */
813static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 814{
b03c9f9f 815 __mark_reg_known(reg, 0);
f1174f77 816}
a9789ef9 817
cc2b14d5
AS
818static void __mark_reg_const_zero(struct bpf_reg_state *reg)
819{
820 __mark_reg_known(reg, 0);
cc2b14d5
AS
821 reg->type = SCALAR_VALUE;
822}
823
61bd5218
JK
824static void mark_reg_known_zero(struct bpf_verifier_env *env,
825 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
826{
827 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 828 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
829 /* Something bad happened, let's kill all regs */
830 for (regno = 0; regno < MAX_BPF_REG; regno++)
831 __mark_reg_not_init(regs + regno);
832 return;
833 }
834 __mark_reg_known_zero(regs + regno);
835}
836
de8f3a83
DB
837static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
838{
839 return type_is_pkt_pointer(reg->type);
840}
841
842static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
843{
844 return reg_is_pkt_pointer(reg) ||
845 reg->type == PTR_TO_PACKET_END;
846}
847
848/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
849static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
850 enum bpf_reg_type which)
851{
852 /* The register can already have a range from prior markings.
853 * This is fine as long as it hasn't been advanced from its
854 * origin.
855 */
856 return reg->type == which &&
857 reg->id == 0 &&
858 reg->off == 0 &&
859 tnum_equals_const(reg->var_off, 0);
860}
861
b03c9f9f
EC
862/* Attempts to improve min/max values based on var_off information */
863static void __update_reg_bounds(struct bpf_reg_state *reg)
864{
865 /* min signed is max(sign bit) | min(other bits) */
866 reg->smin_value = max_t(s64, reg->smin_value,
867 reg->var_off.value | (reg->var_off.mask & S64_MIN));
868 /* max signed is min(sign bit) | max(other bits) */
869 reg->smax_value = min_t(s64, reg->smax_value,
870 reg->var_off.value | (reg->var_off.mask & S64_MAX));
871 reg->umin_value = max(reg->umin_value, reg->var_off.value);
872 reg->umax_value = min(reg->umax_value,
873 reg->var_off.value | reg->var_off.mask);
874}
875
876/* Uses signed min/max values to inform unsigned, and vice-versa */
877static void __reg_deduce_bounds(struct bpf_reg_state *reg)
878{
879 /* Learn sign from signed bounds.
880 * If we cannot cross the sign boundary, then signed and unsigned bounds
881 * are the same, so combine. This works even in the negative case, e.g.
882 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
883 */
884 if (reg->smin_value >= 0 || reg->smax_value < 0) {
885 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
886 reg->umin_value);
887 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
888 reg->umax_value);
889 return;
890 }
891 /* Learn sign from unsigned bounds. Signed bounds cross the sign
892 * boundary, so we must be careful.
893 */
894 if ((s64)reg->umax_value >= 0) {
895 /* Positive. We can't learn anything from the smin, but smax
896 * is positive, hence safe.
897 */
898 reg->smin_value = reg->umin_value;
899 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
900 reg->umax_value);
901 } else if ((s64)reg->umin_value < 0) {
902 /* Negative. We can't learn anything from the smax, but smin
903 * is negative, hence safe.
904 */
905 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
906 reg->umin_value);
907 reg->smax_value = reg->umax_value;
908 }
909}
910
911/* Attempts to improve var_off based on unsigned min/max information */
912static void __reg_bound_offset(struct bpf_reg_state *reg)
913{
914 reg->var_off = tnum_intersect(reg->var_off,
915 tnum_range(reg->umin_value,
916 reg->umax_value));
917}
918
919/* Reset the min/max bounds of a register */
920static void __mark_reg_unbounded(struct bpf_reg_state *reg)
921{
922 reg->smin_value = S64_MIN;
923 reg->smax_value = S64_MAX;
924 reg->umin_value = 0;
925 reg->umax_value = U64_MAX;
926}
927
f1174f77
EC
928/* Mark a register as having a completely unknown (scalar) value. */
929static void __mark_reg_unknown(struct bpf_reg_state *reg)
930{
a9c676bc
AS
931 /*
932 * Clear type, id, off, and union(map_ptr, range) and
933 * padding between 'type' and union
934 */
935 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 936 reg->type = SCALAR_VALUE;
f1174f77 937 reg->var_off = tnum_unknown;
f4d7e40a 938 reg->frameno = 0;
b03c9f9f 939 __mark_reg_unbounded(reg);
f1174f77
EC
940}
941
61bd5218
JK
942static void mark_reg_unknown(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
944{
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 946 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
947 /* Something bad happened, let's kill all regs except FP */
948 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
949 __mark_reg_not_init(regs + regno);
950 return;
951 }
952 __mark_reg_unknown(regs + regno);
953}
954
955static void __mark_reg_not_init(struct bpf_reg_state *reg)
956{
957 __mark_reg_unknown(reg);
958 reg->type = NOT_INIT;
959}
960
61bd5218
JK
961static void mark_reg_not_init(struct bpf_verifier_env *env,
962 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
963{
964 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 965 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
966 /* Something bad happened, let's kill all regs except FP */
967 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
968 __mark_reg_not_init(regs + regno);
969 return;
970 }
971 __mark_reg_not_init(regs + regno);
a9789ef9
DB
972}
973
61bd5218 974static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 975 struct bpf_func_state *state)
17a52670 976{
f4d7e40a 977 struct bpf_reg_state *regs = state->regs;
17a52670
AS
978 int i;
979
dc503a8a 980 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 981 mark_reg_not_init(env, regs, i);
dc503a8a 982 regs[i].live = REG_LIVE_NONE;
679c782d 983 regs[i].parent = NULL;
dc503a8a 984 }
17a52670
AS
985
986 /* frame pointer */
f1174f77 987 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 988 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 989 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
990
991 /* 1st arg to a function */
992 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 993 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
994}
995
f4d7e40a
AS
996#define BPF_MAIN_FUNC (-1)
997static void init_func_state(struct bpf_verifier_env *env,
998 struct bpf_func_state *state,
999 int callsite, int frameno, int subprogno)
1000{
1001 state->callsite = callsite;
1002 state->frameno = frameno;
1003 state->subprogno = subprogno;
1004 init_reg_state(env, state);
1005}
1006
17a52670
AS
1007enum reg_arg_type {
1008 SRC_OP, /* register is used as source operand */
1009 DST_OP, /* register is used as destination operand */
1010 DST_OP_NO_MARK /* same as above, check only, don't mark */
1011};
1012
cc8b0b92
AS
1013static int cmp_subprogs(const void *a, const void *b)
1014{
9c8105bd
JW
1015 return ((struct bpf_subprog_info *)a)->start -
1016 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1017}
1018
1019static int find_subprog(struct bpf_verifier_env *env, int off)
1020{
9c8105bd 1021 struct bpf_subprog_info *p;
cc8b0b92 1022
9c8105bd
JW
1023 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1024 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1025 if (!p)
1026 return -ENOENT;
9c8105bd 1027 return p - env->subprog_info;
cc8b0b92
AS
1028
1029}
1030
1031static int add_subprog(struct bpf_verifier_env *env, int off)
1032{
1033 int insn_cnt = env->prog->len;
1034 int ret;
1035
1036 if (off >= insn_cnt || off < 0) {
1037 verbose(env, "call to invalid destination\n");
1038 return -EINVAL;
1039 }
1040 ret = find_subprog(env, off);
1041 if (ret >= 0)
1042 return 0;
4cb3d99c 1043 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1044 verbose(env, "too many subprograms\n");
1045 return -E2BIG;
1046 }
9c8105bd
JW
1047 env->subprog_info[env->subprog_cnt++].start = off;
1048 sort(env->subprog_info, env->subprog_cnt,
1049 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1050 return 0;
1051}
1052
1053static int check_subprogs(struct bpf_verifier_env *env)
1054{
1055 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1056 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1057 struct bpf_insn *insn = env->prog->insnsi;
1058 int insn_cnt = env->prog->len;
1059
f910cefa
JW
1060 /* Add entry function. */
1061 ret = add_subprog(env, 0);
1062 if (ret < 0)
1063 return ret;
1064
cc8b0b92
AS
1065 /* determine subprog starts. The end is one before the next starts */
1066 for (i = 0; i < insn_cnt; i++) {
1067 if (insn[i].code != (BPF_JMP | BPF_CALL))
1068 continue;
1069 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1070 continue;
1071 if (!env->allow_ptr_leaks) {
1072 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1073 return -EPERM;
1074 }
cc8b0b92
AS
1075 ret = add_subprog(env, i + insn[i].imm + 1);
1076 if (ret < 0)
1077 return ret;
1078 }
1079
4cb3d99c
JW
1080 /* Add a fake 'exit' subprog which could simplify subprog iteration
1081 * logic. 'subprog_cnt' should not be increased.
1082 */
1083 subprog[env->subprog_cnt].start = insn_cnt;
1084
cc8b0b92
AS
1085 if (env->log.level > 1)
1086 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1087 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1088
1089 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1090 subprog_start = subprog[cur_subprog].start;
1091 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1092 for (i = 0; i < insn_cnt; i++) {
1093 u8 code = insn[i].code;
1094
092ed096 1095 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1096 goto next;
1097 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1098 goto next;
1099 off = i + insn[i].off + 1;
1100 if (off < subprog_start || off >= subprog_end) {
1101 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1102 return -EINVAL;
1103 }
1104next:
1105 if (i == subprog_end - 1) {
1106 /* to avoid fall-through from one subprog into another
1107 * the last insn of the subprog should be either exit
1108 * or unconditional jump back
1109 */
1110 if (code != (BPF_JMP | BPF_EXIT) &&
1111 code != (BPF_JMP | BPF_JA)) {
1112 verbose(env, "last insn is not an exit or jmp\n");
1113 return -EINVAL;
1114 }
1115 subprog_start = subprog_end;
4cb3d99c
JW
1116 cur_subprog++;
1117 if (cur_subprog < env->subprog_cnt)
9c8105bd 1118 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1119 }
1120 }
1121 return 0;
1122}
1123
679c782d
EC
1124/* Parentage chain of this register (or stack slot) should take care of all
1125 * issues like callee-saved registers, stack slot allocation time, etc.
1126 */
f4d7e40a 1127static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1128 const struct bpf_reg_state *state,
1129 struct bpf_reg_state *parent)
f4d7e40a
AS
1130{
1131 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1132
1133 while (parent) {
1134 /* if read wasn't screened by an earlier write ... */
679c782d 1135 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1136 break;
9242b5f5
AS
1137 if (parent->live & REG_LIVE_DONE) {
1138 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1139 reg_type_str[parent->type],
1140 parent->var_off.value, parent->off);
1141 return -EFAULT;
1142 }
dc503a8a 1143 /* ... then we depend on parent's value */
679c782d 1144 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1145 state = parent;
1146 parent = state->parent;
f4d7e40a 1147 writes = true;
dc503a8a 1148 }
f4d7e40a 1149 return 0;
dc503a8a
EC
1150}
1151
1152static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1153 enum reg_arg_type t)
1154{
f4d7e40a
AS
1155 struct bpf_verifier_state *vstate = env->cur_state;
1156 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1157 struct bpf_reg_state *regs = state->regs;
dc503a8a 1158
17a52670 1159 if (regno >= MAX_BPF_REG) {
61bd5218 1160 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1161 return -EINVAL;
1162 }
1163
1164 if (t == SRC_OP) {
1165 /* check whether register used as source operand can be read */
1166 if (regs[regno].type == NOT_INIT) {
61bd5218 1167 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1168 return -EACCES;
1169 }
679c782d
EC
1170 /* We don't need to worry about FP liveness because it's read-only */
1171 if (regno != BPF_REG_FP)
1172 return mark_reg_read(env, &regs[regno],
1173 regs[regno].parent);
17a52670
AS
1174 } else {
1175 /* check whether register used as dest operand can be written to */
1176 if (regno == BPF_REG_FP) {
61bd5218 1177 verbose(env, "frame pointer is read only\n");
17a52670
AS
1178 return -EACCES;
1179 }
dc503a8a 1180 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1181 if (t == DST_OP)
61bd5218 1182 mark_reg_unknown(env, regs, regno);
17a52670
AS
1183 }
1184 return 0;
1185}
1186
1be7f75d
AS
1187static bool is_spillable_regtype(enum bpf_reg_type type)
1188{
1189 switch (type) {
1190 case PTR_TO_MAP_VALUE:
1191 case PTR_TO_MAP_VALUE_OR_NULL:
1192 case PTR_TO_STACK:
1193 case PTR_TO_CTX:
969bf05e 1194 case PTR_TO_PACKET:
de8f3a83 1195 case PTR_TO_PACKET_META:
969bf05e 1196 case PTR_TO_PACKET_END:
d58e468b 1197 case PTR_TO_FLOW_KEYS:
1be7f75d 1198 case CONST_PTR_TO_MAP:
c64b7983
JS
1199 case PTR_TO_SOCKET:
1200 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1201 case PTR_TO_SOCK_COMMON:
1202 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1203 case PTR_TO_TCP_SOCK:
1204 case PTR_TO_TCP_SOCK_OR_NULL:
1be7f75d
AS
1205 return true;
1206 default:
1207 return false;
1208 }
1209}
1210
cc2b14d5
AS
1211/* Does this register contain a constant zero? */
1212static bool register_is_null(struct bpf_reg_state *reg)
1213{
1214 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1215}
1216
17a52670
AS
1217/* check_stack_read/write functions track spill/fill of registers,
1218 * stack boundary and alignment are checked in check_mem_access()
1219 */
61bd5218 1220static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1221 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1222 int off, int size, int value_regno, int insn_idx)
17a52670 1223{
f4d7e40a 1224 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1225 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1226 enum bpf_reg_type type;
638f5b90 1227
f4d7e40a 1228 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1229 state->acquired_refs, true);
638f5b90
AS
1230 if (err)
1231 return err;
9c399760
AS
1232 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1233 * so it's aligned access and [off, off + size) are within stack limits
1234 */
638f5b90
AS
1235 if (!env->allow_ptr_leaks &&
1236 state->stack[spi].slot_type[0] == STACK_SPILL &&
1237 size != BPF_REG_SIZE) {
1238 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1239 return -EACCES;
1240 }
17a52670 1241
f4d7e40a 1242 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1243 if (value_regno >= 0 &&
f4d7e40a 1244 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1245
1246 /* register containing pointer is being spilled into stack */
9c399760 1247 if (size != BPF_REG_SIZE) {
61bd5218 1248 verbose(env, "invalid size of register spill\n");
17a52670
AS
1249 return -EACCES;
1250 }
1251
f4d7e40a
AS
1252 if (state != cur && type == PTR_TO_STACK) {
1253 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1254 return -EINVAL;
1255 }
1256
17a52670 1257 /* save register state */
f4d7e40a 1258 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1259 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1260
af86ca4e
AS
1261 for (i = 0; i < BPF_REG_SIZE; i++) {
1262 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1263 !env->allow_ptr_leaks) {
1264 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1265 int soff = (-spi - 1) * BPF_REG_SIZE;
1266
1267 /* detected reuse of integer stack slot with a pointer
1268 * which means either llvm is reusing stack slot or
1269 * an attacker is trying to exploit CVE-2018-3639
1270 * (speculative store bypass)
1271 * Have to sanitize that slot with preemptive
1272 * store of zero.
1273 */
1274 if (*poff && *poff != soff) {
1275 /* disallow programs where single insn stores
1276 * into two different stack slots, since verifier
1277 * cannot sanitize them
1278 */
1279 verbose(env,
1280 "insn %d cannot access two stack slots fp%d and fp%d",
1281 insn_idx, *poff, soff);
1282 return -EINVAL;
1283 }
1284 *poff = soff;
1285 }
638f5b90 1286 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1287 }
9c399760 1288 } else {
cc2b14d5
AS
1289 u8 type = STACK_MISC;
1290
679c782d
EC
1291 /* regular write of data into stack destroys any spilled ptr */
1292 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1293 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1294 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1295 for (i = 0; i < BPF_REG_SIZE; i++)
1296 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1297
cc2b14d5
AS
1298 /* only mark the slot as written if all 8 bytes were written
1299 * otherwise read propagation may incorrectly stop too soon
1300 * when stack slots are partially written.
1301 * This heuristic means that read propagation will be
1302 * conservative, since it will add reg_live_read marks
1303 * to stack slots all the way to first state when programs
1304 * writes+reads less than 8 bytes
1305 */
1306 if (size == BPF_REG_SIZE)
1307 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1308
1309 /* when we zero initialize stack slots mark them as such */
1310 if (value_regno >= 0 &&
1311 register_is_null(&cur->regs[value_regno]))
1312 type = STACK_ZERO;
1313
0bae2d4d 1314 /* Mark slots affected by this stack write. */
9c399760 1315 for (i = 0; i < size; i++)
638f5b90 1316 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1317 type;
17a52670
AS
1318 }
1319 return 0;
1320}
1321
61bd5218 1322static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1323 struct bpf_func_state *reg_state /* func where register points to */,
1324 int off, int size, int value_regno)
17a52670 1325{
f4d7e40a
AS
1326 struct bpf_verifier_state *vstate = env->cur_state;
1327 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1328 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1329 u8 *stype;
17a52670 1330
f4d7e40a 1331 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1332 verbose(env, "invalid read from stack off %d+0 size %d\n",
1333 off, size);
1334 return -EACCES;
1335 }
f4d7e40a 1336 stype = reg_state->stack[spi].slot_type;
17a52670 1337
638f5b90 1338 if (stype[0] == STACK_SPILL) {
9c399760 1339 if (size != BPF_REG_SIZE) {
61bd5218 1340 verbose(env, "invalid size of register spill\n");
17a52670
AS
1341 return -EACCES;
1342 }
9c399760 1343 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1344 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1345 verbose(env, "corrupted spill memory\n");
17a52670
AS
1346 return -EACCES;
1347 }
1348 }
1349
dc503a8a 1350 if (value_regno >= 0) {
17a52670 1351 /* restore register state from stack */
f4d7e40a 1352 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1353 /* mark reg as written since spilled pointer state likely
1354 * has its liveness marks cleared by is_state_visited()
1355 * which resets stack/reg liveness for state transitions
1356 */
1357 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1358 }
679c782d
EC
1359 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1360 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1361 return 0;
1362 } else {
cc2b14d5
AS
1363 int zeros = 0;
1364
17a52670 1365 for (i = 0; i < size; i++) {
cc2b14d5
AS
1366 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1367 continue;
1368 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1369 zeros++;
1370 continue;
17a52670 1371 }
cc2b14d5
AS
1372 verbose(env, "invalid read from stack off %d+%d size %d\n",
1373 off, i, size);
1374 return -EACCES;
1375 }
679c782d
EC
1376 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1377 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1378 if (value_regno >= 0) {
1379 if (zeros == size) {
1380 /* any size read into register is zero extended,
1381 * so the whole register == const_zero
1382 */
1383 __mark_reg_const_zero(&state->regs[value_regno]);
1384 } else {
1385 /* have read misc data from the stack */
1386 mark_reg_unknown(env, state->regs, value_regno);
1387 }
1388 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1389 }
17a52670
AS
1390 return 0;
1391 }
1392}
1393
e4298d25
DB
1394static int check_stack_access(struct bpf_verifier_env *env,
1395 const struct bpf_reg_state *reg,
1396 int off, int size)
1397{
1398 /* Stack accesses must be at a fixed offset, so that we
1399 * can determine what type of data were returned. See
1400 * check_stack_read().
1401 */
1402 if (!tnum_is_const(reg->var_off)) {
1403 char tn_buf[48];
1404
1405 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1406 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1407 tn_buf, off, size);
1408 return -EACCES;
1409 }
1410
1411 if (off >= 0 || off < -MAX_BPF_STACK) {
1412 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1413 return -EACCES;
1414 }
1415
1416 return 0;
1417}
1418
17a52670 1419/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1420static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1421 int size, bool zero_size_allowed)
17a52670 1422{
638f5b90
AS
1423 struct bpf_reg_state *regs = cur_regs(env);
1424 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1425
9fd29c08
YS
1426 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1427 off + size > map->value_size) {
61bd5218 1428 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1429 map->value_size, off, size);
1430 return -EACCES;
1431 }
1432 return 0;
1433}
1434
f1174f77
EC
1435/* check read/write into a map element with possible variable offset */
1436static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1437 int off, int size, bool zero_size_allowed)
dbcfe5f7 1438{
f4d7e40a
AS
1439 struct bpf_verifier_state *vstate = env->cur_state;
1440 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1441 struct bpf_reg_state *reg = &state->regs[regno];
1442 int err;
1443
f1174f77
EC
1444 /* We may have adjusted the register to this map value, so we
1445 * need to try adding each of min_value and max_value to off
1446 * to make sure our theoretical access will be safe.
dbcfe5f7 1447 */
61bd5218
JK
1448 if (env->log.level)
1449 print_verifier_state(env, state);
b7137c4e 1450
dbcfe5f7
GB
1451 /* The minimum value is only important with signed
1452 * comparisons where we can't assume the floor of a
1453 * value is 0. If we are using signed variables for our
1454 * index'es we need to make sure that whatever we use
1455 * will have a set floor within our range.
1456 */
b7137c4e
DB
1457 if (reg->smin_value < 0 &&
1458 (reg->smin_value == S64_MIN ||
1459 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1460 reg->smin_value + off < 0)) {
61bd5218 1461 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1462 regno);
1463 return -EACCES;
1464 }
9fd29c08
YS
1465 err = __check_map_access(env, regno, reg->smin_value + off, size,
1466 zero_size_allowed);
dbcfe5f7 1467 if (err) {
61bd5218
JK
1468 verbose(env, "R%d min value is outside of the array range\n",
1469 regno);
dbcfe5f7
GB
1470 return err;
1471 }
1472
b03c9f9f
EC
1473 /* If we haven't set a max value then we need to bail since we can't be
1474 * sure we won't do bad things.
1475 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1476 */
b03c9f9f 1477 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1478 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1479 regno);
1480 return -EACCES;
1481 }
9fd29c08
YS
1482 err = __check_map_access(env, regno, reg->umax_value + off, size,
1483 zero_size_allowed);
f1174f77 1484 if (err)
61bd5218
JK
1485 verbose(env, "R%d max value is outside of the array range\n",
1486 regno);
d83525ca
AS
1487
1488 if (map_value_has_spin_lock(reg->map_ptr)) {
1489 u32 lock = reg->map_ptr->spin_lock_off;
1490
1491 /* if any part of struct bpf_spin_lock can be touched by
1492 * load/store reject this program.
1493 * To check that [x1, x2) overlaps with [y1, y2)
1494 * it is sufficient to check x1 < y2 && y1 < x2.
1495 */
1496 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1497 lock < reg->umax_value + off + size) {
1498 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1499 return -EACCES;
1500 }
1501 }
f1174f77 1502 return err;
dbcfe5f7
GB
1503}
1504
969bf05e
AS
1505#define MAX_PACKET_OFF 0xffff
1506
58e2af8b 1507static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1508 const struct bpf_call_arg_meta *meta,
1509 enum bpf_access_type t)
4acf6c0b 1510{
36bbef52 1511 switch (env->prog->type) {
5d66fa7d 1512 /* Program types only with direct read access go here! */
3a0af8fd
TG
1513 case BPF_PROG_TYPE_LWT_IN:
1514 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1515 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1516 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 1517 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 1518 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
1519 if (t == BPF_WRITE)
1520 return false;
7e57fbb2 1521 /* fallthrough */
5d66fa7d
DB
1522
1523 /* Program types with direct read + write access go here! */
36bbef52
DB
1524 case BPF_PROG_TYPE_SCHED_CLS:
1525 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1526 case BPF_PROG_TYPE_XDP:
3a0af8fd 1527 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1528 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1529 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1530 if (meta)
1531 return meta->pkt_access;
1532
1533 env->seen_direct_write = true;
4acf6c0b
BB
1534 return true;
1535 default:
1536 return false;
1537 }
1538}
1539
f1174f77 1540static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1541 int off, int size, bool zero_size_allowed)
969bf05e 1542{
638f5b90 1543 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1544 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1545
9fd29c08
YS
1546 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1547 (u64)off + size > reg->range) {
61bd5218 1548 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1549 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1550 return -EACCES;
1551 }
1552 return 0;
1553}
1554
f1174f77 1555static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1556 int size, bool zero_size_allowed)
f1174f77 1557{
638f5b90 1558 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1559 struct bpf_reg_state *reg = &regs[regno];
1560 int err;
1561
1562 /* We may have added a variable offset to the packet pointer; but any
1563 * reg->range we have comes after that. We are only checking the fixed
1564 * offset.
1565 */
1566
1567 /* We don't allow negative numbers, because we aren't tracking enough
1568 * detail to prove they're safe.
1569 */
b03c9f9f 1570 if (reg->smin_value < 0) {
61bd5218 1571 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1572 regno);
1573 return -EACCES;
1574 }
9fd29c08 1575 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1576 if (err) {
61bd5218 1577 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1578 return err;
1579 }
e647815a
JW
1580
1581 /* __check_packet_access has made sure "off + size - 1" is within u16.
1582 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1583 * otherwise find_good_pkt_pointers would have refused to set range info
1584 * that __check_packet_access would have rejected this pkt access.
1585 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1586 */
1587 env->prog->aux->max_pkt_offset =
1588 max_t(u32, env->prog->aux->max_pkt_offset,
1589 off + reg->umax_value + size - 1);
1590
f1174f77
EC
1591 return err;
1592}
1593
1594/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1595static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1596 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1597{
f96da094
DB
1598 struct bpf_insn_access_aux info = {
1599 .reg_type = *reg_type,
1600 };
31fd8581 1601
4f9218aa 1602 if (env->ops->is_valid_access &&
5e43f899 1603 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1604 /* A non zero info.ctx_field_size indicates that this field is a
1605 * candidate for later verifier transformation to load the whole
1606 * field and then apply a mask when accessed with a narrower
1607 * access than actual ctx access size. A zero info.ctx_field_size
1608 * will only allow for whole field access and rejects any other
1609 * type of narrower access.
31fd8581 1610 */
23994631 1611 *reg_type = info.reg_type;
31fd8581 1612
4f9218aa 1613 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1614 /* remember the offset of last byte accessed in ctx */
1615 if (env->prog->aux->max_ctx_offset < off + size)
1616 env->prog->aux->max_ctx_offset = off + size;
17a52670 1617 return 0;
32bbe007 1618 }
17a52670 1619
61bd5218 1620 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1621 return -EACCES;
1622}
1623
d58e468b
PP
1624static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1625 int size)
1626{
1627 if (size < 0 || off < 0 ||
1628 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1629 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1630 off, size);
1631 return -EACCES;
1632 }
1633 return 0;
1634}
1635
5f456649
MKL
1636static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1637 u32 regno, int off, int size,
1638 enum bpf_access_type t)
c64b7983
JS
1639{
1640 struct bpf_reg_state *regs = cur_regs(env);
1641 struct bpf_reg_state *reg = &regs[regno];
5f456649 1642 struct bpf_insn_access_aux info = {};
46f8bc92 1643 bool valid;
c64b7983
JS
1644
1645 if (reg->smin_value < 0) {
1646 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1647 regno);
1648 return -EACCES;
1649 }
1650
46f8bc92
MKL
1651 switch (reg->type) {
1652 case PTR_TO_SOCK_COMMON:
1653 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1654 break;
1655 case PTR_TO_SOCKET:
1656 valid = bpf_sock_is_valid_access(off, size, t, &info);
1657 break;
655a51e5
MKL
1658 case PTR_TO_TCP_SOCK:
1659 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1660 break;
46f8bc92
MKL
1661 default:
1662 valid = false;
c64b7983
JS
1663 }
1664
5f456649 1665
46f8bc92
MKL
1666 if (valid) {
1667 env->insn_aux_data[insn_idx].ctx_field_size =
1668 info.ctx_field_size;
1669 return 0;
1670 }
1671
1672 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1673 regno, reg_type_str[reg->type], off, size);
1674
1675 return -EACCES;
c64b7983
JS
1676}
1677
4cabc5b1
DB
1678static bool __is_pointer_value(bool allow_ptr_leaks,
1679 const struct bpf_reg_state *reg)
1be7f75d 1680{
4cabc5b1 1681 if (allow_ptr_leaks)
1be7f75d
AS
1682 return false;
1683
f1174f77 1684 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1685}
1686
2a159c6f
DB
1687static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1688{
1689 return cur_regs(env) + regno;
1690}
1691
4cabc5b1
DB
1692static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1693{
2a159c6f 1694 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
1695}
1696
f37a8cb8
DB
1697static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1698{
2a159c6f 1699 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 1700
46f8bc92
MKL
1701 return reg->type == PTR_TO_CTX;
1702}
1703
1704static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1705{
1706 const struct bpf_reg_state *reg = reg_state(env, regno);
1707
1708 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
1709}
1710
ca369602
DB
1711static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1712{
2a159c6f 1713 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
1714
1715 return type_is_pkt_pointer(reg->type);
1716}
1717
4b5defde
DB
1718static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1719{
1720 const struct bpf_reg_state *reg = reg_state(env, regno);
1721
1722 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1723 return reg->type == PTR_TO_FLOW_KEYS;
1724}
1725
61bd5218
JK
1726static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1727 const struct bpf_reg_state *reg,
d1174416 1728 int off, int size, bool strict)
969bf05e 1729{
f1174f77 1730 struct tnum reg_off;
e07b98d9 1731 int ip_align;
d1174416
DM
1732
1733 /* Byte size accesses are always allowed. */
1734 if (!strict || size == 1)
1735 return 0;
1736
e4eda884
DM
1737 /* For platforms that do not have a Kconfig enabling
1738 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1739 * NET_IP_ALIGN is universally set to '2'. And on platforms
1740 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1741 * to this code only in strict mode where we want to emulate
1742 * the NET_IP_ALIGN==2 checking. Therefore use an
1743 * unconditional IP align value of '2'.
e07b98d9 1744 */
e4eda884 1745 ip_align = 2;
f1174f77
EC
1746
1747 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1748 if (!tnum_is_aligned(reg_off, size)) {
1749 char tn_buf[48];
1750
1751 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1752 verbose(env,
1753 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1754 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1755 return -EACCES;
1756 }
79adffcd 1757
969bf05e
AS
1758 return 0;
1759}
1760
61bd5218
JK
1761static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1762 const struct bpf_reg_state *reg,
f1174f77
EC
1763 const char *pointer_desc,
1764 int off, int size, bool strict)
79adffcd 1765{
f1174f77
EC
1766 struct tnum reg_off;
1767
1768 /* Byte size accesses are always allowed. */
1769 if (!strict || size == 1)
1770 return 0;
1771
1772 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1773 if (!tnum_is_aligned(reg_off, size)) {
1774 char tn_buf[48];
1775
1776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1777 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1778 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1779 return -EACCES;
1780 }
1781
969bf05e
AS
1782 return 0;
1783}
1784
e07b98d9 1785static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1786 const struct bpf_reg_state *reg, int off,
1787 int size, bool strict_alignment_once)
79adffcd 1788{
ca369602 1789 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1790 const char *pointer_desc = "";
d1174416 1791
79adffcd
DB
1792 switch (reg->type) {
1793 case PTR_TO_PACKET:
de8f3a83
DB
1794 case PTR_TO_PACKET_META:
1795 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1796 * right in front, treat it the very same way.
