bpf: Fix a warning message in mark_ptr_not_null_reg()
[linux-block.git] / kernel / bpf / core.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
f5bffecd
AS
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
f5bffecd 16 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 18 */
738cbe72 19
838e9690 20#include <uapi/linux/btf.h>
f5bffecd
AS
21#include <linux/filter.h>
22#include <linux/skbuff.h>
60a3b225 23#include <linux/vmalloc.h>
738cbe72
DB
24#include <linux/random.h>
25#include <linux/moduleloader.h>
09756af4 26#include <linux/bpf.h>
838e9690 27#include <linux/btf.h>
00089c04 28#include <linux/objtool.h>
74451e66
DB
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
c195651e 32#include <linux/perf_event.h>
3dec541b 33#include <linux/extable.h>
b7b3fc8d 34#include <linux/log2.h>
3324b584
DB
35#include <asm/unaligned.h>
36
f5bffecd
AS
37/* Registers */
38#define BPF_R0 regs[BPF_REG_0]
39#define BPF_R1 regs[BPF_REG_1]
40#define BPF_R2 regs[BPF_REG_2]
41#define BPF_R3 regs[BPF_REG_3]
42#define BPF_R4 regs[BPF_REG_4]
43#define BPF_R5 regs[BPF_REG_5]
44#define BPF_R6 regs[BPF_REG_6]
45#define BPF_R7 regs[BPF_REG_7]
46#define BPF_R8 regs[BPF_REG_8]
47#define BPF_R9 regs[BPF_REG_9]
48#define BPF_R10 regs[BPF_REG_10]
49
50/* Named registers */
51#define DST regs[insn->dst_reg]
52#define SRC regs[insn->src_reg]
53#define FP regs[BPF_REG_FP]
144cd91c 54#define AX regs[BPF_REG_AX]
f5bffecd
AS
55#define ARG1 regs[BPF_REG_ARG1]
56#define CTX regs[BPF_REG_CTX]
57#define IMM insn->imm
58
59/* No hurry in this branch
60 *
61 * Exported for the bpf jit load helper.
62 */
63void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64{
65 u8 *ptr = NULL;
66
67 if (k >= SKF_NET_OFF)
68 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 else if (k >= SKF_LL_OFF)
70 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
3324b584 71
f5bffecd
AS
72 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 return ptr;
74
75 return NULL;
76}
77
492ecee8 78struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
60a3b225 79{
ddf8503c 80 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
09756af4 81 struct bpf_prog_aux *aux;
60a3b225
DB
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
88dca4ca 85 fp = __vmalloc(size, gfp_flags);
60a3b225
DB
86 if (fp == NULL)
87 return NULL;
88
ddf8503c 89 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
09756af4 90 if (aux == NULL) {
60a3b225
DB
91 vfree(fp);
92 return NULL;
93 }
ca06f55b
AS
94 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
95 if (!fp->active) {
96 vfree(fp);
97 kfree(aux);
98 return NULL;
99 }
60a3b225
DB
100
101 fp->pages = size / PAGE_SIZE;
09756af4 102 fp->aux = aux;
e9d8afa9 103 fp->aux->prog = fp;
60b58afc 104 fp->jit_requested = ebpf_jit_enabled();
60a3b225 105
ecb60d1c 106 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
984fe94f 107 mutex_init(&fp->aux->used_maps_mutex);
3aac1ead 108 mutex_init(&fp->aux->dst_mutex);
74451e66 109
60a3b225
DB
110 return fp;
111}
492ecee8
AS
112
113struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
114{
ddf8503c 115 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
492ecee8 116 struct bpf_prog *prog;
4b911304 117 int cpu;
492ecee8
AS
118
119 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
120 if (!prog)
121 return NULL;
122
700d4796
AS
123 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
124 if (!prog->stats) {
ca06f55b 125 free_percpu(prog->active);
492ecee8
AS
126 kfree(prog->aux);
127 vfree(prog);
128 return NULL;
129 }
130
4b911304
ED
131 for_each_possible_cpu(cpu) {
132 struct bpf_prog_stats *pstats;
133
700d4796 134 pstats = per_cpu_ptr(prog->stats, cpu);
4b911304
ED
135 u64_stats_init(&pstats->syncp);
136 }
492ecee8
AS
137 return prog;
138}
60a3b225
DB
139EXPORT_SYMBOL_GPL(bpf_prog_alloc);
140
c454a46b
MKL
141int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
142{
143 if (!prog->aux->nr_linfo || !prog->jit_requested)
144 return 0;
145
146 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
147 sizeof(*prog->aux->jited_linfo),
ddf8503c 148 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
c454a46b
MKL
149 if (!prog->aux->jited_linfo)
150 return -ENOMEM;
151
152 return 0;
153}
154
155void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
156{
157 kfree(prog->aux->jited_linfo);
158 prog->aux->jited_linfo = NULL;
159}
160
161void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
162{
163 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
164 bpf_prog_free_jited_linfo(prog);
165}
166
167/* The jit engine is responsible to provide an array
168 * for insn_off to the jited_off mapping (insn_to_jit_off).
169 *
170 * The idx to this array is the insn_off. Hence, the insn_off
171 * here is relative to the prog itself instead of the main prog.
172 * This array has one entry for each xlated bpf insn.
173 *
174 * jited_off is the byte off to the last byte of the jited insn.
175 *
176 * Hence, with
177 * insn_start:
178 * The first bpf insn off of the prog. The insn off
179 * here is relative to the main prog.
180 * e.g. if prog is a subprog, insn_start > 0
181 * linfo_idx:
182 * The prog's idx to prog->aux->linfo and jited_linfo
183 *
184 * jited_linfo[linfo_idx] = prog->bpf_func
185 *
186 * For i > linfo_idx,
187 *
188 * jited_linfo[i] = prog->bpf_func +
189 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
190 */
191void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
192 const u32 *insn_to_jit_off)
193{
194 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
195 const struct bpf_line_info *linfo;
196 void **jited_linfo;
197
198 if (!prog->aux->jited_linfo)
199 /* Userspace did not provide linfo */
200 return;
201
202 linfo_idx = prog->aux->linfo_idx;
203 linfo = &prog->aux->linfo[linfo_idx];
204 insn_start = linfo[0].insn_off;
205 insn_end = insn_start + prog->len;
206
207 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
208 jited_linfo[0] = prog->bpf_func;
209
210 nr_linfo = prog->aux->nr_linfo - linfo_idx;
211
212 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
213 /* The verifier ensures that linfo[i].insn_off is
214 * strictly increasing
215 */
216 jited_linfo[i] = prog->bpf_func +
217 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
218}
219
220void bpf_prog_free_linfo(struct bpf_prog *prog)
221{
222 bpf_prog_free_jited_linfo(prog);
223 kvfree(prog->aux->linfo);
224}
225
60a3b225
DB
226struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
227 gfp_t gfp_extra_flags)
228{
ddf8503c 229 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
60a3b225 230 struct bpf_prog *fp;
3ac1f01b 231 u32 pages;
60a3b225 232
60a3b225 233 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
234 pages = size / PAGE_SIZE;
235 if (pages <= fp_old->pages)
60a3b225
DB
236 return fp_old;
237
88dca4ca 238 fp = __vmalloc(size, gfp_flags);
3ac1f01b 239 if (fp) {
60a3b225 240 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 241 fp->pages = pages;
e9d8afa9 242 fp->aux->prog = fp;
60a3b225 243
09756af4 244 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
245 * reallocated structure.
246 */
09756af4 247 fp_old->aux = NULL;
1336c662
AS
248 fp_old->stats = NULL;
249 fp_old->active = NULL;
60a3b225
DB
250 __bpf_prog_free(fp_old);
251 }
252
253 return fp;
254}
60a3b225
DB
255
256void __bpf_prog_free(struct bpf_prog *fp)
257{
492ecee8 258 if (fp->aux) {
984fe94f 259 mutex_destroy(&fp->aux->used_maps_mutex);
3aac1ead 260 mutex_destroy(&fp->aux->dst_mutex);
a66886fe 261 kfree(fp->aux->poke_tab);
492ecee8
AS
262 kfree(fp->aux);
263 }
700d4796 264 free_percpu(fp->stats);
ca06f55b 265 free_percpu(fp->active);
60a3b225
DB
266 vfree(fp);
267}
60a3b225 268
f1f7714e 269int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3 270{
6b0b0fa2 271 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
f1f7714e 272 u32 raw_size = bpf_prog_tag_scratch_size(fp);
6b0b0fa2
EB
273 u32 digest[SHA1_DIGEST_WORDS];
274 u32 ws[SHA1_WORKSPACE_WORDS];
7bd509e3 275 u32 i, bsize, psize, blocks;
aafe6ae9 276 struct bpf_insn *dst;
7bd509e3 277 bool was_ld_map;
aafe6ae9 278 u8 *raw, *todo;
7bd509e3
DB
279 __be32 *result;
280 __be64 *bits;
281
aafe6ae9
DB
282 raw = vmalloc(raw_size);
283 if (!raw)
284 return -ENOMEM;
285
6b0b0fa2 286 sha1_init(digest);
7bd509e3
DB
287 memset(ws, 0, sizeof(ws));
288
289 /* We need to take out the map fd for the digest calculation
290 * since they are unstable from user space side.
