Merge drm/drm-next into drm-intel-next-queued
[linux-2.6-block.git] / kernel / bpf / lpm_trie.c
CommitLineData
b95a5c4d
DM
1/*
2 * Longest prefix match list implementation
3 *
4 * Copyright (c) 2016,2017 Daniel Mack
5 * Copyright (c) 2016 David Herrmann
6 *
7 * This file is subject to the terms and conditions of version 2 of the GNU
8 * General Public License. See the file COPYING in the main directory of the
9 * Linux distribution for more details.
10 */
11
12#include <linux/bpf.h>
e8d2bec0 13#include <linux/btf.h>
b95a5c4d
DM
14#include <linux/err.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/vmalloc.h>
18#include <net/ipv6.h>
e8d2bec0 19#include <uapi/linux/btf.h>
b95a5c4d
DM
20
21/* Intermediate node */
22#define LPM_TREE_NODE_FLAG_IM BIT(0)
23
24struct lpm_trie_node;
25
26struct lpm_trie_node {
27 struct rcu_head rcu;
28 struct lpm_trie_node __rcu *child[2];
29 u32 prefixlen;
30 u32 flags;
31 u8 data[0];
32};
33
34struct lpm_trie {
35 struct bpf_map map;
36 struct lpm_trie_node __rcu *root;
37 size_t n_entries;
38 size_t max_prefixlen;
39 size_t data_size;
40 raw_spinlock_t lock;
41};
42
43/* This trie implements a longest prefix match algorithm that can be used to
44 * match IP addresses to a stored set of ranges.
45 *
46 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
47 * interpreted as big endian, so data[0] stores the most significant byte.
48 *
49 * Match ranges are internally stored in instances of struct lpm_trie_node
50 * which each contain their prefix length as well as two pointers that may
51 * lead to more nodes containing more specific matches. Each node also stores
52 * a value that is defined by and returned to userspace via the update_elem
53 * and lookup functions.
54 *
55 * For instance, let's start with a trie that was created with a prefix length
56 * of 32, so it can be used for IPv4 addresses, and one single element that
57 * matches 192.168.0.0/16. The data array would hence contain
58 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
59 * stick to IP-address notation for readability though.
60 *
61 * As the trie is empty initially, the new node (1) will be places as root
62 * node, denoted as (R) in the example below. As there are no other node, both
63 * child pointers are %NULL.
64 *
65 * +----------------+
66 * | (1) (R) |
67 * | 192.168.0.0/16 |
68 * | value: 1 |
69 * | [0] [1] |
70 * +----------------+
71 *
72 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
73 * a node with the same data and a smaller prefix (ie, a less specific one),
74 * node (2) will become a child of (1). In child index depends on the next bit
75 * that is outside of what (1) matches, and that bit is 0, so (2) will be
76 * child[0] of (1):
77 *
78 * +----------------+
79 * | (1) (R) |
80 * | 192.168.0.0/16 |
81 * | value: 1 |
82 * | [0] [1] |
83 * +----------------+
84 * |
85 * +----------------+
86 * | (2) |
87 * | 192.168.0.0/24 |
88 * | value: 2 |
89 * | [0] [1] |
90 * +----------------+
91 *
92 * The child[1] slot of (1) could be filled with another node which has bit #17
93 * (the next bit after the ones that (1) matches on) set to 1. For instance,
94 * 192.168.128.0/24:
95 *
96 * +----------------+
97 * | (1) (R) |
98 * | 192.168.0.0/16 |
99 * | value: 1 |
100 * | [0] [1] |
101 * +----------------+
102 * | |
103 * +----------------+ +------------------+
104 * | (2) | | (3) |
105 * | 192.168.0.0/24 | | 192.168.128.0/24 |
106 * | value: 2 | | value: 3 |
107 * | [0] [1] | | [0] [1] |
108 * +----------------+ +------------------+
109 *
110 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
111 * it, node (1) is looked at first, and because (4) of the semantics laid out
112 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
113 * However, that slot is already allocated, so a new node is needed in between.
