Merge tag 'i2c-for-6.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / kernel / bpf / core.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
f5bffecd
AS
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
f5bffecd 16 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 18 */
738cbe72 19
838e9690 20#include <uapi/linux/btf.h>
f5bffecd
AS
21#include <linux/filter.h>
22#include <linux/skbuff.h>
60a3b225 23#include <linux/vmalloc.h>
738cbe72
DB
24#include <linux/random.h>
25#include <linux/moduleloader.h>
09756af4 26#include <linux/bpf.h>
838e9690 27#include <linux/btf.h>
00089c04 28#include <linux/objtool.h>
74451e66
DB
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
c195651e 32#include <linux/perf_event.h>
3dec541b 33#include <linux/extable.h>
b7b3fc8d 34#include <linux/log2.h>
2357672c 35#include <linux/bpf_verifier.h>
ef078600 36#include <linux/nodemask.h>
f3dd0c53 37#include <linux/nospec.h>
958cf2e2 38#include <linux/bpf_mem_alloc.h>
bf396508 39#include <linux/memcontrol.h>
f5e81d11
DB
40
41#include <asm/barrier.h>
3324b584
DB
42#include <asm/unaligned.h>
43
f5bffecd
AS
44/* Registers */
45#define BPF_R0 regs[BPF_REG_0]
46#define BPF_R1 regs[BPF_REG_1]
47#define BPF_R2 regs[BPF_REG_2]
48#define BPF_R3 regs[BPF_REG_3]
49#define BPF_R4 regs[BPF_REG_4]
50#define BPF_R5 regs[BPF_REG_5]
51#define BPF_R6 regs[BPF_REG_6]
52#define BPF_R7 regs[BPF_REG_7]
53#define BPF_R8 regs[BPF_REG_8]
54#define BPF_R9 regs[BPF_REG_9]
55#define BPF_R10 regs[BPF_REG_10]
56
57/* Named registers */
58#define DST regs[insn->dst_reg]
59#define SRC regs[insn->src_reg]
60#define FP regs[BPF_REG_FP]
144cd91c 61#define AX regs[BPF_REG_AX]
f5bffecd
AS
62#define ARG1 regs[BPF_REG_ARG1]
63#define CTX regs[BPF_REG_CTX]
64#define IMM insn->imm
65
958cf2e2
KKD
66struct bpf_mem_alloc bpf_global_ma;
67bool bpf_global_ma_set;
68
f5bffecd
AS
69/* No hurry in this branch
70 *
71 * Exported for the bpf jit load helper.
72 */
73void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
74{
75 u8 *ptr = NULL;
76
0326195f 77 if (k >= SKF_NET_OFF) {
f5bffecd 78 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
0326195f
ED
79 } else if (k >= SKF_LL_OFF) {
80 if (unlikely(!skb_mac_header_was_set(skb)))
81 return NULL;
f5bffecd 82 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
0326195f 83 }
f5bffecd
AS
84 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
85 return ptr;
86
87 return NULL;
88}
89
492ecee8 90struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
60a3b225 91{
bf396508 92 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
09756af4 93 struct bpf_prog_aux *aux;
60a3b225
DB
94 struct bpf_prog *fp;
95
96 size = round_up(size, PAGE_SIZE);
88dca4ca 97 fp = __vmalloc(size, gfp_flags);
60a3b225
DB
98 if (fp == NULL)
99 return NULL;
100
bf396508 101 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
09756af4 102 if (aux == NULL) {
60a3b225
DB
103 vfree(fp);
104 return NULL;
105 }
bf396508 106 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
ca06f55b
AS
107 if (!fp->active) {
108 vfree(fp);
109 kfree(aux);
110 return NULL;
111 }
60a3b225
DB
112
113 fp->pages = size / PAGE_SIZE;
09756af4 114 fp->aux = aux;
e9d8afa9 115 fp->aux->prog = fp;
60b58afc 116 fp->jit_requested = ebpf_jit_enabled();
d2a3b7c5 117 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
c0e19f2c
SF
118#ifdef CONFIG_CGROUP_BPF
119 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
120#endif
60a3b225 121
ecb60d1c 122 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
984fe94f 123 mutex_init(&fp->aux->used_maps_mutex);
3aac1ead 124 mutex_init(&fp->aux->dst_mutex);
74451e66 125
60a3b225
DB
126 return fp;
127}
492ecee8
AS
128
129struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
130{
bf396508 131 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
492ecee8 132 struct bpf_prog *prog;
4b911304 133 int cpu;
492ecee8
AS
134
135 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
136 if (!prog)
137 return NULL;
138
700d4796
AS
139 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
140 if (!prog->stats) {
ca06f55b 141 free_percpu(prog->active);
492ecee8
AS
142 kfree(prog->aux);
143 vfree(prog);
144 return NULL;
145 }
146
4b911304
ED
147 for_each_possible_cpu(cpu) {
148 struct bpf_prog_stats *pstats;
149
700d4796 150 pstats = per_cpu_ptr(prog->stats, cpu);
4b911304
ED
151 u64_stats_init(&pstats->syncp);
152 }
492ecee8
AS
153 return prog;
154}
60a3b225
DB
155EXPORT_SYMBOL_GPL(bpf_prog_alloc);
156
c454a46b
MKL
157int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
158{
159 if (!prog->aux->nr_linfo || !prog->jit_requested)
160 return 0;
161
e16301fb
MKL
162 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
163 sizeof(*prog->aux->jited_linfo),
bf396508 164 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
c454a46b
MKL
165 if (!prog->aux->jited_linfo)
166 return -ENOMEM;
167
168 return 0;
169}
170
e16301fb 171void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
c454a46b 172{
e16301fb
MKL
173 if (prog->aux->jited_linfo &&
174 (!prog->jited || !prog->aux->jited_linfo[0])) {
175 kvfree(prog->aux->jited_linfo);
176 prog->aux->jited_linfo = NULL;
177 }
e6ac2450
MKL
178
179 kfree(prog->aux->kfunc_tab);
180 prog->aux->kfunc_tab = NULL;
c454a46b
MKL
181}
182
183/* The jit engine is responsible to provide an array
184 * for insn_off to the jited_off mapping (insn_to_jit_off).
185 *
186 * The idx to this array is the insn_off. Hence, the insn_off
187 * here is relative to the prog itself instead of the main prog.
188 * This array has one entry for each xlated bpf insn.
189 *
cc168554 190 * jited_off is the byte off to the end of the jited insn.
c454a46b
MKL
191 *
192 * Hence, with
193 * insn_start:
194 * The first bpf insn off of the prog. The insn off
195 * here is relative to the main prog.
196 * e.g. if prog is a subprog, insn_start > 0
197 * linfo_idx:
198 * The prog's idx to prog->aux->linfo and jited_linfo
199 *
200 * jited_linfo[linfo_idx] = prog->bpf_func
201 *
202 * For i > linfo_idx,
203 *
204 * jited_linfo[i] = prog->bpf_func +
205 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
206 */
207void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
208 const u32 *insn_to_jit_off)
209{
210 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
211 const struct bpf_line_info *linfo;
212 void **jited_linfo;
213
214 if (!prog->aux->jited_linfo)
215 /* Userspace did not provide linfo */
216 return;
217
218 linfo_idx = prog->aux->linfo_idx;
219 linfo = &prog->aux->linfo[linfo_idx];
220 insn_start = linfo[0].insn_off;
221 insn_end = insn_start + prog->len;
222
223 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
224 jited_linfo[0] = prog->bpf_func;
225
226 nr_linfo = prog->aux->nr_linfo - linfo_idx;
227
228 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
229 /* The verifier ensures that linfo[i].insn_off is
230 * strictly increasing
231 */
232 jited_linfo[i] = prog->bpf_func +
233 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
234}
235
60a3b225
DB
236struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
237 gfp_t gfp_extra_flags)
238{
bf396508 239 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
60a3b225 240 struct bpf_prog *fp;
3ac1f01b 241 u32 pages;
60a3b225 242
60a3b225 243 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
244 pages = size / PAGE_SIZE;
245 if (pages <= fp_old->pages)
60a3b225
DB
246 return fp_old;
247
88dca4ca 248 fp = __vmalloc(size, gfp_flags);
3ac1f01b 249 if (fp) {
60a3b225 250 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 251 fp->pages = pages;
e9d8afa9 252 fp->aux->prog = fp;
60a3b225 253
09756af4 254 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
255 * reallocated structure.
256 */
09756af4 257 fp_old->aux = NULL;
1336c662
AS
258 fp_old->stats = NULL;
259 fp_old->active = NULL;
60a3b225
DB
260 __bpf_prog_free(fp_old);
261 }
262
263 return fp;
264}
60a3b225
DB
265
266void __bpf_prog_free(struct bpf_prog *fp)
267{
492ecee8 268 if (fp->aux) {
984fe94f 269 mutex_destroy(&fp->aux->used_maps_mutex);
3aac1ead 270 mutex_destroy(&fp->aux->dst_mutex);
a66886fe 271 kfree(fp->aux->poke_tab);
492ecee8
AS
272 kfree(fp->aux);
273 }
700d4796 274 free_percpu(fp->stats);
ca06f55b 275 free_percpu(fp->active);
60a3b225
DB
276 vfree(fp);
277}
60a3b225 278
f1f7714e 279int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3 280{
6b0b0fa2 281 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
f1f7714e 282 u32 raw_size = bpf_prog_tag_scratch_size(fp);
6b0b0fa2
EB
283 u32 digest[SHA1_DIGEST_WORDS];
284 u32 ws[SHA1_WORKSPACE_WORDS];
7bd509e3 285 u32 i, bsize, psize, blocks;
aafe6ae9 286 struct bpf_insn *dst;
7bd509e3 287 bool was_ld_map;
aafe6ae9 288 u8 *raw, *todo;
7bd509e3
DB
289 __be32 *result;
290 __be64 *bits;
291
aafe6ae9
DB
292 raw = vmalloc(raw_size);
293 if (!raw)
294 return -ENOMEM;
295
6b0b0fa2 296 sha1_init(digest);
7bd509e3
DB
297 memset(ws, 0, sizeof(ws));
298
299 /* We need to take out the map fd for the digest calculation
300 * since they are unstable from user space side.
301 */
aafe6ae9 302 dst = (void *)raw;
7bd509e3
DB
303 for (i = 0, was_ld_map = false; i < fp->len; i++) {
304 dst[i] = fp->insnsi[i];
305 if (!was_ld_map &&
306 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
d8eca5bb
DB
307 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
308 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
7bd509e3
DB
309 was_ld_map = true;
310 dst[i].imm = 0;
311 } else if (was_ld_map &&
312 dst[i].code == 0 &&
313 dst[i].dst_reg == 0 &&
314 dst[i].src_reg == 0 &&
315 dst[i].off == 0) {
316 was_ld_map = false;
317 dst[i].imm = 0;
318 } else {
319 was_ld_map = false;
320 }
321 }
322
aafe6ae9
DB
323 psize = bpf_prog_insn_size(fp);
324 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
325 raw[psize++] = 0x80;
326
6b0b0fa2
EB
327 bsize = round_up(psize, SHA1_BLOCK_SIZE);
328 blocks = bsize / SHA1_BLOCK_SIZE;
aafe6ae9 329 todo = raw;
7bd509e3
DB
330 if (bsize - psize >= sizeof(__be64)) {
331 bits = (__be64 *)(todo + bsize - sizeof(__be64));
332 } else {
333 bits = (__be64 *)(todo + bsize + bits_offset);
334 blocks++;
335 }
336 *bits = cpu_to_be64((psize - 1) << 3);
337
338 while (blocks--) {
6b0b0fa2
EB
339 sha1_transform(digest, todo, ws);
340 todo += SHA1_BLOCK_SIZE;
7bd509e3
DB
341 }
342
f1f7714e 343 result = (__force __be32 *)digest;
6b0b0fa2 344 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
f1f7714e
DB
345 result[i] = cpu_to_be32(digest[i]);
346 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
347
348 vfree(raw);
349 return 0;
7bd509e3
DB
350}
351
2cbd95a5 352static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 353 s32 end_new, s32 curr, const bool probe_pass)
c237ee5e 354{
050fad7c 355 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 356 s32 delta = end_new - end_old;
050fad7c
DB
357 s64 imm = insn->imm;
358
2cbd95a5 359 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 360 imm += delta;
2cbd95a5 361 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
362 imm -= delta;
363 if (imm < imm_min || imm > imm_max)
364 return -ERANGE;
365 if (!probe_pass)
366 insn->imm = imm;
367 return 0;
368}
369
2cbd95a5 370static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 371 s32 end_new, s32 curr, const bool probe_pass)
050fad7c
DB
372{
373 const s32 off_min = S16_MIN, off_max = S16_MAX;
2cbd95a5 374 s32 delta = end_new - end_old;
050fad7c
DB
375 s32 off = insn->off;
376
2cbd95a5 377 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 378 off += delta;
2cbd95a5 379 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
380 off -= delta;
381 if (off < off_min || off > off_max)
382 return -ERANGE;
383 if (!probe_pass)
384 insn->off = off;
385 return 0;
386}
387
2cbd95a5
JK
388static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
389 s32 end_new, const bool probe_pass)
050fad7c 390{
2cbd95a5 391 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 392 struct bpf_insn *insn = prog->insnsi;
050fad7c 393 int ret = 0;
c237ee5e
DB
394
395 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
396 u8 code;
397
398 /* In the probing pass we still operate on the original,
399 * unpatched image in order to check overflows before we
400 * do any other adjustments. Therefore skip the patchlet.
