bpf: minimal support for programs hooked into netfilter framework
[linux-2.6-block.git] / kernel / bpf / btf.c
CommitLineData
c561d110 1// SPDX-License-Identifier: GPL-2.0
69b693f0
MKL
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
c0c852dd 22#include <linux/bpf_lsm.h>
91cc1a99
AS
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
eae2e83e 25#include <linux/bsearch.h>
36e68442
AN
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
fd9c663b
FW
28
29#include <net/netfilter/nf_bpf_link.h>
30
91cc1a99 31#include <net/sock.h>
1e89106d 32#include "../tools/lib/bpf/relo_core.h"
69b693f0
MKL
33
34/* BTF (BPF Type Format) is the meta data format which describes
35 * the data types of BPF program/map. Hence, it basically focus
36 * on the C programming language which the modern BPF is primary
37 * using.
38 *
39 * ELF Section:
40 * ~~~~~~~~~~~
41 * The BTF data is stored under the ".BTF" ELF section
42 *
43 * struct btf_type:
44 * ~~~~~~~~~~~~~~~
45 * Each 'struct btf_type' object describes a C data type.
46 * Depending on the type it is describing, a 'struct btf_type'
47 * object may be followed by more data. F.e.
48 * To describe an array, 'struct btf_type' is followed by
49 * 'struct btf_array'.
50 *
51 * 'struct btf_type' and any extra data following it are
52 * 4 bytes aligned.
53 *
54 * Type section:
55 * ~~~~~~~~~~~~~
56 * The BTF type section contains a list of 'struct btf_type' objects.
57 * Each one describes a C type. Recall from the above section
58 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 59 * data in order to describe some particular C types.
69b693f0
MKL
60 *
61 * type_id:
62 * ~~~~~~~
63 * Each btf_type object is identified by a type_id. The type_id
64 * is implicitly implied by the location of the btf_type object in
65 * the BTF type section. The first one has type_id 1. The second
66 * one has type_id 2...etc. Hence, an earlier btf_type has
67 * a smaller type_id.
68 *
69 * A btf_type object may refer to another btf_type object by using
70 * type_id (i.e. the "type" in the "struct btf_type").
71 *
72 * NOTE that we cannot assume any reference-order.
73 * A btf_type object can refer to an earlier btf_type object
74 * but it can also refer to a later btf_type object.
75 *
76 * For example, to describe "const void *". A btf_type
77 * object describing "const" may refer to another btf_type
78 * object describing "void *". This type-reference is done
79 * by specifying type_id:
80 *
81 * [1] CONST (anon) type_id=2
82 * [2] PTR (anon) type_id=0
83 *
84 * The above is the btf_verifier debug log:
85 * - Each line started with "[?]" is a btf_type object
86 * - [?] is the type_id of the btf_type object.
87 * - CONST/PTR is the BTF_KIND_XXX
88 * - "(anon)" is the name of the type. It just
89 * happens that CONST and PTR has no name.
90 * - type_id=XXX is the 'u32 type' in btf_type
91 *
92 * NOTE: "void" has type_id 0
93 *
94 * String section:
95 * ~~~~~~~~~~~~~~
96 * The BTF string section contains the names used by the type section.
97 * Each string is referred by an "offset" from the beginning of the
98 * string section.
99 *
100 * Each string is '\0' terminated.
101 *
102 * The first character in the string section must be '\0'
103 * which is used to mean 'anonymous'. Some btf_type may not
104 * have a name.
105 */
106
107/* BTF verification:
108 *
109 * To verify BTF data, two passes are needed.
110 *
111 * Pass #1
112 * ~~~~~~~
113 * The first pass is to collect all btf_type objects to
114 * an array: "btf->types".
115 *
116 * Depending on the C type that a btf_type is describing,
117 * a btf_type may be followed by extra data. We don't know
118 * how many btf_type is there, and more importantly we don't
119 * know where each btf_type is located in the type section.
120 *
121 * Without knowing the location of each type_id, most verifications
122 * cannot be done. e.g. an earlier btf_type may refer to a later
123 * btf_type (recall the "const void *" above), so we cannot
124 * check this type-reference in the first pass.
125 *
126 * In the first pass, it still does some verifications (e.g.