291 */
aafe6ae9 292 dst = (void *)raw;
7bd509e3
DB
293 for (i = 0, was_ld_map = false; i < fp->len; i++) {
294 dst[i] = fp->insnsi[i];
295 if (!was_ld_map &&
296 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
d8eca5bb
DB
297 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
298 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
7bd509e3
DB
299 was_ld_map = true;
300 dst[i].imm = 0;
301 } else if (was_ld_map &&
302 dst[i].code == 0 &&
303 dst[i].dst_reg == 0 &&
304 dst[i].src_reg == 0 &&
305 dst[i].off == 0) {
306 was_ld_map = false;
307 dst[i].imm = 0;
308 } else {
309 was_ld_map = false;
310 }
311 }
312
aafe6ae9
DB
313 psize = bpf_prog_insn_size(fp);
314 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
315 raw[psize++] = 0x80;
316
6b0b0fa2
EB
317 bsize = round_up(psize, SHA1_BLOCK_SIZE);
318 blocks = bsize / SHA1_BLOCK_SIZE;
aafe6ae9 319 todo = raw;
7bd509e3
DB
320 if (bsize - psize >= sizeof(__be64)) {
321 bits = (__be64 *)(todo + bsize - sizeof(__be64));
322 } else {
323 bits = (__be64 *)(todo + bsize + bits_offset);
324 blocks++;
325 }
326 *bits = cpu_to_be64((psize - 1) << 3);
327
328 while (blocks--) {
6b0b0fa2
EB
329 sha1_transform(digest, todo, ws);
330 todo += SHA1_BLOCK_SIZE;
7bd509e3
DB
331 }
332
f1f7714e 333 result = (__force __be32 *)digest;
6b0b0fa2 334 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
f1f7714e
DB
335 result[i] = cpu_to_be32(digest[i]);
336 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
337
338 vfree(raw);
339 return 0;
7bd509e3
DB
340}
341
2cbd95a5 342static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 343 s32 end_new, s32 curr, const bool probe_pass)
c237ee5e 344{
050fad7c 345 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 346 s32 delta = end_new - end_old;
050fad7c
DB
347 s64 imm = insn->imm;
348
2cbd95a5 349 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 350 imm += delta;
2cbd95a5 351 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
352 imm -= delta;
353 if (imm < imm_min || imm > imm_max)
354 return -ERANGE;
355 if (!probe_pass)
356 insn->imm = imm;
357 return 0;
358}
359
2cbd95a5 360static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 361 s32 end_new, s32 curr, const bool probe_pass)
050fad7c
DB
362{
363 const s32 off_min = S16_MIN, off_max = S16_MAX;
2cbd95a5 364 s32 delta = end_new - end_old;
050fad7c
DB
365 s32 off = insn->off;
366
2cbd95a5 367 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 368 off += delta;
2cbd95a5 369 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
370 off -= delta;
371 if (off < off_min || off > off_max)
372 return -ERANGE;
373 if (!probe_pass)
374 insn->off = off;
375 return 0;
376}
377
2cbd95a5
JK
378static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
379 s32 end_new, const bool probe_pass)
050fad7c 380{
2cbd95a5 381 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 382 struct bpf_insn *insn = prog->insnsi;
050fad7c 383 int ret = 0;
c237ee5e
DB
384
385 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
386 u8 code;
387
388 /* In the probing pass we still operate on the original,
389 * unpatched image in order to check overflows before we
390 * do any other adjustments. Therefore skip the patchlet.
391 */
392 if (probe_pass && i == pos) {
2cbd95a5
JK
393 i = end_new;
394 insn = prog->insnsi + end_old;
050fad7c 395 }
1ea47e01 396 code = insn->code;
092ed096
JW
397 if ((BPF_CLASS(code) != BPF_JMP &&
398 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 399 BPF_OP(code) == BPF_EXIT)
1ea47e01 400 continue;
050fad7c 401 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 402 if (BPF_OP(code) == BPF_CALL) {
050fad7c 403 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 404 continue;
2cbd95a5
JK
405 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
406 end_new, i, probe_pass);
1ea47e01 407 } else {
2cbd95a5
JK
408 ret = bpf_adj_delta_to_off(insn, pos, end_old,
409 end_new, i, probe_pass);
1ea47e01 410 }
050fad7c
DB
411 if (ret)
412 break;
c237ee5e 413 }
050fad7c
DB
414
415 return ret;
c237ee5e
DB
416}
417
c454a46b
MKL
418static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
419{
420 struct bpf_line_info *linfo;
421 u32 i, nr_linfo;
422
423 nr_linfo = prog->aux->nr_linfo;
424 if (!nr_linfo || !delta)
425 return;
426
427 linfo = prog->aux->linfo;
428
429 for (i = 0; i < nr_linfo; i++)
430 if (off < linfo[i].insn_off)
431 break;
432
433 /* Push all off < linfo[i].insn_off by delta */
434 for (; i < nr_linfo; i++)
435 linfo[i].insn_off += delta;
436}
437
c237ee5e
DB
438struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
439 const struct bpf_insn *patch, u32 len)
440{
441 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 442 const u32 cnt_max = S16_MAX;
c237ee5e 443 struct bpf_prog *prog_adj;
4f73379e 444 int err;
c237ee5e
DB
445
446 /* Since our patchlet doesn't expand the image, we're done. */
447 if (insn_delta == 0) {
448 memcpy(prog->insnsi + off, patch, sizeof(*patch));
449 return prog;
450 }
451
452 insn_adj_cnt = prog->len + insn_delta;
453
050fad7c
DB
454 /* Reject anything that would potentially let the insn->off
455 * target overflow when we have excessive program expansions.
456 * We need to probe here before we do any reallocation where
457 * we afterwards may not fail anymore.
458 */
459 if (insn_adj_cnt > cnt_max &&
4f73379e
AS
460 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
461 return ERR_PTR(err);
050fad7c 462
c237ee5e
DB
463 /* Several new instructions need to be inserted. Make room
464 * for them. Likely, there's no need for a new allocation as
465 * last page could have large enough tailroom.
466 */
467 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
468 GFP_USER);
469 if (!prog_adj)
4f73379e 470 return ERR_PTR(-ENOMEM);
c237ee5e
DB
471
472 prog_adj->len = insn_adj_cnt;
473
474 /* Patching happens in 3 steps:
475 *
476 * 1) Move over tail of insnsi from next instruction onwards,
477 * so we can patch the single target insn with one or more
478 * new ones (patching is always from 1 to n insns, n > 0).
479 * 2) Inject new instructions at the target location.
480 * 3) Adjust branch offsets if necessary.
481 */
482 insn_rest = insn_adj_cnt - off - len;
483
484 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
485 sizeof(*patch) * insn_rest);
486 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
487
050fad7c
DB
488 /* We are guaranteed to not fail at this point, otherwise
489 * the ship has sailed to reverse to the original state. An
490 * overflow cannot happen at this point.
491 */
2cbd95a5 492 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 493
c454a46b
MKL
494 bpf_adj_linfo(prog_adj, off, insn_delta);
495
c237ee5e
DB
496 return prog_adj;
497}
498
52875a04
JK
499int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
500{
501 /* Branch offsets can't overflow when program is shrinking, no need
502 * to call bpf_adj_branches(..., true) here
503 */
504 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
505 sizeof(struct bpf_insn) * (prog->len - off - cnt));
506 prog->len -= cnt;
507
508 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
509}
510
cd7455f1 511static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
7d1982b4
DB
512{
513 int i;
514
515 for (i = 0; i < fp->aux->func_cnt; i++)
516 bpf_prog_kallsyms_del(fp->aux->func[i]);
517}
518
519void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
520{
521 bpf_prog_kallsyms_del_subprogs(fp);
522 bpf_prog_kallsyms_del(fp);
523}
524
b954d834 525#ifdef CONFIG_BPF_JIT
fa9dd599 526/* All BPF JIT sysctl knobs here. */
81c22041
DB
527int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
528int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
fa9dd599 529int bpf_jit_harden __read_mostly;
fdadd049 530long bpf_jit_limit __read_mostly;
fa9dd599 531
535911c8
JO
532static void
533bpf_prog_ksym_set_addr(struct bpf_prog *prog)
74451e66
DB
534{
535 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
536 unsigned long addr = (unsigned long)hdr;
537
538 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
539
535911c8
JO
540 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
541 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
74451e66
DB
542}
543
bfea9a85
JO
544static void
545bpf_prog_ksym_set_name(struct bpf_prog *prog)
74451e66 546{
bfea9a85 547 char *sym = prog->aux->ksym.name;
368211fb 548 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
549 const struct btf_type *type;
550 const char *func_name;
368211fb 551
74451e66 552 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
553 sizeof(prog->tag) * 2 +
554 /* name has been null terminated.
555 * We should need +1 for the '_' preceding
556 * the name. However, the null character
557 * is double counted between the name and the
558 * sizeof("bpf_prog_") above, so we omit
559 * the +1 here.