1797 */
61bd5218 1798 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1799 case PTR_TO_FLOW_KEYS:
1800 pointer_desc = "flow keys ";
1801 break;
f1174f77
EC
1802 case PTR_TO_MAP_VALUE:
1803 pointer_desc = "value ";
1804 break;
1805 case PTR_TO_CTX:
1806 pointer_desc = "context ";
1807 break;
1808 case PTR_TO_STACK:
1809 pointer_desc = "stack ";
a5ec6ae1
JH
1810 /* The stack spill tracking logic in check_stack_write()
1811 * and check_stack_read() relies on stack accesses being
1812 * aligned.
1813 */
1814 strict = true;
f1174f77 1815 break;
c64b7983
JS
1816 case PTR_TO_SOCKET:
1817 pointer_desc = "sock ";
1818 break;
46f8bc92
MKL
1819 case PTR_TO_SOCK_COMMON:
1820 pointer_desc = "sock_common ";
1821 break;
655a51e5
MKL
1822 case PTR_TO_TCP_SOCK:
1823 pointer_desc = "tcp_sock ";
1824 break;
79adffcd 1825 default:
f1174f77 1826 break;
79adffcd 1827 }
61bd5218
JK
1828 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1829 strict);
79adffcd
DB
1830}
1831
f4d7e40a
AS
1832static int update_stack_depth(struct bpf_verifier_env *env,
1833 const struct bpf_func_state *func,
1834 int off)
1835{
9c8105bd 1836 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1837
1838 if (stack >= -off)
1839 return 0;
1840
1841 /* update known max for given subprogram */
9c8105bd 1842 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1843 return 0;
1844}
f4d7e40a 1845
70a87ffe
AS
1846/* starting from main bpf function walk all instructions of the function
1847 * and recursively walk all callees that given function can call.
1848 * Ignore jump and exit insns.
1849 * Since recursion is prevented by check_cfg() this algorithm
1850 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1851 */
1852static int check_max_stack_depth(struct bpf_verifier_env *env)
1853{
9c8105bd
JW
1854 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1855 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1856 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1857 int ret_insn[MAX_CALL_FRAMES];
1858 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1859
70a87ffe
AS
1860process_func:
1861 /* round up to 32-bytes, since this is granularity
1862 * of interpreter stack size
1863 */
9c8105bd 1864 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1865 if (depth > MAX_BPF_STACK) {
f4d7e40a 1866 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1867 frame + 1, depth);
f4d7e40a
AS
1868 return -EACCES;
1869 }
70a87ffe 1870continue_func:
4cb3d99c 1871 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1872 for (; i < subprog_end; i++) {
1873 if (insn[i].code != (BPF_JMP | BPF_CALL))
1874 continue;
1875 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1876 continue;
1877 /* remember insn and function to return to */
1878 ret_insn[frame] = i + 1;
9c8105bd 1879 ret_prog[frame] = idx;
70a87ffe
AS
1880
1881 /* find the callee */
1882 i = i + insn[i].imm + 1;
9c8105bd
JW
1883 idx = find_subprog(env, i);
1884 if (idx < 0) {
70a87ffe
AS
1885 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1886 i);
1887 return -EFAULT;
1888 }
70a87ffe
AS
1889 frame++;
1890 if (frame >= MAX_CALL_FRAMES) {
1891 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1892 return -EFAULT;
1893 }
1894 goto process_func;
1895 }
1896 /* end of for() loop means the last insn of the 'subprog'
1897 * was reached. Doesn't matter whether it was JA or EXIT
1898 */
1899 if (frame == 0)
1900 return 0;
9c8105bd 1901 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1902 frame--;
1903 i = ret_insn[frame];
9c8105bd 1904 idx = ret_prog[frame];
70a87ffe 1905 goto continue_func;
f4d7e40a
AS
1906}
1907
19d28fbd 1908#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1909static int get_callee_stack_depth(struct bpf_verifier_env *env,
1910 const struct bpf_insn *insn, int idx)
1911{
1912 int start = idx + insn->imm + 1, subprog;
1913
1914 subprog = find_subprog(env, start);
1915 if (subprog < 0) {
1916 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1917 start);
1918 return -EFAULT;
1919 }
9c8105bd 1920 return env->subprog_info[subprog].stack_depth;
1ea47e01 1921}
19d28fbd 1922#endif
1ea47e01 1923
58990d1f
DB
1924static int check_ctx_reg(struct bpf_verifier_env *env,
1925 const struct bpf_reg_state *reg, int regno)
1926{
1927 /* Access to ctx or passing it to a helper is only allowed in
1928 * its original, unmodified form.
1929 */
1930
1931 if (reg->off) {
1932 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1933 regno, reg->off);
1934 return -EACCES;
1935 }
1936
1937 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1938 char tn_buf[48];
1939
1940 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1941 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1942 return -EACCES;
1943 }
1944
1945 return 0;
1946}
1947
0c17d1d2
JH
1948/* truncate register to smaller size (in bytes)
1949 * must be called with size < BPF_REG_SIZE
1950 */
1951static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1952{
1953 u64 mask;
1954
1955 /* clear high bits in bit representation */
1956 reg->var_off = tnum_cast(reg->var_off, size);
1957
1958 /* fix arithmetic bounds */
1959 mask = ((u64)1 << (size * 8)) - 1;
1960 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1961 reg->umin_value &= mask;
1962 reg->umax_value &= mask;
1963 } else {
1964 reg->umin_value = 0;
1965 reg->umax_value = mask;
1966 }
1967 reg->smin_value = reg->umin_value;
1968 reg->smax_value = reg->umax_value;
1969}
1970
17a52670
AS
1971/* check whether memory at (regno + off) is accessible for t = (read | write)
1972 * if t==write, value_regno is a register which value is stored into memory
1973 * if t==read, value_regno is a register which will receive the value from memory
1974 * if t==write && value_regno==-1, some unknown value is stored into memory
1975 * if t==read && value_regno==-1, don't care what we read from memory
1976 */
ca369602
DB
1977static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1978 int off, int bpf_size, enum bpf_access_type t,
1979 int value_regno, bool strict_alignment_once)
17a52670 1980{
638f5b90
AS
1981 struct bpf_reg_state *regs = cur_regs(env);
1982 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1983 struct bpf_func_state *state;
17a52670
AS
1984 int size, err = 0;
1985
1986 size = bpf_size_to_bytes(bpf_size);
1987 if (size < 0)
1988 return size;
1989
f1174f77 1990 /* alignment checks will add in reg->off themselves */
ca369602 1991 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1992 if (err)
1993 return err;
17a52670 1994
f1174f77
EC
1995 /* for access checks, reg->off is just part of off */
1996 off += reg->off;
1997
1998 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1999 if (t == BPF_WRITE && value_regno >= 0 &&
2000 is_pointer_value(env, value_regno)) {
61bd5218 2001 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2002 return -EACCES;
2003 }
48461135 2004
9fd29c08 2005 err = check_map_access(env, regno, off, size, false);
17a52670 2006 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2007 mark_reg_unknown(env, regs, value_regno);
17a52670 2008
1a0dc1ac 2009 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2010 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2011
1be7f75d
AS
2012 if (t == BPF_WRITE && value_regno >= 0 &&
2013 is_pointer_value(env, value_regno)) {
61bd5218 2014 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2015 return -EACCES;
2016 }
f1174f77 2017
58990d1f
DB
2018 err = check_ctx_reg(env, reg, regno);
2019 if (err < 0)
2020 return err;
2021
31fd8581 2022 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2023 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2024 /* ctx access returns either a scalar, or a
de8f3a83
DB
2025 * PTR_TO_PACKET[_META,_END]. In the latter
2026 * case, we know the offset is zero.
f1174f77 2027 */
46f8bc92 2028 if (reg_type == SCALAR_VALUE) {
638f5b90 2029 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2030 } else {
638f5b90 2031 mark_reg_known_zero(env, regs,
61bd5218 2032 value_regno);
46f8bc92
MKL
2033 if (reg_type_may_be_null(reg_type))
2034 regs[value_regno].id = ++env->id_gen;
2035 }
638f5b90 2036 regs[value_regno].type = reg_type;
969bf05e 2037 }
17a52670 2038
f1174f77 2039 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2040 off += reg->var_off.value;
e4298d25
DB
2041 err = check_stack_access(env, reg, off, size);
2042 if (err)
2043 return err;
8726679a 2044
f4d7e40a
AS
2045 state = func(env, reg);
2046 err = update_stack_depth(env, state, off);
2047 if (err)
2048 return err;
8726679a 2049
638f5b90 2050 if (t == BPF_WRITE)
61bd5218 2051 err = check_stack_write(env, state, off, size,
af86ca4e 2052 value_regno, insn_idx);
638f5b90 2053 else
61bd5218
JK
2054 err = check_stack_read(env, state, off, size,
2055 value_regno);
de8f3a83 2056 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2057 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2058 verbose(env, "cannot write into packet\n");
969bf05e
AS
2059 return -EACCES;
2060 }
4acf6c0b
BB
2061 if (t == BPF_WRITE && value_regno >= 0 &&
2062 is_pointer_value(env, value_regno)) {
61bd5218
JK
2063 verbose(env, "R%d leaks addr into packet\n",
2064 value_regno);
4acf6c0b
BB
2065 return -EACCES;
2066 }
9fd29c08 2067 err = check_packet_access(env, regno, off, size, false);
969bf05e 2068 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2069 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2070 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2071 if (t == BPF_WRITE && value_regno >= 0 &&
2072 is_pointer_value(env, value_regno)) {
2073 verbose(env, "R%d leaks addr into flow keys\n",
2074 value_regno);
2075 return -EACCES;
2076 }
2077
2078 err = check_flow_keys_access(env, off, size);
2079 if (!err && t == BPF_READ && value_regno >= 0)
2080 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2081 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2082 if (t == BPF_WRITE) {
46f8bc92
MKL
2083 verbose(env, "R%d cannot write into %s\n",
2084 regno, reg_type_str[reg->type]);
c64b7983
JS
2085 return -EACCES;
2086 }
5f456649 2087 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2088 if (!err && value_regno >= 0)
2089 mark_reg_unknown(env, regs, value_regno);
17a52670 2090 } else {
61bd5218
JK
2091 verbose(env, "R%d invalid mem access '%s'\n", regno,
2092 reg_type_str[reg->type]);
17a52670
AS
2093 return -EACCES;
2094 }
969bf05e 2095
f1174f77 2096 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2097 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2098 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2099 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2100 }
17a52670
AS
2101 return err;
2102}
2103
31fd8581 2104static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2105{
17a52670
AS
2106 int err;
2107
2108 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2109 insn->imm != 0) {
61bd5218 2110 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2111 return -EINVAL;
2112 }
2113
2114 /* check src1 operand */
dc503a8a 2115 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2116 if (err)
2117 return err;
2118
2119 /* check src2 operand */
dc503a8a 2120 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2121 if (err)
2122 return err;
2123
6bdf6abc 2124 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2125 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2126 return -EACCES;
2127 }
2128
ca369602 2129 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2130 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2131 is_flow_key_reg(env, insn->dst_reg) ||
2132 is_sk_reg(env, insn->dst_reg)) {
ca369602 2133 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2134 insn->dst_reg,
2135 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2136 return -EACCES;
2137 }
2138
17a52670 2139 /* check whether atomic_add can read the memory */
31fd8581 2140 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2141 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2142 if (err)
2143 return err;
2144
2145 /* check whether atomic_add can write into the same memory */
31fd8581 2146 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2147 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2148}
2149
2150/* when register 'regno' is passed into function that will read 'access_size'
2151 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2152 * and all elements of stack are initialized.
2153 * Unlike most pointer bounds-checking functions, this one doesn't take an
2154 * 'off' argument, so it has to add in reg->off itself.
17a52670 2155 */
58e2af8b 2156static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2157 int access_size, bool zero_size_allowed,
2158 struct bpf_call_arg_meta *meta)
17a52670 2159{
2a159c6f 2160 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2161 struct bpf_func_state *state = func(env, reg);
638f5b90 2162 int off, i, slot, spi;
17a52670 2163
914cb781 2164 if (reg->type != PTR_TO_STACK) {
f1174f77 2165 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2166 if (zero_size_allowed && access_size == 0 &&
914cb781 2167 register_is_null(reg))
8e2fe1d9
DB
2168 return 0;
2169
61bd5218 2170 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2171 reg_type_str[reg->type],
8e2fe1d9 2172 reg_type_str[PTR_TO_STACK]);
17a52670 2173 return -EACCES;
8e2fe1d9 2174 }
17a52670 2175
f1174f77 2176 /* Only allow fixed-offset stack reads */
914cb781 2177 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2178 char tn_buf[48];
2179
914cb781 2180 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2181 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2182 regno, tn_buf);
ea25f914 2183 return -EACCES;
f1174f77 2184 }
914cb781 2185 off = reg->off + reg->var_off.value;
17a52670 2186 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2187 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2188 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2189 regno, off, access_size);
2190 return -EACCES;
2191 }
2192
435faee1
DB
2193 if (meta && meta->raw_mode) {
2194 meta->access_size = access_size;
2195 meta->regno = regno;
2196 return 0;
2197 }
2198
17a52670 2199 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2200 u8 *stype;
2201
638f5b90
AS
2202 slot = -(off + i) - 1;
2203 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2204 if (state->allocated_stack <= slot)
2205 goto err;
2206 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2207 if (*stype == STACK_MISC)
2208 goto mark;
2209 if (*stype == STACK_ZERO) {
2210 /* helper can write anything into the stack */
2211 *stype = STACK_MISC;
2212 goto mark;
17a52670 2213 }
cc2b14d5
AS
2214err:
2215 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2216 off, i, access_size);
2217 return -EACCES;
2218mark:
2219 /* reading any byte out of 8-byte 'spill_slot' will cause
2220 * the whole slot to be marked as 'read'
2221 */
679c782d
EC
2222 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2223 state->stack[spi].spilled_ptr.parent);
17a52670 2224 }
f4d7e40a 2225 return update_stack_depth(env, state, off);
17a52670
AS
2226}
2227
06c1c049
GB
2228static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2229 int access_size, bool zero_size_allowed,
2230 struct bpf_call_arg_meta *meta)
2231{
638f5b90 2232 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2233
f1174f77 2234 switch (reg->type) {
06c1c049 2235 case PTR_TO_PACKET:
de8f3a83 2236 case PTR_TO_PACKET_META:
9fd29c08
YS
2237 return check_packet_access(env, regno, reg->off, access_size,
2238 zero_size_allowed);
06c1c049 2239 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2240 return check_map_access(env, regno, reg->off, access_size,
2241 zero_size_allowed);
f1174f77 2242 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2243 return check_stack_boundary(env, regno, access_size,
2244 zero_size_allowed, meta);
2245 }
2246}
2247
d83525ca
AS
2248/* Implementation details:
2249 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2250 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2251 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2252 * value_or_null->value transition, since the verifier only cares about
2253 * the range of access to valid map value pointer and doesn't care about actual
2254 * address of the map element.
2255 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2256 * reg->id > 0 after value_or_null->value transition. By doing so
2257 * two bpf_map_lookups will be considered two different pointers that
2258 * point to different bpf_spin_locks.
2259 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2260 * dead-locks.
2261 * Since only one bpf_spin_lock is allowed the checks are simpler than
2262 * reg_is_refcounted() logic. The verifier needs to remember only
2263 * one spin_lock instead of array of acquired_refs.
2264 * cur_state->active_spin_lock remembers which map value element got locked
2265 * and clears it after bpf_spin_unlock.
2266 */
2267static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2268 bool is_lock)
2269{
2270 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2271 struct bpf_verifier_state *cur = env->cur_state;
2272 bool is_const = tnum_is_const(reg->var_off);
2273 struct bpf_map *map = reg->map_ptr;
2274 u64 val = reg->var_off.value;
2275
2276 if (reg->type != PTR_TO_MAP_VALUE) {
2277 verbose(env, "R%d is not a pointer to map_value\n", regno);
2278 return -EINVAL;
2279 }
2280 if (!is_const) {
2281 verbose(env,
2282 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2283 regno);
2284 return -EINVAL;
2285 }
2286 if (!map->btf) {
2287 verbose(env,
2288 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2289 map->name);
2290 return -EINVAL;
2291 }
2292 if (!map_value_has_spin_lock(map)) {
2293 if (map->spin_lock_off == -E2BIG)
2294 verbose(env,
2295 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2296 map->name);
2297 else if (map->spin_lock_off == -ENOENT)
2298 verbose(env,
2299 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2300 map->name);
2301 else
2302 verbose(env,
2303 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2304 map->name);
2305 return -EINVAL;
2306 }
2307 if (map->spin_lock_off != val + reg->off) {
2308 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2309 val + reg->off);
2310 return -EINVAL;
2311 }
2312 if (is_lock) {
2313 if (cur->active_spin_lock) {
2314 verbose(env,
2315 "Locking two bpf_spin_locks are not allowed\n");
2316 return -EINVAL;
2317 }
2318 cur->active_spin_lock = reg->id;
2319 } else {
2320 if (!cur->active_spin_lock) {
2321 verbose(env, "bpf_spin_unlock without taking a lock\n");
2322 return -EINVAL;
2323 }
2324 if (cur->active_spin_lock != reg->id) {
2325 verbose(env, "bpf_spin_unlock of different lock\n");
2326 return -EINVAL;
2327 }
2328 cur->active_spin_lock = 0;
2329 }
2330 return 0;
2331}
2332
90133415
DB
2333static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2334{
2335 return type == ARG_PTR_TO_MEM ||
2336 type == ARG_PTR_TO_MEM_OR_NULL ||
2337 type == ARG_PTR_TO_UNINIT_MEM;
2338}
2339
2340static bool arg_type_is_mem_size(enum bpf_arg_type type)
2341{
2342 return type == ARG_CONST_SIZE ||
2343 type == ARG_CONST_SIZE_OR_ZERO;
2344}
2345
58e2af8b 2346static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2347 enum bpf_arg_type arg_type,
2348 struct bpf_call_arg_meta *meta)
17a52670 2349{
638f5b90 2350 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2351 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2352 int err = 0;
2353
80f1d68c 2354 if (arg_type == ARG_DONTCARE)
17a52670
AS
2355 return 0;
2356
dc503a8a
EC
2357 err = check_reg_arg(env, regno, SRC_OP);
2358 if (err)
2359 return err;
17a52670 2360
1be7f75d
AS
2361 if (arg_type == ARG_ANYTHING) {
2362 if (is_pointer_value(env, regno)) {
61bd5218
JK
2363 verbose(env, "R%d leaks addr into helper function\n",
2364 regno);
1be7f75d
AS
2365 return -EACCES;
2366 }
80f1d68c 2367 return 0;
1be7f75d 2368 }
80f1d68c 2369
de8f3a83 2370 if (type_is_pkt_pointer(type) &&
3a0af8fd 2371 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2372 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2373 return -EACCES;
2374 }
2375
8e2fe1d9 2376 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5
MV
2377 arg_type == ARG_PTR_TO_MAP_VALUE ||
2378 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670 2379 expected_type = PTR_TO_STACK;
d71962f3 2380 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2381 type != expected_type)
6841de8b 2382 goto err_type;
39f19ebb
AS
2383 } else if (arg_type == ARG_CONST_SIZE ||
2384 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2385 expected_type = SCALAR_VALUE;
2386 if (type != expected_type)
6841de8b 2387 goto err_type;
17a52670
AS
2388 } else if (arg_type == ARG_CONST_MAP_PTR) {
2389 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2390 if (type != expected_type)
2391 goto err_type;
608cd71a
AS
2392 } else if (arg_type == ARG_PTR_TO_CTX) {
2393 expected_type = PTR_TO_CTX;
6841de8b
AS
2394 if (type != expected_type)
2395 goto err_type;
58990d1f
DB
2396 err = check_ctx_reg(env, reg, regno);
2397 if (err < 0)
2398 return err;
46f8bc92
MKL
2399 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2400 expected_type = PTR_TO_SOCK_COMMON;
2401 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2402 if (!type_is_sk_pointer(type))
2403 goto err_type;
1b986589
MKL
2404 if (reg->ref_obj_id) {
2405 if (meta->ref_obj_id) {
2406 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2407 regno, reg->ref_obj_id,
2408 meta->ref_obj_id);
2409 return -EFAULT;
2410 }
2411 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 2412 }
d83525ca
AS
2413 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2414 if (meta->func_id == BPF_FUNC_spin_lock) {
2415 if (process_spin_lock(env, regno, true))
2416 return -EACCES;
2417 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2418 if (process_spin_lock(env, regno, false))
2419 return -EACCES;
2420 } else {
2421 verbose(env, "verifier internal error\n");
2422 return -EFAULT;
2423 }
90133415 2424 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2425 expected_type = PTR_TO_STACK;
2426 /* One exception here. In case function allows for NULL to be
f1174f77 2427 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2428 * happens during stack boundary checking.
2429 */
914cb781 2430 if (register_is_null(reg) &&
db1ac496 2431 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2432 /* final test in check_stack_boundary() */;
de8f3a83
DB
2433 else if (!type_is_pkt_pointer(type) &&
2434 type != PTR_TO_MAP_VALUE &&
f1174f77 2435 type != expected_type)
6841de8b 2436 goto err_type;
39f19ebb 2437 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2438 } else {
61bd5218 2439 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2440 return -EFAULT;
2441 }
2442
17a52670
AS
2443 if (arg_type == ARG_CONST_MAP_PTR) {
2444 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2445 meta->map_ptr = reg->map_ptr;
17a52670
AS
2446 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2447 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2448 * check that [key, key + map->key_size) are within
2449 * stack limits and initialized
2450 */
33ff9823 2451 if (!meta->map_ptr) {
17a52670
AS
2452 /* in function declaration map_ptr must come before
2453 * map_key, so that it's verified and known before
2454 * we have to check map_key here. Otherwise it means
2455 * that kernel subsystem misconfigured verifier
2456 */
61bd5218 2457 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2458 return -EACCES;
2459 }
d71962f3
PC
2460 err = check_helper_mem_access(env, regno,
2461 meta->map_ptr->key_size, false,
2462 NULL);
2ea864c5
MV
2463 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2464 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
2465 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2466 * check [value, value + map->value_size) validity
2467 */
33ff9823 2468 if (!meta->map_ptr) {
17a52670 2469 /* kernel subsystem misconfigured verifier */
61bd5218 2470 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2471 return -EACCES;
2472 }
2ea864c5 2473 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
2474 err = check_helper_mem_access(env, regno,
2475 meta->map_ptr->value_size, false,
2ea864c5 2476 meta);
90133415 2477 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2478 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2479
849fa506
YS
2480 /* remember the mem_size which may be used later
2481 * to refine return values.
2482 */
2483 meta->msize_smax_value = reg->smax_value;
2484 meta->msize_umax_value = reg->umax_value;
2485
f1174f77
EC
2486 /* The register is SCALAR_VALUE; the access check
2487 * happens using its boundaries.
06c1c049 2488 */
f1174f77 2489 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2490 /* For unprivileged variable accesses, disable raw
2491 * mode so that the program is required to
2492 * initialize all the memory that the helper could
2493 * just partially fill up.
2494 */
2495 meta = NULL;
2496
b03c9f9f 2497 if (reg->smin_value < 0) {
61bd5218 2498 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2499 regno);
2500 return -EACCES;
2501 }
06c1c049 2502
b03c9f9f 2503 if (reg->umin_value == 0) {
f1174f77
EC
2504 err = check_helper_mem_access(env, regno - 1, 0,
2505 zero_size_allowed,
2506 meta);
06c1c049
GB
2507 if (err)
2508 return err;
06c1c049 2509 }
f1174f77 2510
b03c9f9f 2511 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2512 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2513 regno);
2514 return -EACCES;
2515 }
2516 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2517 reg->umax_value,
f1174f77 2518 zero_size_allowed, meta);
17a52670
AS
2519 }
2520
2521 return err;
6841de8b 2522err_type:
61bd5218 2523 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2524 reg_type_str[type], reg_type_str[expected_type]);
2525 return -EACCES;
17a52670
AS
2526}
2527
61bd5218
JK
2528static int check_map_func_compatibility(struct bpf_verifier_env *env,
2529 struct bpf_map *map, int func_id)
35578d79 2530{
35578d79
KX
2531 if (!map)
2532 return 0;
2533
6aff67c8
AS
2534 /* We need a two way check, first is from map perspective ... */
2535 switch (map->map_type) {
2536 case BPF_MAP_TYPE_PROG_ARRAY:
2537 if (func_id != BPF_FUNC_tail_call)
2538 goto error;
2539 break;
2540 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2541 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2542 func_id != BPF_FUNC_perf_event_output &&
2543 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2544 goto error;
2545 break;
2546 case BPF_MAP_TYPE_STACK_TRACE:
2547 if (func_id != BPF_FUNC_get_stackid)
2548 goto error;
2549 break;
4ed8ec52 2550 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2551 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2552 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2553 goto error;
2554 break;
cd339431 2555 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2556 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2557 if (func_id != BPF_FUNC_get_local_storage)
2558 goto error;
2559 break;
546ac1ff
JF
2560 /* devmap returns a pointer to a live net_device ifindex that we cannot
2561 * allow to be modified from bpf side. So do not allow lookup elements
2562 * for now.
2563 */
2564 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2565 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2566 goto error;
2567 break;
fbfc504a
BT
2568 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2569 * appear.
