tools: bpftool: add "bpftool map freeze" subcommand
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
51580e79 22
f4ac7e0b
JK
23#include "disasm.h"
24
00176a34
JK
25static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26#define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28#define BPF_MAP_TYPE(_id, _ops)
29#include <linux/bpf_types.h>
30#undef BPF_PROG_TYPE
31#undef BPF_MAP_TYPE
32};
33
51580e79
AS
34/* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
eba38a96 46 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
f1174f77 74 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 75 * means the register has some value, but it's not a valid pointer.
f1174f77 76 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
77 *
78 * When verifier sees load or store instructions the type of base register
c64b7983
JS
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
51580e79
AS
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
157 */
158
17a52670 159/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 160struct bpf_verifier_stack_elem {
17a52670
AS
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
58e2af8b 165 struct bpf_verifier_state st;
17a52670
AS
166 int insn_idx;
167 int prev_insn_idx;
58e2af8b 168 struct bpf_verifier_stack_elem *next;
cbd35700
AS
169};
170
b285fcb7 171#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 172#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 173
c93552c4
DB
174#define BPF_MAP_PTR_UNPRIV 1UL
175#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178
179static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180{
181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182}
183
184static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185{
186 return aux->map_state & BPF_MAP_PTR_UNPRIV;
187}
188
189static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 const struct bpf_map *map, bool unpriv)
191{
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 unpriv |= bpf_map_ptr_unpriv(aux);
194 aux->map_state = (unsigned long)map |
195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196}
fad73a1a 197
33ff9823
DB
198struct bpf_call_arg_meta {
199 struct bpf_map *map_ptr;
435faee1 200 bool raw_mode;
36bbef52 201 bool pkt_access;
435faee1
DB
202 int regno;
203 int access_size;
849fa506
YS
204 s64 msize_smax_value;
205 u64 msize_umax_value;
1b986589 206 int ref_obj_id;
d83525ca 207 int func_id;
33ff9823
DB
208};
209
cbd35700
AS
210static DEFINE_MUTEX(bpf_verifier_lock);
211
d9762e84
MKL
212static const struct bpf_line_info *
213find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214{
215 const struct bpf_line_info *linfo;
216 const struct bpf_prog *prog;
217 u32 i, nr_linfo;
218
219 prog = env->prog;
220 nr_linfo = prog->aux->nr_linfo;
221
222 if (!nr_linfo || insn_off >= prog->len)
223 return NULL;
224
225 linfo = prog->aux->linfo;
226 for (i = 1; i < nr_linfo; i++)
227 if (insn_off < linfo[i].insn_off)
228 break;
229
230 return &linfo[i - 1];
231}
232
77d2e05a
MKL
233void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 va_list args)
cbd35700 235{
a2a7d570 236 unsigned int n;
cbd35700 237
a2a7d570 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
239
240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 "verifier log line truncated - local buffer too short\n");
242
243 n = min(log->len_total - log->len_used - 1, n);
244 log->kbuf[n] = '\0';
245
246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 log->len_used += n;
248 else
249 log->ubuf = NULL;
cbd35700 250}
abe08840
JO
251
252/* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
430e68d1 255 */
abe08840
JO
256__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 const char *fmt, ...)
258{
259 va_list args;
260
77d2e05a
MKL
261 if (!bpf_verifier_log_needed(&env->log))
262 return;
263
abe08840 264 va_start(args, fmt);
77d2e05a 265 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
266 va_end(args);
267}
268EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269
270__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271{
77d2e05a 272 struct bpf_verifier_env *env = private_data;
abe08840
JO
273 va_list args;
274
77d2e05a
MKL
275 if (!bpf_verifier_log_needed(&env->log))
276 return;
277
abe08840 278 va_start(args, fmt);
77d2e05a 279 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
280 va_end(args);
281}
cbd35700 282
d9762e84
MKL
283static const char *ltrim(const char *s)
284{
285 while (isspace(*s))
286 s++;
287
288 return s;
289}
290
291__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 u32 insn_off,
293 const char *prefix_fmt, ...)
294{
295 const struct bpf_line_info *linfo;
296
297 if (!bpf_verifier_log_needed(&env->log))
298 return;
299
300 linfo = find_linfo(env, insn_off);
301 if (!linfo || linfo == env->prev_linfo)
302 return;
303
304 if (prefix_fmt) {
305 va_list args;
306
307 va_start(args, prefix_fmt);
308 bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 va_end(args);
310 }
311
312 verbose(env, "%s\n",
313 ltrim(btf_name_by_offset(env->prog->aux->btf,
314 linfo->line_off)));
315
316 env->prev_linfo = linfo;
317}
318
de8f3a83
DB
319static bool type_is_pkt_pointer(enum bpf_reg_type type)
320{
321 return type == PTR_TO_PACKET ||
322 type == PTR_TO_PACKET_META;
323}
324
46f8bc92
MKL
325static bool type_is_sk_pointer(enum bpf_reg_type type)
326{
327 return type == PTR_TO_SOCKET ||
655a51e5 328 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
329 type == PTR_TO_TCP_SOCK ||
330 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
331}
332
840b9615
JS
333static bool reg_type_may_be_null(enum bpf_reg_type type)
334{
fd978bf7 335 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 336 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5
MKL
337 type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 type == PTR_TO_TCP_SOCK_OR_NULL;
fd978bf7
JS
339}
340
d83525ca
AS
341static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342{
343 return reg->type == PTR_TO_MAP_VALUE &&
344 map_value_has_spin_lock(reg->map_ptr);
345}
346
cba368c1
MKL
347static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348{
349 return type == PTR_TO_SOCKET ||
350 type == PTR_TO_SOCKET_OR_NULL ||
351 type == PTR_TO_TCP_SOCK ||
352 type == PTR_TO_TCP_SOCK_OR_NULL;
353}
354
1b986589 355static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 356{
1b986589 357 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
358}
359
360/* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
363 */
364static bool is_release_function(enum bpf_func_id func_id)
365{
6acc9b43 366 return func_id == BPF_FUNC_sk_release;
840b9615
JS
367}
368
46f8bc92
MKL
369static bool is_acquire_function(enum bpf_func_id func_id)
370{
371 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01
LB
372 func_id == BPF_FUNC_sk_lookup_udp ||
373 func_id == BPF_FUNC_skc_lookup_tcp;
46f8bc92
MKL
374}
375
1b986589
MKL
376static bool is_ptr_cast_function(enum bpf_func_id func_id)
377{
378 return func_id == BPF_FUNC_tcp_sock ||
379 func_id == BPF_FUNC_sk_fullsock;
380}
381
17a52670
AS
382/* string representation of 'enum bpf_reg_type' */
383static const char * const reg_type_str[] = {
384 [NOT_INIT] = "?",
f1174f77 385 [SCALAR_VALUE] = "inv",
17a52670
AS
386 [PTR_TO_CTX] = "ctx",
387 [CONST_PTR_TO_MAP] = "map_ptr",
388 [PTR_TO_MAP_VALUE] = "map_value",
389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 390 [PTR_TO_STACK] = "fp",
969bf05e 391 [PTR_TO_PACKET] = "pkt",
de8f3a83 392 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 393 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 394 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
395 [PTR_TO_SOCKET] = "sock",
396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
397 [PTR_TO_SOCK_COMMON] = "sock_common",
398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
399 [PTR_TO_TCP_SOCK] = "tcp_sock",
400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 401 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 402 [PTR_TO_XDP_SOCK] = "xdp_sock",
17a52670
AS
403};
404
8efea21d
EC
405static char slot_type_char[] = {
406 [STACK_INVALID] = '?',
407 [STACK_SPILL] = 'r',
408 [STACK_MISC] = 'm',
409 [STACK_ZERO] = '0',
410};
411
4e92024a
AS
412static void print_liveness(struct bpf_verifier_env *env,
413 enum bpf_reg_liveness live)
414{
9242b5f5 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
416 verbose(env, "_");
417 if (live & REG_LIVE_READ)
418 verbose(env, "r");
419 if (live & REG_LIVE_WRITTEN)
420 verbose(env, "w");
9242b5f5
AS
421 if (live & REG_LIVE_DONE)
422 verbose(env, "D");
4e92024a
AS
423}
424
f4d7e40a
AS
425static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 const struct bpf_reg_state *reg)
427{
428 struct bpf_verifier_state *cur = env->cur_state;
429
430 return cur->frame[reg->frameno];
431}
432
61bd5218 433static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 434 const struct bpf_func_state *state)
17a52670 435{
f4d7e40a 436 const struct bpf_reg_state *reg;
17a52670
AS
437 enum bpf_reg_type t;
438 int i;
439
f4d7e40a
AS
440 if (state->frameno)
441 verbose(env, " frame%d:", state->frameno);
17a52670 442 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
443 reg = &state->regs[i];
444 t = reg->type;
17a52670
AS
445 if (t == NOT_INIT)
446 continue;
4e92024a
AS
447 verbose(env, " R%d", i);
448 print_liveness(env, reg->live);
449 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
450 if (t == SCALAR_VALUE && reg->precise)
451 verbose(env, "P");
f1174f77
EC
452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 tnum_is_const(reg->var_off)) {
454 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 455 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 456 } else {
cba368c1
MKL
457 verbose(env, "(id=%d", reg->id);
458 if (reg_type_may_be_refcounted_or_null(t))
459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 460 if (t != SCALAR_VALUE)
61bd5218 461 verbose(env, ",off=%d", reg->off);
de8f3a83 462 if (type_is_pkt_pointer(t))
61bd5218 463 verbose(env, ",r=%d", reg->range);
f1174f77
EC
464 else if (t == CONST_PTR_TO_MAP ||
465 t == PTR_TO_MAP_VALUE ||
466 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 467 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
468 reg->map_ptr->key_size,
469 reg->map_ptr->value_size);
7d1238f2
EC
470 if (tnum_is_const(reg->var_off)) {
471 /* Typically an immediate SCALAR_VALUE, but
472 * could be a pointer whose offset is too big
473 * for reg->off
474 */
61bd5218 475 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
476 } else {
477 if (reg->smin_value != reg->umin_value &&
478 reg->smin_value != S64_MIN)
61bd5218 479 verbose(env, ",smin_value=%lld",
7d1238f2
EC
480 (long long)reg->smin_value);
481 if (reg->smax_value != reg->umax_value &&
482 reg->smax_value != S64_MAX)
61bd5218 483 verbose(env, ",smax_value=%lld",
7d1238f2
EC
484 (long long)reg->smax_value);
485 if (reg->umin_value != 0)
61bd5218 486 verbose(env, ",umin_value=%llu",
7d1238f2
EC
487 (unsigned long long)reg->umin_value);
488 if (reg->umax_value != U64_MAX)
61bd5218 489 verbose(env, ",umax_value=%llu",
7d1238f2
EC
490 (unsigned long long)reg->umax_value);
491 if (!tnum_is_unknown(reg->var_off)) {
492 char tn_buf[48];
f1174f77 493
7d1238f2 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 495 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 496 }
f1174f77 497 }
61bd5218 498 verbose(env, ")");
f1174f77 499 }
17a52670 500 }
638f5b90 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
502 char types_buf[BPF_REG_SIZE + 1];
503 bool valid = false;
504 int j;
505
506 for (j = 0; j < BPF_REG_SIZE; j++) {
507 if (state->stack[i].slot_type[j] != STACK_INVALID)
508 valid = true;
509 types_buf[j] = slot_type_char[
510 state->stack[i].slot_type[j]];
511 }
512 types_buf[BPF_REG_SIZE] = 0;
513 if (!valid)
514 continue;
515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
517 if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 reg = &state->stack[i].spilled_ptr;
519 t = reg->type;
520 verbose(env, "=%s", reg_type_str[t]);
521 if (t == SCALAR_VALUE && reg->precise)
522 verbose(env, "P");
523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 verbose(env, "%lld", reg->var_off.value + reg->off);
525 } else {
8efea21d 526 verbose(env, "=%s", types_buf);
b5dc0163 527 }
17a52670 528 }
fd978bf7
JS
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
61bd5218 535 verbose(env, "\n");
17a52670
AS
536}
537
84dbf350
JS
538#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541{ \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
638f5b90 552}
fd978bf7
JS
553/* copy_reference_state() */
554COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
555/* copy_stack_state() */
556COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557#undef COPY_STATE_FN
558
559#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562{ \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592}
fd978bf7
JS
593/* realloc_reference_state() */
594REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
595/* realloc_stack_state() */
596REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597#undef REALLOC_STATE_FN
638f5b90
AS
598
599/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 601 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
638f5b90 605 */
fd978bf7
JS
606static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
638f5b90 608{
fd978bf7
JS
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613}
614
615/* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
638f5b90 619 */
fd978bf7 620static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 621{
fd978bf7
JS
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 632
fd978bf7
JS
633 return id;
634}
635
636/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 637static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
638{
639 int i, last_idx;
640
fd978bf7
JS
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
638f5b90 649 return 0;
638f5b90 650 }
638f5b90 651 }
46f8bc92 652 return -EINVAL;
fd978bf7
JS
653}
654
655static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657{
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
638f5b90
AS
664 return 0;
665}
666
f4d7e40a
AS
667static void free_func_state(struct bpf_func_state *state)
668{
5896351e
AS
669 if (!state)
670 return;
fd978bf7 671 kfree(state->refs);
f4d7e40a
AS
672 kfree(state->stack);
673 kfree(state);
674}
675
b5dc0163
AS
676static void clear_jmp_history(struct bpf_verifier_state *state)
677{
678 kfree(state->jmp_history);
679 state->jmp_history = NULL;
680 state->jmp_history_cnt = 0;
681}
682
1969db47
AS
683static void free_verifier_state(struct bpf_verifier_state *state,
684 bool free_self)
638f5b90 685{
f4d7e40a
AS
686 int i;
687
688 for (i = 0; i <= state->curframe; i++) {
689 free_func_state(state->frame[i]);
690 state->frame[i] = NULL;
691 }
b5dc0163 692 clear_jmp_history(state);
1969db47
AS
693 if (free_self)
694 kfree(state);
638f5b90
AS
695}
696
697/* copy verifier state from src to dst growing dst stack space
698 * when necessary to accommodate larger src stack
699 */
f4d7e40a
AS
700static int copy_func_state(struct bpf_func_state *dst,
701 const struct bpf_func_state *src)
638f5b90
AS
702{
703 int err;
704
fd978bf7
JS
705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 false);
707 if (err)
708 return err;
709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 err = copy_reference_state(dst, src);
638f5b90
AS
711 if (err)
712 return err;
638f5b90
AS
713 return copy_stack_state(dst, src);
714}
715
f4d7e40a
AS
716static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 const struct bpf_verifier_state *src)
718{
719 struct bpf_func_state *dst;
b5dc0163 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
721 int i, err;
722
b5dc0163
AS
723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 kfree(dst_state->jmp_history);
725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 if (!dst_state->jmp_history)
727 return -ENOMEM;
728 }
729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 dst_state->jmp_history_cnt = src->jmp_history_cnt;
731
f4d7e40a
AS
732 /* if dst has more stack frames then src frame, free them */
733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 free_func_state(dst_state->frame[i]);
735 dst_state->frame[i] = NULL;
736 }
979d63d5 737 dst_state->speculative = src->speculative;
f4d7e40a 738 dst_state->curframe = src->curframe;
d83525ca 739 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
740 dst_state->branches = src->branches;
741 dst_state->parent = src->parent;
b5dc0163
AS
742 dst_state->first_insn_idx = src->first_insn_idx;
743 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
744 for (i = 0; i <= src->curframe; i++) {
745 dst = dst_state->frame[i];
746 if (!dst) {
747 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 if (!dst)
749 return -ENOMEM;
750 dst_state->frame[i] = dst;
751 }
752 err = copy_func_state(dst, src->frame[i]);
753 if (err)
754 return err;
755 }
756 return 0;
757}
758
2589726d
AS
759static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760{
761 while (st) {
762 u32 br = --st->branches;
763
764 /* WARN_ON(br > 1) technically makes sense here,
765 * but see comment in push_stack(), hence:
766 */
767 WARN_ONCE((int)br < 0,
768 "BUG update_branch_counts:branches_to_explore=%d\n",
769 br);
770 if (br)
771 break;
772 st = st->parent;
773 }
774}
775
638f5b90
AS
776static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 int *insn_idx)
778{
779 struct bpf_verifier_state *cur = env->cur_state;
780 struct bpf_verifier_stack_elem *elem, *head = env->head;
781 int err;
17a52670
AS
782
783 if (env->head == NULL)
638f5b90 784 return -ENOENT;
17a52670 785
638f5b90
AS
786 if (cur) {
787 err = copy_verifier_state(cur, &head->st);
788 if (err)
789 return err;
790 }
791 if (insn_idx)
792 *insn_idx = head->insn_idx;
17a52670 793 if (prev_insn_idx)
638f5b90
AS
794 *prev_insn_idx = head->prev_insn_idx;
795 elem = head->next;
1969db47 796 free_verifier_state(&head->st, false);
638f5b90 797 kfree(head);
17a52670
AS
798 env->head = elem;
799 env->stack_size--;
638f5b90 800 return 0;
17a52670
AS
801}
802
58e2af8b 803static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
804 int insn_idx, int prev_insn_idx,
805 bool speculative)
17a52670 806{
638f5b90 807 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 808 struct bpf_verifier_stack_elem *elem;
638f5b90 809 int err;
17a52670 810
638f5b90 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
812 if (!elem)
813 goto err;
814
17a52670
AS
815 elem->insn_idx = insn_idx;
816 elem->prev_insn_idx = prev_insn_idx;
817 elem->next = env->head;
818 env->head = elem;
819 env->stack_size++;
1969db47
AS
820 err = copy_verifier_state(&elem->st, cur);
821 if (err)
822 goto err;
979d63d5 823 elem->st.speculative |= speculative;
b285fcb7
AS
824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 verbose(env, "The sequence of %d jumps is too complex.\n",
826 env->stack_size);
17a52670
AS
827 goto err;
828 }
2589726d
AS
829 if (elem->st.parent) {
830 ++elem->st.parent->branches;
831 /* WARN_ON(branches > 2) technically makes sense here,
832 * but
833 * 1. speculative states will bump 'branches' for non-branch
834 * instructions
835 * 2. is_state_visited() heuristics may decide not to create
836 * a new state for a sequence of branches and all such current
837 * and cloned states will be pointing to a single parent state
838 * which might have large 'branches' count.
839 */
840 }
17a52670
AS
841 return &elem->st;
842err:
5896351e
AS
843 free_verifier_state(env->cur_state, true);
844 env->cur_state = NULL;
17a52670 845 /* pop all elements and return */
638f5b90 846 while (!pop_stack(env, NULL, NULL));
17a52670
AS
847 return NULL;
848}
849
850#define CALLER_SAVED_REGS 6
851static const int caller_saved[CALLER_SAVED_REGS] = {
852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853};
854
f1174f77
EC
855static void __mark_reg_not_init(struct bpf_reg_state *reg);
856
b03c9f9f
EC
857/* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
859 */
860static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861{
a9c676bc
AS
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8 *)reg) + sizeof(reg->type), 0,
864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
865 reg->var_off = tnum_const(imm);
866 reg->smin_value = (s64)imm;
867 reg->smax_value = (s64)imm;
868 reg->umin_value = imm;
869 reg->umax_value = imm;
870}
871
f1174f77
EC
872/* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
874 */
875static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 876{
b03c9f9f 877 __mark_reg_known(reg, 0);
f1174f77 878}
a9789ef9 879
cc2b14d5
AS
880static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881{
882 __mark_reg_known(reg, 0);
cc2b14d5
AS
883 reg->type = SCALAR_VALUE;
884}
885
61bd5218
JK
886static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
888{
889 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
891 /* Something bad happened, let's kill all regs */
892 for (regno = 0; regno < MAX_BPF_REG; regno++)
893 __mark_reg_not_init(regs + regno);
894 return;
895 }
896 __mark_reg_known_zero(regs + regno);
897}
898
de8f3a83
DB
899static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900{
901 return type_is_pkt_pointer(reg->type);
902}
903
904static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905{
906 return reg_is_pkt_pointer(reg) ||
907 reg->type == PTR_TO_PACKET_END;
908}
909
910/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 enum bpf_reg_type which)
913{
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
916 * origin.
917 */
918 return reg->type == which &&
919 reg->id == 0 &&
920 reg->off == 0 &&
921 tnum_equals_const(reg->var_off, 0);
922}
923
b03c9f9f
EC
924/* Attempts to improve min/max values based on var_off information */
925static void __update_reg_bounds(struct bpf_reg_state *reg)
926{
927 /* min signed is max(sign bit) | min(other bits) */
928 reg->smin_value = max_t(s64, reg->smin_value,
929 reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg->smax_value = min_t(s64, reg->smax_value,
932 reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 reg->umax_value = min(reg->umax_value,
935 reg->var_off.value | reg->var_off.mask);
936}
937
938/* Uses signed min/max values to inform unsigned, and vice-versa */
939static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940{
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 */
946 if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 reg->umin_value);
949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 reg->umax_value);
951 return;
952 }
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
955 */
956 if ((s64)reg->umax_value >= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
959 */
960 reg->smin_value = reg->umin_value;
961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 reg->umax_value);
963 } else if ((s64)reg->umin_value < 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
966 */
967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 reg->umin_value);
969 reg->smax_value = reg->umax_value;
970 }
971}
972
973/* Attempts to improve var_off based on unsigned min/max information */
974static void __reg_bound_offset(struct bpf_reg_state *reg)
975{
976 reg->var_off = tnum_intersect(reg->var_off,
977 tnum_range(reg->umin_value,
978 reg->umax_value));
979}
980
981/* Reset the min/max bounds of a register */
982static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983{
984 reg->smin_value = S64_MIN;
985 reg->smax_value = S64_MAX;
986 reg->umin_value = 0;
987 reg->umax_value = U64_MAX;
b5dc0163
AS
988
989 /* constant backtracking is enabled for root only for now */
990 reg->precise = capable(CAP_SYS_ADMIN) ? false : true;
b03c9f9f
EC
991}
992
f1174f77
EC
993/* Mark a register as having a completely unknown (scalar) value. */
994static void __mark_reg_unknown(struct bpf_reg_state *reg)
995{
a9c676bc
AS
996 /*
997 * Clear type, id, off, and union(map_ptr, range) and
998 * padding between 'type' and union
999 */
1000 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1001 reg->type = SCALAR_VALUE;
f1174f77 1002 reg->var_off = tnum_unknown;
f4d7e40a 1003 reg->frameno = 0;
b03c9f9f 1004 __mark_reg_unbounded(reg);
f1174f77
EC
1005}
1006
61bd5218
JK
1007static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1009{
1010 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1011 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1012 /* Something bad happened, let's kill all regs except FP */
1013 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1014 __mark_reg_not_init(regs + regno);
1015 return;
1016 }
1017 __mark_reg_unknown(regs + regno);
1018}
1019
1020static void __mark_reg_not_init(struct bpf_reg_state *reg)
1021{
1022 __mark_reg_unknown(reg);
1023 reg->type = NOT_INIT;
1024}
1025
61bd5218
JK
1026static void mark_reg_not_init(struct bpf_verifier_env *env,
1027 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1028{
1029 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1030 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1031 /* Something bad happened, let's kill all regs except FP */
1032 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
1033 __mark_reg_not_init(regs + regno);
1034 return;
1035 }
1036 __mark_reg_not_init(regs + regno);
a9789ef9
DB
1037}
1038
5327ed3d 1039#define DEF_NOT_SUBREG (0)
61bd5218 1040static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1041 struct bpf_func_state *state)
17a52670 1042{
f4d7e40a 1043 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1044 int i;
1045
dc503a8a 1046 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1047 mark_reg_not_init(env, regs, i);
dc503a8a 1048 regs[i].live = REG_LIVE_NONE;
679c782d 1049 regs[i].parent = NULL;
5327ed3d 1050 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1051 }
17a52670
AS
1052
1053 /* frame pointer */
f1174f77 1054 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1055 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1056 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
1057
1058 /* 1st arg to a function */
1059 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 1060 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
1061}
1062
f4d7e40a
AS
1063#define BPF_MAIN_FUNC (-1)
1064static void init_func_state(struct bpf_verifier_env *env,
1065 struct bpf_func_state *state,
1066 int callsite, int frameno, int subprogno)
1067{
1068 state->callsite = callsite;
1069 state->frameno = frameno;
1070 state->subprogno = subprogno;
1071 init_reg_state(env, state);
1072}
1073
17a52670
AS
1074enum reg_arg_type {
1075 SRC_OP, /* register is used as source operand */
1076 DST_OP, /* register is used as destination operand */
1077 DST_OP_NO_MARK /* same as above, check only, don't mark */
1078};
1079
cc8b0b92
AS
1080static int cmp_subprogs(const void *a, const void *b)
1081{
9c8105bd
JW
1082 return ((struct bpf_subprog_info *)a)->start -
1083 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1084}
1085
1086static int find_subprog(struct bpf_verifier_env *env, int off)
1087{
9c8105bd 1088 struct bpf_subprog_info *p;
cc8b0b92 1089
9c8105bd
JW
1090 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1091 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1092 if (!p)
1093 return -ENOENT;
9c8105bd 1094 return p - env->subprog_info;
cc8b0b92
AS
1095
1096}
1097
1098static int add_subprog(struct bpf_verifier_env *env, int off)
1099{
1100 int insn_cnt = env->prog->len;
1101 int ret;
1102
1103 if (off >= insn_cnt || off < 0) {
1104 verbose(env, "call to invalid destination\n");
1105 return -EINVAL;
1106 }
1107 ret = find_subprog(env, off);
1108 if (ret >= 0)
1109 return 0;
4cb3d99c 1110 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1111 verbose(env, "too many subprograms\n");
1112 return -E2BIG;
1113 }
9c8105bd
JW
1114 env->subprog_info[env->subprog_cnt++].start = off;
1115 sort(env->subprog_info, env->subprog_cnt,
1116 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
1117 return 0;
1118}
1119
1120static int check_subprogs(struct bpf_verifier_env *env)
1121{
1122 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 1123 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
1124 struct bpf_insn *insn = env->prog->insnsi;
1125 int insn_cnt = env->prog->len;
1126
f910cefa
JW
1127 /* Add entry function. */
1128 ret = add_subprog(env, 0);
1129 if (ret < 0)
1130 return ret;
1131
cc8b0b92
AS
1132 /* determine subprog starts. The end is one before the next starts */
1133 for (i = 0; i < insn_cnt; i++) {
1134 if (insn[i].code != (BPF_JMP | BPF_CALL))
1135 continue;
1136 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1137 continue;
1138 if (!env->allow_ptr_leaks) {
1139 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1140 return -EPERM;
1141 }
cc8b0b92
AS
1142 ret = add_subprog(env, i + insn[i].imm + 1);
1143 if (ret < 0)
1144 return ret;
1145 }
1146
4cb3d99c
JW
1147 /* Add a fake 'exit' subprog which could simplify subprog iteration
1148 * logic. 'subprog_cnt' should not be increased.
1149 */
1150 subprog[env->subprog_cnt].start = insn_cnt;
1151
06ee7115 1152 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1153 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1154 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1155
1156 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1157 subprog_start = subprog[cur_subprog].start;
1158 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1159 for (i = 0; i < insn_cnt; i++) {
1160 u8 code = insn[i].code;
1161
092ed096 1162 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1163 goto next;
1164 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1165 goto next;
1166 off = i + insn[i].off + 1;
1167 if (off < subprog_start || off >= subprog_end) {
1168 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1169 return -EINVAL;
1170 }
1171next:
1172 if (i == subprog_end - 1) {
1173 /* to avoid fall-through from one subprog into another
1174 * the last insn of the subprog should be either exit
1175 * or unconditional jump back
1176 */
1177 if (code != (BPF_JMP | BPF_EXIT) &&
1178 code != (BPF_JMP | BPF_JA)) {
1179 verbose(env, "last insn is not an exit or jmp\n");
1180 return -EINVAL;
1181 }
1182 subprog_start = subprog_end;
4cb3d99c
JW
1183 cur_subprog++;
1184 if (cur_subprog < env->subprog_cnt)
9c8105bd 1185 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1186 }
1187 }
1188 return 0;
1189}
1190
679c782d
EC
1191/* Parentage chain of this register (or stack slot) should take care of all
1192 * issues like callee-saved registers, stack slot allocation time, etc.
1193 */
f4d7e40a 1194static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1195 const struct bpf_reg_state *state,
5327ed3d 1196 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1197{
1198 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1199 int cnt = 0;
dc503a8a
EC
1200
1201 while (parent) {
1202 /* if read wasn't screened by an earlier write ... */
679c782d 1203 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1204 break;
9242b5f5
AS
1205 if (parent->live & REG_LIVE_DONE) {
1206 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1207 reg_type_str[parent->type],
1208 parent->var_off.value, parent->off);
1209 return -EFAULT;
1210 }
5327ed3d
JW
1211 /* The first condition is more likely to be true than the
1212 * second, checked it first.
1213 */
1214 if ((parent->live & REG_LIVE_READ) == flag ||
1215 parent->live & REG_LIVE_READ64)
25af32da
AS
1216 /* The parentage chain never changes and
1217 * this parent was already marked as LIVE_READ.
1218 * There is no need to keep walking the chain again and
1219 * keep re-marking all parents as LIVE_READ.
1220 * This case happens when the same register is read
1221 * multiple times without writes into it in-between.
5327ed3d
JW
1222 * Also, if parent has the stronger REG_LIVE_READ64 set,
1223 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1224 */
1225 break;
dc503a8a 1226 /* ... then we depend on parent's value */
5327ed3d
JW
1227 parent->live |= flag;
1228 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1229 if (flag == REG_LIVE_READ64)
1230 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1231 state = parent;
1232 parent = state->parent;
f4d7e40a 1233 writes = true;
06ee7115 1234 cnt++;
dc503a8a 1235 }
06ee7115
AS
1236
1237 if (env->longest_mark_read_walk < cnt)
1238 env->longest_mark_read_walk = cnt;
f4d7e40a 1239 return 0;
dc503a8a
EC
1240}
1241
5327ed3d
JW
1242/* This function is supposed to be used by the following 32-bit optimization
1243 * code only. It returns TRUE if the source or destination register operates
1244 * on 64-bit, otherwise return FALSE.
1245 */
1246static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1247 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1248{
1249 u8 code, class, op;
1250
1251 code = insn->code;
1252 class = BPF_CLASS(code);
1253 op = BPF_OP(code);
1254 if (class == BPF_JMP) {
1255 /* BPF_EXIT for "main" will reach here. Return TRUE
1256 * conservatively.
1257 */
1258 if (op == BPF_EXIT)
1259 return true;
1260 if (op == BPF_CALL) {
1261 /* BPF to BPF call will reach here because of marking
1262 * caller saved clobber with DST_OP_NO_MARK for which we
1263 * don't care the register def because they are anyway
1264 * marked as NOT_INIT already.
1265 */
1266 if (insn->src_reg == BPF_PSEUDO_CALL)
1267 return false;
1268 /* Helper call will reach here because of arg type
1269 * check, conservatively return TRUE.
1270 */
1271 if (t == SRC_OP)
1272 return true;
1273
1274 return false;
1275 }
1276 }
1277
1278 if (class == BPF_ALU64 || class == BPF_JMP ||
1279 /* BPF_END always use BPF_ALU class. */
1280 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1281 return true;
1282
1283 if (class == BPF_ALU || class == BPF_JMP32)
1284 return false;
1285
1286 if (class == BPF_LDX) {
1287 if (t != SRC_OP)
1288 return BPF_SIZE(code) == BPF_DW;
1289 /* LDX source must be ptr. */
1290 return true;
1291 }
1292
1293 if (class == BPF_STX) {
1294 if (reg->type != SCALAR_VALUE)
1295 return true;
1296 return BPF_SIZE(code) == BPF_DW;
1297 }
1298
1299 if (class == BPF_LD) {
1300 u8 mode = BPF_MODE(code);
1301
1302 /* LD_IMM64 */
1303 if (mode == BPF_IMM)
1304 return true;
1305
1306 /* Both LD_IND and LD_ABS return 32-bit data. */
1307 if (t != SRC_OP)
1308 return false;
1309
1310 /* Implicit ctx ptr. */
1311 if (regno == BPF_REG_6)
1312 return true;
1313
1314 /* Explicit source could be any width. */
1315 return true;
1316 }
1317
1318 if (class == BPF_ST)
1319 /* The only source register for BPF_ST is a ptr. */
1320 return true;
1321
1322 /* Conservatively return true at default. */
1323 return true;
1324}
1325
b325fbca
JW
1326/* Return TRUE if INSN doesn't have explicit value define. */
1327static bool insn_no_def(struct bpf_insn *insn)
1328{
1329 u8 class = BPF_CLASS(insn->code);
1330
1331 return (class == BPF_JMP || class == BPF_JMP32 ||
1332 class == BPF_STX || class == BPF_ST);
1333}
1334
1335/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1336static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1337{
1338 if (insn_no_def(insn))
1339 return false;
1340
1341 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1342}
1343
5327ed3d
JW
1344static void mark_insn_zext(struct bpf_verifier_env *env,
1345 struct bpf_reg_state *reg)
1346{
1347 s32 def_idx = reg->subreg_def;
1348
1349 if (def_idx == DEF_NOT_SUBREG)
1350 return;
1351
1352 env->insn_aux_data[def_idx - 1].zext_dst = true;
1353 /* The dst will be zero extended, so won't be sub-register anymore. */
1354 reg->subreg_def = DEF_NOT_SUBREG;
1355}
1356
dc503a8a 1357static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1358 enum reg_arg_type t)
1359{
f4d7e40a
AS
1360 struct bpf_verifier_state *vstate = env->cur_state;
1361 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 1362 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 1363 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 1364 bool rw64;
dc503a8a 1365
17a52670 1366 if (regno >= MAX_BPF_REG) {
61bd5218 1367 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1368 return -EINVAL;
1369 }
1370
c342dc10 1371 reg = &regs[regno];
5327ed3d 1372 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
1373 if (t == SRC_OP) {
1374 /* check whether register used as source operand can be read */
c342dc10 1375 if (reg->type == NOT_INIT) {
61bd5218 1376 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1377 return -EACCES;
1378 }
679c782d 1379 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
1380 if (regno == BPF_REG_FP)
1381 return 0;
1382
5327ed3d
JW
1383 if (rw64)
1384 mark_insn_zext(env, reg);
1385
1386 return mark_reg_read(env, reg, reg->parent,
1387 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
1388 } else {
1389 /* check whether register used as dest operand can be written to */
1390 if (regno == BPF_REG_FP) {
61bd5218 1391 verbose(env, "frame pointer is read only\n");
17a52670
AS
1392 return -EACCES;
1393 }
c342dc10 1394 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 1395 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 1396 if (t == DST_OP)
61bd5218 1397 mark_reg_unknown(env, regs, regno);
17a52670
AS
1398 }
1399 return 0;
1400}
1401
b5dc0163
AS
1402/* for any branch, call, exit record the history of jmps in the given state */
1403static int push_jmp_history(struct bpf_verifier_env *env,
1404 struct bpf_verifier_state *cur)
1405{
1406 u32 cnt = cur->jmp_history_cnt;
1407 struct bpf_idx_pair *p;
1408
1409 cnt++;
1410 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1411 if (!p)
1412 return -ENOMEM;
1413 p[cnt - 1].idx = env->insn_idx;
1414 p[cnt - 1].prev_idx = env->prev_insn_idx;
1415 cur->jmp_history = p;
1416 cur->jmp_history_cnt = cnt;
1417 return 0;
1418}
1419
1420/* Backtrack one insn at a time. If idx is not at the top of recorded
1421 * history then previous instruction came from straight line execution.
1422 */
1423static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1424 u32 *history)
1425{
1426 u32 cnt = *history;
1427
1428 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1429 i = st->jmp_history[cnt - 1].prev_idx;
1430 (*history)--;
1431 } else {
1432 i--;
1433 }
1434 return i;
1435}
1436
1437/* For given verifier state backtrack_insn() is called from the last insn to
1438 * the first insn. Its purpose is to compute a bitmask of registers and
1439 * stack slots that needs precision in the parent verifier state.
1440 */
1441static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1442 u32 *reg_mask, u64 *stack_mask)
1443{
1444 const struct bpf_insn_cbs cbs = {
1445 .cb_print = verbose,
1446 .private_data = env,
1447 };
1448 struct bpf_insn *insn = env->prog->insnsi + idx;
1449 u8 class = BPF_CLASS(insn->code);
1450 u8 opcode = BPF_OP(insn->code);
1451 u8 mode = BPF_MODE(insn->code);
1452 u32 dreg = 1u << insn->dst_reg;
1453 u32 sreg = 1u << insn->src_reg;
1454 u32 spi;
1455
1456 if (insn->code == 0)
1457 return 0;
1458 if (env->log.level & BPF_LOG_LEVEL) {
1459 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1460 verbose(env, "%d: ", idx);
1461 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1462 }
1463
1464 if (class == BPF_ALU || class == BPF_ALU64) {
1465 if (!(*reg_mask & dreg))
1466 return 0;
1467 if (opcode == BPF_MOV) {
1468 if (BPF_SRC(insn->code) == BPF_X) {
1469 /* dreg = sreg
1470 * dreg needs precision after this insn
1471 * sreg needs precision before this insn
1472 */
1473 *reg_mask &= ~dreg;
1474 *reg_mask |= sreg;
1475 } else {
1476 /* dreg = K
1477 * dreg needs precision after this insn.
1478 * Corresponding register is already marked
1479 * as precise=true in this verifier state.
1480 * No further markings in parent are necessary
1481 */
1482 *reg_mask &= ~dreg;
1483 }
1484 } else {
1485 if (BPF_SRC(insn->code) == BPF_X) {
1486 /* dreg += sreg
1487 * both dreg and sreg need precision
1488 * before this insn
1489 */
1490 *reg_mask |= sreg;
1491 } /* else dreg += K
1492 * dreg still needs precision before this insn
1493 */
1494 }
1495 } else if (class == BPF_LDX) {
1496 if (!(*reg_mask & dreg))
1497 return 0;
1498 *reg_mask &= ~dreg;
1499
1500 /* scalars can only be spilled into stack w/o losing precision.