560 */
561 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
562
563 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
564 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
565
566 /* prog->aux->name will be ignored if full btf name is available */
7337224f 567 if (prog->aux->func_info_cnt) {
ba64e7d8
YS
568 type = btf_type_by_id(prog->aux->btf,
569 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
570 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
571 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
572 return;
573 }
574
368211fb
MKL
575 if (prog->aux->name[0])
576 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
577 else
578 *sym = 0;
74451e66
DB
579}
580
ca4424c9 581static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
74451e66 582{
ca4424c9 583 return container_of(n, struct bpf_ksym, tnode)->start;
74451e66
DB
584}
585
586static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
587 struct latch_tree_node *b)
588{
ca4424c9 589 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
74451e66
DB
590}
591
592static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
593{
594 unsigned long val = (unsigned long)key;
ca4424c9 595 const struct bpf_ksym *ksym;
74451e66 596
ca4424c9 597 ksym = container_of(n, struct bpf_ksym, tnode);
74451e66 598
ca4424c9 599 if (val < ksym->start)
74451e66 600 return -1;
ca4424c9 601 if (val >= ksym->end)
74451e66
DB
602 return 1;
603
604 return 0;
605}
606
607static const struct latch_tree_ops bpf_tree_ops = {
608 .less = bpf_tree_less,
609 .comp = bpf_tree_comp,
610};
611
612static DEFINE_SPINLOCK(bpf_lock);
613static LIST_HEAD(bpf_kallsyms);
614static struct latch_tree_root bpf_tree __cacheline_aligned;
615
dba122fb 616void bpf_ksym_add(struct bpf_ksym *ksym)
74451e66 617{
dba122fb
JO
618 spin_lock_bh(&bpf_lock);
619 WARN_ON_ONCE(!list_empty(&ksym->lnode));
620 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
621 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
622 spin_unlock_bh(&bpf_lock);
74451e66
DB
623}
624
dba122fb 625static void __bpf_ksym_del(struct bpf_ksym *ksym)
74451e66 626{
dba122fb 627 if (list_empty(&ksym->lnode))
74451e66
DB
628 return;
629
dba122fb
JO
630 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631 list_del_rcu(&ksym->lnode);
632}
633
634void bpf_ksym_del(struct bpf_ksym *ksym)
635{
636 spin_lock_bh(&bpf_lock);
637 __bpf_ksym_del(ksym);
638 spin_unlock_bh(&bpf_lock);
74451e66
DB
639}
640
641static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
642{
643 return fp->jited && !bpf_prog_was_classic(fp);
644}
645
646static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
647{
ecb60d1c
JO
648 return list_empty(&fp->aux->ksym.lnode) ||
649 fp->aux->ksym.lnode.prev == LIST_POISON2;
74451e66
DB
650}
651
652void bpf_prog_kallsyms_add(struct bpf_prog *fp)
653{
74451e66 654 if (!bpf_prog_kallsyms_candidate(fp) ||
2c78ee89 655 !bpf_capable())
74451e66
DB
656 return;
657
535911c8 658 bpf_prog_ksym_set_addr(fp);
bfea9a85 659 bpf_prog_ksym_set_name(fp);
cbd76f8d 660 fp->aux->ksym.prog = true;
535911c8 661
dba122fb 662 bpf_ksym_add(&fp->aux->ksym);
74451e66
DB
663}
664
665void bpf_prog_kallsyms_del(struct bpf_prog *fp)
666{
74451e66
DB
667 if (!bpf_prog_kallsyms_candidate(fp))
668 return;
669
dba122fb 670 bpf_ksym_del(&fp->aux->ksym);
74451e66
DB
671}
672
eda0c929
JO
673static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
674{
675 struct latch_tree_node *n;
676
677 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
678 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
679}
680
74451e66
DB
681const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
682 unsigned long *off, char *sym)
683{
eda0c929 684 struct bpf_ksym *ksym;
74451e66
DB
685 char *ret = NULL;
686
687 rcu_read_lock();
eda0c929
JO
688 ksym = bpf_ksym_find(addr);
689 if (ksym) {
690 unsigned long symbol_start = ksym->start;
691 unsigned long symbol_end = ksym->end;
535911c8 692
eda0c929 693 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66
DB
694
695 ret = sym;
696 if (size)
697 *size = symbol_end - symbol_start;
698 if (off)
699 *off = addr - symbol_start;
700 }
701 rcu_read_unlock();
702
703 return ret;
704}
705
706bool is_bpf_text_address(unsigned long addr)
707{
708 bool ret;
709
710 rcu_read_lock();
eda0c929 711 ret = bpf_ksym_find(addr) != NULL;
74451e66
DB
712 rcu_read_unlock();
713
714 return ret;
715}
716
cbd76f8d
JO
717static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
718{
719 struct bpf_ksym *ksym = bpf_ksym_find(addr);
720
721 return ksym && ksym->prog ?
722 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
723 NULL;
724}
725
3dec541b
AS
726const struct exception_table_entry *search_bpf_extables(unsigned long addr)
727{
728 const struct exception_table_entry *e = NULL;
729 struct bpf_prog *prog;
730
731 rcu_read_lock();
cbd76f8d 732 prog = bpf_prog_ksym_find(addr);
3dec541b
AS
733 if (!prog)
734 goto out;
735 if (!prog->aux->num_exentries)
736 goto out;
737
738 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
739out:
740 rcu_read_unlock();
741 return e;
742}
743
74451e66
DB
744int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
745 char *sym)
746{
ecb60d1c 747 struct bpf_ksym *ksym;
74451e66
DB
748 unsigned int it = 0;
749 int ret = -ERANGE;
750
751 if (!bpf_jit_kallsyms_enabled())
752 return ret;
753
754 rcu_read_lock();
ecb60d1c 755 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
74451e66
DB
756 if (it++ != symnum)
757 continue;
758
ecb60d1c 759 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66 760
ecb60d1c 761 *value = ksym->start;
74451e66
DB
762 *type = BPF_SYM_ELF_TYPE;
763
764 ret = 0;
765 break;
766 }
767 rcu_read_unlock();
768
769 return ret;
770}
771
a66886fe
DB
772int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
773 struct bpf_jit_poke_descriptor *poke)
774{
775 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
776 static const u32 poke_tab_max = 1024;
777 u32 slot = prog->aux->size_poke_tab;
778 u32 size = slot + 1;
779
780 if (size > poke_tab_max)
781 return -ENOSPC;
cf71b174 782 if (poke->tailcall_target || poke->tailcall_target_stable ||
ebf7d1f5 783 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
a66886fe
DB
784 return -EINVAL;
785
786 switch (poke->reason) {
787 case BPF_POKE_REASON_TAIL_CALL:
788 if (!poke->tail_call.map)
789 return -EINVAL;
790 break;
791 default:
792 return -EINVAL;
793 }
794
795 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
796 if (!tab)
797 return -ENOMEM;
798
799 memcpy(&tab[slot], poke, sizeof(*poke));
800 prog->aux->size_poke_tab = size;
801 prog->aux->poke_tab = tab;
802
803 return slot;
804}
805
ede95a63
DB
806static atomic_long_t bpf_jit_current;
807
fdadd049
DB
808/* Can be overridden by an arch's JIT compiler if it has a custom,
809 * dedicated BPF backend memory area, or if neither of the two
810 * below apply.
811 */
812u64 __weak bpf_jit_alloc_exec_limit(void)
813{
ede95a63 814#if defined(MODULES_VADDR)
fdadd049
DB
815 return MODULES_END - MODULES_VADDR;
816#else
817 return VMALLOC_END - VMALLOC_START;
818#endif
819}
820
ede95a63
DB
821static int __init bpf_jit_charge_init(void)
822{
823 /* Only used as heuristic here to derive limit. */
fdadd049
DB
824 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
825 PAGE_SIZE), LONG_MAX);
ede95a63
DB
826 return 0;
827}
828pure_initcall(bpf_jit_charge_init);
ede95a63
DB
829
830static int bpf_jit_charge_modmem(u32 pages)
831{
832 if (atomic_long_add_return(pages, &bpf_jit_current) >
833 (bpf_jit_limit >> PAGE_SHIFT)) {
834 if (!capable(CAP_SYS_ADMIN)) {
835 atomic_long_sub(pages, &bpf_jit_current);
836 return -EPERM;
837 }
838 }
839
840 return 0;
841}
842
843static void bpf_jit_uncharge_modmem(u32 pages)
844{
845 atomic_long_sub(pages, &bpf_jit_current);
846}
847
dc002bb6
AB
848void *__weak bpf_jit_alloc_exec(unsigned long size)
849{
850 return module_alloc(size);
851}
852
853void __weak bpf_jit_free_exec(void *addr)
854{
855 module_memfree(addr);
856}
857
738cbe72
DB
858struct bpf_binary_header *
859bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
860 unsigned int alignment,
861 bpf_jit_fill_hole_t bpf_fill_ill_insns)
862{
863 struct bpf_binary_header *hdr;
ede95a63 864 u32 size, hole, start, pages;
738cbe72 865
b7b3fc8d
IL
866 WARN_ON_ONCE(!is_power_of_2(alignment) ||
867 alignment > BPF_IMAGE_ALIGNMENT);
868
738cbe72
DB
869 /* Most of BPF filters are really small, but if some of them
870 * fill a page, allow at least 128 extra bytes to insert a
871 * random section of illegal instructions.
872 */
873 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63
DB
874 pages = size / PAGE_SIZE;
875
876 if (bpf_jit_charge_modmem(pages))
877 return NULL;
dc002bb6 878 hdr = bpf_jit_alloc_exec(size);
ede95a63
DB
879 if (!hdr) {
880 bpf_jit_uncharge_modmem(pages);
738cbe72 881 return NULL;
ede95a63 882 }
738cbe72
DB
883
884 /* Fill space with illegal/arch-dep instructions. */
885 bpf_fill_ill_insns(hdr, size);
886
ede95a63 887 hdr->pages = pages;
738cbe72
DB
888 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
889 PAGE_SIZE - sizeof(*hdr));
b7552e1b 890 start = (get_random_int() % hole) & ~(alignment - 1);
738cbe72
DB
891
892 /* Leave a random number of instructions before BPF code. */
893 *image_ptr = &hdr->image[start];
894
895 return hdr;
896}
897
898void bpf_jit_binary_free(struct bpf_binary_header *hdr)
899{
ede95a63
DB
900 u32 pages = hdr->pages;
901
dc002bb6 902 bpf_jit_free_exec(hdr);
ede95a63 903 bpf_jit_uncharge_modmem(pages);
738cbe72 904}
4f3446bb 905
74451e66
DB
906/* This symbol is only overridden by archs that have different
907 * requirements than the usual eBPF JITs, f.e. when they only
908 * implement cBPF JIT, do not set images read-only, etc.
909 */
910void __weak bpf_jit_free(struct bpf_prog *fp)
911{
912 if (fp->jited) {
913 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
914
74451e66
DB
915 bpf_jit_binary_free(hdr);
916
917 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
918 }
919
920 bpf_prog_unlock_free(fp);
921}
922
e2c95a61
DB
923int bpf_jit_get_func_addr(const struct bpf_prog *prog,
924 const struct bpf_insn *insn, bool extra_pass,
925 u64 *func_addr, bool *func_addr_fixed)
926{
927 s16 off = insn->off;
928 s32 imm = insn->imm;
929 u8 *addr;
930
931 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
932 if (!*func_addr_fixed) {
933 /* Place-holder address till the last pass has collected
934 * all addresses for JITed subprograms in which case we
935 * can pick them up from prog->aux.
936 */
937 if (!extra_pass)
938 addr = NULL;
939 else if (prog->aux->func &&
940 off >= 0 && off < prog->aux->func_cnt)
941 addr = (u8 *)prog->aux->func[off]->bpf_func;
942 else
943 return -EINVAL;
944 } else {
945 /* Address of a BPF helper call. Since part of the core
946 * kernel, it's always at a fixed location. __bpf_call_base
947 * and the helper with imm relative to it are both in core
948 * kernel.