127 * checking the name is a valid offset to the string section).
eb3f595d
MKL
128 *
129 * Pass #2
130 * ~~~~~~~
131 * The main focus is to resolve a btf_type that is referring
132 * to another type.
133 *
134 * We have to ensure the referring type:
135 * 1) does exist in the BTF (i.e. in btf->types[])
136 * 2) does not cause a loop:
137 * struct A {
138 * struct B b;
139 * };
140 *
141 * struct B {
142 * struct A a;
143 * };
144 *
145 * btf_type_needs_resolve() decides if a btf_type needs
146 * to be resolved.
147 *
148 * The needs_resolve type implements the "resolve()" ops which
149 * essentially does a DFS and detects backedge.
150 *
151 * During resolve (or DFS), different C types have different
152 * "RESOLVED" conditions.
153 *
154 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
155 * members because a member is always referring to another
156 * type. A struct's member can be treated as "RESOLVED" if
157 * it is referring to a BTF_KIND_PTR. Otherwise, the
158 * following valid C struct would be rejected:
159 *
160 * struct A {
161 * int m;
162 * struct A *a;
163 * };
164 *
165 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
166 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
167 * detect a pointer loop, e.g.:
168 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
169 * ^ |
170 * +-----------------------------------------+
171 *
69b693f0
MKL
172 */
173
b1e8818c 174#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
175#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
176#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
177#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
178#define BITS_ROUNDUP_BYTES(bits) \
179 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
180
b1828f0b 181#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
182#define BTF_INT_MASK 0x0fffffff
183#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
184#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
185
69b693f0
MKL
186/* 16MB for 64k structs and each has 16 members and
187 * a few MB spaces for the string section.
188 * The hard limit is S32_MAX.
189 */
190#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 191
eb3f595d
MKL
192#define for_each_member_from(i, from, struct_type, member) \
193 for (i = from, member = btf_type_member(struct_type) + from; \
194 i < btf_type_vlen(struct_type); \
195 i++, member++)
196
1dc92851
DB
197#define for_each_vsi_from(i, from, struct_type, member) \
198 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
199 i < btf_type_vlen(struct_type); \
200 i++, member++)
201
1b9ed84e
QM
202DEFINE_IDR(btf_idr);
203DEFINE_SPINLOCK(btf_idr_lock);
78958fca 204
dee872e1 205enum btf_kfunc_hook {
cfe14564 206 BTF_KFUNC_HOOK_COMMON,
dee872e1
KKD
207 BTF_KFUNC_HOOK_XDP,
208 BTF_KFUNC_HOOK_TC,
209 BTF_KFUNC_HOOK_STRUCT_OPS,
97949767
BT
210 BTF_KFUNC_HOOK_TRACING,
211 BTF_KFUNC_HOOK_SYSCALL,
5b481aca 212 BTF_KFUNC_HOOK_FMODRET,
b5964b96
JK
213 BTF_KFUNC_HOOK_CGROUP_SKB,
214 BTF_KFUNC_HOOK_SCHED_ACT,
215 BTF_KFUNC_HOOK_SK_SKB,
216 BTF_KFUNC_HOOK_SOCKET_FILTER,
217 BTF_KFUNC_HOOK_LWT,
fd9c663b 218 BTF_KFUNC_HOOK_NETFILTER,
dee872e1
KKD
219 BTF_KFUNC_HOOK_MAX,
220};
221
222enum {
f9b34818 223 BTF_KFUNC_SET_MAX_CNT = 256,
5ce937d6 224 BTF_DTOR_KFUNC_MAX_CNT = 256,
dee872e1
KKD
225};
226
227struct btf_kfunc_set_tab {
a4703e31 228 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
dee872e1
KKD
229};
230
5ce937d6
KKD
231struct btf_id_dtor_kfunc_tab {
232 u32 cnt;
233 struct btf_id_dtor_kfunc dtors[];
234};
235
69b693f0 236struct btf {
f80442a4 237 void *data;
69b693f0 238 struct btf_type **types;
eb3f595d
MKL