1501 * Load from any other memory can be zero extended.
1502 * The desire to keep that precision is already indicated
1503 * by 'precise' mark in corresponding register of this state.
1504 * No further tracking necessary.
1505 */
1506 if (insn->src_reg != BPF_REG_FP)
1507 return 0;
1508 if (BPF_SIZE(insn->code) != BPF_DW)
1509 return 0;
1510
1511 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1512 * that [fp - off] slot contains scalar that needs to be
1513 * tracked with precision
1514 */
1515 spi = (-insn->off - 1) / BPF_REG_SIZE;
1516 if (spi >= 64) {
1517 verbose(env, "BUG spi %d\n", spi);
1518 WARN_ONCE(1, "verifier backtracking bug");
1519 return -EFAULT;
1520 }
1521 *stack_mask |= 1ull << spi;
b3b50f05 1522 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 1523 if (*reg_mask & dreg)
b3b50f05 1524 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
1525 * to access memory. It means backtracking
1526 * encountered a case of pointer subtraction.
1527 */
1528 return -ENOTSUPP;
1529 /* scalars can only be spilled into stack */
1530 if (insn->dst_reg != BPF_REG_FP)
1531 return 0;
1532 if (BPF_SIZE(insn->code) != BPF_DW)
1533 return 0;
1534 spi = (-insn->off - 1) / BPF_REG_SIZE;
1535 if (spi >= 64) {
1536 verbose(env, "BUG spi %d\n", spi);
1537 WARN_ONCE(1, "verifier backtracking bug");
1538 return -EFAULT;
1539 }
1540 if (!(*stack_mask & (1ull << spi)))
1541 return 0;
1542 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
1543 if (class == BPF_STX)
1544 *reg_mask |= sreg;
b5dc0163
AS
1545 } else if (class == BPF_JMP || class == BPF_JMP32) {
1546 if (opcode == BPF_CALL) {
1547 if (insn->src_reg == BPF_PSEUDO_CALL)
1548 return -ENOTSUPP;
1549 /* regular helper call sets R0 */
1550 *reg_mask &= ~1;
1551 if (*reg_mask & 0x3f) {
1552 /* if backtracing was looking for registers R1-R5
1553 * they should have been found already.
1554 */
1555 verbose(env, "BUG regs %x\n", *reg_mask);
1556 WARN_ONCE(1, "verifier backtracking bug");
1557 return -EFAULT;
1558 }
1559 } else if (opcode == BPF_EXIT) {
1560 return -ENOTSUPP;
1561 }
1562 } else if (class == BPF_LD) {
1563 if (!(*reg_mask & dreg))
1564 return 0;
1565 *reg_mask &= ~dreg;
1566 /* It's ld_imm64 or ld_abs or ld_ind.
1567 * For ld_imm64 no further tracking of precision
1568 * into parent is necessary
1569 */
1570 if (mode == BPF_IND || mode == BPF_ABS)
1571 /* to be analyzed */
1572 return -ENOTSUPP;
b5dc0163
AS
1573 }
1574 return 0;
1575}
1576
1577/* the scalar precision tracking algorithm:
1578 * . at the start all registers have precise=false.
1579 * . scalar ranges are tracked as normal through alu and jmp insns.
1580 * . once precise value of the scalar register is used in:
1581 * . ptr + scalar alu
1582 * . if (scalar cond K|scalar)
1583 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1584 * backtrack through the verifier states and mark all registers and
1585 * stack slots with spilled constants that these scalar regisers
1586 * should be precise.
1587 * . during state pruning two registers (or spilled stack slots)
1588 * are equivalent if both are not precise.
1589 *
1590 * Note the verifier cannot simply walk register parentage chain,
1591 * since many different registers and stack slots could have been
1592 * used to compute single precise scalar.
1593 *
1594 * The approach of starting with precise=true for all registers and then
1595 * backtrack to mark a register as not precise when the verifier detects
1596 * that program doesn't care about specific value (e.g., when helper
1597 * takes register as ARG_ANYTHING parameter) is not safe.
1598 *
1599 * It's ok to walk single parentage chain of the verifier states.
1600 * It's possible that this backtracking will go all the way till 1st insn.
1601 * All other branches will be explored for needing precision later.
1602 *
1603 * The backtracking needs to deal with cases like:
1604 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1605 * r9 -= r8
1606 * r5 = r9
1607 * if r5 > 0x79f goto pc+7
1608 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1609 * r5 += 1
1610 * ...
1611 * call bpf_perf_event_output#25
1612 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1613 *
1614 * and this case:
1615 * r6 = 1
1616 * call foo // uses callee's r6 inside to compute r0
1617 * r0 += r6
1618 * if r0 == 0 goto
1619 *
1620 * to track above reg_mask/stack_mask needs to be independent for each frame.
1621 *
1622 * Also if parent's curframe > frame where backtracking started,
1623 * the verifier need to mark registers in both frames, otherwise callees
1624 * may incorrectly prune callers. This is similar to
1625 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1626 *
1627 * For now backtracking falls back into conservative marking.
1628 */
1629static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1630 struct bpf_verifier_state *st)
1631{
1632 struct bpf_func_state *func;
1633 struct bpf_reg_state *reg;
1634 int i, j;
1635
1636 /* big hammer: mark all scalars precise in this path.
1637 * pop_stack may still get !precise scalars.
1638 */
1639 for (; st; st = st->parent)
1640 for (i = 0; i <= st->curframe; i++) {
1641 func = st->frame[i];
1642 for (j = 0; j < BPF_REG_FP; j++) {
1643 reg = &func->regs[j];
1644 if (reg->type != SCALAR_VALUE)
1645 continue;
1646 reg->precise = true;
1647 }
1648 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1649 if (func->stack[j].slot_type[0] != STACK_SPILL)
1650 continue;
1651 reg = &func->stack[j].spilled_ptr;
1652 if (reg->type != SCALAR_VALUE)
1653 continue;
1654 reg->precise = true;
1655 }
1656 }
1657}
1658
a3ce685d
AS
1659static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1660 int spi)
b5dc0163
AS
1661{
1662 struct bpf_verifier_state *st = env->cur_state;
1663 int first_idx = st->first_insn_idx;
1664 int last_idx = env->insn_idx;
1665 struct bpf_func_state *func;
1666 struct bpf_reg_state *reg;
a3ce685d
AS
1667 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1668 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 1669 bool skip_first = true;
a3ce685d 1670 bool new_marks = false;
b5dc0163
AS
1671 int i, err;
1672
1673 if (!env->allow_ptr_leaks)
1674 /* backtracking is root only for now */
1675 return 0;
1676
1677 func = st->frame[st->curframe];
a3ce685d
AS
1678 if (regno >= 0) {
1679 reg = &func->regs[regno];
1680 if (reg->type != SCALAR_VALUE) {
1681 WARN_ONCE(1, "backtracing misuse");
1682 return -EFAULT;
1683 }
1684 if (!reg->precise)
1685 new_marks = true;
1686 else
1687 reg_mask = 0;
1688 reg->precise = true;
b5dc0163 1689 }
b5dc0163 1690
a3ce685d
AS
1691 while (spi >= 0) {
1692 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1693 stack_mask = 0;
1694 break;
1695 }
1696 reg = &func->stack[spi].spilled_ptr;
1697 if (reg->type != SCALAR_VALUE) {
1698 stack_mask = 0;
1699 break;
1700 }
1701 if (!reg->precise)
1702 new_marks = true;
1703 else
1704 stack_mask = 0;
1705 reg->precise = true;
1706 break;
1707 }
1708
1709 if (!new_marks)
1710 return 0;
1711 if (!reg_mask && !stack_mask)
1712 return 0;
b5dc0163
AS
1713 for (;;) {
1714 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
1715 u32 history = st->jmp_history_cnt;
1716
1717 if (env->log.level & BPF_LOG_LEVEL)
1718 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1719 for (i = last_idx;;) {
1720 if (skip_first) {
1721 err = 0;
1722 skip_first = false;
1723 } else {
1724 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1725 }
1726 if (err == -ENOTSUPP) {
1727 mark_all_scalars_precise(env, st);
1728 return 0;
1729 } else if (err) {
1730 return err;
1731 }
1732 if (!reg_mask && !stack_mask)
1733 /* Found assignment(s) into tracked register in this state.
1734 * Since this state is already marked, just return.
1735 * Nothing to be tracked further in the parent state.
1736 */
1737 return 0;
1738 if (i == first_idx)
1739 break;
1740 i = get_prev_insn_idx(st, i, &history);
1741 if (i >= env->prog->len) {
1742 /* This can happen if backtracking reached insn 0
1743 * and there are still reg_mask or stack_mask
1744 * to backtrack.
1745 * It means the backtracking missed the spot where
1746 * particular register was initialized with a constant.
1747 */
1748 verbose(env, "BUG backtracking idx %d\n", i);
1749 WARN_ONCE(1, "verifier backtracking bug");
1750 return -EFAULT;
1751 }
1752 }
1753 st = st->parent;
1754 if (!st)
1755 break;
1756
a3ce685d 1757 new_marks = false;
b5dc0163
AS
1758 func = st->frame[st->curframe];
1759 bitmap_from_u64(mask, reg_mask);
1760 for_each_set_bit(i, mask, 32) {
1761 reg = &func->regs[i];
a3ce685d
AS
1762 if (reg->type != SCALAR_VALUE) {
1763 reg_mask &= ~(1u << i);
b5dc0163 1764 continue;
a3ce685d 1765 }
b5dc0163
AS
1766 if (!reg->precise)
1767 new_marks = true;
1768 reg->precise = true;
1769 }
1770
1771 bitmap_from_u64(mask, stack_mask);
1772 for_each_set_bit(i, mask, 64) {
1773 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1774 /* This can happen if backtracking
1775 * is propagating stack precision where
1776 * caller has larger stack frame
1777 * than callee, but backtrack_insn() should
1778 * have returned -ENOTSUPP.
1779 */
1780 verbose(env, "BUG spi %d stack_size %d\n",
1781 i, func->allocated_stack);
1782 WARN_ONCE(1, "verifier backtracking bug");
1783 return -EFAULT;
1784 }
1785
a3ce685d
AS
1786 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1787 stack_mask &= ~(1ull << i);
b5dc0163 1788 continue;
a3ce685d 1789 }
b5dc0163 1790 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
1791 if (reg->type != SCALAR_VALUE) {
1792 stack_mask &= ~(1ull << i);
b5dc0163 1793 continue;
a3ce685d 1794 }
b5dc0163
AS
1795 if (!reg->precise)
1796 new_marks = true;
1797 reg->precise = true;
1798 }
1799 if (env->log.level & BPF_LOG_LEVEL) {
1800 print_verifier_state(env, func);
1801 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1802 new_marks ? "didn't have" : "already had",
1803 reg_mask, stack_mask);
1804 }
1805
a3ce685d
AS
1806 if (!reg_mask && !stack_mask)
1807 break;
b5dc0163
AS
1808 if (!new_marks)
1809 break;
1810
1811 last_idx = st->last_insn_idx;
1812 first_idx = st->first_insn_idx;
1813 }
1814 return 0;
1815}
1816
a3ce685d
AS
1817static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1818{
1819 return __mark_chain_precision(env, regno, -1);
1820}
1821
1822static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1823{
1824 return __mark_chain_precision(env, -1, spi);
1825}
b5dc0163 1826
1be7f75d
AS
1827static bool is_spillable_regtype(enum bpf_reg_type type)
1828{
1829 switch (type) {
1830 case PTR_TO_MAP_VALUE:
1831 case PTR_TO_MAP_VALUE_OR_NULL:
1832 case PTR_TO_STACK:
1833 case PTR_TO_CTX:
969bf05e 1834 case PTR_TO_PACKET:
de8f3a83 1835 case PTR_TO_PACKET_META:
969bf05e 1836 case PTR_TO_PACKET_END:
d58e468b 1837 case PTR_TO_FLOW_KEYS:
1be7f75d 1838 case CONST_PTR_TO_MAP:
c64b7983
JS
1839 case PTR_TO_SOCKET:
1840 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
1841 case PTR_TO_SOCK_COMMON:
1842 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
1843 case PTR_TO_TCP_SOCK:
1844 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 1845 case PTR_TO_XDP_SOCK:
1be7f75d
AS
1846 return true;
1847 default:
1848 return false;
1849 }
1850}
1851
cc2b14d5
AS
1852/* Does this register contain a constant zero? */
1853static bool register_is_null(struct bpf_reg_state *reg)
1854{
1855 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1856}
1857
f7cf25b2
AS
1858static bool register_is_const(struct bpf_reg_state *reg)
1859{
1860 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1861}
1862
1863static void save_register_state(struct bpf_func_state *state,
1864 int spi, struct bpf_reg_state *reg)
1865{
1866 int i;
1867
1868 state->stack[spi].spilled_ptr = *reg;
1869 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1870
1871 for (i = 0; i < BPF_REG_SIZE; i++)
1872 state->stack[spi].slot_type[i] = STACK_SPILL;
1873}
1874
17a52670
AS
1875/* check_stack_read/write functions track spill/fill of registers,
1876 * stack boundary and alignment are checked in check_mem_access()
1877 */
61bd5218 1878static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1879 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1880 int off, int size, int value_regno, int insn_idx)
17a52670 1881{
f4d7e40a 1882 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1883 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 1884 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 1885 struct bpf_reg_state *reg = NULL;
638f5b90 1886
f4d7e40a 1887 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1888 state->acquired_refs, true);
638f5b90
AS
1889 if (err)
1890 return err;
9c399760
AS
1891 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1892 * so it's aligned access and [off, off + size) are within stack limits
1893 */
638f5b90
AS
1894 if (!env->allow_ptr_leaks &&
1895 state->stack[spi].slot_type[0] == STACK_SPILL &&
1896 size != BPF_REG_SIZE) {
1897 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1898 return -EACCES;
1899 }
17a52670 1900
f4d7e40a 1901 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
1902 if (value_regno >= 0)
1903 reg = &cur->regs[value_regno];
17a52670 1904
f7cf25b2
AS
1905 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1906 !register_is_null(reg) && env->allow_ptr_leaks) {
b5dc0163
AS
1907 if (dst_reg != BPF_REG_FP) {
1908 /* The backtracking logic can only recognize explicit
1909 * stack slot address like [fp - 8]. Other spill of
1910 * scalar via different register has to be conervative.
1911 * Backtrack from here and mark all registers as precise
1912 * that contributed into 'reg' being a constant.
1913 */
1914 err = mark_chain_precision(env, value_regno);
1915 if (err)
1916 return err;
1917 }
f7cf25b2
AS
1918 save_register_state(state, spi, reg);
1919 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 1920 /* register containing pointer is being spilled into stack */
9c399760 1921 if (size != BPF_REG_SIZE) {
f7cf25b2 1922 verbose_linfo(env, insn_idx, "; ");
61bd5218 1923 verbose(env, "invalid size of register spill\n");
17a52670
AS
1924 return -EACCES;
1925 }
1926
f7cf25b2 1927 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
1928 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1929 return -EINVAL;
1930 }
1931
f7cf25b2
AS
1932 if (!env->allow_ptr_leaks) {
1933 bool sanitize = false;
17a52670 1934
f7cf25b2
AS
1935 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1936 register_is_const(&state->stack[spi].spilled_ptr))
1937 sanitize = true;
1938 for (i = 0; i < BPF_REG_SIZE; i++)
1939 if (state->stack[spi].slot_type[i] == STACK_MISC) {
1940 sanitize = true;
1941 break;
1942 }
1943 if (sanitize) {
af86ca4e
AS
1944 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1945 int soff = (-spi - 1) * BPF_REG_SIZE;
1946
1947 /* detected reuse of integer stack slot with a pointer
1948 * which means either llvm is reusing stack slot or
1949 * an attacker is trying to exploit CVE-2018-3639
1950 * (speculative store bypass)
1951 * Have to sanitize that slot with preemptive
1952 * store of zero.
1953 */
1954 if (*poff && *poff != soff) {
1955 /* disallow programs where single insn stores
1956 * into two different stack slots, since verifier
1957 * cannot sanitize them
1958 */
1959 verbose(env,
1960 "insn %d cannot access two stack slots fp%d and fp%d",
1961 insn_idx, *poff, soff);
1962 return -EINVAL;
1963 }
1964 *poff = soff;
1965 }
af86ca4e 1966 }
f7cf25b2 1967 save_register_state(state, spi, reg);
9c399760 1968 } else {
cc2b14d5
AS
1969 u8 type = STACK_MISC;
1970
679c782d
EC
1971 /* regular write of data into stack destroys any spilled ptr */
1972 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
1973 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1974 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1975 for (i = 0; i < BPF_REG_SIZE; i++)
1976 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 1977
cc2b14d5
AS
1978 /* only mark the slot as written if all 8 bytes were written
1979 * otherwise read propagation may incorrectly stop too soon
1980 * when stack slots are partially written.
1981 * This heuristic means that read propagation will be
1982 * conservative, since it will add reg_live_read marks
1983 * to stack slots all the way to first state when programs
1984 * writes+reads less than 8 bytes
1985 */
1986 if (size == BPF_REG_SIZE)
1987 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1988
1989 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
1990 if (reg && register_is_null(reg)) {
1991 /* backtracking doesn't work for STACK_ZERO yet. */
1992 err = mark_chain_precision(env, value_regno);
1993 if (err)
1994 return err;
cc2b14d5 1995 type = STACK_ZERO;
b5dc0163 1996 }
cc2b14d5 1997
0bae2d4d 1998 /* Mark slots affected by this stack write. */
9c399760 1999 for (i = 0; i < size; i++)
638f5b90 2000 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2001 type;
17a52670
AS
2002 }
2003 return 0;
2004}
2005
61bd5218 2006static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
2007 struct bpf_func_state *reg_state /* func where register points to */,
2008 int off, int size, int value_regno)
17a52670 2009{
f4d7e40a
AS
2010 struct bpf_verifier_state *vstate = env->cur_state;
2011 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2012 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2013 struct bpf_reg_state *reg;
638f5b90 2014 u8 *stype;
17a52670 2015
f4d7e40a 2016 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
2017 verbose(env, "invalid read from stack off %d+0 size %d\n",
2018 off, size);
2019 return -EACCES;
2020 }
f4d7e40a 2021 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2022 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2023
638f5b90 2024 if (stype[0] == STACK_SPILL) {
9c399760 2025 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2026 if (reg->type != SCALAR_VALUE) {
2027 verbose_linfo(env, env->insn_idx, "; ");
2028 verbose(env, "invalid size of register fill\n");
2029 return -EACCES;
2030 }
2031 if (value_regno >= 0) {
2032 mark_reg_unknown(env, state->regs, value_regno);
2033 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2034 }
2035 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2036 return 0;
17a52670 2037 }
9c399760 2038 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2039 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2040 verbose(env, "corrupted spill memory\n");
17a52670
AS
2041 return -EACCES;
2042 }
2043 }
2044
dc503a8a 2045 if (value_regno >= 0) {
17a52670 2046 /* restore register state from stack */
f7cf25b2 2047 state->regs[value_regno] = *reg;
2f18f62e
AS
2048 /* mark reg as written since spilled pointer state likely
2049 * has its liveness marks cleared by is_state_visited()
2050 * which resets stack/reg liveness for state transitions
2051 */
2052 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 2053 }
f7cf25b2 2054 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2055 } else {
cc2b14d5
AS
2056 int zeros = 0;
2057
17a52670 2058 for (i = 0; i < size; i++) {
cc2b14d5
AS
2059 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2060 continue;
2061 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2062 zeros++;
2063 continue;
17a52670 2064 }
cc2b14d5
AS
2065 verbose(env, "invalid read from stack off %d+%d size %d\n",
2066 off, i, size);
2067 return -EACCES;
2068 }
f7cf25b2 2069 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
cc2b14d5
AS
2070 if (value_regno >= 0) {
2071 if (zeros == size) {
2072 /* any size read into register is zero extended,
2073 * so the whole register == const_zero
2074 */
2075 __mark_reg_const_zero(&state->regs[value_regno]);
b5dc0163
AS
2076 /* backtracking doesn't support STACK_ZERO yet,
2077 * so mark it precise here, so that later
2078 * backtracking can stop here.
2079 * Backtracking may not need this if this register
2080 * doesn't participate in pointer adjustment.
2081 * Forward propagation of precise flag is not
2082 * necessary either. This mark is only to stop
2083 * backtracking. Any register that contributed
2084 * to const 0 was marked precise before spill.
2085 */
2086 state->regs[value_regno].precise = true;
cc2b14d5
AS
2087 } else {
2088 /* have read misc data from the stack */
2089 mark_reg_unknown(env, state->regs, value_regno);
2090 }
2091 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 2092 }
17a52670 2093 }
f7cf25b2 2094 return 0;
17a52670
AS
2095}
2096
e4298d25
DB
2097static int check_stack_access(struct bpf_verifier_env *env,
2098 const struct bpf_reg_state *reg,
2099 int off, int size)
2100{
2101 /* Stack accesses must be at a fixed offset, so that we
2102 * can determine what type of data were returned. See
2103 * check_stack_read().
2104 */
2105 if (!tnum_is_const(reg->var_off)) {
2106 char tn_buf[48];
2107
2108 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1fbd20f8 2109 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
e4298d25
DB
2110 tn_buf, off, size);
2111 return -EACCES;
2112 }
2113
2114 if (off >= 0 || off < -MAX_BPF_STACK) {
2115 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2116 return -EACCES;
2117 }
2118
2119 return 0;
2120}
2121
591fe988
DB
2122static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2123 int off, int size, enum bpf_access_type type)
2124{
2125 struct bpf_reg_state *regs = cur_regs(env);
2126 struct bpf_map *map = regs[regno].map_ptr;
2127 u32 cap = bpf_map_flags_to_cap(map);
2128
2129 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2130 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2131 map->value_size, off, size);
2132 return -EACCES;
2133 }
2134
2135 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2136 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2137 map->value_size, off, size);
2138 return -EACCES;
2139 }
2140
2141 return 0;
2142}
2143
17a52670 2144/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 2145static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2146 int size, bool zero_size_allowed)
17a52670 2147{
638f5b90
AS
2148 struct bpf_reg_state *regs = cur_regs(env);
2149 struct bpf_map *map = regs[regno].map_ptr;
17a52670 2150
9fd29c08
YS
2151 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2152 off + size > map->value_size) {
61bd5218 2153 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
2154 map->value_size, off, size);
2155 return -EACCES;
2156 }
2157 return 0;
2158}
2159
f1174f77
EC
2160/* check read/write into a map element with possible variable offset */
2161static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2162 int off, int size, bool zero_size_allowed)
dbcfe5f7 2163{
f4d7e40a
AS
2164 struct bpf_verifier_state *vstate = env->cur_state;
2165 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
2166 struct bpf_reg_state *reg = &state->regs[regno];
2167 int err;
2168
f1174f77
EC
2169 /* We may have adjusted the register to this map value, so we
2170 * need to try adding each of min_value and max_value to off
2171 * to make sure our theoretical access will be safe.
dbcfe5f7 2172 */
06ee7115 2173 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 2174 print_verifier_state(env, state);
b7137c4e 2175
dbcfe5f7
GB
2176 /* The minimum value is only important with signed
2177 * comparisons where we can't assume the floor of a
2178 * value is 0. If we are using signed variables for our
2179 * index'es we need to make sure that whatever we use
2180 * will have a set floor within our range.
2181 */
b7137c4e
DB
2182 if (reg->smin_value < 0 &&
2183 (reg->smin_value == S64_MIN ||
2184 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2185 reg->smin_value + off < 0)) {
61bd5218 2186 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
2187 regno);
2188 return -EACCES;
2189 }
9fd29c08
YS
2190 err = __check_map_access(env, regno, reg->smin_value + off, size,
2191 zero_size_allowed);
dbcfe5f7 2192 if (err) {
61bd5218
JK
2193 verbose(env, "R%d min value is outside of the array range\n",
2194 regno);
dbcfe5f7
GB
2195 return err;
2196 }
2197
b03c9f9f
EC
2198 /* If we haven't set a max value then we need to bail since we can't be
2199 * sure we won't do bad things.
2200 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 2201 */
b03c9f9f 2202 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 2203 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
2204 regno);
2205 return -EACCES;
2206 }
9fd29c08
YS
2207 err = __check_map_access(env, regno, reg->umax_value + off, size,
2208 zero_size_allowed);
f1174f77 2209 if (err)
61bd5218
JK
2210 verbose(env, "R%d max value is outside of the array range\n",
2211 regno);
d83525ca
AS
2212
2213 if (map_value_has_spin_lock(reg->map_ptr)) {
2214 u32 lock = reg->map_ptr->spin_lock_off;
2215
2216 /* if any part of struct bpf_spin_lock can be touched by
2217 * load/store reject this program.
2218 * To check that [x1, x2) overlaps with [y1, y2)
2219 * it is sufficient to check x1 < y2 && y1 < x2.
2220 */
2221 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2222 lock < reg->umax_value + off + size) {
2223 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2224 return -EACCES;
2225 }
2226 }
f1174f77 2227 return err;
dbcfe5f7
GB
2228}
2229
969bf05e
AS
2230#define MAX_PACKET_OFF 0xffff
2231
58e2af8b 2232static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
2233 const struct bpf_call_arg_meta *meta,
2234 enum bpf_access_type t)
4acf6c0b 2235{
36bbef52 2236 switch (env->prog->type) {
5d66fa7d 2237 /* Program types only with direct read access go here! */
3a0af8fd
TG
2238 case BPF_PROG_TYPE_LWT_IN:
2239 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 2240 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 2241 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 2242 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 2243 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
2244 if (t == BPF_WRITE)
2245 return false;
7e57fbb2 2246 /* fallthrough */
5d66fa7d
DB
2247
2248 /* Program types with direct read + write access go here! */
36bbef52
DB
2249 case BPF_PROG_TYPE_SCHED_CLS:
2250 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 2251 case BPF_PROG_TYPE_XDP:
3a0af8fd 2252 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 2253 case BPF_PROG_TYPE_SK_SKB:
4f738adb 2254 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
2255 if (meta)
2256 return meta->pkt_access;
2257
2258 env->seen_direct_write = true;
4acf6c0b 2259 return true;
0d01da6a
SF
2260
2261 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2262 if (t == BPF_WRITE)
2263 env->seen_direct_write = true;
2264
2265 return true;
2266
4acf6c0b
BB
2267 default:
2268 return false;
2269 }
2270}
2271
f1174f77 2272static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 2273 int off, int size, bool zero_size_allowed)
969bf05e 2274{
638f5b90 2275 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 2276 struct bpf_reg_state *reg = &regs[regno];
969bf05e 2277
9fd29c08
YS
2278 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2279 (u64)off + size > reg->range) {
61bd5218 2280 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 2281 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
2282 return -EACCES;
2283 }
2284 return 0;
2285}
2286
f1174f77 2287static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 2288 int size, bool zero_size_allowed)
f1174f77 2289{
638f5b90 2290 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
2291 struct bpf_reg_state *reg = &regs[regno];
2292 int err;
2293
2294 /* We may have added a variable offset to the packet pointer; but any
2295 * reg->range we have comes after that. We are only checking the fixed
2296 * offset.
2297 */
2298
2299 /* We don't allow negative numbers, because we aren't tracking enough
2300 * detail to prove they're safe.
2301 */
b03c9f9f 2302 if (reg->smin_value < 0) {
61bd5218 2303 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
2304 regno);
2305 return -EACCES;
2306 }
9fd29c08 2307 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 2308 if (err) {
61bd5218 2309 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
2310 return err;
2311 }
e647815a
JW
2312
2313 /* __check_packet_access has made sure "off + size - 1" is within u16.
2314 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2315 * otherwise find_good_pkt_pointers would have refused to set range info
2316 * that __check_packet_access would have rejected this pkt access.
2317 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2318 */
2319 env->prog->aux->max_pkt_offset =
2320 max_t(u32, env->prog->aux->max_pkt_offset,
2321 off + reg->umax_value + size - 1);
2322
f1174f77
EC
2323 return err;
2324}
2325
2326/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 2327static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 2328 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 2329{
f96da094
DB
2330 struct bpf_insn_access_aux info = {
2331 .reg_type = *reg_type,
2332 };
31fd8581 2333
4f9218aa 2334 if (env->ops->is_valid_access &&
5e43f899 2335 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
2336 /* A non zero info.ctx_field_size indicates that this field is a
2337 * candidate for later verifier transformation to load the whole
2338 * field and then apply a mask when accessed with a narrower
2339 * access than actual ctx access size. A zero info.ctx_field_size
2340 * will only allow for whole field access and rejects any other
2341 * type of narrower access.
31fd8581 2342 */
23994631 2343 *reg_type = info.reg_type;
31fd8581 2344
4f9218aa 2345 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
2346 /* remember the offset of last byte accessed in ctx */
2347 if (env->prog->aux->max_ctx_offset < off + size)
2348 env->prog->aux->max_ctx_offset = off + size;
17a52670 2349 return 0;
32bbe007 2350 }
17a52670 2351
61bd5218 2352 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
2353 return -EACCES;
2354}
2355
d58e468b
PP
2356static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2357 int size)
2358{
2359 if (size < 0 || off < 0 ||
2360 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2361 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2362 off, size);
2363 return -EACCES;
2364 }
2365 return 0;
2366}
2367
5f456649
MKL
2368static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2369 u32 regno, int off, int size,
2370 enum bpf_access_type t)
c64b7983
JS
2371{
2372 struct bpf_reg_state *regs = cur_regs(env);
2373 struct bpf_reg_state *reg = &regs[regno];
5f456649 2374 struct bpf_insn_access_aux info = {};
46f8bc92 2375 bool valid;
c64b7983
JS
2376
2377 if (reg->smin_value < 0) {
2378 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2379 regno);
2380 return -EACCES;
2381 }
2382
46f8bc92
MKL
2383 switch (reg->type) {
2384 case PTR_TO_SOCK_COMMON:
2385 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2386 break;
2387 case PTR_TO_SOCKET:
2388 valid = bpf_sock_is_valid_access(off, size, t, &info);
2389 break;
655a51e5
MKL
2390 case PTR_TO_TCP_SOCK:
2391 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2392 break;
fada7fdc
JL
2393 case PTR_TO_XDP_SOCK:
2394 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2395 break;
46f8bc92
MKL
2396 default:
2397 valid = false;
c64b7983
JS
2398 }
2399
5f456649 2400
46f8bc92
MKL
2401 if (valid) {
2402 env->insn_aux_data[insn_idx].ctx_field_size =
2403 info.ctx_field_size;
2404 return 0;
2405 }
2406
2407 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2408 regno, reg_type_str[reg->type], off, size);
2409
2410 return -EACCES;
c64b7983
JS
2411}
2412
4cabc5b1
DB
2413static bool __is_pointer_value(bool allow_ptr_leaks,
2414 const struct bpf_reg_state *reg)
1be7f75d 2415{
4cabc5b1 2416 if (allow_ptr_leaks)
1be7f75d
AS
2417 return false;
2418
f1174f77 2419 return reg->type != SCALAR_VALUE;
1be7f75d
AS
2420}
2421
2a159c6f
DB
2422static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2423{
2424 return cur_regs(env) + regno;
2425}
2426
4cabc5b1
DB
2427static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2428{
2a159c6f 2429 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
2430}
2431
f37a8cb8
DB
2432static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2433{
2a159c6f 2434 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 2435
46f8bc92
MKL
2436 return reg->type == PTR_TO_CTX;
2437}
2438
2439static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2440{
2441 const struct bpf_reg_state *reg = reg_state(env, regno);
2442
2443 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
2444}
2445
ca369602
DB
2446static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2447{
2a159c6f 2448 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
2449
2450 return type_is_pkt_pointer(reg->type);
2451}
2452
4b5defde
DB
2453static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2454{
2455 const struct bpf_reg_state *reg = reg_state(env, regno);
2456
2457 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2458 return reg->type == PTR_TO_FLOW_KEYS;
2459}
2460
61bd5218
JK
2461static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2462 const struct bpf_reg_state *reg,
d1174416 2463 int off, int size, bool strict)
969bf05e 2464{
f1174f77 2465 struct tnum reg_off;
e07b98d9 2466 int ip_align;
d1174416
DM
2467
2468 /* Byte size accesses are always allowed. */
2469 if (!strict || size == 1)
2470 return 0;
2471
e4eda884
DM
2472 /* For platforms that do not have a Kconfig enabling
2473 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2474 * NET_IP_ALIGN is universally set to '2'. And on platforms
2475 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2476 * to this code only in strict mode where we want to emulate
2477 * the NET_IP_ALIGN==2 checking. Therefore use an
2478 * unconditional IP align value of '2'.
e07b98d9 2479 */
e4eda884 2480 ip_align = 2;
f1174f77
EC
2481
2482 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2483 if (!tnum_is_aligned(reg_off, size)) {
2484 char tn_buf[48];
2485
2486 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
2487 verbose(env,
2488 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 2489 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
2490 return -EACCES;
2491 }
79adffcd 2492
969bf05e
AS
2493 return 0;
2494}
2495
61bd5218
JK
2496static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2497 const struct bpf_reg_state *reg,
f1174f77
EC
2498 const char *pointer_desc,
2499 int off, int size, bool strict)
79adffcd 2500{
f1174f77
EC
2501 struct tnum reg_off;
2502
2503 /* Byte size accesses are always allowed. */
2504 if (!strict || size == 1)
2505 return 0;
2506
2507 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2508 if (!tnum_is_aligned(reg_off, size)) {
2509 char tn_buf[48];
2510
2511 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2512 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 2513 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
2514 return -EACCES;
2515 }
2516
969bf05e
AS
2517 return 0;
2518}
2519
e07b98d9 2520static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
2521 const struct bpf_reg_state *reg, int off,
2522 int size, bool strict_alignment_once)
79adffcd 2523{
ca369602 2524 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 2525 const char *pointer_desc = "";
d1174416 2526
79adffcd
DB
2527 switch (reg->type) {
2528 case PTR_TO_PACKET:
de8f3a83
DB
2529 case PTR_TO_PACKET_META:
2530 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2531 * right in front, treat it the very same way.
2532 */
61bd5218 2533 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
2534 case PTR_TO_FLOW_KEYS:
2535 pointer_desc = "flow keys ";
2536 break;
f1174f77
EC
2537 case PTR_TO_MAP_VALUE:
2538 pointer_desc = "value ";
2539 break;
2540 case PTR_TO_CTX:
2541 pointer_desc = "context ";
2542 break;
2543 case PTR_TO_STACK:
2544 pointer_desc = "stack ";
a5ec6ae1
JH
2545 /* The stack spill tracking logic in check_stack_write()
2546 * and check_stack_read() relies on stack accesses being
2547 * aligned.
2548 */
2549 strict = true;
f1174f77 2550 break;
c64b7983
JS
2551 case PTR_TO_SOCKET:
2552 pointer_desc = "sock ";
2553 break;
46f8bc92
MKL
2554 case PTR_TO_SOCK_COMMON:
2555 pointer_desc = "sock_common ";
2556 break;
655a51e5
MKL
2557 case PTR_TO_TCP_SOCK:
2558 pointer_desc = "tcp_sock ";
2559 break;
fada7fdc
JL
2560 case PTR_TO_XDP_SOCK:
2561 pointer_desc = "xdp_sock ";
2562 break;
79adffcd 2563 default:
f1174f77 2564 break;
79adffcd 2565 }
61bd5218
JK
2566 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2567 strict);
79adffcd
DB
2568}
2569
f4d7e40a
AS
2570static int update_stack_depth(struct bpf_verifier_env *env,
2571 const struct bpf_func_state *func,
2572 int off)
2573{
9c8105bd 2574 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
2575
2576 if (stack >= -off)
2577 return 0;
2578
2579 /* update known max for given subprogram */
9c8105bd 2580 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
2581 return 0;
2582}
f4d7e40a 2583
70a87ffe
AS
2584/* starting from main bpf function walk all instructions of the function
2585 * and recursively walk all callees that given function can call.
2586 * Ignore jump and exit insns.
2587 * Since recursion is prevented by check_cfg() this algorithm
2588 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2589 */
2590static int check_max_stack_depth(struct bpf_verifier_env *env)
2591{
9c8105bd
JW
2592 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2593 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 2594 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
2595 int ret_insn[MAX_CALL_FRAMES];
2596 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 2597
70a87ffe
AS
2598process_func:
2599 /* round up to 32-bytes, since this is granularity
2600 * of interpreter stack size
2601 */
9c8105bd 2602 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 2603 if (depth > MAX_BPF_STACK) {
f4d7e40a 2604 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 2605 frame + 1, depth);
f4d7e40a
AS
2606 return -EACCES;
2607 }
70a87ffe 2608continue_func:
4cb3d99c 2609 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
2610 for (; i < subprog_end; i++) {
2611 if (insn[i].code != (BPF_JMP | BPF_CALL))
2612 continue;
2613 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2614 continue;
2615 /* remember insn and function to return to */
2616 ret_insn[frame] = i + 1;
9c8105bd 2617 ret_prog[frame] = idx;
70a87ffe
AS
2618
2619 /* find the callee */
2620 i = i + insn[i].imm + 1;
9c8105bd
JW
2621 idx = find_subprog(env, i);
2622 if (idx < 0) {
70a87ffe
AS
2623 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2624 i);
2625 return -EFAULT;
2626 }
70a87ffe
AS
2627 frame++;
2628 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
2629 verbose(env, "the call stack of %d frames is too deep !\n",
2630 frame);
2631 return -E2BIG;
70a87ffe
AS
2632 }
2633 goto process_func;
2634 }
2635 /* end of for() loop means the last insn of the 'subprog'
2636 * was reached. Doesn't matter whether it was JA or EXIT
2637 */
2638 if (frame == 0)
2639 return 0;
9c8105bd 2640 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
2641 frame--;
2642 i = ret_insn[frame];
9c8105bd 2643 idx = ret_prog[frame];
70a87ffe 2644 goto continue_func;
f4d7e40a
AS
2645}
2646
19d28fbd 2647#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
2648static int get_callee_stack_depth(struct bpf_verifier_env *env,
2649 const struct bpf_insn *insn, int idx)
2650{
2651 int start = idx + insn->imm + 1, subprog;
2652
2653 subprog = find_subprog(env, start);
2654 if (subprog < 0) {
2655 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2656 start);
2657 return -EFAULT;
2658 }
9c8105bd 2659 return env->subprog_info[subprog].stack_depth;
1ea47e01 2660}
19d28fbd 2661#endif
1ea47e01 2662
58990d1f
DB
2663static int check_ctx_reg(struct bpf_verifier_env *env,
2664 const struct bpf_reg_state *reg, int regno)
2665{
2666 /* Access to ctx or passing it to a helper is only allowed in
2667 * its original, unmodified form.