114 * That node does not have a value attached to it and it will never be
115 * returned to users as result of a lookup. It is only there to differentiate
116 * the traversal further. It will get a prefix as wide as necessary to
117 * distinguish its two children:
118 *
119 * +----------------+
120 * | (1) (R) |
121 * | 192.168.0.0/16 |
122 * | value: 1 |
123 * | [0] [1] |
124 * +----------------+
125 * | |
126 * +----------------+ +------------------+
127 * | (4) (I) | | (3) |
128 * | 192.168.0.0/23 | | 192.168.128.0/24 |
129 * | value: --- | | value: 3 |
130 * | [0] [1] | | [0] [1] |
131 * +----------------+ +------------------+
132 * | |
133 * +----------------+ +----------------+
134 * | (2) | | (5) |
135 * | 192.168.0.0/24 | | 192.168.1.0/24 |
136 * | value: 2 | | value: 5 |
137 * | [0] [1] | | [0] [1] |
138 * +----------------+ +----------------+
139 *
140 * 192.168.1.1/32 would be a child of (5) etc.
141 *
142 * An intermediate node will be turned into a 'real' node on demand. In the
143 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
144 *
145 * A fully populated trie would have a height of 32 nodes, as the trie was
146 * created with a prefix length of 32.
147 *
148 * The lookup starts at the root node. If the current node matches and if there
149 * is a child that can be used to become more specific, the trie is traversed
150 * downwards. The last node in the traversal that is a non-intermediate one is
151 * returned.
152 */
153
154static inline int extract_bit(const u8 *data, size_t index)
155{
156 return !!(data[index / 8] & (1 << (7 - (index % 8))));
157}
158
159/**
160 * longest_prefix_match() - determine the longest prefix
161 * @trie: The trie to get internal sizes from
162 * @node: The node to operate on
163 * @key: The key to compare to @node
164 *
165 * Determine the longest prefix of @node that matches the bits in @key.
166 */
167static size_t longest_prefix_match(const struct lpm_trie *trie,
168 const struct lpm_trie_node *node,
169 const struct bpf_lpm_trie_key *key)
170{
8d75839b
ED
171 u32 limit = min(node->prefixlen, key->prefixlen);
172 u32 prefixlen = 0, i = 0;
173
174 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
175 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
176
177#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
178
179 /* data_size >= 16 has very small probability.
180 * We do not use a loop for optimal code generation.
181 */
182 if (trie->data_size >= 8) {
183 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
184 *(__be64 *)key->data);
185
186 prefixlen = 64 - fls64(diff);
187 if (prefixlen >= limit)
188 return limit;
189 if (diff)
190 return prefixlen;
191 i = 8;
192 }
193#endif
194
195 while (trie->data_size >= i + 4) {
196 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
197 *(__be32 *)&key->data[i]);
198
199 prefixlen += 32 - fls(diff);
200 if (prefixlen >= limit)
201 return limit;
202 if (diff)
203 return prefixlen;
204 i += 4;
205 }
b95a5c4d 206
8d75839b
ED
207 if (trie->data_size >= i + 2) {
208 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
209 *(__be16 *)&key->data[i]);
b95a5c4d 210
8d75839b
ED
211 prefixlen += 16 - fls(diff);
212 if (prefixlen >= limit)
213 return limit;
214 if (diff)
215 return prefixlen;
216 i += 2;
217 }
b95a5c4d 218
8d75839b
ED
219 if (trie->data_size >= i + 1) {
220 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
b95a5c4d 221
8d75839b
ED
222 if (prefixlen >= limit)
223 return limit;
b95a5c4d
DM
224 }
225
226 return prefixlen;
227}
228
229/* Called from syscall or from eBPF program */
230static void *trie_lookup_elem(struct bpf_map *map, void *_key)
231{
232 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
233 struct lpm_trie_node *node, *found = NULL;
234 struct bpf_lpm_trie_key *key = _key;
235
236 /* Start walking the trie from the root node ... */
237
238 for (node = rcu_dereference(trie->root); node;) {
239 unsigned int next_bit;
240 size_t matchlen;
241
242 /* Determine the longest prefix of @node that matches @key.
243 * If it's the maximum possible prefix for this trie, we have
244 * an exact match and can return it directly.
245 */
246 matchlen = longest_prefix_match(trie, node, key);
247 if (matchlen == trie->max_prefixlen) {
248 found = node;
249 break;
250 }
251
252 /* If the number of bits that match is smaller than the prefix
253 * length of @node, bail out and return the node we have seen
254 * last in the traversal (ie, the parent).