239 u32 *resolved_ids;
240 u32 *resolved_sizes;
69b693f0
MKL
241 const char *strings;
242 void *nohdr_data;
f80442a4 243 struct btf_header hdr;
951bb646 244 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
245 u32 types_size;
246 u32 data_size;
f56a653c 247 refcount_t refcnt;
78958fca
MKL
248 u32 id;
249 struct rcu_head rcu;
dee872e1 250 struct btf_kfunc_set_tab *kfunc_set_tab;
5ce937d6 251 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
8ffa5cc1 252 struct btf_struct_metas *struct_meta_tab;
951bb646
AN
253
254 /* split BTF support */
255 struct btf *base_btf;
256 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
257 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
258 char name[MODULE_NAME_LEN];
259 bool kernel_btf;
69b693f0
MKL
260};
261
eb3f595d
MKL
262enum verifier_phase {
263 CHECK_META,
264 CHECK_TYPE,
265};
266
267struct resolve_vertex {
268 const struct btf_type *t;
269 u32 type_id;
270 u16 next_member;
271};
272
273enum visit_state {
274 NOT_VISITED,
275 VISITED,
276 RESOLVED,
277};
278
279enum resolve_mode {
280 RESOLVE_TBD, /* To Be Determined */
281 RESOLVE_PTR, /* Resolving for Pointer */
282 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
283 * or array
284 */
285};
286
287#define MAX_RESOLVE_DEPTH 32
288
f80442a4
MKL
289struct btf_sec_info {
290 u32 off;
291 u32 len;
292};
293
69b693f0
MKL
294struct btf_verifier_env {
295 struct btf *btf;
eb3f595d
MKL
296 u8 *visit_states;
297 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
298 struct bpf_verifier_log log;
299 u32 log_type_id;
eb3f595d
MKL
300 u32 top_stack;
301 enum verifier_phase phase;
302 enum resolve_mode resolve_mode;
69b693f0
MKL
303};
304
305static const char * const btf_kind_str[NR_BTF_KINDS] = {
306 [BTF_KIND_UNKN] = "UNKNOWN",
307 [BTF_KIND_INT] = "INT",
308 [BTF_KIND_PTR] = "PTR",
309 [BTF_KIND_ARRAY] = "ARRAY",
310 [BTF_KIND_STRUCT] = "STRUCT",
311 [BTF_KIND_UNION] = "UNION",
312 [BTF_KIND_ENUM] = "ENUM",
313 [BTF_KIND_FWD] = "FWD",
314 [BTF_KIND_TYPEDEF] = "TYPEDEF",
315 [BTF_KIND_VOLATILE] = "VOLATILE",
316 [BTF_KIND_CONST] = "CONST",
317 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
318 [BTF_KIND_FUNC] = "FUNC",
319 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
320 [BTF_KIND_VAR] = "VAR",
321 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 322 [BTF_KIND_FLOAT] = "FLOAT",
223f903e 323 [BTF_KIND_DECL_TAG] = "DECL_TAG",
8c42d2fa 324 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
6089fb32 325 [BTF_KIND_ENUM64] = "ENUM64",
69b693f0
MKL
326};
327
e6ac2450 328const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
329{
330 return btf_kind_str[BTF_INFO_KIND(t->info)];
331}
332
31d0bc81
AM
333/* Chunk size we use in safe copy of data to be shown. */
334#define BTF_SHOW_OBJ_SAFE_SIZE 32
335
336/*
337 * This is the maximum size of a base type value (equivalent to a
338 * 128-bit int); if we are at the end of our safe buffer and have
339 * less than 16 bytes space we can't be assured of being able
340 * to copy the next type safely, so in such cases we will initiate
341 * a new copy.
342 */
343#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
344
345/* Type name size */
346#define BTF_SHOW_NAME_SIZE 80
347
b613d335
DV
348/*
349 * The suffix of a type that indicates it cannot alias another type when
350 * comparing BTF IDs for kfunc invocations.
351 */
352#define NOCAST_ALIAS_SUFFIX "___init"
353
31d0bc81
AM
354/*
355 * Common data to all BTF show operations. Private show functions can add
356 * their own data to a structure containing a struct btf_show and consult it
357 * in the show callback. See btf_type_show() below.