2668 */
2669
2670 if (reg->off) {
2671 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2672 regno, reg->off);
2673 return -EACCES;
2674 }
2675
2676 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2677 char tn_buf[48];
2678
2679 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2680 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2681 return -EACCES;
2682 }
2683
2684 return 0;
2685}
2686
9df1c28b
MM
2687static int check_tp_buffer_access(struct bpf_verifier_env *env,
2688 const struct bpf_reg_state *reg,
2689 int regno, int off, int size)
2690{
2691 if (off < 0) {
2692 verbose(env,
2693 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2694 regno, off, size);
2695 return -EACCES;
2696 }
2697 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2698 char tn_buf[48];
2699
2700 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2701 verbose(env,
2702 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2703 regno, off, tn_buf);
2704 return -EACCES;
2705 }
2706 if (off + size > env->prog->aux->max_tp_access)
2707 env->prog->aux->max_tp_access = off + size;
2708
2709 return 0;
2710}
2711
2712
0c17d1d2
JH
2713/* truncate register to smaller size (in bytes)
2714 * must be called with size < BPF_REG_SIZE
2715 */
2716static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2717{
2718 u64 mask;
2719
2720 /* clear high bits in bit representation */
2721 reg->var_off = tnum_cast(reg->var_off, size);
2722
2723 /* fix arithmetic bounds */
2724 mask = ((u64)1 << (size * 8)) - 1;
2725 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2726 reg->umin_value &= mask;
2727 reg->umax_value &= mask;
2728 } else {
2729 reg->umin_value = 0;
2730 reg->umax_value = mask;
2731 }
2732 reg->smin_value = reg->umin_value;
2733 reg->smax_value = reg->umax_value;
2734}
2735
17a52670
AS
2736/* check whether memory at (regno + off) is accessible for t = (read | write)
2737 * if t==write, value_regno is a register which value is stored into memory
2738 * if t==read, value_regno is a register which will receive the value from memory
2739 * if t==write && value_regno==-1, some unknown value is stored into memory
2740 * if t==read && value_regno==-1, don't care what we read from memory
2741 */
ca369602
DB
2742static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2743 int off, int bpf_size, enum bpf_access_type t,
2744 int value_regno, bool strict_alignment_once)
17a52670 2745{
638f5b90
AS
2746 struct bpf_reg_state *regs = cur_regs(env);
2747 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 2748 struct bpf_func_state *state;
17a52670
AS
2749 int size, err = 0;
2750
2751 size = bpf_size_to_bytes(bpf_size);
2752 if (size < 0)
2753 return size;
2754
f1174f77 2755 /* alignment checks will add in reg->off themselves */
ca369602 2756 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
2757 if (err)
2758 return err;
17a52670 2759
f1174f77
EC
2760 /* for access checks, reg->off is just part of off */
2761 off += reg->off;
2762
2763 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
2764 if (t == BPF_WRITE && value_regno >= 0 &&
2765 is_pointer_value(env, value_regno)) {
61bd5218 2766 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
2767 return -EACCES;
2768 }
591fe988
DB
2769 err = check_map_access_type(env, regno, off, size, t);
2770 if (err)
2771 return err;
9fd29c08 2772 err = check_map_access(env, regno, off, size, false);
17a52670 2773 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2774 mark_reg_unknown(env, regs, value_regno);
17a52670 2775
1a0dc1ac 2776 } else if (reg->type == PTR_TO_CTX) {
f1174f77 2777 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 2778
1be7f75d
AS
2779 if (t == BPF_WRITE && value_regno >= 0 &&
2780 is_pointer_value(env, value_regno)) {
61bd5218 2781 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
2782 return -EACCES;
2783 }
f1174f77 2784
58990d1f
DB
2785 err = check_ctx_reg(env, reg, regno);
2786 if (err < 0)
2787 return err;
2788
31fd8581 2789 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 2790 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 2791 /* ctx access returns either a scalar, or a
de8f3a83
DB
2792 * PTR_TO_PACKET[_META,_END]. In the latter
2793 * case, we know the offset is zero.
f1174f77 2794 */
46f8bc92 2795 if (reg_type == SCALAR_VALUE) {
638f5b90 2796 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2797 } else {
638f5b90 2798 mark_reg_known_zero(env, regs,
61bd5218 2799 value_regno);
46f8bc92
MKL
2800 if (reg_type_may_be_null(reg_type))
2801 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
2802 /* A load of ctx field could have different
2803 * actual load size with the one encoded in the
2804 * insn. When the dst is PTR, it is for sure not
2805 * a sub-register.
2806 */
2807 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
46f8bc92 2808 }
638f5b90 2809 regs[value_regno].type = reg_type;
969bf05e 2810 }
17a52670 2811
f1174f77 2812 } else if (reg->type == PTR_TO_STACK) {
f1174f77 2813 off += reg->var_off.value;
e4298d25
DB
2814 err = check_stack_access(env, reg, off, size);
2815 if (err)
2816 return err;
8726679a 2817
f4d7e40a
AS
2818 state = func(env, reg);
2819 err = update_stack_depth(env, state, off);
2820 if (err)
2821 return err;
8726679a 2822
638f5b90 2823 if (t == BPF_WRITE)
61bd5218 2824 err = check_stack_write(env, state, off, size,
af86ca4e 2825 value_regno, insn_idx);
638f5b90 2826 else
61bd5218
JK
2827 err = check_stack_read(env, state, off, size,
2828 value_regno);
de8f3a83 2829 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 2830 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 2831 verbose(env, "cannot write into packet\n");
969bf05e
AS
2832 return -EACCES;
2833 }
4acf6c0b
BB
2834 if (t == BPF_WRITE && value_regno >= 0 &&
2835 is_pointer_value(env, value_regno)) {
61bd5218
JK
2836 verbose(env, "R%d leaks addr into packet\n",
2837 value_regno);
4acf6c0b
BB
2838 return -EACCES;
2839 }
9fd29c08 2840 err = check_packet_access(env, regno, off, size, false);
969bf05e 2841 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 2842 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
2843 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2844 if (t == BPF_WRITE && value_regno >= 0 &&
2845 is_pointer_value(env, value_regno)) {
2846 verbose(env, "R%d leaks addr into flow keys\n",
2847 value_regno);
2848 return -EACCES;
2849 }
2850
2851 err = check_flow_keys_access(env, off, size);
2852 if (!err && t == BPF_READ && value_regno >= 0)
2853 mark_reg_unknown(env, regs, value_regno);
46f8bc92 2854 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 2855 if (t == BPF_WRITE) {
46f8bc92
MKL
2856 verbose(env, "R%d cannot write into %s\n",
2857 regno, reg_type_str[reg->type]);
c64b7983
JS
2858 return -EACCES;
2859 }
5f456649 2860 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
2861 if (!err && value_regno >= 0)
2862 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
2863 } else if (reg->type == PTR_TO_TP_BUFFER) {
2864 err = check_tp_buffer_access(env, reg, regno, off, size);
2865 if (!err && t == BPF_READ && value_regno >= 0)
2866 mark_reg_unknown(env, regs, value_regno);
17a52670 2867 } else {
61bd5218
JK
2868 verbose(env, "R%d invalid mem access '%s'\n", regno,
2869 reg_type_str[reg->type]);
17a52670
AS
2870 return -EACCES;
2871 }
969bf05e 2872
f1174f77 2873 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 2874 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 2875 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 2876 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 2877 }
17a52670
AS
2878 return err;
2879}
2880
31fd8581 2881static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 2882{
17a52670
AS
2883 int err;
2884
2885 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2886 insn->imm != 0) {
61bd5218 2887 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
2888 return -EINVAL;
2889 }
2890
2891 /* check src1 operand */
dc503a8a 2892 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2893 if (err)
2894 return err;
2895
2896 /* check src2 operand */
dc503a8a 2897 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2898 if (err)
2899 return err;
2900
6bdf6abc 2901 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 2902 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
2903 return -EACCES;
2904 }
2905
ca369602 2906 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 2907 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
2908 is_flow_key_reg(env, insn->dst_reg) ||
2909 is_sk_reg(env, insn->dst_reg)) {
ca369602 2910 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2a159c6f
DB
2911 insn->dst_reg,
2912 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
2913 return -EACCES;
2914 }
2915
17a52670 2916 /* check whether atomic_add can read the memory */
31fd8581 2917 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2918 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
2919 if (err)
2920 return err;
2921
2922 /* check whether atomic_add can write into the same memory */
31fd8581 2923 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 2924 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
2925}
2926
2011fccf
AI
2927static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2928 int off, int access_size,
2929 bool zero_size_allowed)
2930{
2931 struct bpf_reg_state *reg = reg_state(env, regno);
2932
2933 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2934 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2935 if (tnum_is_const(reg->var_off)) {
2936 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2937 regno, off, access_size);
2938 } else {
2939 char tn_buf[48];
2940
2941 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2942 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2943 regno, tn_buf, access_size);
2944 }
2945 return -EACCES;
2946 }
2947 return 0;
2948}
2949
17a52670
AS
2950/* when register 'regno' is passed into function that will read 'access_size'
2951 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
2952 * and all elements of stack are initialized.
2953 * Unlike most pointer bounds-checking functions, this one doesn't take an
2954 * 'off' argument, so it has to add in reg->off itself.
17a52670 2955 */
58e2af8b 2956static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
2957 int access_size, bool zero_size_allowed,
2958 struct bpf_call_arg_meta *meta)
17a52670 2959{
2a159c6f 2960 struct bpf_reg_state *reg = reg_state(env, regno);
f4d7e40a 2961 struct bpf_func_state *state = func(env, reg);
f7cf25b2 2962 int err, min_off, max_off, i, j, slot, spi;
17a52670 2963
914cb781 2964 if (reg->type != PTR_TO_STACK) {
f1174f77 2965 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 2966 if (zero_size_allowed && access_size == 0 &&
914cb781 2967 register_is_null(reg))
8e2fe1d9
DB
2968 return 0;
2969
61bd5218 2970 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 2971 reg_type_str[reg->type],
8e2fe1d9 2972 reg_type_str[PTR_TO_STACK]);
17a52670 2973 return -EACCES;
8e2fe1d9 2974 }
17a52670 2975
2011fccf
AI
2976 if (tnum_is_const(reg->var_off)) {
2977 min_off = max_off = reg->var_off.value + reg->off;
2978 err = __check_stack_boundary(env, regno, min_off, access_size,
2979 zero_size_allowed);
2980 if (err)
2981 return err;
2982 } else {
088ec26d
AI
2983 /* Variable offset is prohibited for unprivileged mode for
2984 * simplicity since it requires corresponding support in
2985 * Spectre masking for stack ALU.
2986 * See also retrieve_ptr_limit().
2987 */
2988 if (!env->allow_ptr_leaks) {
2989 char tn_buf[48];
f1174f77 2990
088ec26d
AI
2991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2992 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2993 regno, tn_buf);
2994 return -EACCES;
2995 }
f2bcd05e
AI
2996 /* Only initialized buffer on stack is allowed to be accessed
2997 * with variable offset. With uninitialized buffer it's hard to
2998 * guarantee that whole memory is marked as initialized on
2999 * helper return since specific bounds are unknown what may
3000 * cause uninitialized stack leaking.
3001 */
3002 if (meta && meta->raw_mode)
3003 meta = NULL;
3004
107c26a7
AI
3005 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3006 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3007 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3008 regno);
3009 return -EACCES;
3010 }
2011fccf 3011 min_off = reg->smin_value + reg->off;
107c26a7 3012 max_off = reg->smax_value + reg->off;
2011fccf
AI
3013 err = __check_stack_boundary(env, regno, min_off, access_size,
3014 zero_size_allowed);
107c26a7
AI
3015 if (err) {
3016 verbose(env, "R%d min value is outside of stack bound\n",
3017 regno);
2011fccf 3018 return err;
107c26a7 3019 }
2011fccf
AI
3020 err = __check_stack_boundary(env, regno, max_off, access_size,
3021 zero_size_allowed);
107c26a7
AI
3022 if (err) {
3023 verbose(env, "R%d max value is outside of stack bound\n",
3024 regno);
2011fccf 3025 return err;
107c26a7 3026 }
17a52670
AS
3027 }
3028
435faee1
DB
3029 if (meta && meta->raw_mode) {
3030 meta->access_size = access_size;
3031 meta->regno = regno;
3032 return 0;
3033 }
3034
2011fccf 3035 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
3036 u8 *stype;
3037
2011fccf 3038 slot = -i - 1;
638f5b90 3039 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
3040 if (state->allocated_stack <= slot)
3041 goto err;
3042 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3043 if (*stype == STACK_MISC)
3044 goto mark;
3045 if (*stype == STACK_ZERO) {
3046 /* helper can write anything into the stack */
3047 *stype = STACK_MISC;
3048 goto mark;
17a52670 3049 }
f7cf25b2
AS
3050 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3051 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3052 __mark_reg_unknown(&state->stack[spi].spilled_ptr);
3053 for (j = 0; j < BPF_REG_SIZE; j++)
3054 state->stack[spi].slot_type[j] = STACK_MISC;
3055 goto mark;
3056 }
3057
cc2b14d5 3058err:
2011fccf
AI
3059 if (tnum_is_const(reg->var_off)) {
3060 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3061 min_off, i - min_off, access_size);
3062 } else {
3063 char tn_buf[48];
3064
3065 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3066 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3067 tn_buf, i - min_off, access_size);
3068 }
cc2b14d5
AS
3069 return -EACCES;
3070mark:
3071 /* reading any byte out of 8-byte 'spill_slot' will cause
3072 * the whole slot to be marked as 'read'
3073 */
679c782d 3074 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
3075 state->stack[spi].spilled_ptr.parent,
3076 REG_LIVE_READ64);
17a52670 3077 }
2011fccf 3078 return update_stack_depth(env, state, min_off);
17a52670
AS
3079}
3080
06c1c049
GB
3081static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3082 int access_size, bool zero_size_allowed,
3083 struct bpf_call_arg_meta *meta)
3084{
638f5b90 3085 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 3086
f1174f77 3087 switch (reg->type) {
06c1c049 3088 case PTR_TO_PACKET:
de8f3a83 3089 case PTR_TO_PACKET_META:
9fd29c08
YS
3090 return check_packet_access(env, regno, reg->off, access_size,
3091 zero_size_allowed);
06c1c049 3092 case PTR_TO_MAP_VALUE:
591fe988
DB
3093 if (check_map_access_type(env, regno, reg->off, access_size,
3094 meta && meta->raw_mode ? BPF_WRITE :
3095 BPF_READ))
3096 return -EACCES;
9fd29c08
YS
3097 return check_map_access(env, regno, reg->off, access_size,
3098 zero_size_allowed);
f1174f77 3099 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
3100 return check_stack_boundary(env, regno, access_size,
3101 zero_size_allowed, meta);
3102 }
3103}
3104
d83525ca
AS
3105/* Implementation details:
3106 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3107 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3108 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3109 * value_or_null->value transition, since the verifier only cares about
3110 * the range of access to valid map value pointer and doesn't care about actual
3111 * address of the map element.
3112 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3113 * reg->id > 0 after value_or_null->value transition. By doing so
3114 * two bpf_map_lookups will be considered two different pointers that
3115 * point to different bpf_spin_locks.
3116 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3117 * dead-locks.
3118 * Since only one bpf_spin_lock is allowed the checks are simpler than
3119 * reg_is_refcounted() logic. The verifier needs to remember only
3120 * one spin_lock instead of array of acquired_refs.
3121 * cur_state->active_spin_lock remembers which map value element got locked
3122 * and clears it after bpf_spin_unlock.
3123 */
3124static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3125 bool is_lock)
3126{
3127 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3128 struct bpf_verifier_state *cur = env->cur_state;
3129 bool is_const = tnum_is_const(reg->var_off);
3130 struct bpf_map *map = reg->map_ptr;
3131 u64 val = reg->var_off.value;
3132
3133 if (reg->type != PTR_TO_MAP_VALUE) {
3134 verbose(env, "R%d is not a pointer to map_value\n", regno);
3135 return -EINVAL;
3136 }
3137 if (!is_const) {
3138 verbose(env,
3139 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3140 regno);
3141 return -EINVAL;
3142 }
3143 if (!map->btf) {
3144 verbose(env,
3145 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3146 map->name);
3147 return -EINVAL;
3148 }
3149 if (!map_value_has_spin_lock(map)) {
3150 if (map->spin_lock_off == -E2BIG)
3151 verbose(env,
3152 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3153 map->name);
3154 else if (map->spin_lock_off == -ENOENT)
3155 verbose(env,
3156 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3157 map->name);
3158 else
3159 verbose(env,
3160 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3161 map->name);
3162 return -EINVAL;
3163 }
3164 if (map->spin_lock_off != val + reg->off) {
3165 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3166 val + reg->off);
3167 return -EINVAL;
3168 }
3169 if (is_lock) {
3170 if (cur->active_spin_lock) {
3171 verbose(env,
3172 "Locking two bpf_spin_locks are not allowed\n");
3173 return -EINVAL;
3174 }
3175 cur->active_spin_lock = reg->id;
3176 } else {
3177 if (!cur->active_spin_lock) {
3178 verbose(env, "bpf_spin_unlock without taking a lock\n");
3179 return -EINVAL;
3180 }
3181 if (cur->active_spin_lock != reg->id) {
3182 verbose(env, "bpf_spin_unlock of different lock\n");
3183 return -EINVAL;
3184 }
3185 cur->active_spin_lock = 0;
3186 }
3187 return 0;
3188}
3189
90133415
DB
3190static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3191{
3192 return type == ARG_PTR_TO_MEM ||
3193 type == ARG_PTR_TO_MEM_OR_NULL ||
3194 type == ARG_PTR_TO_UNINIT_MEM;
3195}
3196
3197static bool arg_type_is_mem_size(enum bpf_arg_type type)
3198{
3199 return type == ARG_CONST_SIZE ||
3200 type == ARG_CONST_SIZE_OR_ZERO;
3201}
3202
57c3bb72
AI
3203static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3204{
3205 return type == ARG_PTR_TO_INT ||
3206 type == ARG_PTR_TO_LONG;
3207}
3208
3209static int int_ptr_type_to_size(enum bpf_arg_type type)
3210{
3211 if (type == ARG_PTR_TO_INT)
3212 return sizeof(u32);
3213 else if (type == ARG_PTR_TO_LONG)
3214 return sizeof(u64);
3215
3216 return -EINVAL;
3217}
3218
58e2af8b 3219static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
3220 enum bpf_arg_type arg_type,
3221 struct bpf_call_arg_meta *meta)
17a52670 3222{
638f5b90 3223 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 3224 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
3225 int err = 0;
3226
80f1d68c 3227 if (arg_type == ARG_DONTCARE)
17a52670
AS
3228 return 0;
3229
dc503a8a
EC
3230 err = check_reg_arg(env, regno, SRC_OP);
3231 if (err)
3232 return err;
17a52670 3233
1be7f75d
AS
3234 if (arg_type == ARG_ANYTHING) {
3235 if (is_pointer_value(env, regno)) {
61bd5218
JK
3236 verbose(env, "R%d leaks addr into helper function\n",
3237 regno);
1be7f75d
AS
3238 return -EACCES;
3239 }
80f1d68c 3240 return 0;
1be7f75d 3241 }
80f1d68c 3242
de8f3a83 3243 if (type_is_pkt_pointer(type) &&
3a0af8fd 3244 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 3245 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
3246 return -EACCES;
3247 }
3248
8e2fe1d9 3249 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2ea864c5 3250 arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3251 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3252 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
17a52670 3253 expected_type = PTR_TO_STACK;
6ac99e8f
MKL
3254 if (register_is_null(reg) &&
3255 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3256 /* final test in check_stack_boundary() */;
3257 else if (!type_is_pkt_pointer(type) &&
3258 type != PTR_TO_MAP_VALUE &&
3259 type != expected_type)
6841de8b 3260 goto err_type;
39f19ebb
AS
3261 } else if (arg_type == ARG_CONST_SIZE ||
3262 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
3263 expected_type = SCALAR_VALUE;
3264 if (type != expected_type)
6841de8b 3265 goto err_type;
17a52670
AS
3266 } else if (arg_type == ARG_CONST_MAP_PTR) {
3267 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
3268 if (type != expected_type)
3269 goto err_type;
608cd71a
AS
3270 } else if (arg_type == ARG_PTR_TO_CTX) {
3271 expected_type = PTR_TO_CTX;
6841de8b
AS
3272 if (type != expected_type)
3273 goto err_type;
58990d1f
DB
3274 err = check_ctx_reg(env, reg, regno);
3275 if (err < 0)
3276 return err;
46f8bc92
MKL
3277 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3278 expected_type = PTR_TO_SOCK_COMMON;
3279 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3280 if (!type_is_sk_pointer(type))
3281 goto err_type;
1b986589
MKL
3282 if (reg->ref_obj_id) {
3283 if (meta->ref_obj_id) {
3284 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3285 regno, reg->ref_obj_id,
3286 meta->ref_obj_id);
3287 return -EFAULT;
3288 }
3289 meta->ref_obj_id = reg->ref_obj_id;
fd978bf7 3290 }
6ac99e8f
MKL
3291 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3292 expected_type = PTR_TO_SOCKET;
3293 if (type != expected_type)
3294 goto err_type;
d83525ca
AS
3295 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3296 if (meta->func_id == BPF_FUNC_spin_lock) {
3297 if (process_spin_lock(env, regno, true))
3298 return -EACCES;
3299 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3300 if (process_spin_lock(env, regno, false))
3301 return -EACCES;
3302 } else {
3303 verbose(env, "verifier internal error\n");
3304 return -EFAULT;
3305 }
90133415 3306 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
3307 expected_type = PTR_TO_STACK;
3308 /* One exception here. In case function allows for NULL to be
f1174f77 3309 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
3310 * happens during stack boundary checking.
3311 */
914cb781 3312 if (register_is_null(reg) &&
db1ac496 3313 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 3314 /* final test in check_stack_boundary() */;
de8f3a83
DB
3315 else if (!type_is_pkt_pointer(type) &&
3316 type != PTR_TO_MAP_VALUE &&
f1174f77 3317 type != expected_type)
6841de8b 3318 goto err_type;
39f19ebb 3319 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
57c3bb72
AI
3320 } else if (arg_type_is_int_ptr(arg_type)) {
3321 expected_type = PTR_TO_STACK;
3322 if (!type_is_pkt_pointer(type) &&
3323 type != PTR_TO_MAP_VALUE &&
3324 type != expected_type)
3325 goto err_type;
17a52670 3326 } else {
61bd5218 3327 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
3328 return -EFAULT;
3329 }
3330
17a52670
AS
3331 if (arg_type == ARG_CONST_MAP_PTR) {
3332 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 3333 meta->map_ptr = reg->map_ptr;
17a52670
AS
3334 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3335 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3336 * check that [key, key + map->key_size) are within
3337 * stack limits and initialized
3338 */
33ff9823 3339 if (!meta->map_ptr) {
17a52670
AS
3340 /* in function declaration map_ptr must come before
3341 * map_key, so that it's verified and known before
3342 * we have to check map_key here. Otherwise it means
3343 * that kernel subsystem misconfigured verifier
3344 */
61bd5218 3345 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
3346 return -EACCES;
3347 }
d71962f3
PC
3348 err = check_helper_mem_access(env, regno,
3349 meta->map_ptr->key_size, false,
3350 NULL);
2ea864c5 3351 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
3352 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3353 !register_is_null(reg)) ||
2ea864c5 3354 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
3355 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3356 * check [value, value + map->value_size) validity
3357 */
33ff9823 3358 if (!meta->map_ptr) {
17a52670 3359 /* kernel subsystem misconfigured verifier */
61bd5218 3360 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
3361 return -EACCES;
3362 }
2ea864c5 3363 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
3364 err = check_helper_mem_access(env, regno,
3365 meta->map_ptr->value_size, false,
2ea864c5 3366 meta);
90133415 3367 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 3368 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 3369
849fa506
YS
3370 /* remember the mem_size which may be used later
3371 * to refine return values.
3372 */
3373 meta->msize_smax_value = reg->smax_value;
3374 meta->msize_umax_value = reg->umax_value;
3375
f1174f77
EC
3376 /* The register is SCALAR_VALUE; the access check
3377 * happens using its boundaries.
06c1c049 3378 */
f1174f77 3379 if (!tnum_is_const(reg->var_off))
06c1c049
GB
3380 /* For unprivileged variable accesses, disable raw
3381 * mode so that the program is required to
3382 * initialize all the memory that the helper could
3383 * just partially fill up.
3384 */
3385 meta = NULL;
3386
b03c9f9f 3387 if (reg->smin_value < 0) {
61bd5218 3388 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
3389 regno);
3390 return -EACCES;
3391 }
06c1c049 3392
b03c9f9f 3393 if (reg->umin_value == 0) {
f1174f77
EC
3394 err = check_helper_mem_access(env, regno - 1, 0,
3395 zero_size_allowed,
3396 meta);
06c1c049
GB
3397 if (err)
3398 return err;
06c1c049 3399 }
f1174f77 3400
b03c9f9f 3401 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 3402 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
3403 regno);
3404 return -EACCES;
3405 }
3406 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 3407 reg->umax_value,
f1174f77 3408 zero_size_allowed, meta);
b5dc0163
AS
3409 if (!err)
3410 err = mark_chain_precision(env, regno);
57c3bb72
AI
3411 } else if (arg_type_is_int_ptr(arg_type)) {
3412 int size = int_ptr_type_to_size(arg_type);
3413
3414 err = check_helper_mem_access(env, regno, size, false, meta);
3415 if (err)
3416 return err;
3417 err = check_ptr_alignment(env, reg, 0, size, true);
17a52670
AS
3418 }
3419
3420 return err;
6841de8b 3421err_type:
61bd5218 3422 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
3423 reg_type_str[type], reg_type_str[expected_type]);
3424 return -EACCES;
17a52670
AS
3425}
3426
61bd5218
JK
3427static int check_map_func_compatibility(struct bpf_verifier_env *env,
3428 struct bpf_map *map, int func_id)
35578d79 3429{
35578d79
KX
3430 if (!map)
3431 return 0;
3432
6aff67c8
AS
3433 /* We need a two way check, first is from map perspective ... */
3434 switch (map->map_type) {
3435 case BPF_MAP_TYPE_PROG_ARRAY:
3436 if (func_id != BPF_FUNC_tail_call)
3437 goto error;
3438 break;
3439 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3440 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
3441 func_id != BPF_FUNC_perf_event_output &&
3442 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
3443 goto error;
3444 break;
3445 case BPF_MAP_TYPE_STACK_TRACE:
3446 if (func_id != BPF_FUNC_get_stackid)
3447 goto error;
3448 break;
4ed8ec52 3449 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 3450 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 3451 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
3452 goto error;
3453 break;
cd339431 3454 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 3455 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
3456 if (func_id != BPF_FUNC_get_local_storage)
3457 goto error;
3458 break;
546ac1ff 3459 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 3460 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
3461 if (func_id != BPF_FUNC_redirect_map &&
3462 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
3463 goto error;
3464 break;
fbfc504a
BT
3465 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3466 * appear.
3467 */
6710e112
JDB
3468 case BPF_MAP_TYPE_CPUMAP:
3469 if (func_id != BPF_FUNC_redirect_map)
3470 goto error;
3471 break;
fada7fdc
JL
3472 case BPF_MAP_TYPE_XSKMAP:
3473 if (func_id != BPF_FUNC_redirect_map &&
3474 func_id != BPF_FUNC_map_lookup_elem)
3475 goto error;
3476 break;
56f668df 3477 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 3478 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
3479 if (func_id != BPF_FUNC_map_lookup_elem)
3480 goto error;
16a43625 3481 break;
174a79ff
JF
3482 case BPF_MAP_TYPE_SOCKMAP:
3483 if (func_id != BPF_FUNC_sk_redirect_map &&
3484 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
3485 func_id != BPF_FUNC_map_delete_elem &&
3486 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
3487 goto error;
3488 break;
81110384
JF
3489 case BPF_MAP_TYPE_SOCKHASH:
3490 if (func_id != BPF_FUNC_sk_redirect_hash &&
3491 func_id != BPF_FUNC_sock_hash_update &&
3492 func_id != BPF_FUNC_map_delete_elem &&
3493 func_id != BPF_FUNC_msg_redirect_hash)
3494 goto error;
3495 break;
2dbb9b9e
MKL
3496 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3497 if (func_id != BPF_FUNC_sk_select_reuseport)
3498 goto error;
3499 break;
f1a2e44a
MV
3500 case BPF_MAP_TYPE_QUEUE:
3501 case BPF_MAP_TYPE_STACK:
3502 if (func_id != BPF_FUNC_map_peek_elem &&
3503 func_id != BPF_FUNC_map_pop_elem &&
3504 func_id != BPF_FUNC_map_push_elem)
3505 goto error;
3506 break;
6ac99e8f
MKL
3507 case BPF_MAP_TYPE_SK_STORAGE:
3508 if (func_id != BPF_FUNC_sk_storage_get &&
3509 func_id != BPF_FUNC_sk_storage_delete)
3510 goto error;
3511 break;
6aff67c8
AS
3512 default:
3513 break;
3514 }
3515
3516 /* ... and second from the function itself. */
3517 switch (func_id) {
3518 case BPF_FUNC_tail_call:
3519 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3520 goto error;
f910cefa 3521 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3522 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3523 return -EINVAL;
3524 }
6aff67c8
AS
3525 break;
3526 case BPF_FUNC_perf_event_read:
3527 case BPF_FUNC_perf_event_output:
908432ca 3528 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
3529 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3530 goto error;
3531 break;
3532 case BPF_FUNC_get_stackid:
3533 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3534 goto error;
3535 break;
60d20f91 3536 case BPF_FUNC_current_task_under_cgroup:
747ea55e 3537 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
3538 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3539 goto error;
3540 break;
97f91a7c 3541 case BPF_FUNC_redirect_map:
9c270af3 3542 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 3543 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
3544 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3545 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
3546 goto error;
3547 break;
174a79ff 3548 case BPF_FUNC_sk_redirect_map:
4f738adb 3549 case BPF_FUNC_msg_redirect_map:
81110384 3550 case BPF_FUNC_sock_map_update:
174a79ff
JF
3551 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3552 goto error;
3553 break;
81110384
JF
3554 case BPF_FUNC_sk_redirect_hash:
3555 case BPF_FUNC_msg_redirect_hash:
3556 case BPF_FUNC_sock_hash_update:
3557 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
3558 goto error;
3559 break;
cd339431 3560 case BPF_FUNC_get_local_storage:
b741f163
RG
3561 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3562 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
3563 goto error;
3564 break;
2dbb9b9e
MKL
3565 case BPF_FUNC_sk_select_reuseport:
3566 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3567 goto error;
3568 break;
f1a2e44a
MV
3569 case BPF_FUNC_map_peek_elem:
3570 case BPF_FUNC_map_pop_elem:
3571 case BPF_FUNC_map_push_elem:
3572 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3573 map->map_type != BPF_MAP_TYPE_STACK)
3574 goto error;
3575 break;
6ac99e8f
MKL
3576 case BPF_FUNC_sk_storage_get:
3577 case BPF_FUNC_sk_storage_delete:
3578 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3579 goto error;
3580 break;
6aff67c8
AS
3581 default:
3582 break;
35578d79
KX
3583 }
3584
3585 return 0;
6aff67c8 3586error:
61bd5218 3587 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 3588 map->map_type, func_id_name(func_id), func_id);
6aff67c8 3589 return -EINVAL;
35578d79
KX
3590}
3591
90133415 3592static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
3593{
3594 int count = 0;
3595
39f19ebb 3596 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3597 count++;
39f19ebb 3598 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3599 count++;
39f19ebb 3600 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3601 count++;
39f19ebb 3602 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 3603 count++;
39f19ebb 3604 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
3605 count++;
3606
90133415
DB
3607 /* We only support one arg being in raw mode at the moment,
3608 * which is sufficient for the helper functions we have
3609 * right now.
3610 */
3611 return count <= 1;
3612}
3613
3614static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3615 enum bpf_arg_type arg_next)
3616{
3617 return (arg_type_is_mem_ptr(arg_curr) &&
3618 !arg_type_is_mem_size(arg_next)) ||
3619 (!arg_type_is_mem_ptr(arg_curr) &&
3620 arg_type_is_mem_size(arg_next));
3621}
3622
3623static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3624{
3625 /* bpf_xxx(..., buf, len) call will access 'len'
3626 * bytes from memory 'buf'. Both arg types need
3627 * to be paired, so make sure there's no buggy
3628 * helper function specification.
3629 */
3630 if (arg_type_is_mem_size(fn->arg1_type) ||
3631 arg_type_is_mem_ptr(fn->arg5_type) ||
3632 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3633 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3634 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3635 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3636 return false;
3637
3638 return true;
3639}
3640
1b986589 3641static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
3642{
3643 int count = 0;
3644
1b986589 3645 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 3646 count++;
1b986589 3647 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 3648 count++;
1b986589 3649 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 3650 count++;
1b986589 3651 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 3652 count++;
1b986589 3653 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
3654 count++;
3655
1b986589
MKL
3656 /* A reference acquiring function cannot acquire
3657 * another refcounted ptr.
3658 */
3659 if (is_acquire_function(func_id) && count)
3660 return false;
3661
fd978bf7
JS
3662 /* We only support one arg being unreferenced at the moment,
3663 * which is sufficient for the helper functions we have right now.
3664 */
3665 return count <= 1;
3666}
3667
1b986589 3668static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
3669{
3670 return check_raw_mode_ok(fn) &&
fd978bf7 3671 check_arg_pair_ok(fn) &&
1b986589 3672 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
3673}
3674
de8f3a83
DB
3675/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3676 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 3677 */
f4d7e40a
AS
3678static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3679 struct bpf_func_state *state)
969bf05e 3680{
58e2af8b 3681 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
3682 int i;
3683
3684 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3685 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 3686 mark_reg_unknown(env, regs, i);
969bf05e 3687
f3709f69
JS
3688 bpf_for_each_spilled_reg(i, state, reg) {
3689 if (!reg)
969bf05e 3690 continue;
de8f3a83
DB
3691 if (reg_is_pkt_pointer_any(reg))
3692 __mark_reg_unknown(reg);
969bf05e
AS
3693 }
3694}
3695
f4d7e40a
AS
3696static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3697{
3698 struct bpf_verifier_state *vstate = env->cur_state;
3699 int i;
3700
3701 for (i = 0; i <= vstate->curframe; i++)
3702 __clear_all_pkt_pointers(env, vstate->frame[i]);
3703}
3704
fd978bf7 3705static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
3706 struct bpf_func_state *state,
3707 int ref_obj_id)
fd978bf7
JS
3708{
3709 struct bpf_reg_state *regs = state->regs, *reg;
3710 int i;
3711
3712 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 3713 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
3714 mark_reg_unknown(env, regs, i);
3715
3716 bpf_for_each_spilled_reg(i, state, reg) {
3717 if (!reg)
3718 continue;
1b986589 3719 if (reg->ref_obj_id == ref_obj_id)
fd978bf7
JS
3720 __mark_reg_unknown(reg);
3721 }
3722}
3723
3724/* The pointer with the specified id has released its reference to kernel
3725 * resources. Identify all copies of the same pointer and clear the reference.
3726 */
3727static int release_reference(struct bpf_verifier_env *env,
1b986589 3728 int ref_obj_id)
fd978bf7
JS
3729{
3730 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 3731 int err;
fd978bf7
JS
3732 int i;
3733
1b986589
MKL
3734 err = release_reference_state(cur_func(env), ref_obj_id);
3735 if (err)
3736 return err;
3737
fd978bf7 3738 for (i = 0; i <= vstate->curframe; i++)
1b986589 3739 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 3740
1b986589 3741 return 0;
fd978bf7
JS
3742}
3743
f4d7e40a
AS
3744static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3745 int *insn_idx)
3746{
3747 struct bpf_verifier_state *state = env->cur_state;
3748 struct bpf_func_state *caller, *callee;
fd978bf7 3749 int i, err, subprog, target_insn;
f4d7e40a 3750
aada9ce6 3751 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 3752 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 3753 state->curframe + 2);
f4d7e40a
AS
3754 return -E2BIG;
3755 }
3756
3757 target_insn = *insn_idx + insn->imm;
3758 subprog = find_subprog(env, target_insn + 1);
3759 if (subprog < 0) {
3760 verbose(env, "verifier bug. No program starts at insn %d\n",
3761 target_insn + 1);
3762 return -EFAULT;
3763 }
3764
3765 caller = state->frame[state->curframe];
3766 if (state->frame[state->curframe + 1]) {
3767 verbose(env, "verifier bug. Frame %d already allocated\n",
3768 state->curframe + 1);
3769 return -EFAULT;
3770 }
3771
3772 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3773 if (!callee)
3774 return -ENOMEM;
3775 state->frame[state->curframe + 1] = callee;
3776
3777 /* callee cannot access r0, r6 - r9 for reading and has to write
3778 * into its own stack before reading from it.
