Merge tag 'dmaengine-fix-4.20-rc6' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / kernel / bpf / lpm_trie.c
CommitLineData
b95a5c4d
DM
1/*
2 * Longest prefix match list implementation
3 *
4 * Copyright (c) 2016,2017 Daniel Mack
5 * Copyright (c) 2016 David Herrmann
6 *
7 * This file is subject to the terms and conditions of version 2 of the GNU
8 * General Public License. See the file COPYING in the main directory of the
9 * Linux distribution for more details.
10 */
11
12#include <linux/bpf.h>
e8d2bec0 13#include <linux/btf.h>
b95a5c4d
DM
14#include <linux/err.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/vmalloc.h>
18#include <net/ipv6.h>
e8d2bec0 19#include <uapi/linux/btf.h>
b95a5c4d
DM
20
21/* Intermediate node */
22#define LPM_TREE_NODE_FLAG_IM BIT(0)
23
24struct lpm_trie_node;
25
26struct lpm_trie_node {
27 struct rcu_head rcu;
28 struct lpm_trie_node __rcu *child[2];
29 u32 prefixlen;
30 u32 flags;
31 u8 data[0];
32};
33
34struct lpm_trie {
35 struct bpf_map map;
36 struct lpm_trie_node __rcu *root;
37 size_t n_entries;
38 size_t max_prefixlen;
39 size_t data_size;
40 raw_spinlock_t lock;
41};
42
43/* This trie implements a longest prefix match algorithm that can be used to
44 * match IP addresses to a stored set of ranges.
45 *
46 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
47 * interpreted as big endian, so data[0] stores the most significant byte.
48 *
49 * Match ranges are internally stored in instances of struct lpm_trie_node
50 * which each contain their prefix length as well as two pointers that may
51 * lead to more nodes containing more specific matches. Each node also stores
52 * a value that is defined by and returned to userspace via the update_elem
53 * and lookup functions.
54 *
55 * For instance, let's start with a trie that was created with a prefix length
56 * of 32, so it can be used for IPv4 addresses, and one single element that
57 * matches 192.168.0.0/16. The data array would hence contain
58 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
59 * stick to IP-address notation for readability though.
60 *
61 * As the trie is empty initially, the new node (1) will be places as root
62 * node, denoted as (R) in the example below. As there are no other node, both
63 * child pointers are %NULL.
64 *
65 * +----------------+
66 * | (1) (R) |
67 * | 192.168.0.0/16 |
68 * | value: 1 |
69 * | [0] [1] |
70 * +----------------+
71 *
72 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
73 * a node with the same data and a smaller prefix (ie, a less specific one),
74 * node (2) will become a child of (1). In child index depends on the next bit
75 * that is outside of what (1) matches, and that bit is 0, so (2) will be
76 * child[0] of (1):
77 *
78 * +----------------+
79 * | (1) (R) |
80 * | 192.168.0.0/16 |
81 * | value: 1 |
82 * | [0] [1] |
83 * +----------------+
84 * |
85 * +----------------+
86 * | (2) |
87 * | 192.168.0.0/24 |
88 * | value: 2 |
89 * | [0] [1] |
90 * +----------------+
91 *
92 * The child[1] slot of (1) could be filled with another node which has bit #17
93 * (the next bit after the ones that (1) matches on) set to 1. For instance,
94 * 192.168.128.0/24:
95 *
96 * +----------------+
97 * | (1) (R) |
98 * | 192.168.0.0/16 |
99 * | value: 1 |
100 * | [0] [1] |
101 * +----------------+
102 * | |
103 * +----------------+ +------------------+
104 * | (2) | | (3) |
105 * | 192.168.0.0/24 | | 192.168.128.0/24 |
106 * | value: 2 | | value: 3 |
107 * | [0] [1] | | [0] [1] |
108 * +----------------+ +------------------+
109 *
110 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
111 * it, node (1) is looked at first, and because (4) of the semantics laid out
112 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
113 * However, that slot is already allocated, so a new node is needed in between.