401 */
402 if (probe_pass && i == pos) {
2cbd95a5
JK
403 i = end_new;
404 insn = prog->insnsi + end_old;
050fad7c 405 }
3990ed4c
MKL
406 if (bpf_pseudo_func(insn)) {
407 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
408 end_new, i, probe_pass);
409 if (ret)
410 return ret;
411 continue;
412 }
1ea47e01 413 code = insn->code;
092ed096
JW
414 if ((BPF_CLASS(code) != BPF_JMP &&
415 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 416 BPF_OP(code) == BPF_EXIT)
1ea47e01 417 continue;
050fad7c 418 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 419 if (BPF_OP(code) == BPF_CALL) {
050fad7c 420 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 421 continue;
2cbd95a5
JK
422 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
423 end_new, i, probe_pass);
1ea47e01 424 } else {
2cbd95a5
JK
425 ret = bpf_adj_delta_to_off(insn, pos, end_old,
426 end_new, i, probe_pass);
1ea47e01 427 }
050fad7c
DB
428 if (ret)
429 break;
c237ee5e 430 }
050fad7c
DB
431
432 return ret;
c237ee5e
DB
433}
434
c454a46b
MKL
435static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
436{
437 struct bpf_line_info *linfo;
438 u32 i, nr_linfo;
439
440 nr_linfo = prog->aux->nr_linfo;
441 if (!nr_linfo || !delta)
442 return;
443
444 linfo = prog->aux->linfo;
445
446 for (i = 0; i < nr_linfo; i++)
447 if (off < linfo[i].insn_off)
448 break;
449
450 /* Push all off < linfo[i].insn_off by delta */
451 for (; i < nr_linfo; i++)
452 linfo[i].insn_off += delta;
453}
454
c237ee5e
DB
455struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
456 const struct bpf_insn *patch, u32 len)
457{
458 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 459 const u32 cnt_max = S16_MAX;
c237ee5e 460 struct bpf_prog *prog_adj;
4f73379e 461 int err;
c237ee5e
DB
462
463 /* Since our patchlet doesn't expand the image, we're done. */
464 if (insn_delta == 0) {
465 memcpy(prog->insnsi + off, patch, sizeof(*patch));
466 return prog;
467 }
468
469 insn_adj_cnt = prog->len + insn_delta;
470
050fad7c
DB
471 /* Reject anything that would potentially let the insn->off
472 * target overflow when we have excessive program expansions.
473 * We need to probe here before we do any reallocation where
474 * we afterwards may not fail anymore.
475 */
476 if (insn_adj_cnt > cnt_max &&
4f73379e
AS
477 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
478 return ERR_PTR(err);
050fad7c 479
c237ee5e
DB
480 /* Several new instructions need to be inserted. Make room
481 * for them. Likely, there's no need for a new allocation as
482 * last page could have large enough tailroom.
483 */
484 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
485 GFP_USER);
486 if (!prog_adj)
4f73379e 487 return ERR_PTR(-ENOMEM);
c237ee5e
DB
488
489 prog_adj->len = insn_adj_cnt;
490
491 /* Patching happens in 3 steps:
492 *
493 * 1) Move over tail of insnsi from next instruction onwards,
494 * so we can patch the single target insn with one or more
495 * new ones (patching is always from 1 to n insns, n > 0).
496 * 2) Inject new instructions at the target location.
497 * 3) Adjust branch offsets if necessary.
498 */
499 insn_rest = insn_adj_cnt - off - len;
500
501 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
502 sizeof(*patch) * insn_rest);
503 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
504
050fad7c
DB
505 /* We are guaranteed to not fail at this point, otherwise
506 * the ship has sailed to reverse to the original state. An
507 * overflow cannot happen at this point.
508 */
2cbd95a5 509 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 510
c454a46b
MKL
511 bpf_adj_linfo(prog_adj, off, insn_delta);
512
c237ee5e
DB
513 return prog_adj;
514}
515
52875a04
JK
516int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
517{
518 /* Branch offsets can't overflow when program is shrinking, no need
519 * to call bpf_adj_branches(..., true) here
520 */
521 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
522 sizeof(struct bpf_insn) * (prog->len - off - cnt));
523 prog->len -= cnt;
524
525 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
526}
527
cd7455f1 528static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
7d1982b4
DB
529{
530 int i;
531
532 for (i = 0; i < fp->aux->func_cnt; i++)
533 bpf_prog_kallsyms_del(fp->aux->func[i]);
534}
535
536void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
537{
538 bpf_prog_kallsyms_del_subprogs(fp);
539 bpf_prog_kallsyms_del(fp);
540}
541
b954d834 542#ifdef CONFIG_BPF_JIT
fa9dd599 543/* All BPF JIT sysctl knobs here. */
81c22041
DB
544int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
545int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
fa9dd599 546int bpf_jit_harden __read_mostly;
fdadd049 547long bpf_jit_limit __read_mostly;
fadb7ff1 548long bpf_jit_limit_max __read_mostly;
fa9dd599 549
535911c8
JO
550static void
551bpf_prog_ksym_set_addr(struct bpf_prog *prog)
74451e66 552{
74451e66
DB
553 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
554
535911c8 555 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
d00c6473 556 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
74451e66
DB
557}
558
bfea9a85
JO
559static void
560bpf_prog_ksym_set_name(struct bpf_prog *prog)
74451e66 561{
bfea9a85 562 char *sym = prog->aux->ksym.name;
368211fb 563 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
564 const struct btf_type *type;
565 const char *func_name;
368211fb 566
74451e66 567 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
568 sizeof(prog->tag) * 2 +
569 /* name has been null terminated.
570 * We should need +1 for the '_' preceding
571 * the name. However, the null character
572 * is double counted between the name and the
573 * sizeof("bpf_prog_") above, so we omit
574 * the +1 here.
575 */
576 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
577
578 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
579 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
580
581 /* prog->aux->name will be ignored if full btf name is available */
7337224f 582 if (prog->aux->func_info_cnt) {
ba64e7d8
YS
583 type = btf_type_by_id(prog->aux->btf,
584 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
585 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
586 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
587 return;
588 }
589
368211fb
MKL
590 if (prog->aux->name[0])
591 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
592 else
593 *sym = 0;
74451e66
DB
594}
595
ca4424c9 596static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
74451e66 597{
ca4424c9 598 return container_of(n, struct bpf_ksym, tnode)->start;
74451e66
DB
599}
600
601static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
602 struct latch_tree_node *b)
603{
ca4424c9 604 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
74451e66
DB
605}
606
607static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
608{
609 unsigned long val = (unsigned long)key;
ca4424c9 610 const struct bpf_ksym *ksym;
74451e66 611
ca4424c9 612 ksym = container_of(n, struct bpf_ksym, tnode);
74451e66 613
ca4424c9 614 if (val < ksym->start)
74451e66 615 return -1;
ca4424c9 616 if (val >= ksym->end)
74451e66
DB
617 return 1;
618
619 return 0;
620}
621
622static const struct latch_tree_ops bpf_tree_ops = {
623 .less = bpf_tree_less,
624 .comp = bpf_tree_comp,
625};
626
627static DEFINE_SPINLOCK(bpf_lock);
628static LIST_HEAD(bpf_kallsyms);
629static struct latch_tree_root bpf_tree __cacheline_aligned;
630
dba122fb 631void bpf_ksym_add(struct bpf_ksym *ksym)
74451e66 632{
dba122fb
JO
633 spin_lock_bh(&bpf_lock);
634 WARN_ON_ONCE(!list_empty(&ksym->lnode));
635 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
636 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
637 spin_unlock_bh(&bpf_lock);
74451e66
DB
638}
639
dba122fb 640static void __bpf_ksym_del(struct bpf_ksym *ksym)
74451e66 641{
dba122fb 642 if (list_empty(&ksym->lnode))
74451e66
DB
643 return;
644
dba122fb
JO
645 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
646 list_del_rcu(&ksym->lnode);
647}
648
649void bpf_ksym_del(struct bpf_ksym *ksym)
650{
651 spin_lock_bh(&bpf_lock);
652 __bpf_ksym_del(ksym);
653 spin_unlock_bh(&bpf_lock);
74451e66
DB
654}
655
656static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
657{
658 return fp->jited && !bpf_prog_was_classic(fp);
659}
660
74451e66
DB
661void bpf_prog_kallsyms_add(struct bpf_prog *fp)
662{
74451e66 663 if (!bpf_prog_kallsyms_candidate(fp) ||
2c78ee89 664 !bpf_capable())
74451e66
DB
665 return;
666
535911c8 667 bpf_prog_ksym_set_addr(fp);
bfea9a85 668 bpf_prog_ksym_set_name(fp);
cbd76f8d 669 fp->aux->ksym.prog = true;
535911c8 670
dba122fb 671 bpf_ksym_add(&fp->aux->ksym);
74451e66
DB
672}
673
674void bpf_prog_kallsyms_del(struct bpf_prog *fp)
675{
74451e66
DB
676 if (!bpf_prog_kallsyms_candidate(fp))
677 return;
678
dba122fb 679 bpf_ksym_del(&fp->aux->ksym);
74451e66
DB
680}
681
eda0c929
JO
682static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
683{
684 struct latch_tree_node *n;
685
686 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
687 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
688}
689
74451e66
DB
690const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
691 unsigned long *off, char *sym)
692{
eda0c929 693 struct bpf_ksym *ksym;
74451e66
DB
694 char *ret = NULL;
695
696 rcu_read_lock();
eda0c929
JO
697 ksym = bpf_ksym_find(addr);
698 if (ksym) {
699 unsigned long symbol_start = ksym->start;
700 unsigned long symbol_end = ksym->end;
535911c8 701
eda0c929 702 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66
DB
703
704 ret = sym;
705 if (size)
706 *size = symbol_end - symbol_start;
707 if (off)
708 *off = addr - symbol_start;
709 }
710 rcu_read_unlock();
711
712 return ret;
713}
714
715bool is_bpf_text_address(unsigned long addr)
716{
717 bool ret;
718
719 rcu_read_lock();
eda0c929 720 ret = bpf_ksym_find(addr) != NULL;
74451e66
DB
721 rcu_read_unlock();
722
723 return ret;
724}
725
cbd76f8d
JO
726static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
727{
728 struct bpf_ksym *ksym = bpf_ksym_find(addr);
729
730 return ksym && ksym->prog ?