3779 * callee can read/write into caller's stack
3780 */
3781 init_func_state(env, callee,
3782 /* remember the callsite, it will be used by bpf_exit */
3783 *insn_idx /* callsite */,
3784 state->curframe + 1 /* frameno within this callchain */,
f910cefa 3785 subprog /* subprog number within this prog */);
f4d7e40a 3786
fd978bf7
JS
3787 /* Transfer references to the callee */
3788 err = transfer_reference_state(callee, caller);
3789 if (err)
3790 return err;
3791
679c782d
EC
3792 /* copy r1 - r5 args that callee can access. The copy includes parent
3793 * pointers, which connects us up to the liveness chain
3794 */
f4d7e40a
AS
3795 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3796 callee->regs[i] = caller->regs[i];
3797
679c782d 3798 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
3799 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3800 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3801 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3802 }
3803
3804 /* only increment it after check_reg_arg() finished */
3805 state->curframe++;
3806
3807 /* and go analyze first insn of the callee */
3808 *insn_idx = target_insn;
3809
06ee7115 3810 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3811 verbose(env, "caller:\n");
3812 print_verifier_state(env, caller);
3813 verbose(env, "callee:\n");
3814 print_verifier_state(env, callee);
3815 }
3816 return 0;
3817}
3818
3819static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3820{
3821 struct bpf_verifier_state *state = env->cur_state;
3822 struct bpf_func_state *caller, *callee;
3823 struct bpf_reg_state *r0;
fd978bf7 3824 int err;
f4d7e40a
AS
3825
3826 callee = state->frame[state->curframe];
3827 r0 = &callee->regs[BPF_REG_0];
3828 if (r0->type == PTR_TO_STACK) {
3829 /* technically it's ok to return caller's stack pointer
3830 * (or caller's caller's pointer) back to the caller,
3831 * since these pointers are valid. Only current stack
3832 * pointer will be invalid as soon as function exits,
3833 * but let's be conservative
3834 */
3835 verbose(env, "cannot return stack pointer to the caller\n");
3836 return -EINVAL;
3837 }
3838
3839 state->curframe--;
3840 caller = state->frame[state->curframe];
3841 /* return to the caller whatever r0 had in the callee */
3842 caller->regs[BPF_REG_0] = *r0;
3843
fd978bf7
JS
3844 /* Transfer references to the caller */
3845 err = transfer_reference_state(caller, callee);
3846 if (err)
3847 return err;
3848
f4d7e40a 3849 *insn_idx = callee->callsite + 1;
06ee7115 3850 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
3851 verbose(env, "returning from callee:\n");
3852 print_verifier_state(env, callee);
3853 verbose(env, "to caller at %d:\n", *insn_idx);
3854 print_verifier_state(env, caller);
3855 }
3856 /* clear everything in the callee */
3857 free_func_state(callee);
3858 state->frame[state->curframe + 1] = NULL;
3859 return 0;
3860}
3861
849fa506
YS
3862static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3863 int func_id,
3864 struct bpf_call_arg_meta *meta)
3865{
3866 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3867
3868 if (ret_type != RET_INTEGER ||
3869 (func_id != BPF_FUNC_get_stack &&
3870 func_id != BPF_FUNC_probe_read_str))
3871 return;
3872
3873 ret_reg->smax_value = meta->msize_smax_value;
3874 ret_reg->umax_value = meta->msize_umax_value;
3875 __reg_deduce_bounds(ret_reg);
3876 __reg_bound_offset(ret_reg);
3877}
3878
c93552c4
DB
3879static int
3880record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3881 int func_id, int insn_idx)
3882{
3883 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 3884 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
3885
3886 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
3887 func_id != BPF_FUNC_map_lookup_elem &&
3888 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
3889 func_id != BPF_FUNC_map_delete_elem &&
3890 func_id != BPF_FUNC_map_push_elem &&
3891 func_id != BPF_FUNC_map_pop_elem &&
3892 func_id != BPF_FUNC_map_peek_elem)
c93552c4 3893 return 0;
09772d92 3894
591fe988 3895 if (map == NULL) {
c93552c4
DB
3896 verbose(env, "kernel subsystem misconfigured verifier\n");
3897 return -EINVAL;
3898 }
3899
591fe988
DB
3900 /* In case of read-only, some additional restrictions
3901 * need to be applied in order to prevent altering the
3902 * state of the map from program side.
3903 */
3904 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3905 (func_id == BPF_FUNC_map_delete_elem ||
3906 func_id == BPF_FUNC_map_update_elem ||
3907 func_id == BPF_FUNC_map_push_elem ||
3908 func_id == BPF_FUNC_map_pop_elem)) {
3909 verbose(env, "write into map forbidden\n");
3910 return -EACCES;
3911 }
3912
c93552c4
DB
3913 if (!BPF_MAP_PTR(aux->map_state))
3914 bpf_map_ptr_store(aux, meta->map_ptr,
3915 meta->map_ptr->unpriv_array);
3916 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3917 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3918 meta->map_ptr->unpriv_array);
3919 return 0;
3920}
3921
fd978bf7
JS
3922static int check_reference_leak(struct bpf_verifier_env *env)
3923{
3924 struct bpf_func_state *state = cur_func(env);
3925 int i;
3926
3927 for (i = 0; i < state->acquired_refs; i++) {
3928 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3929 state->refs[i].id, state->refs[i].insn_idx);
3930 }
3931 return state->acquired_refs ? -EINVAL : 0;
3932}
3933
f4d7e40a 3934static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 3935{
17a52670 3936 const struct bpf_func_proto *fn = NULL;
638f5b90 3937 struct bpf_reg_state *regs;
33ff9823 3938 struct bpf_call_arg_meta meta;
969bf05e 3939 bool changes_data;
17a52670
AS
3940 int i, err;
3941
3942 /* find function prototype */
3943 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
3944 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3945 func_id);
17a52670
AS
3946 return -EINVAL;
3947 }
3948
00176a34 3949 if (env->ops->get_func_proto)
5e43f899 3950 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 3951 if (!fn) {
61bd5218
JK
3952 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3953 func_id);
17a52670
AS
3954 return -EINVAL;
3955 }
3956
3957 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 3958 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 3959 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
3960 return -EINVAL;
3961 }
3962
04514d13 3963 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 3964 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
3965 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3966 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3967 func_id_name(func_id), func_id);
3968 return -EINVAL;
3969 }
969bf05e 3970
33ff9823 3971 memset(&meta, 0, sizeof(meta));
36bbef52 3972 meta.pkt_access = fn->pkt_access;
33ff9823 3973
1b986589 3974 err = check_func_proto(fn, func_id);
435faee1 3975 if (err) {
61bd5218 3976 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 3977 func_id_name(func_id), func_id);
435faee1
DB
3978 return err;
3979 }
3980
d83525ca 3981 meta.func_id = func_id;
17a52670 3982 /* check args */
33ff9823 3983 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
3984 if (err)
3985 return err;
33ff9823 3986 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
3987 if (err)
3988 return err;
33ff9823 3989 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
3990 if (err)
3991 return err;
33ff9823 3992 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
3993 if (err)
3994 return err;
33ff9823 3995 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
3996 if (err)
3997 return err;
3998
c93552c4
DB
3999 err = record_func_map(env, &meta, func_id, insn_idx);
4000 if (err)
4001 return err;
4002
435faee1
DB
4003 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4004 * is inferred from register state.
4005 */
4006 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
4007 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4008 BPF_WRITE, -1, false);
435faee1
DB
4009 if (err)
4010 return err;
4011 }
4012
fd978bf7
JS
4013 if (func_id == BPF_FUNC_tail_call) {
4014 err = check_reference_leak(env);
4015 if (err) {
4016 verbose(env, "tail_call would lead to reference leak\n");
4017 return err;
4018 }
4019 } else if (is_release_function(func_id)) {
1b986589 4020 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
4021 if (err) {
4022 verbose(env, "func %s#%d reference has not been acquired before\n",
4023 func_id_name(func_id), func_id);
fd978bf7 4024 return err;
46f8bc92 4025 }
fd978bf7
JS
4026 }
4027
638f5b90 4028 regs = cur_regs(env);
cd339431
RG
4029
4030 /* check that flags argument in get_local_storage(map, flags) is 0,
4031 * this is required because get_local_storage() can't return an error.
4032 */
4033 if (func_id == BPF_FUNC_get_local_storage &&
4034 !register_is_null(&regs[BPF_REG_2])) {
4035 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4036 return -EINVAL;
4037 }
4038
17a52670 4039 /* reset caller saved regs */
dc503a8a 4040 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4041 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4042 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4043 }
17a52670 4044
5327ed3d
JW
4045 /* helper call returns 64-bit value. */
4046 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4047
dc503a8a 4048 /* update return register (already marked as written above) */
17a52670 4049 if (fn->ret_type == RET_INTEGER) {
f1174f77 4050 /* sets type to SCALAR_VALUE */
61bd5218 4051 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
4052 } else if (fn->ret_type == RET_VOID) {
4053 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
4054 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4055 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 4056 /* There is no offset yet applied, variable or fixed */
61bd5218 4057 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
4058 /* remember map_ptr, so that check_map_access()
4059 * can check 'value_size' boundary of memory access
4060 * to map element returned from bpf_map_lookup_elem()
4061 */
33ff9823 4062 if (meta.map_ptr == NULL) {
61bd5218
JK
4063 verbose(env,
4064 "kernel subsystem misconfigured verifier\n");
17a52670
AS
4065 return -EINVAL;
4066 }
33ff9823 4067 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
4068 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4069 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
4070 if (map_value_has_spin_lock(meta.map_ptr))
4071 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
4072 } else {
4073 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4074 regs[BPF_REG_0].id = ++env->id_gen;
4075 }
c64b7983
JS
4076 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4077 mark_reg_known_zero(env, regs, BPF_REG_0);
4078 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
0f3adc28 4079 regs[BPF_REG_0].id = ++env->id_gen;
85a51f8c
LB
4080 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4081 mark_reg_known_zero(env, regs, BPF_REG_0);
4082 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4083 regs[BPF_REG_0].id = ++env->id_gen;
655a51e5
MKL
4084 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4085 mark_reg_known_zero(env, regs, BPF_REG_0);
4086 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4087 regs[BPF_REG_0].id = ++env->id_gen;
17a52670 4088 } else {
61bd5218 4089 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 4090 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
4091 return -EINVAL;
4092 }
04fd61ab 4093
0f3adc28 4094 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
4095 /* For release_reference() */
4096 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
0f3adc28
LB
4097 } else if (is_acquire_function(func_id)) {
4098 int id = acquire_reference_state(env, insn_idx);
4099
4100 if (id < 0)
4101 return id;
4102 /* For mark_ptr_or_null_reg() */
4103 regs[BPF_REG_0].id = id;
4104 /* For release_reference() */
4105 regs[BPF_REG_0].ref_obj_id = id;
4106 }
1b986589 4107
849fa506
YS
4108 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4109
61bd5218 4110 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
4111 if (err)
4112 return err;
04fd61ab 4113
c195651e
YS
4114 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4115 const char *err_str;
4116
4117#ifdef CONFIG_PERF_EVENTS
4118 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4119 err_str = "cannot get callchain buffer for func %s#%d\n";
4120#else
4121 err = -ENOTSUPP;
4122 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4123#endif
4124 if (err) {
4125 verbose(env, err_str, func_id_name(func_id), func_id);
4126 return err;
4127 }
4128
4129 env->prog->has_callchain_buf = true;
4130 }
4131
969bf05e
AS
4132 if (changes_data)
4133 clear_all_pkt_pointers(env);
4134 return 0;
4135}
4136
b03c9f9f
EC
4137static bool signed_add_overflows(s64 a, s64 b)
4138{
4139 /* Do the add in u64, where overflow is well-defined */
4140 s64 res = (s64)((u64)a + (u64)b);
4141
4142 if (b < 0)
4143 return res > a;
4144 return res < a;
4145}
4146
4147static bool signed_sub_overflows(s64 a, s64 b)
4148{
4149 /* Do the sub in u64, where overflow is well-defined */
4150 s64 res = (s64)((u64)a - (u64)b);
4151
4152 if (b < 0)
4153 return res < a;
4154 return res > a;
969bf05e
AS
4155}
4156
bb7f0f98
AS
4157static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4158 const struct bpf_reg_state *reg,
4159 enum bpf_reg_type type)
4160{
4161 bool known = tnum_is_const(reg->var_off);
4162 s64 val = reg->var_off.value;
4163 s64 smin = reg->smin_value;
4164
4165 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4166 verbose(env, "math between %s pointer and %lld is not allowed\n",
4167 reg_type_str[type], val);
4168 return false;
4169 }
4170
4171 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4172 verbose(env, "%s pointer offset %d is not allowed\n",
4173 reg_type_str[type], reg->off);
4174 return false;
4175 }
4176
4177 if (smin == S64_MIN) {
4178 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4179 reg_type_str[type]);
4180 return false;
4181 }
4182
4183 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4184 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4185 smin, reg_type_str[type]);
4186 return false;
4187 }
4188
4189 return true;
4190}
4191
979d63d5
DB
4192static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4193{
4194 return &env->insn_aux_data[env->insn_idx];
4195}
4196
4197static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4198 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4199{
4200 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4201 (opcode == BPF_SUB && !off_is_neg);
4202 u32 off;
4203
4204 switch (ptr_reg->type) {
4205 case PTR_TO_STACK:
088ec26d
AI
4206 /* Indirect variable offset stack access is prohibited in
4207 * unprivileged mode so it's not handled here.
4208 */
979d63d5
DB
4209 off = ptr_reg->off + ptr_reg->var_off.value;
4210 if (mask_to_left)
4211 *ptr_limit = MAX_BPF_STACK + off;
4212 else
4213 *ptr_limit = -off;
4214 return 0;
4215 case PTR_TO_MAP_VALUE:
4216 if (mask_to_left) {
4217 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4218 } else {
4219 off = ptr_reg->smin_value + ptr_reg->off;
4220 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4221 }
4222 return 0;
4223 default:
4224 return -EINVAL;
4225 }
4226}
4227
d3bd7413
DB
4228static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4229 const struct bpf_insn *insn)
4230{
4231 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4232}
4233
4234static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4235 u32 alu_state, u32 alu_limit)
4236{
4237 /* If we arrived here from different branches with different
4238 * state or limits to sanitize, then this won't work.
4239 */
4240 if (aux->alu_state &&
4241 (aux->alu_state != alu_state ||
4242 aux->alu_limit != alu_limit))
4243 return -EACCES;
4244
4245 /* Corresponding fixup done in fixup_bpf_calls(). */
4246 aux->alu_state = alu_state;
4247 aux->alu_limit = alu_limit;
4248 return 0;
4249}
4250
4251static int sanitize_val_alu(struct bpf_verifier_env *env,
4252 struct bpf_insn *insn)
4253{
4254 struct bpf_insn_aux_data *aux = cur_aux(env);
4255
4256 if (can_skip_alu_sanitation(env, insn))
4257 return 0;
4258
4259 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4260}
4261
979d63d5
DB
4262static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4263 struct bpf_insn *insn,
4264 const struct bpf_reg_state *ptr_reg,
4265 struct bpf_reg_state *dst_reg,
4266 bool off_is_neg)
4267{
4268 struct bpf_verifier_state *vstate = env->cur_state;
4269 struct bpf_insn_aux_data *aux = cur_aux(env);
4270 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4271 u8 opcode = BPF_OP(insn->code);
4272 u32 alu_state, alu_limit;
4273 struct bpf_reg_state tmp;
4274 bool ret;
4275
d3bd7413 4276 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
4277 return 0;
4278
4279 /* We already marked aux for masking from non-speculative
4280 * paths, thus we got here in the first place. We only care
4281 * to explore bad access from here.
4282 */
4283 if (vstate->speculative)
4284 goto do_sim;
4285
4286 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4287 alu_state |= ptr_is_dst_reg ?
4288 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4289
4290 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4291 return 0;
d3bd7413 4292 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
979d63d5 4293 return -EACCES;
979d63d5
DB
4294do_sim:
4295 /* Simulate and find potential out-of-bounds access under
4296 * speculative execution from truncation as a result of
4297 * masking when off was not within expected range. If off
4298 * sits in dst, then we temporarily need to move ptr there
4299 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4300 * for cases where we use K-based arithmetic in one direction
4301 * and truncated reg-based in the other in order to explore
4302 * bad access.
4303 */
4304 if (!ptr_is_dst_reg) {
4305 tmp = *dst_reg;
4306 *dst_reg = *ptr_reg;
4307 }
4308 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 4309 if (!ptr_is_dst_reg && ret)
979d63d5
DB
4310 *dst_reg = tmp;
4311 return !ret ? -EFAULT : 0;
4312}
4313
f1174f77 4314/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
4315 * Caller should also handle BPF_MOV case separately.
4316 * If we return -EACCES, caller may want to try again treating pointer as a
4317 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4318 */
4319static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4320 struct bpf_insn *insn,
4321 const struct bpf_reg_state *ptr_reg,
4322 const struct bpf_reg_state *off_reg)
969bf05e 4323{
f4d7e40a
AS
4324 struct bpf_verifier_state *vstate = env->cur_state;
4325 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4326 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 4327 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
4328 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4329 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4330 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4331 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 4332 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 4333 u8 opcode = BPF_OP(insn->code);
979d63d5 4334 int ret;
969bf05e 4335
f1174f77 4336 dst_reg = &regs[dst];
969bf05e 4337
6f16101e
DB
4338 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4339 smin_val > smax_val || umin_val > umax_val) {
4340 /* Taint dst register if offset had invalid bounds derived from
4341 * e.g. dead branches.
4342 */
4343 __mark_reg_unknown(dst_reg);
4344 return 0;
f1174f77
EC
4345 }
4346
4347 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4348 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
4349 verbose(env,
4350 "R%d 32-bit pointer arithmetic prohibited\n",
4351 dst);
f1174f77 4352 return -EACCES;
969bf05e
AS
4353 }
4354
aad2eeaf
JS
4355 switch (ptr_reg->type) {
4356 case PTR_TO_MAP_VALUE_OR_NULL:
4357 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4358 dst, reg_type_str[ptr_reg->type]);
f1174f77 4359 return -EACCES;
aad2eeaf
JS
4360 case CONST_PTR_TO_MAP:
4361 case PTR_TO_PACKET_END:
c64b7983
JS
4362 case PTR_TO_SOCKET:
4363 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
4364 case PTR_TO_SOCK_COMMON:
4365 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
4366 case PTR_TO_TCP_SOCK:
4367 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 4368 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
4369 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4370 dst, reg_type_str[ptr_reg->type]);
f1174f77 4371 return -EACCES;
9d7eceed
DB
4372 case PTR_TO_MAP_VALUE:
4373 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4374 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4375 off_reg == dst_reg ? dst : src);
4376 return -EACCES;
4377 }
4378 /* fall-through */
aad2eeaf
JS
4379 default:
4380 break;
f1174f77
EC
4381 }
4382
4383 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4384 * The id may be overwritten later if we create a new variable offset.
969bf05e 4385 */
f1174f77
EC
4386 dst_reg->type = ptr_reg->type;
4387 dst_reg->id = ptr_reg->id;
969bf05e 4388
bb7f0f98
AS
4389 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4390 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4391 return -EINVAL;
4392
f1174f77
EC
4393 switch (opcode) {
4394 case BPF_ADD:
979d63d5
DB
4395 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4396 if (ret < 0) {
4397 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4398 return ret;
4399 }
f1174f77
EC
4400 /* We can take a fixed offset as long as it doesn't overflow
4401 * the s32 'off' field
969bf05e 4402 */
b03c9f9f
EC
4403 if (known && (ptr_reg->off + smin_val ==
4404 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 4405 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
4406 dst_reg->smin_value = smin_ptr;
4407 dst_reg->smax_value = smax_ptr;
4408 dst_reg->umin_value = umin_ptr;
4409 dst_reg->umax_value = umax_ptr;
f1174f77 4410 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 4411 dst_reg->off = ptr_reg->off + smin_val;
0962590e 4412 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4413 break;
4414 }
f1174f77
EC
4415 /* A new variable offset is created. Note that off_reg->off
4416 * == 0, since it's a scalar.
4417 * dst_reg gets the pointer type and since some positive
4418 * integer value was added to the pointer, give it a new 'id'
4419 * if it's a PTR_TO_PACKET.
4420 * this creates a new 'base' pointer, off_reg (variable) gets
4421 * added into the variable offset, and we copy the fixed offset
4422 * from ptr_reg.
969bf05e 4423 */
b03c9f9f
EC
4424 if (signed_add_overflows(smin_ptr, smin_val) ||
4425 signed_add_overflows(smax_ptr, smax_val)) {
4426 dst_reg->smin_value = S64_MIN;
4427 dst_reg->smax_value = S64_MAX;
4428 } else {
4429 dst_reg->smin_value = smin_ptr + smin_val;
4430 dst_reg->smax_value = smax_ptr + smax_val;
4431 }
4432 if (umin_ptr + umin_val < umin_ptr ||
4433 umax_ptr + umax_val < umax_ptr) {
4434 dst_reg->umin_value = 0;
4435 dst_reg->umax_value = U64_MAX;
4436 } else {
4437 dst_reg->umin_value = umin_ptr + umin_val;
4438 dst_reg->umax_value = umax_ptr + umax_val;
4439 }
f1174f77
EC
4440 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4441 dst_reg->off = ptr_reg->off;
0962590e 4442 dst_reg->raw = ptr_reg->raw;
de8f3a83 4443 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4444 dst_reg->id = ++env->id_gen;
4445 /* something was added to pkt_ptr, set range to zero */
0962590e 4446 dst_reg->raw = 0;
f1174f77
EC
4447 }
4448 break;
4449 case BPF_SUB:
979d63d5
DB
4450 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4451 if (ret < 0) {
4452 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4453 return ret;
4454 }
f1174f77
EC
4455 if (dst_reg == off_reg) {
4456 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
4457 verbose(env, "R%d tried to subtract pointer from scalar\n",
4458 dst);
f1174f77
EC
4459 return -EACCES;
4460 }
4461 /* We don't allow subtraction from FP, because (according to
4462 * test_verifier.c test "invalid fp arithmetic", JITs might not
4463 * be able to deal with it.
969bf05e 4464 */
f1174f77 4465 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
4466 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4467 dst);
f1174f77
EC
4468 return -EACCES;
4469 }
b03c9f9f
EC
4470 if (known && (ptr_reg->off - smin_val ==
4471 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 4472 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
4473 dst_reg->smin_value = smin_ptr;
4474 dst_reg->smax_value = smax_ptr;
4475 dst_reg->umin_value = umin_ptr;
4476 dst_reg->umax_value = umax_ptr;
f1174f77
EC
4477 dst_reg->var_off = ptr_reg->var_off;
4478 dst_reg->id = ptr_reg->id;
b03c9f9f 4479 dst_reg->off = ptr_reg->off - smin_val;
0962590e 4480 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
4481 break;
4482 }
f1174f77
EC
4483 /* A new variable offset is created. If the subtrahend is known
4484 * nonnegative, then any reg->range we had before is still good.
969bf05e 4485 */
b03c9f9f
EC
4486 if (signed_sub_overflows(smin_ptr, smax_val) ||
4487 signed_sub_overflows(smax_ptr, smin_val)) {
4488 /* Overflow possible, we know nothing */
4489 dst_reg->smin_value = S64_MIN;
4490 dst_reg->smax_value = S64_MAX;
4491 } else {
4492 dst_reg->smin_value = smin_ptr - smax_val;
4493 dst_reg->smax_value = smax_ptr - smin_val;
4494 }
4495 if (umin_ptr < umax_val) {
4496 /* Overflow possible, we know nothing */
4497 dst_reg->umin_value = 0;
4498 dst_reg->umax_value = U64_MAX;
4499 } else {
4500 /* Cannot overflow (as long as bounds are consistent) */
4501 dst_reg->umin_value = umin_ptr - umax_val;
4502 dst_reg->umax_value = umax_ptr - umin_val;
4503 }
f1174f77
EC
4504 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4505 dst_reg->off = ptr_reg->off;
0962590e 4506 dst_reg->raw = ptr_reg->raw;
de8f3a83 4507 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
4508 dst_reg->id = ++env->id_gen;
4509 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 4510 if (smin_val < 0)
0962590e 4511 dst_reg->raw = 0;
43188702 4512 }
f1174f77
EC
4513 break;
4514 case BPF_AND:
4515 case BPF_OR:
4516 case BPF_XOR:
82abbf8d
AS
4517 /* bitwise ops on pointers are troublesome, prohibit. */
4518 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4519 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
4520 return -EACCES;
4521 default:
4522 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
4523 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4524 dst, bpf_alu_string[opcode >> 4]);
f1174f77 4525 return -EACCES;
43188702
JF
4526 }
4527
bb7f0f98
AS
4528 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4529 return -EINVAL;
4530
b03c9f9f
EC
4531 __update_reg_bounds(dst_reg);
4532 __reg_deduce_bounds(dst_reg);
4533 __reg_bound_offset(dst_reg);
0d6303db
DB
4534
4535 /* For unprivileged we require that resulting offset must be in bounds
4536 * in order to be able to sanitize access later on.
4537 */
e4298d25
DB
4538 if (!env->allow_ptr_leaks) {
4539 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4540 check_map_access(env, dst, dst_reg->off, 1, false)) {
4541 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4542 "prohibited for !root\n", dst);
4543 return -EACCES;
4544 } else if (dst_reg->type == PTR_TO_STACK &&
4545 check_stack_access(env, dst_reg, dst_reg->off +
4546 dst_reg->var_off.value, 1)) {
4547 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4548 "prohibited for !root\n", dst);
4549 return -EACCES;
4550 }
0d6303db
DB
4551 }
4552
43188702
JF
4553 return 0;
4554}
4555
468f6eaf
JH
4556/* WARNING: This function does calculations on 64-bit values, but the actual
4557 * execution may occur on 32-bit values. Therefore, things like bitshifts
4558 * need extra checks in the 32-bit case.
4559 */
f1174f77
EC
4560static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4561 struct bpf_insn *insn,
4562 struct bpf_reg_state *dst_reg,
4563 struct bpf_reg_state src_reg)
969bf05e 4564{
638f5b90 4565 struct bpf_reg_state *regs = cur_regs(env);
48461135 4566 u8 opcode = BPF_OP(insn->code);
f1174f77 4567 bool src_known, dst_known;
b03c9f9f
EC
4568 s64 smin_val, smax_val;
4569 u64 umin_val, umax_val;
468f6eaf 4570 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
4571 u32 dst = insn->dst_reg;
4572 int ret;
48461135 4573
b799207e
JH
4574 if (insn_bitness == 32) {
4575 /* Relevant for 32-bit RSH: Information can propagate towards
4576 * LSB, so it isn't sufficient to only truncate the output to
4577 * 32 bits.
4578 */
4579 coerce_reg_to_size(dst_reg, 4);
4580 coerce_reg_to_size(&src_reg, 4);
4581 }
4582
b03c9f9f
EC
4583 smin_val = src_reg.smin_value;
4584 smax_val = src_reg.smax_value;
4585 umin_val = src_reg.umin_value;
4586 umax_val = src_reg.umax_value;
f1174f77
EC
4587 src_known = tnum_is_const(src_reg.var_off);
4588 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 4589
6f16101e
DB
4590 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4591 smin_val > smax_val || umin_val > umax_val) {
4592 /* Taint dst register if offset had invalid bounds derived from
4593 * e.g. dead branches.
4594 */
4595 __mark_reg_unknown(dst_reg);
4596 return 0;
4597 }
4598
bb7f0f98
AS
4599 if (!src_known &&
4600 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4601 __mark_reg_unknown(dst_reg);
4602 return 0;
4603 }
4604
48461135
JB
4605 switch (opcode) {
4606 case BPF_ADD:
d3bd7413
DB
4607 ret = sanitize_val_alu(env, insn);
4608 if (ret < 0) {
4609 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4610 return ret;
4611 }
b03c9f9f
EC
4612 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4613 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4614 dst_reg->smin_value = S64_MIN;
4615 dst_reg->smax_value = S64_MAX;
4616 } else {
4617 dst_reg->smin_value += smin_val;
4618 dst_reg->smax_value += smax_val;
4619 }
4620 if (dst_reg->umin_value + umin_val < umin_val ||
4621 dst_reg->umax_value + umax_val < umax_val) {
4622 dst_reg->umin_value = 0;
4623 dst_reg->umax_value = U64_MAX;
4624 } else {
4625 dst_reg->umin_value += umin_val;
4626 dst_reg->umax_value += umax_val;
4627 }
f1174f77 4628 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
4629 break;
4630 case BPF_SUB:
d3bd7413
DB
4631 ret = sanitize_val_alu(env, insn);
4632 if (ret < 0) {
4633 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4634 return ret;
4635 }
b03c9f9f
EC
4636 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4637 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4638 /* Overflow possible, we know nothing */
4639 dst_reg->smin_value = S64_MIN;
4640 dst_reg->smax_value = S64_MAX;
4641 } else {
4642 dst_reg->smin_value -= smax_val;
4643 dst_reg->smax_value -= smin_val;
4644 }
4645 if (dst_reg->umin_value < umax_val) {
4646 /* Overflow possible, we know nothing */
4647 dst_reg->umin_value = 0;
4648 dst_reg->umax_value = U64_MAX;
4649 } else {
4650 /* Cannot overflow (as long as bounds are consistent) */
4651 dst_reg->umin_value -= umax_val;
4652 dst_reg->umax_value -= umin_val;
4653 }
f1174f77 4654 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
4655 break;
4656 case BPF_MUL:
b03c9f9f
EC
4657 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4658 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 4659 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
4660 __mark_reg_unbounded(dst_reg);
4661 __update_reg_bounds(dst_reg);
f1174f77
EC
4662 break;
4663 }
b03c9f9f
EC
4664 /* Both values are positive, so we can work with unsigned and
4665 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 4666 */
b03c9f9f
EC
4667 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4668 /* Potential overflow, we know nothing */
4669 __mark_reg_unbounded(dst_reg);
4670 /* (except what we can learn from the var_off) */
4671 __update_reg_bounds(dst_reg);
4672 break;
4673 }
4674 dst_reg->umin_value *= umin_val;
4675 dst_reg->umax_value *= umax_val;
4676 if (dst_reg->umax_value > S64_MAX) {
4677 /* Overflow possible, we know nothing */
4678 dst_reg->smin_value = S64_MIN;
4679 dst_reg->smax_value = S64_MAX;
4680 } else {
4681 dst_reg->smin_value = dst_reg->umin_value;
4682 dst_reg->smax_value = dst_reg->umax_value;
4683 }
48461135
JB
4684 break;
4685 case BPF_AND:
f1174f77 4686 if (src_known && dst_known) {
b03c9f9f
EC
4687 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4688 src_reg.var_off.value);
f1174f77
EC
4689 break;
4690 }
b03c9f9f
EC
4691 /* We get our minimum from the var_off, since that's inherently
4692 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 4693 */
f1174f77 4694 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4695 dst_reg->umin_value = dst_reg->var_off.value;
4696 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4697 if (dst_reg->smin_value < 0 || smin_val < 0) {
4698 /* Lose signed bounds when ANDing negative numbers,
4699 * ain't nobody got time for that.
4700 */
4701 dst_reg->smin_value = S64_MIN;
4702 dst_reg->smax_value = S64_MAX;
4703 } else {
4704 /* ANDing two positives gives a positive, so safe to
4705 * cast result into s64.
4706 */
4707 dst_reg->smin_value = dst_reg->umin_value;
4708 dst_reg->smax_value = dst_reg->umax_value;
4709 }
4710 /* We may learn something more from the var_off */
4711 __update_reg_bounds(dst_reg);
f1174f77
EC
4712 break;
4713 case BPF_OR:
4714 if (src_known && dst_known) {
b03c9f9f
EC
4715 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4716 src_reg.var_off.value);
f1174f77
EC
4717 break;
4718 }
b03c9f9f
EC
4719 /* We get our maximum from the var_off, and our minimum is the
4720 * maximum of the operands' minima
f1174f77
EC
4721 */
4722 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
4723 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4724 dst_reg->umax_value = dst_reg->var_off.value |
4725 dst_reg->var_off.mask;
4726 if (dst_reg->smin_value < 0 || smin_val < 0) {
4727 /* Lose signed bounds when ORing negative numbers,
4728 * ain't nobody got time for that.
4729 */
4730 dst_reg->smin_value = S64_MIN;
4731 dst_reg->smax_value = S64_MAX;
f1174f77 4732 } else {
b03c9f9f
EC
4733 /* ORing two positives gives a positive, so safe to
4734 * cast result into s64.
4735 */
4736 dst_reg->smin_value = dst_reg->umin_value;
4737 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 4738 }
b03c9f9f
EC
4739 /* We may learn something more from the var_off */
4740 __update_reg_bounds(dst_reg);
48461135
JB
4741 break;
4742 case BPF_LSH:
468f6eaf
JH
4743 if (umax_val >= insn_bitness) {
4744 /* Shifts greater than 31 or 63 are undefined.
4745 * This includes shifts by a negative number.
b03c9f9f 4746 */
61bd5218 4747 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4748 break;
4749 }
b03c9f9f
EC
4750 /* We lose all sign bit information (except what we can pick
4751 * up from var_off)
48461135 4752 */
b03c9f9f
EC
4753 dst_reg->smin_value = S64_MIN;
4754 dst_reg->smax_value = S64_MAX;
4755 /* If we might shift our top bit out, then we know nothing */
4756 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4757 dst_reg->umin_value = 0;
4758 dst_reg->umax_value = U64_MAX;
d1174416 4759 } else {
b03c9f9f
EC
4760 dst_reg->umin_value <<= umin_val;
4761 dst_reg->umax_value <<= umax_val;
d1174416 4762 }
afbe1a5b 4763 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4764 /* We may learn something more from the var_off */
4765 __update_reg_bounds(dst_reg);
48461135
JB
4766 break;
4767 case BPF_RSH:
468f6eaf
JH
4768 if (umax_val >= insn_bitness) {
4769 /* Shifts greater than 31 or 63 are undefined.
4770 * This includes shifts by a negative number.
b03c9f9f 4771 */
61bd5218 4772 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
4773 break;
4774 }
4374f256
EC
4775 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4776 * be negative, then either:
4777 * 1) src_reg might be zero, so the sign bit of the result is
4778 * unknown, so we lose our signed bounds
4779 * 2) it's known negative, thus the unsigned bounds capture the
4780 * signed bounds
4781 * 3) the signed bounds cross zero, so they tell us nothing
4782 * about the result
4783 * If the value in dst_reg is known nonnegative, then again the
4784 * unsigned bounts capture the signed bounds.
4785 * Thus, in all cases it suffices to blow away our signed bounds
4786 * and rely on inferring new ones from the unsigned bounds and
4787 * var_off of the result.
4788 */
4789 dst_reg->smin_value = S64_MIN;
4790 dst_reg->smax_value = S64_MAX;
afbe1a5b 4791 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
4792 dst_reg->umin_value >>= umax_val;
4793 dst_reg->umax_value >>= umin_val;
4794 /* We may learn something more from the var_off */
4795 __update_reg_bounds(dst_reg);
48461135 4796 break;
9cbe1f5a
YS
4797 case BPF_ARSH:
4798 if (umax_val >= insn_bitness) {
4799 /* Shifts greater than 31 or 63 are undefined.
4800 * This includes shifts by a negative number.
4801 */
4802 mark_reg_unknown(env, regs, insn->dst_reg);
4803 break;
4804 }
4805
4806 /* Upon reaching here, src_known is true and
4807 * umax_val is equal to umin_val.
4808 */
4809 dst_reg->smin_value >>= umin_val;
4810 dst_reg->smax_value >>= umin_val;
4811 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4812
4813 /* blow away the dst_reg umin_value/umax_value and rely on
4814 * dst_reg var_off to refine the result.
4815 */
4816 dst_reg->umin_value = 0;
4817 dst_reg->umax_value = U64_MAX;
4818 __update_reg_bounds(dst_reg);
4819 break;
48461135 4820 default:
61bd5218 4821 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
4822 break;
4823 }
4824
468f6eaf
JH
4825 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4826 /* 32-bit ALU ops are (32,32)->32 */
4827 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
4828 }
4829
b03c9f9f
EC
4830 __reg_deduce_bounds(dst_reg);
4831 __reg_bound_offset(dst_reg);
f1174f77
EC
4832 return 0;
4833}
4834
4835/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4836 * and var_off.
4837 */
4838static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4839 struct bpf_insn *insn)
4840{
f4d7e40a
AS
4841 struct bpf_verifier_state *vstate = env->cur_state;
4842 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4843 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
4844 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4845 u8 opcode = BPF_OP(insn->code);
b5dc0163 4846 int err;
f1174f77
EC
4847
4848 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
4849 src_reg = NULL;
4850 if (dst_reg->type != SCALAR_VALUE)
4851 ptr_reg = dst_reg;
4852 if (BPF_SRC(insn->code) == BPF_X) {
4853 src_reg = &regs[insn->src_reg];
f1174f77
EC
4854 if (src_reg->type != SCALAR_VALUE) {
4855 if (dst_reg->type != SCALAR_VALUE) {
4856 /* Combining two pointers by any ALU op yields
82abbf8d
AS
4857 * an arbitrary scalar. Disallow all math except
4858 * pointer subtraction
f1174f77 4859 */
dd066823 4860 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
4861 mark_reg_unknown(env, regs, insn->dst_reg);
4862 return 0;
f1174f77 4863 }
82abbf8d
AS
4864 verbose(env, "R%d pointer %s pointer prohibited\n",
4865 insn->dst_reg,
4866 bpf_alu_string[opcode >> 4]);
4867 return -EACCES;
f1174f77
EC
4868 } else {
4869 /* scalar += pointer
4870 * This is legal, but we have to reverse our
4871 * src/dest handling in computing the range
4872 */
b5dc0163
AS
4873 err = mark_chain_precision(env, insn->dst_reg);
4874 if (err)
4875 return err;
82abbf8d
AS
4876 return adjust_ptr_min_max_vals(env, insn,
4877 src_reg, dst_reg);
f1174f77
EC
4878 }
4879 } else if (ptr_reg) {
4880 /* pointer += scalar */
b5dc0163
AS
4881 err = mark_chain_precision(env, insn->src_reg);
4882 if (err)
4883 return err;
82abbf8d
AS
4884 return adjust_ptr_min_max_vals(env, insn,
4885 dst_reg, src_reg);
f1174f77
EC
4886 }
4887 } else {
4888 /* Pretend the src is a reg with a known value, since we only
4889 * need to be able to read from this state.