2570 */
6710e112 2571 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2572 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2573 if (func_id != BPF_FUNC_redirect_map)
2574 goto error;
2575 break;
56f668df 2576 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2577 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2578 if (func_id != BPF_FUNC_map_lookup_elem)
2579 goto error;
16a43625 2580 break;
174a79ff
JF
2581 case BPF_MAP_TYPE_SOCKMAP:
2582 if (func_id != BPF_FUNC_sk_redirect_map &&
2583 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2584 func_id != BPF_FUNC_map_delete_elem &&
2585 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2586 goto error;
2587 break;
81110384
JF
2588 case BPF_MAP_TYPE_SOCKHASH:
2589 if (func_id != BPF_FUNC_sk_redirect_hash &&
2590 func_id != BPF_FUNC_sock_hash_update &&
2591 func_id != BPF_FUNC_map_delete_elem &&
2592 func_id != BPF_FUNC_msg_redirect_hash)
2593 goto error;
2594 break;
2dbb9b9e
MKL
2595 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2596 if (func_id != BPF_FUNC_sk_select_reuseport)
2597 goto error;
2598 break;
f1a2e44a
MV
2599 case BPF_MAP_TYPE_QUEUE:
2600 case BPF_MAP_TYPE_STACK:
2601 if (func_id != BPF_FUNC_map_peek_elem &&
2602 func_id != BPF_FUNC_map_pop_elem &&
2603 func_id != BPF_FUNC_map_push_elem)
2604 goto error;
2605 break;
6aff67c8
AS
2606 default:
2607 break;
2608 }
2609
2610 /* ... and second from the function itself. */
2611 switch (func_id) {
2612 case BPF_FUNC_tail_call:
2613 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2614 goto error;
f910cefa 2615 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2616 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2617 return -EINVAL;
2618 }
6aff67c8
AS
2619 break;
2620 case BPF_FUNC_perf_event_read:
2621 case BPF_FUNC_perf_event_output:
908432ca 2622 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2623 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2624 goto error;
2625 break;
2626 case BPF_FUNC_get_stackid:
2627 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2628 goto error;
2629 break;
60d20f91 2630 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2631 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2632 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2633 goto error;
2634 break;
97f91a7c 2635 case BPF_FUNC_redirect_map:
9c270af3 2636 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2637 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2638 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2639 goto error;
2640 break;
174a79ff 2641 case BPF_FUNC_sk_redirect_map:
4f738adb 2642 case BPF_FUNC_msg_redirect_map:
81110384 2643 case BPF_FUNC_sock_map_update:
174a79ff
JF
2644 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2645 goto error;
2646 break;
81110384
JF
2647 case BPF_FUNC_sk_redirect_hash:
2648 case BPF_FUNC_msg_redirect_hash:
2649 case BPF_FUNC_sock_hash_update:
2650 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2651 goto error;
2652 break;
cd339431 2653 case BPF_FUNC_get_local_storage:
b741f163
RG
2654 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2655 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2656 goto error;
2657 break;
2dbb9b9e
MKL
2658 case BPF_FUNC_sk_select_reuseport:
2659 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2660 goto error;
2661 break;
f1a2e44a
MV
2662 case BPF_FUNC_map_peek_elem:
2663 case BPF_FUNC_map_pop_elem:
2664 case BPF_FUNC_map_push_elem:
2665 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2666 map->map_type != BPF_MAP_TYPE_STACK)
2667 goto error;
2668 break;
6aff67c8
AS
2669 default:
2670 break;
35578d79
KX
2671 }
2672
2673 return 0;
6aff67c8 2674error:
61bd5218 2675 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2676 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2677 return -EINVAL;
35578d79
KX
2678}
2679
90133415 2680static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2681{
2682 int count = 0;
2683
39f19ebb 2684 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2685 count++;
39f19ebb 2686 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2687 count++;
39f19ebb 2688 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2689 count++;
39f19ebb 2690 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2691 count++;
39f19ebb 2692 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2693 count++;
2694
90133415
DB
2695 /* We only support one arg being in raw mode at the moment,
2696 * which is sufficient for the helper functions we have
2697 * right now.
2698 */
2699 return count <= 1;
2700}
2701
2702static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2703 enum bpf_arg_type arg_next)
2704{
2705 return (arg_type_is_mem_ptr(arg_curr) &&
2706 !arg_type_is_mem_size(arg_next)) ||
2707 (!arg_type_is_mem_ptr(arg_curr) &&
2708 arg_type_is_mem_size(arg_next));
2709}
2710
2711static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2712{
2713 /* bpf_xxx(..., buf, len) call will access 'len'
2714 * bytes from memory 'buf'. Both arg types need
2715 * to be paired, so make sure there's no buggy
2716 * helper function specification.
2717 */
2718 if (arg_type_is_mem_size(fn->arg1_type) ||
2719 arg_type_is_mem_ptr(fn->arg5_type) ||
2720 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2721 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2722 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2723 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2724 return false;
2725
2726 return true;
2727}
2728
1b986589 2729static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
2730{
2731 int count = 0;
2732
1b986589 2733 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 2734 count++;
1b986589 2735 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 2736 count++;
1b986589 2737 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 2738 count++;
1b986589 2739 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 2740 count++;
1b986589 2741 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
2742 count++;
2743
1b986589
MKL
2744 /* A reference acquiring function cannot acquire
2745 * another refcounted ptr.
2746 */
2747 if (is_acquire_function(func_id) && count)
2748 return false;
2749
fd978bf7
JS
2750 /* We only support one arg being unreferenced at the moment,
2751 * which is sufficient for the helper functions we have right now.
2752 */
2753 return count <= 1;
2754}
2755
1b986589 2756static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
2757{
2758 return check_raw_mode_ok(fn) &&
fd978bf7 2759 check_arg_pair_ok(fn) &&
1b986589 2760 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
2761}
2762
de8f3a83
DB
2763/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2764 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2765 */
f4d7e40a
AS
2766static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2767 struct bpf_func_state *state)
969bf05e 2768{
58e2af8b 2769 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2770 int i;
2771
2772 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2773 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2774 mark_reg_unknown(env, regs, i);
969bf05e 2775
f3709f69
JS
2776 bpf_for_each_spilled_reg(i, state, reg) {
2777 if (!reg)
969bf05e 2778 continue;
de8f3a83
DB
2779 if (reg_is_pkt_pointer_any(reg))
2780 __mark_reg_unknown(reg);
969bf05e
AS
2781 }
2782}
2783
f4d7e40a
AS
2784static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2785{
2786 struct bpf_verifier_state *vstate = env->cur_state;
2787 int i;
2788
2789 for (i = 0; i <= vstate->curframe; i++)
2790 __clear_all_pkt_pointers(env, vstate->frame[i]);
2791}
2792
fd978bf7 2793static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
2794 struct bpf_func_state *state,
2795 int ref_obj_id)
fd978bf7
JS
2796{
2797 struct bpf_reg_state *regs = state->regs, *reg;
2798 int i;
2799
2800 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 2801 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
2802 mark_reg_unknown(env, regs, i);
2803
2804 bpf_for_each_spilled_reg(i, state, reg) {
2805 if (!reg)
2806 continue;
1b986589 2807 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
2808 __mark_reg_unknown(reg);
2809 }
2810}
2811
2812/* The pointer with the specified id has released its reference to kernel
2813 * resources. Identify all copies of the same pointer and clear the reference.
2814 */
2815static int release_reference(struct bpf_verifier_env *env,
1b986589 2816 int ref_obj_id)
fd978bf7
JS
2817{
2818 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 2819 int err;
fd978bf7
JS
2820 int i;
2821
1b986589
MKL
2822 err = release_reference_state(cur_func(env), ref_obj_id);
2823 if (err)
2824 return err;
2825
fd978bf7 2826 for (i = 0; i <= vstate->curframe; i++)
1b986589 2827 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 2828
1b986589 2829 return 0;
fd978bf7
JS
2830}
2831
f4d7e40a
AS
2832static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2833 int *insn_idx)
2834{
2835 struct bpf_verifier_state *state = env->cur_state;
2836 struct bpf_func_state *caller, *callee;
fd978bf7 2837 int i, err, subprog, target_insn;
f4d7e40a 2838
aada9ce6 2839 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2840 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2841 state->curframe + 2);
f4d7e40a
AS
2842 return -E2BIG;
2843 }
2844
2845 target_insn = *insn_idx + insn->imm;
2846 subprog = find_subprog(env, target_insn + 1);
2847 if (subprog < 0) {
2848 verbose(env, "verifier bug. No program starts at insn %d\n",
2849 target_insn + 1);
2850 return -EFAULT;
2851 }
2852
2853 caller = state->frame[state->curframe];
2854 if (state->frame[state->curframe + 1]) {
2855 verbose(env, "verifier bug. Frame %d already allocated\n",
2856 state->curframe + 1);
2857 return -EFAULT;
2858 }
2859
2860 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2861 if (!callee)
2862 return -ENOMEM;
2863 state->frame[state->curframe + 1] = callee;
2864
2865 /* callee cannot access r0, r6 - r9 for reading and has to write
2866 * into its own stack before reading from it.
2867 * callee can read/write into caller's stack
2868 */
2869 init_func_state(env, callee,
2870 /* remember the callsite, it will be used by bpf_exit */
2871 *insn_idx /* callsite */,
2872 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2873 subprog /* subprog number within this prog */);
f4d7e40a 2874
fd978bf7
JS
2875 /* Transfer references to the callee */
2876 err = transfer_reference_state(callee, caller);
2877 if (err)
2878 return err;
2879
679c782d
EC
2880 /* copy r1 - r5 args that callee can access. The copy includes parent
2881 * pointers, which connects us up to the liveness chain
2882 */
f4d7e40a
AS
2883 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2884 callee->regs[i] = caller->regs[i];
2885
679c782d 2886 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2887 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2888 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2889 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2890 }
2891
2892 /* only increment it after check_reg_arg() finished */
2893 state->curframe++;
2894
2895 /* and go analyze first insn of the callee */
2896 *insn_idx = target_insn;
2897
2898 if (env->log.level) {
2899 verbose(env, "caller:\n");
2900 print_verifier_state(env, caller);
2901 verbose(env, "callee:\n");
2902 print_verifier_state(env, callee);
2903 }
2904 return 0;
2905}
2906
2907static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2908{
2909 struct bpf_verifier_state *state = env->cur_state;
2910 struct bpf_func_state *caller, *callee;
2911 struct bpf_reg_state *r0;
fd978bf7 2912 int err;
f4d7e40a
AS
2913
2914 callee = state->frame[state->curframe];
2915 r0 = &callee->regs[BPF_REG_0];
2916 if (r0->type == PTR_TO_STACK) {
2917 /* technically it's ok to return caller's stack pointer
2918 * (or caller's caller's pointer) back to the caller,
2919 * since these pointers are valid. Only current stack
2920 * pointer will be invalid as soon as function exits,
2921 * but let's be conservative
2922 */
2923 verbose(env, "cannot return stack pointer to the caller\n");
2924 return -EINVAL;
2925 }
2926
2927 state->curframe--;
2928 caller = state->frame[state->curframe];
2929 /* return to the caller whatever r0 had in the callee */
2930 caller->regs[BPF_REG_0] = *r0;
2931
fd978bf7
JS
2932 /* Transfer references to the caller */
2933 err = transfer_reference_state(caller, callee);
2934 if (err)
2935 return err;
2936
f4d7e40a
AS
2937 *insn_idx = callee->callsite + 1;
2938 if (env->log.level) {
2939 verbose(env, "returning from callee:\n");
2940 print_verifier_state(env, callee);
2941 verbose(env, "to caller at %d:\n", *insn_idx);
2942 print_verifier_state(env, caller);
2943 }
2944 /* clear everything in the callee */
2945 free_func_state(callee);
2946 state->frame[state->curframe + 1] = NULL;
2947 return 0;
2948}
2949
849fa506
YS
2950static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2951 int func_id,
2952 struct bpf_call_arg_meta *meta)
2953{
2954 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2955
2956 if (ret_type != RET_INTEGER ||
2957 (func_id != BPF_FUNC_get_stack &&
2958 func_id != BPF_FUNC_probe_read_str))
2959 return;
2960
2961 ret_reg->smax_value = meta->msize_smax_value;
2962 ret_reg->umax_value = meta->msize_umax_value;
2963 __reg_deduce_bounds(ret_reg);
2964 __reg_bound_offset(ret_reg);
2965}
2966
c93552c4
DB
2967static int
2968record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2969 int func_id, int insn_idx)
2970{
2971 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2972
2973 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2974 func_id != BPF_FUNC_map_lookup_elem &&
2975 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
2976 func_id != BPF_FUNC_map_delete_elem &&
2977 func_id != BPF_FUNC_map_push_elem &&
2978 func_id != BPF_FUNC_map_pop_elem &&
2979 func_id != BPF_FUNC_map_peek_elem)
c93552c4 2980 return 0;
09772d92 2981
c93552c4
DB
2982 if (meta->map_ptr == NULL) {
2983 verbose(env, "kernel subsystem misconfigured verifier\n");
2984 return -EINVAL;
2985 }
2986
2987 if (!BPF_MAP_PTR(aux->map_state))
2988 bpf_map_ptr_store(aux, meta->map_ptr,
2989 meta->map_ptr->unpriv_array);
2990 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2991 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2992 meta->map_ptr->unpriv_array);
2993 return 0;
2994}
2995
fd978bf7
JS
2996static int check_reference_leak(struct bpf_verifier_env *env)
2997{
2998 struct bpf_func_state *state = cur_func(env);
2999 int i;
3000
3001 for (i = 0; i < state->acquired_refs; i++) {
3002 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3003 state->refs[i].id, state->refs[i].insn_idx);
3004 }
3005 return state->acquired_refs ? -EINVAL : 0;
3006}
3007
f4d7e40a 3008static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3009{
17a52670 3010 const struct bpf_func_proto *fn = NULL;
638f5b90 3011 struct bpf_reg_state *regs;
33ff9823 3012 struct bpf_call_arg_meta meta;
969bf05e 3013 bool changes_data;
17a52670
AS
3014 int i, err;
3015
3016 /* find function prototype */
3017 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3018 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3019 func_id);
17a52670
AS
3020 return -EINVAL;
3021 }
3022
00176a34 3023 if (env->ops->get_func_proto)
5e43f899 3024 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3025 if (!fn) {
61bd5218
JK
3026 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3027 func_id);
17a52670
AS
3028 return -EINVAL;
3029 }
3030
3031 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3032 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3033 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3034 return -EINVAL;
3035 }
3036
04514d13 3037 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3038 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3039 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3040 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3041 func_id_name(func_id), func_id);
3042 return -EINVAL;
3043 }
969bf05e 3044
33ff9823 3045 memset(&meta, 0, sizeof(meta));
36bbef52 3046 meta.pkt_access = fn->pkt_access;
33ff9823 3047
1b986589 3048 err = check_func_proto(fn, func_id);
435faee1 3049 if (err) {
61bd5218 3050 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3051 func_id_name(func_id), func_id);
435faee1
DB
3052 return err;
3053 }
3054
d83525ca 3055 meta.func_id = func_id;
17a52670 3056 /* check args */
33ff9823 3057 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3058 if (err)
3059 return err;
33ff9823 3060 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3061 if (err)
3062 return err;
33ff9823 3063 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3064 if (err)
3065 return err;
33ff9823 3066 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3067 if (err)
3068 return err;
33ff9823 3069 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3070 if (err)
3071 return err;
3072
c93552c4
DB
3073 err = record_func_map(env, &meta, func_id, insn_idx);
3074 if (err)
3075 return err;
3076
435faee1
DB
3077 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3078 * is inferred from register state.
3079 */
3080 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
3081 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3082 BPF_WRITE, -1, false);
435faee1
DB
3083 if (err)
3084 return err;
3085 }
3086
fd978bf7
JS
3087 if (func_id == BPF_FUNC_tail_call) {
3088 err = check_reference_leak(env);
3089 if (err) {
3090 verbose(env, "tail_call would lead to reference leak\n");
3091 return err;
3092 }
3093 } else if (is_release_function(func_id)) {
1b986589 3094 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
3095 if (err) {
3096 verbose(env, "func %s#%d reference has not been acquired before\n",
3097 func_id_name(func_id), func_id);
fd978bf7 3098 return err;
46f8bc92 3099 }
fd978bf7
JS
3100 }
3101
638f5b90 3102 regs = cur_regs(env);
cd339431
RG
3103
3104 /* check that flags argument in get_local_storage(map, flags) is 0,
3105 * this is required because get_local_storage() can't return an error.
3106 */
3107 if (func_id == BPF_FUNC_get_local_storage &&
3108 !register_is_null(&regs[BPF_REG_2])) {
3109 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3110 return -EINVAL;
3111 }
3112
17a52670 3113 /* reset caller saved regs */
dc503a8a 3114 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3115 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3116 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3117 }
17a52670 3118
dc503a8a 3119 /* update return register (already marked as written above) */
17a52670 3120 if (fn->ret_type == RET_INTEGER) {
f1174f77 3121 /* sets type to SCALAR_VALUE */
61bd5218 3122 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
3123 } else if (fn->ret_type == RET_VOID) {
3124 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
3125 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3126 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 3127 /* There is no offset yet applied, variable or fixed */
61bd5218 3128 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
3129 /* remember map_ptr, so that check_map_access()
3130 * can check 'value_size' boundary of memory access
3131 * to map element returned from bpf_map_lookup_elem()
3132 */
33ff9823 3133 if (meta.map_ptr == NULL) {
61bd5218
JK
3134 verbose(env,
3135 "kernel subsystem misconfigured verifier\n");
17a52670
AS
3136 return -EINVAL;
3137 }
33ff9823 3138 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
3139 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3140 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
3141 if (map_value_has_spin_lock(meta.map_ptr))
3142 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
3143 } else {
3144 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3145 regs[BPF_REG_0].id = ++env->id_gen;
3146 }
c64b7983
JS
3147 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3148 mark_reg_known_zero(env, regs, BPF_REG_0);
3149 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 3150 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
3151 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3152 mark_reg_known_zero(env, regs, BPF_REG_0);
3153 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3154 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 3155 } else {
61bd5218 3156 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 3157 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
3158 return -EINVAL;
3159 }
04fd61ab 3160
0f3adc28 3161 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
3162 /* For release_reference() */
3163 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
3164 } else if (is_acquire_function(func_id)) {
3165 int id = acquire_reference_state(env, insn_idx);
3166
3167 if (id < 0)
3168 return id;
3169 /* For mark_ptr_or_null_reg() */
3170 regs[BPF_REG_0].id = id;
3171 /* For release_reference() */
3172 regs[BPF_REG_0].ref_obj_id = id;
3173 }
1b986589 3174
849fa506
YS
3175 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3176
61bd5218 3177 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
3178 if (err)
3179 return err;
04fd61ab 3180
c195651e
YS
3181 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3182 const char *err_str;
3183
3184#ifdef CONFIG_PERF_EVENTS
3185 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3186 err_str = "cannot get callchain buffer for func %s#%d\n";
3187#else
3188 err = -ENOTSUPP;
3189 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3190#endif
3191 if (err) {
3192 verbose(env, err_str, func_id_name(func_id), func_id);
3193 return err;
3194 }
3195
3196 env->prog->has_callchain_buf = true;
3197 }
3198
969bf05e
AS
3199 if (changes_data)
3200 clear_all_pkt_pointers(env);
3201 return 0;
3202}
3203
b03c9f9f
EC
3204static bool signed_add_overflows(s64 a, s64 b)
3205{
3206 /* Do the add in u64, where overflow is well-defined */
3207 s64 res = (s64)((u64)a + (u64)b);
3208
3209 if (b < 0)
3210 return res > a;
3211 return res < a;
3212}
3213
3214static bool signed_sub_overflows(s64 a, s64 b)
3215{
3216 /* Do the sub in u64, where overflow is well-defined */
3217 s64 res = (s64)((u64)a - (u64)b);
3218
3219 if (b < 0)
3220 return res < a;
3221 return res > a;
969bf05e
AS
3222}
3223
bb7f0f98
AS
3224static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3225 const struct bpf_reg_state *reg,
3226 enum bpf_reg_type type)
3227{
3228 bool known = tnum_is_const(reg->var_off);
3229 s64 val = reg->var_off.value;
3230 s64 smin = reg->smin_value;
3231
3232 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3233 verbose(env, "math between %s pointer and %lld is not allowed\n",
3234 reg_type_str[type], val);
3235 return false;
3236 }
3237
3238 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3239 verbose(env, "%s pointer offset %d is not allowed\n",
3240 reg_type_str[type], reg->off);
3241 return false;
3242 }
3243
3244 if (smin == S64_MIN) {
3245 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3246 reg_type_str[type]);
3247 return false;
3248 }
3249
3250 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3251 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3252 smin, reg_type_str[type]);
3253 return false;
3254 }
3255
3256 return true;
3257}
3258
979d63d5
DB
3259static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3260{
3261 return &env->insn_aux_data[env->insn_idx];
3262}
3263
3264static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3265 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3266{
3267 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3268 (opcode == BPF_SUB && !off_is_neg);
3269 u32 off;
3270
3271 switch (ptr_reg->type) {
3272 case PTR_TO_STACK:
3273 off = ptr_reg->off + ptr_reg->var_off.value;
3274 if (mask_to_left)
3275 *ptr_limit = MAX_BPF_STACK + off;
3276 else
3277 *ptr_limit = -off;
3278 return 0;
3279 case PTR_TO_MAP_VALUE:
3280 if (mask_to_left) {
3281 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3282 } else {
3283 off = ptr_reg->smin_value + ptr_reg->off;
3284 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3285 }
3286 return 0;
3287 default:
3288 return -EINVAL;
3289 }
3290}
3291
d3bd7413
DB
3292static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3293 const struct bpf_insn *insn)
3294{
3295 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3296}
3297
3298static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3299 u32 alu_state, u32 alu_limit)
3300{
3301 /* If we arrived here from different branches with different
3302 * state or limits to sanitize, then this won't work.
3303 */
3304 if (aux->alu_state &&
3305 (aux->alu_state != alu_state ||
3306 aux->alu_limit != alu_limit))
3307 return -EACCES;
3308
3309 /* Corresponding fixup done in fixup_bpf_calls(). */
3310 aux->alu_state = alu_state;
3311 aux->alu_limit = alu_limit;
3312 return 0;
3313}
3314
3315static int sanitize_val_alu(struct bpf_verifier_env *env,
3316 struct bpf_insn *insn)
3317{
3318 struct bpf_insn_aux_data *aux = cur_aux(env);
3319
3320 if (can_skip_alu_sanitation(env, insn))
3321 return 0;
3322
3323 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3324}
3325
979d63d5
DB
3326static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3327 struct bpf_insn *insn,
3328 const struct bpf_reg_state *ptr_reg,
3329 struct bpf_reg_state *dst_reg,
3330 bool off_is_neg)
3331{
3332 struct bpf_verifier_state *vstate = env->cur_state;
3333 struct bpf_insn_aux_data *aux = cur_aux(env);
3334 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3335 u8 opcode = BPF_OP(insn->code);
3336 u32 alu_state, alu_limit;
3337 struct bpf_reg_state tmp;
3338 bool ret;
3339
d3bd7413 3340 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
3341 return 0;
3342
3343 /* We already marked aux for masking from non-speculative
3344 * paths, thus we got here in the first place. We only care
3345 * to explore bad access from here.
3346 */
3347 if (vstate->speculative)
3348 goto do_sim;
3349
3350 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3351 alu_state |= ptr_is_dst_reg ?
3352 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3353
3354 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3355 return 0;
d3bd7413 3356 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 3357 return -EACCES;
979d63d5
DB
3358do_sim:
3359 /* Simulate and find potential out-of-bounds access under
3360 * speculative execution from truncation as a result of
3361 * masking when off was not within expected range. If off
3362 * sits in dst, then we temporarily need to move ptr there
3363 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3364 * for cases where we use K-based arithmetic in one direction
3365 * and truncated reg-based in the other in order to explore
3366 * bad access.
3367 */
3368 if (!ptr_is_dst_reg) {
3369 tmp = *dst_reg;
3370 *dst_reg = *ptr_reg;
3371 }
3372 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3373 if (!ptr_is_dst_reg)
3374 *dst_reg = tmp;
3375 return !ret ? -EFAULT : 0;
3376}
3377
f1174f77 3378/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
3379 * Caller should also handle BPF_MOV case separately.
3380 * If we return -EACCES, caller may want to try again treating pointer as a
3381 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3382 */
3383static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3384 struct bpf_insn *insn,
3385 const struct bpf_reg_state *ptr_reg,
3386 const struct bpf_reg_state *off_reg)
969bf05e 3387{
f4d7e40a
AS
3388 struct bpf_verifier_state *vstate = env->cur_state;
3389 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3390 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 3391 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
3392 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3393 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3394 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3395 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 3396 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 3397 u8 opcode = BPF_OP(insn->code);
979d63d5 3398 int ret;
969bf05e 3399
f1174f77 3400 dst_reg = &regs[dst];
969bf05e 3401
6f16101e
DB
3402 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3403 smin_val > smax_val || umin_val > umax_val) {
3404 /* Taint dst register if offset had invalid bounds derived from
3405 * e.g. dead branches.
3406 */
3407 __mark_reg_unknown(dst_reg);
3408 return 0;
f1174f77
EC
3409 }
3410
3411 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3412 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
3413 verbose(env,
3414 "R%d 32-bit pointer arithmetic prohibited\n",
3415 dst);
f1174f77 3416 return -EACCES;
969bf05e
AS
3417 }
3418
aad2eeaf
JS
3419 switch (ptr_reg->type) {
3420 case PTR_TO_MAP_VALUE_OR_NULL:
3421 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3422 dst, reg_type_str[ptr_reg->type]);
f1174f77 3423 return -EACCES;
aad2eeaf
JS
3424 case CONST_PTR_TO_MAP:
3425 case PTR_TO_PACKET_END:
c64b7983
JS
3426 case PTR_TO_SOCKET:
3427 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
3428 case PTR_TO_SOCK_COMMON:
3429 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
3430 case PTR_TO_TCP_SOCK:
3431 case PTR_TO_TCP_SOCK_OR_NULL:
aad2eeaf
JS
3432 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3433 dst, reg_type_str[ptr_reg->type]);
f1174f77 3434 return -EACCES;
9d7eceed
DB
3435 case PTR_TO_MAP_VALUE:
3436 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3437 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3438 off_reg == dst_reg ? dst : src);
3439 return -EACCES;
3440 }
3441 /* fall-through */
aad2eeaf
JS
3442 default:
3443 break;
f1174f77
EC
3444 }
3445
3446 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3447 * The id may be overwritten later if we create a new variable offset.
969bf05e 3448 */
f1174f77
EC
3449 dst_reg->type = ptr_reg->type;
3450 dst_reg->id = ptr_reg->id;
969bf05e 3451
bb7f0f98
AS
3452 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3453 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3454 return -EINVAL;
3455
f1174f77
EC
3456 switch (opcode) {
3457 case BPF_ADD:
979d63d5
DB
3458 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3459 if (ret < 0) {
3460 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3461 return ret;
3462 }
f1174f77
EC
3463 /* We can take a fixed offset as long as it doesn't overflow
3464 * the s32 'off' field
969bf05e 3465 */
b03c9f9f
EC
3466 if (known && (ptr_reg->off + smin_val ==
3467 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3468 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3469 dst_reg->smin_value = smin_ptr;
3470 dst_reg->smax_value = smax_ptr;
3471 dst_reg->umin_value = umin_ptr;
3472 dst_reg->umax_value = umax_ptr;
f1174f77 3473 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3474 dst_reg->off = ptr_reg->off + smin_val;
0962590e 3475 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3476 break;
3477 }
f1174f77
EC
3478 /* A new variable offset is created. Note that off_reg->off
3479 * == 0, since it's a scalar.
3480 * dst_reg gets the pointer type and since some positive
3481 * integer value was added to the pointer, give it a new 'id'
3482 * if it's a PTR_TO_PACKET.
3483 * this creates a new 'base' pointer, off_reg (variable) gets
3484 * added into the variable offset, and we copy the fixed offset
3485 * from ptr_reg.
969bf05e 3486 */
b03c9f9f
EC
3487 if (signed_add_overflows(smin_ptr, smin_val) ||
3488 signed_add_overflows(smax_ptr, smax_val)) {
3489 dst_reg->smin_value = S64_MIN;
3490 dst_reg->smax_value = S64_MAX;
3491 } else {
3492 dst_reg->smin_value = smin_ptr + smin_val;
3493 dst_reg->smax_value = smax_ptr + smax_val;
3494 }
3495 if (umin_ptr + umin_val < umin_ptr ||
3496 umax_ptr + umax_val < umax_ptr) {
3497 dst_reg->umin_value = 0;
3498 dst_reg->umax_value = U64_MAX;
3499 } else {
3500 dst_reg->umin_value = umin_ptr + umin_val;
3501 dst_reg->umax_value = umax_ptr + umax_val;
3502 }
f1174f77
EC
3503 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3504 dst_reg->off = ptr_reg->off;
0962590e 3505 dst_reg->raw = ptr_reg->raw;
de8f3a83 3506 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3507 dst_reg->id = ++env->id_gen;
3508 /* something was added to pkt_ptr, set range to zero */
0962590e 3509 dst_reg->raw = 0;
f1174f77
EC
3510 }
3511 break;
3512 case BPF_SUB:
979d63d5
DB
3513 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3514 if (ret < 0) {
3515 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3516 return ret;
3517 }
f1174f77
EC
3518 if (dst_reg == off_reg) {
3519 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3520 verbose(env, "R%d tried to subtract pointer from scalar\n",
3521 dst);
f1174f77
EC
3522 return -EACCES;
3523 }
3524 /* We don't allow subtraction from FP, because (according to
3525 * test_verifier.c test "invalid fp arithmetic", JITs might not
3526 * be able to deal with it.
969bf05e 3527 */
f1174f77 3528 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3529 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3530 dst);
f1174f77
EC
3531 return -EACCES;
3532 }
b03c9f9f
EC
3533 if (known && (ptr_reg->off - smin_val ==
3534 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3535 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3536 dst_reg->smin_value = smin_ptr;
3537 dst_reg->smax_value = smax_ptr;
3538 dst_reg->umin_value = umin_ptr;
3539 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3540 dst_reg->var_off = ptr_reg->var_off;
3541 dst_reg->id = ptr_reg->id;
b03c9f9f 3542 dst_reg->off = ptr_reg->off - smin_val;
0962590e 3543 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
3544 break;
3545 }
f1174f77
EC
3546 /* A new variable offset is created. If the subtrahend is known
3547 * nonnegative, then any reg->range we had before is still good.