731 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
732 NULL;
733}
734
3dec541b
AS
735const struct exception_table_entry *search_bpf_extables(unsigned long addr)
736{
737 const struct exception_table_entry *e = NULL;
738 struct bpf_prog *prog;
739
740 rcu_read_lock();
cbd76f8d 741 prog = bpf_prog_ksym_find(addr);
3dec541b
AS
742 if (!prog)
743 goto out;
744 if (!prog->aux->num_exentries)
745 goto out;
746
747 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
748out:
749 rcu_read_unlock();
750 return e;
751}
752
74451e66
DB
753int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
754 char *sym)
755{
ecb60d1c 756 struct bpf_ksym *ksym;
74451e66
DB
757 unsigned int it = 0;
758 int ret = -ERANGE;
759
760 if (!bpf_jit_kallsyms_enabled())
761 return ret;
762
763 rcu_read_lock();
ecb60d1c 764 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
74451e66
DB
765 if (it++ != symnum)
766 continue;
767
ecb60d1c 768 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66 769
ecb60d1c 770 *value = ksym->start;
74451e66
DB
771 *type = BPF_SYM_ELF_TYPE;
772
773 ret = 0;
774 break;
775 }
776 rcu_read_unlock();
777
778 return ret;
779}
780
a66886fe
DB
781int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
782 struct bpf_jit_poke_descriptor *poke)
783{
784 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
785 static const u32 poke_tab_max = 1024;
786 u32 slot = prog->aux->size_poke_tab;
787 u32 size = slot + 1;
788
789 if (size > poke_tab_max)
790 return -ENOSPC;
cf71b174 791 if (poke->tailcall_target || poke->tailcall_target_stable ||
ebf7d1f5 792 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
a66886fe
DB
793 return -EINVAL;
794
795 switch (poke->reason) {
796 case BPF_POKE_REASON_TAIL_CALL:
797 if (!poke->tail_call.map)
798 return -EINVAL;
799 break;
800 default:
801 return -EINVAL;
802 }
803
804 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
805 if (!tab)
806 return -ENOMEM;
807
808 memcpy(&tab[slot], poke, sizeof(*poke));
809 prog->aux->size_poke_tab = size;
810 prog->aux->poke_tab = tab;
811
812 return slot;
813}
814
57631054
SL
815/*
816 * BPF program pack allocator.
817 *
818 * Most BPF programs are pretty small. Allocating a hole page for each
819 * program is sometime a waste. Many small bpf program also adds pressure
820 * to instruction TLB. To solve this issue, we introduce a BPF program pack
821 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
822 * to host BPF programs.
823 */
57631054
SL
824#define BPF_PROG_CHUNK_SHIFT 6
825#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
826#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
57631054
SL
827
828struct bpf_prog_pack {
829 struct list_head list;
830 void *ptr;
4cc0991a 831 unsigned long bitmap[];
57631054
SL
832};
833
19c02415
SL
834void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
835{
836 memset(area, 0, size);
837}
838
57631054
SL
839#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
840
841static DEFINE_MUTEX(pack_mutex);
842static LIST_HEAD(pack_list);
843
e5810941
SL
844/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
845 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
846 */
847#ifdef PMD_SIZE
ea2babac 848#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
e5810941 849#else
ea2babac 850#define BPF_PROG_PACK_SIZE PAGE_SIZE
e5810941
SL
851#endif
852
ea2babac 853#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
ef078600 854
d88bb5ee 855static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
57631054
SL
856{
857 struct bpf_prog_pack *pack;
858
ea2babac 859 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
ef078600 860 GFP_KERNEL);
57631054
SL
861 if (!pack)
862 return NULL;
ea2babac 863 pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
57631054
SL
864 if (!pack->ptr) {
865 kfree(pack);
866 return NULL;
867 }
ea2babac
SL
868 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
869 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
57631054
SL
870 list_add_tail(&pack->list, &pack_list);
871
872 set_vm_flush_reset_perms(pack->ptr);
d48567c9 873 set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
57631054
SL
874 return pack;
875}
876
19c02415 877void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
57631054
SL
878{
879 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
880 struct bpf_prog_pack *pack;
881 unsigned long pos;
882 void *ptr = NULL;
883
ef078600 884 mutex_lock(&pack_mutex);
ea2babac 885 if (size > BPF_PROG_PACK_SIZE) {
57631054
SL
886 size = round_up(size, PAGE_SIZE);
887 ptr = module_alloc(size);
888 if (ptr) {
d88bb5ee 889 bpf_fill_ill_insns(ptr, size);
57631054 890 set_vm_flush_reset_perms(ptr);
d48567c9 891 set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
57631054 892 }
ef078600 893 goto out;
57631054 894 }
57631054 895 list_for_each_entry(pack, &pack_list, list) {
ea2babac 896 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
57631054 897 nbits, 0);
ea2babac 898 if (pos < BPF_PROG_CHUNK_COUNT)
57631054
SL
899 goto found_free_area;
900 }
901
d88bb5ee 902 pack = alloc_new_pack(bpf_fill_ill_insns);
57631054
SL
903 if (!pack)
904 goto out;
905
906 pos = 0;
907
908found_free_area:
909 bitmap_set(pack->bitmap, pos, nbits);
910 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
911
912out:
913 mutex_unlock(&pack_mutex);
914 return ptr;
915}
916
19c02415 917void bpf_prog_pack_free(struct bpf_binary_header *hdr)
57631054
SL
918{
919 struct bpf_prog_pack *pack = NULL, *tmp;
920 unsigned int nbits;
921 unsigned long pos;
57631054 922
ef078600 923 mutex_lock(&pack_mutex);
ea2babac 924 if (hdr->size > BPF_PROG_PACK_SIZE) {
57631054 925 module_memfree(hdr);
ef078600 926 goto out;
57631054
SL
927 }
928
57631054 929 list_for_each_entry(tmp, &pack_list, list) {
ea2babac 930 if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
57631054
SL
931 pack = tmp;
932 break;
933 }
934 }
935
936 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
937 goto out;
938
939 nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
ea2babac 940 pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
57631054 941
fe736565
SL
942 WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
943 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
944
57631054 945 bitmap_clear(pack->bitmap, pos, nbits);
ea2babac
SL
946 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
947 BPF_PROG_CHUNK_COUNT, 0) == 0) {
57631054
SL
948 list_del(&pack->list);
949 module_memfree(pack->ptr);
950 kfree(pack);
951 }
952out:
953 mutex_unlock(&pack_mutex);
954}
955
ede95a63
DB
956static atomic_long_t bpf_jit_current;
957
fdadd049
DB
958/* Can be overridden by an arch's JIT compiler if it has a custom,
959 * dedicated BPF backend memory area, or if neither of the two
960 * below apply.
961 */
962u64 __weak bpf_jit_alloc_exec_limit(void)
963{
ede95a63 964#if defined(MODULES_VADDR)
fdadd049
DB
965 return MODULES_END - MODULES_VADDR;
966#else
967 return VMALLOC_END - VMALLOC_START;
968#endif
969}
970
ede95a63
DB
971static int __init bpf_jit_charge_init(void)
972{
973 /* Only used as heuristic here to derive limit. */
fadb7ff1 974 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
10ec8ca8 975 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
fdadd049 976 PAGE_SIZE), LONG_MAX);
ede95a63
DB
977 return 0;
978}
979pure_initcall(bpf_jit_charge_init);
ede95a63 980
3486bedd 981int bpf_jit_charge_modmem(u32 size)
ede95a63 982{
0947ae11 983 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
8a98ae12 984 if (!bpf_capable()) {
3486bedd 985 atomic_long_sub(size, &bpf_jit_current);
ede95a63
DB
986 return -EPERM;
987 }
988 }
989
990 return 0;
991}
992
3486bedd 993void bpf_jit_uncharge_modmem(u32 size)
ede95a63 994{
3486bedd 995 atomic_long_sub(size, &bpf_jit_current);
ede95a63
DB
996}
997
dc002bb6
AB
998void *__weak bpf_jit_alloc_exec(unsigned long size)
999{
1000 return module_alloc(size);
1001}
1002
1003void __weak bpf_jit_free_exec(void *addr)
1004{
1005 module_memfree(addr);
1006}
1007
738cbe72
DB
1008struct bpf_binary_header *
1009bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1010 unsigned int alignment,
1011 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1012{
1013 struct bpf_binary_header *hdr;
ed2d9e1a 1014 u32 size, hole, start;
738cbe72 1015
b7b3fc8d
IL
1016 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1017 alignment > BPF_IMAGE_ALIGNMENT);
1018
738cbe72
DB
1019 /* Most of BPF filters are really small, but if some of them
1020 * fill a page, allow at least 128 extra bytes to insert a
1021 * random section of illegal instructions.
1022 */
1023 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63 1024
3486bedd 1025 if (bpf_jit_charge_modmem(size))
ede95a63 1026 return NULL;
dc002bb6 1027 hdr = bpf_jit_alloc_exec(size);
ede95a63 1028 if (!hdr) {
3486bedd 1029 bpf_jit_uncharge_modmem(size);
738cbe72 1030 return NULL;
ede95a63 1031 }
738cbe72
DB
1032
1033 /* Fill space with illegal/arch-dep instructions. */
1034 bpf_fill_ill_insns(hdr, size);
1035
ed2d9e1a 1036 hdr->size = size;
738cbe72
DB
1037 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1038 PAGE_SIZE - sizeof(*hdr));
8032bf12 1039 start = get_random_u32_below(hole) & ~(alignment - 1);
738cbe72
DB
1040
1041 /* Leave a random number of instructions before BPF code. */
1042 *image_ptr = &hdr->image[start];
1043
1044 return hdr;
1045}
1046
1047void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1048{
ed2d9e1a 1049 u32 size = hdr->size;
ede95a63 1050
dc002bb6 1051 bpf_jit_free_exec(hdr);
ed2d9e1a 1052 bpf_jit_uncharge_modmem(size);
738cbe72 1053}
4f3446bb 1054
33c98058
SL
1055/* Allocate jit binary from bpf_prog_pack allocator.
1056 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1057 * to the memory. To solve this problem, a RW buffer is also allocated at
1058 * as the same time. The JIT engine should calculate offsets based on the
1059 * RO memory address, but write JITed program to the RW buffer. Once the
1060 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1061 * the JITed program to the RO memory.
1062 */
1063struct bpf_binary_header *
1064bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1065 unsigned int alignment,
1066 struct bpf_binary_header **rw_header,
1067 u8 **rw_image,
1068 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1069{
1070 struct bpf_binary_header *ro_header;
1071 u32 size, hole, start;
1072
1073 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1074 alignment > BPF_IMAGE_ALIGNMENT);
1075
1076 /* add 16 bytes for a random section of illegal instructions */
1077 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1078
1079 if (bpf_jit_charge_modmem(size))
1080 return NULL;
d88bb5ee 1081 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
33c98058
SL
1082 if (!ro_header) {
1083 bpf_jit_uncharge_modmem(size);
1084 return NULL;
1085 }
1086
1087 *rw_header = kvmalloc(size, GFP_KERNEL);
1088 if (!*rw_header) {
d24d2a2b 1089 bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
33c98058
SL
1090 bpf_prog_pack_free(ro_header);
1091 bpf_jit_uncharge_modmem(size);
1092 return NULL;
1093 }
1094
1095 /* Fill space with illegal/arch-dep instructions. */
1096 bpf_fill_ill_insns(*rw_header, size);
1097 (*rw_header)->size = size;
1098
1099 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1100 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
8032bf12 1101 start = get_random_u32_below(hole) & ~(alignment - 1);
33c98058
SL
1102
1103 *image_ptr = &ro_header->image[start];
1104 *rw_image = &(*rw_header)->image[start];
1105
1106 return ro_header;
1107}
1108
1109/* Copy JITed text from rw_header to its final location, the ro_header. */
1110int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1111 struct bpf_binary_header *ro_header,
1112 struct bpf_binary_header *rw_header)
1113{
1114 void *ptr;
1115
1116 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1117
1118 kvfree(rw_header);
1119
1120 if (IS_ERR(ptr)) {
1121 bpf_prog_pack_free(ro_header);
1122 return PTR_ERR(ptr);
1123 }
33c98058
SL
1124 return 0;
1125}
1126
1127/* bpf_jit_binary_pack_free is called in two different scenarios:
1128 * 1) when the program is freed after;
1129 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1130 * For case 2), we need to free both the RO memory and the RW buffer.