4890 */
4891 off_reg.type = SCALAR_VALUE;
b03c9f9f 4892 __mark_reg_known(&off_reg, insn->imm);
f1174f77 4893 src_reg = &off_reg;
82abbf8d
AS
4894 if (ptr_reg) /* pointer += K */
4895 return adjust_ptr_min_max_vals(env, insn,
4896 ptr_reg, src_reg);
f1174f77
EC
4897 }
4898
4899 /* Got here implies adding two SCALAR_VALUEs */
4900 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 4901 print_verifier_state(env, state);
61bd5218 4902 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
4903 return -EINVAL;
4904 }
4905 if (WARN_ON(!src_reg)) {
f4d7e40a 4906 print_verifier_state(env, state);
61bd5218 4907 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
4908 return -EINVAL;
4909 }
4910 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
4911}
4912
17a52670 4913/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 4914static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4915{
638f5b90 4916 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4917 u8 opcode = BPF_OP(insn->code);
4918 int err;
4919
4920 if (opcode == BPF_END || opcode == BPF_NEG) {
4921 if (opcode == BPF_NEG) {
4922 if (BPF_SRC(insn->code) != 0 ||
4923 insn->src_reg != BPF_REG_0 ||
4924 insn->off != 0 || insn->imm != 0) {
61bd5218 4925 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
4926 return -EINVAL;
4927 }
4928 } else {
4929 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
4930 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4931 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 4932 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
4933 return -EINVAL;
4934 }
4935 }
4936
4937 /* check src operand */
dc503a8a 4938 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4939 if (err)
4940 return err;
4941
1be7f75d 4942 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 4943 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
4944 insn->dst_reg);
4945 return -EACCES;
4946 }
4947
17a52670 4948 /* check dest operand */
dc503a8a 4949 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4950 if (err)
4951 return err;
4952
4953 } else if (opcode == BPF_MOV) {
4954
4955 if (BPF_SRC(insn->code) == BPF_X) {
4956 if (insn->imm != 0 || insn->off != 0) {
61bd5218 4957 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4958 return -EINVAL;
4959 }
4960
4961 /* check src operand */
dc503a8a 4962 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4963 if (err)
4964 return err;
4965 } else {
4966 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 4967 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
4968 return -EINVAL;
4969 }
4970 }
4971
fbeb1603
AF
4972 /* check dest operand, mark as required later */
4973 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4974 if (err)
4975 return err;
4976
4977 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
4978 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4979 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4980
17a52670
AS
4981 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4982 /* case: R1 = R2
4983 * copy register state to dest reg
4984 */
e434b8cd
JW
4985 *dst_reg = *src_reg;
4986 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4987 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 4988 } else {
f1174f77 4989 /* R1 = (u32) R2 */
1be7f75d 4990 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
4991 verbose(env,
4992 "R%d partial copy of pointer\n",
1be7f75d
AS
4993 insn->src_reg);
4994 return -EACCES;
e434b8cd
JW
4995 } else if (src_reg->type == SCALAR_VALUE) {
4996 *dst_reg = *src_reg;
4997 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 4998 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
4999 } else {
5000 mark_reg_unknown(env, regs,
5001 insn->dst_reg);
1be7f75d 5002 }
e434b8cd 5003 coerce_reg_to_size(dst_reg, 4);
17a52670
AS
5004 }
5005 } else {
5006 /* case: R = imm
5007 * remember the value we stored into this reg
5008 */
fbeb1603
AF
5009 /* clear any state __mark_reg_known doesn't set */
5010 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 5011 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
5012 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5013 __mark_reg_known(regs + insn->dst_reg,
5014 insn->imm);
5015 } else {
5016 __mark_reg_known(regs + insn->dst_reg,
5017 (u32)insn->imm);
5018 }
17a52670
AS
5019 }
5020
5021 } else if (opcode > BPF_END) {
61bd5218 5022 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
5023 return -EINVAL;
5024
5025 } else { /* all other ALU ops: and, sub, xor, add, ... */
5026
17a52670
AS
5027 if (BPF_SRC(insn->code) == BPF_X) {
5028 if (insn->imm != 0 || insn->off != 0) {
61bd5218 5029 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5030 return -EINVAL;
5031 }
5032 /* check src1 operand */
dc503a8a 5033 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5034 if (err)
5035 return err;
5036 } else {
5037 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 5038 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
5039 return -EINVAL;
5040 }
5041 }
5042
5043 /* check src2 operand */
dc503a8a 5044 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5045 if (err)
5046 return err;
5047
5048 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5049 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 5050 verbose(env, "div by zero\n");
17a52670
AS
5051 return -EINVAL;
5052 }
5053
229394e8
RV
5054 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5055 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5056 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5057
5058 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 5059 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
5060 return -EINVAL;
5061 }
5062 }
5063
1a0dc1ac 5064 /* check dest operand */
dc503a8a 5065 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
5066 if (err)
5067 return err;
5068
f1174f77 5069 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
5070 }
5071
5072 return 0;
5073}
5074
c6a9efa1
PC
5075static void __find_good_pkt_pointers(struct bpf_func_state *state,
5076 struct bpf_reg_state *dst_reg,
5077 enum bpf_reg_type type, u16 new_range)
5078{
5079 struct bpf_reg_state *reg;
5080 int i;
5081
5082 for (i = 0; i < MAX_BPF_REG; i++) {
5083 reg = &state->regs[i];
5084 if (reg->type == type && reg->id == dst_reg->id)
5085 /* keep the maximum range already checked */
5086 reg->range = max(reg->range, new_range);
5087 }
5088
5089 bpf_for_each_spilled_reg(i, state, reg) {
5090 if (!reg)
5091 continue;
5092 if (reg->type == type && reg->id == dst_reg->id)
5093 reg->range = max(reg->range, new_range);
5094 }
5095}
5096
f4d7e40a 5097static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 5098 struct bpf_reg_state *dst_reg,
f8ddadc4 5099 enum bpf_reg_type type,
fb2a311a 5100 bool range_right_open)
969bf05e 5101{
fb2a311a 5102 u16 new_range;
c6a9efa1 5103 int i;
2d2be8ca 5104
fb2a311a
DB
5105 if (dst_reg->off < 0 ||
5106 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
5107 /* This doesn't give us any range */
5108 return;
5109
b03c9f9f
EC
5110 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5111 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
5112 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5113 * than pkt_end, but that's because it's also less than pkt.
5114 */
5115 return;
5116
fb2a311a
DB
5117 new_range = dst_reg->off;
5118 if (range_right_open)
5119 new_range--;
5120
5121 /* Examples for register markings:
2d2be8ca 5122 *
fb2a311a 5123 * pkt_data in dst register:
2d2be8ca
DB
5124 *
5125 * r2 = r3;
5126 * r2 += 8;
5127 * if (r2 > pkt_end) goto <handle exception>
5128 * <access okay>
5129 *
b4e432f1
DB
5130 * r2 = r3;
5131 * r2 += 8;
5132 * if (r2 < pkt_end) goto <access okay>
5133 * <handle exception>
5134 *
2d2be8ca
DB
5135 * Where:
5136 * r2 == dst_reg, pkt_end == src_reg
5137 * r2=pkt(id=n,off=8,r=0)
5138 * r3=pkt(id=n,off=0,r=0)
5139 *
fb2a311a 5140 * pkt_data in src register:
2d2be8ca
DB
5141 *
5142 * r2 = r3;
5143 * r2 += 8;
5144 * if (pkt_end >= r2) goto <access okay>
5145 * <handle exception>
5146 *
b4e432f1
DB
5147 * r2 = r3;
5148 * r2 += 8;
5149 * if (pkt_end <= r2) goto <handle exception>
5150 * <access okay>
5151 *
2d2be8ca
DB
5152 * Where:
5153 * pkt_end == dst_reg, r2 == src_reg
5154 * r2=pkt(id=n,off=8,r=0)
5155 * r3=pkt(id=n,off=0,r=0)
5156 *
5157 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
5158 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5159 * and [r3, r3 + 8-1) respectively is safe to access depending on
5160 * the check.
969bf05e 5161 */
2d2be8ca 5162
f1174f77
EC
5163 /* If our ids match, then we must have the same max_value. And we
5164 * don't care about the other reg's fixed offset, since if it's too big
5165 * the range won't allow anything.
5166 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5167 */
c6a9efa1
PC
5168 for (i = 0; i <= vstate->curframe; i++)
5169 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5170 new_range);
969bf05e
AS
5171}
5172
4f7b3e82
AS
5173/* compute branch direction of the expression "if (reg opcode val) goto target;"
5174 * and return:
5175 * 1 - branch will be taken and "goto target" will be executed
5176 * 0 - branch will not be taken and fall-through to next insn
5177 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5178 */
092ed096
JW
5179static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5180 bool is_jmp32)
4f7b3e82 5181{
092ed096 5182 struct bpf_reg_state reg_lo;
a72dafaf
JW
5183 s64 sval;
5184
4f7b3e82
AS
5185 if (__is_pointer_value(false, reg))
5186 return -1;
5187
092ed096
JW
5188 if (is_jmp32) {
5189 reg_lo = *reg;
5190 reg = &reg_lo;
5191 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5192 * could truncate high bits and update umin/umax according to
5193 * information of low bits.
5194 */
5195 coerce_reg_to_size(reg, 4);
5196 /* smin/smax need special handling. For example, after coerce,
5197 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5198 * used as operand to JMP32. It is a negative number from s32's
5199 * point of view, while it is a positive number when seen as
5200 * s64. The smin/smax are kept as s64, therefore, when used with
5201 * JMP32, they need to be transformed into s32, then sign
5202 * extended back to s64.
5203 *
5204 * Also, smin/smax were copied from umin/umax. If umin/umax has
5205 * different sign bit, then min/max relationship doesn't
5206 * maintain after casting into s32, for this case, set smin/smax
5207 * to safest range.
5208 */
5209 if ((reg->umax_value ^ reg->umin_value) &
5210 (1ULL << 31)) {
5211 reg->smin_value = S32_MIN;
5212 reg->smax_value = S32_MAX;
5213 }
5214 reg->smin_value = (s64)(s32)reg->smin_value;
5215 reg->smax_value = (s64)(s32)reg->smax_value;
5216
5217 val = (u32)val;
5218 sval = (s64)(s32)val;
5219 } else {
5220 sval = (s64)val;
5221 }
a72dafaf 5222
4f7b3e82
AS
5223 switch (opcode) {
5224 case BPF_JEQ:
5225 if (tnum_is_const(reg->var_off))
5226 return !!tnum_equals_const(reg->var_off, val);
5227 break;
5228 case BPF_JNE:
5229 if (tnum_is_const(reg->var_off))
5230 return !tnum_equals_const(reg->var_off, val);
5231 break;
960ea056
JK
5232 case BPF_JSET:
5233 if ((~reg->var_off.mask & reg->var_off.value) & val)
5234 return 1;
5235 if (!((reg->var_off.mask | reg->var_off.value) & val))
5236 return 0;
5237 break;
4f7b3e82
AS
5238 case BPF_JGT:
5239 if (reg->umin_value > val)
5240 return 1;
5241 else if (reg->umax_value <= val)
5242 return 0;
5243 break;
5244 case BPF_JSGT:
a72dafaf 5245 if (reg->smin_value > sval)
4f7b3e82 5246 return 1;
a72dafaf 5247 else if (reg->smax_value < sval)
4f7b3e82
AS
5248 return 0;
5249 break;
5250 case BPF_JLT:
5251 if (reg->umax_value < val)
5252 return 1;
5253 else if (reg->umin_value >= val)
5254 return 0;
5255 break;
5256 case BPF_JSLT:
a72dafaf 5257 if (reg->smax_value < sval)
4f7b3e82 5258 return 1;
a72dafaf 5259 else if (reg->smin_value >= sval)
4f7b3e82
AS
5260 return 0;
5261 break;
5262 case BPF_JGE:
5263 if (reg->umin_value >= val)
5264 return 1;
5265 else if (reg->umax_value < val)
5266 return 0;
5267 break;
5268 case BPF_JSGE:
a72dafaf 5269 if (reg->smin_value >= sval)
4f7b3e82 5270 return 1;
a72dafaf 5271 else if (reg->smax_value < sval)
4f7b3e82
AS
5272 return 0;
5273 break;
5274 case BPF_JLE:
5275 if (reg->umax_value <= val)
5276 return 1;
5277 else if (reg->umin_value > val)
5278 return 0;
5279 break;
5280 case BPF_JSLE:
a72dafaf 5281 if (reg->smax_value <= sval)
4f7b3e82 5282 return 1;
a72dafaf 5283 else if (reg->smin_value > sval)
4f7b3e82
AS
5284 return 0;
5285 break;
5286 }
5287
5288 return -1;
5289}
5290
092ed096
JW
5291/* Generate min value of the high 32-bit from TNUM info. */
5292static u64 gen_hi_min(struct tnum var)
5293{
5294 return var.value & ~0xffffffffULL;
5295}
5296
5297/* Generate max value of the high 32-bit from TNUM info. */
5298static u64 gen_hi_max(struct tnum var)
5299{
5300 return (var.value | var.mask) & ~0xffffffffULL;
5301}
5302
5303/* Return true if VAL is compared with a s64 sign extended from s32, and they
5304 * are with the same signedness.
5305 */
5306static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5307{
5308 return ((s32)sval >= 0 &&
5309 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5310 ((s32)sval < 0 &&
5311 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5312}
5313
48461135
JB
5314/* Adjusts the register min/max values in the case that the dst_reg is the
5315 * variable register that we are working on, and src_reg is a constant or we're
5316 * simply doing a BPF_K check.
f1174f77 5317 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
5318 */
5319static void reg_set_min_max(struct bpf_reg_state *true_reg,
5320 struct bpf_reg_state *false_reg, u64 val,
092ed096 5321 u8 opcode, bool is_jmp32)
48461135 5322{
a72dafaf
JW
5323 s64 sval;
5324
f1174f77
EC
5325 /* If the dst_reg is a pointer, we can't learn anything about its
5326 * variable offset from the compare (unless src_reg were a pointer into
5327 * the same object, but we don't bother with that.
5328 * Since false_reg and true_reg have the same type by construction, we
5329 * only need to check one of them for pointerness.
5330 */
5331 if (__is_pointer_value(false, false_reg))
5332 return;
4cabc5b1 5333
092ed096
JW
5334 val = is_jmp32 ? (u32)val : val;
5335 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5336
48461135
JB
5337 switch (opcode) {
5338 case BPF_JEQ:
48461135 5339 case BPF_JNE:
a72dafaf
JW
5340 {
5341 struct bpf_reg_state *reg =
5342 opcode == BPF_JEQ ? true_reg : false_reg;
5343
5344 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5345 * if it is true we know the value for sure. Likewise for
5346 * BPF_JNE.
48461135 5347 */
092ed096
JW
5348 if (is_jmp32) {
5349 u64 old_v = reg->var_off.value;
5350 u64 hi_mask = ~0xffffffffULL;
5351
5352 reg->var_off.value = (old_v & hi_mask) | val;
5353 reg->var_off.mask &= hi_mask;
5354 } else {
5355 __mark_reg_known(reg, val);
5356 }
48461135 5357 break;
a72dafaf 5358 }
960ea056
JK
5359 case BPF_JSET:
5360 false_reg->var_off = tnum_and(false_reg->var_off,
5361 tnum_const(~val));
5362 if (is_power_of_2(val))
5363 true_reg->var_off = tnum_or(true_reg->var_off,
5364 tnum_const(val));
5365 break;
48461135 5366 case BPF_JGE:
a72dafaf
JW
5367 case BPF_JGT:
5368 {
5369 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5370 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5371
092ed096
JW
5372 if (is_jmp32) {
5373 false_umax += gen_hi_max(false_reg->var_off);
5374 true_umin += gen_hi_min(true_reg->var_off);
5375 }
a72dafaf
JW
5376 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5377 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b03c9f9f 5378 break;
a72dafaf 5379 }
48461135 5380 case BPF_JSGE:
a72dafaf
JW
5381 case BPF_JSGT:
5382 {
5383 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5384 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5385
092ed096
JW
5386 /* If the full s64 was not sign-extended from s32 then don't
5387 * deduct further info.
5388 */
5389 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5390 break;
a72dafaf
JW
5391 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5392 true_reg->smin_value = max(true_reg->smin_value, true_smin);
48461135 5393 break;
a72dafaf 5394 }
b4e432f1 5395 case BPF_JLE:
a72dafaf
JW
5396 case BPF_JLT:
5397 {
5398 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5399 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5400
092ed096
JW
5401 if (is_jmp32) {
5402 false_umin += gen_hi_min(false_reg->var_off);
5403 true_umax += gen_hi_max(true_reg->var_off);
5404 }
a72dafaf
JW
5405 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5406 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b4e432f1 5407 break;
a72dafaf 5408 }
b4e432f1 5409 case BPF_JSLE:
a72dafaf
JW
5410 case BPF_JSLT:
5411 {
5412 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5413 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5414
092ed096
JW
5415 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5416 break;
a72dafaf
JW
5417 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5418 true_reg->smax_value = min(true_reg->smax_value, true_smax);
b4e432f1 5419 break;
a72dafaf 5420 }
48461135
JB
5421 default:
5422 break;
5423 }
5424
b03c9f9f
EC
5425 __reg_deduce_bounds(false_reg);
5426 __reg_deduce_bounds(true_reg);
5427 /* We might have learned some bits from the bounds. */
5428 __reg_bound_offset(false_reg);
5429 __reg_bound_offset(true_reg);
5430 /* Intersecting with the old var_off might have improved our bounds
5431 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5432 * then new var_off is (0; 0x7f...fc) which improves our umax.
5433 */
5434 __update_reg_bounds(false_reg);
5435 __update_reg_bounds(true_reg);
48461135
JB
5436}
5437
f1174f77
EC
5438/* Same as above, but for the case that dst_reg holds a constant and src_reg is
5439 * the variable reg.
48461135
JB
5440 */
5441static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5442 struct bpf_reg_state *false_reg, u64 val,
092ed096 5443 u8 opcode, bool is_jmp32)
48461135 5444{
a72dafaf
JW
5445 s64 sval;
5446
f1174f77
EC
5447 if (__is_pointer_value(false, false_reg))
5448 return;
4cabc5b1 5449
092ed096
JW
5450 val = is_jmp32 ? (u32)val : val;
5451 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
a72dafaf 5452
48461135
JB
5453 switch (opcode) {
5454 case BPF_JEQ:
48461135 5455 case BPF_JNE:
a72dafaf
JW
5456 {
5457 struct bpf_reg_state *reg =
5458 opcode == BPF_JEQ ? true_reg : false_reg;
5459
092ed096
JW
5460 if (is_jmp32) {
5461 u64 old_v = reg->var_off.value;
5462 u64 hi_mask = ~0xffffffffULL;
5463
5464 reg->var_off.value = (old_v & hi_mask) | val;
5465 reg->var_off.mask &= hi_mask;
5466 } else {
5467 __mark_reg_known(reg, val);
5468 }
48461135 5469 break;
a72dafaf 5470 }
960ea056
JK
5471 case BPF_JSET:
5472 false_reg->var_off = tnum_and(false_reg->var_off,
5473 tnum_const(~val));
5474 if (is_power_of_2(val))
5475 true_reg->var_off = tnum_or(true_reg->var_off,
5476 tnum_const(val));
5477 break;
48461135 5478 case BPF_JGE:
a72dafaf
JW
5479 case BPF_JGT:
5480 {
5481 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5482 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5483
092ed096
JW
5484 if (is_jmp32) {
5485 false_umin += gen_hi_min(false_reg->var_off);
5486 true_umax += gen_hi_max(true_reg->var_off);
5487 }
a72dafaf
JW
5488 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5489 true_reg->umax_value = min(true_reg->umax_value, true_umax);
b03c9f9f 5490 break;
a72dafaf 5491 }
48461135 5492 case BPF_JSGE:
a72dafaf
JW
5493 case BPF_JSGT:
5494 {
5495 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5496 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5497
092ed096
JW
5498 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5499 break;
a72dafaf
JW
5500 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5501 true_reg->smax_value = min(true_reg->smax_value, true_smax);
48461135 5502 break;
a72dafaf 5503 }
b4e432f1 5504 case BPF_JLE:
a72dafaf
JW
5505 case BPF_JLT:
5506 {
5507 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5508 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5509
092ed096
JW
5510 if (is_jmp32) {
5511 false_umax += gen_hi_max(false_reg->var_off);
5512 true_umin += gen_hi_min(true_reg->var_off);
5513 }
a72dafaf
JW
5514 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5515 true_reg->umin_value = max(true_reg->umin_value, true_umin);
b4e432f1 5516 break;
a72dafaf 5517 }
b4e432f1 5518 case BPF_JSLE:
a72dafaf
JW
5519 case BPF_JSLT:
5520 {
5521 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5522 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5523
092ed096
JW
5524 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5525 break;
a72dafaf
JW
5526 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5527 true_reg->smin_value = max(true_reg->smin_value, true_smin);
b4e432f1 5528 break;
a72dafaf 5529 }
48461135
JB
5530 default:
5531 break;
5532 }
5533
b03c9f9f
EC
5534 __reg_deduce_bounds(false_reg);
5535 __reg_deduce_bounds(true_reg);
5536 /* We might have learned some bits from the bounds. */
5537 __reg_bound_offset(false_reg);
5538 __reg_bound_offset(true_reg);
5539 /* Intersecting with the old var_off might have improved our bounds
5540 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5541 * then new var_off is (0; 0x7f...fc) which improves our umax.
5542 */
5543 __update_reg_bounds(false_reg);
5544 __update_reg_bounds(true_reg);
f1174f77
EC
5545}
5546
5547/* Regs are known to be equal, so intersect their min/max/var_off */
5548static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5549 struct bpf_reg_state *dst_reg)
5550{
b03c9f9f
EC
5551 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5552 dst_reg->umin_value);
5553 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5554 dst_reg->umax_value);
5555 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5556 dst_reg->smin_value);
5557 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5558 dst_reg->smax_value);
f1174f77
EC
5559 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5560 dst_reg->var_off);
b03c9f9f
EC
5561 /* We might have learned new bounds from the var_off. */
5562 __update_reg_bounds(src_reg);
5563 __update_reg_bounds(dst_reg);
5564 /* We might have learned something about the sign bit. */
5565 __reg_deduce_bounds(src_reg);
5566 __reg_deduce_bounds(dst_reg);
5567 /* We might have learned some bits from the bounds. */
5568 __reg_bound_offset(src_reg);
5569 __reg_bound_offset(dst_reg);
5570 /* Intersecting with the old var_off might have improved our bounds
5571 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5572 * then new var_off is (0; 0x7f...fc) which improves our umax.
5573 */
5574 __update_reg_bounds(src_reg);
5575 __update_reg_bounds(dst_reg);
f1174f77
EC
5576}
5577
5578static void reg_combine_min_max(struct bpf_reg_state *true_src,
5579 struct bpf_reg_state *true_dst,
5580 struct bpf_reg_state *false_src,
5581 struct bpf_reg_state *false_dst,
5582 u8 opcode)
5583{
5584 switch (opcode) {
5585 case BPF_JEQ:
5586 __reg_combine_min_max(true_src, true_dst);
5587 break;
5588 case BPF_JNE:
5589 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 5590 break;
4cabc5b1 5591 }
48461135
JB
5592}
5593
fd978bf7
JS
5594static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5595 struct bpf_reg_state *reg, u32 id,
840b9615 5596 bool is_null)
57a09bf0 5597{
840b9615 5598 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
5599 /* Old offset (both fixed and variable parts) should
5600 * have been known-zero, because we don't allow pointer
5601 * arithmetic on pointers that might be NULL.
5602 */
b03c9f9f
EC
5603 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5604 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 5605 reg->off)) {
b03c9f9f
EC
5606 __mark_reg_known_zero(reg);
5607 reg->off = 0;
f1174f77
EC
5608 }
5609 if (is_null) {
5610 reg->type = SCALAR_VALUE;
840b9615
JS
5611 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5612 if (reg->map_ptr->inner_map_meta) {
5613 reg->type = CONST_PTR_TO_MAP;
5614 reg->map_ptr = reg->map_ptr->inner_map_meta;
fada7fdc
JL
5615 } else if (reg->map_ptr->map_type ==
5616 BPF_MAP_TYPE_XSKMAP) {
5617 reg->type = PTR_TO_XDP_SOCK;
840b9615
JS
5618 } else {
5619 reg->type = PTR_TO_MAP_VALUE;
5620 }
c64b7983
JS
5621 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5622 reg->type = PTR_TO_SOCKET;
46f8bc92
MKL
5623 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5624 reg->type = PTR_TO_SOCK_COMMON;
655a51e5
MKL
5625 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5626 reg->type = PTR_TO_TCP_SOCK;
56f668df 5627 }
1b986589
MKL
5628 if (is_null) {
5629 /* We don't need id and ref_obj_id from this point
5630 * onwards anymore, thus we should better reset it,
5631 * so that state pruning has chances to take effect.
5632 */
5633 reg->id = 0;
5634 reg->ref_obj_id = 0;
5635 } else if (!reg_may_point_to_spin_lock(reg)) {
5636 /* For not-NULL ptr, reg->ref_obj_id will be reset
5637 * in release_reg_references().
5638 *
5639 * reg->id is still used by spin_lock ptr. Other
5640 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
5641 */
5642 reg->id = 0;
56f668df 5643 }
57a09bf0
TG
5644 }
5645}
5646
c6a9efa1
PC
5647static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5648 bool is_null)
5649{
5650 struct bpf_reg_state *reg;
5651 int i;
5652
5653 for (i = 0; i < MAX_BPF_REG; i++)
5654 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5655
5656 bpf_for_each_spilled_reg(i, state, reg) {
5657 if (!reg)
5658 continue;
5659 mark_ptr_or_null_reg(state, reg, id, is_null);
5660 }
5661}
5662
57a09bf0
TG
5663/* The logic is similar to find_good_pkt_pointers(), both could eventually
5664 * be folded together at some point.
5665 */
840b9615
JS
5666static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5667 bool is_null)
57a09bf0 5668{
f4d7e40a 5669 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 5670 struct bpf_reg_state *regs = state->regs;
1b986589 5671 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 5672 u32 id = regs[regno].id;
c6a9efa1 5673 int i;
57a09bf0 5674
1b986589
MKL
5675 if (ref_obj_id && ref_obj_id == id && is_null)
5676 /* regs[regno] is in the " == NULL" branch.
5677 * No one could have freed the reference state before
5678 * doing the NULL check.
5679 */
5680 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 5681
c6a9efa1
PC
5682 for (i = 0; i <= vstate->curframe; i++)
5683 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
5684}
5685
5beca081
DB
5686static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5687 struct bpf_reg_state *dst_reg,
5688 struct bpf_reg_state *src_reg,
5689 struct bpf_verifier_state *this_branch,
5690 struct bpf_verifier_state *other_branch)
5691{
5692 if (BPF_SRC(insn->code) != BPF_X)
5693 return false;
5694
092ed096
JW
5695 /* Pointers are always 64-bit. */
5696 if (BPF_CLASS(insn->code) == BPF_JMP32)
5697 return false;
5698
5beca081
DB
5699 switch (BPF_OP(insn->code)) {
5700 case BPF_JGT:
5701 if ((dst_reg->type == PTR_TO_PACKET &&
5702 src_reg->type == PTR_TO_PACKET_END) ||
5703 (dst_reg->type == PTR_TO_PACKET_META &&
5704 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5705 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5706 find_good_pkt_pointers(this_branch, dst_reg,
5707 dst_reg->type, false);
5708 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5709 src_reg->type == PTR_TO_PACKET) ||
5710 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5711 src_reg->type == PTR_TO_PACKET_META)) {
5712 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5713 find_good_pkt_pointers(other_branch, src_reg,
5714 src_reg->type, true);
5715 } else {
5716 return false;
5717 }
5718 break;
5719 case BPF_JLT:
5720 if ((dst_reg->type == PTR_TO_PACKET &&
5721 src_reg->type == PTR_TO_PACKET_END) ||
5722 (dst_reg->type == PTR_TO_PACKET_META &&
5723 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5724 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5725 find_good_pkt_pointers(other_branch, dst_reg,
5726 dst_reg->type, true);
5727 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5728 src_reg->type == PTR_TO_PACKET) ||
5729 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5730 src_reg->type == PTR_TO_PACKET_META)) {
5731 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5732 find_good_pkt_pointers(this_branch, src_reg,
5733 src_reg->type, false);
5734 } else {
5735 return false;
5736 }
5737 break;
5738 case BPF_JGE:
5739 if ((dst_reg->type == PTR_TO_PACKET &&
5740 src_reg->type == PTR_TO_PACKET_END) ||
5741 (dst_reg->type == PTR_TO_PACKET_META &&
5742 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5743 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5744 find_good_pkt_pointers(this_branch, dst_reg,
5745 dst_reg->type, true);
5746 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5747 src_reg->type == PTR_TO_PACKET) ||
5748 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5749 src_reg->type == PTR_TO_PACKET_META)) {
5750 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5751 find_good_pkt_pointers(other_branch, src_reg,
5752 src_reg->type, false);
5753 } else {
5754 return false;
5755 }
5756 break;
5757 case BPF_JLE:
5758 if ((dst_reg->type == PTR_TO_PACKET &&
5759 src_reg->type == PTR_TO_PACKET_END) ||
5760 (dst_reg->type == PTR_TO_PACKET_META &&
5761 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5762 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5763 find_good_pkt_pointers(other_branch, dst_reg,
5764 dst_reg->type, false);
5765 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5766 src_reg->type == PTR_TO_PACKET) ||
5767 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5768 src_reg->type == PTR_TO_PACKET_META)) {
5769 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5770 find_good_pkt_pointers(this_branch, src_reg,
5771 src_reg->type, true);
5772 } else {
5773 return false;
5774 }
5775 break;
5776 default:
5777 return false;
5778 }
5779
5780 return true;
5781}
5782
58e2af8b 5783static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
5784 struct bpf_insn *insn, int *insn_idx)
5785{
f4d7e40a
AS
5786 struct bpf_verifier_state *this_branch = env->cur_state;
5787 struct bpf_verifier_state *other_branch;
5788 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 5789 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 5790 u8 opcode = BPF_OP(insn->code);
092ed096 5791 bool is_jmp32;
fb8d251e 5792 int pred = -1;
17a52670
AS
5793 int err;
5794
092ed096
JW
5795 /* Only conditional jumps are expected to reach here. */
5796 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5797 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
5798 return -EINVAL;
5799 }
5800
5801 if (BPF_SRC(insn->code) == BPF_X) {
5802 if (insn->imm != 0) {
092ed096 5803 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5804 return -EINVAL;
5805 }
5806
5807 /* check src1 operand */
dc503a8a 5808 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5809 if (err)
5810 return err;
1be7f75d
AS
5811
5812 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 5813 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
5814 insn->src_reg);
5815 return -EACCES;
5816 }
fb8d251e 5817 src_reg = &regs[insn->src_reg];
17a52670
AS
5818 } else {
5819 if (insn->src_reg != BPF_REG_0) {
092ed096 5820 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
5821 return -EINVAL;
5822 }
5823 }
5824
5825 /* check src2 operand */
dc503a8a 5826 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5827 if (err)
5828 return err;
5829
1a0dc1ac 5830 dst_reg = &regs[insn->dst_reg];
092ed096 5831 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 5832
fb8d251e
AS
5833 if (BPF_SRC(insn->code) == BPF_K)
5834 pred = is_branch_taken(dst_reg, insn->imm,
5835 opcode, is_jmp32);
5836 else if (src_reg->type == SCALAR_VALUE &&
5837 tnum_is_const(src_reg->var_off))
5838 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5839 opcode, is_jmp32);
b5dc0163
AS
5840 if (pred >= 0) {
5841 err = mark_chain_precision(env, insn->dst_reg);
5842 if (BPF_SRC(insn->code) == BPF_X && !err)
5843 err = mark_chain_precision(env, insn->src_reg);
5844 if (err)
5845 return err;
5846 }
fb8d251e
AS
5847 if (pred == 1) {
5848 /* only follow the goto, ignore fall-through */
5849 *insn_idx += insn->off;
5850 return 0;
5851 } else if (pred == 0) {
5852 /* only follow fall-through branch, since
5853 * that's where the program will go
5854 */
5855 return 0;
17a52670
AS
5856 }
5857
979d63d5
DB
5858 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5859 false);
17a52670
AS
5860 if (!other_branch)
5861 return -EFAULT;
f4d7e40a 5862 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 5863
48461135
JB
5864 /* detect if we are comparing against a constant value so we can adjust
5865 * our min/max values for our dst register.
f1174f77
EC
5866 * this is only legit if both are scalars (or pointers to the same
5867 * object, I suppose, but we don't support that right now), because
5868 * otherwise the different base pointers mean the offsets aren't
5869 * comparable.
48461135
JB
5870 */
5871 if (BPF_SRC(insn->code) == BPF_X) {
092ed096
JW
5872 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5873 struct bpf_reg_state lo_reg0 = *dst_reg;
5874 struct bpf_reg_state lo_reg1 = *src_reg;
5875 struct bpf_reg_state *src_lo, *dst_lo;
5876
5877 dst_lo = &lo_reg0;
5878 src_lo = &lo_reg1;
5879 coerce_reg_to_size(dst_lo, 4);
5880 coerce_reg_to_size(src_lo, 4);
5881
f1174f77 5882 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
5883 src_reg->type == SCALAR_VALUE) {
5884 if (tnum_is_const(src_reg->var_off) ||
5885 (is_jmp32 && tnum_is_const(src_lo->var_off)))
f4d7e40a 5886 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096
JW
5887 dst_reg,
5888 is_jmp32
5889 ? src_lo->var_off.value
5890 : src_reg->var_off.value,
5891 opcode, is_jmp32);
5892 else if (tnum_is_const(dst_reg->var_off) ||
5893 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
f4d7e40a 5894 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096
JW
5895 src_reg,
5896 is_jmp32
5897 ? dst_lo->var_off.value
5898 : dst_reg->var_off.value,
5899 opcode, is_jmp32);
5900 else if (!is_jmp32 &&
5901 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 5902 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
5903 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5904 &other_branch_regs[insn->dst_reg],
092ed096 5905 src_reg, dst_reg, opcode);
f1174f77
EC
5906 }
5907 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 5908 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 5909 dst_reg, insn->imm, opcode, is_jmp32);
48461135
JB
5910 }
5911
092ed096
JW
5912 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5913 * NOTE: these optimizations below are related with pointer comparison
5914 * which will never be JMP32.
5915 */
5916 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 5917 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
5918 reg_type_may_be_null(dst_reg->type)) {
5919 /* Mark all identical registers in each branch as either
57a09bf0
TG
5920 * safe or unknown depending R == 0 or R != 0 conditional.
5921 */
840b9615
JS
5922 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5923 opcode == BPF_JNE);
5924 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5925 opcode == BPF_JEQ);
5beca081
DB
5926 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5927 this_branch, other_branch) &&
5928 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
5929 verbose(env, "R%d pointer comparison prohibited\n",
5930 insn->dst_reg);
1be7f75d 5931 return -EACCES;
17a52670 5932 }
06ee7115 5933 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 5934 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
5935 return 0;
5936}
5937
17a52670 5938/* verify BPF_LD_IMM64 instruction */
58e2af8b 5939static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 5940{
d8eca5bb 5941 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 5942 struct bpf_reg_state *regs = cur_regs(env);
d8eca5bb 5943 struct bpf_map *map;
17a52670
AS
5944 int err;
5945
5946 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 5947 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
5948 return -EINVAL;
5949 }
5950 if (insn->off != 0) {
61bd5218 5951 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
5952 return -EINVAL;
5953 }
5954
dc503a8a 5955 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
5956 if (err)
5957 return err;
5958
6b173873 5959 if (insn->src_reg == 0) {
6b173873
JK
5960 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5961
f1174f77 5962 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 5963 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 5964 return 0;
6b173873 5965 }
17a52670 5966
d8eca5bb
DB
5967 map = env->used_maps[aux->map_index];
5968 mark_reg_known_zero(env, regs, insn->dst_reg);
5969 regs[insn->dst_reg].map_ptr = map;
5970
5971 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5972 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5973 regs[insn->dst_reg].off = aux->map_off;
5974 if (map_value_has_spin_lock(map))
5975 regs[insn->dst_reg].id = ++env->id_gen;
5976 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5977 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5978 } else {
5979 verbose(env, "bpf verifier is misconfigured\n");
5980 return -EINVAL;
5981 }
17a52670 5982
17a52670
AS
5983 return 0;
5984}
5985
96be4325
DB
5986static bool may_access_skb(enum bpf_prog_type type)
5987{
5988 switch (type) {
5989 case BPF_PROG_TYPE_SOCKET_FILTER:
5990 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 5991 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
5992 return true;
5993 default:
5994 return false;
5995 }
5996}
5997
ddd872bc
AS
5998/* verify safety of LD_ABS|LD_IND instructions:
5999 * - they can only appear in the programs where ctx == skb
6000 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6001 * preserve R6-R9, and store return value into R0
6002 *
6003 * Implicit input:
6004 * ctx == skb == R6 == CTX
6005 *
6006 * Explicit input:
6007 * SRC == any register
6008 * IMM == 32-bit immediate
6009 *
6010 * Output:
6011 * R0 - 8/16/32-bit skb data converted to cpu endianness
6012 */
58e2af8b 6013static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 6014{
638f5b90 6015 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 6016 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
6017 int i, err;
6018
24701ece 6019 if (!may_access_skb(env->prog->type)) {
61bd5218 6020 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
6021 return -EINVAL;
6022 }
6023
e0cea7ce
DB
6024 if (!env->ops->gen_ld_abs) {
6025 verbose(env, "bpf verifier is misconfigured\n");
6026 return -EINVAL;
6027 }
6028
f910cefa 6029 if (env->subprog_cnt > 1) {
f4d7e40a
AS
6030 /* when program has LD_ABS insn JITs and interpreter assume
6031 * that r1 == ctx == skb which is not the case for callees
6032 * that can have arbitrary arguments. It's problematic
6033 * for main prog as well since JITs would need to analyze
6034 * all functions in order to make proper register save/restore
6035 * decisions in the main prog. Hence disallow LD_ABS with calls
6036 */
6037 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6038 return -EINVAL;
6039 }
6040
ddd872bc 6041 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 6042 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 6043 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 6044 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
6045 return -EINVAL;
6046 }
6047
6048 /* check whether implicit source operand (register R6) is readable */
dc503a8a 6049 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
6050 if (err)
6051 return err;
6052
fd978bf7
JS
6053 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6054 * gen_ld_abs() may terminate the program at runtime, leading to
6055 * reference leak.