949 */
950 addr = (u8 *)__bpf_call_base + imm;
951 }
952
953 *func_addr = (unsigned long)addr;
954 return 0;
955}
956
4f3446bb
DB
957static int bpf_jit_blind_insn(const struct bpf_insn *from,
958 const struct bpf_insn *aux,
ede7c460
NR
959 struct bpf_insn *to_buff,
960 bool emit_zext)
4f3446bb
DB
961{
962 struct bpf_insn *to = to_buff;
b7552e1b 963 u32 imm_rnd = get_random_int();
4f3446bb
DB
964 s16 off;
965
966 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
967 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
968
9b73bfdd
DB
969 /* Constraints on AX register:
970 *
971 * AX register is inaccessible from user space. It is mapped in
972 * all JITs, and used here for constant blinding rewrites. It is
973 * typically "stateless" meaning its contents are only valid within
974 * the executed instruction, but not across several instructions.
975 * There are a few exceptions however which are further detailed
976 * below.
977 *
978 * Constant blinding is only used by JITs, not in the interpreter.
979 * The interpreter uses AX in some occasions as a local temporary
980 * register e.g. in DIV or MOD instructions.
981 *
982 * In restricted circumstances, the verifier can also use the AX
983 * register for rewrites as long as they do not interfere with
984 * the above cases!
985 */
986 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
987 goto out;
988
4f3446bb
DB
989 if (from->imm == 0 &&
990 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
991 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
992 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
993 goto out;
994 }
995
996 switch (from->code) {
997 case BPF_ALU | BPF_ADD | BPF_K:
998 case BPF_ALU | BPF_SUB | BPF_K:
999 case BPF_ALU | BPF_AND | BPF_K:
1000 case BPF_ALU | BPF_OR | BPF_K:
1001 case BPF_ALU | BPF_XOR | BPF_K:
1002 case BPF_ALU | BPF_MUL | BPF_K:
1003 case BPF_ALU | BPF_MOV | BPF_K:
1004 case BPF_ALU | BPF_DIV | BPF_K:
1005 case BPF_ALU | BPF_MOD | BPF_K:
1006 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1007 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1008 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1009 break;
1010
1011 case BPF_ALU64 | BPF_ADD | BPF_K:
1012 case BPF_ALU64 | BPF_SUB | BPF_K:
1013 case BPF_ALU64 | BPF_AND | BPF_K:
1014 case BPF_ALU64 | BPF_OR | BPF_K:
1015 case BPF_ALU64 | BPF_XOR | BPF_K:
1016 case BPF_ALU64 | BPF_MUL | BPF_K:
1017 case BPF_ALU64 | BPF_MOV | BPF_K:
1018 case BPF_ALU64 | BPF_DIV | BPF_K:
1019 case BPF_ALU64 | BPF_MOD | BPF_K:
1020 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1021 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1022 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1023 break;
1024
1025 case BPF_JMP | BPF_JEQ | BPF_K:
1026 case BPF_JMP | BPF_JNE | BPF_K:
1027 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 1028 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 1029 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 1030 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 1031 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 1032 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 1033 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 1034 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
1035 case BPF_JMP | BPF_JSET | BPF_K:
1036 /* Accommodate for extra offset in case of a backjump. */
1037 off = from->off;
1038 if (off < 0)
1039 off -= 2;
1040 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1041 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1042 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1043 break;
1044
a7b76c88
JW
1045 case BPF_JMP32 | BPF_JEQ | BPF_K:
1046 case BPF_JMP32 | BPF_JNE | BPF_K:
1047 case BPF_JMP32 | BPF_JGT | BPF_K:
1048 case BPF_JMP32 | BPF_JLT | BPF_K:
1049 case BPF_JMP32 | BPF_JGE | BPF_K:
1050 case BPF_JMP32 | BPF_JLE | BPF_K:
1051 case BPF_JMP32 | BPF_JSGT | BPF_K:
1052 case BPF_JMP32 | BPF_JSLT | BPF_K:
1053 case BPF_JMP32 | BPF_JSGE | BPF_K:
1054 case BPF_JMP32 | BPF_JSLE | BPF_K:
1055 case BPF_JMP32 | BPF_JSET | BPF_K:
1056 /* Accommodate for extra offset in case of a backjump. */
1057 off = from->off;
1058 if (off < 0)
1059 off -= 2;
1060 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1061 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1062 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1063 off);
1064 break;
1065
4f3446bb
DB
1066 case BPF_LD | BPF_IMM | BPF_DW:
1067 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1068 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1069 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1070 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1071 break;
1072 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1073 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1074 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
ede7c460
NR
1075 if (emit_zext)
1076 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
4f3446bb
DB
1077 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1078 break;
1079
1080 case BPF_ST | BPF_MEM | BPF_DW:
1081 case BPF_ST | BPF_MEM | BPF_W:
1082 case BPF_ST | BPF_MEM | BPF_H:
1083 case BPF_ST | BPF_MEM | BPF_B:
1084 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1085 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1086 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1087 break;
1088 }
1089out:
1090 return to - to_buff;
1091}
1092
1093static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1094 gfp_t gfp_extra_flags)
1095{
19809c2d 1096 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
1097 struct bpf_prog *fp;
1098
88dca4ca 1099 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
4f3446bb 1100 if (fp != NULL) {
4f3446bb
DB
1101 /* aux->prog still points to the fp_other one, so
1102 * when promoting the clone to the real program,
1103 * this still needs to be adapted.
1104 */
1105 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1106 }
1107
1108 return fp;
1109}
1110
1111static void bpf_prog_clone_free(struct bpf_prog *fp)
1112{
1113 /* aux was stolen by the other clone, so we cannot free
1114 * it from this path! It will be freed eventually by the
1115 * other program on release.
1116 *
1117 * At this point, we don't need a deferred release since
1118 * clone is guaranteed to not be locked.
1119 */
1120 fp->aux = NULL;
1121 __bpf_prog_free(fp);
1122}
1123
1124void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1125{
1126 /* We have to repoint aux->prog to self, as we don't
1127 * know whether fp here is the clone or the original.
1128 */
1129 fp->aux->prog = fp;
1130 bpf_prog_clone_free(fp_other);
1131}
1132
1133struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1134{
1135 struct bpf_insn insn_buff[16], aux[2];
1136 struct bpf_prog *clone, *tmp;
1137 int insn_delta, insn_cnt;
1138 struct bpf_insn *insn;
1139 int i, rewritten;
1140
1c2a088a 1141 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
4f3446bb
DB
1142 return prog;
1143
1144 clone = bpf_prog_clone_create(prog, GFP_USER);
1145 if (!clone)
1146 return ERR_PTR(-ENOMEM);
1147
1148 insn_cnt = clone->len;
1149 insn = clone->insnsi;
1150
1151 for (i = 0; i < insn_cnt; i++, insn++) {
1152 /* We temporarily need to hold the original ld64 insn
1153 * so that we can still access the first part in the
1154 * second blinding run.
1155 */
1156 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1157 insn[1].code == 0)
1158 memcpy(aux, insn, sizeof(aux));
1159
ede7c460
NR
1160 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1161 clone->aux->verifier_zext);
4f3446bb
DB
1162 if (!rewritten)
1163 continue;
1164
1165 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
4f73379e 1166 if (IS_ERR(tmp)) {
4f3446bb
DB
1167 /* Patching may have repointed aux->prog during
1168 * realloc from the original one, so we need to
1169 * fix it up here on error.
1170 */
1171 bpf_jit_prog_release_other(prog, clone);
4f73379e 1172 return tmp;
4f3446bb
DB
1173 }
1174
1175 clone = tmp;
1176 insn_delta = rewritten - 1;
1177
1178 /* Walk new program and skip insns we just inserted. */
1179 insn = clone->insnsi + i + insn_delta;
1180 insn_cnt += insn_delta;
1181 i += insn_delta;
1182 }
1183
1c2a088a 1184 clone->blinded = 1;
4f3446bb
DB
1185 return clone;
1186}
b954d834 1187#endif /* CONFIG_BPF_JIT */
738cbe72 1188
f5bffecd
AS
1189/* Base function for offset calculation. Needs to go into .text section,
1190 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1191 * anyway later on, so do not let the compiler omit it. This also needs
1192 * to go into kallsyms for correlation from e.g. bpftool, so naming
1193 * must not change.