676b2daa
SL
1131 *
1132 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1133 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1134 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1135 * bpf_arch_text_copy (when jit fails).
33c98058
SL
1136 */
1137void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1138 struct bpf_binary_header *rw_header)
1139{
676b2daa 1140 u32 size = ro_header->size;
33c98058
SL
1141
1142 bpf_prog_pack_free(ro_header);
1143 kvfree(rw_header);
1144 bpf_jit_uncharge_modmem(size);
1145}
1146
1d5f82d9
SL
1147struct bpf_binary_header *
1148bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1149{
1150 unsigned long real_start = (unsigned long)fp->bpf_func;
1151 unsigned long addr;
1152
1153 addr = real_start & BPF_PROG_CHUNK_MASK;
1154 return (void *)addr;
1155}
1156
33c98058
SL
1157static inline struct bpf_binary_header *
1158bpf_jit_binary_hdr(const struct bpf_prog *fp)
1159{
1160 unsigned long real_start = (unsigned long)fp->bpf_func;
1161 unsigned long addr;
1162
1d5f82d9 1163 addr = real_start & PAGE_MASK;
33c98058
SL
1164 return (void *)addr;
1165}
1166
74451e66
DB
1167/* This symbol is only overridden by archs that have different
1168 * requirements than the usual eBPF JITs, f.e. when they only
1169 * implement cBPF JIT, do not set images read-only, etc.
1170 */
1171void __weak bpf_jit_free(struct bpf_prog *fp)
1172{
1173 if (fp->jited) {
1174 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1175
1d5f82d9 1176 bpf_jit_binary_free(hdr);
74451e66
DB
1177 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1178 }
1179
1180 bpf_prog_unlock_free(fp);
1181}
1182
e2c95a61
DB
1183int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1184 const struct bpf_insn *insn, bool extra_pass,
1185 u64 *func_addr, bool *func_addr_fixed)
1186{
1187 s16 off = insn->off;
1188 s32 imm = insn->imm;
1189 u8 *addr;
1cf3bfc6 1190 int err;
e2c95a61
DB
1191
1192 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1193 if (!*func_addr_fixed) {
1194 /* Place-holder address till the last pass has collected
1195 * all addresses for JITed subprograms in which case we
1196 * can pick them up from prog->aux.
1197 */
1198 if (!extra_pass)
1199 addr = NULL;
1200 else if (prog->aux->func &&
1201 off >= 0 && off < prog->aux->func_cnt)
1202 addr = (u8 *)prog->aux->func[off]->bpf_func;
1203 else
1204 return -EINVAL;
1cf3bfc6
IL
1205 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1206 bpf_jit_supports_far_kfunc_call()) {
1207 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1208 if (err)
1209 return err;
e2c95a61
DB
1210 } else {
1211 /* Address of a BPF helper call. Since part of the core
1212 * kernel, it's always at a fixed location. __bpf_call_base
1213 * and the helper with imm relative to it are both in core
1214 * kernel.
1215 */
1216 addr = (u8 *)__bpf_call_base + imm;
1217 }
1218
1219 *func_addr = (unsigned long)addr;
1220 return 0;
1221}
1222
4f3446bb
DB
1223static int bpf_jit_blind_insn(const struct bpf_insn *from,
1224 const struct bpf_insn *aux,
ede7c460
NR
1225 struct bpf_insn *to_buff,
1226 bool emit_zext)
4f3446bb
DB
1227{
1228 struct bpf_insn *to = to_buff;
a251c17a 1229 u32 imm_rnd = get_random_u32();
4f3446bb
DB
1230 s16 off;
1231
1232 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1233 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1234
9b73bfdd
DB
1235 /* Constraints on AX register:
1236 *
1237 * AX register is inaccessible from user space. It is mapped in
1238 * all JITs, and used here for constant blinding rewrites. It is
1239 * typically "stateless" meaning its contents are only valid within
1240 * the executed instruction, but not across several instructions.
1241 * There are a few exceptions however which are further detailed
1242 * below.
1243 *
1244 * Constant blinding is only used by JITs, not in the interpreter.
1245 * The interpreter uses AX in some occasions as a local temporary
1246 * register e.g. in DIV or MOD instructions.
1247 *
1248 * In restricted circumstances, the verifier can also use the AX
1249 * register for rewrites as long as they do not interfere with
1250 * the above cases!
1251 */
1252 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1253 goto out;
1254
4f3446bb
DB
1255 if (from->imm == 0 &&
1256 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1257 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1258 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1259 goto out;
1260 }
1261
1262 switch (from->code) {
1263 case BPF_ALU | BPF_ADD | BPF_K:
1264 case BPF_ALU | BPF_SUB | BPF_K:
1265 case BPF_ALU | BPF_AND | BPF_K:
1266 case BPF_ALU | BPF_OR | BPF_K:
1267 case BPF_ALU | BPF_XOR | BPF_K:
1268 case BPF_ALU | BPF_MUL | BPF_K:
1269 case BPF_ALU | BPF_MOV | BPF_K:
1270 case BPF_ALU | BPF_DIV | BPF_K:
1271 case BPF_ALU | BPF_MOD | BPF_K:
1272 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1273 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1274 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1275 break;
1276
1277 case BPF_ALU64 | BPF_ADD | BPF_K:
1278 case BPF_ALU64 | BPF_SUB | BPF_K:
1279 case BPF_ALU64 | BPF_AND | BPF_K:
1280 case BPF_ALU64 | BPF_OR | BPF_K:
1281 case BPF_ALU64 | BPF_XOR | BPF_K:
1282 case BPF_ALU64 | BPF_MUL | BPF_K:
1283 case BPF_ALU64 | BPF_MOV | BPF_K:
1284 case BPF_ALU64 | BPF_DIV | BPF_K:
1285 case BPF_ALU64 | BPF_MOD | BPF_K:
1286 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1287 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1288 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1289 break;
1290
1291 case BPF_JMP | BPF_JEQ | BPF_K:
1292 case BPF_JMP | BPF_JNE | BPF_K:
1293 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 1294 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 1295 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 1296 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 1297 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 1298 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 1299 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 1300 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
1301 case BPF_JMP | BPF_JSET | BPF_K:
1302 /* Accommodate for extra offset in case of a backjump. */
1303 off = from->off;
1304 if (off < 0)
1305 off -= 2;
1306 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1307 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1308 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1309 break;
1310
a7b76c88
JW
1311 case BPF_JMP32 | BPF_JEQ | BPF_K:
1312 case BPF_JMP32 | BPF_JNE | BPF_K:
1313 case BPF_JMP32 | BPF_JGT | BPF_K:
1314 case BPF_JMP32 | BPF_JLT | BPF_K:
1315 case BPF_JMP32 | BPF_JGE | BPF_K:
1316 case BPF_JMP32 | BPF_JLE | BPF_K:
1317 case BPF_JMP32 | BPF_JSGT | BPF_K:
1318 case BPF_JMP32 | BPF_JSLT | BPF_K:
1319 case BPF_JMP32 | BPF_JSGE | BPF_K:
1320 case BPF_JMP32 | BPF_JSLE | BPF_K:
1321 case BPF_JMP32 | BPF_JSET | BPF_K:
1322 /* Accommodate for extra offset in case of a backjump. */
1323 off = from->off;
1324 if (off < 0)
1325 off -= 2;
1326 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1327 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1328 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1329 off);
1330 break;
1331
4f3446bb
DB
1332 case BPF_LD | BPF_IMM | BPF_DW:
1333 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1334 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1335 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1336 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1337 break;
1338 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1339 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1340 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
ede7c460
NR
1341 if (emit_zext)
1342 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
4f3446bb
DB
1343 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1344 break;
1345
1346 case BPF_ST | BPF_MEM | BPF_DW:
1347 case BPF_ST | BPF_MEM | BPF_W:
1348 case BPF_ST | BPF_MEM | BPF_H:
1349 case BPF_ST | BPF_MEM | BPF_B:
1350 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1351 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1352 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1353 break;
1354 }
1355out:
1356 return to - to_buff;
1357}
1358
1359static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1360 gfp_t gfp_extra_flags)
1361{
19809c2d 1362 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
1363 struct bpf_prog *fp;
1364
88dca4ca 1365 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
4f3446bb 1366 if (fp != NULL) {
4f3446bb
DB
1367 /* aux->prog still points to the fp_other one, so
1368 * when promoting the clone to the real program,
1369 * this still needs to be adapted.
1370 */
1371 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1372 }
1373
1374 return fp;
1375}
1376
1377static void bpf_prog_clone_free(struct bpf_prog *fp)
1378{
1379 /* aux was stolen by the other clone, so we cannot free
1380 * it from this path! It will be freed eventually by the
1381 * other program on release.
1382 *
1383 * At this point, we don't need a deferred release since
1384 * clone is guaranteed to not be locked.
1385 */
1386 fp->aux = NULL;
53f523f3
CW
1387 fp->stats = NULL;
1388 fp->active = NULL;
4f3446bb
DB
1389 __bpf_prog_free(fp);
1390}
1391
1392void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1393{
1394 /* We have to repoint aux->prog to self, as we don't
1395 * know whether fp here is the clone or the original.
1396 */
1397 fp->aux->prog = fp;
1398 bpf_prog_clone_free(fp_other);
1399}
1400
1401struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1402{
1403 struct bpf_insn insn_buff[16], aux[2];
1404 struct bpf_prog *clone, *tmp;
1405 int insn_delta, insn_cnt;
1406 struct bpf_insn *insn;
1407 int i, rewritten;
1408
d2a3b7c5 1409 if (!prog->blinding_requested || prog->blinded)
4f3446bb
DB
1410 return prog;
1411
1412 clone = bpf_prog_clone_create(prog, GFP_USER);
1413 if (!clone)
1414 return ERR_PTR(-ENOMEM);
1415
1416 insn_cnt = clone->len;
1417 insn = clone->insnsi;
1418
1419 for (i = 0; i < insn_cnt; i++, insn++) {
4b6313cf
AS
1420 if (bpf_pseudo_func(insn)) {
1421 /* ld_imm64 with an address of bpf subprog is not
1422 * a user controlled constant. Don't randomize it,
1423 * since it will conflict with jit_subprogs() logic.
1424 */
1425 insn++;
1426 i++;
1427 continue;
1428 }
1429
4f3446bb
DB
1430 /* We temporarily need to hold the original ld64 insn
1431 * so that we can still access the first part in the
1432 * second blinding run.
1433 */
1434 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1435 insn[1].code == 0)
1436 memcpy(aux, insn, sizeof(aux));
1437
ede7c460
NR
1438 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1439 clone->aux->verifier_zext);
4f3446bb
DB
1440 if (!rewritten)
1441 continue;
1442
1443 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
4f73379e 1444 if (IS_ERR(tmp)) {
4f3446bb
DB
1445 /* Patching may have repointed aux->prog during
1446 * realloc from the original one, so we need to
1447 * fix it up here on error.