114 * That node does not have a value attached to it and it will never be
115 * returned to users as result of a lookup. It is only there to differentiate
116 * the traversal further. It will get a prefix as wide as necessary to
117 * distinguish its two children:
118 *
119 * +----------------+
120 * | (1) (R) |
121 * | 192.168.0.0/16 |
122 * | value: 1 |
123 * | [0] [1] |
124 * +----------------+
125 * | |
126 * +----------------+ +------------------+
127 * | (4) (I) | | (3) |
128 * | 192.168.0.0/23 | | 192.168.128.0/24 |
129 * | value: --- | | value: 3 |
130 * | [0] [1] | | [0] [1] |
131 * +----------------+ +------------------+
132 * | |
133 * +----------------+ +----------------+
134 * | (2) | | (5) |
135 * | 192.168.0.0/24 | | 192.168.1.0/24 |
136 * | value: 2 | | value: 5 |
137 * | [0] [1] | | [0] [1] |
138 * +----------------+ +----------------+
139 *
140 * 192.168.1.1/32 would be a child of (5) etc.
141 *
142 * An intermediate node will be turned into a 'real' node on demand. In the
143 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
144 *
145 * A fully populated trie would have a height of 32 nodes, as the trie was
146 * created with a prefix length of 32.
147 *
148 * The lookup starts at the root node. If the current node matches and if there
149 * is a child that can be used to become more specific, the trie is traversed
150 * downwards. The last node in the traversal that is a non-intermediate one is
151 * returned.
152 */
153
154static inline int extract_bit(const u8 *data, size_t index)
155{
156 return !!(data[index / 8] & (1 << (7 - (index % 8))));
157}
158
159/**
160 * longest_prefix_match() - determine the longest prefix
161 * @trie: The trie to get internal sizes from
162 * @node: The node to operate on
163 * @key: The key to compare to @node
164 *
165 * Determine the longest prefix of @node that matches the bits in @key.
166 */
167static size_t longest_prefix_match(const struct lpm_trie *trie,
168 const struct lpm_trie_node *node,
169 const struct bpf_lpm_trie_key *key)
170{
171 size_t prefixlen = 0;
172 size_t i;
173
174 for (i = 0; i < trie->data_size; i++) {
175 size_t b;
176
177 b = 8 - fls(node->data[i] ^ key->data[i]);
178 prefixlen += b;
179
180 if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
181 return min(node->prefixlen, key->prefixlen);
182
183 if (b < 8)
184 break;
185 }
186
187 return prefixlen;
188}
189
190/* Called from syscall or from eBPF program */
191static void *trie_lookup_elem(struct bpf_map *map, void *_key)
192{
193 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
194 struct lpm_trie_node *node, *found = NULL;
195 struct bpf_lpm_trie_key *key = _key;
196
197 /* Start walking the trie from the root node ... */
198
199 for (node = rcu_dereference(trie->root); node;) {
200 unsigned int next_bit;
201 size_t matchlen;
202
203 /* Determine the longest prefix of @node that matches @key.
204 * If it's the maximum possible prefix for this trie, we have
205 * an exact match and can return it directly.
206 */
207 matchlen = longest_prefix_match(trie, node, key);
208 if (matchlen == trie->max_prefixlen) {
209 found = node;
210 break;
211 }
212
213 /* If the number of bits that match is smaller than the prefix
214 * length of @node, bail out and return the node we have seen
215 * last in the traversal (ie, the parent).
216 */
217 if (matchlen < node->prefixlen)
218 break;
219
220 /* Consider this node as return candidate unless it is an
221 * artificially added intermediate one.
222 */
223 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
224 found = node;
225
226 /* If the node match is fully satisfied, let's see if we can
227 * become more specific. Determine the next bit in the key and
228 * traverse down.