358 *
359 * One challenge with showing nested data is we want to skip 0-valued
360 * data, but in order to figure out whether a nested object is all zeros
361 * we need to walk through it. As a result, we need to make two passes
362 * when handling structs, unions and arrays; the first path simply looks
363 * for nonzero data, while the second actually does the display. The first
364 * pass is signalled by show->state.depth_check being set, and if we
365 * encounter a non-zero value we set show->state.depth_to_show to
366 * the depth at which we encountered it. When we have completed the
367 * first pass, we will know if anything needs to be displayed if
368 * depth_to_show > depth. See btf_[struct,array]_show() for the
369 * implementation of this.
370 *
371 * Another problem is we want to ensure the data for display is safe to
372 * access. To support this, the anonymous "struct {} obj" tracks the data
373 * object and our safe copy of it. We copy portions of the data needed
374 * to the object "copy" buffer, but because its size is limited to
375 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
376 * traverse larger objects for display.
377 *
378 * The various data type show functions all start with a call to
379 * btf_show_start_type() which returns a pointer to the safe copy
380 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
381 * raw data itself). btf_show_obj_safe() is responsible for
382 * using copy_from_kernel_nofault() to update the safe data if necessary
383 * as we traverse the object's data. skbuff-like semantics are
384 * used:
385 *
386 * - obj.head points to the start of the toplevel object for display
387 * - obj.size is the size of the toplevel object
388 * - obj.data points to the current point in the original data at
389 * which our safe data starts. obj.data will advance as we copy
390 * portions of the data.
391 *
392 * In most cases a single copy will suffice, but larger data structures
393 * such as "struct task_struct" will require many copies. The logic in
394 * btf_show_obj_safe() handles the logic that determines if a new
395 * copy_from_kernel_nofault() is needed.
396 */
397struct btf_show {
398 u64 flags;
399 void *target; /* target of show operation (seq file, buffer) */
400 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
401 const struct btf *btf;
402 /* below are used during iteration */
403 struct {
404 u8 depth;
405 u8 depth_to_show;
406 u8 depth_check;
407 u8 array_member:1,
408 array_terminated:1;
409 u16 array_encoding;
410 u32 type_id;
411 int status; /* non-zero for error */
412 const struct btf_type *type;
413 const struct btf_member *member;
414 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
415 } state;
416 struct {
417 u32 size;
418 void *head;
419 void *data;
420 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
421 } obj;
422};
423
69b693f0
MKL
424struct btf_kind_operations {
425 s32 (*check_meta)(struct btf_verifier_env *env,
426 const struct btf_type *t,
427 u32 meta_left);
eb3f595d
MKL
428 int (*resolve)(struct btf_verifier_env *env,
429 const struct resolve_vertex *v);
179cde8c
MKL
430 int (*check_member)(struct btf_verifier_env *env,
431 const struct btf_type *struct_type,
432 const struct btf_member *member,
433 const struct btf_type *member_type);
9d5f9f70
YS
434 int (*check_kflag_member)(struct btf_verifier_env *env,
435 const struct btf_type *struct_type,
436 const struct btf_member *member,
437 const struct btf_type *member_type);
69b693f0
MKL
438 void (*log_details)(struct btf_verifier_env *env,
439 const struct btf_type *t);
31d0bc81 440 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 441 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 442 struct btf_show *show);
69b693f0
MKL
443};
444
445static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
446static struct btf_type btf_void;
447
2667a262
MKL
448static int btf_resolve(struct btf_verifier_env *env,
449 const struct btf_type *t, u32 type_id);
450
d7e7b42f
YS
451static int btf_func_check(struct btf_verifier_env *env,
452 const struct btf_type *t);
453
eb3f595d
MKL
454static bool btf_type_is_modifier(const struct btf_type *t)
455{
456 /* Some of them is not strictly a C modifier
457 * but they are grouped into the same bucket
458 * for BTF concern:
459 * A type (t) that refers to another
460 * type through t->type AND its size cannot
461 * be determined without following the t->type.
462 *
463 * ptr does not fall into this bucket
464 * because its size is always sizeof(void *).