969bf05e 3548 */
b03c9f9f
EC
3549 if (signed_sub_overflows(smin_ptr, smax_val) ||
3550 signed_sub_overflows(smax_ptr, smin_val)) {
3551 /* Overflow possible, we know nothing */
3552 dst_reg->smin_value = S64_MIN;
3553 dst_reg->smax_value = S64_MAX;
3554 } else {
3555 dst_reg->smin_value = smin_ptr - smax_val;
3556 dst_reg->smax_value = smax_ptr - smin_val;
3557 }
3558 if (umin_ptr < umax_val) {
3559 /* Overflow possible, we know nothing */
3560 dst_reg->umin_value = 0;
3561 dst_reg->umax_value = U64_MAX;
3562 } else {
3563 /* Cannot overflow (as long as bounds are consistent) */
3564 dst_reg->umin_value = umin_ptr - umax_val;
3565 dst_reg->umax_value = umax_ptr - umin_val;
3566 }
f1174f77
EC
3567 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3568 dst_reg->off = ptr_reg->off;
0962590e 3569 dst_reg->raw = ptr_reg->raw;
de8f3a83 3570 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3571 dst_reg->id = ++env->id_gen;
3572 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3573 if (smin_val < 0)
0962590e 3574 dst_reg->raw = 0;
43188702 3575 }
f1174f77
EC
3576 break;
3577 case BPF_AND:
3578 case BPF_OR:
3579 case BPF_XOR:
82abbf8d
AS
3580 /* bitwise ops on pointers are troublesome, prohibit. */
3581 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3582 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3583 return -EACCES;
3584 default:
3585 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3586 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3587 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3588 return -EACCES;
43188702
JF
3589 }
3590
bb7f0f98
AS
3591 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3592 return -EINVAL;
3593
b03c9f9f
EC
3594 __update_reg_bounds(dst_reg);
3595 __reg_deduce_bounds(dst_reg);
3596 __reg_bound_offset(dst_reg);
0d6303db
DB
3597
3598 /* For unprivileged we require that resulting offset must be in bounds
3599 * in order to be able to sanitize access later on.
3600 */
e4298d25
DB
3601 if (!env->allow_ptr_leaks) {
3602 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3603 check_map_access(env, dst, dst_reg->off, 1, false)) {
3604 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3605 "prohibited for !root\n", dst);
3606 return -EACCES;
3607 } else if (dst_reg->type == PTR_TO_STACK &&
3608 check_stack_access(env, dst_reg, dst_reg->off +
3609 dst_reg->var_off.value, 1)) {
3610 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3611 "prohibited for !root\n", dst);
3612 return -EACCES;
3613 }
0d6303db
DB
3614 }
3615
43188702
JF
3616 return 0;
3617}
3618
468f6eaf
JH
3619/* WARNING: This function does calculations on 64-bit values, but the actual
3620 * execution may occur on 32-bit values. Therefore, things like bitshifts
3621 * need extra checks in the 32-bit case.
3622 */
f1174f77
EC
3623static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3624 struct bpf_insn *insn,
3625 struct bpf_reg_state *dst_reg,
3626 struct bpf_reg_state src_reg)
969bf05e 3627{
638f5b90 3628 struct bpf_reg_state *regs = cur_regs(env);
48461135 3629 u8 opcode = BPF_OP(insn->code);
f1174f77 3630 bool src_known, dst_known;
b03c9f9f
EC
3631 s64 smin_val, smax_val;
3632 u64 umin_val, umax_val;
468f6eaf 3633 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
3634 u32 dst = insn->dst_reg;
3635 int ret;
48461135 3636
b799207e
JH
3637 if (insn_bitness == 32) {
3638 /* Relevant for 32-bit RSH: Information can propagate towards
3639 * LSB, so it isn't sufficient to only truncate the output to
3640 * 32 bits.
3641 */
3642 coerce_reg_to_size(dst_reg, 4);
3643 coerce_reg_to_size(&src_reg, 4);
3644 }
3645
b03c9f9f
EC
3646 smin_val = src_reg.smin_value;
3647 smax_val = src_reg.smax_value;
3648 umin_val = src_reg.umin_value;
3649 umax_val = src_reg.umax_value;
f1174f77
EC
3650 src_known = tnum_is_const(src_reg.var_off);
3651 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3652
6f16101e
DB
3653 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3654 smin_val > smax_val || umin_val > umax_val) {
3655 /* Taint dst register if offset had invalid bounds derived from
3656 * e.g. dead branches.
3657 */
3658 __mark_reg_unknown(dst_reg);
3659 return 0;
3660 }
3661
bb7f0f98
AS
3662 if (!src_known &&
3663 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3664 __mark_reg_unknown(dst_reg);
3665 return 0;
3666 }
3667
48461135
JB
3668 switch (opcode) {
3669 case BPF_ADD:
d3bd7413
DB
3670 ret = sanitize_val_alu(env, insn);
3671 if (ret < 0) {
3672 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3673 return ret;
3674 }
b03c9f9f
EC
3675 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3676 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3677 dst_reg->smin_value = S64_MIN;
3678 dst_reg->smax_value = S64_MAX;
3679 } else {
3680 dst_reg->smin_value += smin_val;
3681 dst_reg->smax_value += smax_val;
3682 }
3683 if (dst_reg->umin_value + umin_val < umin_val ||
3684 dst_reg->umax_value + umax_val < umax_val) {
3685 dst_reg->umin_value = 0;
3686 dst_reg->umax_value = U64_MAX;
3687 } else {
3688 dst_reg->umin_value += umin_val;
3689 dst_reg->umax_value += umax_val;
3690 }
f1174f77 3691 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3692 break;
3693 case BPF_SUB:
d3bd7413
DB
3694 ret = sanitize_val_alu(env, insn);
3695 if (ret < 0) {
3696 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3697 return ret;
3698 }
b03c9f9f
EC
3699 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3700 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3701 /* Overflow possible, we know nothing */
3702 dst_reg->smin_value = S64_MIN;
3703 dst_reg->smax_value = S64_MAX;
3704 } else {
3705 dst_reg->smin_value -= smax_val;
3706 dst_reg->smax_value -= smin_val;
3707 }
3708 if (dst_reg->umin_value < umax_val) {
3709 /* Overflow possible, we know nothing */
3710 dst_reg->umin_value = 0;
3711 dst_reg->umax_value = U64_MAX;
3712 } else {
3713 /* Cannot overflow (as long as bounds are consistent) */
3714 dst_reg->umin_value -= umax_val;
3715 dst_reg->umax_value -= umin_val;
3716 }
f1174f77 3717 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3718 break;
3719 case BPF_MUL:
b03c9f9f
EC
3720 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3721 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3722 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3723 __mark_reg_unbounded(dst_reg);
3724 __update_reg_bounds(dst_reg);
f1174f77
EC
3725 break;
3726 }
b03c9f9f
EC
3727 /* Both values are positive, so we can work with unsigned and
3728 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3729 */
b03c9f9f
EC
3730 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3731 /* Potential overflow, we know nothing */
3732 __mark_reg_unbounded(dst_reg);
3733 /* (except what we can learn from the var_off) */
3734 __update_reg_bounds(dst_reg);
3735 break;
3736 }
3737 dst_reg->umin_value *= umin_val;
3738 dst_reg->umax_value *= umax_val;
3739 if (dst_reg->umax_value > S64_MAX) {
3740 /* Overflow possible, we know nothing */
3741 dst_reg->smin_value = S64_MIN;
3742 dst_reg->smax_value = S64_MAX;
3743 } else {
3744 dst_reg->smin_value = dst_reg->umin_value;
3745 dst_reg->smax_value = dst_reg->umax_value;
3746 }
48461135
JB
3747 break;
3748 case BPF_AND:
f1174f77 3749 if (src_known && dst_known) {
b03c9f9f
EC
3750 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3751 src_reg.var_off.value);
f1174f77
EC
3752 break;
3753 }
b03c9f9f
EC
3754 /* We get our minimum from the var_off, since that's inherently
3755 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3756 */
f1174f77 3757 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3758 dst_reg->umin_value = dst_reg->var_off.value;
3759 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3760 if (dst_reg->smin_value < 0 || smin_val < 0) {
3761 /* Lose signed bounds when ANDing negative numbers,
3762 * ain't nobody got time for that.
3763 */
3764 dst_reg->smin_value = S64_MIN;
3765 dst_reg->smax_value = S64_MAX;
3766 } else {
3767 /* ANDing two positives gives a positive, so safe to
3768 * cast result into s64.
3769 */
3770 dst_reg->smin_value = dst_reg->umin_value;
3771 dst_reg->smax_value = dst_reg->umax_value;
3772 }
3773 /* We may learn something more from the var_off */
3774 __update_reg_bounds(dst_reg);
f1174f77
EC
3775 break;
3776 case BPF_OR:
3777 if (src_known && dst_known) {
b03c9f9f
EC
3778 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3779 src_reg.var_off.value);
f1174f77
EC
3780 break;
3781 }
b03c9f9f
EC
3782 /* We get our maximum from the var_off, and our minimum is the
3783 * maximum of the operands' minima
f1174f77
EC
3784 */
3785 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3786 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3787 dst_reg->umax_value = dst_reg->var_off.value |
3788 dst_reg->var_off.mask;
3789 if (dst_reg->smin_value < 0 || smin_val < 0) {
3790 /* Lose signed bounds when ORing negative numbers,
3791 * ain't nobody got time for that.
3792 */
3793 dst_reg->smin_value = S64_MIN;
3794 dst_reg->smax_value = S64_MAX;
f1174f77 3795 } else {
b03c9f9f
EC
3796 /* ORing two positives gives a positive, so safe to
3797 * cast result into s64.
3798 */
3799 dst_reg->smin_value = dst_reg->umin_value;
3800 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3801 }
b03c9f9f
EC
3802 /* We may learn something more from the var_off */
3803 __update_reg_bounds(dst_reg);
48461135
JB
3804 break;
3805 case BPF_LSH:
468f6eaf
JH
3806 if (umax_val >= insn_bitness) {
3807 /* Shifts greater than 31 or 63 are undefined.
3808 * This includes shifts by a negative number.
b03c9f9f 3809 */
61bd5218 3810 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3811 break;
3812 }
b03c9f9f
EC
3813 /* We lose all sign bit information (except what we can pick
3814 * up from var_off)
48461135 3815 */
b03c9f9f
EC
3816 dst_reg->smin_value = S64_MIN;
3817 dst_reg->smax_value = S64_MAX;
3818 /* If we might shift our top bit out, then we know nothing */
3819 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3820 dst_reg->umin_value = 0;
3821 dst_reg->umax_value = U64_MAX;
d1174416 3822 } else {
b03c9f9f
EC
3823 dst_reg->umin_value <<= umin_val;
3824 dst_reg->umax_value <<= umax_val;
d1174416 3825 }
afbe1a5b 3826 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3827 /* We may learn something more from the var_off */
3828 __update_reg_bounds(dst_reg);
48461135
JB
3829 break;
3830 case BPF_RSH:
468f6eaf
JH
3831 if (umax_val >= insn_bitness) {
3832 /* Shifts greater than 31 or 63 are undefined.
3833 * This includes shifts by a negative number.
b03c9f9f 3834 */
61bd5218 3835 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3836 break;
3837 }
4374f256
EC
3838 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3839 * be negative, then either:
3840 * 1) src_reg might be zero, so the sign bit of the result is
3841 * unknown, so we lose our signed bounds
3842 * 2) it's known negative, thus the unsigned bounds capture the
3843 * signed bounds
3844 * 3) the signed bounds cross zero, so they tell us nothing
3845 * about the result
3846 * If the value in dst_reg is known nonnegative, then again the
3847 * unsigned bounts capture the signed bounds.
3848 * Thus, in all cases it suffices to blow away our signed bounds
3849 * and rely on inferring new ones from the unsigned bounds and
3850 * var_off of the result.
3851 */
3852 dst_reg->smin_value = S64_MIN;
3853 dst_reg->smax_value = S64_MAX;
afbe1a5b 3854 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3855 dst_reg->umin_value >>= umax_val;
3856 dst_reg->umax_value >>= umin_val;
3857 /* We may learn something more from the var_off */
3858 __update_reg_bounds(dst_reg);
48461135 3859 break;
9cbe1f5a
YS
3860 case BPF_ARSH:
3861 if (umax_val >= insn_bitness) {
3862 /* Shifts greater than 31 or 63 are undefined.
3863 * This includes shifts by a negative number.
3864 */
3865 mark_reg_unknown(env, regs, insn->dst_reg);
3866 break;
3867 }
3868
3869 /* Upon reaching here, src_known is true and
3870 * umax_val is equal to umin_val.
3871 */
3872 dst_reg->smin_value >>= umin_val;
3873 dst_reg->smax_value >>= umin_val;
3874 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3875
3876 /* blow away the dst_reg umin_value/umax_value and rely on
3877 * dst_reg var_off to refine the result.
3878 */
3879 dst_reg->umin_value = 0;
3880 dst_reg->umax_value = U64_MAX;
3881 __update_reg_bounds(dst_reg);
3882 break;
48461135 3883 default:
61bd5218 3884 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3885 break;
3886 }
3887
468f6eaf
JH
3888 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3889 /* 32-bit ALU ops are (32,32)->32 */
3890 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
3891 }
3892
b03c9f9f
EC
3893 __reg_deduce_bounds(dst_reg);
3894 __reg_bound_offset(dst_reg);
f1174f77
EC
3895 return 0;
3896}
3897
3898/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3899 * and var_off.
3900 */
3901static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3902 struct bpf_insn *insn)
3903{
f4d7e40a
AS
3904 struct bpf_verifier_state *vstate = env->cur_state;
3905 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3906 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3907 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3908 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3909
3910 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3911 src_reg = NULL;
3912 if (dst_reg->type != SCALAR_VALUE)
3913 ptr_reg = dst_reg;
3914 if (BPF_SRC(insn->code) == BPF_X) {
3915 src_reg = &regs[insn->src_reg];
f1174f77
EC
3916 if (src_reg->type != SCALAR_VALUE) {
3917 if (dst_reg->type != SCALAR_VALUE) {
3918 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3919 * an arbitrary scalar. Disallow all math except
3920 * pointer subtraction
f1174f77 3921 */
dd066823 3922 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3923 mark_reg_unknown(env, regs, insn->dst_reg);
3924 return 0;
f1174f77 3925 }
82abbf8d
AS
3926 verbose(env, "R%d pointer %s pointer prohibited\n",
3927 insn->dst_reg,
3928 bpf_alu_string[opcode >> 4]);
3929 return -EACCES;
f1174f77
EC
3930 } else {
3931 /* scalar += pointer
3932 * This is legal, but we have to reverse our
3933 * src/dest handling in computing the range
3934 */
82abbf8d
AS
3935 return adjust_ptr_min_max_vals(env, insn,
3936 src_reg, dst_reg);
f1174f77
EC
3937 }
3938 } else if (ptr_reg) {
3939 /* pointer += scalar */
82abbf8d
AS
3940 return adjust_ptr_min_max_vals(env, insn,
3941 dst_reg, src_reg);
f1174f77
EC
3942 }
3943 } else {
3944 /* Pretend the src is a reg with a known value, since we only
3945 * need to be able to read from this state.
3946 */
3947 off_reg.type = SCALAR_VALUE;
b03c9f9f 3948 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3949 src_reg = &off_reg;
82abbf8d
AS
3950 if (ptr_reg) /* pointer += K */
3951 return adjust_ptr_min_max_vals(env, insn,
3952 ptr_reg, src_reg);
f1174f77
EC
3953 }
3954
3955 /* Got here implies adding two SCALAR_VALUEs */
3956 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3957 print_verifier_state(env, state);
61bd5218 3958 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3959 return -EINVAL;
3960 }
3961 if (WARN_ON(!src_reg)) {
f4d7e40a 3962 print_verifier_state(env, state);
61bd5218 3963 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3964 return -EINVAL;
3965 }
3966 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3967}
3968
17a52670 3969/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3970static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3971{
638f5b90 3972 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3973 u8 opcode = BPF_OP(insn->code);
3974 int err;
3975
3976 if (opcode == BPF_END || opcode == BPF_NEG) {
3977 if (opcode == BPF_NEG) {
3978 if (BPF_SRC(insn->code) != 0 ||
3979 insn->src_reg != BPF_REG_0 ||
3980 insn->off != 0 || insn->imm != 0) {
61bd5218 3981 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3982 return -EINVAL;
3983 }
3984 } else {
3985 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3986 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3987 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3988 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3989 return -EINVAL;
3990 }
3991 }
3992
3993 /* check src operand */
dc503a8a 3994 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3995 if (err)
3996 return err;
3997
1be7f75d 3998 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3999 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4000 insn->dst_reg);
4001 return -EACCES;
4002 }
4003
17a52670 4004 /* check dest operand */
dc503a8a 4005 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4006 if (err)
4007 return err;
4008
4009 } else if (opcode == BPF_MOV) {
4010
4011 if (BPF_SRC(insn->code) == BPF_X) {
4012 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4013 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4014 return -EINVAL;
4015 }
4016
4017 /* check src operand */
dc503a8a 4018 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4019 if (err)
4020 return err;
4021 } else {
4022 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4023 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4024 return -EINVAL;
4025 }
4026 }
4027
fbeb1603
AF
4028 /* check dest operand, mark as required later */
4029 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4030 if (err)
4031 return err;
4032
4033 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4034 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4035 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4036
17a52670
AS
4037 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4038 /* case: R1 = R2
4039 * copy register state to dest reg
4040 */
e434b8cd
JW
4041 *dst_reg = *src_reg;
4042 dst_reg->live |= REG_LIVE_WRITTEN;
17a52670 4043 } else {
f1174f77 4044 /* R1 = (u32) R2 */
1be7f75d 4045 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4046 verbose(env,
4047 "R%d partial copy of pointer\n",
1be7f75d
AS
4048 insn->src_reg);
4049 return -EACCES;
e434b8cd
JW
4050 } else if (src_reg->type == SCALAR_VALUE) {
4051 *dst_reg = *src_reg;
4052 dst_reg->live |= REG_LIVE_WRITTEN;
4053 } else {
4054 mark_reg_unknown(env, regs,
4055 insn->dst_reg);
1be7f75d 4056 }
e434b8cd 4057 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
4058 }
4059 } else {
4060 /* case: R = imm
4061 * remember the value we stored into this reg
4062 */
fbeb1603
AF
4063 /* clear any state __mark_reg_known doesn't set */
4064 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 4065 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
4066 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4067 __mark_reg_known(regs + insn->dst_reg,
4068 insn->imm);
4069 } else {
4070 __mark_reg_known(regs + insn->dst_reg,
4071 (u32)insn->imm);
4072 }
17a52670
AS
4073 }
4074
4075 } else if (opcode > BPF_END) {
61bd5218 4076 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
4077 return -EINVAL;
4078
4079 } else { /* all other ALU ops: and, sub, xor, add, ... */
4080
17a52670
AS
4081 if (BPF_SRC(insn->code) == BPF_X) {
4082 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4083 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4084 return -EINVAL;
4085 }
4086 /* check src1 operand */
dc503a8a 4087 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4088 if (err)
4089 return err;
4090 } else {
4091 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4092 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
4093 return -EINVAL;
4094 }
4095 }
4096
4097 /* check src2 operand */
dc503a8a 4098 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4099 if (err)
4100 return err;
4101
4102 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4103 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 4104 verbose(env, "div by zero\n");
17a52670
AS
4105 return -EINVAL;
4106 }
4107
229394e8
RV
4108 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4109 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4110 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4111
4112 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 4113 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
4114 return -EINVAL;
4115 }
4116 }
4117
1a0dc1ac 4118 /* check dest operand */
dc503a8a 4119 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
4120 if (err)
4121 return err;
4122
f1174f77 4123 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
4124 }
4125
4126 return 0;
4127}
4128
f4d7e40a 4129static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 4130 struct bpf_reg_state *dst_reg,
f8ddadc4 4131 enum bpf_reg_type type,
fb2a311a 4132 bool range_right_open)
969bf05e 4133{
f4d7e40a 4134 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 4135 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 4136 u16 new_range;
f4d7e40a 4137 int i, j;
2d2be8ca 4138
fb2a311a
DB
4139 if (dst_reg->off < 0 ||
4140 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
4141 /* This doesn't give us any range */
4142 return;
4143
b03c9f9f
EC
4144 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4145 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
4146 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4147 * than pkt_end, but that's because it's also less than pkt.
4148 */
4149 return;
4150
fb2a311a
DB
4151 new_range = dst_reg->off;
4152 if (range_right_open)
4153 new_range--;
4154
4155 /* Examples for register markings:
2d2be8ca 4156 *
fb2a311a 4157 * pkt_data in dst register:
2d2be8ca
DB
4158 *
4159 * r2 = r3;
4160 * r2 += 8;
4161 * if (r2 > pkt_end) goto <handle exception>
4162 * <access okay>
4163 *
b4e432f1
DB
4164 * r2 = r3;
4165 * r2 += 8;
4166 * if (r2 < pkt_end) goto <access okay>
4167 * <handle exception>
4168 *
2d2be8ca
DB
4169 * Where:
4170 * r2 == dst_reg, pkt_end == src_reg
4171 * r2=pkt(id=n,off=8,r=0)
4172 * r3=pkt(id=n,off=0,r=0)
4173 *
fb2a311a 4174 * pkt_data in src register:
2d2be8ca
DB
4175 *
4176 * r2 = r3;
4177 * r2 += 8;
4178 * if (pkt_end >= r2) goto <access okay>
4179 * <handle exception>
4180 *
b4e432f1
DB
4181 * r2 = r3;
4182 * r2 += 8;
4183 * if (pkt_end <= r2) goto <handle exception>
4184 * <access okay>
4185 *
2d2be8ca
DB
4186 * Where:
4187 * pkt_end == dst_reg, r2 == src_reg
4188 * r2=pkt(id=n,off=8,r=0)
4189 * r3=pkt(id=n,off=0,r=0)
4190 *
4191 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
4192 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4193 * and [r3, r3 + 8-1) respectively is safe to access depending on
4194 * the check.
969bf05e 4195 */
2d2be8ca 4196
f1174f77
EC
4197 /* If our ids match, then we must have the same max_value. And we
4198 * don't care about the other reg's fixed offset, since if it's too big
4199 * the range won't allow anything.
4200 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4201 */
969bf05e 4202 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 4203 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 4204 /* keep the maximum range already checked */
fb2a311a 4205 regs[i].range = max(regs[i].range, new_range);
969bf05e 4206
f4d7e40a
AS
4207 for (j = 0; j <= vstate->curframe; j++) {
4208 state = vstate->frame[j];
f3709f69
JS
4209 bpf_for_each_spilled_reg(i, state, reg) {
4210 if (!reg)
f4d7e40a 4211 continue;
f4d7e40a
AS
4212 if (reg->type == type && reg->id == dst_reg->id)
4213 reg->range = max(reg->range, new_range);
4214 }
969bf05e
AS
4215 }
4216}
4217
4f7b3e82
AS
4218/* compute branch direction of the expression "if (reg opcode val) goto target;"
4219 * and return:
4220 * 1 - branch will be taken and "goto target" will be executed
4221 * 0 - branch will not be taken and fall-through to next insn
4222 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4223 */
092ed096
JW
4224static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4225 bool is_jmp32)
4f7b3e82 4226{
092ed096 4227 struct bpf_reg_state reg_lo;
a72dafaf
JW
4228 s64 sval;
4229
4f7b3e82
AS
4230 if (__is_pointer_value(false, reg))
4231 return -1;
4232
092ed096
JW
4233 if (is_jmp32) {
4234 reg_lo = *reg;
4235 reg = &reg_lo;
4236 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4237 * could truncate high bits and update umin/umax according to
4238 * information of low bits.
4239 */
4240 coerce_reg_to_size(reg, 4);
4241 /* smin/smax need special handling. For example, after coerce,
4242 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4243 * used as operand to JMP32. It is a negative number from s32's
4244 * point of view, while it is a positive number when seen as
4245 * s64. The smin/smax are kept as s64, therefore, when used with
4246 * JMP32, they need to be transformed into s32, then sign
4247 * extended back to s64.
4248 *
4249 * Also, smin/smax were copied from umin/umax. If umin/umax has
4250 * different sign bit, then min/max relationship doesn't
4251 * maintain after casting into s32, for this case, set smin/smax
4252 * to safest range.
4253 */
4254 if ((reg->umax_value ^ reg->umin_value) &
4255 (1ULL << 31)) {
4256 reg->smin_value = S32_MIN;
4257 reg->smax_value = S32_MAX;
4258 }
4259 reg->smin_value = (s64)(s32)reg->smin_value;
4260 reg->smax_value = (s64)(s32)reg->smax_value;
4261
4262 val = (u32)val;
4263 sval = (s64)(s32)val;
4264 } else {
4265 sval = (s64)val;
4266 }
a72dafaf 4267
4f7b3e82
AS
4268 switch (opcode) {
4269 case BPF_JEQ:
4270 if (tnum_is_const(reg->var_off))
4271 return !!tnum_equals_const(reg->var_off, val);
4272 break;
4273 case BPF_JNE:
4274 if (tnum_is_const(reg->var_off))
4275 return !tnum_equals_const(reg->var_off, val);
4276 break;
960ea056
JK
4277 case BPF_JSET:
4278 if ((~reg->var_off.mask & reg->var_off.value) & val)
4279 return 1;
4280 if (!((reg->var_off.mask | reg->var_off.value) & val))
4281 return 0;
4282 break;
4f7b3e82
AS
4283 case BPF_JGT:
4284 if (reg->umin_value > val)
4285 return 1;
4286 else if (reg->umax_value <= val)
4287 return 0;
4288 break;
4289 case BPF_JSGT:
a72dafaf 4290 if (reg->smin_value > sval)
4f7b3e82 4291 return 1;
a72dafaf 4292 else if (reg->smax_value < sval)
4f7b3e82
AS
4293 return 0;
4294 break;
4295 case BPF_JLT:
4296 if (reg->umax_value < val)
4297 return 1;
4298 else if (reg->umin_value >= val)
4299 return 0;
4300 break;
4301 case BPF_JSLT:
a72dafaf 4302 if (reg->smax_value < sval)
4f7b3e82 4303 return 1;
a72dafaf 4304 else if (reg->smin_value >= sval)
4f7b3e82
AS
4305 return 0;
4306 break;
4307 case BPF_JGE:
4308 if (reg->umin_value >= val)
4309 return 1;
4310 else if (reg->umax_value < val)
4311 return 0;
4312 break;
4313 case BPF_JSGE:
a72dafaf 4314 if (reg->smin_value >= sval)
4f7b3e82 4315 return 1;
a72dafaf 4316 else if (reg->smax_value < sval)
4f7b3e82
AS
4317 return 0;
4318 break;
4319 case BPF_JLE:
4320 if (reg->umax_value <= val)
4321 return 1;
4322 else if (reg->umin_value > val)
4323 return 0;
4324 break;
4325 case BPF_JSLE:
a72dafaf 4326 if (reg->smax_value <= sval)
4f7b3e82 4327 return 1;
a72dafaf 4328 else if (reg->smin_value > sval)
4f7b3e82
AS
4329 return 0;
4330 break;
4331 }
4332
4333 return -1;
4334}
4335
092ed096
JW
4336/* Generate min value of the high 32-bit from TNUM info. */
4337static u64 gen_hi_min(struct tnum var)
4338{
4339 return var.value & ~0xffffffffULL;
4340}
4341
4342/* Generate max value of the high 32-bit from TNUM info. */
4343static u64 gen_hi_max(struct tnum var)
4344{
4345 return (var.value | var.mask) & ~0xffffffffULL;
4346}
4347
4348/* Return true if VAL is compared with a s64 sign extended from s32, and they
4349 * are with the same signedness.
4350 */
4351static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4352{
4353 return ((s32)sval >= 0 &&
4354 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4355 ((s32)sval < 0 &&
4356 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4357}
4358
48461135
JB
4359/* Adjusts the register min/max values in the case that the dst_reg is the
4360 * variable register that we are working on, and src_reg is a constant or we're
4361 * simply doing a BPF_K check.
f1174f77 4362 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
4363 */
4364static void reg_set_min_max(struct bpf_reg_state *true_reg,
4365 struct bpf_reg_state *false_reg, u64 val,
092ed096 4366 u8 opcode, bool is_jmp32)
48461135 4367{
a72dafaf
JW
4368 s64 sval;
4369
f1174f77
EC
4370 /* If the dst_reg is a pointer, we can't learn anything about its
4371 * variable offset from the compare (unless src_reg were a pointer into
4372 * the same object, but we don't bother with that.
4373 * Since false_reg and true_reg have the same type by construction, we
4374 * only need to check one of them for pointerness.
4375 */
4376 if (__is_pointer_value(false, false_reg))
4377 return;
4cabc5b1 4378
092ed096
JW
4379 val = is_jmp32 ? (u32)val : val;
4380 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4381
48461135
JB
4382 switch (opcode) {
4383 case BPF_JEQ:
48461135 4384 case BPF_JNE:
a72dafaf
JW
4385 {
4386 struct bpf_reg_state *reg =
4387 opcode == BPF_JEQ ? true_reg : false_reg;
4388
4389 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4390 * if it is true we know the value for sure. Likewise for
4391 * BPF_JNE.