1448 */
1449 bpf_jit_prog_release_other(prog, clone);
4f73379e 1450 return tmp;
4f3446bb
DB
1451 }
1452
1453 clone = tmp;
1454 insn_delta = rewritten - 1;
1455
1456 /* Walk new program and skip insns we just inserted. */
1457 insn = clone->insnsi + i + insn_delta;
1458 insn_cnt += insn_delta;
1459 i += insn_delta;
1460 }
1461
1c2a088a 1462 clone->blinded = 1;
4f3446bb
DB
1463 return clone;
1464}
b954d834 1465#endif /* CONFIG_BPF_JIT */
738cbe72 1466
f5bffecd
AS
1467/* Base function for offset calculation. Needs to go into .text section,
1468 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1469 * anyway later on, so do not let the compiler omit it. This also needs
1470 * to go into kallsyms for correlation from e.g. bpftool, so naming
1471 * must not change.
f5bffecd
AS
1472 */
1473noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1474{
1475 return 0;
1476}
4d9c5c53 1477EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1478
5e581dad
DB
1479/* All UAPI available opcodes. */
1480#define BPF_INSN_MAP(INSN_2, INSN_3) \
1481 /* 32 bit ALU operations. */ \
1482 /* Register based. */ \
2dc6b100
JW
1483 INSN_3(ALU, ADD, X), \
1484 INSN_3(ALU, SUB, X), \
1485 INSN_3(ALU, AND, X), \
1486 INSN_3(ALU, OR, X), \
1487 INSN_3(ALU, LSH, X), \
1488 INSN_3(ALU, RSH, X), \
1489 INSN_3(ALU, XOR, X), \
1490 INSN_3(ALU, MUL, X), \
1491 INSN_3(ALU, MOV, X), \
1492 INSN_3(ALU, ARSH, X), \
1493 INSN_3(ALU, DIV, X), \
1494 INSN_3(ALU, MOD, X), \
5e581dad
DB
1495 INSN_2(ALU, NEG), \
1496 INSN_3(ALU, END, TO_BE), \
1497 INSN_3(ALU, END, TO_LE), \
1498 /* Immediate based. */ \
2dc6b100
JW
1499 INSN_3(ALU, ADD, K), \
1500 INSN_3(ALU, SUB, K), \
1501 INSN_3(ALU, AND, K), \
1502 INSN_3(ALU, OR, K), \
1503 INSN_3(ALU, LSH, K), \
1504 INSN_3(ALU, RSH, K), \
1505 INSN_3(ALU, XOR, K), \
1506 INSN_3(ALU, MUL, K), \
1507 INSN_3(ALU, MOV, K), \
1508 INSN_3(ALU, ARSH, K), \
1509 INSN_3(ALU, DIV, K), \
1510 INSN_3(ALU, MOD, K), \
5e581dad
DB
1511 /* 64 bit ALU operations. */ \
1512 /* Register based. */ \
1513 INSN_3(ALU64, ADD, X), \
1514 INSN_3(ALU64, SUB, X), \
1515 INSN_3(ALU64, AND, X), \
1516 INSN_3(ALU64, OR, X), \
1517 INSN_3(ALU64, LSH, X), \
1518 INSN_3(ALU64, RSH, X), \
1519 INSN_3(ALU64, XOR, X), \
1520 INSN_3(ALU64, MUL, X), \
1521 INSN_3(ALU64, MOV, X), \
1522 INSN_3(ALU64, ARSH, X), \
1523 INSN_3(ALU64, DIV, X), \
1524 INSN_3(ALU64, MOD, X), \
1525 INSN_2(ALU64, NEG), \
1526 /* Immediate based. */ \
1527 INSN_3(ALU64, ADD, K), \
1528 INSN_3(ALU64, SUB, K), \
1529 INSN_3(ALU64, AND, K), \
1530 INSN_3(ALU64, OR, K), \
1531 INSN_3(ALU64, LSH, K), \
1532 INSN_3(ALU64, RSH, K), \
1533 INSN_3(ALU64, XOR, K), \
1534 INSN_3(ALU64, MUL, K), \
1535 INSN_3(ALU64, MOV, K), \
1536 INSN_3(ALU64, ARSH, K), \
1537 INSN_3(ALU64, DIV, K), \
1538 INSN_3(ALU64, MOD, K), \
1539 /* Call instruction. */ \
1540 INSN_2(JMP, CALL), \
1541 /* Exit instruction. */ \
1542 INSN_2(JMP, EXIT), \
503a8865
JW
1543 /* 32-bit Jump instructions. */ \
1544 /* Register based. */ \
1545 INSN_3(JMP32, JEQ, X), \
1546 INSN_3(JMP32, JNE, X), \
1547 INSN_3(JMP32, JGT, X), \
1548 INSN_3(JMP32, JLT, X), \
1549 INSN_3(JMP32, JGE, X), \
1550 INSN_3(JMP32, JLE, X), \
1551 INSN_3(JMP32, JSGT, X), \
1552 INSN_3(JMP32, JSLT, X), \
1553 INSN_3(JMP32, JSGE, X), \
1554 INSN_3(JMP32, JSLE, X), \
1555 INSN_3(JMP32, JSET, X), \
1556 /* Immediate based. */ \
1557 INSN_3(JMP32, JEQ, K), \
1558 INSN_3(JMP32, JNE, K), \
1559 INSN_3(JMP32, JGT, K), \
1560 INSN_3(JMP32, JLT, K), \
1561 INSN_3(JMP32, JGE, K), \
1562 INSN_3(JMP32, JLE, K), \
1563 INSN_3(JMP32, JSGT, K), \
1564 INSN_3(JMP32, JSLT, K), \
1565 INSN_3(JMP32, JSGE, K), \
1566 INSN_3(JMP32, JSLE, K), \
1567 INSN_3(JMP32, JSET, K), \
5e581dad
DB
1568 /* Jump instructions. */ \
1569 /* Register based. */ \
1570 INSN_3(JMP, JEQ, X), \
1571 INSN_3(JMP, JNE, X), \
1572 INSN_3(JMP, JGT, X), \
1573 INSN_3(JMP, JLT, X), \
1574 INSN_3(JMP, JGE, X), \
1575 INSN_3(JMP, JLE, X), \
1576 INSN_3(JMP, JSGT, X), \
1577 INSN_3(JMP, JSLT, X), \
1578 INSN_3(JMP, JSGE, X), \
1579 INSN_3(JMP, JSLE, X), \
1580 INSN_3(JMP, JSET, X), \
1581 /* Immediate based. */ \
1582 INSN_3(JMP, JEQ, K), \
1583 INSN_3(JMP, JNE, K), \
1584 INSN_3(JMP, JGT, K), \
1585 INSN_3(JMP, JLT, K), \
1586 INSN_3(JMP, JGE, K), \
1587 INSN_3(JMP, JLE, K), \
1588 INSN_3(JMP, JSGT, K), \
1589 INSN_3(JMP, JSLT, K), \
1590 INSN_3(JMP, JSGE, K), \
1591 INSN_3(JMP, JSLE, K), \
1592 INSN_3(JMP, JSET, K), \
1593 INSN_2(JMP, JA), \
1594 /* Store instructions. */ \
1595 /* Register based. */ \
1596 INSN_3(STX, MEM, B), \
1597 INSN_3(STX, MEM, H), \
1598 INSN_3(STX, MEM, W), \
1599 INSN_3(STX, MEM, DW), \
91c960b0
BJ
1600 INSN_3(STX, ATOMIC, W), \
1601 INSN_3(STX, ATOMIC, DW), \
5e581dad
DB
1602 /* Immediate based. */ \
1603 INSN_3(ST, MEM, B), \
1604 INSN_3(ST, MEM, H), \
1605 INSN_3(ST, MEM, W), \
1606 INSN_3(ST, MEM, DW), \
1607 /* Load instructions. */ \
1608 /* Register based. */ \
1609 INSN_3(LDX, MEM, B), \
1610 INSN_3(LDX, MEM, H), \
1611 INSN_3(LDX, MEM, W), \
1612 INSN_3(LDX, MEM, DW), \
1613 /* Immediate based. */ \
e0cea7ce 1614 INSN_3(LD, IMM, DW)
5e581dad
DB
1615
1616bool bpf_opcode_in_insntable(u8 code)
1617{
1618#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1619#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1620 static const bool public_insntable[256] = {
1621 [0 ... 255] = false,
1622 /* Now overwrite non-defaults ... */
1623 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1624 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1625 [BPF_LD | BPF_ABS | BPF_B] = true,
1626 [BPF_LD | BPF_ABS | BPF_H] = true,
1627 [BPF_LD | BPF_ABS | BPF_W] = true,
1628 [BPF_LD | BPF_IND | BPF_B] = true,
1629 [BPF_LD | BPF_IND | BPF_H] = true,
1630 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1631 };
1632#undef BPF_INSN_3_TBL
1633#undef BPF_INSN_2_TBL
1634 return public_insntable[code];
1635}
1636
290af866 1637#ifndef CONFIG_BPF_JIT_ALWAYS_ON
6e07a634 1638u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2a02759e
AS
1639{
1640 memset(dst, 0, size);
1641 return -EFAULT;
1642}
6e07a634 1643
f5bffecd 1644/**
019d0454 1645 * ___bpf_prog_run - run eBPF program on a given context
de1da68d 1646 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
7ae457c1 1647 * @insn: is the array of eBPF instructions
f5bffecd 1648 *
7ae457c1 1649 * Decode and execute eBPF instructions.
019d0454
RD
1650 *
1651 * Return: whatever value is in %BPF_R0 at program exit
f5bffecd 1652 */
2ec9898e 1653static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
f5bffecd 1654{
5e581dad
DB
1655#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1656#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
e55a7325 1657 static const void * const jumptable[256] __annotate_jump_table = {
f5bffecd
AS
1658 [0 ... 255] = &&default_label,
1659 /* Now overwrite non-defaults ... */
5e581dad
DB
1660 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1661 /* Non-UAPI available opcodes. */
1ea47e01 1662 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1663 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5e81d11 1664 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
2a02759e
AS
1665 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1666 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1667 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1668 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
f5bffecd 1669 };
5e581dad
DB
1670#undef BPF_INSN_3_LBL
1671#undef BPF_INSN_2_LBL
04fd61ab 1672 u32 tail_call_cnt = 0;
f5bffecd
AS
1673
1674#define CONT ({ insn++; goto select_insn; })
1675#define CONT_JMP ({ insn++; goto select_insn; })
1676
f5bffecd
AS
1677select_insn:
1678 goto *jumptable[insn->code];
1679
28131e9d
DB
1680 /* Explicitly mask the register-based shift amounts with 63 or 31
1681 * to avoid undefined behavior. Normally this won't affect the
1682 * generated code, for example, in case of native 64 bit archs such
1683 * as x86-64 or arm64, the compiler is optimizing the AND away for
1684 * the interpreter. In case of JITs, each of the JIT backends compiles
1685 * the BPF shift operations to machine instructions which produce
1686 * implementation-defined results in such a case; the resulting
1687 * contents of the register may be arbitrary, but program behaviour
1688 * as a whole remains defined. In other words, in case of JIT backends,
1689 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1690 */
1691 /* ALU (shifts) */
1692#define SHT(OPCODE, OP) \
1693 ALU64_##OPCODE##_X: \
1694 DST = DST OP (SRC & 63); \
1695 CONT; \
1696 ALU_##OPCODE##_X: \
1697 DST = (u32) DST OP ((u32) SRC & 31); \
1698 CONT; \
1699 ALU64_##OPCODE##_K: \
1700 DST = DST OP IMM; \
1701 CONT; \
1702 ALU_##OPCODE##_K: \
1703 DST = (u32) DST OP (u32) IMM; \
1704 CONT;
1705 /* ALU (rest) */
1706#define ALU(OPCODE, OP) \
1707 ALU64_##OPCODE##_X: \
1708 DST = DST OP SRC; \
1709 CONT; \
1710 ALU_##OPCODE##_X: \
1711 DST = (u32) DST OP (u32) SRC; \
1712 CONT; \
1713 ALU64_##OPCODE##_K: \
1714 DST = DST OP IMM; \
1715 CONT; \
1716 ALU_##OPCODE##_K: \
1717 DST = (u32) DST OP (u32) IMM; \
f5bffecd 1718 CONT;
f5bffecd
AS
1719 ALU(ADD, +)
1720 ALU(SUB, -)
1721 ALU(AND, &)
1722 ALU(OR, |)
f5bffecd
AS
1723 ALU(XOR, ^)
1724 ALU(MUL, *)
28131e9d
DB
1725 SHT(LSH, <<)
1726 SHT(RSH, >>)
1727#undef SHT
f5bffecd
AS
1728#undef ALU
1729 ALU_NEG:
1730 DST = (u32) -DST;
1731 CONT;
1732 ALU64_NEG:
1733 DST = -DST;
1734 CONT;
1735 ALU_MOV_X:
1736 DST = (u32) SRC;
1737 CONT;
1738 ALU_MOV_K:
1739 DST = (u32) IMM;
1740 CONT;
1741 ALU64_MOV_X:
1742 DST = SRC;
1743 CONT;
1744 ALU64_MOV_K:
1745 DST = IMM;
1746 CONT;
02ab695b
AS
1747 LD_IMM_DW:
1748 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1749 insn++;
1750 CONT;
2dc6b100 1751 ALU_ARSH_X:
28131e9d 1752 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
2dc6b100
JW
1753 CONT;
1754 ALU_ARSH_K:
75672dda 1755 DST = (u64) (u32) (((s32) DST) >> IMM);
2dc6b100 1756 CONT;
f5bffecd 1757 ALU64_ARSH_X:
28131e9d 1758 (*(s64 *) &DST) >>= (SRC & 63);
f5bffecd
AS
1759 CONT;
1760 ALU64_ARSH_K:
1761 (*(s64 *) &DST) >>= IMM;
1762 CONT;
1763 ALU64_MOD_X:
144cd91c
DB
1764 div64_u64_rem(DST, SRC, &AX);
1765 DST = AX;
f5bffecd
AS
1766 CONT;
1767 ALU_MOD_X:
144cd91c
DB
1768 AX = (u32) DST;
1769 DST = do_div(AX, (u32) SRC);
f5bffecd
AS
1770 CONT;
1771 ALU64_MOD_K:
144cd91c
DB
1772 div64_u64_rem(DST, IMM, &AX);
1773 DST = AX;
f5bffecd
AS
1774 CONT;
1775 ALU_MOD_K:
144cd91c
DB
1776 AX = (u32) DST;
1777 DST = do_div(AX, (u32) IMM);
f5bffecd
AS
1778 CONT;
1779 ALU64_DIV_X:
876a7ae6 1780 DST = div64_u64(DST, SRC);
f5bffecd
AS
1781 CONT;
1782 ALU_DIV_X:
144cd91c
DB
1783 AX = (u32) DST;
1784 do_div(AX, (u32) SRC);
1785 DST = (u32) AX;
f5bffecd
AS
1786 CONT;
1787 ALU64_DIV_K:
876a7ae6 1788 DST = div64_u64(DST, IMM);
f5bffecd
AS
1789 CONT;
1790 ALU_DIV_K:
144cd91c
DB
1791 AX = (u32) DST;
1792 do_div(AX, (u32) IMM);
1793 DST = (u32) AX;
f5bffecd
AS
1794 CONT;
1795 ALU_END_TO_BE:
1796 switch (IMM) {
1797 case 16:
1798 DST = (__force u16) cpu_to_be16(DST);
1799 break;
1800 case 32:
1801 DST = (__force u32) cpu_to_be32(DST);
1802 break;
1803 case 64:
1804 DST = (__force u64) cpu_to_be64(DST);
1805 break;
1806 }
1807 CONT;
1808 ALU_END_TO_LE:
1809 switch (IMM) {
1810 case 16:
1811 DST = (__force u16) cpu_to_le16(DST);
1812 break;
1813 case 32:
1814 DST = (__force u32) cpu_to_le32(DST);
1815 break;
1816 case 64:
1817 DST = (__force u64) cpu_to_le64(DST);
1818 break;
1819 }
1820 CONT;
1821
1822 /* CALL */
1823 JMP_CALL:
1824 /* Function call scratches BPF_R1-BPF_R5 registers,
1825 * preserves BPF_R6-BPF_R9, and stores return value
1826 * into BPF_R0.