f5bffecd
AS
1194 */
1195noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1196{
1197 return 0;
1198}
4d9c5c53 1199EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1200
5e581dad
DB
1201/* All UAPI available opcodes. */
1202#define BPF_INSN_MAP(INSN_2, INSN_3) \
1203 /* 32 bit ALU operations. */ \
1204 /* Register based. */ \
2dc6b100
JW
1205 INSN_3(ALU, ADD, X), \
1206 INSN_3(ALU, SUB, X), \
1207 INSN_3(ALU, AND, X), \
1208 INSN_3(ALU, OR, X), \
1209 INSN_3(ALU, LSH, X), \
1210 INSN_3(ALU, RSH, X), \
1211 INSN_3(ALU, XOR, X), \
1212 INSN_3(ALU, MUL, X), \
1213 INSN_3(ALU, MOV, X), \
1214 INSN_3(ALU, ARSH, X), \
1215 INSN_3(ALU, DIV, X), \
1216 INSN_3(ALU, MOD, X), \
5e581dad
DB
1217 INSN_2(ALU, NEG), \
1218 INSN_3(ALU, END, TO_BE), \
1219 INSN_3(ALU, END, TO_LE), \
1220 /* Immediate based. */ \
2dc6b100
JW
1221 INSN_3(ALU, ADD, K), \
1222 INSN_3(ALU, SUB, K), \
1223 INSN_3(ALU, AND, K), \
1224 INSN_3(ALU, OR, K), \
1225 INSN_3(ALU, LSH, K), \
1226 INSN_3(ALU, RSH, K), \
1227 INSN_3(ALU, XOR, K), \
1228 INSN_3(ALU, MUL, K), \
1229 INSN_3(ALU, MOV, K), \
1230 INSN_3(ALU, ARSH, K), \
1231 INSN_3(ALU, DIV, K), \
1232 INSN_3(ALU, MOD, K), \
5e581dad
DB
1233 /* 64 bit ALU operations. */ \
1234 /* Register based. */ \
1235 INSN_3(ALU64, ADD, X), \
1236 INSN_3(ALU64, SUB, X), \
1237 INSN_3(ALU64, AND, X), \
1238 INSN_3(ALU64, OR, X), \
1239 INSN_3(ALU64, LSH, X), \
1240 INSN_3(ALU64, RSH, X), \
1241 INSN_3(ALU64, XOR, X), \
1242 INSN_3(ALU64, MUL, X), \
1243 INSN_3(ALU64, MOV, X), \
1244 INSN_3(ALU64, ARSH, X), \
1245 INSN_3(ALU64, DIV, X), \
1246 INSN_3(ALU64, MOD, X), \
1247 INSN_2(ALU64, NEG), \
1248 /* Immediate based. */ \
1249 INSN_3(ALU64, ADD, K), \
1250 INSN_3(ALU64, SUB, K), \
1251 INSN_3(ALU64, AND, K), \
1252 INSN_3(ALU64, OR, K), \
1253 INSN_3(ALU64, LSH, K), \
1254 INSN_3(ALU64, RSH, K), \
1255 INSN_3(ALU64, XOR, K), \
1256 INSN_3(ALU64, MUL, K), \
1257 INSN_3(ALU64, MOV, K), \
1258 INSN_3(ALU64, ARSH, K), \
1259 INSN_3(ALU64, DIV, K), \
1260 INSN_3(ALU64, MOD, K), \
1261 /* Call instruction. */ \
1262 INSN_2(JMP, CALL), \
1263 /* Exit instruction. */ \
1264 INSN_2(JMP, EXIT), \
503a8865
JW
1265 /* 32-bit Jump instructions. */ \
1266 /* Register based. */ \
1267 INSN_3(JMP32, JEQ, X), \
1268 INSN_3(JMP32, JNE, X), \
1269 INSN_3(JMP32, JGT, X), \
1270 INSN_3(JMP32, JLT, X), \
1271 INSN_3(JMP32, JGE, X), \
1272 INSN_3(JMP32, JLE, X), \
1273 INSN_3(JMP32, JSGT, X), \
1274 INSN_3(JMP32, JSLT, X), \
1275 INSN_3(JMP32, JSGE, X), \
1276 INSN_3(JMP32, JSLE, X), \
1277 INSN_3(JMP32, JSET, X), \
1278 /* Immediate based. */ \
1279 INSN_3(JMP32, JEQ, K), \
1280 INSN_3(JMP32, JNE, K), \
1281 INSN_3(JMP32, JGT, K), \
1282 INSN_3(JMP32, JLT, K), \
1283 INSN_3(JMP32, JGE, K), \
1284 INSN_3(JMP32, JLE, K), \
1285 INSN_3(JMP32, JSGT, K), \
1286 INSN_3(JMP32, JSLT, K), \
1287 INSN_3(JMP32, JSGE, K), \
1288 INSN_3(JMP32, JSLE, K), \
1289 INSN_3(JMP32, JSET, K), \
5e581dad
DB
1290 /* Jump instructions. */ \
1291 /* Register based. */ \
1292 INSN_3(JMP, JEQ, X), \
1293 INSN_3(JMP, JNE, X), \
1294 INSN_3(JMP, JGT, X), \
1295 INSN_3(JMP, JLT, X), \
1296 INSN_3(JMP, JGE, X), \
1297 INSN_3(JMP, JLE, X), \
1298 INSN_3(JMP, JSGT, X), \
1299 INSN_3(JMP, JSLT, X), \
1300 INSN_3(JMP, JSGE, X), \
1301 INSN_3(JMP, JSLE, X), \
1302 INSN_3(JMP, JSET, X), \
1303 /* Immediate based. */ \
1304 INSN_3(JMP, JEQ, K), \
1305 INSN_3(JMP, JNE, K), \
1306 INSN_3(JMP, JGT, K), \
1307 INSN_3(JMP, JLT, K), \
1308 INSN_3(JMP, JGE, K), \
1309 INSN_3(JMP, JLE, K), \
1310 INSN_3(JMP, JSGT, K), \
1311 INSN_3(JMP, JSLT, K), \
1312 INSN_3(JMP, JSGE, K), \
1313 INSN_3(JMP, JSLE, K), \
1314 INSN_3(JMP, JSET, K), \
1315 INSN_2(JMP, JA), \
1316 /* Store instructions. */ \
1317 /* Register based. */ \
1318 INSN_3(STX, MEM, B), \
1319 INSN_3(STX, MEM, H), \
1320 INSN_3(STX, MEM, W), \
1321 INSN_3(STX, MEM, DW), \
91c960b0
BJ
1322 INSN_3(STX, ATOMIC, W), \
1323 INSN_3(STX, ATOMIC, DW), \
5e581dad
DB
1324 /* Immediate based. */ \
1325 INSN_3(ST, MEM, B), \
1326 INSN_3(ST, MEM, H), \
1327 INSN_3(ST, MEM, W), \
1328 INSN_3(ST, MEM, DW), \
1329 /* Load instructions. */ \
1330 /* Register based. */ \
1331 INSN_3(LDX, MEM, B), \
1332 INSN_3(LDX, MEM, H), \
1333 INSN_3(LDX, MEM, W), \
1334 INSN_3(LDX, MEM, DW), \
1335 /* Immediate based. */ \
e0cea7ce 1336 INSN_3(LD, IMM, DW)
5e581dad
DB
1337
1338bool bpf_opcode_in_insntable(u8 code)
1339{
1340#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1341#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1342 static const bool public_insntable[256] = {
1343 [0 ... 255] = false,
1344 /* Now overwrite non-defaults ... */
1345 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1346 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1347 [BPF_LD | BPF_ABS | BPF_B] = true,
1348 [BPF_LD | BPF_ABS | BPF_H] = true,
1349 [BPF_LD | BPF_ABS | BPF_W] = true,
1350 [BPF_LD | BPF_IND | BPF_B] = true,
1351 [BPF_LD | BPF_IND | BPF_H] = true,
1352 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1353 };
1354#undef BPF_INSN_3_TBL
1355#undef BPF_INSN_2_TBL
1356 return public_insntable[code];
1357}
1358
290af866 1359#ifndef CONFIG_BPF_JIT_ALWAYS_ON
6e07a634 1360u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2a02759e
AS
1361{
1362 memset(dst, 0, size);
1363 return -EFAULT;
1364}
6e07a634 1365
f5bffecd 1366/**
7ae457c1 1367 * __bpf_prog_run - run eBPF program on a given context
de1da68d 1368 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
7ae457c1 1369 * @insn: is the array of eBPF instructions
de1da68d 1370 * @stack: is the eBPF storage stack
f5bffecd 1371 *
7ae457c1 1372 * Decode and execute eBPF instructions.
f5bffecd 1373 */
080b6f40 1374static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
f5bffecd 1375{
5e581dad
DB
1376#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1377#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
e55a7325 1378 static const void * const jumptable[256] __annotate_jump_table = {
f5bffecd
AS
1379 [0 ... 255] = &&default_label,
1380 /* Now overwrite non-defaults ... */
5e581dad
DB
1381 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1382 /* Non-UAPI available opcodes. */
1ea47e01 1383 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1384 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
2a02759e
AS
1385 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
f5bffecd 1389 };
5e581dad
DB
1390#undef BPF_INSN_3_LBL
1391#undef BPF_INSN_2_LBL
04fd61ab 1392 u32 tail_call_cnt = 0;
f5bffecd
AS
1393
1394#define CONT ({ insn++; goto select_insn; })
1395#define CONT_JMP ({ insn++; goto select_insn; })
1396
f5bffecd
AS
1397select_insn:
1398 goto *jumptable[insn->code];
1399
1400 /* ALU */
1401#define ALU(OPCODE, OP) \
1402 ALU64_##OPCODE##_X: \
1403 DST = DST OP SRC; \
1404 CONT; \
1405 ALU_##OPCODE##_X: \
1406 DST = (u32) DST OP (u32) SRC; \
1407 CONT; \
1408 ALU64_##OPCODE##_K: \
1409 DST = DST OP IMM; \
1410 CONT; \
1411 ALU_##OPCODE##_K: \
1412 DST = (u32) DST OP (u32) IMM; \
1413 CONT;
1414
1415 ALU(ADD, +)
1416 ALU(SUB, -)
1417 ALU(AND, &)
1418 ALU(OR, |)
1419 ALU(LSH, <<)
1420 ALU(RSH, >>)
1421 ALU(XOR, ^)
1422 ALU(MUL, *)
1423#undef ALU
1424 ALU_NEG:
1425 DST = (u32) -DST;
1426 CONT;
1427 ALU64_NEG:
1428 DST = -DST;
1429 CONT;
1430 ALU_MOV_X:
1431 DST = (u32) SRC;
1432 CONT;
1433 ALU_MOV_K:
1434 DST = (u32) IMM;
1435 CONT;
1436 ALU64_MOV_X:
1437 DST = SRC;
1438 CONT;
1439 ALU64_MOV_K:
1440 DST = IMM;
1441 CONT;
02ab695b
AS
1442 LD_IMM_DW:
1443 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1444 insn++;
1445 CONT;
2dc6b100 1446 ALU_ARSH_X:
75672dda 1447 DST = (u64) (u32) (((s32) DST) >> SRC);
2dc6b100
JW
1448 CONT;
1449 ALU_ARSH_K:
75672dda 1450 DST = (u64) (u32) (((s32) DST) >> IMM);
2dc6b100 1451 CONT;
f5bffecd
AS
1452 ALU64_ARSH_X:
1453 (*(s64 *) &DST) >>= SRC;
1454 CONT;
1455 ALU64_ARSH_K:
1456 (*(s64 *) &DST) >>= IMM;
1457 CONT;
1458 ALU64_MOD_X:
144cd91c
DB
1459 div64_u64_rem(DST, SRC, &AX);
1460 DST = AX;
f5bffecd
AS
1461 CONT;
1462 ALU_MOD_X:
144cd91c
DB
1463 AX = (u32) DST;
1464 DST = do_div(AX, (u32) SRC);
f5bffecd
AS
1465 CONT;
1466 ALU64_MOD_K:
144cd91c
DB
1467 div64_u64_rem(DST, IMM, &AX);
1468 DST = AX;
f5bffecd
AS
1469 CONT;
1470 ALU_MOD_K:
144cd91c
DB
1471 AX = (u32) DST;
1472 DST = do_div(AX, (u32) IMM);
f5bffecd
AS
1473 CONT;
1474 ALU64_DIV_X:
876a7ae6 1475 DST = div64_u64(DST, SRC);
f5bffecd
AS
1476 CONT;
1477 ALU_DIV_X:
144cd91c
DB
1478 AX = (u32) DST;
1479 do_div(AX, (u32) SRC);
1480 DST = (u32) AX;
f5bffecd
AS
1481 CONT;
1482 ALU64_DIV_K:
876a7ae6 1483 DST = div64_u64(DST, IMM);
f5bffecd
AS
1484 CONT;
1485 ALU_DIV_K:
144cd91c
DB
1486 AX = (u32) DST;
1487 do_div(AX, (u32) IMM);
1488 DST = (u32) AX;
f5bffecd
AS
1489 CONT;
1490 ALU_END_TO_BE:
1491 switch (IMM) {
1492 case 16:
1493 DST = (__force u16) cpu_to_be16(DST);
1494 break;
1495 case 32:
1496 DST = (__force u32) cpu_to_be32(DST);
1497 break;
1498 case 64:
1499 DST = (__force u64) cpu_to_be64(DST);
1500 break;
1501 }
1502 CONT;
1503 ALU_END_TO_LE:
1504 switch (IMM) {
1505 case 16:
1506 DST = (__force u16) cpu_to_le16(DST);
1507 break;
1508 case 32:
1509 DST = (__force u32) cpu_to_le32(DST);
1510 break;
1511 case 64:
1512 DST = (__force u64) cpu_to_le64(DST);
1513 break;
1514 }
1515 CONT;
1516
1517 /* CALL */
1518 JMP_CALL:
1519 /* Function call scratches BPF_R1-BPF_R5 registers,
1520 * preserves BPF_R6-BPF_R9, and stores return value
1521 * into BPF_R0.