48461135 4392 */
092ed096
JW
4393 if (is_jmp32) {
4394 u64 old_v = reg->var_off.value;
4395 u64 hi_mask = ~0xffffffffULL;
4396
4397 reg->var_off.value = (old_v & hi_mask) | val;
4398 reg->var_off.mask &= hi_mask;
4399 } else {
4400 __mark_reg_known(reg, val);
4401 }
48461135 4402 break;
a72dafaf 4403 }
960ea056
JK
4404 case BPF_JSET:
4405 false_reg->var_off = tnum_and(false_reg->var_off,
4406 tnum_const(~val));
4407 if (is_power_of_2(val))
4408 true_reg->var_off = tnum_or(true_reg->var_off,
4409 tnum_const(val));
4410 break;
48461135 4411 case BPF_JGE:
a72dafaf
JW
4412 case BPF_JGT:
4413 {
4414 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4415 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4416
092ed096
JW
4417 if (is_jmp32) {
4418 false_umax += gen_hi_max(false_reg->var_off);
4419 true_umin += gen_hi_min(true_reg->var_off);
4420 }
a72dafaf
JW
4421 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4422 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 4423 break;
a72dafaf 4424 }
48461135 4425 case BPF_JSGE:
a72dafaf
JW
4426 case BPF_JSGT:
4427 {
4428 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4429 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4430
092ed096
JW
4431 /* If the full s64 was not sign-extended from s32 then don't
4432 * deduct further info.
4433 */
4434 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4435 break;
a72dafaf
JW
4436 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4437 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 4438 break;
a72dafaf 4439 }
b4e432f1 4440 case BPF_JLE:
a72dafaf
JW
4441 case BPF_JLT:
4442 {
4443 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4444 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4445
092ed096
JW
4446 if (is_jmp32) {
4447 false_umin += gen_hi_min(false_reg->var_off);
4448 true_umax += gen_hi_max(true_reg->var_off);
4449 }
a72dafaf
JW
4450 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4451 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 4452 break;
a72dafaf 4453 }
b4e432f1 4454 case BPF_JSLE:
a72dafaf
JW
4455 case BPF_JSLT:
4456 {
4457 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4458 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4459
092ed096
JW
4460 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4461 break;
a72dafaf
JW
4462 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4463 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 4464 break;
a72dafaf 4465 }
48461135
JB
4466 default:
4467 break;
4468 }
4469
b03c9f9f
EC
4470 __reg_deduce_bounds(false_reg);
4471 __reg_deduce_bounds(true_reg);
4472 /* We might have learned some bits from the bounds. */
4473 __reg_bound_offset(false_reg);
4474 __reg_bound_offset(true_reg);
4475 /* Intersecting with the old var_off might have improved our bounds
4476 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4477 * then new var_off is (0; 0x7f...fc) which improves our umax.
4478 */
4479 __update_reg_bounds(false_reg);
4480 __update_reg_bounds(true_reg);
48461135
JB
4481}
4482
f1174f77
EC
4483/* Same as above, but for the case that dst_reg holds a constant and src_reg is
4484 * the variable reg.
48461135
JB
4485 */
4486static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4487 struct bpf_reg_state *false_reg, u64 val,
092ed096 4488 u8 opcode, bool is_jmp32)
48461135 4489{
a72dafaf
JW
4490 s64 sval;
4491
f1174f77
EC
4492 if (__is_pointer_value(false, false_reg))
4493 return;
4cabc5b1 4494
092ed096
JW
4495 val = is_jmp32 ? (u32)val : val;
4496 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 4497
48461135
JB
4498 switch (opcode) {
4499 case BPF_JEQ:
48461135 4500 case BPF_JNE:
a72dafaf
JW
4501 {
4502 struct bpf_reg_state *reg =
4503 opcode == BPF_JEQ ? true_reg : false_reg;
4504
092ed096
JW
4505 if (is_jmp32) {
4506 u64 old_v = reg->var_off.value;
4507 u64 hi_mask = ~0xffffffffULL;
4508
4509 reg->var_off.value = (old_v & hi_mask) | val;
4510 reg->var_off.mask &= hi_mask;
4511 } else {
4512 __mark_reg_known(reg, val);
4513 }
48461135 4514 break;
a72dafaf 4515 }
960ea056
JK
4516 case BPF_JSET:
4517 false_reg->var_off = tnum_and(false_reg->var_off,
4518 tnum_const(~val));
4519 if (is_power_of_2(val))
4520 true_reg->var_off = tnum_or(true_reg->var_off,
4521 tnum_const(val));
4522 break;
48461135 4523 case BPF_JGE:
a72dafaf
JW
4524 case BPF_JGT:
4525 {
4526 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4527 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4528
092ed096
JW
4529 if (is_jmp32) {
4530 false_umin += gen_hi_min(false_reg->var_off);
4531 true_umax += gen_hi_max(true_reg->var_off);
4532 }
a72dafaf
JW
4533 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4534 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 4535 break;
a72dafaf 4536 }
48461135 4537 case BPF_JSGE:
a72dafaf
JW
4538 case BPF_JSGT:
4539 {
4540 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4541 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4542
092ed096
JW
4543 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4544 break;
a72dafaf
JW
4545 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4546 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 4547 break;
a72dafaf 4548 }
b4e432f1 4549 case BPF_JLE:
a72dafaf
JW
4550 case BPF_JLT:
4551 {
4552 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4553 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4554
092ed096
JW
4555 if (is_jmp32) {
4556 false_umax += gen_hi_max(false_reg->var_off);
4557 true_umin += gen_hi_min(true_reg->var_off);
4558 }
a72dafaf
JW
4559 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4560 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 4561 break;
a72dafaf 4562 }
b4e432f1 4563 case BPF_JSLE:
a72dafaf
JW
4564 case BPF_JSLT:
4565 {
4566 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4567 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4568
092ed096
JW
4569 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4570 break;
a72dafaf
JW
4571 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4572 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 4573 break;
a72dafaf 4574 }
48461135
JB
4575 default:
4576 break;
4577 }
4578
b03c9f9f
EC
4579 __reg_deduce_bounds(false_reg);
4580 __reg_deduce_bounds(true_reg);
4581 /* We might have learned some bits from the bounds. */
4582 __reg_bound_offset(false_reg);
4583 __reg_bound_offset(true_reg);
4584 /* Intersecting with the old var_off might have improved our bounds
4585 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4586 * then new var_off is (0; 0x7f...fc) which improves our umax.
4587 */
4588 __update_reg_bounds(false_reg);
4589 __update_reg_bounds(true_reg);
f1174f77
EC
4590}
4591
4592/* Regs are known to be equal, so intersect their min/max/var_off */
4593static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4594 struct bpf_reg_state *dst_reg)
4595{
b03c9f9f
EC
4596 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4597 dst_reg->umin_value);
4598 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4599 dst_reg->umax_value);
4600 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4601 dst_reg->smin_value);
4602 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4603 dst_reg->smax_value);
f1174f77
EC
4604 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4605 dst_reg->var_off);
b03c9f9f
EC
4606 /* We might have learned new bounds from the var_off. */
4607 __update_reg_bounds(src_reg);
4608 __update_reg_bounds(dst_reg);
4609 /* We might have learned something about the sign bit. */
4610 __reg_deduce_bounds(src_reg);
4611 __reg_deduce_bounds(dst_reg);
4612 /* We might have learned some bits from the bounds. */
4613 __reg_bound_offset(src_reg);
4614 __reg_bound_offset(dst_reg);
4615 /* Intersecting with the old var_off might have improved our bounds
4616 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4617 * then new var_off is (0; 0x7f...fc) which improves our umax.
4618 */
4619 __update_reg_bounds(src_reg);
4620 __update_reg_bounds(dst_reg);
f1174f77
EC
4621}
4622
4623static void reg_combine_min_max(struct bpf_reg_state *true_src,
4624 struct bpf_reg_state *true_dst,
4625 struct bpf_reg_state *false_src,
4626 struct bpf_reg_state *false_dst,
4627 u8 opcode)
4628{
4629 switch (opcode) {
4630 case BPF_JEQ:
4631 __reg_combine_min_max(true_src, true_dst);
4632 break;
4633 case BPF_JNE:
4634 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 4635 break;
4cabc5b1 4636 }
48461135
JB
4637}
4638
fd978bf7
JS
4639static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4640 struct bpf_reg_state *reg, u32 id,
840b9615 4641 bool is_null)
57a09bf0 4642{
840b9615 4643 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
4644 /* Old offset (both fixed and variable parts) should
4645 * have been known-zero, because we don't allow pointer
4646 * arithmetic on pointers that might be NULL.
4647 */
b03c9f9f
EC
4648 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4649 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 4650 reg->off)) {
b03c9f9f
EC
4651 __mark_reg_known_zero(reg);
4652 reg->off = 0;
f1174f77
EC
4653 }
4654 if (is_null) {
4655 reg->type = SCALAR_VALUE;
840b9615
JS
4656 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4657 if (reg->map_ptr->inner_map_meta) {
4658 reg->type = CONST_PTR_TO_MAP;
4659 reg->map_ptr = reg->map_ptr->inner_map_meta;
4660 } else {
4661 reg->type = PTR_TO_MAP_VALUE;
4662 }
c64b7983
JS
4663 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4664 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
4665 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4666 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
4667 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4668 reg->type = PTR_TO_TCP_SOCK;
56f668df 4669 }
1b986589
MKL
4670 if (is_null) {
4671 /* We don't need id and ref_obj_id from this point
4672 * onwards anymore, thus we should better reset it,
4673 * so that state pruning has chances to take effect.
4674 */
4675 reg->id = 0;
4676 reg->ref_obj_id = 0;
4677 } else if (!reg_may_point_to_spin_lock(reg)) {
4678 /* For not-NULL ptr, reg->ref_obj_id will be reset
4679 * in release_reg_references().
4680 *
4681 * reg->id is still used by spin_lock ptr. Other
4682 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
4683 */
4684 reg->id = 0;
56f668df 4685 }
57a09bf0
TG
4686 }
4687}
4688
4689/* The logic is similar to find_good_pkt_pointers(), both could eventually
4690 * be folded together at some point.
4691 */
840b9615
JS
4692static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4693 bool is_null)
57a09bf0 4694{
f4d7e40a 4695 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 4696 struct bpf_reg_state *reg, *regs = state->regs;
1b986589 4697 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 4698 u32 id = regs[regno].id;
f4d7e40a 4699 int i, j;
57a09bf0 4700
1b986589
MKL
4701 if (ref_obj_id && ref_obj_id == id && is_null)
4702 /* regs[regno] is in the " == NULL" branch.
4703 * No one could have freed the reference state before
4704 * doing the NULL check.
4705 */
4706 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 4707
57a09bf0 4708 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 4709 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 4710
f4d7e40a
AS
4711 for (j = 0; j <= vstate->curframe; j++) {
4712 state = vstate->frame[j];
f3709f69
JS
4713 bpf_for_each_spilled_reg(i, state, reg) {
4714 if (!reg)
f4d7e40a 4715 continue;
fd978bf7 4716 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 4717 }
57a09bf0
TG
4718 }
4719}
4720
5beca081
DB
4721static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4722 struct bpf_reg_state *dst_reg,
4723 struct bpf_reg_state *src_reg,
4724 struct bpf_verifier_state *this_branch,
4725 struct bpf_verifier_state *other_branch)
4726{
4727 if (BPF_SRC(insn->code) != BPF_X)
4728 return false;
4729
092ed096
JW
4730 /* Pointers are always 64-bit. */
4731 if (BPF_CLASS(insn->code) == BPF_JMP32)
4732 return false;
4733
5beca081
DB
4734 switch (BPF_OP(insn->code)) {
4735 case BPF_JGT:
4736 if ((dst_reg->type == PTR_TO_PACKET &&
4737 src_reg->type == PTR_TO_PACKET_END) ||
4738 (dst_reg->type == PTR_TO_PACKET_META &&
4739 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4740 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4741 find_good_pkt_pointers(this_branch, dst_reg,
4742 dst_reg->type, false);
4743 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4744 src_reg->type == PTR_TO_PACKET) ||
4745 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4746 src_reg->type == PTR_TO_PACKET_META)) {
4747 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4748 find_good_pkt_pointers(other_branch, src_reg,
4749 src_reg->type, true);
4750 } else {
4751 return false;
4752 }
4753 break;
4754 case BPF_JLT:
4755 if ((dst_reg->type == PTR_TO_PACKET &&
4756 src_reg->type == PTR_TO_PACKET_END) ||
4757 (dst_reg->type == PTR_TO_PACKET_META &&
4758 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4759 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4760 find_good_pkt_pointers(other_branch, dst_reg,
4761 dst_reg->type, true);
4762 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4763 src_reg->type == PTR_TO_PACKET) ||
4764 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4765 src_reg->type == PTR_TO_PACKET_META)) {
4766 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4767 find_good_pkt_pointers(this_branch, src_reg,
4768 src_reg->type, false);
4769 } else {
4770 return false;
4771 }
4772 break;
4773 case BPF_JGE:
4774 if ((dst_reg->type == PTR_TO_PACKET &&
4775 src_reg->type == PTR_TO_PACKET_END) ||
4776 (dst_reg->type == PTR_TO_PACKET_META &&
4777 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4778 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4779 find_good_pkt_pointers(this_branch, dst_reg,
4780 dst_reg->type, true);
4781 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4782 src_reg->type == PTR_TO_PACKET) ||
4783 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4784 src_reg->type == PTR_TO_PACKET_META)) {
4785 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4786 find_good_pkt_pointers(other_branch, src_reg,
4787 src_reg->type, false);
4788 } else {
4789 return false;
4790 }
4791 break;
4792 case BPF_JLE:
4793 if ((dst_reg->type == PTR_TO_PACKET &&
4794 src_reg->type == PTR_TO_PACKET_END) ||
4795 (dst_reg->type == PTR_TO_PACKET_META &&
4796 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4797 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4798 find_good_pkt_pointers(other_branch, dst_reg,
4799 dst_reg->type, false);
4800 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4801 src_reg->type == PTR_TO_PACKET) ||
4802 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4803 src_reg->type == PTR_TO_PACKET_META)) {
4804 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4805 find_good_pkt_pointers(this_branch, src_reg,
4806 src_reg->type, true);
4807 } else {
4808 return false;
4809 }
4810 break;
4811 default:
4812 return false;
4813 }
4814
4815 return true;
4816}
4817
58e2af8b 4818static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4819 struct bpf_insn *insn, int *insn_idx)
4820{
f4d7e40a
AS
4821 struct bpf_verifier_state *this_branch = env->cur_state;
4822 struct bpf_verifier_state *other_branch;
4823 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4824 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670 4825 u8 opcode = BPF_OP(insn->code);
092ed096 4826 bool is_jmp32;
17a52670
AS
4827 int err;
4828
092ed096
JW
4829 /* Only conditional jumps are expected to reach here. */
4830 if (opcode == BPF_JA || opcode > BPF_JSLE) {
4831 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
4832 return -EINVAL;
4833 }
4834
4835 if (BPF_SRC(insn->code) == BPF_X) {
4836 if (insn->imm != 0) {
092ed096 4837 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4838 return -EINVAL;
4839 }
4840
4841 /* check src1 operand */
dc503a8a 4842 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4843 if (err)
4844 return err;
1be7f75d
AS
4845
4846 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4847 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4848 insn->src_reg);
4849 return -EACCES;
4850 }
17a52670
AS
4851 } else {
4852 if (insn->src_reg != BPF_REG_0) {
092ed096 4853 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
4854 return -EINVAL;
4855 }
4856 }
4857
4858 /* check src2 operand */
dc503a8a 4859 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4860 if (err)
4861 return err;
4862
1a0dc1ac 4863 dst_reg = &regs[insn->dst_reg];
092ed096 4864 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 4865
4f7b3e82 4866 if (BPF_SRC(insn->code) == BPF_K) {
092ed096
JW
4867 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4868 is_jmp32);
4f7b3e82
AS
4869
4870 if (pred == 1) {
4871 /* only follow the goto, ignore fall-through */
17a52670
AS
4872 *insn_idx += insn->off;
4873 return 0;
4f7b3e82
AS
4874 } else if (pred == 0) {
4875 /* only follow fall-through branch, since
17a52670
AS
4876 * that's where the program will go
4877 */
4878 return 0;
4879 }
4880 }
4881
979d63d5
DB
4882 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4883 false);
17a52670
AS
4884 if (!other_branch)
4885 return -EFAULT;
f4d7e40a 4886 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4887
48461135
JB
4888 /* detect if we are comparing against a constant value so we can adjust
4889 * our min/max values for our dst register.
f1174f77
EC
4890 * this is only legit if both are scalars (or pointers to the same
4891 * object, I suppose, but we don't support that right now), because
4892 * otherwise the different base pointers mean the offsets aren't
4893 * comparable.
48461135
JB
4894 */
4895 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
4896 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4897 struct bpf_reg_state lo_reg0 = *dst_reg;
4898 struct bpf_reg_state lo_reg1 = *src_reg;
4899 struct bpf_reg_state *src_lo, *dst_lo;
4900
4901 dst_lo = &lo_reg0;
4902 src_lo = &lo_reg1;
4903 coerce_reg_to_size(dst_lo, 4);
4904 coerce_reg_to_size(src_lo, 4);
4905
f1174f77 4906 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
4907 src_reg->type == SCALAR_VALUE) {
4908 if (tnum_is_const(src_reg->var_off) ||
4909 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 4910 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
4911 dst_reg,
4912 is_jmp32
4913 ? src_lo->var_off.value
4914 : src_reg->var_off.value,
4915 opcode, is_jmp32);
4916 else if (tnum_is_const(dst_reg->var_off) ||
4917 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 4918 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
4919 src_reg,
4920 is_jmp32
4921 ? dst_lo->var_off.value
4922 : dst_reg->var_off.value,
4923 opcode, is_jmp32);
4924 else if (!is_jmp32 &&
4925 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 4926 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4927 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4928 &other_branch_regs[insn->dst_reg],
092ed096 4929 src_reg, dst_reg, opcode);
f1174f77
EC
4930 }
4931 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4932 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 4933 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
4934 }
4935
092ed096
JW
4936 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4937 * NOTE: these optimizations below are related with pointer comparison
4938 * which will never be JMP32.
4939 */
4940 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4941 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4942 reg_type_may_be_null(dst_reg->type)) {
4943 /* Mark all identical registers in each branch as either
57a09bf0
TG
4944 * safe or unknown depending R == 0 or R != 0 conditional.
4945 */
840b9615
JS
4946 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4947 opcode == BPF_JNE);
4948 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4949 opcode == BPF_JEQ);
5beca081
DB
4950 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4951 this_branch, other_branch) &&
4952 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4953 verbose(env, "R%d pointer comparison prohibited\n",
4954 insn->dst_reg);
1be7f75d 4955 return -EACCES;
17a52670 4956 }
61bd5218 4957 if (env->log.level)
f4d7e40a 4958 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4959 return 0;
4960}
4961
0246e64d
AS
4962/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4963static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4964{
4965 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4966
4967 return (struct bpf_map *) (unsigned long) imm64;
4968}
4969
17a52670 4970/* verify BPF_LD_IMM64 instruction */
58e2af8b 4971static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4972{
638f5b90 4973 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4974 int err;
4975
4976 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4977 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4978 return -EINVAL;
4979 }
4980 if (insn->off != 0) {
61bd5218 4981 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4982 return -EINVAL;
4983 }
4984
dc503a8a 4985 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4986 if (err)
4987 return err;
4988
6b173873 4989 if (insn->src_reg == 0) {
6b173873
JK
4990 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4991
f1174f77 4992 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4993 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4994 return 0;
6b173873 4995 }
17a52670
AS
4996
4997 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4998 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4999
5000 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5001 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
5002 return 0;
5003}
5004
96be4325
DB
5005static bool may_access_skb(enum bpf_prog_type type)
5006{
5007 switch (type) {
5008 case BPF_PROG_TYPE_SOCKET_FILTER:
5009 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5010 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5011 return true;
5012 default:
5013 return false;
5014 }
5015}
5016
ddd872bc
AS
5017/* verify safety of LD_ABS|LD_IND instructions:
5018 * - they can only appear in the programs where ctx == skb
5019 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5020 * preserve R6-R9, and store return value into R0
5021 *
5022 * Implicit input:
5023 * ctx == skb == R6 == CTX
5024 *
5025 * Explicit input:
5026 * SRC == any register
5027 * IMM == 32-bit immediate
5028 *
5029 * Output:
5030 * R0 - 8/16/32-bit skb data converted to cpu endianness
5031 */
58e2af8b 5032static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 5033{
638f5b90 5034 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 5035 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
5036 int i, err;
5037
24701ece 5038 if (!may_access_skb(env->prog->type)) {
61bd5218 5039 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
5040 return -EINVAL;
5041 }
5042
e0cea7ce
DB
5043 if (!env->ops->gen_ld_abs) {
5044 verbose(env, "bpf verifier is misconfigured\n");
5045 return -EINVAL;
5046 }
5047
f910cefa 5048 if (env->subprog_cnt > 1) {
f4d7e40a
AS
5049 /* when program has LD_ABS insn JITs and interpreter assume
5050 * that r1 == ctx == skb which is not the case for callees
5051 * that can have arbitrary arguments. It's problematic
5052 * for main prog as well since JITs would need to analyze
5053 * all functions in order to make proper register save/restore
5054 * decisions in the main prog. Hence disallow LD_ABS with calls
5055 */
5056 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5057 return -EINVAL;
5058 }
5059
ddd872bc 5060 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 5061 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 5062 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 5063 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
5064 return -EINVAL;
5065 }
5066
5067 /* check whether implicit source operand (register R6) is readable */
dc503a8a 5068 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
5069 if (err)
5070 return err;
5071
fd978bf7
JS
5072 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5073 * gen_ld_abs() may terminate the program at runtime, leading to
5074 * reference leak.
5075 */
5076 err = check_reference_leak(env);
5077 if (err) {
5078 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5079 return err;
5080 }
5081
d83525ca
AS
5082 if (env->cur_state->active_spin_lock) {
5083 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5084 return -EINVAL;
5085 }
5086
ddd872bc 5087 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
5088 verbose(env,
5089 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
5090 return -EINVAL;
5091 }
5092
5093 if (mode == BPF_IND) {
5094 /* check explicit source operand */
dc503a8a 5095 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
5096 if (err)
5097 return err;
5098 }
5099
5100 /* reset caller saved regs to unreadable */
dc503a8a 5101 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 5102 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
5103 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5104 }
ddd872bc
AS
5105
5106 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
5107 * the value fetched from the packet.
5108 * Already marked as written above.
ddd872bc 5109 */
61bd5218 5110 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
5111 return 0;
5112}
5113
390ee7e2
AS
5114static int check_return_code(struct bpf_verifier_env *env)
5115{
5116 struct bpf_reg_state *reg;
5117 struct tnum range = tnum_range(0, 1);
5118
5119 switch (env->prog->type) {
5120 case BPF_PROG_TYPE_CGROUP_SKB:
5121 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 5122 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 5123 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 5124 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
5125 break;
5126 default:
5127 return 0;
5128 }
5129
638f5b90 5130 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 5131 if (reg->type != SCALAR_VALUE) {
61bd5218 5132 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
5133 reg_type_str[reg->type]);
5134 return -EINVAL;
5135 }
5136
5137 if (!tnum_in(range, reg->var_off)) {
61bd5218 5138 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
5139 if (!tnum_is_unknown(reg->var_off)) {
5140 char tn_buf[48];
5141
5142 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 5143 verbose(env, "has value %s", tn_buf);
390ee7e2 5144 } else {
61bd5218 5145 verbose(env, "has unknown scalar value");
390ee7e2 5146 }
61bd5218 5147 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
5148 return -EINVAL;
5149 }
5150 return 0;
5151}
5152
475fb78f
AS
5153/* non-recursive DFS pseudo code
5154 * 1 procedure DFS-iterative(G,v):
5155 * 2 label v as discovered
5156 * 3 let S be a stack
5157 * 4 S.push(v)
5158 * 5 while S is not empty
5159 * 6 t <- S.pop()
5160 * 7 if t is what we're looking for:
5161 * 8 return t
5162 * 9 for all edges e in G.adjacentEdges(t) do
5163 * 10 if edge e is already labelled
5164 * 11 continue with the next edge
5165 * 12 w <- G.adjacentVertex(t,e)
5166 * 13 if vertex w is not discovered and not explored
5167 * 14 label e as tree-edge
5168 * 15 label w as discovered
5169 * 16 S.push(w)
5170 * 17 continue at 5
5171 * 18 else if vertex w is discovered
5172 * 19 label e as back-edge
5173 * 20 else
5174 * 21 // vertex w is explored
5175 * 22 label e as forward- or cross-edge
5176 * 23 label t as explored
5177 * 24 S.pop()
5178 *
5179 * convention:
5180 * 0x10 - discovered
5181 * 0x11 - discovered and fall-through edge labelled
5182 * 0x12 - discovered and fall-through and branch edges labelled
5183 * 0x20 - explored
5184 */
5185
5186enum {
5187 DISCOVERED = 0x10,
5188 EXPLORED = 0x20,
5189 FALLTHROUGH = 1,
5190 BRANCH = 2,
5191};
5192
58e2af8b 5193#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 5194
475fb78f
AS
5195static int *insn_stack; /* stack of insns to process */
5196static int cur_stack; /* current stack index */
5197static int *insn_state;
5198
5199/* t, w, e - match pseudo-code above:
5200 * t - index of current instruction
5201 * w - next instruction
5202 * e - edge
5203 */
58e2af8b 5204static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
5205{
5206 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5207 return 0;
5208
5209 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5210 return 0;
5211
5212 if (w < 0 || w >= env->prog->len) {
d9762e84 5213 verbose_linfo(env, t, "%d: ", t);
61bd5218 5214 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
5215 return -EINVAL;
5216 }
5217
f1bca824
AS
5218 if (e == BRANCH)
5219 /* mark branch target for state pruning */
5220 env->explored_states[w] = STATE_LIST_MARK;
5221
475fb78f
AS
5222 if (insn_state[w] == 0) {
5223 /* tree-edge */
5224 insn_state[t] = DISCOVERED | e;
5225 insn_state[w] = DISCOVERED;
5226 if (cur_stack >= env->prog->len)
5227 return -E2BIG;
5228 insn_stack[cur_stack++] = w;
5229 return 1;
5230 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
d9762e84
MKL
5231 verbose_linfo(env, t, "%d: ", t);
5232 verbose_linfo(env, w, "%d: ", w);
61bd5218 5233 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
5234 return -EINVAL;
5235 } else if (insn_state[w] == EXPLORED) {
5236 /* forward- or cross-edge */
5237 insn_state[t] = DISCOVERED | e;
5238 } else {
61bd5218 5239 verbose(env, "insn state internal bug\n");
475fb78f
AS
5240 return -EFAULT;
5241 }
5242 return 0;
5243}
5244
5245/* non-recursive depth-first-search to detect loops in BPF program
5246 * loop == back-edge in directed graph
5247 */
58e2af8b 5248static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
5249{
5250 struct bpf_insn *insns = env->prog->insnsi;
5251 int insn_cnt = env->prog->len;
5252 int ret = 0;
5253 int i, t;
5254
5255 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5256 if (!insn_state)
5257 return -ENOMEM;
5258
5259 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5260 if (!insn_stack) {
5261 kfree(insn_state);
5262 return -ENOMEM;
5263 }
5264
5265 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5266 insn_stack[0] = 0; /* 0 is the first instruction */
5267 cur_stack = 1;
5268
5269peek_stack:
5270 if (cur_stack == 0)
5271 goto check_state;
5272 t = insn_stack[cur_stack - 1];
5273
092ed096
JW
5274 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5275 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
5276 u8 opcode = BPF_OP(insns[t].code);
5277
5278 if (opcode == BPF_EXIT) {
5279 goto mark_explored;
5280 } else if (opcode == BPF_CALL) {
5281 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5282 if (ret == 1)
5283 goto peek_stack;
5284 else if (ret < 0)
5285 goto err_free;
07016151
DB
5286 if (t + 1 < insn_cnt)
5287 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
5288 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5289 env->explored_states[t] = STATE_LIST_MARK;
5290 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5291 if (ret == 1)
5292 goto peek_stack;
5293 else if (ret < 0)
5294 goto err_free;
5295 }
475fb78f
AS
5296 } else if (opcode == BPF_JA) {
5297 if (BPF_SRC(insns[t].code) != BPF_K) {
5298 ret = -EINVAL;
5299 goto err_free;
5300 }
5301 /* unconditional jump with single edge */
5302 ret = push_insn(t, t + insns[t].off + 1,
5303 FALLTHROUGH, env);
5304 if (ret == 1)
5305 goto peek_stack;
5306 else if (ret < 0)
5307 goto err_free;
f1bca824
AS
5308 /* tell verifier to check for equivalent states
5309 * after every call and jump
5310 */
c3de6317
AS
5311 if (t + 1 < insn_cnt)
5312 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
5313 } else {
5314 /* conditional jump with two edges */
3c2ce60b 5315 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
5316 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5317 if (ret == 1)
5318 goto peek_stack;
5319 else if (ret < 0)
5320 goto err_free;
5321
5322 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5323 if (ret == 1)
5324 goto peek_stack;
5325 else if (ret < 0)
5326 goto err_free;
5327 }
5328 } else {
5329 /* all other non-branch instructions with single
5330 * fall-through edge
5331 */
5332 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5333 if (ret == 1)
5334 goto peek_stack;
5335 else if (ret < 0)
5336 goto err_free;
5337 }
5338
5339mark_explored:
5340 insn_state[t] = EXPLORED;
5341 if (cur_stack-- <= 0) {
61bd5218 5342 verbose(env, "pop stack internal bug\n");
475fb78f
AS
5343 ret = -EFAULT;
5344 goto err_free;
5345 }
5346 goto peek_stack;
5347
5348check_state:
5349 for (i = 0; i < insn_cnt; i++) {
5350 if (insn_state[i] != EXPLORED) {
61bd5218 5351 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
5352 ret = -EINVAL;
5353 goto err_free;
5354 }
5355 }
5356 ret = 0; /* cfg looks good */
5357
5358err_free:
5359 kfree(insn_state);
5360 kfree(insn_stack);
5361 return ret;
5362}
5363
838e9690
YS
5364/* The minimum supported BTF func info size */
5365#define MIN_BPF_FUNCINFO_SIZE 8
5366#define MAX_FUNCINFO_REC_SIZE 252
5367
c454a46b
MKL
5368static int check_btf_func(struct bpf_verifier_env *env,
5369 const union bpf_attr *attr,
5370 union bpf_attr __user *uattr)
838e9690 5371{
d0b2818e 5372 u32 i, nfuncs, urec_size, min_size;
838e9690 5373 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 5374 struct bpf_func_info *krecord;
838e9690 5375 const struct btf_type *type;
c454a46b
MKL
5376 struct bpf_prog *prog;
5377 const struct btf *btf;
838e9690 5378 void __user *urecord;
d0b2818e 5379 u32 prev_offset = 0;
838e9690
YS
5380 int ret = 0;
5381
5382 nfuncs = attr->func_info_cnt;
5383 if (!nfuncs)
5384 return 0;
5385
5386 if (nfuncs != env->subprog_cnt) {
5387 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5388 return -EINVAL;
5389 }
5390
5391 urec_size = attr->func_info_rec_size;
5392 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5393 urec_size > MAX_FUNCINFO_REC_SIZE ||
5394 urec_size % sizeof(u32)) {
5395 verbose(env, "invalid func info rec size %u\n", urec_size);
5396 return -EINVAL;
5397 }
5398
c454a46b
MKL
5399 prog = env->prog;
5400 btf = prog->aux->btf;
838e9690
YS
5401
5402 urecord = u64_to_user_ptr(attr->func_info);
5403 min_size = min_t(u32, krec_size, urec_size);
5404
ba64e7d8 5405 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
5406 if (!krecord)
5407 return -ENOMEM;
ba64e7d8 5408
838e9690
YS
5409 for (i = 0; i < nfuncs; i++) {
5410 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5411 if (ret) {
5412 if (ret == -E2BIG) {
5413 verbose(env, "nonzero tailing record in func info");
5414 /* set the size kernel expects so loader can zero
5415 * out the rest of the record.