255 */
256 if (matchlen < node->prefixlen)
257 break;
258
259 /* Consider this node as return candidate unless it is an
260 * artificially added intermediate one.
261 */
262 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
263 found = node;
264
265 /* If the node match is fully satisfied, let's see if we can
266 * become more specific. Determine the next bit in the key and
267 * traverse down.
268 */
269 next_bit = extract_bit(key->data, node->prefixlen);
270 node = rcu_dereference(node->child[next_bit]);
271 }
272
273 if (!found)
274 return NULL;
275
276 return found->data + trie->data_size;
277}
278
279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
280 const void *value)
281{
282 struct lpm_trie_node *node;
283 size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
284
285 if (value)
286 size += trie->map.value_size;
287
96eabe7a
MKL
288 node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
289 trie->map.numa_node);
b95a5c4d
DM
290 if (!node)
291 return NULL;
292
293 node->flags = 0;
294
295 if (value)
296 memcpy(node->data + trie->data_size, value,
297 trie->map.value_size);
298
299 return node;
300}
301
302/* Called from syscall or from eBPF program */
303static int trie_update_elem(struct bpf_map *map,
304 void *_key, void *value, u64 flags)
305{
306 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
d140199a 307 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
b95a5c4d
DM
308 struct lpm_trie_node __rcu **slot;
309 struct bpf_lpm_trie_key *key = _key;
310 unsigned long irq_flags;
311 unsigned int next_bit;
312 size_t matchlen = 0;
313 int ret = 0;
314
315 if (unlikely(flags > BPF_EXIST))
316 return -EINVAL;
317
318 if (key->prefixlen > trie->max_prefixlen)
319 return -EINVAL;
320
321 raw_spin_lock_irqsave(&trie->lock, irq_flags);
322
323 /* Allocate and fill a new node */
324
325 if (trie->n_entries == trie->map.max_entries) {
326 ret = -ENOSPC;
327 goto out;
328 }
329
330 new_node = lpm_trie_node_alloc(trie, value);
331 if (!new_node) {
332 ret = -ENOMEM;
333 goto out;
334 }
335
336 trie->n_entries++;
337
338 new_node->prefixlen = key->prefixlen;
339 RCU_INIT_POINTER(new_node->child[0], NULL);
340 RCU_INIT_POINTER(new_node->child[1], NULL);
341 memcpy(new_node->data, key->data, trie->data_size);
342
343 /* Now find a slot to attach the new node. To do that, walk the tree
344 * from the root and match as many bits as possible for each node until
345 * we either find an empty slot or a slot that needs to be replaced by
346 * an intermediate node.
347 */
348 slot = &trie->root;
349
350 while ((node = rcu_dereference_protected(*slot,
351 lockdep_is_held(&trie->lock)))) {
352 matchlen = longest_prefix_match(trie, node, key);
353
354 if (node->prefixlen != matchlen ||
355 node->prefixlen == key->prefixlen ||
356 node->prefixlen == trie->max_prefixlen)
357 break;
358
359 next_bit = extract_bit(key->data, node->prefixlen);
360 slot = &node->child[next_bit];
361 }
362
363 /* If the slot is empty (a free child pointer or an empty root),
364 * simply assign the @new_node to that slot and be done.
365 */
366 if (!node) {
367 rcu_assign_pointer(*slot, new_node);
368 goto out;
369 }
370
371 /* If the slot we picked already exists, replace it with @new_node
372 * which already has the correct data array set.
373 */
374 if (node->prefixlen == matchlen) {
375 new_node->child[0] = node->child[0];
376 new_node->child[1] = node->child[1];
377
378 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
379 trie->n_entries--;
380
381 rcu_assign_pointer(*slot, new_node);
382 kfree_rcu(node, rcu);
383
384 goto out;
385 }
386
387 /* If the new node matches the prefix completely, it must be inserted
388 * as an ancestor. Simply insert it between @node and *@slot.