1522 */
1523 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1524 BPF_R4, BPF_R5);
1525 CONT;
1526
1ea47e01
AS
1527 JMP_CALL_ARGS:
1528 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1529 BPF_R3, BPF_R4,
1530 BPF_R5,
1531 insn + insn->off + 1);
1532 CONT;
1533
04fd61ab
AS
1534 JMP_TAIL_CALL: {
1535 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1536 struct bpf_array *array = container_of(map, struct bpf_array, map);
1537 struct bpf_prog *prog;
90caccdd 1538 u32 index = BPF_R3;
04fd61ab
AS
1539
1540 if (unlikely(index >= array->map.max_entries))
1541 goto out;
04fd61ab
AS
1542 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1543 goto out;
1544
1545 tail_call_cnt++;
1546
2a36f0b9 1547 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1548 if (!prog)
04fd61ab
AS
1549 goto out;
1550
c4675f93
DB
1551 /* ARG1 at this point is guaranteed to point to CTX from
1552 * the verifier side due to the fact that the tail call is
0142dddc 1553 * handled like a helper, that is, bpf_tail_call_proto,
c4675f93
DB
1554 * where arg1_type is ARG_PTR_TO_CTX.
1555 */
04fd61ab
AS
1556 insn = prog->insnsi;
1557 goto select_insn;
1558out:
1559 CONT;
1560 }
f5bffecd
AS
1561 JMP_JA:
1562 insn += insn->off;
1563 CONT;
f5bffecd
AS
1564 JMP_EXIT:
1565 return BPF_R0;
503a8865
JW
1566 /* JMP */
1567#define COND_JMP(SIGN, OPCODE, CMP_OP) \
1568 JMP_##OPCODE##_X: \
1569 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1570 insn += insn->off; \
1571 CONT_JMP; \
1572 } \
1573 CONT; \
1574 JMP32_##OPCODE##_X: \
1575 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1576 insn += insn->off; \
1577 CONT_JMP; \
1578 } \
1579 CONT; \
1580 JMP_##OPCODE##_K: \
1581 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1582 insn += insn->off; \
1583 CONT_JMP; \
1584 } \
1585 CONT; \
1586 JMP32_##OPCODE##_K: \
1587 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1588 insn += insn->off; \
1589 CONT_JMP; \
1590 } \
1591 CONT;
1592 COND_JMP(u, JEQ, ==)
1593 COND_JMP(u, JNE, !=)
1594 COND_JMP(u, JGT, >)
1595 COND_JMP(u, JLT, <)
1596 COND_JMP(u, JGE, >=)
1597 COND_JMP(u, JLE, <=)
1598 COND_JMP(u, JSET, &)
1599 COND_JMP(s, JSGT, >)
1600 COND_JMP(s, JSLT, <)
1601 COND_JMP(s, JSGE, >=)
1602 COND_JMP(s, JSLE, <=)
1603#undef COND_JMP
f5bffecd
AS
1604 /* STX and ST and LDX*/
1605#define LDST(SIZEOP, SIZE) \
1606 STX_MEM_##SIZEOP: \
1607 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1608 CONT; \
1609 ST_MEM_##SIZEOP: \
1610 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1611 CONT; \
1612 LDX_MEM_##SIZEOP: \
1613 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1614 CONT;
1615
1616 LDST(B, u8)
1617 LDST(H, u16)
1618 LDST(W, u32)
1619 LDST(DW, u64)
1620#undef LDST
6e07a634
DB
1621#define LDX_PROBE(SIZEOP, SIZE) \
1622 LDX_PROBE_MEM_##SIZEOP: \
85d31dd0 1623 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \
2a02759e
AS
1624 CONT;
1625 LDX_PROBE(B, 1)
1626 LDX_PROBE(H, 2)
1627 LDX_PROBE(W, 4)
1628 LDX_PROBE(DW, 8)
1629#undef LDX_PROBE
1630
46291067
BJ
1631#define ATOMIC_ALU_OP(BOP, KOP) \
1632 case BOP: \
1633 if (BPF_SIZE(insn->code) == BPF_W) \
1634 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1635 (DST + insn->off)); \
1636 else \
1637 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1638 (DST + insn->off)); \
1639 break; \
1640 case BOP | BPF_FETCH: \
1641 if (BPF_SIZE(insn->code) == BPF_W) \
1642 SRC = (u32) atomic_fetch_##KOP( \
1643 (u32) SRC, \
1644 (atomic_t *)(unsigned long) (DST + insn->off)); \
1645 else \
1646 SRC = (u64) atomic64_fetch_##KOP( \
1647 (u64) SRC, \
1648 (atomic64_t *)(unsigned long) (DST + insn->off)); \
5ffa2550 1649 break;
5ca419f2 1650
91c960b0 1651 STX_ATOMIC_DW:
46291067 1652 STX_ATOMIC_W:
91c960b0 1653 switch (IMM) {
46291067 1654 ATOMIC_ALU_OP(BPF_ADD, add)
981f94c3
BJ
1655 ATOMIC_ALU_OP(BPF_AND, and)
1656 ATOMIC_ALU_OP(BPF_OR, or)
1657 ATOMIC_ALU_OP(BPF_XOR, xor)
46291067
BJ
1658#undef ATOMIC_ALU_OP
1659
5ffa2550 1660 case BPF_XCHG:
46291067
BJ
1661 if (BPF_SIZE(insn->code) == BPF_W)
1662 SRC = (u32) atomic_xchg(
1663 (atomic_t *)(unsigned long) (DST + insn->off),
1664 (u32) SRC);
1665 else
1666 SRC = (u64) atomic64_xchg(
1667 (atomic64_t *)(unsigned long) (DST + insn->off),
1668 (u64) SRC);
5ffa2550
BJ
1669 break;
1670 case BPF_CMPXCHG:
46291067
BJ
1671 if (BPF_SIZE(insn->code) == BPF_W)
1672 BPF_R0 = (u32) atomic_cmpxchg(
1673 (atomic_t *)(unsigned long) (DST + insn->off),
1674 (u32) BPF_R0, (u32) SRC);
1675 else
1676 BPF_R0 = (u64) atomic64_cmpxchg(
1677 (atomic64_t *)(unsigned long) (DST + insn->off),
1678 (u64) BPF_R0, (u64) SRC);
5ffa2550 1679 break;
46291067 1680
91c960b0
BJ
1681 default:
1682 goto default_label;
1683 }
f5bffecd 1684 CONT;
f5bffecd
AS
1685
1686 default_label:
5e581dad
DB
1687 /* If we ever reach this, we have a bug somewhere. Die hard here
1688 * instead of just returning 0; we could be somewhere in a subprog,
1689 * so execution could continue otherwise which we do /not/ want.
1690 *
1691 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1692 */
91c960b0
BJ
1693 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1694 insn->code, insn->imm);
5e581dad 1695 BUG_ON(1);
f5bffecd
AS
1696 return 0;
1697}
f696b8f4 1698
b870aa90
AS
1699#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1700#define DEFINE_BPF_PROG_RUN(stack_size) \
1701static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1702{ \
1703 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1704 u64 regs[MAX_BPF_EXT_REG]; \
b870aa90
AS
1705\
1706 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1707 ARG1 = (u64) (unsigned long) ctx; \
1708 return ___bpf_prog_run(regs, insn, stack); \
f696b8f4 1709}
f5bffecd 1710
1ea47e01
AS
1711#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1712#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1713static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1714 const struct bpf_insn *insn) \
1715{ \
1716 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 1717 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
1718\
1719 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1720 BPF_R1 = r1; \
1721 BPF_R2 = r2; \
1722 BPF_R3 = r3; \
1723 BPF_R4 = r4; \
1724 BPF_R5 = r5; \
1725 return ___bpf_prog_run(regs, insn, stack); \
1726}
1727
b870aa90
AS
1728#define EVAL1(FN, X) FN(X)
1729#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1730#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1731#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1732#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1733#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1734
1735EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1736EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1737EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1738
1ea47e01
AS
1739EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1740EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1741EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1742
b870aa90
AS
1743#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1744
1745static unsigned int (*interpreters[])(const void *ctx,
1746 const struct bpf_insn *insn) = {
1747EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1748EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1749EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1750};
1ea47e01
AS
1751#undef PROG_NAME_LIST
1752#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1753static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1754 const struct bpf_insn *insn) = {
1755EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1756EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1757EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1758};
1759#undef PROG_NAME_LIST
1760
1761void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1762{
1763 stack_depth = max_t(u32, stack_depth, 1);
1764 insn->off = (s16) insn->imm;
1765 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1766 __bpf_call_base_args;
1767 insn->code = BPF_JMP | BPF_CALL_ARGS;
1768}
b870aa90 1769
290af866 1770#else
fa9dd599
DB
1771static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1772 const struct bpf_insn *insn)
290af866 1773{
fa9dd599
DB
1774 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1775 * is not working properly, so warn about it!