5416 */
5417 if (put_user(min_size, &uattr->func_info_rec_size))
5418 ret = -EFAULT;
5419 }
c454a46b 5420 goto err_free;
838e9690
YS
5421 }
5422
ba64e7d8 5423 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 5424 ret = -EFAULT;
c454a46b 5425 goto err_free;
838e9690
YS
5426 }
5427
d30d42e0 5428 /* check insn_off */
838e9690 5429 if (i == 0) {
d30d42e0 5430 if (krecord[i].insn_off) {
838e9690 5431 verbose(env,
d30d42e0
MKL
5432 "nonzero insn_off %u for the first func info record",
5433 krecord[i].insn_off);
838e9690 5434 ret = -EINVAL;
c454a46b 5435 goto err_free;
838e9690 5436 }
d30d42e0 5437 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
5438 verbose(env,
5439 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 5440 krecord[i].insn_off, prev_offset);
838e9690 5441 ret = -EINVAL;
c454a46b 5442 goto err_free;
838e9690
YS
5443 }
5444
d30d42e0 5445 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
5446 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5447 ret = -EINVAL;
c454a46b 5448 goto err_free;
838e9690
YS
5449 }
5450
5451 /* check type_id */
ba64e7d8 5452 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
5453 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5454 verbose(env, "invalid type id %d in func info",
ba64e7d8 5455 krecord[i].type_id);
838e9690 5456 ret = -EINVAL;
c454a46b 5457 goto err_free;
838e9690
YS
5458 }
5459
d30d42e0 5460 prev_offset = krecord[i].insn_off;
838e9690
YS
5461 urecord += urec_size;
5462 }
5463
ba64e7d8
YS
5464 prog->aux->func_info = krecord;
5465 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
5466 return 0;
5467
c454a46b 5468err_free:
ba64e7d8 5469 kvfree(krecord);
838e9690
YS
5470 return ret;
5471}
5472
ba64e7d8
YS
5473static void adjust_btf_func(struct bpf_verifier_env *env)
5474{
5475 int i;
5476
5477 if (!env->prog->aux->func_info)
5478 return;
5479
5480 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 5481 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
5482}
5483
c454a46b
MKL
5484#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5485 sizeof(((struct bpf_line_info *)(0))->line_col))
5486#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5487
5488static int check_btf_line(struct bpf_verifier_env *env,
5489 const union bpf_attr *attr,
5490 union bpf_attr __user *uattr)
5491{
5492 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5493 struct bpf_subprog_info *sub;
5494 struct bpf_line_info *linfo;
5495 struct bpf_prog *prog;
5496 const struct btf *btf;
5497 void __user *ulinfo;
5498 int err;
5499
5500 nr_linfo = attr->line_info_cnt;
5501 if (!nr_linfo)
5502 return 0;
5503
5504 rec_size = attr->line_info_rec_size;
5505 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5506 rec_size > MAX_LINEINFO_REC_SIZE ||
5507 rec_size & (sizeof(u32) - 1))
5508 return -EINVAL;
5509
5510 /* Need to zero it in case the userspace may
5511 * pass in a smaller bpf_line_info object.
5512 */
5513 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5514 GFP_KERNEL | __GFP_NOWARN);
5515 if (!linfo)
5516 return -ENOMEM;
5517
5518 prog = env->prog;
5519 btf = prog->aux->btf;
5520
5521 s = 0;
5522 sub = env->subprog_info;
5523 ulinfo = u64_to_user_ptr(attr->line_info);
5524 expected_size = sizeof(struct bpf_line_info);
5525 ncopy = min_t(u32, expected_size, rec_size);
5526 for (i = 0; i < nr_linfo; i++) {
5527 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5528 if (err) {
5529 if (err == -E2BIG) {
5530 verbose(env, "nonzero tailing record in line_info");
5531 if (put_user(expected_size,
5532 &uattr->line_info_rec_size))
5533 err = -EFAULT;
5534 }
5535 goto err_free;
5536 }
5537
5538 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5539 err = -EFAULT;
5540 goto err_free;
5541 }
5542
5543 /*
5544 * Check insn_off to ensure
5545 * 1) strictly increasing AND
5546 * 2) bounded by prog->len
5547 *
5548 * The linfo[0].insn_off == 0 check logically falls into
5549 * the later "missing bpf_line_info for func..." case
5550 * because the first linfo[0].insn_off must be the
5551 * first sub also and the first sub must have
5552 * subprog_info[0].start == 0.
5553 */
5554 if ((i && linfo[i].insn_off <= prev_offset) ||
5555 linfo[i].insn_off >= prog->len) {
5556 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5557 i, linfo[i].insn_off, prev_offset,
5558 prog->len);
5559 err = -EINVAL;
5560 goto err_free;
5561 }
5562
fdbaa0be
MKL
5563 if (!prog->insnsi[linfo[i].insn_off].code) {
5564 verbose(env,
5565 "Invalid insn code at line_info[%u].insn_off\n",
5566 i);
5567 err = -EINVAL;
5568 goto err_free;
5569 }
5570
23127b33
MKL
5571 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5572 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
5573 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5574 err = -EINVAL;
5575 goto err_free;
5576 }
5577
5578 if (s != env->subprog_cnt) {
5579 if (linfo[i].insn_off == sub[s].start) {
5580 sub[s].linfo_idx = i;
5581 s++;
5582 } else if (sub[s].start < linfo[i].insn_off) {
5583 verbose(env, "missing bpf_line_info for func#%u\n", s);
5584 err = -EINVAL;
5585 goto err_free;
5586 }
5587 }
5588
5589 prev_offset = linfo[i].insn_off;
5590 ulinfo += rec_size;
5591 }
5592
5593 if (s != env->subprog_cnt) {
5594 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5595 env->subprog_cnt - s, s);
5596 err = -EINVAL;
5597 goto err_free;
5598 }
5599
5600 prog->aux->linfo = linfo;
5601 prog->aux->nr_linfo = nr_linfo;
5602
5603 return 0;
5604
5605err_free:
5606 kvfree(linfo);
5607 return err;
5608}
5609
5610static int check_btf_info(struct bpf_verifier_env *env,
5611 const union bpf_attr *attr,
5612 union bpf_attr __user *uattr)
5613{
5614 struct btf *btf;
5615 int err;
5616
5617 if (!attr->func_info_cnt && !attr->line_info_cnt)
5618 return 0;
5619
5620 btf = btf_get_by_fd(attr->prog_btf_fd);
5621 if (IS_ERR(btf))
5622 return PTR_ERR(btf);
5623 env->prog->aux->btf = btf;
5624
5625 err = check_btf_func(env, attr, uattr);
5626 if (err)
5627 return err;
5628
5629 err = check_btf_line(env, attr, uattr);
5630 if (err)
5631 return err;
5632
5633 return 0;
ba64e7d8
YS
5634}
5635
f1174f77
EC
5636/* check %cur's range satisfies %old's */
5637static bool range_within(struct bpf_reg_state *old,
5638 struct bpf_reg_state *cur)
5639{
b03c9f9f
EC
5640 return old->umin_value <= cur->umin_value &&
5641 old->umax_value >= cur->umax_value &&
5642 old->smin_value <= cur->smin_value &&
5643 old->smax_value >= cur->smax_value;
f1174f77
EC
5644}
5645
5646/* Maximum number of register states that can exist at once */
5647#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5648struct idpair {
5649 u32 old;
5650 u32 cur;
5651};
5652
5653/* If in the old state two registers had the same id, then they need to have
5654 * the same id in the new state as well. But that id could be different from
5655 * the old state, so we need to track the mapping from old to new ids.
5656 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5657 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5658 * regs with a different old id could still have new id 9, we don't care about
5659 * that.
5660 * So we look through our idmap to see if this old id has been seen before. If
5661 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 5662 */
f1174f77 5663static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 5664{
f1174f77 5665 unsigned int i;
969bf05e 5666
f1174f77
EC
5667 for (i = 0; i < ID_MAP_SIZE; i++) {
5668 if (!idmap[i].old) {
5669 /* Reached an empty slot; haven't seen this id before */
5670 idmap[i].old = old_id;
5671 idmap[i].cur = cur_id;
5672 return true;
5673 }
5674 if (idmap[i].old == old_id)
5675 return idmap[i].cur == cur_id;
5676 }
5677 /* We ran out of idmap slots, which should be impossible */
5678 WARN_ON_ONCE(1);
5679 return false;
5680}
5681
9242b5f5
AS
5682static void clean_func_state(struct bpf_verifier_env *env,
5683 struct bpf_func_state *st)
5684{
5685 enum bpf_reg_liveness live;
5686 int i, j;
5687
5688 for (i = 0; i < BPF_REG_FP; i++) {
5689 live = st->regs[i].live;
5690 /* liveness must not touch this register anymore */
5691 st->regs[i].live |= REG_LIVE_DONE;
5692 if (!(live & REG_LIVE_READ))
5693 /* since the register is unused, clear its state
5694 * to make further comparison simpler
5695 */
5696 __mark_reg_not_init(&st->regs[i]);
5697 }
5698
5699 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5700 live = st->stack[i].spilled_ptr.live;
5701 /* liveness must not touch this stack slot anymore */
5702 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5703 if (!(live & REG_LIVE_READ)) {
5704 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5705 for (j = 0; j < BPF_REG_SIZE; j++)
5706 st->stack[i].slot_type[j] = STACK_INVALID;
5707 }
5708 }
5709}
5710
5711static void clean_verifier_state(struct bpf_verifier_env *env,
5712 struct bpf_verifier_state *st)
5713{
5714 int i;
5715
5716 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5717 /* all regs in this state in all frames were already marked */
5718 return;
5719
5720 for (i = 0; i <= st->curframe; i++)
5721 clean_func_state(env, st->frame[i]);
5722}
5723
5724/* the parentage chains form a tree.
5725 * the verifier states are added to state lists at given insn and
5726 * pushed into state stack for future exploration.
5727 * when the verifier reaches bpf_exit insn some of the verifer states
5728 * stored in the state lists have their final liveness state already,
5729 * but a lot of states will get revised from liveness point of view when
5730 * the verifier explores other branches.
5731 * Example:
5732 * 1: r0 = 1
5733 * 2: if r1 == 100 goto pc+1
5734 * 3: r0 = 2
5735 * 4: exit
5736 * when the verifier reaches exit insn the register r0 in the state list of
5737 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5738 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5739 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5740 *
5741 * Since the verifier pushes the branch states as it sees them while exploring
5742 * the program the condition of walking the branch instruction for the second
5743 * time means that all states below this branch were already explored and
5744 * their final liveness markes are already propagated.
5745 * Hence when the verifier completes the search of state list in is_state_visited()
5746 * we can call this clean_live_states() function to mark all liveness states
5747 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5748 * will not be used.
5749 * This function also clears the registers and stack for states that !READ
5750 * to simplify state merging.
5751 *
5752 * Important note here that walking the same branch instruction in the callee
5753 * doesn't meant that the states are DONE. The verifier has to compare
5754 * the callsites
5755 */
5756static void clean_live_states(struct bpf_verifier_env *env, int insn,
5757 struct bpf_verifier_state *cur)
5758{
5759 struct bpf_verifier_state_list *sl;
5760 int i;
5761
5762 sl = env->explored_states[insn];
5763 if (!sl)
5764 return;
5765
5766 while (sl != STATE_LIST_MARK) {
5767 if (sl->state.curframe != cur->curframe)
5768 goto next;
5769 for (i = 0; i <= cur->curframe; i++)
5770 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5771 goto next;
5772 clean_verifier_state(env, &sl->state);
5773next:
5774 sl = sl->next;
5775 }
5776}
5777
f1174f77 5778/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
5779static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5780 struct idpair *idmap)
f1174f77 5781{
f4d7e40a
AS
5782 bool equal;
5783
dc503a8a
EC
5784 if (!(rold->live & REG_LIVE_READ))
5785 /* explored state didn't use this */
5786 return true;
5787
679c782d 5788 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
5789
5790 if (rold->type == PTR_TO_STACK)
5791 /* two stack pointers are equal only if they're pointing to
5792 * the same stack frame, since fp-8 in foo != fp-8 in bar
5793 */
5794 return equal && rold->frameno == rcur->frameno;
5795
5796 if (equal)
969bf05e
AS
5797 return true;
5798
f1174f77
EC
5799 if (rold->type == NOT_INIT)
5800 /* explored state can't have used this */
969bf05e 5801 return true;
f1174f77
EC
5802 if (rcur->type == NOT_INIT)
5803 return false;
5804 switch (rold->type) {
5805 case SCALAR_VALUE:
5806 if (rcur->type == SCALAR_VALUE) {
5807 /* new val must satisfy old val knowledge */
5808 return range_within(rold, rcur) &&
5809 tnum_in(rold->var_off, rcur->var_off);
5810 } else {
179d1c56
JH
5811 /* We're trying to use a pointer in place of a scalar.
5812 * Even if the scalar was unbounded, this could lead to
5813 * pointer leaks because scalars are allowed to leak
5814 * while pointers are not. We could make this safe in
5815 * special cases if root is calling us, but it's
5816 * probably not worth the hassle.
f1174f77 5817 */
179d1c56 5818 return false;
f1174f77
EC
5819 }
5820 case PTR_TO_MAP_VALUE:
1b688a19
EC
5821 /* If the new min/max/var_off satisfy the old ones and
5822 * everything else matches, we are OK.
d83525ca
AS
5823 * 'id' is not compared, since it's only used for maps with
5824 * bpf_spin_lock inside map element and in such cases if
5825 * the rest of the prog is valid for one map element then
5826 * it's valid for all map elements regardless of the key
5827 * used in bpf_map_lookup()
1b688a19
EC
5828 */
5829 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5830 range_within(rold, rcur) &&
5831 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
5832 case PTR_TO_MAP_VALUE_OR_NULL:
5833 /* a PTR_TO_MAP_VALUE could be safe to use as a
5834 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5835 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5836 * checked, doing so could have affected others with the same
5837 * id, and we can't check for that because we lost the id when
5838 * we converted to a PTR_TO_MAP_VALUE.
5839 */
5840 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5841 return false;
5842 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5843 return false;
5844 /* Check our ids match any regs they're supposed to */
5845 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 5846 case PTR_TO_PACKET_META:
f1174f77 5847 case PTR_TO_PACKET:
de8f3a83 5848 if (rcur->type != rold->type)
f1174f77
EC
5849 return false;
5850 /* We must have at least as much range as the old ptr
5851 * did, so that any accesses which were safe before are
5852 * still safe. This is true even if old range < old off,
5853 * since someone could have accessed through (ptr - k), or
5854 * even done ptr -= k in a register, to get a safe access.
5855 */
5856 if (rold->range > rcur->range)
5857 return false;
5858 /* If the offsets don't match, we can't trust our alignment;
5859 * nor can we be sure that we won't fall out of range.
5860 */
5861 if (rold->off != rcur->off)
5862 return false;
5863 /* id relations must be preserved */
5864 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5865 return false;
5866 /* new val must satisfy old val knowledge */
5867 return range_within(rold, rcur) &&
5868 tnum_in(rold->var_off, rcur->var_off);
5869 case PTR_TO_CTX:
5870 case CONST_PTR_TO_MAP:
f1174f77 5871 case PTR_TO_PACKET_END:
d58e468b 5872 case PTR_TO_FLOW_KEYS:
c64b7983
JS
5873 case PTR_TO_SOCKET:
5874 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
5875 case PTR_TO_SOCK_COMMON:
5876 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
5877 case PTR_TO_TCP_SOCK:
5878 case PTR_TO_TCP_SOCK_OR_NULL:
f1174f77
EC
5879 /* Only valid matches are exact, which memcmp() above
5880 * would have accepted
5881 */
5882 default:
5883 /* Don't know what's going on, just say it's not safe */
5884 return false;
5885 }
969bf05e 5886
f1174f77
EC
5887 /* Shouldn't get here; if we do, say it's not safe */
5888 WARN_ON_ONCE(1);
969bf05e
AS
5889 return false;
5890}
5891
f4d7e40a
AS
5892static bool stacksafe(struct bpf_func_state *old,
5893 struct bpf_func_state *cur,
638f5b90
AS
5894 struct idpair *idmap)
5895{
5896 int i, spi;
5897
638f5b90
AS
5898 /* walk slots of the explored stack and ignore any additional
5899 * slots in the current stack, since explored(safe) state
5900 * didn't use them
5901 */
5902 for (i = 0; i < old->allocated_stack; i++) {
5903 spi = i / BPF_REG_SIZE;
5904
b233920c
AS
5905 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5906 i += BPF_REG_SIZE - 1;
cc2b14d5 5907 /* explored state didn't use this */
fd05e57b 5908 continue;
b233920c 5909 }
cc2b14d5 5910
638f5b90
AS
5911 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5912 continue;
19e2dbb7
AS
5913
5914 /* explored stack has more populated slots than current stack
5915 * and these slots were used
5916 */
5917 if (i >= cur->allocated_stack)
5918 return false;
5919
cc2b14d5
AS
5920 /* if old state was safe with misc data in the stack
5921 * it will be safe with zero-initialized stack.
5922 * The opposite is not true
5923 */
5924 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5925 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5926 continue;
638f5b90
AS
5927 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5928 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5929 /* Ex: old explored (safe) state has STACK_SPILL in
5930 * this stack slot, but current has has STACK_MISC ->
5931 * this verifier states are not equivalent,
5932 * return false to continue verification of this path
5933 */
5934 return false;
5935 if (i % BPF_REG_SIZE)
5936 continue;
5937 if (old->stack[spi].slot_type[0] != STACK_SPILL)
5938 continue;
5939 if (!regsafe(&old->stack[spi].spilled_ptr,
5940 &cur->stack[spi].spilled_ptr,
5941 idmap))
5942 /* when explored and current stack slot are both storing
5943 * spilled registers, check that stored pointers types
5944 * are the same as well.
5945 * Ex: explored safe path could have stored
5946 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5947 * but current path has stored:
5948 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5949 * such verifier states are not equivalent.
5950 * return false to continue verification of this path
5951 */
5952 return false;
5953 }
5954 return true;
5955}
5956
fd978bf7
JS
5957static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5958{
5959 if (old->acquired_refs != cur->acquired_refs)
5960 return false;
5961 return !memcmp(old->refs, cur->refs,
5962 sizeof(*old->refs) * old->acquired_refs);
5963}
5964
f1bca824
AS
5965/* compare two verifier states
5966 *
5967 * all states stored in state_list are known to be valid, since
5968 * verifier reached 'bpf_exit' instruction through them
5969 *
5970 * this function is called when verifier exploring different branches of
5971 * execution popped from the state stack. If it sees an old state that has
5972 * more strict register state and more strict stack state then this execution
5973 * branch doesn't need to be explored further, since verifier already
5974 * concluded that more strict state leads to valid finish.
5975 *
5976 * Therefore two states are equivalent if register state is more conservative
5977 * and explored stack state is more conservative than the current one.
5978 * Example:
5979 * explored current
5980 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5981 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5982 *
5983 * In other words if current stack state (one being explored) has more
5984 * valid slots than old one that already passed validation, it means
5985 * the verifier can stop exploring and conclude that current state is valid too
5986 *
5987 * Similarly with registers. If explored state has register type as invalid
5988 * whereas register type in current state is meaningful, it means that
5989 * the current state will reach 'bpf_exit' instruction safely
5990 */
f4d7e40a
AS
5991static bool func_states_equal(struct bpf_func_state *old,
5992 struct bpf_func_state *cur)
f1bca824 5993{
f1174f77
EC
5994 struct idpair *idmap;
5995 bool ret = false;
f1bca824
AS
5996 int i;
5997
f1174f77
EC
5998 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
5999 /* If we failed to allocate the idmap, just say it's not safe */
6000 if (!idmap)
1a0dc1ac 6001 return false;
f1174f77
EC
6002
6003 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 6004 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 6005 goto out_free;
f1bca824
AS
6006 }
6007
638f5b90
AS
6008 if (!stacksafe(old, cur, idmap))
6009 goto out_free;
fd978bf7
JS
6010
6011 if (!refsafe(old, cur))
6012 goto out_free;
f1174f77
EC
6013 ret = true;
6014out_free:
6015 kfree(idmap);
6016 return ret;
f1bca824
AS
6017}
6018
f4d7e40a
AS
6019static bool states_equal(struct bpf_verifier_env *env,
6020 struct bpf_verifier_state *old,
6021 struct bpf_verifier_state *cur)
6022{
6023 int i;
6024
6025 if (old->curframe != cur->curframe)
6026 return false;
6027
979d63d5
DB
6028 /* Verification state from speculative execution simulation
6029 * must never prune a non-speculative execution one.
6030 */
6031 if (old->speculative && !cur->speculative)
6032 return false;
6033
d83525ca
AS
6034 if (old->active_spin_lock != cur->active_spin_lock)
6035 return false;
6036
f4d7e40a
AS
6037 /* for states to be equal callsites have to be the same
6038 * and all frame states need to be equivalent
6039 */
6040 for (i = 0; i <= old->curframe; i++) {
6041 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6042 return false;
6043 if (!func_states_equal(old->frame[i], cur->frame[i]))
6044 return false;
6045 }
6046 return true;
6047}
6048
8e9cd9ce 6049/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
6050 * straight-line code between a state and its parent. When we arrive at an
6051 * equivalent state (jump target or such) we didn't arrive by the straight-line
6052 * code, so read marks in the state must propagate to the parent regardless
6053 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 6054 * in mark_reg_read() is for.
8e9cd9ce 6055 */
f4d7e40a
AS
6056static int propagate_liveness(struct bpf_verifier_env *env,
6057 const struct bpf_verifier_state *vstate,
6058 struct bpf_verifier_state *vparent)
dc503a8a 6059{
f4d7e40a
AS
6060 int i, frame, err = 0;
6061 struct bpf_func_state *state, *parent;
dc503a8a 6062
f4d7e40a
AS
6063 if (vparent->curframe != vstate->curframe) {
6064 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6065 vparent->curframe, vstate->curframe);
6066 return -EFAULT;
6067 }
dc503a8a
EC
6068 /* Propagate read liveness of registers... */
6069 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6070 /* We don't need to worry about FP liveness because it's read-only */
6071 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 6072 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 6073 continue;
f4d7e40a 6074 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
6075 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
6076 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
6077 if (err)
6078 return err;
dc503a8a
EC
6079 }
6080 }
f4d7e40a 6081
dc503a8a 6082 /* ... and stack slots */
f4d7e40a
AS
6083 for (frame = 0; frame <= vstate->curframe; frame++) {
6084 state = vstate->frame[frame];
6085 parent = vparent->frame[frame];
6086 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6087 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
6088 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6089 continue;
6090 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
6091 mark_reg_read(env, &state->stack[i].spilled_ptr,
6092 &parent->stack[i].spilled_ptr);
dc503a8a
EC
6093 }
6094 }
f4d7e40a 6095 return err;
dc503a8a
EC
6096}
6097
58e2af8b 6098static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 6099{
58e2af8b
JK
6100 struct bpf_verifier_state_list *new_sl;
6101 struct bpf_verifier_state_list *sl;
679c782d 6102 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 6103 int i, j, err, states_cnt = 0;
f1bca824
AS
6104
6105 sl = env->explored_states[insn_idx];
6106 if (!sl)
6107 /* this 'insn_idx' instruction wasn't marked, so we will not
6108 * be doing state search here
6109 */
6110 return 0;
6111
9242b5f5
AS
6112 clean_live_states(env, insn_idx, cur);
6113
f1bca824 6114 while (sl != STATE_LIST_MARK) {
638f5b90 6115 if (states_equal(env, &sl->state, cur)) {
f1bca824 6116 /* reached equivalent register/stack state,
dc503a8a
EC
6117 * prune the search.
6118 * Registers read by the continuation are read by us.
8e9cd9ce
EC
6119 * If we have any write marks in env->cur_state, they
6120 * will prevent corresponding reads in the continuation
6121 * from reaching our parent (an explored_state). Our
6122 * own state will get the read marks recorded, but
6123 * they'll be immediately forgotten as we're pruning
6124 * this state and will pop a new one.
f1bca824 6125 */
f4d7e40a
AS
6126 err = propagate_liveness(env, &sl->state, cur);
6127 if (err)
6128 return err;
f1bca824 6129 return 1;
dc503a8a 6130 }
f1bca824 6131 sl = sl->next;
ceefbc96 6132 states_cnt++;
f1bca824
AS
6133 }
6134
ceefbc96
AS
6135 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6136 return 0;
6137
f1bca824
AS
6138 /* there were no equivalent states, remember current one.
6139 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
6140 * but it will either reach outer most bpf_exit (which means it's safe)
6141 * or it will be rejected. Since there are no loops, we won't be
6142 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6143 * again on the way to bpf_exit
f1bca824 6144 */
638f5b90 6145 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
6146 if (!new_sl)
6147 return -ENOMEM;
6148
6149 /* add new state to the head of linked list */
679c782d
EC
6150 new = &new_sl->state;
6151 err = copy_verifier_state(new, cur);
1969db47 6152 if (err) {
679c782d 6153 free_verifier_state(new, false);
1969db47
AS
6154 kfree(new_sl);
6155 return err;
6156 }
f1bca824
AS
6157 new_sl->next = env->explored_states[insn_idx];
6158 env->explored_states[insn_idx] = new_sl;
7640ead9
JK
6159 /* connect new state to parentage chain. Current frame needs all
6160 * registers connected. Only r6 - r9 of the callers are alive (pushed
6161 * to the stack implicitly by JITs) so in callers' frames connect just
6162 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6163 * the state of the call instruction (with WRITTEN set), and r0 comes
6164 * from callee with its full parentage chain, anyway.
6165 */
6166 for (j = 0; j <= cur->curframe; j++)
6167 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6168 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
8e9cd9ce
EC
6169 /* clear write marks in current state: the writes we did are not writes
6170 * our child did, so they don't screen off its reads from us.
6171 * (There are no read marks in current state, because reads always mark
6172 * their parent and current state never has children yet. Only
6173 * explored_states can get read marks.)