465 */
466 switch (BTF_INFO_KIND(t->info)) {
467 case BTF_KIND_TYPEDEF:
468 case BTF_KIND_VOLATILE:
469 case BTF_KIND_CONST:
470 case BTF_KIND_RESTRICT:
8c42d2fa 471 case BTF_KIND_TYPE_TAG:
eb3f595d
MKL
472 return true;
473 }
474
475 return false;
476}
477
2824ecb7 478bool btf_type_is_void(const struct btf_type *t)
eb3f595d 479{
b47a0bd2
MKL
480 return t == &btf_void;
481}
482
483static bool btf_type_is_fwd(const struct btf_type *t)
484{
485 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
486}
487
488static bool btf_type_nosize(const struct btf_type *t)
489{
2667a262
MKL
490 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
491 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
492}
493
b47a0bd2 494static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 495{
b47a0bd2 496 return !t || btf_type_nosize(t);
eb3f595d
MKL
497}
498
1dc92851
DB
499static bool btf_type_is_datasec(const struct btf_type *t)
500{
501 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
502}
503
223f903e 504static bool btf_type_is_decl_tag(const struct btf_type *t)
b5ea834d 505{
223f903e 506 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
b5ea834d
YS
507}
508
223f903e 509static bool btf_type_is_decl_tag_target(const struct btf_type *t)
b5ea834d
YS
510{
511 return btf_type_is_func(t) || btf_type_is_struct(t) ||
bd16dee6 512 btf_type_is_var(t) || btf_type_is_typedef(t);
b5ea834d
YS
513}
514
541c3bad 515u32 btf_nr_types(const struct btf *btf)
951bb646
AN
516{
517 u32 total = 0;
518
519 while (btf) {
520 total += btf->nr_types;
521 btf = btf->base_btf;
522 }
523
524 return total;
525}
526
27ae7997
MKL
527s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
528{
529 const struct btf_type *t;
530 const char *tname;
951bb646 531 u32 i, total;
27ae7997 532
541c3bad 533 total = btf_nr_types(btf);
951bb646
AN
534 for (i = 1; i < total; i++) {
535 t = btf_type_by_id(btf, i);
27ae7997
MKL
536 if (BTF_INFO_KIND(t->info) != kind)
537 continue;
538
539 tname = btf_name_by_offset(btf, t->name_off);
540 if (!strcmp(tname, name))
541 return i;
542 }
543
544 return -ENOENT;
545}
546
edc3ec09
KKD
547static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
548{
549 struct btf *btf;
550 s32 ret;
551 int id;
552
553 btf = bpf_get_btf_vmlinux();
554 if (IS_ERR(btf))
555 return PTR_ERR(btf);
7ada3787
KKD
556 if (!btf)
557 return -EINVAL;
edc3ec09
KKD
558
559 ret = btf_find_by_name_kind(btf, name, kind);
560 /* ret is never zero, since btf_find_by_name_kind returns
561 * positive btf_id or negative error.
562 */
563 if (ret > 0) {
564 btf_get(btf);
565 *btf_p = btf;
566 return ret;
567 }
568
569 /* If name is not found in vmlinux's BTF then search in module's BTFs */
570 spin_lock_bh(&btf_idr_lock);
571 idr_for_each_entry(&btf_idr, btf, id) {
572 if (!btf_is_module(btf))
573 continue;
574 /* linear search could be slow hence unlock/lock
575 * the IDR to avoiding holding it for too long
576 */
577 btf_get(btf);
578 spin_unlock_bh(&btf_idr_lock);
579 ret = btf_find_by_name_kind(btf, name, kind);
580 if (ret > 0) {
581 *btf_p = btf;
582 return ret;
583 }
edc3ec09 584 btf_put(btf);
acf1c3d6 585 spin_lock_bh(&btf_idr_lock);
edc3ec09
KKD
586 }
587 spin_unlock_bh(&btf_idr_lock);
588 return ret;
589}
590
27ae7997
MKL
591const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
592 u32 id, u32 *res_id)
593{
594 const struct btf_type *t = btf_type_by_id(btf, id);
595
596 while (btf_type_is_modifier(t)) {
597 id = t->type;
598 t = btf_type_by_id(btf, t->type);
599 }
600
601 if (res_id)
602 *res_id = id;
603
604 return t;
605}
606
607const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
608 u32 id, u32 *res_id)
609{
610 const struct btf_type *t;
611
612 t = btf_type_skip_modifiers(btf, id, NULL);
613 if (!btf_type_is_ptr(t))
614 return NULL;
615
616 return btf_type_skip_modifiers(btf, t->type, res_id);
617}
618
619const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
620 u32 id, u32 *res_id)
621{
622 const struct btf_type *ptype;
623
624 ptype = btf_type_resolve_ptr(btf, id, res_id);
625 if (ptype && btf_type_is_func_proto(ptype))
626 return ptype;
627
628 return NULL;
629}
630
1dc92851
DB
631/* Types that act only as a source, not sink or intermediate
632 * type when resolving.