389 */
390 if (matchlen == key->prefixlen) {
391 next_bit = extract_bit(node->data, matchlen);
392 rcu_assign_pointer(new_node->child[next_bit], node);
393 rcu_assign_pointer(*slot, new_node);
394 goto out;
395 }
396
397 im_node = lpm_trie_node_alloc(trie, NULL);
398 if (!im_node) {
399 ret = -ENOMEM;
400 goto out;
401 }
402
403 im_node->prefixlen = matchlen;
404 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
405 memcpy(im_node->data, node->data, trie->data_size);
406
407 /* Now determine which child to install in which slot */
408 if (extract_bit(key->data, matchlen)) {
409 rcu_assign_pointer(im_node->child[0], node);
410 rcu_assign_pointer(im_node->child[1], new_node);
411 } else {
412 rcu_assign_pointer(im_node->child[0], new_node);
413 rcu_assign_pointer(im_node->child[1], node);
414 }
415
416 /* Finally, assign the intermediate node to the determined spot */
417 rcu_assign_pointer(*slot, im_node);
418
419out:
420 if (ret) {
421 if (new_node)
422 trie->n_entries--;
423
424 kfree(new_node);
425 kfree(im_node);
426 }
427
428 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
429
430 return ret;
431}
432
e454cf59
CG
433/* Called from syscall or from eBPF program */
434static int trie_delete_elem(struct bpf_map *map, void *_key)
b95a5c4d 435{
e454cf59
CG
436 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
437 struct bpf_lpm_trie_key *key = _key;
b5d7388f
CG
438 struct lpm_trie_node __rcu **trim, **trim2;
439 struct lpm_trie_node *node, *parent;
e454cf59
CG
440 unsigned long irq_flags;
441 unsigned int next_bit;
442 size_t matchlen = 0;
443 int ret = 0;
444
445 if (key->prefixlen > trie->max_prefixlen)
446 return -EINVAL;
447
448 raw_spin_lock_irqsave(&trie->lock, irq_flags);
449
450 /* Walk the tree looking for an exact key/length match and keeping
b5d7388f
CG
451 * track of the path we traverse. We will need to know the node
452 * we wish to delete, and the slot that points to the node we want
453 * to delete. We may also need to know the nodes parent and the
454 * slot that contains it.
e454cf59
CG
455 */
456 trim = &trie->root;
b5d7388f
CG
457 trim2 = trim;
458 parent = NULL;
459 while ((node = rcu_dereference_protected(
460 *trim, lockdep_is_held(&trie->lock)))) {
e454cf59
CG
461 matchlen = longest_prefix_match(trie, node, key);
462
463 if (node->prefixlen != matchlen ||
464 node->prefixlen == key->prefixlen)
465 break;
466
b5d7388f
CG
467 parent = node;
468 trim2 = trim;
e454cf59 469 next_bit = extract_bit(key->data, node->prefixlen);
b5d7388f 470 trim = &node->child[next_bit];
e454cf59
CG
471 }
472
473 if (!node || node->prefixlen != key->prefixlen ||
7c0cdf0b 474 node->prefixlen != matchlen ||
e454cf59
CG
475 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
476 ret = -ENOENT;
477 goto out;
478 }
479
480 trie->n_entries--;
481
b5d7388f 482 /* If the node we are removing has two children, simply mark it
e454cf59
CG
483 * as intermediate and we are done.
484 */
b5d7388f 485 if (rcu_access_pointer(node->child[0]) &&
e454cf59
CG
486 rcu_access_pointer(node->child[1])) {
487 node->flags |= LPM_TREE_NODE_FLAG_IM;
488 goto out;
489 }
490
b5d7388f
CG
491 /* If the parent of the node we are about to delete is an intermediate
492 * node, and the deleted node doesn't have any children, we can delete
493 * the intermediate parent as well and promote its other child
494 * up the tree. Doing this maintains the invariant that all
495 * intermediate nodes have exactly 2 children and that there are no
496 * unnecessary intermediate nodes in the tree.
e454cf59 497 */
b5d7388f
CG
498 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
499 !node->child[0] && !node->child[1]) {
500 if (node == rcu_access_pointer(parent->child[0]))
501 rcu_assign_pointer(
502 *trim2, rcu_access_pointer(parent->child[1]));
503 else
504 rcu_assign_pointer(
505 *trim2, rcu_access_pointer(parent->child[0]));
506 kfree_rcu(parent, rcu);
e454cf59 507 kfree_rcu(node, rcu);
b5d7388f 508 goto out;
e454cf59
CG
509 }
510
b5d7388f
CG
511 /* The node we are removing has either zero or one child. If there
512 * is a child, move it into the removed node's slot then delete
513 * the node. Otherwise just clear the slot and delete the node.