1827 */
1828 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1829 BPF_R4, BPF_R5);
1830 CONT;
1831
1ea47e01
AS
1832 JMP_CALL_ARGS:
1833 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1834 BPF_R3, BPF_R4,
1835 BPF_R5,
1836 insn + insn->off + 1);
1837 CONT;
1838
04fd61ab
AS
1839 JMP_TAIL_CALL: {
1840 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1841 struct bpf_array *array = container_of(map, struct bpf_array, map);
1842 struct bpf_prog *prog;
90caccdd 1843 u32 index = BPF_R3;
04fd61ab
AS
1844
1845 if (unlikely(index >= array->map.max_entries))
1846 goto out;
ebf7f6f0
TY
1847
1848 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
04fd61ab
AS
1849 goto out;
1850
1851 tail_call_cnt++;
1852
2a36f0b9 1853 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1854 if (!prog)
04fd61ab
AS
1855 goto out;
1856
c4675f93
DB
1857 /* ARG1 at this point is guaranteed to point to CTX from
1858 * the verifier side due to the fact that the tail call is
0142dddc 1859 * handled like a helper, that is, bpf_tail_call_proto,
c4675f93
DB
1860 * where arg1_type is ARG_PTR_TO_CTX.
1861 */
04fd61ab
AS
1862 insn = prog->insnsi;
1863 goto select_insn;
1864out:
1865 CONT;
1866 }
f5bffecd
AS
1867 JMP_JA:
1868 insn += insn->off;
1869 CONT;
f5bffecd
AS
1870 JMP_EXIT:
1871 return BPF_R0;
503a8865
JW
1872 /* JMP */
1873#define COND_JMP(SIGN, OPCODE, CMP_OP) \
1874 JMP_##OPCODE##_X: \
1875 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1876 insn += insn->off; \
1877 CONT_JMP; \
1878 } \
1879 CONT; \
1880 JMP32_##OPCODE##_X: \
1881 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1882 insn += insn->off; \
1883 CONT_JMP; \
1884 } \
1885 CONT; \
1886 JMP_##OPCODE##_K: \
1887 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1888 insn += insn->off; \
1889 CONT_JMP; \
1890 } \
1891 CONT; \
1892 JMP32_##OPCODE##_K: \
1893 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1894 insn += insn->off; \
1895 CONT_JMP; \
1896 } \
1897 CONT;
1898 COND_JMP(u, JEQ, ==)
1899 COND_JMP(u, JNE, !=)
1900 COND_JMP(u, JGT, >)
1901 COND_JMP(u, JLT, <)
1902 COND_JMP(u, JGE, >=)
1903 COND_JMP(u, JLE, <=)
1904 COND_JMP(u, JSET, &)
1905 COND_JMP(s, JSGT, >)
1906 COND_JMP(s, JSLT, <)
1907 COND_JMP(s, JSGE, >=)
1908 COND_JMP(s, JSLE, <=)
1909#undef COND_JMP
f5e81d11
DB
1910 /* ST, STX and LDX*/
1911 ST_NOSPEC:
1912 /* Speculation barrier for mitigating Speculative Store Bypass.
1913 * In case of arm64, we rely on the firmware mitigation as
1914 * controlled via the ssbd kernel parameter. Whenever the
1915 * mitigation is enabled, it works for all of the kernel code
1916 * with no need to provide any additional instructions here.
1917 * In case of x86, we use 'lfence' insn for mitigation. We
1918 * reuse preexisting logic from Spectre v1 mitigation that
1919 * happens to produce the required code on x86 for v4 as well.
1920 */
f5e81d11 1921 barrier_nospec();
f5e81d11 1922 CONT;
f5bffecd
AS
1923#define LDST(SIZEOP, SIZE) \
1924 STX_MEM_##SIZEOP: \
1925 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1926 CONT; \
1927 ST_MEM_##SIZEOP: \
1928 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1929 CONT; \
1930 LDX_MEM_##SIZEOP: \
1931 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
caff1fa4
MD
1932 CONT; \
1933 LDX_PROBE_MEM_##SIZEOP: \
1934 bpf_probe_read_kernel(&DST, sizeof(SIZE), \
1935 (const void *)(long) (SRC + insn->off)); \
1936 DST = *((SIZE *)&DST); \
f5bffecd
AS
1937 CONT;
1938
1939 LDST(B, u8)
1940 LDST(H, u16)
1941 LDST(W, u32)
1942 LDST(DW, u64)
1943#undef LDST
2a02759e 1944
46291067
BJ
1945#define ATOMIC_ALU_OP(BOP, KOP) \
1946 case BOP: \
1947 if (BPF_SIZE(insn->code) == BPF_W) \
1948 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1949 (DST + insn->off)); \
1950 else \
1951 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1952 (DST + insn->off)); \
1953 break; \
1954 case BOP | BPF_FETCH: \
1955 if (BPF_SIZE(insn->code) == BPF_W) \
1956 SRC = (u32) atomic_fetch_##KOP( \
1957 (u32) SRC, \
1958 (atomic_t *)(unsigned long) (DST + insn->off)); \
1959 else \
1960 SRC = (u64) atomic64_fetch_##KOP( \
1961 (u64) SRC, \
1962 (atomic64_t *)(unsigned long) (DST + insn->off)); \
5ffa2550 1963 break;
5ca419f2 1964
91c960b0 1965 STX_ATOMIC_DW:
46291067 1966 STX_ATOMIC_W:
91c960b0 1967 switch (IMM) {
46291067 1968 ATOMIC_ALU_OP(BPF_ADD, add)
981f94c3
BJ
1969 ATOMIC_ALU_OP(BPF_AND, and)
1970 ATOMIC_ALU_OP(BPF_OR, or)
1971 ATOMIC_ALU_OP(BPF_XOR, xor)
46291067
BJ
1972#undef ATOMIC_ALU_OP
1973
5ffa2550 1974 case BPF_XCHG:
46291067
BJ
1975 if (BPF_SIZE(insn->code) == BPF_W)
1976 SRC = (u32) atomic_xchg(
1977 (atomic_t *)(unsigned long) (DST + insn->off),
1978 (u32) SRC);
1979 else
1980 SRC = (u64) atomic64_xchg(
1981 (atomic64_t *)(unsigned long) (DST + insn->off),
1982 (u64) SRC);
5ffa2550
BJ
1983 break;
1984 case BPF_CMPXCHG:
46291067
BJ
1985 if (BPF_SIZE(insn->code) == BPF_W)
1986 BPF_R0 = (u32) atomic_cmpxchg(
1987 (atomic_t *)(unsigned long) (DST + insn->off),
1988 (u32) BPF_R0, (u32) SRC);
1989 else
1990 BPF_R0 = (u64) atomic64_cmpxchg(
1991 (atomic64_t *)(unsigned long) (DST + insn->off),
1992 (u64) BPF_R0, (u64) SRC);
5ffa2550 1993 break;
46291067 1994
91c960b0
BJ
1995 default:
1996 goto default_label;
1997 }
f5bffecd 1998 CONT;
f5bffecd
AS
1999
2000 default_label:
5e581dad
DB
2001 /* If we ever reach this, we have a bug somewhere. Die hard here
2002 * instead of just returning 0; we could be somewhere in a subprog,
2003 * so execution could continue otherwise which we do /not/ want.
2004 *
2005 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2006 */
91c960b0
BJ
2007 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2008 insn->code, insn->imm);
5e581dad 2009 BUG_ON(1);
f5bffecd
AS
2010 return 0;
2011}
f696b8f4 2012
b870aa90
AS
2013#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2014#define DEFINE_BPF_PROG_RUN(stack_size) \
2015static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2016{ \
2017 u64 stack[stack_size / sizeof(u64)]; \
a6a7aaba 2018 u64 regs[MAX_BPF_EXT_REG] = {}; \
b870aa90
AS
2019\
2020 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2021 ARG1 = (u64) (unsigned long) ctx; \
2ec9898e 2022 return ___bpf_prog_run(regs, insn); \
f696b8f4 2023}
f5bffecd 2024
1ea47e01
AS
2025#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2026#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2027static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2028 const struct bpf_insn *insn) \
2029{ \
2030 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 2031 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
2032\
2033 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2034 BPF_R1 = r1; \
2035 BPF_R2 = r2; \
2036 BPF_R3 = r3; \
2037 BPF_R4 = r4; \
2038 BPF_R5 = r5; \
2ec9898e 2039 return ___bpf_prog_run(regs, insn); \
1ea47e01
AS
2040}
2041
b870aa90
AS
2042#define EVAL1(FN, X) FN(X)
2043#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2044#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2045#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2046#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2047#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2048
2049EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2050EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2051EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2052
1ea47e01
AS
2053EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2054EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2055EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2056
b870aa90
AS
2057#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2058
2059static unsigned int (*interpreters[])(const void *ctx,
2060 const struct bpf_insn *insn) = {
2061EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2062EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2063EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2064};
1ea47e01
AS
2065#undef PROG_NAME_LIST
2066#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2067static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2068 const struct bpf_insn *insn) = {
2069EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2070EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2071EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2072};
2073#undef PROG_NAME_LIST
2074
2075void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2076{
2077 stack_depth = max_t(u32, stack_depth, 1);
2078 insn->off = (s16) insn->imm;
2079 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2080 __bpf_call_base_args;
2081 insn->code = BPF_JMP | BPF_CALL_ARGS;
2082}
b870aa90 2083
290af866 2084#else
fa9dd599
DB
2085static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2086 const struct bpf_insn *insn)
290af866 2087{
fa9dd599
DB
2088 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2089 * is not working properly, so warn about it!