6174 */
dc503a8a 6175 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
6176 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6177
6178 /* all stack frames are accessible from callee, clear them all */
6179 for (j = 0; j <= cur->curframe; j++) {
6180 struct bpf_func_state *frame = cur->frame[j];
679c782d 6181 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 6182
679c782d 6183 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 6184 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
6185 frame->stack[i].spilled_ptr.parent =
6186 &newframe->stack[i].spilled_ptr;
6187 }
f4d7e40a 6188 }
f1bca824
AS
6189 return 0;
6190}
6191
c64b7983
JS
6192/* Return true if it's OK to have the same insn return a different type. */
6193static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6194{
6195 switch (type) {
6196 case PTR_TO_CTX:
6197 case PTR_TO_SOCKET:
6198 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6199 case PTR_TO_SOCK_COMMON:
6200 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6201 case PTR_TO_TCP_SOCK:
6202 case PTR_TO_TCP_SOCK_OR_NULL:
c64b7983
JS
6203 return false;
6204 default:
6205 return true;
6206 }
6207}
6208
6209/* If an instruction was previously used with particular pointer types, then we
6210 * need to be careful to avoid cases such as the below, where it may be ok
6211 * for one branch accessing the pointer, but not ok for the other branch:
6212 *
6213 * R1 = sock_ptr
6214 * goto X;
6215 * ...
6216 * R1 = some_other_valid_ptr;
6217 * goto X;
6218 * ...
6219 * R2 = *(u32 *)(R1 + 0);
6220 */
6221static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6222{
6223 return src != prev && (!reg_type_mismatch_ok(src) ||
6224 !reg_type_mismatch_ok(prev));
6225}
6226
58e2af8b 6227static int do_check(struct bpf_verifier_env *env)
17a52670 6228{
638f5b90 6229 struct bpf_verifier_state *state;
17a52670 6230 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 6231 struct bpf_reg_state *regs;
f4d7e40a 6232 int insn_cnt = env->prog->len, i;
17a52670
AS
6233 int insn_processed = 0;
6234 bool do_print_state = false;
6235
d9762e84
MKL
6236 env->prev_linfo = NULL;
6237
638f5b90
AS
6238 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6239 if (!state)
6240 return -ENOMEM;
f4d7e40a 6241 state->curframe = 0;
979d63d5 6242 state->speculative = false;
f4d7e40a
AS
6243 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6244 if (!state->frame[0]) {
6245 kfree(state);
6246 return -ENOMEM;
6247 }
6248 env->cur_state = state;
6249 init_func_state(env, state->frame[0],
6250 BPF_MAIN_FUNC /* callsite */,
6251 0 /* frameno */,
6252 0 /* subprogno, zero == main subprog */);
c08435ec 6253
17a52670
AS
6254 for (;;) {
6255 struct bpf_insn *insn;
6256 u8 class;
6257 int err;
6258
c08435ec 6259 if (env->insn_idx >= insn_cnt) {
61bd5218 6260 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 6261 env->insn_idx, insn_cnt);
17a52670
AS
6262 return -EFAULT;
6263 }
6264
c08435ec 6265 insn = &insns[env->insn_idx];
17a52670
AS
6266 class = BPF_CLASS(insn->code);
6267
07016151 6268 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
6269 verbose(env,
6270 "BPF program is too large. Processed %d insn\n",
17a52670
AS
6271 insn_processed);
6272 return -E2BIG;
6273 }
6274
c08435ec 6275 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
6276 if (err < 0)
6277 return err;
6278 if (err == 1) {
6279 /* found equivalent state, can prune the search */
61bd5218 6280 if (env->log.level) {
f1bca824 6281 if (do_print_state)
979d63d5
DB
6282 verbose(env, "\nfrom %d to %d%s: safe\n",
6283 env->prev_insn_idx, env->insn_idx,
6284 env->cur_state->speculative ?
6285 " (speculative execution)" : "");
f1bca824 6286 else
c08435ec 6287 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
6288 }
6289 goto process_bpf_exit;
6290 }
6291
c3494801
AS
6292 if (signal_pending(current))
6293 return -EAGAIN;
6294
3c2ce60b
DB
6295 if (need_resched())
6296 cond_resched();
6297
61bd5218
JK
6298 if (env->log.level > 1 || (env->log.level && do_print_state)) {
6299 if (env->log.level > 1)
c08435ec 6300 verbose(env, "%d:", env->insn_idx);
c5fc9692 6301 else
979d63d5
DB
6302 verbose(env, "\nfrom %d to %d%s:",
6303 env->prev_insn_idx, env->insn_idx,
6304 env->cur_state->speculative ?
6305 " (speculative execution)" : "");
f4d7e40a 6306 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
6307 do_print_state = false;
6308 }
6309
61bd5218 6310 if (env->log.level) {
7105e828
DB
6311 const struct bpf_insn_cbs cbs = {
6312 .cb_print = verbose,
abe08840 6313 .private_data = env,
7105e828
DB
6314 };
6315
c08435ec
DB
6316 verbose_linfo(env, env->insn_idx, "; ");
6317 verbose(env, "%d: ", env->insn_idx);
abe08840 6318 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
6319 }
6320
cae1927c 6321 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
6322 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6323 env->prev_insn_idx);
cae1927c
JK
6324 if (err)
6325 return err;
6326 }
13a27dfc 6327
638f5b90 6328 regs = cur_regs(env);
c08435ec 6329 env->insn_aux_data[env->insn_idx].seen = true;
fd978bf7 6330
17a52670 6331 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 6332 err = check_alu_op(env, insn);
17a52670
AS
6333 if (err)
6334 return err;
6335
6336 } else if (class == BPF_LDX) {
3df126f3 6337 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
6338
6339 /* check for reserved fields is already done */
6340
17a52670 6341 /* check src operand */
dc503a8a 6342 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6343 if (err)
6344 return err;
6345
dc503a8a 6346 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
6347 if (err)
6348 return err;
6349
725f9dcd
AS
6350 src_reg_type = regs[insn->src_reg].type;
6351
17a52670
AS
6352 /* check that memory (src_reg + off) is readable,
6353 * the state of dst_reg will be updated by this func
6354 */
c08435ec
DB
6355 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6356 insn->off, BPF_SIZE(insn->code),
6357 BPF_READ, insn->dst_reg, false);
17a52670
AS
6358 if (err)
6359 return err;
6360
c08435ec 6361 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6362
6363 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
6364 /* saw a valid insn
6365 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 6366 * save type to validate intersecting paths
9bac3d6d 6367 */
3df126f3 6368 *prev_src_type = src_reg_type;
9bac3d6d 6369
c64b7983 6370 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
6371 /* ABuser program is trying to use the same insn
6372 * dst_reg = *(u32*) (src_reg + off)
6373 * with different pointer types:
6374 * src_reg == ctx in one branch and
6375 * src_reg == stack|map in some other branch.
6376 * Reject it.
6377 */
61bd5218 6378 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
6379 return -EINVAL;
6380 }
6381
17a52670 6382 } else if (class == BPF_STX) {
3df126f3 6383 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 6384
17a52670 6385 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 6386 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
6387 if (err)
6388 return err;
c08435ec 6389 env->insn_idx++;
17a52670
AS
6390 continue;
6391 }
6392
17a52670 6393 /* check src1 operand */
dc503a8a 6394 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
6395 if (err)
6396 return err;
6397 /* check src2 operand */
dc503a8a 6398 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6399 if (err)
6400 return err;
6401
d691f9e8
AS
6402 dst_reg_type = regs[insn->dst_reg].type;
6403
17a52670 6404 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6405 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6406 insn->off, BPF_SIZE(insn->code),
6407 BPF_WRITE, insn->src_reg, false);
17a52670
AS
6408 if (err)
6409 return err;
6410
c08435ec 6411 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
6412
6413 if (*prev_dst_type == NOT_INIT) {
6414 *prev_dst_type = dst_reg_type;
c64b7983 6415 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 6416 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
6417 return -EINVAL;
6418 }
6419
17a52670
AS
6420 } else if (class == BPF_ST) {
6421 if (BPF_MODE(insn->code) != BPF_MEM ||
6422 insn->src_reg != BPF_REG_0) {
61bd5218 6423 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
6424 return -EINVAL;
6425 }
6426 /* check src operand */
dc503a8a 6427 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
6428 if (err)
6429 return err;
6430
f37a8cb8 6431 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 6432 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
6433 insn->dst_reg,
6434 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
6435 return -EACCES;
6436 }
6437
17a52670 6438 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
6439 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6440 insn->off, BPF_SIZE(insn->code),
6441 BPF_WRITE, -1, false);
17a52670
AS
6442 if (err)
6443 return err;
6444
092ed096 6445 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
6446 u8 opcode = BPF_OP(insn->code);
6447
6448 if (opcode == BPF_CALL) {
6449 if (BPF_SRC(insn->code) != BPF_K ||
6450 insn->off != 0 ||
f4d7e40a
AS
6451 (insn->src_reg != BPF_REG_0 &&
6452 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
6453 insn->dst_reg != BPF_REG_0 ||
6454 class == BPF_JMP32) {
61bd5218 6455 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
6456 return -EINVAL;
6457 }
6458
d83525ca
AS
6459 if (env->cur_state->active_spin_lock &&
6460 (insn->src_reg == BPF_PSEUDO_CALL ||
6461 insn->imm != BPF_FUNC_spin_unlock)) {
6462 verbose(env, "function calls are not allowed while holding a lock\n");
6463 return -EINVAL;
6464 }
f4d7e40a 6465 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 6466 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 6467 else
c08435ec 6468 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
6469 if (err)
6470 return err;
6471
6472 } else if (opcode == BPF_JA) {
6473 if (BPF_SRC(insn->code) != BPF_K ||
6474 insn->imm != 0 ||
6475 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6476 insn->dst_reg != BPF_REG_0 ||
6477 class == BPF_JMP32) {
61bd5218 6478 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
6479 return -EINVAL;
6480 }
6481
c08435ec 6482 env->insn_idx += insn->off + 1;
17a52670
AS
6483 continue;
6484
6485 } else if (opcode == BPF_EXIT) {
6486 if (BPF_SRC(insn->code) != BPF_K ||
6487 insn->imm != 0 ||
6488 insn->src_reg != BPF_REG_0 ||
092ed096
JW
6489 insn->dst_reg != BPF_REG_0 ||
6490 class == BPF_JMP32) {
61bd5218 6491 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
6492 return -EINVAL;
6493 }
6494
d83525ca
AS
6495 if (env->cur_state->active_spin_lock) {
6496 verbose(env, "bpf_spin_unlock is missing\n");
6497 return -EINVAL;
6498 }
6499
f4d7e40a
AS
6500 if (state->curframe) {
6501 /* exit from nested function */
c08435ec
DB
6502 env->prev_insn_idx = env->insn_idx;
6503 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
6504 if (err)
6505 return err;
6506 do_print_state = true;
6507 continue;
6508 }
6509
fd978bf7
JS
6510 err = check_reference_leak(env);
6511 if (err)
6512 return err;
6513
17a52670
AS
6514 /* eBPF calling convetion is such that R0 is used
6515 * to return the value from eBPF program.
6516 * Make sure that it's readable at this time
6517 * of bpf_exit, which means that program wrote
6518 * something into it earlier
6519 */
dc503a8a 6520 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
6521 if (err)
6522 return err;
6523
1be7f75d 6524 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 6525 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
6526 return -EACCES;
6527 }
6528
390ee7e2
AS
6529 err = check_return_code(env);
6530 if (err)
6531 return err;
f1bca824 6532process_bpf_exit:
c08435ec
DB
6533 err = pop_stack(env, &env->prev_insn_idx,
6534 &env->insn_idx);
638f5b90
AS
6535 if (err < 0) {
6536 if (err != -ENOENT)
6537 return err;
17a52670
AS
6538 break;
6539 } else {
6540 do_print_state = true;
6541 continue;
6542 }
6543 } else {
c08435ec 6544 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
6545 if (err)
6546 return err;
6547 }
6548 } else if (class == BPF_LD) {
6549 u8 mode = BPF_MODE(insn->code);
6550
6551 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
6552 err = check_ld_abs(env, insn);
6553 if (err)
6554 return err;
6555
17a52670
AS
6556 } else if (mode == BPF_IMM) {
6557 err = check_ld_imm(env, insn);
6558 if (err)
6559 return err;
6560
c08435ec
DB
6561 env->insn_idx++;
6562 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 6563 } else {
61bd5218 6564 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
6565 return -EINVAL;
6566 }
6567 } else {
61bd5218 6568 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
6569 return -EINVAL;
6570 }
6571
c08435ec 6572 env->insn_idx++;
17a52670
AS
6573 }
6574
4bd95f4b
DB
6575 verbose(env, "processed %d insns (limit %d), stack depth ",
6576 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 6577 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 6578 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
6579
6580 verbose(env, "%d", depth);
f910cefa 6581 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
6582 verbose(env, "+");
6583 }
6584 verbose(env, "\n");
9c8105bd 6585 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
6586 return 0;
6587}
6588
56f668df
MKL
6589static int check_map_prealloc(struct bpf_map *map)
6590{
6591 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
6592 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6593 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
6594 !(map->map_flags & BPF_F_NO_PREALLOC);
6595}
6596
d83525ca
AS
6597static bool is_tracing_prog_type(enum bpf_prog_type type)
6598{
6599 switch (type) {
6600 case BPF_PROG_TYPE_KPROBE:
6601 case BPF_PROG_TYPE_TRACEPOINT:
6602 case BPF_PROG_TYPE_PERF_EVENT:
6603 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6604 return true;
6605 default:
6606 return false;
6607 }
6608}
6609
61bd5218
JK
6610static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6611 struct bpf_map *map,
fdc15d38
AS
6612 struct bpf_prog *prog)
6613
6614{
56f668df
MKL
6615 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6616 * preallocated hash maps, since doing memory allocation
6617 * in overflow_handler can crash depending on where nmi got
6618 * triggered.
6619 */
6620 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6621 if (!check_map_prealloc(map)) {
61bd5218 6622 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
6623 return -EINVAL;
6624 }
6625 if (map->inner_map_meta &&
6626 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 6627 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
6628 return -EINVAL;
6629 }
fdc15d38 6630 }
a3884572 6631
d83525ca
AS
6632 if ((is_tracing_prog_type(prog->type) ||
6633 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6634 map_value_has_spin_lock(map)) {
6635 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6636 return -EINVAL;
6637 }
6638
a3884572 6639 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 6640 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
6641 verbose(env, "offload device mismatch between prog and map\n");
6642 return -EINVAL;
6643 }
6644
fdc15d38
AS
6645 return 0;
6646}
6647
b741f163
RG
6648static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6649{
6650 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6651 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6652}
6653
0246e64d
AS
6654/* look for pseudo eBPF instructions that access map FDs and
6655 * replace them with actual map pointers
6656 */
58e2af8b 6657static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
6658{
6659 struct bpf_insn *insn = env->prog->insnsi;
6660 int insn_cnt = env->prog->len;
fdc15d38 6661 int i, j, err;
0246e64d 6662
f1f7714e 6663 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
6664 if (err)
6665 return err;
6666
0246e64d 6667 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 6668 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 6669 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 6670 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
6671 return -EINVAL;
6672 }
6673
d691f9e8
AS
6674 if (BPF_CLASS(insn->code) == BPF_STX &&
6675 ((BPF_MODE(insn->code) != BPF_MEM &&
6676 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 6677 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
6678 return -EINVAL;
6679 }
6680
0246e64d
AS
6681 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6682 struct bpf_map *map;
6683 struct fd f;
6684
6685 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6686 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6687 insn[1].off != 0) {
61bd5218 6688 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
6689 return -EINVAL;
6690 }
6691
6692 if (insn->src_reg == 0)
6693 /* valid generic load 64-bit imm */
6694 goto next_insn;
6695
20182390
DB
6696 if (insn[0].src_reg != BPF_PSEUDO_MAP_FD ||
6697 insn[1].imm != 0) {
6698 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
6699 return -EINVAL;
6700 }
6701
20182390 6702 f = fdget(insn[0].imm);
c2101297 6703 map = __bpf_map_get(f);
0246e64d 6704 if (IS_ERR(map)) {
61bd5218 6705 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 6706 insn[0].imm);
0246e64d
AS
6707 return PTR_ERR(map);
6708 }
6709
61bd5218 6710 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
6711 if (err) {
6712 fdput(f);
6713 return err;
6714 }
6715
0246e64d
AS
6716 /* store map pointer inside BPF_LD_IMM64 instruction */
6717 insn[0].imm = (u32) (unsigned long) map;
6718 insn[1].imm = ((u64) (unsigned long) map) >> 32;
6719
6720 /* check whether we recorded this map already */
6721 for (j = 0; j < env->used_map_cnt; j++)
6722 if (env->used_maps[j] == map) {
6723 fdput(f);
6724 goto next_insn;
6725 }
6726
6727 if (env->used_map_cnt >= MAX_USED_MAPS) {
6728 fdput(f);
6729 return -E2BIG;
6730 }
6731
0246e64d
AS
6732 /* hold the map. If the program is rejected by verifier,
6733 * the map will be released by release_maps() or it
6734 * will be used by the valid program until it's unloaded
ab7f5bf0 6735 * and all maps are released in free_used_maps()
0246e64d 6736 */
92117d84
AS
6737 map = bpf_map_inc(map, false);
6738 if (IS_ERR(map)) {
6739 fdput(f);
6740 return PTR_ERR(map);
6741 }
6742 env->used_maps[env->used_map_cnt++] = map;
6743
b741f163 6744 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 6745 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 6746 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
6747 fdput(f);
6748 return -EBUSY;
6749 }
6750
0246e64d
AS
6751 fdput(f);
6752next_insn:
6753 insn++;
6754 i++;
5e581dad
DB
6755 continue;
6756 }
6757
6758 /* Basic sanity check before we invest more work here. */
6759 if (!bpf_opcode_in_insntable(insn->code)) {
6760 verbose(env, "unknown opcode %02x\n", insn->code);
6761 return -EINVAL;
0246e64d
AS
6762 }
6763 }
6764
6765 /* now all pseudo BPF_LD_IMM64 instructions load valid
6766 * 'struct bpf_map *' into a register instead of user map_fd.
6767 * These pointers will be used later by verifier to validate map access.
6768 */
6769 return 0;
6770}
6771
6772/* drop refcnt of maps used by the rejected program */
58e2af8b 6773static void release_maps(struct bpf_verifier_env *env)
0246e64d 6774{
8bad74f9 6775 enum bpf_cgroup_storage_type stype;
0246e64d
AS
6776 int i;
6777
8bad74f9
RG
6778 for_each_cgroup_storage_type(stype) {
6779 if (!env->prog->aux->cgroup_storage[stype])
6780 continue;
de9cbbaa 6781 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
6782 env->prog->aux->cgroup_storage[stype]);
6783 }
de9cbbaa 6784
0246e64d
AS
6785 for (i = 0; i < env->used_map_cnt; i++)
6786 bpf_map_put(env->used_maps[i]);
6787}
6788
6789/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 6790static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
6791{
6792 struct bpf_insn *insn = env->prog->insnsi;
6793 int insn_cnt = env->prog->len;
6794 int i;
6795
6796 for (i = 0; i < insn_cnt; i++, insn++)
6797 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6798 insn->src_reg = 0;
6799}
6800
8041902d
AS
6801/* single env->prog->insni[off] instruction was replaced with the range
6802 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
6803 * [0, off) and [off, end) to new locations, so the patched range stays zero
6804 */
6805static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6806 u32 off, u32 cnt)
6807{
6808 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 6809 int i;
8041902d
AS
6810
6811 if (cnt == 1)
6812 return 0;
fad953ce
KC
6813 new_data = vzalloc(array_size(prog_len,
6814 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
6815 if (!new_data)
6816 return -ENOMEM;
6817 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6818 memcpy(new_data + off + cnt - 1, old_data + off,
6819 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
6820 for (i = off; i < off + cnt - 1; i++)
6821 new_data[i].seen = true;
8041902d
AS
6822 env->insn_aux_data = new_data;
6823 vfree(old_data);
6824 return 0;
6825}
6826
cc8b0b92
AS
6827static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6828{
6829 int i;
6830
6831 if (len == 1)
6832 return;
4cb3d99c
JW
6833 /* NOTE: fake 'exit' subprog should be updated as well. */
6834 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 6835 if (env->subprog_info[i].start <= off)
cc8b0b92 6836 continue;
9c8105bd 6837 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
6838 }
6839}
6840
8041902d
AS
6841static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6842 const struct bpf_insn *patch, u32 len)
6843{
6844 struct bpf_prog *new_prog;
6845
6846 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6847 if (!new_prog)
6848 return NULL;
6849 if (adjust_insn_aux_data(env, new_prog->len, off, len))
6850 return NULL;
cc8b0b92 6851 adjust_subprog_starts(env, off, len);
8041902d
AS
6852 return new_prog;
6853}
6854
52875a04
JK
6855static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
6856 u32 off, u32 cnt)
6857{
6858 int i, j;
6859
6860 /* find first prog starting at or after off (first to remove) */
6861 for (i = 0; i < env->subprog_cnt; i++)
6862 if (env->subprog_info[i].start >= off)
6863 break;
6864 /* find first prog starting at or after off + cnt (first to stay) */
6865 for (j = i; j < env->subprog_cnt; j++)
6866 if (env->subprog_info[j].start >= off + cnt)
6867 break;
6868 /* if j doesn't start exactly at off + cnt, we are just removing
6869 * the front of previous prog
6870 */
6871 if (env->subprog_info[j].start != off + cnt)
6872 j--;
6873
6874 if (j > i) {
6875 struct bpf_prog_aux *aux = env->prog->aux;
6876 int move;
6877
6878 /* move fake 'exit' subprog as well */
6879 move = env->subprog_cnt + 1 - j;
6880
6881 memmove(env->subprog_info + i,
6882 env->subprog_info + j,
6883 sizeof(*env->subprog_info) * move);
6884 env->subprog_cnt -= j - i;
6885
6886 /* remove func_info */
6887 if (aux->func_info) {
6888 move = aux->func_info_cnt - j;
6889
6890 memmove(aux->func_info + i,
6891 aux->func_info + j,
6892 sizeof(*aux->func_info) * move);
6893 aux->func_info_cnt -= j - i;
6894 /* func_info->insn_off is set after all code rewrites,
6895 * in adjust_btf_func() - no need to adjust
6896 */
6897 }
6898 } else {
6899 /* convert i from "first prog to remove" to "first to adjust" */
6900 if (env->subprog_info[i].start == off)
6901 i++;
6902 }
6903
6904 /* update fake 'exit' subprog as well */
6905 for (; i <= env->subprog_cnt; i++)
6906 env->subprog_info[i].start -= cnt;
6907
6908 return 0;
6909}
6910
6911static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
6912 u32 cnt)
6913{
6914 struct bpf_prog *prog = env->prog;
6915 u32 i, l_off, l_cnt, nr_linfo;
6916 struct bpf_line_info *linfo;
6917
6918 nr_linfo = prog->aux->nr_linfo;
6919 if (!nr_linfo)
6920 return 0;
6921
6922 linfo = prog->aux->linfo;
6923
6924 /* find first line info to remove, count lines to be removed */
6925 for (i = 0; i < nr_linfo; i++)
6926 if (linfo[i].insn_off >= off)
6927 break;
6928
6929 l_off = i;
6930 l_cnt = 0;
6931 for (; i < nr_linfo; i++)
6932 if (linfo[i].insn_off < off + cnt)
6933 l_cnt++;
6934 else
6935 break;
6936
6937 /* First live insn doesn't match first live linfo, it needs to "inherit"
6938 * last removed linfo. prog is already modified, so prog->len == off
6939 * means no live instructions after (tail of the program was removed).
6940 */
6941 if (prog->len != off && l_cnt &&
6942 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
6943 l_cnt--;
6944 linfo[--i].insn_off = off + cnt;
6945 }
6946
6947 /* remove the line info which refer to the removed instructions */
6948 if (l_cnt) {
6949 memmove(linfo + l_off, linfo + i,
6950 sizeof(*linfo) * (nr_linfo - i));
6951
6952 prog->aux->nr_linfo -= l_cnt;
6953 nr_linfo = prog->aux->nr_linfo;
6954 }
6955
6956 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
6957 for (i = l_off; i < nr_linfo; i++)
6958 linfo[i].insn_off -= cnt;
6959
6960 /* fix up all subprogs (incl. 'exit') which start >= off */
6961 for (i = 0; i <= env->subprog_cnt; i++)
6962 if (env->subprog_info[i].linfo_idx > l_off) {
6963 /* program may have started in the removed region but
6964 * may not be fully removed
6965 */
6966 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
6967 env->subprog_info[i].linfo_idx -= l_cnt;
6968 else
6969 env->subprog_info[i].linfo_idx = l_off;
6970 }
6971
6972 return 0;
6973}
6974
6975static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
6976{
6977 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6978 unsigned int orig_prog_len = env->prog->len;
6979 int err;
6980
08ca90af
JK
6981 if (bpf_prog_is_dev_bound(env->prog->aux))
6982 bpf_prog_offload_remove_insns(env, off, cnt);
6983
52875a04
JK
6984 err = bpf_remove_insns(env->prog, off, cnt);
6985 if (err)
6986 return err;
6987
6988 err = adjust_subprog_starts_after_remove(env, off, cnt);
6989 if (err)
6990 return err;
6991
6992 err = bpf_adj_linfo_after_remove(env, off, cnt);
6993 if (err)
6994 return err;
6995
6996 memmove(aux_data + off, aux_data + off + cnt,
6997 sizeof(*aux_data) * (orig_prog_len - off - cnt));
6998
6999 return 0;
7000}
7001
2a5418a1
DB
7002/* The verifier does more data flow analysis than llvm and will not
7003 * explore branches that are dead at run time. Malicious programs can
7004 * have dead code too. Therefore replace all dead at-run-time code
7005 * with 'ja -1'.
7006 *
7007 * Just nops are not optimal, e.g. if they would sit at the end of the
7008 * program and through another bug we would manage to jump there, then
7009 * we'd execute beyond program memory otherwise. Returning exception
7010 * code also wouldn't work since we can have subprogs where the dead
7011 * code could be located.
c131187d
AS
7012 */
7013static void sanitize_dead_code(struct bpf_verifier_env *env)
7014{
7015 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 7016 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
7017 struct bpf_insn *insn = env->prog->insnsi;
7018 const int insn_cnt = env->prog->len;
7019 int i;
7020
7021 for (i = 0; i < insn_cnt; i++) {
7022 if (aux_data[i].seen)
7023 continue;
2a5418a1 7024 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
7025 }
7026}
7027
e2ae4ca2
JK
7028static bool insn_is_cond_jump(u8 code)
7029{
7030 u8 op;
7031
092ed096
JW
7032 if (BPF_CLASS(code) == BPF_JMP32)
7033 return true;
7034
e2ae4ca2
JK
7035 if (BPF_CLASS(code) != BPF_JMP)
7036 return false;
7037
7038 op = BPF_OP(code);
7039 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7040}
7041
7042static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7043{
7044 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7045 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7046 struct bpf_insn *insn = env->prog->insnsi;
7047 const int insn_cnt = env->prog->len;
7048 int i;
7049
7050 for (i = 0; i < insn_cnt; i++, insn++) {
7051 if (!insn_is_cond_jump(insn->code))
7052 continue;
7053
7054 if (!aux_data[i + 1].seen)
7055 ja.off = insn->off;
7056 else if (!aux_data[i + 1 + insn->off].seen)
7057 ja.off = 0;
7058 else
7059 continue;
7060
08ca90af
JK
7061 if (bpf_prog_is_dev_bound(env->prog->aux))
7062 bpf_prog_offload_replace_insn(env, i, &ja);
7063
e2ae4ca2
JK
7064 memcpy(insn, &ja, sizeof(ja));
7065 }
7066}
7067
52875a04
JK
7068static int opt_remove_dead_code(struct bpf_verifier_env *env)
7069{
7070 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7071 int insn_cnt = env->prog->len;
7072 int i, err;
7073
7074 for (i = 0; i < insn_cnt; i++) {
7075 int j;
7076
7077 j = 0;
7078 while (i + j < insn_cnt && !aux_data[i + j].seen)
7079 j++;
7080 if (!j)
7081 continue;
7082
7083 err = verifier_remove_insns(env, i, j);
7084 if (err)
7085 return err;
7086 insn_cnt = env->prog->len;
7087 }
7088
7089 return 0;
7090}
7091
a1b14abc
JK
7092static int opt_remove_nops(struct bpf_verifier_env *env)
7093{
7094 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7095 struct bpf_insn *insn = env->prog->insnsi;
7096 int insn_cnt = env->prog->len;
7097 int i, err;
7098
7099 for (i = 0; i < insn_cnt; i++) {
7100 if (memcmp(&insn[i], &ja, sizeof(ja)))
7101 continue;
7102
7103 err = verifier_remove_insns(env, i, 1);
7104 if (err)
7105 return err;
7106 insn_cnt--;
7107 i--;
7108 }
7109
7110 return 0;
7111}
7112
c64b7983
JS
7113/* convert load instructions that access fields of a context type into a
7114 * sequence of instructions that access fields of the underlying structure:
7115 * struct __sk_buff -> struct sk_buff
7116 * struct bpf_sock_ops -> struct sock
9bac3d6d 7117 */
58e2af8b 7118static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 7119{
00176a34 7120 const struct bpf_verifier_ops *ops = env->ops;
f96da094 7121 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 7122 const int insn_cnt = env->prog->len;
36bbef52 7123 struct bpf_insn insn_buf[16], *insn;
46f53a65 7124 u32 target_size, size_default, off;
9bac3d6d 7125 struct bpf_prog *new_prog;
d691f9e8 7126 enum bpf_access_type type;
f96da094 7127 bool is_narrower_load;
9bac3d6d 7128
b09928b9
DB
7129 if (ops->gen_prologue || env->seen_direct_write) {
7130 if (!ops->gen_prologue) {
7131 verbose(env, "bpf verifier is misconfigured\n");
7132 return -EINVAL;
7133 }
36bbef52
DB
7134 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7135 env->prog);
7136 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 7137 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
7138 return -EINVAL;
7139 } else if (cnt) {
8041902d 7140 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
7141 if (!new_prog)
7142 return -ENOMEM;
8041902d 7143
36bbef52 7144 env->prog = new_prog;
3df126f3 7145 delta += cnt - 1;
36bbef52
DB
7146 }
7147 }
7148
c64b7983 7149 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
7150 return 0;
7151
3df126f3 7152 insn = env->prog->insnsi + delta;
36bbef52 7153
9bac3d6d 7154 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
7155 bpf_convert_ctx_access_t convert_ctx_access;
7156
62c7989b
DB
7157 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7158 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7159 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 7160 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 7161 type = BPF_READ;
62c7989b
DB
7162 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7163 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7164 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 7165 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
7166 type = BPF_WRITE;
7167 else
9bac3d6d
AS
7168 continue;
7169
af86ca4e
AS
7170 if (type == BPF_WRITE &&
7171 env->insn_aux_data[i + delta].sanitize_stack_off) {
7172 struct bpf_insn patch[] = {
7173 /* Sanitize suspicious stack slot with zero.