1776 */
1777 WARN_ON_ONCE(1);
290af866
AS
1778 return 0;
1779}
1780#endif
1781
3324b584
DB
1782bool bpf_prog_array_compatible(struct bpf_array *array,
1783 const struct bpf_prog *fp)
04fd61ab 1784{
9802d865
JB
1785 if (fp->kprobe_override)
1786 return false;
1787
2beee5f5 1788 if (!array->aux->type) {
3324b584
DB
1789 /* There's no owner yet where we could check for
1790 * compatibility.
1791 */
2beee5f5
DB
1792 array->aux->type = fp->type;
1793 array->aux->jited = fp->jited;
3324b584 1794 return true;
04fd61ab 1795 }
3324b584 1796
2beee5f5
DB
1797 return array->aux->type == fp->type &&
1798 array->aux->jited == fp->jited;
04fd61ab
AS
1799}
1800
3324b584 1801static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
1802{
1803 struct bpf_prog_aux *aux = fp->aux;
984fe94f 1804 int i, ret = 0;
04fd61ab 1805
984fe94f 1806 mutex_lock(&aux->used_maps_mutex);
04fd61ab 1807 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 1808 struct bpf_map *map = aux->used_maps[i];
04fd61ab 1809 struct bpf_array *array;
04fd61ab 1810
04fd61ab
AS
1811 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1812 continue;
3324b584 1813
04fd61ab 1814 array = container_of(map, struct bpf_array, map);
984fe94f
YZ
1815 if (!bpf_prog_array_compatible(array, fp)) {
1816 ret = -EINVAL;
1817 goto out;
1818 }
04fd61ab
AS
1819 }
1820
984fe94f
YZ
1821out:
1822 mutex_unlock(&aux->used_maps_mutex);
1823 return ret;
04fd61ab
AS
1824}
1825
9facc336
DB
1826static void bpf_prog_select_func(struct bpf_prog *fp)
1827{
1828#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1829 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1830
1831 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1832#else
1833 fp->bpf_func = __bpf_prog_ret0_warn;
1834#endif
1835}
1836
f5bffecd 1837/**
3324b584 1838 * bpf_prog_select_runtime - select exec runtime for BPF program
7ae457c1 1839 * @fp: bpf_prog populated with internal BPF program
d1c55ab5 1840 * @err: pointer to error variable
f5bffecd 1841 *
3324b584
DB
1842 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1843 * The BPF program will be executed via BPF_PROG_RUN() macro.
f5bffecd 1844 */
d1c55ab5 1845struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 1846{
9facc336
DB
1847 /* In case of BPF to BPF calls, verifier did all the prep
1848 * work with regards to JITing, etc.
1849 */
1850 if (fp->bpf_func)
1851 goto finalize;
8007e40a 1852
9facc336 1853 bpf_prog_select_func(fp);
f5bffecd 1854
d1c55ab5
DB
1855 /* eBPF JITs can rewrite the program in case constant
1856 * blinding is active. However, in case of error during
1857 * blinding, bpf_int_jit_compile() must always return a
1858 * valid program, which in this case would simply not
1859 * be JITed, but falls back to the interpreter.
1860 */
ab3f0063 1861 if (!bpf_prog_is_dev_bound(fp->aux)) {
c454a46b
MKL
1862 *err = bpf_prog_alloc_jited_linfo(fp);
1863 if (*err)
1864 return fp;
1865
ab3f0063 1866 fp = bpf_int_jit_compile(fp);
290af866 1867 if (!fp->jited) {
c454a46b
MKL
1868 bpf_prog_free_jited_linfo(fp);
1869#ifdef CONFIG_BPF_JIT_ALWAYS_ON
290af866
AS
1870 *err = -ENOTSUPP;
1871 return fp;
290af866 1872#endif
c454a46b
MKL
1873 } else {
1874 bpf_prog_free_unused_jited_linfo(fp);
1875 }
ab3f0063
JK
1876 } else {
1877 *err = bpf_prog_offload_compile(fp);
1878 if (*err)
1879 return fp;
1880 }
9facc336
DB
1881
1882finalize:
60a3b225 1883 bpf_prog_lock_ro(fp);
04fd61ab 1884
3324b584
DB
1885 /* The tail call compatibility check can only be done at
1886 * this late stage as we need to determine, if we deal
1887 * with JITed or non JITed program concatenations and not
1888 * all eBPF JITs might immediately support all features.
1889 */
d1c55ab5 1890 *err = bpf_check_tail_call(fp);
85782e03 1891
d1c55ab5 1892 return fp;
f5bffecd 1893}
7ae457c1 1894EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 1895
e87c6bc3
YS
1896static unsigned int __bpf_prog_ret1(const void *ctx,
1897 const struct bpf_insn *insn)
1898{
1899 return 1;
1900}
1901
1902static struct bpf_prog_dummy {
1903 struct bpf_prog prog;
1904} dummy_bpf_prog = {
1905 .prog = {
1906 .bpf_func = __bpf_prog_ret1,
1907 },
1908};
1909
324bda9e
AS
1910/* to avoid allocating empty bpf_prog_array for cgroups that
1911 * don't have bpf program attached use one global 'empty_prog_array'
1912 * It will not be modified the caller of bpf_prog_array_alloc()
1913 * (since caller requested prog_cnt == 0)
1914 * that pointer should be 'freed' by bpf_prog_array_free()
1915 */
1916static struct {
1917 struct bpf_prog_array hdr;
1918 struct bpf_prog *null_prog;
1919} empty_prog_array = {
1920 .null_prog = NULL,
1921};
1922
d29ab6e1 1923struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
1924{
1925 if (prog_cnt)
1926 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
1927 sizeof(struct bpf_prog_array_item) *
1928 (prog_cnt + 1),
324bda9e
AS
1929 flags);
1930
1931 return &empty_prog_array.hdr;
1932}
1933
54e9c9d4 1934void bpf_prog_array_free(struct bpf_prog_array *progs)
324bda9e 1935{
54e9c9d4 1936 if (!progs || progs == &empty_prog_array.hdr)
324bda9e
AS
1937 return;
1938 kfree_rcu(progs, rcu);
1939}
1940
54e9c9d4 1941int bpf_prog_array_length(struct bpf_prog_array *array)
468e2f64 1942{
394e40a2 1943 struct bpf_prog_array_item *item;
468e2f64
AS
1944 u32 cnt = 0;
1945
54e9c9d4 1946 for (item = array->items; item->prog; item++)
394e40a2 1947 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 1948 cnt++;
468e2f64
AS
1949 return cnt;
1950}
1951
0d01da6a
SF
1952bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1953{
1954 struct bpf_prog_array_item *item;
1955
1956 for (item = array->items; item->prog; item++)
1957 if (item->prog != &dummy_bpf_prog.prog)
1958 return false;
1959 return true;
1960}
394e40a2 1961
54e9c9d4 1962static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
3a38bb98
YS
1963 u32 *prog_ids,
1964 u32 request_cnt)
1965{
394e40a2 1966 struct bpf_prog_array_item *item;
3a38bb98
YS
1967 int i = 0;
1968
54e9c9d4 1969 for (item = array->items; item->prog; item++) {
394e40a2 1970 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 1971 continue;
394e40a2 1972 prog_ids[i] = item->prog->aux->id;
3a38bb98 1973 if (++i == request_cnt) {
394e40a2 1974 item++;
3a38bb98
YS
1975 break;
1976 }
1977 }
1978
394e40a2 1979 return !!(item->prog);
3a38bb98
YS
1980}
1981
54e9c9d4 1982int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
468e2f64
AS
1983 __u32 __user *prog_ids, u32 cnt)
1984{
0911287c 1985 unsigned long err = 0;
0911287c 1986 bool nospc;
3a38bb98 1987 u32 *ids;
0911287c
AS
1988
1989 /* users of this function are doing:
1990 * cnt = bpf_prog_array_length();
1991 * if (cnt > 0)
1992 * bpf_prog_array_copy_to_user(..., cnt);
54e9c9d4 1993 * so below kcalloc doesn't need extra cnt > 0 check.
0911287c 1994 */
9c481b90 1995 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
1996 if (!ids)
1997 return -ENOMEM;
394e40a2 1998 nospc = bpf_prog_array_copy_core(array, ids, cnt);
0911287c
AS
1999 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2000 kfree(ids);
2001 if (err)
2002 return -EFAULT;
2003 if (nospc)
468e2f64
AS
2004 return -ENOSPC;
2005 return 0;
2006}
2007
54e9c9d4 2008void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
e87c6bc3
YS
2009 struct bpf_prog *old_prog)
2010{
54e9c9d4 2011 struct bpf_prog_array_item *item;
e87c6bc3 2012
54e9c9d4 2013 for (item = array->items; item->prog; item++)
394e40a2
RG
2014 if (item->prog == old_prog) {
2015 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
2016 break;
2017 }
2018}
2019
ce3aa9cc
JS
2020/**
2021 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2022 * index into the program array with
2023 * a dummy no-op program.
2024 * @array: a bpf_prog_array
2025 * @index: the index of the program to replace
2026 *
2027 * Skips over dummy programs, by not counting them, when calculating
b8c1a309 2028 * the position of the program to replace.
ce3aa9cc
JS
2029 *
2030 * Return:
2031 * * 0 - Success
2032 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2033 * * -ENOENT - Index out of range
2034 */
2035int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2036{
2037 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2038}
2039
2040/**
2041 * bpf_prog_array_update_at() - Updates the program at the given index
2042 * into the program array.
2043 * @array: a bpf_prog_array
2044 * @index: the index of the program to update
2045 * @prog: the program to insert into the array
2046 *
2047 * Skips over dummy programs, by not counting them, when calculating
2048 * the position of the program to update.