2090 */
2091 WARN_ON_ONCE(1);
290af866
AS
2092 return 0;
2093}
2094#endif
2095
f45d5b6c
THJ
2096bool bpf_prog_map_compatible(struct bpf_map *map,
2097 const struct bpf_prog *fp)
04fd61ab 2098{
1c123c56 2099 enum bpf_prog_type prog_type = resolve_prog_type(fp);
54713c85
THJ
2100 bool ret;
2101
9802d865
JB
2102 if (fp->kprobe_override)
2103 return false;
2104
3d76a4d3
SF
2105 /* XDP programs inserted into maps are not guaranteed to run on
2106 * a particular netdev (and can run outside driver context entirely
2107 * in the case of devmap and cpumap). Until device checks
2108 * are implemented, prohibit adding dev-bound programs to program maps.
2109 */
2110 if (bpf_prog_is_dev_bound(fp->aux))
2111 return false;
2112
f45d5b6c
THJ
2113 spin_lock(&map->owner.lock);
2114 if (!map->owner.type) {
3324b584
DB
2115 /* There's no owner yet where we could check for
2116 * compatibility.
2117 */
1c123c56 2118 map->owner.type = prog_type;
f45d5b6c
THJ
2119 map->owner.jited = fp->jited;
2120 map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
54713c85
THJ
2121 ret = true;
2122 } else {
1c123c56 2123 ret = map->owner.type == prog_type &&
f45d5b6c
THJ
2124 map->owner.jited == fp->jited &&
2125 map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
04fd61ab 2126 }
f45d5b6c
THJ
2127 spin_unlock(&map->owner.lock);
2128
54713c85 2129 return ret;
04fd61ab
AS
2130}
2131
3324b584 2132static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
2133{
2134 struct bpf_prog_aux *aux = fp->aux;
984fe94f 2135 int i, ret = 0;
04fd61ab 2136
984fe94f 2137 mutex_lock(&aux->used_maps_mutex);
04fd61ab 2138 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 2139 struct bpf_map *map = aux->used_maps[i];
04fd61ab 2140
f45d5b6c 2141 if (!map_type_contains_progs(map))
04fd61ab 2142 continue;
3324b584 2143
f45d5b6c 2144 if (!bpf_prog_map_compatible(map, fp)) {
984fe94f
YZ
2145 ret = -EINVAL;
2146 goto out;
2147 }
04fd61ab
AS
2148 }
2149
984fe94f
YZ
2150out:
2151 mutex_unlock(&aux->used_maps_mutex);
2152 return ret;
04fd61ab
AS
2153}
2154
9facc336
DB
2155static void bpf_prog_select_func(struct bpf_prog *fp)
2156{
2157#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2158 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2159
2160 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2161#else
2162 fp->bpf_func = __bpf_prog_ret0_warn;
2163#endif
2164}
2165
f5bffecd 2166/**
3324b584 2167 * bpf_prog_select_runtime - select exec runtime for BPF program
06edc59c 2168 * @fp: bpf_prog populated with BPF program
d1c55ab5 2169 * @err: pointer to error variable
f5bffecd 2170 *
3324b584 2171 * Try to JIT eBPF program, if JIT is not available, use interpreter.
fb7dd8bc 2172 * The BPF program will be executed via bpf_prog_run() function.
019d0454
RD
2173 *
2174 * Return: the &fp argument along with &err set to 0 for success or
2175 * a negative errno code on failure
f5bffecd 2176 */
d1c55ab5 2177struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 2178{
9facc336
DB
2179 /* In case of BPF to BPF calls, verifier did all the prep
2180 * work with regards to JITing, etc.
2181 */
e6ac2450
MKL
2182 bool jit_needed = false;
2183
9facc336
DB
2184 if (fp->bpf_func)
2185 goto finalize;
8007e40a 2186
e6ac2450
MKL
2187 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2188 bpf_prog_has_kfunc_call(fp))
2189 jit_needed = true;
2190
9facc336 2191 bpf_prog_select_func(fp);
f5bffecd 2192
d1c55ab5
DB
2193 /* eBPF JITs can rewrite the program in case constant
2194 * blinding is active. However, in case of error during
2195 * blinding, bpf_int_jit_compile() must always return a
2196 * valid program, which in this case would simply not
2197 * be JITed, but falls back to the interpreter.
2198 */
9d03ebc7 2199 if (!bpf_prog_is_offloaded(fp->aux)) {
c454a46b
MKL
2200 *err = bpf_prog_alloc_jited_linfo(fp);
2201 if (*err)
2202 return fp;
2203
ab3f0063 2204 fp = bpf_int_jit_compile(fp);
e16301fb 2205 bpf_prog_jit_attempt_done(fp);
e6ac2450 2206 if (!fp->jited && jit_needed) {
290af866
AS
2207 *err = -ENOTSUPP;
2208 return fp;
c454a46b 2209 }
ab3f0063
JK
2210 } else {
2211 *err = bpf_prog_offload_compile(fp);
2212 if (*err)
2213 return fp;
2214 }
9facc336
DB
2215
2216finalize:
60a3b225 2217 bpf_prog_lock_ro(fp);
04fd61ab 2218
3324b584
DB
2219 /* The tail call compatibility check can only be done at
2220 * this late stage as we need to determine, if we deal
2221 * with JITed or non JITed program concatenations and not
2222 * all eBPF JITs might immediately support all features.
2223 */
d1c55ab5 2224 *err = bpf_check_tail_call(fp);
85782e03 2225
d1c55ab5 2226 return fp;
f5bffecd 2227}
7ae457c1 2228EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 2229
e87c6bc3
YS
2230static unsigned int __bpf_prog_ret1(const void *ctx,
2231 const struct bpf_insn *insn)
2232{
2233 return 1;
2234}
2235
2236static struct bpf_prog_dummy {
2237 struct bpf_prog prog;
2238} dummy_bpf_prog = {
2239 .prog = {
2240 .bpf_func = __bpf_prog_ret1,
2241 },
2242};
2243
46531a30 2244struct bpf_empty_prog_array bpf_empty_prog_array = {
324bda9e
AS
2245 .null_prog = NULL,
2246};
46531a30 2247EXPORT_SYMBOL(bpf_empty_prog_array);
324bda9e 2248
d29ab6e1 2249struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
2250{
2251 if (prog_cnt)
2252 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
2253 sizeof(struct bpf_prog_array_item) *
2254 (prog_cnt + 1),
324bda9e
AS
2255 flags);
2256
46531a30 2257 return &bpf_empty_prog_array.hdr;
324bda9e
AS
2258}
2259
54e9c9d4 2260void bpf_prog_array_free(struct bpf_prog_array *progs)
324bda9e 2261{
46531a30 2262 if (!progs || progs == &bpf_empty_prog_array.hdr)
324bda9e
AS
2263 return;
2264 kfree_rcu(progs, rcu);
2265}
2266
8c7dcb84
DK
2267static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2268{
2269 struct bpf_prog_array *progs;
2270
4835f9ee
HT
2271 /* If RCU Tasks Trace grace period implies RCU grace period, there is
2272 * no need to call kfree_rcu(), just call kfree() directly.
2273 */
8c7dcb84 2274 progs = container_of(rcu, struct bpf_prog_array, rcu);
4835f9ee
HT
2275 if (rcu_trace_implies_rcu_gp())
2276 kfree(progs);
2277 else
2278 kfree_rcu(progs, rcu);
8c7dcb84
DK
2279}
2280
2281void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2282{
2283 if (!progs || progs == &bpf_empty_prog_array.hdr)
2284 return;
2285 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2286}
2287
54e9c9d4 2288int bpf_prog_array_length(struct bpf_prog_array *array)
468e2f64 2289{
394e40a2 2290 struct bpf_prog_array_item *item;
468e2f64
AS
2291 u32 cnt = 0;
2292
54e9c9d4 2293 for (item = array->items; item->prog; item++)
394e40a2 2294 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 2295 cnt++;
468e2f64
AS
2296 return cnt;
2297}
2298
0d01da6a
SF
2299bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2300{
2301 struct bpf_prog_array_item *item;
2302
2303 for (item = array->items; item->prog; item++)
2304 if (item->prog != &dummy_bpf_prog.prog)
2305 return false;
2306 return true;
2307}
394e40a2 2308
54e9c9d4 2309static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
3a38bb98
YS
2310 u32 *prog_ids,
2311 u32 request_cnt)
2312{
394e40a2 2313 struct bpf_prog_array_item *item;
3a38bb98
YS
2314 int i = 0;
2315
54e9c9d4 2316 for (item = array->items; item->prog; item++) {
394e40a2 2317 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 2318 continue;
394e40a2 2319 prog_ids[i] = item->prog->aux->id;
3a38bb98 2320 if (++i == request_cnt) {
394e40a2 2321 item++;
3a38bb98
YS
2322 break;
2323 }
2324 }
2325
394e40a2 2326 return !!(item->prog);
3a38bb98
YS
2327}
2328
54e9c9d4 2329int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
468e2f64
AS
2330 __u32 __user *prog_ids, u32 cnt)
2331{
0911287c 2332 unsigned long err = 0;
0911287c 2333 bool nospc;
3a38bb98 2334 u32 *ids;
0911287c
AS
2335
2336 /* users of this function are doing:
2337 * cnt = bpf_prog_array_length();
2338 * if (cnt > 0)
2339 * bpf_prog_array_copy_to_user(..., cnt);
54e9c9d4 2340 * so below kcalloc doesn't need extra cnt > 0 check.
0911287c 2341 */
9c481b90 2342 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
2343 if (!ids)
2344 return -ENOMEM;
394e40a2 2345 nospc = bpf_prog_array_copy_core(array, ids, cnt);
0911287c
AS
2346 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2347 kfree(ids);
2348 if (err)
2349 return -EFAULT;
2350 if (nospc)
468e2f64
AS
2351 return -ENOSPC;
2352 return 0;
2353}
2354
54e9c9d4 2355void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
e87c6bc3
YS
2356 struct bpf_prog *old_prog)
2357{
54e9c9d4 2358 struct bpf_prog_array_item *item;
e87c6bc3 2359
54e9c9d4 2360 for (item = array->items; item->prog; item++)
394e40a2
RG
2361 if (item->prog == old_prog) {
2362 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
2363 break;
2364 }
2365}
2366
ce3aa9cc
JS
2367/**
2368 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2369 * index into the program array with
2370 * a dummy no-op program.
2371 * @array: a bpf_prog_array
2372 * @index: the index of the program to replace
2373 *
2374 * Skips over dummy programs, by not counting them, when calculating
b8c1a309 2375 * the position of the program to replace.
ce3aa9cc
JS
2376 *
2377 * Return:
2378 * * 0 - Success
2379 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2380 * * -ENOENT - Index out of range
2381 */
2382int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2383{
2384 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2385}
2386
2387/**
2388 * bpf_prog_array_update_at() - Updates the program at the given index
2389 * into the program array.
2390 * @array: a bpf_prog_array
2391 * @index: the index of the program to update
2392 * @prog: the program to insert into the array
2393 *
2394 * Skips over dummy programs, by not counting them, when calculating
2395 * the position of the program to update.