229 */
230 next_bit = extract_bit(key->data, node->prefixlen);
231 node = rcu_dereference(node->child[next_bit]);
232 }
233
234 if (!found)
235 return NULL;
236
237 return found->data + trie->data_size;
238}
239
240static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
241 const void *value)
242{
243 struct lpm_trie_node *node;
244 size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
245
246 if (value)
247 size += trie->map.value_size;
248
96eabe7a
MKL
249 node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
250 trie->map.numa_node);
b95a5c4d
DM
251 if (!node)
252 return NULL;
253
254 node->flags = 0;
255
256 if (value)
257 memcpy(node->data + trie->data_size, value,
258 trie->map.value_size);
259
260 return node;
261}
262
263/* Called from syscall or from eBPF program */
264static int trie_update_elem(struct bpf_map *map,
265 void *_key, void *value, u64 flags)
266{
267 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
d140199a 268 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
b95a5c4d
DM
269 struct lpm_trie_node __rcu **slot;
270 struct bpf_lpm_trie_key *key = _key;
271 unsigned long irq_flags;
272 unsigned int next_bit;
273 size_t matchlen = 0;
274 int ret = 0;
275
276 if (unlikely(flags > BPF_EXIST))
277 return -EINVAL;
278
279 if (key->prefixlen > trie->max_prefixlen)
280 return -EINVAL;
281
282 raw_spin_lock_irqsave(&trie->lock, irq_flags);
283
284 /* Allocate and fill a new node */
285
286 if (trie->n_entries == trie->map.max_entries) {
287 ret = -ENOSPC;
288 goto out;
289 }
290
291 new_node = lpm_trie_node_alloc(trie, value);
292 if (!new_node) {
293 ret = -ENOMEM;
294 goto out;
295 }
296
297 trie->n_entries++;
298
299 new_node->prefixlen = key->prefixlen;
300 RCU_INIT_POINTER(new_node->child[0], NULL);
301 RCU_INIT_POINTER(new_node->child[1], NULL);
302 memcpy(new_node->data, key->data, trie->data_size);
303
304 /* Now find a slot to attach the new node. To do that, walk the tree
305 * from the root and match as many bits as possible for each node until
306 * we either find an empty slot or a slot that needs to be replaced by
307 * an intermediate node.
308 */
309 slot = &trie->root;
310
311 while ((node = rcu_dereference_protected(*slot,
312 lockdep_is_held(&trie->lock)))) {
313 matchlen = longest_prefix_match(trie, node, key);
314
315 if (node->prefixlen != matchlen ||
316 node->prefixlen == key->prefixlen ||
317 node->prefixlen == trie->max_prefixlen)
318 break;
319
320 next_bit = extract_bit(key->data, node->prefixlen);
321 slot = &node->child[next_bit];
322 }
323
324 /* If the slot is empty (a free child pointer or an empty root),
325 * simply assign the @new_node to that slot and be done.
326 */
327 if (!node) {
328 rcu_assign_pointer(*slot, new_node);
329 goto out;
330 }
331
332 /* If the slot we picked already exists, replace it with @new_node
333 * which already has the correct data array set.
334 */
335 if (node->prefixlen == matchlen) {
336 new_node->child[0] = node->child[0];
337 new_node->child[1] = node->child[1];
338
339 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
340 trie->n_entries--;
341
342 rcu_assign_pointer(*slot, new_node);
343 kfree_rcu(node, rcu);
344
345 goto out;
346 }
347
348 /* If the new node matches the prefix completely, it must be inserted
349 * as an ancestor. Simply insert it between @node and *@slot.