514 */
515 if (node->child[0])
516 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
517 else if (node->child[1])
518 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
519 else
520 RCU_INIT_POINTER(*trim, NULL);
521 kfree_rcu(node, rcu);
522
e454cf59
CG
523out:
524 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
525
526 return ret;
b95a5c4d
DM
527}
528
c502faf9
DB
529#define LPM_DATA_SIZE_MAX 256
530#define LPM_DATA_SIZE_MIN 1
531
532#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
533 sizeof(struct lpm_trie_node))
534#define LPM_VAL_SIZE_MIN 1
535
536#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
537#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
538#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
539
6e71b04a
CF
540#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
541 BPF_F_RDONLY | BPF_F_WRONLY)
96eabe7a 542
b95a5c4d
DM
543static struct bpf_map *trie_alloc(union bpf_attr *attr)
544{
b95a5c4d 545 struct lpm_trie *trie;
c502faf9 546 u64 cost = sizeof(*trie), cost_per_node;
b95a5c4d
DM
547 int ret;
548
549 if (!capable(CAP_SYS_ADMIN))
550 return ERR_PTR(-EPERM);
551
552 /* check sanity of attributes */
553 if (attr->max_entries == 0 ||
96eabe7a
MKL
554 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
555 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
c502faf9
DB
556 attr->key_size < LPM_KEY_SIZE_MIN ||
557 attr->key_size > LPM_KEY_SIZE_MAX ||
558 attr->value_size < LPM_VAL_SIZE_MIN ||
559 attr->value_size > LPM_VAL_SIZE_MAX)
b95a5c4d
DM
560 return ERR_PTR(-EINVAL);
561
562 trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
563 if (!trie)
564 return ERR_PTR(-ENOMEM);
565
566 /* copy mandatory map attributes */
bd475643 567 bpf_map_init_from_attr(&trie->map, attr);
b95a5c4d
DM
568 trie->data_size = attr->key_size -
569 offsetof(struct bpf_lpm_trie_key, data);
570 trie->max_prefixlen = trie->data_size * 8;
571
572 cost_per_node = sizeof(struct lpm_trie_node) +
573 attr->value_size + trie->data_size;
c502faf9
DB
574 cost += (u64) attr->max_entries * cost_per_node;
575 if (cost >= U32_MAX - PAGE_SIZE) {
576 ret = -E2BIG;
577 goto out_err;
578 }
579
b95a5c4d
DM
580 trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
581
582 ret = bpf_map_precharge_memlock(trie->map.pages);
c502faf9
DB
583 if (ret)
584 goto out_err;
b95a5c4d
DM
585
586 raw_spin_lock_init(&trie->lock);
587
588 return &trie->map;
c502faf9
DB
589out_err:
590 kfree(trie);
591 return ERR_PTR(ret);
b95a5c4d
DM
592}
593
594static void trie_free(struct bpf_map *map)
595{
596 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
597 struct lpm_trie_node __rcu **slot;
598 struct lpm_trie_node *node;
599
9a3efb6b
YS
600 /* Wait for outstanding programs to complete
601 * update/lookup/delete/get_next_key and free the trie.
602 */
603 synchronize_rcu();
b95a5c4d
DM
604
605 /* Always start at the root and walk down to a node that has no
606 * children. Then free that node, nullify its reference in the parent
607 * and start over.
608 */
609
610 for (;;) {
611 slot = &trie->root;
612
613 for (;;) {
6c5f6102 614 node = rcu_dereference_protected(*slot, 1);
b95a5c4d 615 if (!node)
9a3efb6b 616 goto out;
b95a5c4d
DM
617
618 if (rcu_access_pointer(node->child[0])) {
619 slot = &node->child[0];
620 continue;
621 }
622
623 if (rcu_access_pointer(node->child[1])) {
624 slot = &node->child[1];
625 continue;
626 }
627
628 kfree(node);
629 RCU_INIT_POINTER(*slot, NULL);
630 break;
631 }
632 }
633
9a3efb6b
YS
634out:
635 kfree(trie);
b95a5c4d
DM
636}
637
b471f2f1 638static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
f38837b0 639{
6dd1ec6c 640 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
b471f2f1
YS
641 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
642 struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
b471f2f1 643 struct lpm_trie_node **node_stack = NULL;
b471f2f1
YS
644 int err = 0, stack_ptr = -1;
645 unsigned int next_bit;
646 size_t matchlen;
647
648 /* The get_next_key follows postorder. For the 4 node example in
649 * the top of this file, the trie_get_next_key() returns the following
650 * one after another:
651 * 192.168.0.0/24
652 * 192.168.1.0/24
653 * 192.168.128.0/24
654 * 192.168.0.0/16
655 *
656 * The idea is to return more specific keys before less specific ones.