633 */
634static bool btf_type_is_resolve_source_only(const struct btf_type *t)
635{
636 return btf_type_is_var(t) ||
223f903e 637 btf_type_is_decl_tag(t) ||
1dc92851
DB
638 btf_type_is_datasec(t);
639}
640
eb3f595d
MKL
641/* What types need to be resolved?
642 *
643 * btf_type_is_modifier() is an obvious one.
644 *
645 * btf_type_is_struct() because its member refers to
646 * another type (through member->type).
1dc92851
DB
647 *
648 * btf_type_is_var() because the variable refers to
649 * another type. btf_type_is_datasec() holds multiple
650 * btf_type_is_var() types that need resolving.
651 *
eb3f595d
MKL
652 * btf_type_is_array() because its element (array->type)
653 * refers to another type. Array can be thought of a
654 * special case of struct while array just has the same
655 * member-type repeated by array->nelems of times.
656 */
657static bool btf_type_needs_resolve(const struct btf_type *t)
658{
659 return btf_type_is_modifier(t) ||
1dc92851
DB
660 btf_type_is_ptr(t) ||
661 btf_type_is_struct(t) ||
662 btf_type_is_array(t) ||
663 btf_type_is_var(t) ||
d7e7b42f 664 btf_type_is_func(t) ||
223f903e 665 btf_type_is_decl_tag(t) ||
1dc92851 666 btf_type_is_datasec(t);
eb3f595d
MKL
667}
668
669/* t->size can be used */
670static bool btf_type_has_size(const struct btf_type *t)
671{
672 switch (BTF_INFO_KIND(t->info)) {
673 case BTF_KIND_INT:
674 case BTF_KIND_STRUCT:
675 case BTF_KIND_UNION:
676 case BTF_KIND_ENUM:
1dc92851 677 case BTF_KIND_DATASEC:
b1828f0b 678 case BTF_KIND_FLOAT:
6089fb32 679 case BTF_KIND_ENUM64:
eb3f595d
MKL
680 return true;
681 }
682
683 return false;
684}
685
69b693f0
MKL
686static const char *btf_int_encoding_str(u8 encoding)
687{
688 if (encoding == 0)
689 return "(none)";
690 else if (encoding == BTF_INT_SIGNED)
691 return "SIGNED";
692 else if (encoding == BTF_INT_CHAR)
693 return "CHAR";
694 else if (encoding == BTF_INT_BOOL)
695 return "BOOL";
69b693f0
MKL
696 else
697 return "UNKN";
698}
699
69b693f0
MKL
700static u32 btf_type_int(const struct btf_type *t)
701{
702 return *(u32 *)(t + 1);
703}
704
705static const struct btf_array *btf_type_array(const struct btf_type *t)
706{
707 return (const struct btf_array *)(t + 1);
708}
709
69b693f0
MKL
710static const struct btf_enum *btf_type_enum(const struct btf_type *t)
711{
712 return (const struct btf_enum *)(t + 1);
713}
714
1dc92851
DB
715static const struct btf_var *btf_type_var(const struct btf_type *t)
716{
717 return (const struct btf_var *)(t + 1);
718}
719
223f903e 720static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
b5ea834d 721{
223f903e 722 return (const struct btf_decl_tag *)(t + 1);
b5ea834d
YS
723}
724
6089fb32
YS
725static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
726{
727 return (const struct btf_enum64 *)(t + 1);
728}
729
69b693f0
MKL
730static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
731{
732 return kind_ops[BTF_INFO_KIND(t->info)];
733}
734
583c5318 735static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 736{
951bb646
AN
737 if (!BTF_STR_OFFSET_VALID(offset))
738 return false;
739
740 while (offset < btf->start_str_off)
741 btf = btf->base_btf;
742
743 offset -= btf->start_str_off;
744 return offset < btf->hdr.str_len;
69b693f0
MKL
745}
746
1dc92851
DB
747static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
748{
749 if ((first ? !isalpha(c) :
750 !isalnum(c)) &&
751 c != '_' &&
752 ((c == '.' && !dot_ok) ||
753 c != '.'))