350 */
351 if (matchlen == key->prefixlen) {
352 next_bit = extract_bit(node->data, matchlen);
353 rcu_assign_pointer(new_node->child[next_bit], node);
354 rcu_assign_pointer(*slot, new_node);
355 goto out;
356 }
357
358 im_node = lpm_trie_node_alloc(trie, NULL);
359 if (!im_node) {
360 ret = -ENOMEM;
361 goto out;
362 }
363
364 im_node->prefixlen = matchlen;
365 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
366 memcpy(im_node->data, node->data, trie->data_size);
367
368 /* Now determine which child to install in which slot */
369 if (extract_bit(key->data, matchlen)) {
370 rcu_assign_pointer(im_node->child[0], node);
371 rcu_assign_pointer(im_node->child[1], new_node);
372 } else {
373 rcu_assign_pointer(im_node->child[0], new_node);
374 rcu_assign_pointer(im_node->child[1], node);
375 }
376
377 /* Finally, assign the intermediate node to the determined spot */
378 rcu_assign_pointer(*slot, im_node);
379
380out:
381 if (ret) {
382 if (new_node)
383 trie->n_entries--;
384
385 kfree(new_node);
386 kfree(im_node);
387 }
388
389 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
390
391 return ret;
392}
393
e454cf59
CG
394/* Called from syscall or from eBPF program */
395static int trie_delete_elem(struct bpf_map *map, void *_key)
b95a5c4d 396{
e454cf59
CG
397 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
398 struct bpf_lpm_trie_key *key = _key;
b5d7388f
CG
399 struct lpm_trie_node __rcu **trim, **trim2;
400 struct lpm_trie_node *node, *parent;
e454cf59
CG
401 unsigned long irq_flags;
402 unsigned int next_bit;
403 size_t matchlen = 0;
404 int ret = 0;
405
406 if (key->prefixlen > trie->max_prefixlen)
407 return -EINVAL;
408
409 raw_spin_lock_irqsave(&trie->lock, irq_flags);
410
411 /* Walk the tree looking for an exact key/length match and keeping
b5d7388f
CG
412 * track of the path we traverse. We will need to know the node
413 * we wish to delete, and the slot that points to the node we want
414 * to delete. We may also need to know the nodes parent and the
415 * slot that contains it.
e454cf59
CG
416 */
417 trim = &trie->root;
b5d7388f
CG
418 trim2 = trim;
419 parent = NULL;
420 while ((node = rcu_dereference_protected(
421 *trim, lockdep_is_held(&trie->lock)))) {
e454cf59
CG
422 matchlen = longest_prefix_match(trie, node, key);
423
424 if (node->prefixlen != matchlen ||
425 node->prefixlen == key->prefixlen)
426 break;
427
b5d7388f
CG
428 parent = node;
429 trim2 = trim;
e454cf59 430 next_bit = extract_bit(key->data, node->prefixlen);
b5d7388f 431 trim = &node->child[next_bit];
e454cf59
CG
432 }
433
434 if (!node || node->prefixlen != key->prefixlen ||
435 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
436 ret = -ENOENT;
437 goto out;
438 }
439
440 trie->n_entries--;
441
b5d7388f 442 /* If the node we are removing has two children, simply mark it
e454cf59
CG
443 * as intermediate and we are done.
444 */
b5d7388f 445 if (rcu_access_pointer(node->child[0]) &&
e454cf59
CG
446 rcu_access_pointer(node->child[1])) {
447 node->flags |= LPM_TREE_NODE_FLAG_IM;
448 goto out;
449 }
450
b5d7388f
CG
451 /* If the parent of the node we are about to delete is an intermediate
452 * node, and the deleted node doesn't have any children, we can delete
453 * the intermediate parent as well and promote its other child
454 * up the tree. Doing this maintains the invariant that all
455 * intermediate nodes have exactly 2 children and that there are no
456 * unnecessary intermediate nodes in the tree.
e454cf59 457 */
b5d7388f
CG
458 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
459 !node->child[0] && !node->child[1]) {
460 if (node == rcu_access_pointer(parent->child[0]))
461 rcu_assign_pointer(
462 *trim2, rcu_access_pointer(parent->child[1]));
463 else
464 rcu_assign_pointer(
465 *trim2, rcu_access_pointer(parent->child[0]));
466 kfree_rcu(parent, rcu);
e454cf59 467 kfree_rcu(node, rcu);
b5d7388f 468 goto out;
e454cf59
CG
469 }
470
b5d7388f
CG
471 /* The node we are removing has either zero or one child. If there
472 * is a child, move it into the removed node's slot then delete
473 * the node. Otherwise just clear the slot and delete the node.