6056 */
6057 err = check_reference_leak(env);
6058 if (err) {
6059 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6060 return err;
6061 }
6062
d83525ca
AS
6063 if (env->cur_state->active_spin_lock) {
6064 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6065 return -EINVAL;
6066 }
6067
ddd872bc 6068 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
6069 verbose(env,
6070 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
6071 return -EINVAL;
6072 }
6073
6074 if (mode == BPF_IND) {
6075 /* check explicit source operand */
dc503a8a 6076 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
6077 if (err)
6078 return err;
6079 }
6080
6081 /* reset caller saved regs to unreadable */
dc503a8a 6082 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6083 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6084 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6085 }
ddd872bc
AS
6086
6087 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
6088 * the value fetched from the packet.
6089 * Already marked as written above.
ddd872bc 6090 */
61bd5218 6091 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
6092 /* ld_abs load up to 32-bit skb data. */
6093 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
6094 return 0;
6095}
6096
390ee7e2
AS
6097static int check_return_code(struct bpf_verifier_env *env)
6098{
5cf1e914 6099 struct tnum enforce_attach_type_range = tnum_unknown;
390ee7e2
AS
6100 struct bpf_reg_state *reg;
6101 struct tnum range = tnum_range(0, 1);
6102
6103 switch (env->prog->type) {
983695fa
DB
6104 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6105 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6106 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6107 range = tnum_range(1, 1);
ed4ed404 6108 break;
390ee7e2 6109 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 6110 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6111 range = tnum_range(0, 3);
6112 enforce_attach_type_range = tnum_range(2, 3);
6113 }
ed4ed404 6114 break;
390ee7e2
AS
6115 case BPF_PROG_TYPE_CGROUP_SOCK:
6116 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 6117 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 6118 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 6119 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2
AS
6120 break;
6121 default:
6122 return 0;
6123 }
6124
638f5b90 6125 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 6126 if (reg->type != SCALAR_VALUE) {
61bd5218 6127 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
6128 reg_type_str[reg->type]);
6129 return -EINVAL;
6130 }
6131
6132 if (!tnum_in(range, reg->var_off)) {
5cf1e914 6133 char tn_buf[48];
6134
61bd5218 6135 verbose(env, "At program exit the register R0 ");
390ee7e2 6136 if (!tnum_is_unknown(reg->var_off)) {
390ee7e2 6137 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 6138 verbose(env, "has value %s", tn_buf);
390ee7e2 6139 } else {
61bd5218 6140 verbose(env, "has unknown scalar value");
390ee7e2 6141 }
5cf1e914 6142 tnum_strn(tn_buf, sizeof(tn_buf), range);
983695fa 6143 verbose(env, " should have been in %s\n", tn_buf);
390ee7e2
AS
6144 return -EINVAL;
6145 }
5cf1e914 6146
6147 if (!tnum_is_unknown(enforce_attach_type_range) &&
6148 tnum_in(enforce_attach_type_range, reg->var_off))
6149 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
6150 return 0;
6151}
6152
475fb78f
AS
6153/* non-recursive DFS pseudo code
6154 * 1 procedure DFS-iterative(G,v):
6155 * 2 label v as discovered
6156 * 3 let S be a stack
6157 * 4 S.push(v)
6158 * 5 while S is not empty
6159 * 6 t <- S.pop()
6160 * 7 if t is what we're looking for:
6161 * 8 return t
6162 * 9 for all edges e in G.adjacentEdges(t) do
6163 * 10 if edge e is already labelled
6164 * 11 continue with the next edge
6165 * 12 w <- G.adjacentVertex(t,e)
6166 * 13 if vertex w is not discovered and not explored
6167 * 14 label e as tree-edge
6168 * 15 label w as discovered
6169 * 16 S.push(w)
6170 * 17 continue at 5
6171 * 18 else if vertex w is discovered
6172 * 19 label e as back-edge
6173 * 20 else
6174 * 21 // vertex w is explored
6175 * 22 label e as forward- or cross-edge
6176 * 23 label t as explored
6177 * 24 S.pop()
6178 *
6179 * convention:
6180 * 0x10 - discovered
6181 * 0x11 - discovered and fall-through edge labelled
6182 * 0x12 - discovered and fall-through and branch edges labelled
6183 * 0x20 - explored
6184 */
6185
6186enum {
6187 DISCOVERED = 0x10,
6188 EXPLORED = 0x20,
6189 FALLTHROUGH = 1,
6190 BRANCH = 2,
6191};
6192
dc2a4ebc
AS
6193static u32 state_htab_size(struct bpf_verifier_env *env)
6194{
6195 return env->prog->len;
6196}
6197
5d839021
AS
6198static struct bpf_verifier_state_list **explored_state(
6199 struct bpf_verifier_env *env,
6200 int idx)
6201{
dc2a4ebc
AS
6202 struct bpf_verifier_state *cur = env->cur_state;
6203 struct bpf_func_state *state = cur->frame[cur->curframe];
6204
6205 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
6206}
6207
6208static void init_explored_state(struct bpf_verifier_env *env, int idx)
6209{
a8f500af 6210 env->insn_aux_data[idx].prune_point = true;
5d839021 6211}
f1bca824 6212
475fb78f
AS
6213/* t, w, e - match pseudo-code above:
6214 * t - index of current instruction
6215 * w - next instruction
6216 * e - edge
6217 */
2589726d
AS
6218static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6219 bool loop_ok)
475fb78f 6220{
7df737e9
AS
6221 int *insn_stack = env->cfg.insn_stack;
6222 int *insn_state = env->cfg.insn_state;
6223
475fb78f
AS
6224 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6225 return 0;
6226
6227 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6228 return 0;
6229
6230 if (w < 0 || w >= env->prog->len) {
d9762e84 6231 verbose_linfo(env, t, "%d: ", t);
61bd5218 6232 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
6233 return -EINVAL;
6234 }
6235
f1bca824
AS
6236 if (e == BRANCH)
6237 /* mark branch target for state pruning */
5d839021 6238 init_explored_state(env, w);
f1bca824 6239
475fb78f
AS
6240 if (insn_state[w] == 0) {
6241 /* tree-edge */
6242 insn_state[t] = DISCOVERED | e;
6243 insn_state[w] = DISCOVERED;
7df737e9 6244 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 6245 return -E2BIG;
7df737e9 6246 insn_stack[env->cfg.cur_stack++] = w;
475fb78f
AS
6247 return 1;
6248 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2589726d
AS
6249 if (loop_ok && env->allow_ptr_leaks)
6250 return 0;
d9762e84
MKL
6251 verbose_linfo(env, t, "%d: ", t);
6252 verbose_linfo(env, w, "%d: ", w);
61bd5218 6253 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
6254 return -EINVAL;
6255 } else if (insn_state[w] == EXPLORED) {
6256 /* forward- or cross-edge */
6257 insn_state[t] = DISCOVERED | e;
6258 } else {
61bd5218 6259 verbose(env, "insn state internal bug\n");
475fb78f
AS
6260 return -EFAULT;
6261 }
6262 return 0;
6263}
6264
6265/* non-recursive depth-first-search to detect loops in BPF program
6266 * loop == back-edge in directed graph
6267 */
58e2af8b 6268static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
6269{
6270 struct bpf_insn *insns = env->prog->insnsi;
6271 int insn_cnt = env->prog->len;
7df737e9 6272 int *insn_stack, *insn_state;
475fb78f
AS
6273 int ret = 0;
6274 int i, t;
6275
7df737e9 6276 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
6277 if (!insn_state)
6278 return -ENOMEM;
6279
7df737e9 6280 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 6281 if (!insn_stack) {
71dde681 6282 kvfree(insn_state);
475fb78f
AS
6283 return -ENOMEM;
6284 }
6285
6286 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6287 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 6288 env->cfg.cur_stack = 1;
475fb78f
AS
6289
6290peek_stack:
7df737e9 6291 if (env->cfg.cur_stack == 0)
475fb78f 6292 goto check_state;
7df737e9 6293 t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 6294
092ed096
JW
6295 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6296 BPF_CLASS(insns[t].code) == BPF_JMP32) {
475fb78f
AS
6297 u8 opcode = BPF_OP(insns[t].code);
6298
6299 if (opcode == BPF_EXIT) {
6300 goto mark_explored;
6301 } else if (opcode == BPF_CALL) {
2589726d 6302 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6303 if (ret == 1)
6304 goto peek_stack;
6305 else if (ret < 0)
6306 goto err_free;
07016151 6307 if (t + 1 < insn_cnt)
5d839021 6308 init_explored_state(env, t + 1);
cc8b0b92 6309 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5d839021 6310 init_explored_state(env, t);
2589726d
AS
6311 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6312 env, false);
cc8b0b92
AS
6313 if (ret == 1)
6314 goto peek_stack;
6315 else if (ret < 0)
6316 goto err_free;
6317 }
475fb78f
AS
6318 } else if (opcode == BPF_JA) {
6319 if (BPF_SRC(insns[t].code) != BPF_K) {
6320 ret = -EINVAL;
6321 goto err_free;
6322 }
6323 /* unconditional jump with single edge */
6324 ret = push_insn(t, t + insns[t].off + 1,
2589726d 6325 FALLTHROUGH, env, true);
475fb78f
AS
6326 if (ret == 1)
6327 goto peek_stack;
6328 else if (ret < 0)
6329 goto err_free;
b5dc0163
AS
6330 /* unconditional jmp is not a good pruning point,
6331 * but it's marked, since backtracking needs
6332 * to record jmp history in is_state_visited().
6333 */
6334 init_explored_state(env, t + insns[t].off + 1);
f1bca824
AS
6335 /* tell verifier to check for equivalent states
6336 * after every call and jump
6337 */
c3de6317 6338 if (t + 1 < insn_cnt)
5d839021 6339 init_explored_state(env, t + 1);
475fb78f
AS
6340 } else {
6341 /* conditional jump with two edges */
5d839021 6342 init_explored_state(env, t);
2589726d 6343 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
475fb78f
AS
6344 if (ret == 1)
6345 goto peek_stack;
6346 else if (ret < 0)
6347 goto err_free;
6348
2589726d 6349 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
475fb78f
AS
6350 if (ret == 1)
6351 goto peek_stack;
6352 else if (ret < 0)
6353 goto err_free;
6354 }
6355 } else {
6356 /* all other non-branch instructions with single
6357 * fall-through edge
6358 */
2589726d 6359 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
475fb78f
AS
6360 if (ret == 1)
6361 goto peek_stack;
6362 else if (ret < 0)
6363 goto err_free;
6364 }
6365
6366mark_explored:
6367 insn_state[t] = EXPLORED;
7df737e9 6368 if (env->cfg.cur_stack-- <= 0) {
61bd5218 6369 verbose(env, "pop stack internal bug\n");
475fb78f
AS
6370 ret = -EFAULT;
6371 goto err_free;
6372 }
6373 goto peek_stack;
6374
6375check_state:
6376 for (i = 0; i < insn_cnt; i++) {
6377 if (insn_state[i] != EXPLORED) {
61bd5218 6378 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
6379 ret = -EINVAL;
6380 goto err_free;
6381 }
6382 }
6383 ret = 0; /* cfg looks good */
6384
6385err_free:
71dde681
AS
6386 kvfree(insn_state);
6387 kvfree(insn_stack);
7df737e9 6388 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
6389 return ret;
6390}
6391
838e9690
YS
6392/* The minimum supported BTF func info size */
6393#define MIN_BPF_FUNCINFO_SIZE 8
6394#define MAX_FUNCINFO_REC_SIZE 252
6395
c454a46b
MKL
6396static int check_btf_func(struct bpf_verifier_env *env,
6397 const union bpf_attr *attr,
6398 union bpf_attr __user *uattr)
838e9690 6399{
d0b2818e 6400 u32 i, nfuncs, urec_size, min_size;
838e9690 6401 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 6402 struct bpf_func_info *krecord;
838e9690 6403 const struct btf_type *type;
c454a46b
MKL
6404 struct bpf_prog *prog;
6405 const struct btf *btf;
838e9690 6406 void __user *urecord;
d0b2818e 6407 u32 prev_offset = 0;
838e9690
YS
6408 int ret = 0;
6409
6410 nfuncs = attr->func_info_cnt;
6411 if (!nfuncs)
6412 return 0;
6413
6414 if (nfuncs != env->subprog_cnt) {
6415 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6416 return -EINVAL;
6417 }
6418
6419 urec_size = attr->func_info_rec_size;
6420 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6421 urec_size > MAX_FUNCINFO_REC_SIZE ||
6422 urec_size % sizeof(u32)) {
6423 verbose(env, "invalid func info rec size %u\n", urec_size);
6424 return -EINVAL;
6425 }
6426
c454a46b
MKL
6427 prog = env->prog;
6428 btf = prog->aux->btf;
838e9690
YS
6429
6430 urecord = u64_to_user_ptr(attr->func_info);
6431 min_size = min_t(u32, krec_size, urec_size);
6432
ba64e7d8 6433 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
6434 if (!krecord)
6435 return -ENOMEM;
ba64e7d8 6436
838e9690
YS
6437 for (i = 0; i < nfuncs; i++) {
6438 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6439 if (ret) {
6440 if (ret == -E2BIG) {
6441 verbose(env, "nonzero tailing record in func info");
6442 /* set the size kernel expects so loader can zero
6443 * out the rest of the record.
6444 */
6445 if (put_user(min_size, &uattr->func_info_rec_size))
6446 ret = -EFAULT;
6447 }
c454a46b 6448 goto err_free;
838e9690
YS
6449 }
6450
ba64e7d8 6451 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 6452 ret = -EFAULT;
c454a46b 6453 goto err_free;
838e9690
YS
6454 }
6455
d30d42e0 6456 /* check insn_off */
838e9690 6457 if (i == 0) {
d30d42e0 6458 if (krecord[i].insn_off) {
838e9690 6459 verbose(env,
d30d42e0
MKL
6460 "nonzero insn_off %u for the first func info record",
6461 krecord[i].insn_off);
838e9690 6462 ret = -EINVAL;
c454a46b 6463 goto err_free;
838e9690 6464 }
d30d42e0 6465 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
6466 verbose(env,
6467 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 6468 krecord[i].insn_off, prev_offset);
838e9690 6469 ret = -EINVAL;
c454a46b 6470 goto err_free;
838e9690
YS
6471 }
6472
d30d42e0 6473 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690
YS
6474 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6475 ret = -EINVAL;
c454a46b 6476 goto err_free;
838e9690
YS
6477 }
6478
6479 /* check type_id */
ba64e7d8 6480 type = btf_type_by_id(btf, krecord[i].type_id);
838e9690
YS
6481 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6482 verbose(env, "invalid type id %d in func info",
ba64e7d8 6483 krecord[i].type_id);
838e9690 6484 ret = -EINVAL;
c454a46b 6485 goto err_free;
838e9690
YS
6486 }
6487
d30d42e0 6488 prev_offset = krecord[i].insn_off;
838e9690
YS
6489 urecord += urec_size;
6490 }
6491
ba64e7d8
YS
6492 prog->aux->func_info = krecord;
6493 prog->aux->func_info_cnt = nfuncs;
838e9690
YS
6494 return 0;
6495
c454a46b 6496err_free:
ba64e7d8 6497 kvfree(krecord);
838e9690
YS
6498 return ret;
6499}
6500
ba64e7d8
YS
6501static void adjust_btf_func(struct bpf_verifier_env *env)
6502{
6503 int i;
6504
6505 if (!env->prog->aux->func_info)
6506 return;
6507
6508 for (i = 0; i < env->subprog_cnt; i++)
d30d42e0 6509 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
6510}
6511
c454a46b
MKL
6512#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6513 sizeof(((struct bpf_line_info *)(0))->line_col))
6514#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6515
6516static int check_btf_line(struct bpf_verifier_env *env,
6517 const union bpf_attr *attr,
6518 union bpf_attr __user *uattr)
6519{
6520 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6521 struct bpf_subprog_info *sub;
6522 struct bpf_line_info *linfo;
6523 struct bpf_prog *prog;
6524 const struct btf *btf;
6525 void __user *ulinfo;
6526 int err;
6527
6528 nr_linfo = attr->line_info_cnt;
6529 if (!nr_linfo)
6530 return 0;
6531
6532 rec_size = attr->line_info_rec_size;
6533 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6534 rec_size > MAX_LINEINFO_REC_SIZE ||
6535 rec_size & (sizeof(u32) - 1))
6536 return -EINVAL;
6537
6538 /* Need to zero it in case the userspace may
6539 * pass in a smaller bpf_line_info object.
6540 */
6541 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6542 GFP_KERNEL | __GFP_NOWARN);
6543 if (!linfo)
6544 return -ENOMEM;
6545
6546 prog = env->prog;
6547 btf = prog->aux->btf;
6548
6549 s = 0;
6550 sub = env->subprog_info;
6551 ulinfo = u64_to_user_ptr(attr->line_info);
6552 expected_size = sizeof(struct bpf_line_info);
6553 ncopy = min_t(u32, expected_size, rec_size);
6554 for (i = 0; i < nr_linfo; i++) {
6555 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6556 if (err) {
6557 if (err == -E2BIG) {
6558 verbose(env, "nonzero tailing record in line_info");
6559 if (put_user(expected_size,
6560 &uattr->line_info_rec_size))
6561 err = -EFAULT;
6562 }
6563 goto err_free;
6564 }
6565
6566 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6567 err = -EFAULT;
6568 goto err_free;
6569 }
6570
6571 /*
6572 * Check insn_off to ensure
6573 * 1) strictly increasing AND
6574 * 2) bounded by prog->len
6575 *
6576 * The linfo[0].insn_off == 0 check logically falls into
6577 * the later "missing bpf_line_info for func..." case
6578 * because the first linfo[0].insn_off must be the
6579 * first sub also and the first sub must have
6580 * subprog_info[0].start == 0.
6581 */
6582 if ((i && linfo[i].insn_off <= prev_offset) ||
6583 linfo[i].insn_off >= prog->len) {
6584 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6585 i, linfo[i].insn_off, prev_offset,
6586 prog->len);
6587 err = -EINVAL;
6588 goto err_free;
6589 }
6590
fdbaa0be
MKL
6591 if (!prog->insnsi[linfo[i].insn_off].code) {
6592 verbose(env,
6593 "Invalid insn code at line_info[%u].insn_off\n",
6594 i);
6595 err = -EINVAL;
6596 goto err_free;
6597 }
6598
23127b33
MKL
6599 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6600 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
6601 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6602 err = -EINVAL;
6603 goto err_free;
6604 }
6605
6606 if (s != env->subprog_cnt) {
6607 if (linfo[i].insn_off == sub[s].start) {
6608 sub[s].linfo_idx = i;
6609 s++;
6610 } else if (sub[s].start < linfo[i].insn_off) {
6611 verbose(env, "missing bpf_line_info for func#%u\n", s);
6612 err = -EINVAL;
6613 goto err_free;
6614 }
6615 }
6616
6617 prev_offset = linfo[i].insn_off;
6618 ulinfo += rec_size;
6619 }
6620
6621 if (s != env->subprog_cnt) {
6622 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6623 env->subprog_cnt - s, s);
6624 err = -EINVAL;
6625 goto err_free;
6626 }
6627
6628 prog->aux->linfo = linfo;
6629 prog->aux->nr_linfo = nr_linfo;
6630
6631 return 0;
6632
6633err_free:
6634 kvfree(linfo);
6635 return err;
6636}
6637
6638static int check_btf_info(struct bpf_verifier_env *env,
6639 const union bpf_attr *attr,
6640 union bpf_attr __user *uattr)
6641{
6642 struct btf *btf;
6643 int err;
6644
6645 if (!attr->func_info_cnt && !attr->line_info_cnt)
6646 return 0;
6647
6648 btf = btf_get_by_fd(attr->prog_btf_fd);
6649 if (IS_ERR(btf))
6650 return PTR_ERR(btf);
6651 env->prog->aux->btf = btf;
6652
6653 err = check_btf_func(env, attr, uattr);
6654 if (err)
6655 return err;
6656
6657 err = check_btf_line(env, attr, uattr);
6658 if (err)
6659 return err;
6660
6661 return 0;
ba64e7d8
YS
6662}
6663
f1174f77
EC
6664/* check %cur's range satisfies %old's */
6665static bool range_within(struct bpf_reg_state *old,
6666 struct bpf_reg_state *cur)
6667{
b03c9f9f
EC
6668 return old->umin_value <= cur->umin_value &&
6669 old->umax_value >= cur->umax_value &&
6670 old->smin_value <= cur->smin_value &&
6671 old->smax_value >= cur->smax_value;
f1174f77
EC
6672}
6673
6674/* Maximum number of register states that can exist at once */
6675#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6676struct idpair {
6677 u32 old;
6678 u32 cur;
6679};
6680
6681/* If in the old state two registers had the same id, then they need to have
6682 * the same id in the new state as well. But that id could be different from
6683 * the old state, so we need to track the mapping from old to new ids.
6684 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6685 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6686 * regs with a different old id could still have new id 9, we don't care about
6687 * that.
6688 * So we look through our idmap to see if this old id has been seen before. If
6689 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 6690 */
f1174f77 6691static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 6692{
f1174f77 6693 unsigned int i;
969bf05e 6694
f1174f77
EC
6695 for (i = 0; i < ID_MAP_SIZE; i++) {
6696 if (!idmap[i].old) {
6697 /* Reached an empty slot; haven't seen this id before */
6698 idmap[i].old = old_id;
6699 idmap[i].cur = cur_id;
6700 return true;
6701 }
6702 if (idmap[i].old == old_id)
6703 return idmap[i].cur == cur_id;
6704 }
6705 /* We ran out of idmap slots, which should be impossible */
6706 WARN_ON_ONCE(1);
6707 return false;
6708}
6709
9242b5f5
AS
6710static void clean_func_state(struct bpf_verifier_env *env,
6711 struct bpf_func_state *st)
6712{
6713 enum bpf_reg_liveness live;
6714 int i, j;
6715
6716 for (i = 0; i < BPF_REG_FP; i++) {
6717 live = st->regs[i].live;
6718 /* liveness must not touch this register anymore */
6719 st->regs[i].live |= REG_LIVE_DONE;
6720 if (!(live & REG_LIVE_READ))
6721 /* since the register is unused, clear its state
6722 * to make further comparison simpler
6723 */
6724 __mark_reg_not_init(&st->regs[i]);
6725 }
6726
6727 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6728 live = st->stack[i].spilled_ptr.live;
6729 /* liveness must not touch this stack slot anymore */
6730 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6731 if (!(live & REG_LIVE_READ)) {
6732 __mark_reg_not_init(&st->stack[i].spilled_ptr);
6733 for (j = 0; j < BPF_REG_SIZE; j++)
6734 st->stack[i].slot_type[j] = STACK_INVALID;
6735 }
6736 }
6737}
6738
6739static void clean_verifier_state(struct bpf_verifier_env *env,
6740 struct bpf_verifier_state *st)
6741{
6742 int i;
6743
6744 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6745 /* all regs in this state in all frames were already marked */
6746 return;
6747
6748 for (i = 0; i <= st->curframe; i++)
6749 clean_func_state(env, st->frame[i]);
6750}
6751
6752/* the parentage chains form a tree.
6753 * the verifier states are added to state lists at given insn and
6754 * pushed into state stack for future exploration.
6755 * when the verifier reaches bpf_exit insn some of the verifer states
6756 * stored in the state lists have their final liveness state already,
6757 * but a lot of states will get revised from liveness point of view when
6758 * the verifier explores other branches.
6759 * Example:
6760 * 1: r0 = 1
6761 * 2: if r1 == 100 goto pc+1
6762 * 3: r0 = 2
6763 * 4: exit
6764 * when the verifier reaches exit insn the register r0 in the state list of
6765 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6766 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6767 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6768 *
6769 * Since the verifier pushes the branch states as it sees them while exploring
6770 * the program the condition of walking the branch instruction for the second
6771 * time means that all states below this branch were already explored and
6772 * their final liveness markes are already propagated.
6773 * Hence when the verifier completes the search of state list in is_state_visited()
6774 * we can call this clean_live_states() function to mark all liveness states
6775 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6776 * will not be used.
6777 * This function also clears the registers and stack for states that !READ
6778 * to simplify state merging.
6779 *
6780 * Important note here that walking the same branch instruction in the callee
6781 * doesn't meant that the states are DONE. The verifier has to compare
6782 * the callsites
6783 */
6784static void clean_live_states(struct bpf_verifier_env *env, int insn,
6785 struct bpf_verifier_state *cur)
6786{
6787 struct bpf_verifier_state_list *sl;
6788 int i;
6789
5d839021 6790 sl = *explored_state(env, insn);
a8f500af 6791 while (sl) {
2589726d
AS
6792 if (sl->state.branches)
6793 goto next;
dc2a4ebc
AS
6794 if (sl->state.insn_idx != insn ||
6795 sl->state.curframe != cur->curframe)
9242b5f5
AS
6796 goto next;
6797 for (i = 0; i <= cur->curframe; i++)
6798 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6799 goto next;
6800 clean_verifier_state(env, &sl->state);
6801next:
6802 sl = sl->next;
6803 }
6804}
6805
f1174f77 6806/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
6807static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6808 struct idpair *idmap)
f1174f77 6809{
f4d7e40a
AS
6810 bool equal;
6811
dc503a8a
EC
6812 if (!(rold->live & REG_LIVE_READ))
6813 /* explored state didn't use this */
6814 return true;
6815
679c782d 6816 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
6817
6818 if (rold->type == PTR_TO_STACK)
6819 /* two stack pointers are equal only if they're pointing to
6820 * the same stack frame, since fp-8 in foo != fp-8 in bar
6821 */
6822 return equal && rold->frameno == rcur->frameno;
6823
6824 if (equal)
969bf05e
AS
6825 return true;
6826
f1174f77
EC
6827 if (rold->type == NOT_INIT)
6828 /* explored state can't have used this */
969bf05e 6829 return true;
f1174f77
EC
6830 if (rcur->type == NOT_INIT)
6831 return false;
6832 switch (rold->type) {
6833 case SCALAR_VALUE:
6834 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
6835 if (!rold->precise && !rcur->precise)
6836 return true;
f1174f77
EC
6837 /* new val must satisfy old val knowledge */
6838 return range_within(rold, rcur) &&
6839 tnum_in(rold->var_off, rcur->var_off);
6840 } else {
179d1c56
JH
6841 /* We're trying to use a pointer in place of a scalar.
6842 * Even if the scalar was unbounded, this could lead to
6843 * pointer leaks because scalars are allowed to leak
6844 * while pointers are not. We could make this safe in
6845 * special cases if root is calling us, but it's
6846 * probably not worth the hassle.
f1174f77 6847 */
179d1c56 6848 return false;
f1174f77
EC
6849 }
6850 case PTR_TO_MAP_VALUE:
1b688a19
EC
6851 /* If the new min/max/var_off satisfy the old ones and
6852 * everything else matches, we are OK.
d83525ca
AS
6853 * 'id' is not compared, since it's only used for maps with
6854 * bpf_spin_lock inside map element and in such cases if
6855 * the rest of the prog is valid for one map element then
6856 * it's valid for all map elements regardless of the key
6857 * used in bpf_map_lookup()
1b688a19
EC
6858 */
6859 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6860 range_within(rold, rcur) &&
6861 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
6862 case PTR_TO_MAP_VALUE_OR_NULL:
6863 /* a PTR_TO_MAP_VALUE could be safe to use as a
6864 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6865 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6866 * checked, doing so could have affected others with the same
6867 * id, and we can't check for that because we lost the id when
6868 * we converted to a PTR_TO_MAP_VALUE.
6869 */
6870 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6871 return false;
6872 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6873 return false;
6874 /* Check our ids match any regs they're supposed to */
6875 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 6876 case PTR_TO_PACKET_META:
f1174f77 6877 case PTR_TO_PACKET:
de8f3a83 6878 if (rcur->type != rold->type)
f1174f77
EC
6879 return false;
6880 /* We must have at least as much range as the old ptr
6881 * did, so that any accesses which were safe before are
6882 * still safe. This is true even if old range < old off,
6883 * since someone could have accessed through (ptr - k), or
6884 * even done ptr -= k in a register, to get a safe access.
6885 */
6886 if (rold->range > rcur->range)
6887 return false;
6888 /* If the offsets don't match, we can't trust our alignment;
6889 * nor can we be sure that we won't fall out of range.
6890 */
6891 if (rold->off != rcur->off)
6892 return false;
6893 /* id relations must be preserved */
6894 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6895 return false;
6896 /* new val must satisfy old val knowledge */
6897 return range_within(rold, rcur) &&
6898 tnum_in(rold->var_off, rcur->var_off);
6899 case PTR_TO_CTX:
6900 case CONST_PTR_TO_MAP:
f1174f77 6901 case PTR_TO_PACKET_END:
d58e468b 6902 case PTR_TO_FLOW_KEYS:
c64b7983
JS
6903 case PTR_TO_SOCKET:
6904 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6905 case PTR_TO_SOCK_COMMON:
6906 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6907 case PTR_TO_TCP_SOCK:
6908 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6909 case PTR_TO_XDP_SOCK:
f1174f77
EC
6910 /* Only valid matches are exact, which memcmp() above
6911 * would have accepted
6912 */
6913 default:
6914 /* Don't know what's going on, just say it's not safe */
6915 return false;
6916 }
969bf05e 6917
f1174f77
EC
6918 /* Shouldn't get here; if we do, say it's not safe */
6919 WARN_ON_ONCE(1);
969bf05e
AS
6920 return false;
6921}
6922
f4d7e40a
AS
6923static bool stacksafe(struct bpf_func_state *old,
6924 struct bpf_func_state *cur,
638f5b90
AS
6925 struct idpair *idmap)
6926{
6927 int i, spi;
6928
638f5b90
AS
6929 /* walk slots of the explored stack and ignore any additional
6930 * slots in the current stack, since explored(safe) state
6931 * didn't use them
6932 */
6933 for (i = 0; i < old->allocated_stack; i++) {
6934 spi = i / BPF_REG_SIZE;
6935
b233920c
AS
6936 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6937 i += BPF_REG_SIZE - 1;
cc2b14d5 6938 /* explored state didn't use this */
fd05e57b 6939 continue;
b233920c 6940 }
cc2b14d5 6941
638f5b90
AS
6942 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6943 continue;
19e2dbb7
AS
6944
6945 /* explored stack has more populated slots than current stack
6946 * and these slots were used
6947 */
6948 if (i >= cur->allocated_stack)
6949 return false;
6950
cc2b14d5
AS
6951 /* if old state was safe with misc data in the stack
6952 * it will be safe with zero-initialized stack.
6953 * The opposite is not true
6954 */
6955 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6956 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6957 continue;
638f5b90
AS
6958 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6959 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6960 /* Ex: old explored (safe) state has STACK_SPILL in
6961 * this stack slot, but current has has STACK_MISC ->
6962 * this verifier states are not equivalent,
6963 * return false to continue verification of this path
6964 */
6965 return false;
6966 if (i % BPF_REG_SIZE)
6967 continue;
6968 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6969 continue;
6970 if (!regsafe(&old->stack[spi].spilled_ptr,
6971 &cur->stack[spi].spilled_ptr,
6972 idmap))
6973 /* when explored and current stack slot are both storing
6974 * spilled registers, check that stored pointers types
6975 * are the same as well.
6976 * Ex: explored safe path could have stored
6977 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6978 * but current path has stored:
6979 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6980 * such verifier states are not equivalent.
6981 * return false to continue verification of this path
6982 */
6983 return false;
6984 }
6985 return true;
6986}
6987
fd978bf7
JS
6988static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6989{
6990 if (old->acquired_refs != cur->acquired_refs)
6991 return false;
6992 return !memcmp(old->refs, cur->refs,
6993 sizeof(*old->refs) * old->acquired_refs);
6994}
6995
f1bca824
AS
6996/* compare two verifier states
6997 *
6998 * all states stored in state_list are known to be valid, since
6999 * verifier reached 'bpf_exit' instruction through them
7000 *
7001 * this function is called when verifier exploring different branches of
7002 * execution popped from the state stack. If it sees an old state that has
7003 * more strict register state and more strict stack state then this execution
7004 * branch doesn't need to be explored further, since verifier already
7005 * concluded that more strict state leads to valid finish.
7006 *
7007 * Therefore two states are equivalent if register state is more conservative
7008 * and explored stack state is more conservative than the current one.
7009 * Example:
7010 * explored current
7011 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7012 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7013 *
7014 * In other words if current stack state (one being explored) has more
7015 * valid slots than old one that already passed validation, it means
7016 * the verifier can stop exploring and conclude that current state is valid too
7017 *
7018 * Similarly with registers. If explored state has register type as invalid
7019 * whereas register type in current state is meaningful, it means that
7020 * the current state will reach 'bpf_exit' instruction safely
7021 */
f4d7e40a
AS
7022static bool func_states_equal(struct bpf_func_state *old,
7023 struct bpf_func_state *cur)
f1bca824 7024{
f1174f77
EC
7025 struct idpair *idmap;
7026 bool ret = false;
f1bca824
AS
7027 int i;
7028
f1174f77
EC
7029 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7030 /* If we failed to allocate the idmap, just say it's not safe */
7031 if (!idmap)
1a0dc1ac 7032 return false;
f1174f77
EC
7033
7034 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 7035 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 7036 goto out_free;
f1bca824
AS
7037 }
7038
638f5b90
AS
7039 if (!stacksafe(old, cur, idmap))
7040 goto out_free;
fd978bf7
JS
7041
7042 if (!refsafe(old, cur))
7043 goto out_free;
f1174f77
EC
7044 ret = true;
7045out_free:
7046 kfree(idmap);
7047 return ret;
f1bca824
AS
7048}
7049
f4d7e40a
AS
7050static bool states_equal(struct bpf_verifier_env *env,
7051 struct bpf_verifier_state *old,
7052 struct bpf_verifier_state *cur)
7053{
7054 int i;
7055
7056 if (old->curframe != cur->curframe)
7057 return false;
7058
979d63d5
DB
7059 /* Verification state from speculative execution simulation
7060 * must never prune a non-speculative execution one.
7061 */
7062 if (old->speculative && !cur->speculative)
7063 return false;
7064
d83525ca
AS
7065 if (old->active_spin_lock != cur->active_spin_lock)
7066 return false;
7067
f4d7e40a
AS
7068 /* for states to be equal callsites have to be the same
7069 * and all frame states need to be equivalent
7070 */
7071 for (i = 0; i <= old->curframe; i++) {
7072 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7073 return false;
7074 if (!func_states_equal(old->frame[i], cur->frame[i]))
7075 return false;
7076 }
7077 return true;
7078}
7079
5327ed3d
JW
7080/* Return 0 if no propagation happened. Return negative error code if error
7081 * happened. Otherwise, return the propagated bit.
7082 */
55e7f3b5
JW
7083static int propagate_liveness_reg(struct bpf_verifier_env *env,
7084 struct bpf_reg_state *reg,
7085 struct bpf_reg_state *parent_reg)
7086{
5327ed3d
JW
7087 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7088 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
7089 int err;
7090
5327ed3d
JW
7091 /* When comes here, read flags of PARENT_REG or REG could be any of
7092 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7093 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7094 */
7095 if (parent_flag == REG_LIVE_READ64 ||
7096 /* Or if there is no read flag from REG. */
7097 !flag ||
7098 /* Or if the read flag from REG is the same as PARENT_REG. */
7099 parent_flag == flag)
55e7f3b5
JW
7100 return 0;
7101
5327ed3d 7102 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
7103 if (err)
7104 return err;
7105
5327ed3d 7106 return flag;
55e7f3b5
JW
7107}
7108
8e9cd9ce 7109/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
7110 * straight-line code between a state and its parent. When we arrive at an
7111 * equivalent state (jump target or such) we didn't arrive by the straight-line
7112 * code, so read marks in the state must propagate to the parent regardless
7113 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 7114 * in mark_reg_read() is for.