2049 *
2050 * Return:
2051 * * 0 - Success
2052 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2053 * * -ENOENT - Index out of range
2054 */
2055int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2056 struct bpf_prog *prog)
2057{
2058 struct bpf_prog_array_item *item;
2059
2060 if (unlikely(index < 0))
2061 return -EINVAL;
2062
2063 for (item = array->items; item->prog; item++) {
2064 if (item->prog == &dummy_bpf_prog.prog)
2065 continue;
2066 if (!index) {
2067 WRITE_ONCE(item->prog, prog);
2068 return 0;
2069 }
2070 index--;
2071 }
2072 return -ENOENT;
2073}
2074
54e9c9d4 2075int bpf_prog_array_copy(struct bpf_prog_array *old_array,
e87c6bc3
YS
2076 struct bpf_prog *exclude_prog,
2077 struct bpf_prog *include_prog,
2078 struct bpf_prog_array **new_array)
2079{
2080 int new_prog_cnt, carry_prog_cnt = 0;
394e40a2 2081 struct bpf_prog_array_item *existing;
e87c6bc3 2082 struct bpf_prog_array *array;
170a7e3e 2083 bool found_exclude = false;
e87c6bc3
YS
2084 int new_prog_idx = 0;
2085
2086 /* Figure out how many existing progs we need to carry over to
2087 * the new array.
2088 */
2089 if (old_array) {
394e40a2
RG
2090 existing = old_array->items;
2091 for (; existing->prog; existing++) {
2092 if (existing->prog == exclude_prog) {
170a7e3e
SY
2093 found_exclude = true;
2094 continue;
2095 }
394e40a2 2096 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 2097 carry_prog_cnt++;
394e40a2 2098 if (existing->prog == include_prog)
e87c6bc3
YS
2099 return -EEXIST;
2100 }
2101 }
2102
170a7e3e
SY
2103 if (exclude_prog && !found_exclude)
2104 return -ENOENT;
2105
e87c6bc3
YS
2106 /* How many progs (not NULL) will be in the new array? */
2107 new_prog_cnt = carry_prog_cnt;
2108 if (include_prog)
2109 new_prog_cnt += 1;
2110
2111 /* Do we have any prog (not NULL) in the new array? */
2112 if (!new_prog_cnt) {
2113 *new_array = NULL;
2114 return 0;
2115 }
2116
2117 /* +1 as the end of prog_array is marked with NULL */
2118 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2119 if (!array)
2120 return -ENOMEM;
2121
2122 /* Fill in the new prog array */
2123 if (carry_prog_cnt) {
394e40a2
RG
2124 existing = old_array->items;
2125 for (; existing->prog; existing++)
2126 if (existing->prog != exclude_prog &&
2127 existing->prog != &dummy_bpf_prog.prog) {
2128 array->items[new_prog_idx++].prog =
2129 existing->prog;
2130 }
e87c6bc3
YS
2131 }
2132 if (include_prog)
394e40a2
RG
2133 array->items[new_prog_idx++].prog = include_prog;
2134 array->items[new_prog_idx].prog = NULL;
e87c6bc3
YS
2135 *new_array = array;
2136 return 0;
2137}
2138
54e9c9d4 2139int bpf_prog_array_copy_info(struct bpf_prog_array *array,
3a38bb98
YS
2140 u32 *prog_ids, u32 request_cnt,
2141 u32 *prog_cnt)
f371b304
YS
2142{
2143 u32 cnt = 0;
2144
2145 if (array)
2146 cnt = bpf_prog_array_length(array);
2147
3a38bb98 2148 *prog_cnt = cnt;
f371b304
YS
2149
2150 /* return early if user requested only program count or nothing to copy */
2151 if (!request_cnt || !cnt)
2152 return 0;
2153
3a38bb98 2154 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 2155 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 2156 : 0;
f371b304
YS
2157}
2158
a2ea0746
DB
2159void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2160 struct bpf_map **used_maps, u32 len)
6332be04 2161{
da765a2f 2162 struct bpf_map *map;
a2ea0746 2163 u32 i;
6332be04 2164
a2ea0746
DB
2165 for (i = 0; i < len; i++) {
2166 map = used_maps[i];
da765a2f
DB
2167 if (map->ops->map_poke_untrack)
2168 map->ops->map_poke_untrack(map, aux);
2169 bpf_map_put(map);
2170 }
a2ea0746
DB
2171}
2172
2173static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2174{
2175 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
6332be04
DB
2176 kfree(aux->used_maps);
2177}
2178
541c3bad
AN
2179void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2180 struct btf_mod_pair *used_btfs, u32 len)
2181{
2182#ifdef CONFIG_BPF_SYSCALL
2183 struct btf_mod_pair *btf_mod;
2184 u32 i;
2185
2186 for (i = 0; i < len; i++) {
2187 btf_mod = &used_btfs[i];
2188 if (btf_mod->module)
2189 module_put(btf_mod->module);
2190 btf_put(btf_mod->btf);
2191 }
2192#endif
2193}
2194
2195static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2196{
2197 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2198 kfree(aux->used_btfs);
2199}
2200
60a3b225
DB
2201static void bpf_prog_free_deferred(struct work_struct *work)
2202{
09756af4 2203 struct bpf_prog_aux *aux;
1c2a088a 2204 int i;
60a3b225 2205
09756af4 2206 aux = container_of(work, struct bpf_prog_aux, work);
6332be04 2207 bpf_free_used_maps(aux);
541c3bad 2208 bpf_free_used_btfs(aux);
ab3f0063
JK
2209 if (bpf_prog_is_dev_bound(aux))
2210 bpf_prog_offload_destroy(aux->prog);
c195651e
YS
2211#ifdef CONFIG_PERF_EVENTS
2212 if (aux->prog->has_callchain_buf)
2213 put_callchain_buffers();
2214#endif
3aac1ead
THJ
2215 if (aux->dst_trampoline)
2216 bpf_trampoline_put(aux->dst_trampoline);
1c2a088a
AS
2217 for (i = 0; i < aux->func_cnt; i++)
2218 bpf_jit_free(aux->func[i]);
2219 if (aux->func_cnt) {
2220 kfree(aux->func);
2221 bpf_prog_unlock_free(aux->prog);
2222 } else {
2223 bpf_jit_free(aux->prog);
2224 }
60a3b225
DB
2225}
2226
2227/* Free internal BPF program */
7ae457c1 2228void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2229{
09756af4 2230 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2231
3aac1ead
THJ
2232 if (aux->dst_prog)
2233 bpf_prog_put(aux->dst_prog);
09756af4 2234 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2235 schedule_work(&aux->work);
f5bffecd 2236}
7ae457c1 2237EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2238
3ad00405
DB
2239/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2240static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2241
2242void bpf_user_rnd_init_once(void)
2243{
2244 prandom_init_once(&bpf_user_rnd_state);
2245}
2246
f3694e00 2247BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2248{
2249 /* Should someone ever have the rather unwise idea to use some
2250 * of the registers passed into this function, then note that
2251 * this function is called from native eBPF and classic-to-eBPF
2252 * transformations. Register assignments from both sides are
2253 * different, f.e. classic always sets fn(ctx, A, X) here.
2254 */
2255 struct rnd_state *state;
2256 u32 res;
2257
2258 state = &get_cpu_var(bpf_user_rnd_state);
2259 res = prandom_u32_state(state);
b761fe22 2260 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2261
2262 return res;
2263}
2264
6890896b
SF
2265BPF_CALL_0(bpf_get_raw_cpu_id)
2266{
2267 return raw_smp_processor_id();
2268}
2269
3ba67dab
DB
2270/* Weak definitions of helper functions in case we don't have bpf syscall. */
2271const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2272const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2273const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2274const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2275const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2276const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
d83525ca
AS
2277const struct bpf_func_proto bpf_spin_lock_proto __weak;
2278const struct bpf_func_proto bpf_spin_unlock_proto __weak;
5576b991 2279const struct bpf_func_proto bpf_jiffies64_proto __weak;
3ba67dab 2280
03e69b50 2281const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2282const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2283const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2284const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
71d19214 2285const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
d0551261 2286const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
bd570ff9 2287
ffeedafb
AS
2288const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2289const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2290const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2291const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
0f09abd1 2292const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
cd339431 2293const struct bpf_func_proto bpf_get_local_storage_proto __weak;
b4490c5c 2294const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
c4d0bfb4 2295const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
eb411377 2296const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
bd570ff9 2297
0756ea3e
AS
2298const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2299{
2300 return NULL;
2301}
03e69b50 2302
555c8a86
DB
2303u64 __weak
2304bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2305 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2306{
555c8a86 2307 return -ENOTSUPP;
bd570ff9 2308}
6cb5fb38 2309EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2310
3324b584
DB
2311/* Always built-in helper functions. */
2312const struct bpf_func_proto bpf_tail_call_proto = {
2313 .func = NULL,
2314 .gpl_only = false,
2315 .ret_type = RET_VOID,
2316 .arg1_type = ARG_PTR_TO_CTX,
2317 .arg2_type = ARG_CONST_MAP_PTR,
2318 .arg3_type = ARG_ANYTHING,
2319};
2320
9383191d
DB
2321/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2322 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2323 * eBPF and implicitly also cBPF can get JITed!
2324 */
d1c55ab5 2325struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2326{
d1c55ab5 2327 return prog;
3324b584
DB
2328}
2329
9383191d
DB
2330/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2331 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2332 */
2333void __weak bpf_jit_compile(struct bpf_prog *prog)
2334{
2335}
2336
17bedab2 2337bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2338{
2339 return false;
2340}
2341
a4b1d3c1
JW
2342/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2343 * analysis code and wants explicit zero extension inserted by verifier.
2344 * Otherwise, return FALSE.
2345 */
2346bool __weak bpf_jit_needs_zext(void)
2347{
2348 return false;
2349}
2350
f89b7755
AS
2351/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2352 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2353 */
2354int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2355 int len)
2356{
2357 return -EFAULT;
2358}
a67edbf4 2359
5964b200
AS
2360int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2361 void *addr1, void *addr2)
2362{
2363 return -ENOTSUPP;
2364}
2365
492ecee8
AS
2366DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2367EXPORT_SYMBOL(bpf_stats_enabled_key);
492ecee8 2368
a67edbf4
DB
2369/* All definitions of tracepoints related to BPF. */
2370#define CREATE_TRACE_POINTS
2371#include <linux/bpf_trace.h>
2372
2373EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
e7d47989 2374EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);