474 */
475 if (node->child[0])
476 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
477 else if (node->child[1])
478 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
479 else
480 RCU_INIT_POINTER(*trim, NULL);
481 kfree_rcu(node, rcu);
482
e454cf59
CG
483out:
484 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
485
486 return ret;
b95a5c4d
DM
487}
488
c502faf9
DB
489#define LPM_DATA_SIZE_MAX 256
490#define LPM_DATA_SIZE_MIN 1
491
492#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
493 sizeof(struct lpm_trie_node))
494#define LPM_VAL_SIZE_MIN 1
495
496#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
497#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
498#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
499
6e71b04a
CF
500#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
501 BPF_F_RDONLY | BPF_F_WRONLY)
96eabe7a 502
b95a5c4d
DM
503static struct bpf_map *trie_alloc(union bpf_attr *attr)
504{
b95a5c4d 505 struct lpm_trie *trie;
c502faf9 506 u64 cost = sizeof(*trie), cost_per_node;
b95a5c4d
DM
507 int ret;
508
509 if (!capable(CAP_SYS_ADMIN))
510 return ERR_PTR(-EPERM);
511
512 /* check sanity of attributes */
513 if (attr->max_entries == 0 ||
96eabe7a
MKL
514 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
515 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
c502faf9
DB
516 attr->key_size < LPM_KEY_SIZE_MIN ||
517 attr->key_size > LPM_KEY_SIZE_MAX ||
518 attr->value_size < LPM_VAL_SIZE_MIN ||
519 attr->value_size > LPM_VAL_SIZE_MAX)
b95a5c4d
DM
520 return ERR_PTR(-EINVAL);
521
522 trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
523 if (!trie)
524 return ERR_PTR(-ENOMEM);
525
526 /* copy mandatory map attributes */
bd475643 527 bpf_map_init_from_attr(&trie->map, attr);
b95a5c4d
DM
528 trie->data_size = attr->key_size -
529 offsetof(struct bpf_lpm_trie_key, data);
530 trie->max_prefixlen = trie->data_size * 8;
531
532 cost_per_node = sizeof(struct lpm_trie_node) +
533 attr->value_size + trie->data_size;
c502faf9
DB
534 cost += (u64) attr->max_entries * cost_per_node;
535 if (cost >= U32_MAX - PAGE_SIZE) {
536 ret = -E2BIG;
537 goto out_err;
538 }
539
b95a5c4d
DM
540 trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
541
542 ret = bpf_map_precharge_memlock(trie->map.pages);
c502faf9
DB
543 if (ret)
544 goto out_err;
b95a5c4d
DM
545
546 raw_spin_lock_init(&trie->lock);
547
548 return &trie->map;
c502faf9
DB
549out_err:
550 kfree(trie);
551 return ERR_PTR(ret);
b95a5c4d
DM
552}
553
554static void trie_free(struct bpf_map *map)
555{
556 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
557 struct lpm_trie_node __rcu **slot;
558 struct lpm_trie_node *node;
559
9a3efb6b
YS
560 /* Wait for outstanding programs to complete
561 * update/lookup/delete/get_next_key and free the trie.
562 */
563 synchronize_rcu();
b95a5c4d
DM
564
565 /* Always start at the root and walk down to a node that has no
566 * children. Then free that node, nullify its reference in the parent
567 * and start over.
568 */
569
570 for (;;) {
571 slot = &trie->root;
572
573 for (;;) {
6c5f6102 574 node = rcu_dereference_protected(*slot, 1);
b95a5c4d 575 if (!node)
9a3efb6b 576 goto out;
b95a5c4d
DM
577
578 if (rcu_access_pointer(node->child[0])) {
579 slot = &node->child[0];
580 continue;
581 }
582
583 if (rcu_access_pointer(node->child[1])) {
584 slot = &node->child[1];
585 continue;
586 }
587
588 kfree(node);
589 RCU_INIT_POINTER(*slot, NULL);
590 break;
591 }
592 }
593
9a3efb6b
YS
594out:
595 kfree(trie);
b95a5c4d
DM
596}
597
b471f2f1 598static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
f38837b0 599{
6dd1ec6c 600 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
b471f2f1
YS
601 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
602 struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
b471f2f1 603 struct lpm_trie_node **node_stack = NULL;
b471f2f1
YS
604 int err = 0, stack_ptr = -1;
605 unsigned int next_bit;
606 size_t matchlen;
607
608 /* The get_next_key follows postorder. For the 4 node example in
609 * the top of this file, the trie_get_next_key() returns the following
610 * one after another:
611 * 192.168.0.0/24
612 * 192.168.1.0/24
613 * 192.168.128.0/24
614 * 192.168.0.0/16
615 *
616 * The idea is to return more specific keys before less specific ones.