8e9cd9ce 7115 */
f4d7e40a
AS
7116static int propagate_liveness(struct bpf_verifier_env *env,
7117 const struct bpf_verifier_state *vstate,
7118 struct bpf_verifier_state *vparent)
dc503a8a 7119{
3f8cafa4 7120 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 7121 struct bpf_func_state *state, *parent;
3f8cafa4 7122 int i, frame, err = 0;
dc503a8a 7123
f4d7e40a
AS
7124 if (vparent->curframe != vstate->curframe) {
7125 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7126 vparent->curframe, vstate->curframe);
7127 return -EFAULT;
7128 }
dc503a8a
EC
7129 /* Propagate read liveness of registers... */
7130 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 7131 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
7132 parent = vparent->frame[frame];
7133 state = vstate->frame[frame];
7134 parent_reg = parent->regs;
7135 state_reg = state->regs;
83d16312
JK
7136 /* We don't need to worry about FP liveness, it's read-only */
7137 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
7138 err = propagate_liveness_reg(env, &state_reg[i],
7139 &parent_reg[i]);
5327ed3d 7140 if (err < 0)
3f8cafa4 7141 return err;
5327ed3d
JW
7142 if (err == REG_LIVE_READ64)
7143 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 7144 }
f4d7e40a 7145
1b04aee7 7146 /* Propagate stack slots. */
f4d7e40a
AS
7147 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7148 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
7149 parent_reg = &parent->stack[i].spilled_ptr;
7150 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
7151 err = propagate_liveness_reg(env, state_reg,
7152 parent_reg);
5327ed3d 7153 if (err < 0)
3f8cafa4 7154 return err;
dc503a8a
EC
7155 }
7156 }
5327ed3d 7157 return 0;
dc503a8a
EC
7158}
7159
a3ce685d
AS
7160/* find precise scalars in the previous equivalent state and
7161 * propagate them into the current state
7162 */
7163static int propagate_precision(struct bpf_verifier_env *env,
7164 const struct bpf_verifier_state *old)
7165{
7166 struct bpf_reg_state *state_reg;
7167 struct bpf_func_state *state;
7168 int i, err = 0;
7169
7170 state = old->frame[old->curframe];
7171 state_reg = state->regs;
7172 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7173 if (state_reg->type != SCALAR_VALUE ||
7174 !state_reg->precise)
7175 continue;
7176 if (env->log.level & BPF_LOG_LEVEL2)
7177 verbose(env, "propagating r%d\n", i);
7178 err = mark_chain_precision(env, i);
7179 if (err < 0)
7180 return err;
7181 }
7182
7183 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7184 if (state->stack[i].slot_type[0] != STACK_SPILL)
7185 continue;
7186 state_reg = &state->stack[i].spilled_ptr;
7187 if (state_reg->type != SCALAR_VALUE ||
7188 !state_reg->precise)
7189 continue;
7190 if (env->log.level & BPF_LOG_LEVEL2)
7191 verbose(env, "propagating fp%d\n",
7192 (-i - 1) * BPF_REG_SIZE);
7193 err = mark_chain_precision_stack(env, i);
7194 if (err < 0)
7195 return err;
7196 }
7197 return 0;
7198}
7199
2589726d
AS
7200static bool states_maybe_looping(struct bpf_verifier_state *old,
7201 struct bpf_verifier_state *cur)
7202{
7203 struct bpf_func_state *fold, *fcur;
7204 int i, fr = cur->curframe;
7205
7206 if (old->curframe != fr)
7207 return false;
7208
7209 fold = old->frame[fr];
7210 fcur = cur->frame[fr];
7211 for (i = 0; i < MAX_BPF_REG; i++)
7212 if (memcmp(&fold->regs[i], &fcur->regs[i],
7213 offsetof(struct bpf_reg_state, parent)))
7214 return false;
7215 return true;
7216}
7217
7218
58e2af8b 7219static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 7220{
58e2af8b 7221 struct bpf_verifier_state_list *new_sl;
9f4686c4 7222 struct bpf_verifier_state_list *sl, **pprev;
679c782d 7223 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 7224 int i, j, err, states_cnt = 0;
2589726d 7225 bool add_new_state = false;
f1bca824 7226
b5dc0163 7227 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 7228 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
7229 /* this 'insn_idx' instruction wasn't marked, so we will not
7230 * be doing state search here
7231 */
7232 return 0;
7233
2589726d
AS
7234 /* bpf progs typically have pruning point every 4 instructions
7235 * http://vger.kernel.org/bpfconf2019.html#session-1
7236 * Do not add new state for future pruning if the verifier hasn't seen
7237 * at least 2 jumps and at least 8 instructions.
7238 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7239 * In tests that amounts to up to 50% reduction into total verifier
7240 * memory consumption and 20% verifier time speedup.
7241 */
7242 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7243 env->insn_processed - env->prev_insn_processed >= 8)
7244 add_new_state = true;
7245
a8f500af
AS
7246 pprev = explored_state(env, insn_idx);
7247 sl = *pprev;
7248
9242b5f5
AS
7249 clean_live_states(env, insn_idx, cur);
7250
a8f500af 7251 while (sl) {
dc2a4ebc
AS
7252 states_cnt++;
7253 if (sl->state.insn_idx != insn_idx)
7254 goto next;
2589726d
AS
7255 if (sl->state.branches) {
7256 if (states_maybe_looping(&sl->state, cur) &&
7257 states_equal(env, &sl->state, cur)) {
7258 verbose_linfo(env, insn_idx, "; ");
7259 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7260 return -EINVAL;
7261 }
7262 /* if the verifier is processing a loop, avoid adding new state
7263 * too often, since different loop iterations have distinct
7264 * states and may not help future pruning.
7265 * This threshold shouldn't be too low to make sure that
7266 * a loop with large bound will be rejected quickly.
7267 * The most abusive loop will be:
7268 * r1 += 1
7269 * if r1 < 1000000 goto pc-2
7270 * 1M insn_procssed limit / 100 == 10k peak states.
7271 * This threshold shouldn't be too high either, since states
7272 * at the end of the loop are likely to be useful in pruning.
7273 */
7274 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7275 env->insn_processed - env->prev_insn_processed < 100)
7276 add_new_state = false;
7277 goto miss;
7278 }
638f5b90 7279 if (states_equal(env, &sl->state, cur)) {
9f4686c4 7280 sl->hit_cnt++;
f1bca824 7281 /* reached equivalent register/stack state,
dc503a8a
EC
7282 * prune the search.
7283 * Registers read by the continuation are read by us.
8e9cd9ce
EC
7284 * If we have any write marks in env->cur_state, they
7285 * will prevent corresponding reads in the continuation
7286 * from reaching our parent (an explored_state). Our
7287 * own state will get the read marks recorded, but
7288 * they'll be immediately forgotten as we're pruning
7289 * this state and will pop a new one.
f1bca824 7290 */
f4d7e40a 7291 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
7292
7293 /* if previous state reached the exit with precision and
7294 * current state is equivalent to it (except precsion marks)
7295 * the precision needs to be propagated back in
7296 * the current state.
7297 */
7298 err = err ? : push_jmp_history(env, cur);
7299 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
7300 if (err)
7301 return err;
f1bca824 7302 return 1;
dc503a8a 7303 }
2589726d
AS
7304miss:
7305 /* when new state is not going to be added do not increase miss count.
7306 * Otherwise several loop iterations will remove the state
7307 * recorded earlier. The goal of these heuristics is to have
7308 * states from some iterations of the loop (some in the beginning
7309 * and some at the end) to help pruning.
7310 */
7311 if (add_new_state)
7312 sl->miss_cnt++;
9f4686c4
AS
7313 /* heuristic to determine whether this state is beneficial
7314 * to keep checking from state equivalence point of view.
7315 * Higher numbers increase max_states_per_insn and verification time,
7316 * but do not meaningfully decrease insn_processed.
7317 */
7318 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7319 /* the state is unlikely to be useful. Remove it to
7320 * speed up verification
7321 */
7322 *pprev = sl->next;
7323 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
7324 u32 br = sl->state.branches;
7325
7326 WARN_ONCE(br,
7327 "BUG live_done but branches_to_explore %d\n",
7328 br);
9f4686c4
AS
7329 free_verifier_state(&sl->state, false);
7330 kfree(sl);
7331 env->peak_states--;
7332 } else {
7333 /* cannot free this state, since parentage chain may
7334 * walk it later. Add it for free_list instead to
7335 * be freed at the end of verification
7336 */
7337 sl->next = env->free_list;
7338 env->free_list = sl;
7339 }
7340 sl = *pprev;
7341 continue;
7342 }
dc2a4ebc 7343next:
9f4686c4
AS
7344 pprev = &sl->next;
7345 sl = *pprev;
f1bca824
AS
7346 }
7347
06ee7115
AS
7348 if (env->max_states_per_insn < states_cnt)
7349 env->max_states_per_insn = states_cnt;
7350
ceefbc96 7351 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 7352 return push_jmp_history(env, cur);
ceefbc96 7353
2589726d 7354 if (!add_new_state)
b5dc0163 7355 return push_jmp_history(env, cur);
ceefbc96 7356
2589726d
AS
7357 /* There were no equivalent states, remember the current one.
7358 * Technically the current state is not proven to be safe yet,
f4d7e40a 7359 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 7360 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 7361 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
7362 * again on the way to bpf_exit.
7363 * When looping the sl->state.branches will be > 0 and this state
7364 * will not be considered for equivalence until branches == 0.
f1bca824 7365 */
638f5b90 7366 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
7367 if (!new_sl)
7368 return -ENOMEM;
06ee7115
AS
7369 env->total_states++;
7370 env->peak_states++;
2589726d
AS
7371 env->prev_jmps_processed = env->jmps_processed;
7372 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
7373
7374 /* add new state to the head of linked list */
679c782d
EC
7375 new = &new_sl->state;
7376 err = copy_verifier_state(new, cur);
1969db47 7377 if (err) {
679c782d 7378 free_verifier_state(new, false);
1969db47
AS
7379 kfree(new_sl);
7380 return err;
7381 }
dc2a4ebc 7382 new->insn_idx = insn_idx;
2589726d
AS
7383 WARN_ONCE(new->branches != 1,
7384 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 7385
2589726d 7386 cur->parent = new;
b5dc0163
AS
7387 cur->first_insn_idx = insn_idx;
7388 clear_jmp_history(cur);
5d839021
AS
7389 new_sl->next = *explored_state(env, insn_idx);
7390 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
7391 /* connect new state to parentage chain. Current frame needs all
7392 * registers connected. Only r6 - r9 of the callers are alive (pushed
7393 * to the stack implicitly by JITs) so in callers' frames connect just
7394 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7395 * the state of the call instruction (with WRITTEN set), and r0 comes
7396 * from callee with its full parentage chain, anyway.
7397 */
8e9cd9ce
EC
7398 /* clear write marks in current state: the writes we did are not writes
7399 * our child did, so they don't screen off its reads from us.
7400 * (There are no read marks in current state, because reads always mark
7401 * their parent and current state never has children yet. Only
7402 * explored_states can get read marks.)
7403 */
eea1c227
AS
7404 for (j = 0; j <= cur->curframe; j++) {
7405 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7406 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7407 for (i = 0; i < BPF_REG_FP; i++)
7408 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7409 }
f4d7e40a
AS
7410
7411 /* all stack frames are accessible from callee, clear them all */
7412 for (j = 0; j <= cur->curframe; j++) {
7413 struct bpf_func_state *frame = cur->frame[j];
679c782d 7414 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 7415
679c782d 7416 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 7417 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
7418 frame->stack[i].spilled_ptr.parent =
7419 &newframe->stack[i].spilled_ptr;
7420 }
f4d7e40a 7421 }
f1bca824
AS
7422 return 0;
7423}
7424
c64b7983
JS
7425/* Return true if it's OK to have the same insn return a different type. */
7426static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7427{
7428 switch (type) {
7429 case PTR_TO_CTX:
7430 case PTR_TO_SOCKET:
7431 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
7432 case PTR_TO_SOCK_COMMON:
7433 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
7434 case PTR_TO_TCP_SOCK:
7435 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 7436 case PTR_TO_XDP_SOCK:
c64b7983
JS
7437 return false;
7438 default:
7439 return true;
7440 }
7441}
7442
7443/* If an instruction was previously used with particular pointer types, then we
7444 * need to be careful to avoid cases such as the below, where it may be ok
7445 * for one branch accessing the pointer, but not ok for the other branch:
7446 *
7447 * R1 = sock_ptr
7448 * goto X;
7449 * ...
7450 * R1 = some_other_valid_ptr;
7451 * goto X;
7452 * ...
7453 * R2 = *(u32 *)(R1 + 0);
7454 */
7455static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7456{
7457 return src != prev && (!reg_type_mismatch_ok(src) ||
7458 !reg_type_mismatch_ok(prev));
7459}
7460
58e2af8b 7461static int do_check(struct bpf_verifier_env *env)
17a52670 7462{
638f5b90 7463 struct bpf_verifier_state *state;
17a52670 7464 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 7465 struct bpf_reg_state *regs;
06ee7115 7466 int insn_cnt = env->prog->len;
17a52670 7467 bool do_print_state = false;
b5dc0163 7468 int prev_insn_idx = -1;
17a52670 7469
d9762e84
MKL
7470 env->prev_linfo = NULL;
7471
638f5b90
AS
7472 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7473 if (!state)
7474 return -ENOMEM;
f4d7e40a 7475 state->curframe = 0;
979d63d5 7476 state->speculative = false;
2589726d 7477 state->branches = 1;
f4d7e40a
AS
7478 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7479 if (!state->frame[0]) {
7480 kfree(state);
7481 return -ENOMEM;
7482 }
7483 env->cur_state = state;
7484 init_func_state(env, state->frame[0],
7485 BPF_MAIN_FUNC /* callsite */,
7486 0 /* frameno */,
7487 0 /* subprogno, zero == main subprog */);
c08435ec 7488
17a52670
AS
7489 for (;;) {
7490 struct bpf_insn *insn;
7491 u8 class;
7492 int err;
7493
b5dc0163 7494 env->prev_insn_idx = prev_insn_idx;
c08435ec 7495 if (env->insn_idx >= insn_cnt) {
61bd5218 7496 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 7497 env->insn_idx, insn_cnt);
17a52670
AS
7498 return -EFAULT;
7499 }
7500
c08435ec 7501 insn = &insns[env->insn_idx];
17a52670
AS
7502 class = BPF_CLASS(insn->code);
7503
06ee7115 7504 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
7505 verbose(env,
7506 "BPF program is too large. Processed %d insn\n",
06ee7115 7507 env->insn_processed);
17a52670
AS
7508 return -E2BIG;
7509 }
7510
c08435ec 7511 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
7512 if (err < 0)
7513 return err;
7514 if (err == 1) {
7515 /* found equivalent state, can prune the search */
06ee7115 7516 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 7517 if (do_print_state)
979d63d5
DB
7518 verbose(env, "\nfrom %d to %d%s: safe\n",
7519 env->prev_insn_idx, env->insn_idx,
7520 env->cur_state->speculative ?
7521 " (speculative execution)" : "");
f1bca824 7522 else
c08435ec 7523 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
7524 }
7525 goto process_bpf_exit;
7526 }
7527
c3494801
AS
7528 if (signal_pending(current))
7529 return -EAGAIN;
7530
3c2ce60b
DB
7531 if (need_resched())
7532 cond_resched();
7533
06ee7115
AS
7534 if (env->log.level & BPF_LOG_LEVEL2 ||
7535 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7536 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 7537 verbose(env, "%d:", env->insn_idx);
c5fc9692 7538 else
979d63d5
DB
7539 verbose(env, "\nfrom %d to %d%s:",
7540 env->prev_insn_idx, env->insn_idx,
7541 env->cur_state->speculative ?
7542 " (speculative execution)" : "");
f4d7e40a 7543 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
7544 do_print_state = false;
7545 }
7546
06ee7115 7547 if (env->log.level & BPF_LOG_LEVEL) {
7105e828
DB
7548 const struct bpf_insn_cbs cbs = {
7549 .cb_print = verbose,
abe08840 7550 .private_data = env,
7105e828
DB
7551 };
7552
c08435ec
DB
7553 verbose_linfo(env, env->insn_idx, "; ");
7554 verbose(env, "%d: ", env->insn_idx);
abe08840 7555 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
7556 }
7557
cae1927c 7558 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
7559 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7560 env->prev_insn_idx);
cae1927c
JK
7561 if (err)
7562 return err;
7563 }
13a27dfc 7564
638f5b90 7565 regs = cur_regs(env);
c08435ec 7566 env->insn_aux_data[env->insn_idx].seen = true;
b5dc0163 7567 prev_insn_idx = env->insn_idx;
fd978bf7 7568
17a52670 7569 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 7570 err = check_alu_op(env, insn);
17a52670
AS
7571 if (err)
7572 return err;
7573
7574 } else if (class == BPF_LDX) {
3df126f3 7575 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
7576
7577 /* check for reserved fields is already done */
7578
17a52670 7579 /* check src operand */
dc503a8a 7580 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7581 if (err)
7582 return err;
7583
dc503a8a 7584 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7585 if (err)
7586 return err;
7587
725f9dcd
AS
7588 src_reg_type = regs[insn->src_reg].type;
7589
17a52670
AS
7590 /* check that memory (src_reg + off) is readable,
7591 * the state of dst_reg will be updated by this func
7592 */
c08435ec
DB
7593 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7594 insn->off, BPF_SIZE(insn->code),
7595 BPF_READ, insn->dst_reg, false);
17a52670
AS
7596 if (err)
7597 return err;
7598
c08435ec 7599 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7600
7601 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
7602 /* saw a valid insn
7603 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 7604 * save type to validate intersecting paths
9bac3d6d 7605 */
3df126f3 7606 *prev_src_type = src_reg_type;
9bac3d6d 7607
c64b7983 7608 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
7609 /* ABuser program is trying to use the same insn
7610 * dst_reg = *(u32*) (src_reg + off)
7611 * with different pointer types:
7612 * src_reg == ctx in one branch and
7613 * src_reg == stack|map in some other branch.
7614 * Reject it.
7615 */
61bd5218 7616 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
7617 return -EINVAL;
7618 }
7619
17a52670 7620 } else if (class == BPF_STX) {
3df126f3 7621 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 7622
17a52670 7623 if (BPF_MODE(insn->code) == BPF_XADD) {
c08435ec 7624 err = check_xadd(env, env->insn_idx, insn);
17a52670
AS
7625 if (err)
7626 return err;
c08435ec 7627 env->insn_idx++;
17a52670
AS
7628 continue;
7629 }
7630
17a52670 7631 /* check src1 operand */
dc503a8a 7632 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7633 if (err)
7634 return err;
7635 /* check src2 operand */
dc503a8a 7636 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7637 if (err)
7638 return err;
7639
d691f9e8
AS
7640 dst_reg_type = regs[insn->dst_reg].type;
7641
17a52670 7642 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7643 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7644 insn->off, BPF_SIZE(insn->code),
7645 BPF_WRITE, insn->src_reg, false);
17a52670
AS
7646 if (err)
7647 return err;
7648
c08435ec 7649 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
7650
7651 if (*prev_dst_type == NOT_INIT) {
7652 *prev_dst_type = dst_reg_type;
c64b7983 7653 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 7654 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
7655 return -EINVAL;
7656 }
7657
17a52670
AS
7658 } else if (class == BPF_ST) {
7659 if (BPF_MODE(insn->code) != BPF_MEM ||
7660 insn->src_reg != BPF_REG_0) {
61bd5218 7661 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
7662 return -EINVAL;
7663 }
7664 /* check src operand */
dc503a8a 7665 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7666 if (err)
7667 return err;
7668
f37a8cb8 7669 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 7670 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
7671 insn->dst_reg,
7672 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
7673 return -EACCES;
7674 }
7675
17a52670 7676 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
7677 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7678 insn->off, BPF_SIZE(insn->code),
7679 BPF_WRITE, -1, false);
17a52670
AS
7680 if (err)
7681 return err;
7682
092ed096 7683 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
7684 u8 opcode = BPF_OP(insn->code);
7685
2589726d 7686 env->jmps_processed++;
17a52670
AS
7687 if (opcode == BPF_CALL) {
7688 if (BPF_SRC(insn->code) != BPF_K ||
7689 insn->off != 0 ||
f4d7e40a
AS
7690 (insn->src_reg != BPF_REG_0 &&
7691 insn->src_reg != BPF_PSEUDO_CALL) ||
092ed096
JW
7692 insn->dst_reg != BPF_REG_0 ||
7693 class == BPF_JMP32) {
61bd5218 7694 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
7695 return -EINVAL;
7696 }
7697
d83525ca
AS
7698 if (env->cur_state->active_spin_lock &&
7699 (insn->src_reg == BPF_PSEUDO_CALL ||
7700 insn->imm != BPF_FUNC_spin_unlock)) {
7701 verbose(env, "function calls are not allowed while holding a lock\n");
7702 return -EINVAL;
7703 }
f4d7e40a 7704 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 7705 err = check_func_call(env, insn, &env->insn_idx);
f4d7e40a 7706 else
c08435ec 7707 err = check_helper_call(env, insn->imm, env->insn_idx);
17a52670
AS
7708 if (err)
7709 return err;
7710
7711 } else if (opcode == BPF_JA) {
7712 if (BPF_SRC(insn->code) != BPF_K ||
7713 insn->imm != 0 ||
7714 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7715 insn->dst_reg != BPF_REG_0 ||
7716 class == BPF_JMP32) {
61bd5218 7717 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
7718 return -EINVAL;
7719 }
7720
c08435ec 7721 env->insn_idx += insn->off + 1;
17a52670
AS
7722 continue;
7723
7724 } else if (opcode == BPF_EXIT) {
7725 if (BPF_SRC(insn->code) != BPF_K ||
7726 insn->imm != 0 ||
7727 insn->src_reg != BPF_REG_0 ||
092ed096
JW
7728 insn->dst_reg != BPF_REG_0 ||
7729 class == BPF_JMP32) {
61bd5218 7730 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
7731 return -EINVAL;
7732 }
7733
d83525ca
AS
7734 if (env->cur_state->active_spin_lock) {
7735 verbose(env, "bpf_spin_unlock is missing\n");
7736 return -EINVAL;
7737 }
7738
f4d7e40a
AS
7739 if (state->curframe) {
7740 /* exit from nested function */
c08435ec 7741 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
7742 if (err)
7743 return err;
7744 do_print_state = true;
7745 continue;
7746 }
7747
fd978bf7
JS
7748 err = check_reference_leak(env);
7749 if (err)
7750 return err;
7751
17a52670
AS
7752 /* eBPF calling convetion is such that R0 is used
7753 * to return the value from eBPF program.
7754 * Make sure that it's readable at this time
7755 * of bpf_exit, which means that program wrote
7756 * something into it earlier
7757 */
dc503a8a 7758 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
7759 if (err)
7760 return err;
7761
1be7f75d 7762 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 7763 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
7764 return -EACCES;
7765 }
7766
390ee7e2
AS
7767 err = check_return_code(env);
7768 if (err)
7769 return err;
f1bca824 7770process_bpf_exit:
2589726d 7771 update_branch_counts(env, env->cur_state);
b5dc0163 7772 err = pop_stack(env, &prev_insn_idx,
c08435ec 7773 &env->insn_idx);
638f5b90
AS
7774 if (err < 0) {
7775 if (err != -ENOENT)
7776 return err;
17a52670
AS
7777 break;
7778 } else {
7779 do_print_state = true;
7780 continue;
7781 }
7782 } else {
c08435ec 7783 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
7784 if (err)
7785 return err;
7786 }
7787 } else if (class == BPF_LD) {
7788 u8 mode = BPF_MODE(insn->code);
7789
7790 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
7791 err = check_ld_abs(env, insn);
7792 if (err)
7793 return err;
7794
17a52670
AS
7795 } else if (mode == BPF_IMM) {
7796 err = check_ld_imm(env, insn);
7797 if (err)
7798 return err;
7799
c08435ec
DB
7800 env->insn_idx++;
7801 env->insn_aux_data[env->insn_idx].seen = true;
17a52670 7802 } else {
61bd5218 7803 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
7804 return -EINVAL;
7805 }
7806 } else {
61bd5218 7807 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
7808 return -EINVAL;
7809 }
7810
c08435ec 7811 env->insn_idx++;
17a52670
AS
7812 }
7813
9c8105bd 7814 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
7815 return 0;
7816}
7817
56f668df
MKL
7818static int check_map_prealloc(struct bpf_map *map)
7819{
7820 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
7821 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7822 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
7823 !(map->map_flags & BPF_F_NO_PREALLOC);
7824}
7825
d83525ca
AS
7826static bool is_tracing_prog_type(enum bpf_prog_type type)
7827{
7828 switch (type) {
7829 case BPF_PROG_TYPE_KPROBE:
7830 case BPF_PROG_TYPE_TRACEPOINT:
7831 case BPF_PROG_TYPE_PERF_EVENT:
7832 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7833 return true;
7834 default:
7835 return false;
7836 }
7837}
7838
61bd5218
JK
7839static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7840 struct bpf_map *map,
fdc15d38
AS
7841 struct bpf_prog *prog)
7842
7843{
56f668df
MKL
7844 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7845 * preallocated hash maps, since doing memory allocation
7846 * in overflow_handler can crash depending on where nmi got
7847 * triggered.
7848 */
7849 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7850 if (!check_map_prealloc(map)) {
61bd5218 7851 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
7852 return -EINVAL;
7853 }
7854 if (map->inner_map_meta &&
7855 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 7856 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
7857 return -EINVAL;
7858 }
fdc15d38 7859 }
a3884572 7860
d83525ca
AS
7861 if ((is_tracing_prog_type(prog->type) ||
7862 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7863 map_value_has_spin_lock(map)) {
7864 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7865 return -EINVAL;
7866 }
7867
a3884572 7868 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 7869 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
7870 verbose(env, "offload device mismatch between prog and map\n");
7871 return -EINVAL;
7872 }
7873
fdc15d38
AS
7874 return 0;
7875}
7876
b741f163
RG
7877static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7878{
7879 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7880 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7881}
7882
0246e64d
AS
7883/* look for pseudo eBPF instructions that access map FDs and
7884 * replace them with actual map pointers
7885 */
58e2af8b 7886static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
7887{
7888 struct bpf_insn *insn = env->prog->insnsi;
7889 int insn_cnt = env->prog->len;
fdc15d38 7890 int i, j, err;
0246e64d 7891
f1f7714e 7892 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
7893 if (err)
7894 return err;
7895
0246e64d 7896 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 7897 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 7898 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 7899 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
7900 return -EINVAL;
7901 }
7902
d691f9e8
AS
7903 if (BPF_CLASS(insn->code) == BPF_STX &&
7904 ((BPF_MODE(insn->code) != BPF_MEM &&
7905 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 7906 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
7907 return -EINVAL;
7908 }
7909
0246e64d 7910 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 7911 struct bpf_insn_aux_data *aux;
0246e64d
AS
7912 struct bpf_map *map;
7913 struct fd f;
d8eca5bb 7914 u64 addr;
0246e64d
AS
7915
7916 if (i == insn_cnt - 1 || insn[1].code != 0 ||
7917 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7918 insn[1].off != 0) {
61bd5218 7919 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
7920 return -EINVAL;
7921 }
7922
d8eca5bb 7923 if (insn[0].src_reg == 0)
0246e64d
AS
7924 /* valid generic load 64-bit imm */
7925 goto next_insn;
7926
d8eca5bb
DB
7927 /* In final convert_pseudo_ld_imm64() step, this is
7928 * converted into regular 64-bit imm load insn.
7929 */
7930 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7931 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7932 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7933 insn[1].imm != 0)) {
7934 verbose(env,
7935 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
7936 return -EINVAL;
7937 }
7938
20182390 7939 f = fdget(insn[0].imm);
c2101297 7940 map = __bpf_map_get(f);
0246e64d 7941 if (IS_ERR(map)) {
61bd5218 7942 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 7943 insn[0].imm);
0246e64d
AS
7944 return PTR_ERR(map);
7945 }
7946
61bd5218 7947 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
7948 if (err) {
7949 fdput(f);
7950 return err;
7951 }
7952
d8eca5bb
DB
7953 aux = &env->insn_aux_data[i];
7954 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7955 addr = (unsigned long)map;
7956 } else {
7957 u32 off = insn[1].imm;
7958
7959 if (off >= BPF_MAX_VAR_OFF) {
7960 verbose(env, "direct value offset of %u is not allowed\n", off);
7961 fdput(f);
7962 return -EINVAL;
7963 }
7964
7965 if (!map->ops->map_direct_value_addr) {
7966 verbose(env, "no direct value access support for this map type\n");
7967 fdput(f);
7968 return -EINVAL;
7969 }
7970
7971 err = map->ops->map_direct_value_addr(map, &addr, off);
7972 if (err) {
7973 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7974 map->value_size, off);
7975 fdput(f);
7976 return err;
7977 }
7978
7979 aux->map_off = off;
7980 addr += off;
7981 }
7982
7983 insn[0].imm = (u32)addr;
7984 insn[1].imm = addr >> 32;
0246e64d
AS
7985
7986 /* check whether we recorded this map already */
d8eca5bb 7987 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 7988 if (env->used_maps[j] == map) {
d8eca5bb 7989 aux->map_index = j;
0246e64d
AS
7990 fdput(f);
7991 goto next_insn;
7992 }
d8eca5bb 7993 }
0246e64d
AS
7994
7995 if (env->used_map_cnt >= MAX_USED_MAPS) {
7996 fdput(f);
7997 return -E2BIG;
7998 }
7999
0246e64d
AS
8000 /* hold the map. If the program is rejected by verifier,
8001 * the map will be released by release_maps() or it
8002 * will be used by the valid program until it's unloaded
ab7f5bf0 8003 * and all maps are released in free_used_maps()
0246e64d 8004 */
92117d84
AS
8005 map = bpf_map_inc(map, false);
8006 if (IS_ERR(map)) {
8007 fdput(f);
8008 return PTR_ERR(map);
8009 }
d8eca5bb
DB
8010
8011 aux->map_index = env->used_map_cnt;
92117d84
AS
8012 env->used_maps[env->used_map_cnt++] = map;
8013
b741f163 8014 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 8015 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 8016 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
8017 fdput(f);
8018 return -EBUSY;
8019 }
8020
0246e64d
AS
8021 fdput(f);
8022next_insn:
8023 insn++;
8024 i++;
5e581dad
DB
8025 continue;
8026 }
8027
8028 /* Basic sanity check before we invest more work here. */
8029 if (!bpf_opcode_in_insntable(insn->code)) {
8030 verbose(env, "unknown opcode %02x\n", insn->code);
8031 return -EINVAL;
0246e64d
AS
8032 }
8033 }
8034
8035 /* now all pseudo BPF_LD_IMM64 instructions load valid
8036 * 'struct bpf_map *' into a register instead of user map_fd.
8037 * These pointers will be used later by verifier to validate map access.
8038 */
8039 return 0;
8040}
8041
8042/* drop refcnt of maps used by the rejected program */
58e2af8b 8043static void release_maps(struct bpf_verifier_env *env)
0246e64d 8044{
8bad74f9 8045 enum bpf_cgroup_storage_type stype;
0246e64d
AS
8046 int i;
8047
8bad74f9
RG
8048 for_each_cgroup_storage_type(stype) {
8049 if (!env->prog->aux->cgroup_storage[stype])
8050 continue;
de9cbbaa 8051 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
8052 env->prog->aux->cgroup_storage[stype]);
8053 }
de9cbbaa 8054
0246e64d
AS
8055 for (i = 0; i < env->used_map_cnt; i++)
8056 bpf_map_put(env->used_maps[i]);
8057}
8058
8059/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 8060static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
8061{
8062 struct bpf_insn *insn = env->prog->insnsi;
8063 int insn_cnt = env->prog->len;
8064 int i;
8065
8066 for (i = 0; i < insn_cnt; i++, insn++)
8067 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8068 insn->src_reg = 0;
8069}
8070
8041902d
AS
8071/* single env->prog->insni[off] instruction was replaced with the range
8072 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8073 * [0, off) and [off, end) to new locations, so the patched range stays zero
8074 */
b325fbca
JW
8075static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8076 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
8077{
8078 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
8079 struct bpf_insn *insn = new_prog->insnsi;
8080 u32 prog_len;
c131187d 8081 int i;
8041902d 8082
b325fbca
JW
8083 /* aux info at OFF always needs adjustment, no matter fast path
8084 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8085 * original insn at old prog.
8086 */
8087 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8088
8041902d
AS
8089 if (cnt == 1)
8090 return 0;
b325fbca 8091 prog_len = new_prog->len;
fad953ce
KC
8092 new_data = vzalloc(array_size(prog_len,
8093 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
8094 if (!new_data)
8095 return -ENOMEM;
8096 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8097 memcpy(new_data + off + cnt - 1, old_data + off,
8098 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 8099 for (i = off; i < off + cnt - 1; i++) {
c131187d 8100 new_data[i].seen = true;
b325fbca
JW
8101 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8102 }
8041902d
AS
8103 env->insn_aux_data = new_data;
8104 vfree(old_data);
8105 return 0;
8106}
8107
cc8b0b92
AS
8108static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8109{
8110 int i;
8111
8112 if (len == 1)
8113 return;
4cb3d99c
JW
8114 /* NOTE: fake 'exit' subprog should be updated as well. */
8115 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 8116 if (env->subprog_info[i].start <= off)
cc8b0b92 8117 continue;
9c8105bd 8118 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
8119 }
8120}
8121
8041902d
AS
8122static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8123 const struct bpf_insn *patch, u32 len)
8124{
8125 struct bpf_prog *new_prog;
8126
8127 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
8128 if (IS_ERR(new_prog)) {
8129 if (PTR_ERR(new_prog) == -ERANGE)
8130 verbose(env,
8131 "insn %d cannot be patched due to 16-bit range\n",
8132 env->insn_aux_data[off].orig_idx);
8041902d 8133 return NULL;
4f73379e 8134 }
b325fbca 8135 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 8136 return NULL;
cc8b0b92 8137 adjust_subprog_starts(env, off, len);
8041902d
AS
8138 return new_prog;
8139}
8140
52875a04
JK
8141static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8142 u32 off, u32 cnt)
8143{
8144 int i, j;
8145
8146 /* find first prog starting at or after off (first to remove) */
8147 for (i = 0; i < env->subprog_cnt; i++)
8148 if (env->subprog_info[i].start >= off)
8149 break;
8150 /* find first prog starting at or after off + cnt (first to stay) */
8151 for (j = i; j < env->subprog_cnt; j++)
8152 if (env->subprog_info[j].start >= off + cnt)
8153 break;
8154 /* if j doesn't start exactly at off + cnt, we are just removing
8155 * the front of previous prog
8156 */
8157 if (env->subprog_info[j].start != off + cnt)
8158 j--;
8159
8160 if (j > i) {
8161 struct bpf_prog_aux *aux = env->prog->aux;
8162 int move;
8163
8164 /* move fake 'exit' subprog as well */
8165 move = env->subprog_cnt + 1 - j;
8166
8167 memmove(env->subprog_info + i,
8168 env->subprog_info + j,
8169 sizeof(*env->subprog_info) * move);
8170 env->subprog_cnt -= j - i;
8171
8172 /* remove func_info */
8173 if (aux->func_info) {
8174 move = aux->func_info_cnt - j;
8175
8176 memmove(aux->func_info + i,
8177 aux->func_info + j,
8178 sizeof(*aux->func_info) * move);
8179 aux->func_info_cnt -= j - i;
8180 /* func_info->insn_off is set after all code rewrites,
8181 * in adjust_btf_func() - no need to adjust
8182 */
8183 }
8184 } else {
8185 /* convert i from "first prog to remove" to "first to adjust" */
8186 if (env->subprog_info[i].start == off)
8187 i++;
8188 }
8189
8190 /* update fake 'exit' subprog as well */
8191 for (; i <= env->subprog_cnt; i++)
8192 env->subprog_info[i].start -= cnt;
8193
8194 return 0;
8195}
8196
8197static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8198 u32 cnt)
8199{
8200 struct bpf_prog *prog = env->prog;
8201 u32 i, l_off, l_cnt, nr_linfo;
8202 struct bpf_line_info *linfo;
8203
8204 nr_linfo = prog->aux->nr_linfo;
8205 if (!nr_linfo)
8206 return 0;
8207
8208 linfo = prog->aux->linfo;
8209
8210 /* find first line info to remove, count lines to be removed */
8211 for (i = 0; i < nr_linfo; i++)
8212 if (linfo[i].insn_off >= off)
8213 break;
8214
8215 l_off = i;
8216 l_cnt = 0;
8217 for (; i < nr_linfo; i++)
8218 if (linfo[i].insn_off < off + cnt)
8219 l_cnt++;
8220 else
8221 break;
8222
8223 /* First live insn doesn't match first live linfo, it needs to "inherit"
8224 * last removed linfo. prog is already modified, so prog->len == off
8225 * means no live instructions after (tail of the program was removed).
8226 */
8227 if (prog->len != off && l_cnt &&
8228 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8229 l_cnt--;
8230 linfo[--i].insn_off = off + cnt;
8231 }
8232
8233 /* remove the line info which refer to the removed instructions */
8234 if (l_cnt) {
8235 memmove(linfo + l_off, linfo + i,
8236 sizeof(*linfo) * (nr_linfo - i));
8237
8238 prog->aux->nr_linfo -= l_cnt;
8239 nr_linfo = prog->aux->nr_linfo;
8240 }
8241
8242 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8243 for (i = l_off; i < nr_linfo; i++)
8244 linfo[i].insn_off -= cnt;
8245
8246 /* fix up all subprogs (incl. 'exit') which start >= off */
8247 for (i = 0; i <= env->subprog_cnt; i++)
8248 if (env->subprog_info[i].linfo_idx > l_off) {
8249 /* program may have started in the removed region but
8250 * may not be fully removed
8251 */
8252 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8253 env->subprog_info[i].linfo_idx -= l_cnt;
8254 else
8255 env->subprog_info[i].linfo_idx = l_off;
8256 }
8257
8258 return 0;
8259}
8260
8261static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8262{
8263 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8264 unsigned int orig_prog_len = env->prog->len;
8265 int err;
8266
08ca90af
JK
8267 if (bpf_prog_is_dev_bound(env->prog->aux))
8268 bpf_prog_offload_remove_insns(env, off, cnt);
8269
52875a04
JK
8270 err = bpf_remove_insns(env->prog, off, cnt);
8271 if (err)
8272 return err;
8273
8274 err = adjust_subprog_starts_after_remove(env, off, cnt);
8275 if (err)
8276 return err;
8277
8278 err = bpf_adj_linfo_after_remove(env, off, cnt);
8279 if (err)
8280 return err;
8281
8282 memmove(aux_data + off, aux_data + off + cnt,
8283 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8284
8285 return 0;
8286}
8287
2a5418a1
DB
8288/* The verifier does more data flow analysis than llvm and will not
8289 * explore branches that are dead at run time. Malicious programs can
8290 * have dead code too. Therefore replace all dead at-run-time code
8291 * with 'ja -1'.