657 */
658
659 /* Empty trie */
6dd1ec6c
YS
660 search_root = rcu_dereference(trie->root);
661 if (!search_root)
b471f2f1
YS
662 return -ENOENT;
663
664 /* For invalid key, find the leftmost node in the trie */
6dd1ec6c 665 if (!key || key->prefixlen > trie->max_prefixlen)
b471f2f1 666 goto find_leftmost;
b471f2f1 667
6da2ec56
KC
668 node_stack = kmalloc_array(trie->max_prefixlen,
669 sizeof(struct lpm_trie_node *),
670 GFP_ATOMIC | __GFP_NOWARN);
b471f2f1
YS
671 if (!node_stack)
672 return -ENOMEM;
673
674 /* Try to find the exact node for the given key */
6dd1ec6c 675 for (node = search_root; node;) {
b471f2f1
YS
676 node_stack[++stack_ptr] = node;
677 matchlen = longest_prefix_match(trie, node, key);
678 if (node->prefixlen != matchlen ||
679 node->prefixlen == key->prefixlen)
680 break;
681
682 next_bit = extract_bit(key->data, node->prefixlen);
683 node = rcu_dereference(node->child[next_bit]);
684 }
685 if (!node || node->prefixlen != key->prefixlen ||
6dd1ec6c 686 (node->flags & LPM_TREE_NODE_FLAG_IM))
b471f2f1 687 goto find_leftmost;
b471f2f1
YS
688
689 /* The node with the exactly-matching key has been found,
690 * find the first node in postorder after the matched node.
691 */
692 node = node_stack[stack_ptr];
693 while (stack_ptr > 0) {
694 parent = node_stack[stack_ptr - 1];
6dd1ec6c
YS
695 if (rcu_dereference(parent->child[0]) == node) {
696 search_root = rcu_dereference(parent->child[1]);
697 if (search_root)
698 goto find_leftmost;
b471f2f1
YS
699 }
700 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
701 next_node = parent;
702 goto do_copy;
703 }
704
705 node = parent;
706 stack_ptr--;
707 }
708
709 /* did not find anything */
710 err = -ENOENT;
711 goto free_stack;
712
713find_leftmost:
714 /* Find the leftmost non-intermediate node, all intermediate nodes
715 * have exact two children, so this function will never return NULL.
716 */
6dd1ec6c 717 for (node = search_root; node;) {
b471f2f1
YS
718 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
719 next_node = node;
720 node = rcu_dereference(node->child[0]);
721 }
722do_copy:
723 next_key->prefixlen = next_node->prefixlen;
724 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
725 next_node->data, trie->data_size);
726free_stack:
727 kfree(node_stack);
728 return err;
f38837b0
AS
729}
730
e8d2bec0 731static int trie_check_btf(const struct bpf_map *map,
1b2b234b 732 const struct btf *btf,
e8d2bec0
DB
733 const struct btf_type *key_type,
734 const struct btf_type *value_type)
735{
736 /* Keys must have struct bpf_lpm_trie_key embedded. */
737 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
738 -EINVAL : 0;
739}
740
40077e0c 741const struct bpf_map_ops trie_map_ops = {
b95a5c4d
DM
742 .map_alloc = trie_alloc,
743 .map_free = trie_free,
f38837b0 744 .map_get_next_key = trie_get_next_key,
b95a5c4d
DM
745 .map_lookup_elem = trie_lookup_elem,
746 .map_update_elem = trie_update_elem,
747 .map_delete_elem = trie_delete_elem,
e8d2bec0 748 .map_check_btf = trie_check_btf,
b95a5c4d 749};