617 */
618
619 /* Empty trie */
6dd1ec6c
YS
620 search_root = rcu_dereference(trie->root);
621 if (!search_root)
b471f2f1
YS
622 return -ENOENT;
623
624 /* For invalid key, find the leftmost node in the trie */
6dd1ec6c 625 if (!key || key->prefixlen > trie->max_prefixlen)
b471f2f1 626 goto find_leftmost;
b471f2f1 627
6da2ec56
KC
628 node_stack = kmalloc_array(trie->max_prefixlen,
629 sizeof(struct lpm_trie_node *),
630 GFP_ATOMIC | __GFP_NOWARN);
b471f2f1
YS
631 if (!node_stack)
632 return -ENOMEM;
633
634 /* Try to find the exact node for the given key */
6dd1ec6c 635 for (node = search_root; node;) {
b471f2f1
YS
636 node_stack[++stack_ptr] = node;
637 matchlen = longest_prefix_match(trie, node, key);
638 if (node->prefixlen != matchlen ||
639 node->prefixlen == key->prefixlen)
640 break;
641
642 next_bit = extract_bit(key->data, node->prefixlen);
643 node = rcu_dereference(node->child[next_bit]);
644 }
645 if (!node || node->prefixlen != key->prefixlen ||
6dd1ec6c 646 (node->flags & LPM_TREE_NODE_FLAG_IM))
b471f2f1 647 goto find_leftmost;
b471f2f1
YS
648
649 /* The node with the exactly-matching key has been found,
650 * find the first node in postorder after the matched node.
651 */
652 node = node_stack[stack_ptr];
653 while (stack_ptr > 0) {
654 parent = node_stack[stack_ptr - 1];
6dd1ec6c
YS
655 if (rcu_dereference(parent->child[0]) == node) {
656 search_root = rcu_dereference(parent->child[1]);
657 if (search_root)
658 goto find_leftmost;
b471f2f1
YS
659 }
660 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
661 next_node = parent;
662 goto do_copy;
663 }
664
665 node = parent;
666 stack_ptr--;
667 }
668
669 /* did not find anything */
670 err = -ENOENT;
671 goto free_stack;
672
673find_leftmost:
674 /* Find the leftmost non-intermediate node, all intermediate nodes
675 * have exact two children, so this function will never return NULL.
676 */
6dd1ec6c 677 for (node = search_root; node;) {
b471f2f1
YS
678 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
679 next_node = node;
680 node = rcu_dereference(node->child[0]);
681 }
682do_copy:
683 next_key->prefixlen = next_node->prefixlen;
684 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
685 next_node->data, trie->data_size);
686free_stack:
687 kfree(node_stack);
688 return err;
f38837b0
AS
689}
690
e8d2bec0
DB
691static int trie_check_btf(const struct bpf_map *map,
692 const struct btf_type *key_type,
693 const struct btf_type *value_type)
694{
695 /* Keys must have struct bpf_lpm_trie_key embedded. */
696 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
697 -EINVAL : 0;
698}
699
40077e0c 700const struct bpf_map_ops trie_map_ops = {
b95a5c4d
DM
701 .map_alloc = trie_alloc,
702 .map_free = trie_free,
f38837b0 703 .map_get_next_key = trie_get_next_key,
b95a5c4d
DM
704 .map_lookup_elem = trie_lookup_elem,
705 .map_update_elem = trie_update_elem,
706 .map_delete_elem = trie_delete_elem,
e8d2bec0 707 .map_check_btf = trie_check_btf,
b95a5c4d 708};