8292 *
8293 * Just nops are not optimal, e.g. if they would sit at the end of the
8294 * program and through another bug we would manage to jump there, then
8295 * we'd execute beyond program memory otherwise. Returning exception
8296 * code also wouldn't work since we can have subprogs where the dead
8297 * code could be located.
c131187d
AS
8298 */
8299static void sanitize_dead_code(struct bpf_verifier_env *env)
8300{
8301 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 8302 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
8303 struct bpf_insn *insn = env->prog->insnsi;
8304 const int insn_cnt = env->prog->len;
8305 int i;
8306
8307 for (i = 0; i < insn_cnt; i++) {
8308 if (aux_data[i].seen)
8309 continue;
2a5418a1 8310 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
8311 }
8312}
8313
e2ae4ca2
JK
8314static bool insn_is_cond_jump(u8 code)
8315{
8316 u8 op;
8317
092ed096
JW
8318 if (BPF_CLASS(code) == BPF_JMP32)
8319 return true;
8320
e2ae4ca2
JK
8321 if (BPF_CLASS(code) != BPF_JMP)
8322 return false;
8323
8324 op = BPF_OP(code);
8325 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8326}
8327
8328static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8329{
8330 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8331 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8332 struct bpf_insn *insn = env->prog->insnsi;
8333 const int insn_cnt = env->prog->len;
8334 int i;
8335
8336 for (i = 0; i < insn_cnt; i++, insn++) {
8337 if (!insn_is_cond_jump(insn->code))
8338 continue;
8339
8340 if (!aux_data[i + 1].seen)
8341 ja.off = insn->off;
8342 else if (!aux_data[i + 1 + insn->off].seen)
8343 ja.off = 0;
8344 else
8345 continue;
8346
08ca90af
JK
8347 if (bpf_prog_is_dev_bound(env->prog->aux))
8348 bpf_prog_offload_replace_insn(env, i, &ja);
8349
e2ae4ca2
JK
8350 memcpy(insn, &ja, sizeof(ja));
8351 }
8352}
8353
52875a04
JK
8354static int opt_remove_dead_code(struct bpf_verifier_env *env)
8355{
8356 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8357 int insn_cnt = env->prog->len;
8358 int i, err;
8359
8360 for (i = 0; i < insn_cnt; i++) {
8361 int j;
8362
8363 j = 0;
8364 while (i + j < insn_cnt && !aux_data[i + j].seen)
8365 j++;
8366 if (!j)
8367 continue;
8368
8369 err = verifier_remove_insns(env, i, j);
8370 if (err)
8371 return err;
8372 insn_cnt = env->prog->len;
8373 }
8374
8375 return 0;
8376}
8377
a1b14abc
JK
8378static int opt_remove_nops(struct bpf_verifier_env *env)
8379{
8380 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8381 struct bpf_insn *insn = env->prog->insnsi;
8382 int insn_cnt = env->prog->len;
8383 int i, err;
8384
8385 for (i = 0; i < insn_cnt; i++) {
8386 if (memcmp(&insn[i], &ja, sizeof(ja)))
8387 continue;
8388
8389 err = verifier_remove_insns(env, i, 1);
8390 if (err)
8391 return err;
8392 insn_cnt--;
8393 i--;
8394 }
8395
8396 return 0;
8397}
8398
d6c2308c
JW
8399static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8400 const union bpf_attr *attr)
a4b1d3c1 8401{
d6c2308c 8402 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 8403 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 8404 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 8405 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 8406 struct bpf_prog *new_prog;
d6c2308c 8407 bool rnd_hi32;
a4b1d3c1 8408
d6c2308c 8409 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 8410 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
8411 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8412 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8413 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
8414 for (i = 0; i < len; i++) {
8415 int adj_idx = i + delta;
8416 struct bpf_insn insn;
8417
d6c2308c
JW
8418 insn = insns[adj_idx];
8419 if (!aux[adj_idx].zext_dst) {
8420 u8 code, class;
8421 u32 imm_rnd;
8422
8423 if (!rnd_hi32)
8424 continue;
8425
8426 code = insn.code;
8427 class = BPF_CLASS(code);
8428 if (insn_no_def(&insn))
8429 continue;
8430
8431 /* NOTE: arg "reg" (the fourth one) is only used for
8432 * BPF_STX which has been ruled out in above
8433 * check, it is safe to pass NULL here.
8434 */
8435 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8436 if (class == BPF_LD &&
8437 BPF_MODE(code) == BPF_IMM)
8438 i++;
8439 continue;
8440 }
8441
8442 /* ctx load could be transformed into wider load. */
8443 if (class == BPF_LDX &&
8444 aux[adj_idx].ptr_type == PTR_TO_CTX)
8445 continue;
8446
8447 imm_rnd = get_random_int();
8448 rnd_hi32_patch[0] = insn;
8449 rnd_hi32_patch[1].imm = imm_rnd;
8450 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8451 patch = rnd_hi32_patch;
8452 patch_len = 4;
8453 goto apply_patch_buffer;
8454 }
8455
8456 if (!bpf_jit_needs_zext())
a4b1d3c1
JW
8457 continue;
8458
a4b1d3c1
JW
8459 zext_patch[0] = insn;
8460 zext_patch[1].dst_reg = insn.dst_reg;
8461 zext_patch[1].src_reg = insn.dst_reg;
d6c2308c
JW
8462 patch = zext_patch;
8463 patch_len = 2;
8464apply_patch_buffer:
8465 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
8466 if (!new_prog)
8467 return -ENOMEM;
8468 env->prog = new_prog;
8469 insns = new_prog->insnsi;
8470 aux = env->insn_aux_data;
d6c2308c 8471 delta += patch_len - 1;
a4b1d3c1
JW
8472 }
8473
8474 return 0;
8475}
8476
c64b7983
JS
8477/* convert load instructions that access fields of a context type into a
8478 * sequence of instructions that access fields of the underlying structure:
8479 * struct __sk_buff -> struct sk_buff
8480 * struct bpf_sock_ops -> struct sock
9bac3d6d 8481 */
58e2af8b 8482static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 8483{
00176a34 8484 const struct bpf_verifier_ops *ops = env->ops;
f96da094 8485 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 8486 const int insn_cnt = env->prog->len;
36bbef52 8487 struct bpf_insn insn_buf[16], *insn;
46f53a65 8488 u32 target_size, size_default, off;
9bac3d6d 8489 struct bpf_prog *new_prog;
d691f9e8 8490 enum bpf_access_type type;
f96da094 8491 bool is_narrower_load;
9bac3d6d 8492
b09928b9
DB
8493 if (ops->gen_prologue || env->seen_direct_write) {
8494 if (!ops->gen_prologue) {
8495 verbose(env, "bpf verifier is misconfigured\n");
8496 return -EINVAL;
8497 }
36bbef52
DB
8498 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8499 env->prog);
8500 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 8501 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
8502 return -EINVAL;
8503 } else if (cnt) {
8041902d 8504 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
8505 if (!new_prog)
8506 return -ENOMEM;
8041902d 8507
36bbef52 8508 env->prog = new_prog;
3df126f3 8509 delta += cnt - 1;
36bbef52
DB
8510 }
8511 }
8512
c64b7983 8513 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
8514 return 0;
8515
3df126f3 8516 insn = env->prog->insnsi + delta;
36bbef52 8517
9bac3d6d 8518 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
8519 bpf_convert_ctx_access_t convert_ctx_access;
8520
62c7989b
DB
8521 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8522 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8523 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 8524 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 8525 type = BPF_READ;
62c7989b
DB
8526 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8527 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8528 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 8529 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
8530 type = BPF_WRITE;
8531 else
9bac3d6d
AS
8532 continue;
8533
af86ca4e
AS
8534 if (type == BPF_WRITE &&
8535 env->insn_aux_data[i + delta].sanitize_stack_off) {
8536 struct bpf_insn patch[] = {
8537 /* Sanitize suspicious stack slot with zero.
8538 * There are no memory dependencies for this store,
8539 * since it's only using frame pointer and immediate
8540 * constant of zero
8541 */
8542 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8543 env->insn_aux_data[i + delta].sanitize_stack_off,
8544 0),
8545 /* the original STX instruction will immediately
8546 * overwrite the same stack slot with appropriate value
8547 */
8548 *insn,
8549 };
8550
8551 cnt = ARRAY_SIZE(patch);
8552 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8553 if (!new_prog)
8554 return -ENOMEM;
8555
8556 delta += cnt - 1;
8557 env->prog = new_prog;
8558 insn = new_prog->insnsi + i + delta;
8559 continue;
8560 }
8561
c64b7983
JS
8562 switch (env->insn_aux_data[i + delta].ptr_type) {
8563 case PTR_TO_CTX:
8564 if (!ops->convert_ctx_access)
8565 continue;
8566 convert_ctx_access = ops->convert_ctx_access;
8567 break;
8568 case PTR_TO_SOCKET:
46f8bc92 8569 case PTR_TO_SOCK_COMMON:
c64b7983
JS
8570 convert_ctx_access = bpf_sock_convert_ctx_access;
8571 break;
655a51e5
MKL
8572 case PTR_TO_TCP_SOCK:
8573 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8574 break;
fada7fdc
JL
8575 case PTR_TO_XDP_SOCK:
8576 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8577 break;
c64b7983 8578 default:
9bac3d6d 8579 continue;
c64b7983 8580 }
9bac3d6d 8581
31fd8581 8582 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 8583 size = BPF_LDST_BYTES(insn);
31fd8581
YS
8584
8585 /* If the read access is a narrower load of the field,
8586 * convert to a 4/8-byte load, to minimum program type specific
8587 * convert_ctx_access changes. If conversion is successful,
8588 * we will apply proper mask to the result.
8589 */
f96da094 8590 is_narrower_load = size < ctx_field_size;
46f53a65
AI
8591 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8592 off = insn->off;
31fd8581 8593 if (is_narrower_load) {
f96da094
DB
8594 u8 size_code;
8595
8596 if (type == BPF_WRITE) {
61bd5218 8597 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
8598 return -EINVAL;
8599 }
31fd8581 8600
f96da094 8601 size_code = BPF_H;
31fd8581
YS
8602 if (ctx_field_size == 4)
8603 size_code = BPF_W;
8604 else if (ctx_field_size == 8)
8605 size_code = BPF_DW;
f96da094 8606
bc23105c 8607 insn->off = off & ~(size_default - 1);
31fd8581
YS
8608 insn->code = BPF_LDX | BPF_MEM | size_code;
8609 }
f96da094
DB
8610
8611 target_size = 0;
c64b7983
JS
8612 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8613 &target_size);
f96da094
DB
8614 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8615 (ctx_field_size && !target_size)) {
61bd5218 8616 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
8617 return -EINVAL;
8618 }
f96da094
DB
8619
8620 if (is_narrower_load && size < target_size) {
d9b8aada
IL
8621 u8 shift = bpf_ctx_narrow_load_shift(off, size,
8622 size_default);
46f53a65
AI
8623 if (ctx_field_size <= 4) {
8624 if (shift)
8625 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8626 insn->dst_reg,
8627 shift);
31fd8581 8628 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 8629 (1 << size * 8) - 1);
46f53a65
AI
8630 } else {
8631 if (shift)
8632 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8633 insn->dst_reg,
8634 shift);
31fd8581 8635 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 8636 (1ULL << size * 8) - 1);
46f53a65 8637 }
31fd8581 8638 }
9bac3d6d 8639
8041902d 8640 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
8641 if (!new_prog)
8642 return -ENOMEM;
8643
3df126f3 8644 delta += cnt - 1;
9bac3d6d
AS
8645
8646 /* keep walking new program and skip insns we just inserted */
8647 env->prog = new_prog;
3df126f3 8648 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
8649 }
8650
8651 return 0;
8652}
8653
1c2a088a
AS
8654static int jit_subprogs(struct bpf_verifier_env *env)
8655{
8656 struct bpf_prog *prog = env->prog, **func, *tmp;
8657 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 8658 struct bpf_insn *insn;
1c2a088a 8659 void *old_bpf_func;
c454a46b 8660 int err;
1c2a088a 8661
f910cefa 8662 if (env->subprog_cnt <= 1)
1c2a088a
AS
8663 return 0;
8664
7105e828 8665 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
8666 if (insn->code != (BPF_JMP | BPF_CALL) ||
8667 insn->src_reg != BPF_PSEUDO_CALL)
8668 continue;
c7a89784
DB
8669 /* Upon error here we cannot fall back to interpreter but
8670 * need a hard reject of the program. Thus -EFAULT is
8671 * propagated in any case.
8672 */
1c2a088a
AS
8673 subprog = find_subprog(env, i + insn->imm + 1);
8674 if (subprog < 0) {
8675 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8676 i + insn->imm + 1);
8677 return -EFAULT;
8678 }
8679 /* temporarily remember subprog id inside insn instead of
8680 * aux_data, since next loop will split up all insns into funcs
8681 */
f910cefa 8682 insn->off = subprog;
1c2a088a
AS
8683 /* remember original imm in case JIT fails and fallback
8684 * to interpreter will be needed
8685 */
8686 env->insn_aux_data[i].call_imm = insn->imm;
8687 /* point imm to __bpf_call_base+1 from JITs point of view */
8688 insn->imm = 1;
8689 }
8690
c454a46b
MKL
8691 err = bpf_prog_alloc_jited_linfo(prog);
8692 if (err)
8693 goto out_undo_insn;
8694
8695 err = -ENOMEM;
6396bb22 8696 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 8697 if (!func)
c7a89784 8698 goto out_undo_insn;
1c2a088a 8699
f910cefa 8700 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 8701 subprog_start = subprog_end;
4cb3d99c 8702 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
8703
8704 len = subprog_end - subprog_start;
492ecee8
AS
8705 /* BPF_PROG_RUN doesn't call subprogs directly,
8706 * hence main prog stats include the runtime of subprogs.
8707 * subprogs don't have IDs and not reachable via prog_get_next_id
8708 * func[i]->aux->stats will never be accessed and stays NULL
8709 */
8710 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
8711 if (!func[i])
8712 goto out_free;
8713 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8714 len * sizeof(struct bpf_insn));
4f74d809 8715 func[i]->type = prog->type;
1c2a088a 8716 func[i]->len = len;
4f74d809
DB
8717 if (bpf_prog_calc_tag(func[i]))
8718 goto out_free;
1c2a088a 8719 func[i]->is_func = 1;
ba64e7d8
YS
8720 func[i]->aux->func_idx = i;
8721 /* the btf and func_info will be freed only at prog->aux */
8722 func[i]->aux->btf = prog->aux->btf;
8723 func[i]->aux->func_info = prog->aux->func_info;
8724
1c2a088a
AS
8725 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8726 * Long term would need debug info to populate names
8727 */
8728 func[i]->aux->name[0] = 'F';
9c8105bd 8729 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 8730 func[i]->jit_requested = 1;
c454a46b
MKL
8731 func[i]->aux->linfo = prog->aux->linfo;
8732 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8733 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8734 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
1c2a088a
AS
8735 func[i] = bpf_int_jit_compile(func[i]);
8736 if (!func[i]->jited) {
8737 err = -ENOTSUPP;
8738 goto out_free;
8739 }
8740 cond_resched();
8741 }
8742 /* at this point all bpf functions were successfully JITed
8743 * now populate all bpf_calls with correct addresses and
8744 * run last pass of JIT
8745 */
f910cefa 8746 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8747 insn = func[i]->insnsi;
8748 for (j = 0; j < func[i]->len; j++, insn++) {
8749 if (insn->code != (BPF_JMP | BPF_CALL) ||
8750 insn->src_reg != BPF_PSEUDO_CALL)
8751 continue;
8752 subprog = insn->off;
0d306c31
PB
8753 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8754 __bpf_call_base;
1c2a088a 8755 }
2162fed4
SD
8756
8757 /* we use the aux data to keep a list of the start addresses
8758 * of the JITed images for each function in the program
8759 *
8760 * for some architectures, such as powerpc64, the imm field
8761 * might not be large enough to hold the offset of the start
8762 * address of the callee's JITed image from __bpf_call_base
8763 *
8764 * in such cases, we can lookup the start address of a callee
8765 * by using its subprog id, available from the off field of
8766 * the call instruction, as an index for this list
8767 */
8768 func[i]->aux->func = func;
8769 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 8770 }
f910cefa 8771 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8772 old_bpf_func = func[i]->bpf_func;
8773 tmp = bpf_int_jit_compile(func[i]);
8774 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8775 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 8776 err = -ENOTSUPP;
1c2a088a
AS
8777 goto out_free;
8778 }
8779 cond_resched();
8780 }
8781
8782 /* finally lock prog and jit images for all functions and
8783 * populate kallsysm
8784 */
f910cefa 8785 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
8786 bpf_prog_lock_ro(func[i]);
8787 bpf_prog_kallsyms_add(func[i]);
8788 }
7105e828
DB
8789
8790 /* Last step: make now unused interpreter insns from main
8791 * prog consistent for later dump requests, so they can
8792 * later look the same as if they were interpreted only.
8793 */
8794 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
8795 if (insn->code != (BPF_JMP | BPF_CALL) ||
8796 insn->src_reg != BPF_PSEUDO_CALL)
8797 continue;
8798 insn->off = env->insn_aux_data[i].call_imm;
8799 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 8800 insn->imm = subprog;
7105e828
DB
8801 }
8802
1c2a088a
AS
8803 prog->jited = 1;
8804 prog->bpf_func = func[0]->bpf_func;
8805 prog->aux->func = func;
f910cefa 8806 prog->aux->func_cnt = env->subprog_cnt;
c454a46b 8807 bpf_prog_free_unused_jited_linfo(prog);
1c2a088a
AS
8808 return 0;
8809out_free:
f910cefa 8810 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
8811 if (func[i])
8812 bpf_jit_free(func[i]);
8813 kfree(func);
c7a89784 8814out_undo_insn:
1c2a088a
AS
8815 /* cleanup main prog to be interpreted */
8816 prog->jit_requested = 0;
8817 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8818 if (insn->code != (BPF_JMP | BPF_CALL) ||
8819 insn->src_reg != BPF_PSEUDO_CALL)
8820 continue;
8821 insn->off = 0;
8822 insn->imm = env->insn_aux_data[i].call_imm;
8823 }
c454a46b 8824 bpf_prog_free_jited_linfo(prog);
1c2a088a
AS
8825 return err;
8826}
8827
1ea47e01
AS
8828static int fixup_call_args(struct bpf_verifier_env *env)
8829{
19d28fbd 8830#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8831 struct bpf_prog *prog = env->prog;
8832 struct bpf_insn *insn = prog->insnsi;
8833 int i, depth;
19d28fbd 8834#endif
e4052d06 8835 int err = 0;
1ea47e01 8836
e4052d06
QM
8837 if (env->prog->jit_requested &&
8838 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
8839 err = jit_subprogs(env);
8840 if (err == 0)
1c2a088a 8841 return 0;
c7a89784
DB
8842 if (err == -EFAULT)
8843 return err;
19d28fbd
DM
8844 }
8845#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
8846 for (i = 0; i < prog->len; i++, insn++) {
8847 if (insn->code != (BPF_JMP | BPF_CALL) ||
8848 insn->src_reg != BPF_PSEUDO_CALL)
8849 continue;
8850 depth = get_callee_stack_depth(env, insn, i);
8851 if (depth < 0)
8852 return depth;
8853 bpf_patch_call_args(insn, depth);
8854 }
19d28fbd
DM
8855 err = 0;
8856#endif
8857 return err;
1ea47e01
AS
8858}
8859
79741b3b 8860/* fixup insn->imm field of bpf_call instructions
81ed18ab 8861 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
8862 *
8863 * this function is called after eBPF program passed verification
8864 */
79741b3b 8865static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 8866{
79741b3b
AS
8867 struct bpf_prog *prog = env->prog;
8868 struct bpf_insn *insn = prog->insnsi;
e245c5c6 8869 const struct bpf_func_proto *fn;
79741b3b 8870 const int insn_cnt = prog->len;
09772d92 8871 const struct bpf_map_ops *ops;
c93552c4 8872 struct bpf_insn_aux_data *aux;
81ed18ab
AS
8873 struct bpf_insn insn_buf[16];
8874 struct bpf_prog *new_prog;
8875 struct bpf_map *map_ptr;
8876 int i, cnt, delta = 0;
e245c5c6 8877
79741b3b 8878 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
8879 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8880 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8881 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 8882 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
8883 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8884 struct bpf_insn mask_and_div[] = {
8885 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8886 /* Rx div 0 -> 0 */
8887 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8888 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8889 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8890 *insn,
8891 };
8892 struct bpf_insn mask_and_mod[] = {
8893 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8894 /* Rx mod 0 -> Rx */
8895 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8896 *insn,
8897 };
8898 struct bpf_insn *patchlet;
8899
8900 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8901 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8902 patchlet = mask_and_div + (is64 ? 1 : 0);
8903 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8904 } else {
8905 patchlet = mask_and_mod + (is64 ? 1 : 0);
8906 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8907 }
8908
8909 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
8910 if (!new_prog)
8911 return -ENOMEM;
8912
8913 delta += cnt - 1;
8914 env->prog = prog = new_prog;
8915 insn = new_prog->insnsi + i + delta;
8916 continue;
8917 }
8918
e0cea7ce
DB
8919 if (BPF_CLASS(insn->code) == BPF_LD &&
8920 (BPF_MODE(insn->code) == BPF_ABS ||
8921 BPF_MODE(insn->code) == BPF_IND)) {
8922 cnt = env->ops->gen_ld_abs(insn, insn_buf);
8923 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8924 verbose(env, "bpf verifier is misconfigured\n");
8925 return -EINVAL;
8926 }
8927
8928 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8929 if (!new_prog)
8930 return -ENOMEM;
8931
8932 delta += cnt - 1;
8933 env->prog = prog = new_prog;
8934 insn = new_prog->insnsi + i + delta;
8935 continue;
8936 }
8937
979d63d5
DB
8938 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8939 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8940 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8941 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8942 struct bpf_insn insn_buf[16];
8943 struct bpf_insn *patch = &insn_buf[0];
8944 bool issrc, isneg;
8945 u32 off_reg;
8946
8947 aux = &env->insn_aux_data[i + delta];
3612af78
DB
8948 if (!aux->alu_state ||
8949 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
8950 continue;
8951
8952 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8953 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8954 BPF_ALU_SANITIZE_SRC;
8955
8956 off_reg = issrc ? insn->src_reg : insn->dst_reg;
8957 if (isneg)
8958 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8959 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8960 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8961 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8962 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8963 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8964 if (issrc) {
8965 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8966 off_reg);
8967 insn->src_reg = BPF_REG_AX;
8968 } else {
8969 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8970 BPF_REG_AX);
8971 }
8972 if (isneg)
8973 insn->code = insn->code == code_add ?
8974 code_sub : code_add;
8975 *patch++ = *insn;
8976 if (issrc && isneg)
8977 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8978 cnt = patch - insn_buf;
8979
8980 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8981 if (!new_prog)
8982 return -ENOMEM;
8983
8984 delta += cnt - 1;
8985 env->prog = prog = new_prog;
8986 insn = new_prog->insnsi + i + delta;
8987 continue;
8988 }
8989
79741b3b
AS
8990 if (insn->code != (BPF_JMP | BPF_CALL))
8991 continue;
cc8b0b92
AS
8992 if (insn->src_reg == BPF_PSEUDO_CALL)
8993 continue;
e245c5c6 8994
79741b3b
AS
8995 if (insn->imm == BPF_FUNC_get_route_realm)
8996 prog->dst_needed = 1;
8997 if (insn->imm == BPF_FUNC_get_prandom_u32)
8998 bpf_user_rnd_init_once();
9802d865
JB
8999 if (insn->imm == BPF_FUNC_override_return)
9000 prog->kprobe_override = 1;
79741b3b 9001 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
9002 /* If we tail call into other programs, we
9003 * cannot make any assumptions since they can
9004 * be replaced dynamically during runtime in
9005 * the program array.
9006 */
9007 prog->cb_access = 1;
80a58d02 9008 env->prog->aux->stack_depth = MAX_BPF_STACK;
e647815a 9009 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 9010
79741b3b
AS
9011 /* mark bpf_tail_call as different opcode to avoid
9012 * conditional branch in the interpeter for every normal
9013 * call and to prevent accidental JITing by JIT compiler
9014 * that doesn't support bpf_tail_call yet
e245c5c6 9015 */
79741b3b 9016 insn->imm = 0;
71189fa9 9017 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 9018
c93552c4
DB
9019 aux = &env->insn_aux_data[i + delta];
9020 if (!bpf_map_ptr_unpriv(aux))
9021 continue;
9022
b2157399
AS
9023 /* instead of changing every JIT dealing with tail_call
9024 * emit two extra insns:
9025 * if (index >= max_entries) goto out;
9026 * index &= array->index_mask;
9027 * to avoid out-of-bounds cpu speculation
9028 */
c93552c4 9029 if (bpf_map_ptr_poisoned(aux)) {
40950343 9030 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
9031 return -EINVAL;
9032 }
c93552c4
DB
9033
9034 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
9035 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9036 map_ptr->max_entries, 2);
9037 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9038 container_of(map_ptr,
9039 struct bpf_array,
9040 map)->index_mask);
9041 insn_buf[2] = *insn;
9042 cnt = 3;
9043 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9044 if (!new_prog)
9045 return -ENOMEM;
9046
9047 delta += cnt - 1;
9048 env->prog = prog = new_prog;
9049 insn = new_prog->insnsi + i + delta;
79741b3b
AS
9050 continue;
9051 }
e245c5c6 9052
89c63074 9053 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
9054 * and other inlining handlers are currently limited to 64 bit
9055 * only.
89c63074 9056 */
60b58afc 9057 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
9058 (insn->imm == BPF_FUNC_map_lookup_elem ||
9059 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
9060 insn->imm == BPF_FUNC_map_delete_elem ||
9061 insn->imm == BPF_FUNC_map_push_elem ||
9062 insn->imm == BPF_FUNC_map_pop_elem ||
9063 insn->imm == BPF_FUNC_map_peek_elem)) {
c93552c4
DB
9064 aux = &env->insn_aux_data[i + delta];
9065 if (bpf_map_ptr_poisoned(aux))
9066 goto patch_call_imm;
9067
9068 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
9069 ops = map_ptr->ops;
9070 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9071 ops->map_gen_lookup) {
9072 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9073 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9074 verbose(env, "bpf verifier is misconfigured\n");
9075 return -EINVAL;
9076 }
81ed18ab 9077
09772d92
DB
9078 new_prog = bpf_patch_insn_data(env, i + delta,
9079 insn_buf, cnt);
9080 if (!new_prog)
9081 return -ENOMEM;
81ed18ab 9082
09772d92
DB
9083 delta += cnt - 1;
9084 env->prog = prog = new_prog;
9085 insn = new_prog->insnsi + i + delta;
9086 continue;
9087 }
81ed18ab 9088
09772d92
DB
9089 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9090 (void *(*)(struct bpf_map *map, void *key))NULL));
9091 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9092 (int (*)(struct bpf_map *map, void *key))NULL));
9093 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9094 (int (*)(struct bpf_map *map, void *key, void *value,
9095 u64 flags))NULL));
84430d42
DB
9096 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9097 (int (*)(struct bpf_map *map, void *value,
9098 u64 flags))NULL));
9099 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9100 (int (*)(struct bpf_map *map, void *value))NULL));
9101 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9102 (int (*)(struct bpf_map *map, void *value))NULL));
9103
09772d92
DB
9104 switch (insn->imm) {
9105 case BPF_FUNC_map_lookup_elem:
9106 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9107 __bpf_call_base;
9108 continue;
9109 case BPF_FUNC_map_update_elem:
9110 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9111 __bpf_call_base;
9112 continue;
9113 case BPF_FUNC_map_delete_elem:
9114 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9115 __bpf_call_base;
9116 continue;
84430d42
DB
9117 case BPF_FUNC_map_push_elem:
9118 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9119 __bpf_call_base;
9120 continue;
9121 case BPF_FUNC_map_pop_elem:
9122 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9123 __bpf_call_base;
9124 continue;
9125 case BPF_FUNC_map_peek_elem:
9126 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9127 __bpf_call_base;
9128 continue;
09772d92 9129 }
81ed18ab 9130
09772d92 9131 goto patch_call_imm;
81ed18ab
AS
9132 }
9133
9134patch_call_imm:
5e43f899 9135 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
9136 /* all functions that have prototype and verifier allowed
9137 * programs to call them, must be real in-kernel functions
9138 */
9139 if (!fn->func) {
61bd5218
JK
9140 verbose(env,
9141 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
9142 func_id_name(insn->imm), insn->imm);
9143 return -EFAULT;
e245c5c6 9144 }
79741b3b 9145 insn->imm = fn->func - __bpf_call_base;
e245c5c6 9146 }
e245c5c6 9147
79741b3b
AS
9148 return 0;
9149}
e245c5c6 9150
58e2af8b 9151static void free_states(struct bpf_verifier_env *env)
f1bca824 9152{
58e2af8b 9153 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
9154 int i;
9155
9f4686c4
AS
9156 sl = env->free_list;
9157 while (sl) {
9158 sln = sl->next;
9159 free_verifier_state(&sl->state, false);
9160 kfree(sl);
9161 sl = sln;
9162 }
9163
f1bca824
AS
9164 if (!env->explored_states)
9165 return;
9166
dc2a4ebc 9167 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
9168 sl = env->explored_states[i];
9169
a8f500af
AS
9170 while (sl) {
9171 sln = sl->next;
9172 free_verifier_state(&sl->state, false);
9173 kfree(sl);
9174 sl = sln;
9175 }
f1bca824
AS
9176 }
9177
71dde681 9178 kvfree(env->explored_states);
f1bca824
AS
9179}
9180
06ee7115
AS
9181static void print_verification_stats(struct bpf_verifier_env *env)
9182{
9183 int i;
9184
9185 if (env->log.level & BPF_LOG_STATS) {
9186 verbose(env, "verification time %lld usec\n",
9187 div_u64(env->verification_time, 1000));
9188 verbose(env, "stack depth ");
9189 for (i = 0; i < env->subprog_cnt; i++) {
9190 u32 depth = env->subprog_info[i].stack_depth;
9191
9192 verbose(env, "%d", depth);
9193 if (i + 1 < env->subprog_cnt)
9194 verbose(env, "+");
9195 }
9196 verbose(env, "\n");
9197 }
9198 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9199 "total_states %d peak_states %d mark_read %d\n",
9200 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9201 env->max_states_per_insn, env->total_states,
9202 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
9203}
9204
838e9690
YS
9205int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9206 union bpf_attr __user *uattr)
51580e79 9207{
06ee7115 9208 u64 start_time = ktime_get_ns();
58e2af8b 9209 struct bpf_verifier_env *env;
b9193c1b 9210 struct bpf_verifier_log *log;
9e4c24e7 9211 int i, len, ret = -EINVAL;
e2ae4ca2 9212 bool is_priv;
51580e79 9213
eba0c929
AB
9214 /* no program is valid */
9215 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9216 return -EINVAL;
9217
58e2af8b 9218 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
9219 * allocate/free it every time bpf_check() is called
9220 */
58e2af8b 9221 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
9222 if (!env)
9223 return -ENOMEM;
61bd5218 9224 log = &env->log;
cbd35700 9225
9e4c24e7 9226 len = (*prog)->len;
fad953ce 9227 env->insn_aux_data =
9e4c24e7 9228 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
9229 ret = -ENOMEM;
9230 if (!env->insn_aux_data)
9231 goto err_free_env;
9e4c24e7
JK
9232 for (i = 0; i < len; i++)
9233 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 9234 env->prog = *prog;
00176a34 9235 env->ops = bpf_verifier_ops[env->prog->type];
45a73c17 9236 is_priv = capable(CAP_SYS_ADMIN);
0246e64d 9237
cbd35700 9238 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
9239 if (!is_priv)
9240 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
9241
9242 if (attr->log_level || attr->log_buf || attr->log_size) {
9243 /* user requested verbose verifier output
9244 * and supplied buffer to store the verification trace
9245 */
e7bf8249
JK
9246 log->level = attr->log_level;
9247 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9248 log->len_total = attr->log_size;
cbd35700
AS
9249
9250 ret = -EINVAL;
e7bf8249 9251 /* log attributes have to be sane */
7a9f5c65 9252 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 9253 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 9254 goto err_unlock;
cbd35700 9255 }
1ad2f583
DB
9256
9257 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9258 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 9259 env->strict_alignment = true;
e9ee9efc
DM
9260 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9261 env->strict_alignment = false;
cbd35700 9262
e2ae4ca2
JK
9263 env->allow_ptr_leaks = is_priv;
9264
f4e3ec0d
JK
9265 ret = replace_map_fd_with_map_ptr(env);
9266 if (ret < 0)
9267 goto skip_full_check;
9268
cae1927c 9269 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 9270 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 9271 if (ret)
f4e3ec0d 9272 goto skip_full_check;
ab3f0063
JK
9273 }
9274
dc2a4ebc 9275 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 9276 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
9277 GFP_USER);
9278 ret = -ENOMEM;
9279 if (!env->explored_states)
9280 goto skip_full_check;
9281
d9762e84 9282 ret = check_subprogs(env);
475fb78f
AS
9283 if (ret < 0)
9284 goto skip_full_check;
9285
c454a46b 9286 ret = check_btf_info(env, attr, uattr);
838e9690
YS
9287 if (ret < 0)
9288 goto skip_full_check;
9289
d9762e84
MKL
9290 ret = check_cfg(env);
9291 if (ret < 0)
9292 goto skip_full_check;
9293
17a52670 9294 ret = do_check(env);
8c01c4f8
CG
9295 if (env->cur_state) {
9296 free_verifier_state(env->cur_state, true);
9297 env->cur_state = NULL;
9298 }
cbd35700 9299
c941ce9c
QM
9300 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9301 ret = bpf_prog_offload_finalize(env);
9302
0246e64d 9303skip_full_check:
638f5b90 9304 while (!pop_stack(env, NULL, NULL));
f1bca824 9305 free_states(env);
0246e64d 9306
c131187d 9307 if (ret == 0)
9b38c405 9308 ret = check_max_stack_depth(env);
c131187d 9309
9b38c405 9310 /* instruction rewrites happen after this point */
e2ae4ca2
JK
9311 if (is_priv) {
9312 if (ret == 0)
9313 opt_hard_wire_dead_code_branches(env);
52875a04
JK
9314 if (ret == 0)
9315 ret = opt_remove_dead_code(env);
a1b14abc
JK
9316 if (ret == 0)
9317 ret = opt_remove_nops(env);
52875a04
JK
9318 } else {
9319 if (ret == 0)
9320 sanitize_dead_code(env);
e2ae4ca2
JK
9321 }
9322
9bac3d6d
AS
9323 if (ret == 0)
9324 /* program is valid, convert *(u32*)(ctx + off) accesses */
9325 ret = convert_ctx_accesses(env);
9326
e245c5c6 9327 if (ret == 0)
79741b3b 9328 ret = fixup_bpf_calls(env);
e245c5c6 9329
a4b1d3c1
JW
9330 /* do 32-bit optimization after insn patching has done so those patched
9331 * insns could be handled correctly.
9332 */
d6c2308c
JW
9333 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9334 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9335 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9336 : false;
a4b1d3c1
JW
9337 }
9338
1ea47e01
AS
9339 if (ret == 0)
9340 ret = fixup_call_args(env);
9341
06ee7115
AS
9342 env->verification_time = ktime_get_ns() - start_time;
9343 print_verification_stats(env);
9344
a2a7d570 9345 if (log->level && bpf_verifier_log_full(log))
cbd35700 9346 ret = -ENOSPC;
a2a7d570 9347 if (log->level && !log->ubuf) {
cbd35700 9348 ret = -EFAULT;
a2a7d570 9349 goto err_release_maps;
cbd35700
AS
9350 }
9351
0246e64d
AS
9352 if (ret == 0 && env->used_map_cnt) {
9353 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
9354 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9355 sizeof(env->used_maps[0]),
9356 GFP_KERNEL);
0246e64d 9357
9bac3d6d 9358 if (!env->prog->aux->used_maps) {
0246e64d 9359 ret = -ENOMEM;
a2a7d570 9360 goto err_release_maps;
0246e64d
AS
9361 }
9362
9bac3d6d 9363 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 9364 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 9365 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
9366
9367 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9368 * bpf_ld_imm64 instructions
9369 */
9370 convert_pseudo_ld_imm64(env);
9371 }
cbd35700 9372
ba64e7d8
YS
9373 if (ret == 0)
9374 adjust_btf_func(env);
9375
a2a7d570 9376err_release_maps:
9bac3d6d 9377 if (!env->prog->aux->used_maps)
0246e64d 9378 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 9379 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
9380 */
9381 release_maps(env);
9bac3d6d 9382 *prog = env->prog;
3df126f3 9383err_unlock:
45a73c17
AS
9384 if (!is_priv)
9385 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
9386 vfree(env->insn_aux_data);
9387err_free_env:
9388 kfree(env);
51580e79
AS
9389 return ret;
9390}