7174 * There are no memory dependencies for this store,
7175 * since it's only using frame pointer and immediate
7176 * constant of zero
7177 */
7178 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7179 env->insn_aux_data[i + delta].sanitize_stack_off,
7180 0),
7181 /* the original STX instruction will immediately
7182 * overwrite the same stack slot with appropriate value
7183 */
7184 *insn,
7185 };
7186
7187 cnt = ARRAY_SIZE(patch);
7188 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7189 if (!new_prog)
7190 return -ENOMEM;
7191
7192 delta += cnt - 1;
7193 env->prog = new_prog;
7194 insn = new_prog->insnsi + i + delta;
7195 continue;
7196 }
7197
c64b7983
JS
7198 switch (env->insn_aux_data[i + delta].ptr_type) {
7199 case PTR_TO_CTX:
7200 if (!ops->convert_ctx_access)
7201 continue;
7202 convert_ctx_access = ops->convert_ctx_access;
7203 break;
7204 case PTR_TO_SOCKET:
46f8bc92 7205 case PTR_TO_SOCK_COMMON:
c64b7983
JS
7206 convert_ctx_access = bpf_sock_convert_ctx_access;
7207 break;
655a51e5
MKL
7208 case PTR_TO_TCP_SOCK:
7209 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7210 break;
c64b7983 7211 default:
9bac3d6d 7212 continue;
c64b7983 7213 }
9bac3d6d 7214
31fd8581 7215 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 7216 size = BPF_LDST_BYTES(insn);
31fd8581
YS
7217
7218 /* If the read access is a narrower load of the field,
7219 * convert to a 4/8-byte load, to minimum program type specific
7220 * convert_ctx_access changes. If conversion is successful,
7221 * we will apply proper mask to the result.
7222 */
f96da094 7223 is_narrower_load = size < ctx_field_size;
46f53a65
AI
7224 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7225 off = insn->off;
31fd8581 7226 if (is_narrower_load) {
f96da094
DB
7227 u8 size_code;
7228
7229 if (type == BPF_WRITE) {
61bd5218 7230 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
7231 return -EINVAL;
7232 }
31fd8581 7233
f96da094 7234 size_code = BPF_H;
31fd8581
YS
7235 if (ctx_field_size == 4)
7236 size_code = BPF_W;
7237 else if (ctx_field_size == 8)
7238 size_code = BPF_DW;
f96da094 7239
bc23105c 7240 insn->off = off & ~(size_default - 1);
31fd8581
YS
7241 insn->code = BPF_LDX | BPF_MEM | size_code;
7242 }
f96da094
DB
7243
7244 target_size = 0;
c64b7983
JS
7245 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7246 &target_size);
f96da094
DB
7247 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7248 (ctx_field_size && !target_size)) {
61bd5218 7249 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
7250 return -EINVAL;
7251 }
f96da094
DB
7252
7253 if (is_narrower_load && size < target_size) {
46f53a65
AI
7254 u8 shift = (off & (size_default - 1)) * 8;
7255
7256 if (ctx_field_size <= 4) {
7257 if (shift)
7258 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7259 insn->dst_reg,
7260 shift);
31fd8581 7261 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 7262 (1 << size * 8) - 1);
46f53a65
AI
7263 } else {
7264 if (shift)
7265 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7266 insn->dst_reg,
7267 shift);
31fd8581 7268 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 7269 (1 << size * 8) - 1);
46f53a65 7270 }
31fd8581 7271 }
9bac3d6d 7272
8041902d 7273 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
7274 if (!new_prog)
7275 return -ENOMEM;
7276
3df126f3 7277 delta += cnt - 1;
9bac3d6d
AS
7278
7279 /* keep walking new program and skip insns we just inserted */
7280 env->prog = new_prog;
3df126f3 7281 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
7282 }
7283
7284 return 0;
7285}
7286
1c2a088a
AS
7287static int jit_subprogs(struct bpf_verifier_env *env)
7288{
7289 struct bpf_prog *prog = env->prog, **func, *tmp;
7290 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 7291 struct bpf_insn *insn;
1c2a088a 7292 void *old_bpf_func;
c454a46b 7293 int err;
1c2a088a 7294
f910cefa 7295 if (env->subprog_cnt <= 1)
1c2a088a
AS
7296 return 0;
7297
7105e828 7298 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
7299 if (insn->code != (BPF_JMP | BPF_CALL) ||
7300 insn->src_reg != BPF_PSEUDO_CALL)
7301 continue;
c7a89784
DB
7302 /* Upon error here we cannot fall back to interpreter but
7303 * need a hard reject of the program. Thus -EFAULT is
7304 * propagated in any case.
7305 */
1c2a088a
AS
7306 subprog = find_subprog(env, i + insn->imm + 1);
7307 if (subprog < 0) {
7308 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7309 i + insn->imm + 1);
7310 return -EFAULT;
7311 }
7312 /* temporarily remember subprog id inside insn instead of
7313 * aux_data, since next loop will split up all insns into funcs
7314 */
f910cefa 7315 insn->off = subprog;
1c2a088a
AS
7316 /* remember original imm in case JIT fails and fallback
7317 * to interpreter will be needed
7318 */
7319 env->insn_aux_data[i].call_imm = insn->imm;
7320 /* point imm to __bpf_call_base+1 from JITs point of view */
7321 insn->imm = 1;
7322 }
7323
c454a46b
MKL
7324 err = bpf_prog_alloc_jited_linfo(prog);
7325 if (err)
7326 goto out_undo_insn;
7327
7328 err = -ENOMEM;
6396bb22 7329 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 7330 if (!func)
c7a89784 7331 goto out_undo_insn;
1c2a088a 7332
f910cefa 7333 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 7334 subprog_start = subprog_end;
4cb3d99c 7335 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
7336
7337 len = subprog_end - subprog_start;
492ecee8
AS
7338 /* BPF_PROG_RUN doesn't call subprogs directly,
7339 * hence main prog stats include the runtime of subprogs.
7340 * subprogs don't have IDs and not reachable via prog_get_next_id
7341 * func[i]->aux->stats will never be accessed and stays NULL
7342 */
7343 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
7344 if (!func[i])
7345 goto out_free;
7346 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7347 len * sizeof(struct bpf_insn));
4f74d809 7348 func[i]->type = prog->type;
1c2a088a 7349 func[i]->len = len;
4f74d809
DB
7350 if (bpf_prog_calc_tag(func[i]))
7351 goto out_free;
1c2a088a 7352 func[i]->is_func = 1;
ba64e7d8
YS
7353 func[i]->aux->func_idx = i;
7354 /* the btf and func_info will be freed only at prog->aux */
7355 func[i]->aux->btf = prog->aux->btf;
7356 func[i]->aux->func_info = prog->aux->func_info;
7357
1c2a088a
AS
7358 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7359 * Long term would need debug info to populate names
7360 */
7361 func[i]->aux->name[0] = 'F';
9c8105bd 7362 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 7363 func[i]->jit_requested = 1;
c454a46b
MKL
7364 func[i]->aux->linfo = prog->aux->linfo;
7365 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7366 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7367 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
7368 func[i] = bpf_int_jit_compile(func[i]);
7369 if (!func[i]->jited) {
7370 err = -ENOTSUPP;
7371 goto out_free;
7372 }
7373 cond_resched();
7374 }
7375 /* at this point all bpf functions were successfully JITed
7376 * now populate all bpf_calls with correct addresses and
7377 * run last pass of JIT
7378 */
f910cefa 7379 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7380 insn = func[i]->insnsi;
7381 for (j = 0; j < func[i]->len; j++, insn++) {
7382 if (insn->code != (BPF_JMP | BPF_CALL) ||
7383 insn->src_reg != BPF_PSEUDO_CALL)
7384 continue;
7385 subprog = insn->off;
1c2a088a
AS
7386 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7387 func[subprog]->bpf_func -
7388 __bpf_call_base;
7389 }
2162fed4
SD
7390
7391 /* we use the aux data to keep a list of the start addresses
7392 * of the JITed images for each function in the program
7393 *
7394 * for some architectures, such as powerpc64, the imm field
7395 * might not be large enough to hold the offset of the start
7396 * address of the callee's JITed image from __bpf_call_base
7397 *
7398 * in such cases, we can lookup the start address of a callee
7399 * by using its subprog id, available from the off field of
7400 * the call instruction, as an index for this list
7401 */
7402 func[i]->aux->func = func;
7403 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 7404 }
f910cefa 7405 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7406 old_bpf_func = func[i]->bpf_func;
7407 tmp = bpf_int_jit_compile(func[i]);
7408 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7409 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 7410 err = -ENOTSUPP;
1c2a088a
AS
7411 goto out_free;
7412 }
7413 cond_resched();
7414 }
7415
7416 /* finally lock prog and jit images for all functions and
7417 * populate kallsysm
7418 */
f910cefa 7419 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
7420 bpf_prog_lock_ro(func[i]);
7421 bpf_prog_kallsyms_add(func[i]);
7422 }
7105e828
DB
7423
7424 /* Last step: make now unused interpreter insns from main
7425 * prog consistent for later dump requests, so they can
7426 * later look the same as if they were interpreted only.
7427 */
7428 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
7429 if (insn->code != (BPF_JMP | BPF_CALL) ||
7430 insn->src_reg != BPF_PSEUDO_CALL)
7431 continue;
7432 insn->off = env->insn_aux_data[i].call_imm;
7433 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 7434 insn->imm = subprog;
7105e828
DB
7435 }
7436
1c2a088a
AS
7437 prog->jited = 1;
7438 prog->bpf_func = func[0]->bpf_func;
7439 prog->aux->func = func;
f910cefa 7440 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 7441 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
7442 return 0;
7443out_free:
f910cefa 7444 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
7445 if (func[i])
7446 bpf_jit_free(func[i]);
7447 kfree(func);
c7a89784 7448out_undo_insn:
1c2a088a
AS
7449 /* cleanup main prog to be interpreted */
7450 prog->jit_requested = 0;
7451 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7452 if (insn->code != (BPF_JMP | BPF_CALL) ||
7453 insn->src_reg != BPF_PSEUDO_CALL)
7454 continue;
7455 insn->off = 0;
7456 insn->imm = env->insn_aux_data[i].call_imm;
7457 }
c454a46b 7458 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
7459 return err;
7460}
7461
1ea47e01
AS
7462static int fixup_call_args(struct bpf_verifier_env *env)
7463{
19d28fbd 7464#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7465 struct bpf_prog *prog = env->prog;
7466 struct bpf_insn *insn = prog->insnsi;
7467 int i, depth;
19d28fbd 7468#endif
e4052d06 7469 int err = 0;
1ea47e01 7470
e4052d06
QM
7471 if (env->prog->jit_requested &&
7472 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
7473 err = jit_subprogs(env);
7474 if (err == 0)
1c2a088a 7475 return 0;
c7a89784
DB
7476 if (err == -EFAULT)
7477 return err;
19d28fbd
DM
7478 }
7479#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
7480 for (i = 0; i < prog->len; i++, insn++) {
7481 if (insn->code != (BPF_JMP | BPF_CALL) ||
7482 insn->src_reg != BPF_PSEUDO_CALL)
7483 continue;
7484 depth = get_callee_stack_depth(env, insn, i);
7485 if (depth < 0)
7486 return depth;
7487 bpf_patch_call_args(insn, depth);
7488 }
19d28fbd
DM
7489 err = 0;
7490#endif
7491 return err;
1ea47e01
AS
7492}
7493
79741b3b 7494/* fixup insn->imm field of bpf_call instructions
81ed18ab 7495 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
7496 *
7497 * this function is called after eBPF program passed verification
7498 */
79741b3b 7499static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 7500{
79741b3b
AS
7501 struct bpf_prog *prog = env->prog;
7502 struct bpf_insn *insn = prog->insnsi;
e245c5c6 7503 const struct bpf_func_proto *fn;
79741b3b 7504 const int insn_cnt = prog->len;
09772d92 7505 const struct bpf_map_ops *ops;
c93552c4 7506 struct bpf_insn_aux_data *aux;
81ed18ab
AS
7507 struct bpf_insn insn_buf[16];
7508 struct bpf_prog *new_prog;
7509 struct bpf_map *map_ptr;
7510 int i, cnt, delta = 0;
e245c5c6 7511
79741b3b 7512 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
7513 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7514 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7515 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 7516 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
7517 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7518 struct bpf_insn mask_and_div[] = {
7519 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7520 /* Rx div 0 -> 0 */
7521 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7522 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7523 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7524 *insn,
7525 };
7526 struct bpf_insn mask_and_mod[] = {
7527 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7528 /* Rx mod 0 -> Rx */
7529 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7530 *insn,
7531 };
7532 struct bpf_insn *patchlet;
7533
7534 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7535 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7536 patchlet = mask_and_div + (is64 ? 1 : 0);
7537 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7538 } else {
7539 patchlet = mask_and_mod + (is64 ? 1 : 0);
7540 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7541 }
7542
7543 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
7544 if (!new_prog)
7545 return -ENOMEM;
7546
7547 delta += cnt - 1;
7548 env->prog = prog = new_prog;
7549 insn = new_prog->insnsi + i + delta;
7550 continue;
7551 }
7552
e0cea7ce
DB
7553 if (BPF_CLASS(insn->code) == BPF_LD &&
7554 (BPF_MODE(insn->code) == BPF_ABS ||
7555 BPF_MODE(insn->code) == BPF_IND)) {
7556 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7557 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7558 verbose(env, "bpf verifier is misconfigured\n");
7559 return -EINVAL;
7560 }
7561
7562 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7563 if (!new_prog)
7564 return -ENOMEM;
7565
7566 delta += cnt - 1;
7567 env->prog = prog = new_prog;
7568 insn = new_prog->insnsi + i + delta;
7569 continue;
7570 }
7571
979d63d5
DB
7572 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7573 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7574 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7575 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7576 struct bpf_insn insn_buf[16];
7577 struct bpf_insn *patch = &insn_buf[0];
7578 bool issrc, isneg;
7579 u32 off_reg;
7580
7581 aux = &env->insn_aux_data[i + delta];
3612af78
DB
7582 if (!aux->alu_state ||
7583 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
7584 continue;
7585
7586 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7587 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7588 BPF_ALU_SANITIZE_SRC;
7589
7590 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7591 if (isneg)
7592 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7593 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7594 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7595 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7596 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7597 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7598 if (issrc) {
7599 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7600 off_reg);
7601 insn->src_reg = BPF_REG_AX;
7602 } else {
7603 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7604 BPF_REG_AX);
7605 }
7606 if (isneg)
7607 insn->code = insn->code == code_add ?
7608 code_sub : code_add;
7609 *patch++ = *insn;
7610 if (issrc && isneg)
7611 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7612 cnt = patch - insn_buf;
7613
7614 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7615 if (!new_prog)
7616 return -ENOMEM;
7617
7618 delta += cnt - 1;
7619 env->prog = prog = new_prog;
7620 insn = new_prog->insnsi + i + delta;
7621 continue;
7622 }
7623
79741b3b
AS
7624 if (insn->code != (BPF_JMP | BPF_CALL))
7625 continue;
cc8b0b92
AS
7626 if (insn->src_reg == BPF_PSEUDO_CALL)
7627 continue;
e245c5c6 7628
79741b3b
AS
7629 if (insn->imm == BPF_FUNC_get_route_realm)
7630 prog->dst_needed = 1;
7631 if (insn->imm == BPF_FUNC_get_prandom_u32)
7632 bpf_user_rnd_init_once();
9802d865
JB
7633 if (insn->imm == BPF_FUNC_override_return)
7634 prog->kprobe_override = 1;
79741b3b 7635 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
7636 /* If we tail call into other programs, we
7637 * cannot make any assumptions since they can
7638 * be replaced dynamically during runtime in
7639 * the program array.
7640 */
7641 prog->cb_access = 1;
80a58d02 7642 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 7643 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 7644
79741b3b
AS
7645 /* mark bpf_tail_call as different opcode to avoid
7646 * conditional branch in the interpeter for every normal
7647 * call and to prevent accidental JITing by JIT compiler
7648 * that doesn't support bpf_tail_call yet
e245c5c6 7649 */
79741b3b 7650 insn->imm = 0;
71189fa9 7651 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 7652
c93552c4
DB
7653 aux = &env->insn_aux_data[i + delta];
7654 if (!bpf_map_ptr_unpriv(aux))
7655 continue;
7656
b2157399
AS
7657 /* instead of changing every JIT dealing with tail_call
7658 * emit two extra insns:
7659 * if (index >= max_entries) goto out;
7660 * index &= array->index_mask;
7661 * to avoid out-of-bounds cpu speculation
7662 */
c93552c4 7663 if (bpf_map_ptr_poisoned(aux)) {
40950343 7664 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
7665 return -EINVAL;
7666 }
c93552c4
DB
7667
7668 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
7669 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7670 map_ptr->max_entries, 2);
7671 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7672 container_of(map_ptr,
7673 struct bpf_array,
7674 map)->index_mask);
7675 insn_buf[2] = *insn;
7676 cnt = 3;
7677 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7678 if (!new_prog)
7679 return -ENOMEM;
7680
7681 delta += cnt - 1;
7682 env->prog = prog = new_prog;
7683 insn = new_prog->insnsi + i + delta;
79741b3b
AS
7684 continue;
7685 }
e245c5c6 7686
89c63074 7687 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
7688 * and other inlining handlers are currently limited to 64 bit
7689 * only.
89c63074 7690 */
60b58afc 7691 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
7692 (insn->imm == BPF_FUNC_map_lookup_elem ||
7693 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
7694 insn->imm == BPF_FUNC_map_delete_elem ||
7695 insn->imm == BPF_FUNC_map_push_elem ||
7696 insn->imm == BPF_FUNC_map_pop_elem ||
7697 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
7698 aux = &env->insn_aux_data[i + delta];
7699 if (bpf_map_ptr_poisoned(aux))
7700 goto patch_call_imm;
7701
7702 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
7703 ops = map_ptr->ops;
7704 if (insn->imm == BPF_FUNC_map_lookup_elem &&
7705 ops->map_gen_lookup) {
7706 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7707 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7708 verbose(env, "bpf verifier is misconfigured\n");
7709 return -EINVAL;
7710 }
81ed18ab 7711
09772d92
DB
7712 new_prog = bpf_patch_insn_data(env, i + delta,
7713 insn_buf, cnt);
7714 if (!new_prog)
7715 return -ENOMEM;
81ed18ab 7716
09772d92
DB
7717 delta += cnt - 1;
7718 env->prog = prog = new_prog;
7719 insn = new_prog->insnsi + i + delta;
7720 continue;
7721 }
81ed18ab 7722
09772d92
DB
7723 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7724 (void *(*)(struct bpf_map *map, void *key))NULL));
7725 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7726 (int (*)(struct bpf_map *map, void *key))NULL));
7727 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7728 (int (*)(struct bpf_map *map, void *key, void *value,
7729 u64 flags))NULL));
84430d42
DB
7730 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7731 (int (*)(struct bpf_map *map, void *value,
7732 u64 flags))NULL));
7733 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7734 (int (*)(struct bpf_map *map, void *value))NULL));
7735 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7736 (int (*)(struct bpf_map *map, void *value))NULL));
7737
09772d92
DB
7738 switch (insn->imm) {
7739 case BPF_FUNC_map_lookup_elem:
7740 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7741 __bpf_call_base;
7742 continue;
7743 case BPF_FUNC_map_update_elem:
7744 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7745 __bpf_call_base;
7746 continue;
7747 case BPF_FUNC_map_delete_elem:
7748 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7749 __bpf_call_base;
7750 continue;
84430d42
DB
7751 case BPF_FUNC_map_push_elem:
7752 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7753 __bpf_call_base;
7754 continue;
7755 case BPF_FUNC_map_pop_elem:
7756 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7757 __bpf_call_base;
7758 continue;
7759 case BPF_FUNC_map_peek_elem:
7760 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7761 __bpf_call_base;
7762 continue;
09772d92 7763 }
81ed18ab 7764
09772d92 7765 goto patch_call_imm;
81ed18ab
AS
7766 }
7767
7768patch_call_imm:
5e43f899 7769 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
7770 /* all functions that have prototype and verifier allowed
7771 * programs to call them, must be real in-kernel functions
7772 */
7773 if (!fn->func) {
61bd5218
JK
7774 verbose(env,
7775 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
7776 func_id_name(insn->imm), insn->imm);
7777 return -EFAULT;
e245c5c6 7778 }
79741b3b 7779 insn->imm = fn->func - __bpf_call_base;
e245c5c6 7780 }
e245c5c6 7781
79741b3b
AS
7782 return 0;
7783}
e245c5c6 7784
58e2af8b 7785static void free_states(struct bpf_verifier_env *env)
f1bca824 7786{
58e2af8b 7787 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
7788 int i;
7789
7790 if (!env->explored_states)
7791 return;
7792
7793 for (i = 0; i < env->prog->len; i++) {
7794 sl = env->explored_states[i];
7795
7796 if (sl)
7797 while (sl != STATE_LIST_MARK) {
7798 sln = sl->next;
1969db47 7799 free_verifier_state(&sl->state, false);
f1bca824
AS
7800 kfree(sl);
7801 sl = sln;
7802 }
7803 }
7804
7805 kfree(env->explored_states);
7806}
7807
838e9690
YS
7808int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
7809 union bpf_attr __user *uattr)
51580e79 7810{
58e2af8b 7811 struct bpf_verifier_env *env;
b9193c1b 7812 struct bpf_verifier_log *log;
9e4c24e7 7813 int i, len, ret = -EINVAL;
e2ae4ca2 7814 bool is_priv;
51580e79 7815
eba0c929
AB
7816 /* no program is valid */
7817 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
7818 return -EINVAL;
7819
58e2af8b 7820 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
7821 * allocate/free it every time bpf_check() is called
7822 */
58e2af8b 7823 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
7824 if (!env)
7825 return -ENOMEM;
61bd5218 7826 log = &env->log;
cbd35700 7827
9e4c24e7 7828 len = (*prog)->len;
fad953ce 7829 env->insn_aux_data =
9e4c24e7 7830 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
7831 ret = -ENOMEM;
7832 if (!env->insn_aux_data)
7833 goto err_free_env;
9e4c24e7
JK
7834 for (i = 0; i < len; i++)
7835 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 7836 env->prog = *prog;
00176a34 7837 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 7838
cbd35700
AS
7839 /* grab the mutex to protect few globals used by verifier */
7840 mutex_lock(&bpf_verifier_lock);
7841
7842 if (attr->log_level || attr->log_buf || attr->log_size) {
7843 /* user requested verbose verifier output
7844 * and supplied buffer to store the verification trace
7845 */
e7bf8249
JK
7846 log->level = attr->log_level;
7847 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
7848 log->len_total = attr->log_size;
cbd35700
AS
7849
7850 ret = -EINVAL;
e7bf8249
JK
7851 /* log attributes have to be sane */
7852 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
7853 !log->level || !log->ubuf)
3df126f3 7854 goto err_unlock;
cbd35700 7855 }
1ad2f583
DB
7856
7857 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
7858 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 7859 env->strict_alignment = true;
e9ee9efc
DM
7860 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
7861 env->strict_alignment = false;
cbd35700 7862
e2ae4ca2
JK
7863 is_priv = capable(CAP_SYS_ADMIN);
7864 env->allow_ptr_leaks = is_priv;
7865
f4e3ec0d
JK
7866 ret = replace_map_fd_with_map_ptr(env);
7867 if (ret < 0)
7868 goto skip_full_check;
7869
cae1927c 7870 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 7871 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 7872 if (ret)
f4e3ec0d 7873 goto skip_full_check;
ab3f0063
JK
7874 }
7875
9bac3d6d 7876 env->explored_states = kcalloc(env->prog->len,
58e2af8b 7877 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
7878 GFP_USER);
7879 ret = -ENOMEM;
7880 if (!env->explored_states)
7881 goto skip_full_check;
7882
d9762e84 7883 ret = check_subprogs(env);
475fb78f
AS
7884 if (ret < 0)
7885 goto skip_full_check;
7886
c454a46b 7887 ret = check_btf_info(env, attr, uattr);
838e9690
YS
7888 if (ret < 0)
7889 goto skip_full_check;
7890
d9762e84
MKL
7891 ret = check_cfg(env);
7892 if (ret < 0)
7893 goto skip_full_check;
7894
17a52670 7895 ret = do_check(env);
8c01c4f8
CG
7896 if (env->cur_state) {
7897 free_verifier_state(env->cur_state, true);
7898 env->cur_state = NULL;
7899 }
cbd35700 7900
c941ce9c
QM
7901 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7902 ret = bpf_prog_offload_finalize(env);
7903
0246e64d 7904skip_full_check:
638f5b90 7905 while (!pop_stack(env, NULL, NULL));
f1bca824 7906 free_states(env);
0246e64d 7907
c131187d 7908 if (ret == 0)
9b38c405 7909 ret = check_max_stack_depth(env);
c131187d 7910
9b38c405 7911 /* instruction rewrites happen after this point */
e2ae4ca2
JK
7912 if (is_priv) {
7913 if (ret == 0)
7914 opt_hard_wire_dead_code_branches(env);
52875a04
JK
7915 if (ret == 0)
7916 ret = opt_remove_dead_code(env);
a1b14abc
JK
7917 if (ret == 0)
7918 ret = opt_remove_nops(env);
52875a04
JK
7919 } else {
7920 if (ret == 0)
7921 sanitize_dead_code(env);
e2ae4ca2
JK
7922 }
7923
9bac3d6d
AS
7924 if (ret == 0)
7925 /* program is valid, convert *(u32*)(ctx + off) accesses */
7926 ret = convert_ctx_accesses(env);
7927
e245c5c6 7928 if (ret == 0)
79741b3b 7929 ret = fixup_bpf_calls(env);
e245c5c6 7930
1ea47e01
AS
7931 if (ret == 0)
7932 ret = fixup_call_args(env);
7933
a2a7d570 7934 if (log->level && bpf_verifier_log_full(log))
cbd35700 7935 ret = -ENOSPC;
a2a7d570 7936 if (log->level && !log->ubuf) {
cbd35700 7937 ret = -EFAULT;
a2a7d570 7938 goto err_release_maps;
cbd35700
AS
7939 }
7940
0246e64d
AS
7941 if (ret == 0 && env->used_map_cnt) {
7942 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
7943 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7944 sizeof(env->used_maps[0]),
7945 GFP_KERNEL);
0246e64d 7946
9bac3d6d 7947 if (!env->prog->aux->used_maps) {
0246e64d 7948 ret = -ENOMEM;
a2a7d570 7949 goto err_release_maps;
0246e64d
AS
7950 }
7951
9bac3d6d 7952 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 7953 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 7954 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
7955
7956 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
7957 * bpf_ld_imm64 instructions
7958 */
7959 convert_pseudo_ld_imm64(env);
7960 }
cbd35700 7961
ba64e7d8
YS
7962 if (ret == 0)
7963 adjust_btf_func(env);
7964
a2a7d570 7965err_release_maps:
9bac3d6d 7966 if (!env->prog->aux->used_maps)
0246e64d 7967 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 7968 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
7969 */
7970 release_maps(env);
9bac3d6d 7971 *prog = env->prog;
3df126f3 7972err_unlock:
cbd35700 7973 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
7974 vfree(env->insn_aux_data);
7975err_free_env:
7976 kfree(env);
51580e79
AS
7977 return ret;
7978}