2396 *
2397 * Return:
2398 * * 0 - Success
2399 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2400 * * -ENOENT - Index out of range
2401 */
2402int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2403 struct bpf_prog *prog)
2404{
2405 struct bpf_prog_array_item *item;
2406
2407 if (unlikely(index < 0))
2408 return -EINVAL;
2409
2410 for (item = array->items; item->prog; item++) {
2411 if (item->prog == &dummy_bpf_prog.prog)
2412 continue;
2413 if (!index) {
2414 WRITE_ONCE(item->prog, prog);
2415 return 0;
2416 }
2417 index--;
2418 }
2419 return -ENOENT;
2420}
2421
54e9c9d4 2422int bpf_prog_array_copy(struct bpf_prog_array *old_array,
e87c6bc3
YS
2423 struct bpf_prog *exclude_prog,
2424 struct bpf_prog *include_prog,
82e6b1ee 2425 u64 bpf_cookie,
e87c6bc3
YS
2426 struct bpf_prog_array **new_array)
2427{
2428 int new_prog_cnt, carry_prog_cnt = 0;
82e6b1ee 2429 struct bpf_prog_array_item *existing, *new;
e87c6bc3 2430 struct bpf_prog_array *array;
170a7e3e 2431 bool found_exclude = false;
e87c6bc3
YS
2432
2433 /* Figure out how many existing progs we need to carry over to
2434 * the new array.
2435 */
2436 if (old_array) {
394e40a2
RG
2437 existing = old_array->items;
2438 for (; existing->prog; existing++) {
2439 if (existing->prog == exclude_prog) {
170a7e3e
SY
2440 found_exclude = true;
2441 continue;
2442 }
394e40a2 2443 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 2444 carry_prog_cnt++;
394e40a2 2445 if (existing->prog == include_prog)
e87c6bc3
YS
2446 return -EEXIST;
2447 }
2448 }
2449
170a7e3e
SY
2450 if (exclude_prog && !found_exclude)
2451 return -ENOENT;
2452
e87c6bc3
YS
2453 /* How many progs (not NULL) will be in the new array? */
2454 new_prog_cnt = carry_prog_cnt;
2455 if (include_prog)
2456 new_prog_cnt += 1;
2457
2458 /* Do we have any prog (not NULL) in the new array? */
2459 if (!new_prog_cnt) {
2460 *new_array = NULL;
2461 return 0;
2462 }
2463
2464 /* +1 as the end of prog_array is marked with NULL */
2465 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2466 if (!array)
2467 return -ENOMEM;
82e6b1ee 2468 new = array->items;
e87c6bc3
YS
2469
2470 /* Fill in the new prog array */
2471 if (carry_prog_cnt) {
394e40a2 2472 existing = old_array->items;
82e6b1ee
AN
2473 for (; existing->prog; existing++) {
2474 if (existing->prog == exclude_prog ||
2475 existing->prog == &dummy_bpf_prog.prog)
2476 continue;
2477
2478 new->prog = existing->prog;
2479 new->bpf_cookie = existing->bpf_cookie;
2480 new++;
2481 }
e87c6bc3 2482 }
82e6b1ee
AN
2483 if (include_prog) {
2484 new->prog = include_prog;
2485 new->bpf_cookie = bpf_cookie;
2486 new++;
2487 }
2488 new->prog = NULL;
e87c6bc3
YS
2489 *new_array = array;
2490 return 0;
2491}
2492
54e9c9d4 2493int bpf_prog_array_copy_info(struct bpf_prog_array *array,
3a38bb98
YS
2494 u32 *prog_ids, u32 request_cnt,
2495 u32 *prog_cnt)
f371b304
YS
2496{
2497 u32 cnt = 0;
2498
2499 if (array)
2500 cnt = bpf_prog_array_length(array);
2501
3a38bb98 2502 *prog_cnt = cnt;
f371b304
YS
2503
2504 /* return early if user requested only program count or nothing to copy */
2505 if (!request_cnt || !cnt)
2506 return 0;
2507
3a38bb98 2508 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 2509 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 2510 : 0;
f371b304
YS
2511}
2512
a2ea0746
DB
2513void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2514 struct bpf_map **used_maps, u32 len)
6332be04 2515{
da765a2f 2516 struct bpf_map *map;
a2ea0746 2517 u32 i;
6332be04 2518
a2ea0746
DB
2519 for (i = 0; i < len; i++) {
2520 map = used_maps[i];
da765a2f
DB
2521 if (map->ops->map_poke_untrack)
2522 map->ops->map_poke_untrack(map, aux);
2523 bpf_map_put(map);
2524 }
a2ea0746
DB
2525}
2526
2527static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2528{
2529 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
6332be04
DB
2530 kfree(aux->used_maps);
2531}
2532
541c3bad
AN
2533void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2534 struct btf_mod_pair *used_btfs, u32 len)
2535{
2536#ifdef CONFIG_BPF_SYSCALL
2537 struct btf_mod_pair *btf_mod;
2538 u32 i;
2539
2540 for (i = 0; i < len; i++) {
2541 btf_mod = &used_btfs[i];
2542 if (btf_mod->module)
2543 module_put(btf_mod->module);
2544 btf_put(btf_mod->btf);
2545 }
2546#endif
2547}
2548
2549static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2550{
2551 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2552 kfree(aux->used_btfs);
2553}
2554
60a3b225
DB
2555static void bpf_prog_free_deferred(struct work_struct *work)
2556{
09756af4 2557 struct bpf_prog_aux *aux;
1c2a088a 2558 int i;
60a3b225 2559
09756af4 2560 aux = container_of(work, struct bpf_prog_aux, work);
2357672c
KKD
2561#ifdef CONFIG_BPF_SYSCALL
2562 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
c0e19f2c
SF
2563#endif
2564#ifdef CONFIG_CGROUP_BPF
2565 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2566 bpf_cgroup_atype_put(aux->cgroup_atype);
2357672c 2567#endif
6332be04 2568 bpf_free_used_maps(aux);
541c3bad 2569 bpf_free_used_btfs(aux);
ab3f0063 2570 if (bpf_prog_is_dev_bound(aux))
2b3486bc 2571 bpf_prog_dev_bound_destroy(aux->prog);
c195651e
YS
2572#ifdef CONFIG_PERF_EVENTS
2573 if (aux->prog->has_callchain_buf)
2574 put_callchain_buffers();
2575#endif
3aac1ead
THJ
2576 if (aux->dst_trampoline)
2577 bpf_trampoline_put(aux->dst_trampoline);
f263a814
JF
2578 for (i = 0; i < aux->func_cnt; i++) {
2579 /* We can just unlink the subprog poke descriptor table as
2580 * it was originally linked to the main program and is also
2581 * released along with it.
2582 */
2583 aux->func[i]->aux->poke_tab = NULL;
1c2a088a 2584 bpf_jit_free(aux->func[i]);
f263a814 2585 }
1c2a088a
AS
2586 if (aux->func_cnt) {
2587 kfree(aux->func);
2588 bpf_prog_unlock_free(aux->prog);
2589 } else {
2590 bpf_jit_free(aux->prog);
2591 }
60a3b225
DB
2592}
2593
7ae457c1 2594void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2595{
09756af4 2596 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2597
3aac1ead
THJ
2598 if (aux->dst_prog)
2599 bpf_prog_put(aux->dst_prog);
09756af4 2600 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2601 schedule_work(&aux->work);
f5bffecd 2602}
7ae457c1 2603EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2604
3ad00405
DB
2605/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2606static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2607
2608void bpf_user_rnd_init_once(void)
2609{
2610 prandom_init_once(&bpf_user_rnd_state);
2611}
2612
f3694e00 2613BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2614{
2615 /* Should someone ever have the rather unwise idea to use some
2616 * of the registers passed into this function, then note that
2617 * this function is called from native eBPF and classic-to-eBPF
2618 * transformations. Register assignments from both sides are
2619 * different, f.e. classic always sets fn(ctx, A, X) here.
2620 */
2621 struct rnd_state *state;
2622 u32 res;
2623
2624 state = &get_cpu_var(bpf_user_rnd_state);
2625 res = prandom_u32_state(state);
b761fe22 2626 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2627
2628 return res;
2629}
2630
6890896b
SF
2631BPF_CALL_0(bpf_get_raw_cpu_id)
2632{
2633 return raw_smp_processor_id();
2634}
2635
3ba67dab
DB
2636/* Weak definitions of helper functions in case we don't have bpf syscall. */
2637const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2638const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2639const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2640const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2641const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2642const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
07343110 2643const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
d83525ca
AS
2644const struct bpf_func_proto bpf_spin_lock_proto __weak;
2645const struct bpf_func_proto bpf_spin_unlock_proto __weak;
5576b991 2646const struct bpf_func_proto bpf_jiffies64_proto __weak;
3ba67dab 2647
03e69b50 2648const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2649const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2650const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2651const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
71d19214 2652const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
d0551261 2653const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
c8996c98 2654const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
bd570ff9 2655
ffeedafb
AS
2656const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2657const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2658const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2659const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
0f09abd1 2660const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
cd339431 2661const struct bpf_func_proto bpf_get_local_storage_proto __weak;
b4490c5c 2662const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
c4d0bfb4 2663const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
eb411377 2664const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
69fd337a
SF
2665const struct bpf_func_proto bpf_set_retval_proto __weak;
2666const struct bpf_func_proto bpf_get_retval_proto __weak;
bd570ff9 2667
0756ea3e
AS
2668const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2669{
2670 return NULL;
2671}
03e69b50 2672
10aceb62
DM
2673const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2674{
2675 return NULL;
2676}
2677
555c8a86
DB
2678u64 __weak
2679bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2680 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2681{
555c8a86 2682 return -ENOTSUPP;
bd570ff9 2683}
6cb5fb38 2684EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2685
3324b584
DB
2686/* Always built-in helper functions. */
2687const struct bpf_func_proto bpf_tail_call_proto = {
2688 .func = NULL,
2689 .gpl_only = false,
2690 .ret_type = RET_VOID,
2691 .arg1_type = ARG_PTR_TO_CTX,
2692 .arg2_type = ARG_CONST_MAP_PTR,
2693 .arg3_type = ARG_ANYTHING,
2694};
2695
9383191d
DB
2696/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2697 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2698 * eBPF and implicitly also cBPF can get JITed!
2699 */
d1c55ab5 2700struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2701{
d1c55ab5 2702 return prog;
3324b584
DB
2703}
2704
9383191d
DB
2705/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2706 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2707 */
2708void __weak bpf_jit_compile(struct bpf_prog *prog)
2709{
2710}
2711
17bedab2 2712bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2713{
2714 return false;
2715}
2716
a4b1d3c1
JW
2717/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2718 * analysis code and wants explicit zero extension inserted by verifier.
2719 * Otherwise, return FALSE.
39491867
BJ
2720 *
2721 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2722 * you don't override this. JITs that don't want these extra insns can detect
2723 * them using insn_is_zext.
a4b1d3c1
JW
2724 */
2725bool __weak bpf_jit_needs_zext(void)
2726{
2727 return false;
2728}
2729
95acd881
TA
2730/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2731bool __weak bpf_jit_supports_subprog_tailcalls(void)
2732{
2733 return false;
2734}
2735
e6ac2450
MKL
2736bool __weak bpf_jit_supports_kfunc_call(void)
2737{
2738 return false;
2739}
2740
1cf3bfc6
IL
2741bool __weak bpf_jit_supports_far_kfunc_call(void)
2742{
2743 return false;
2744}
2745
f89b7755
AS
2746/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2747 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2748 */
2749int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2750 int len)
2751{
2752 return -EFAULT;
2753}
a67edbf4 2754
5964b200
AS
2755int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2756 void *addr1, void *addr2)
2757{
2758 return -ENOTSUPP;
2759}
2760
ebc1415d
SL
2761void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2762{
2763 return ERR_PTR(-ENOTSUPP);
2764}
2765
fe736565
SL
2766int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2767{
2768 return -ENOTSUPP;
2769}
2770
958cf2e2
KKD
2771#ifdef CONFIG_BPF_SYSCALL
2772static int __init bpf_global_ma_init(void)
2773{
2774 int ret;
2775
2776 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2777 bpf_global_ma_set = !ret;
2778 return ret;
2779}
2780late_initcall(bpf_global_ma_init);
2781#endif
2782
492ecee8
AS
2783DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2784EXPORT_SYMBOL(bpf_stats_enabled_key);
492ecee8 2785
a67edbf4
DB
2786/* All definitions of tracepoints related to BPF. */
2787#define CREATE_TRACE_POINTS
2788#include <linux/bpf_trace.h>
2789
2790EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
e7d47989 2791EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);