754 return false;
755 return true;
756}
757
951bb646
AN
758static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
759{
760 while (offset < btf->start_str_off)
761 btf = btf->base_btf;
762
763 offset -= btf->start_str_off;
764 if (offset < btf->hdr.str_len)
765 return &btf->strings[offset];
766
767 return NULL;
768}
769
1dc92851 770static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
771{
772 /* offset must be valid */
951bb646 773 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
774 const char *src_limit;
775
1dc92851 776 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
777 return false;
778
779 /* set a limit on identifier length */
780 src_limit = src + KSYM_NAME_LEN;
781 src++;
782 while (*src && src < src_limit) {
1dc92851 783 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
784 return false;
785 src++;
786 }
787
788 return !*src;
789}
790
1dc92851
DB
791/* Only C-style identifier is permitted. This can be relaxed if
792 * necessary.
793 */
794static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
795{
796 return __btf_name_valid(btf, offset, false);
797}
798
799static bool btf_name_valid_section(const struct btf *btf, u32 offset)
800{
801 return __btf_name_valid(btf, offset, true);
802}
803
23127b33 804static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 805{
951bb646
AN
806 const char *name;
807
aea2f7b8 808 if (!offset)
69b693f0 809 return "(anon)";
951bb646
AN
810
811 name = btf_str_by_offset(btf, offset);
812 return name ?: "(invalid-name-offset)";
69b693f0
MKL
813}
814
23127b33
MKL
815const char *btf_name_by_offset(const struct btf *btf, u32 offset)
816{
951bb646 817 return btf_str_by_offset(btf, offset);
23127b33
MKL
818}
819
838e9690 820const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 821{
951bb646
AN
822 while (type_id < btf->start_id)
823 btf = btf->base_btf;
eb3f595d 824
951bb646
AN
825 type_id -= btf->start_id;
826 if (type_id >= btf->nr_types)
827 return NULL;
eb3f595d
MKL
828 return btf->types[type_id];
829}
84c6ac41 830EXPORT_SYMBOL_GPL(btf_type_by_id);
eb3f595d 831
4ef5f574
MKL
832/*
833 * Regular int is not a bit field and it must be either
b1e8818c 834 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
835 */
836static bool btf_type_int_is_regular(const struct btf_type *t)
837{
36fc3c8c 838 u8 nr_bits, nr_bytes;
4ef5f574
MKL
839 u32 int_data;
840
841 int_data = btf_type_int(t);
842 nr_bits = BTF_INT_BITS(int_data);
843 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
844 if (BITS_PER_BYTE_MASKED(nr_bits) ||
845 BTF_INT_OFFSET(int_data) ||
846 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
847 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
848 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
849 return false;
850 }
851
852 return true;
853}
854
9a1126b6 855/*
ffa0c1cf
YS
856 * Check that given struct member is a regular int with expected
857 * offset and size.
9a1126b6 858 */
ffa0c1cf
YS
859bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
860 const struct btf_member *m,
861 u32 expected_offset, u32 expected_size)
9a1126b6 862{
ffa0c1cf
YS
863 const struct btf_type *t;
864 u32 id, int_data;
865 u8 nr_bits;
9a1126b6 866
ffa0c1cf
YS
867 id = m->type;
868 t = btf_type_id_size(btf, &id, NULL);
869 if (!t || !btf_type_is_int(t))
9a1126b6
RG
870 return false;
871
872 int_data = btf_type_int(t);
873 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
874 if (btf_type_kflag(s)) {
875 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
876 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
877
878 /* if kflag set, int should be a regular int and
879 * bit offset should be at byte boundary.
880 */
881 return !bitfield_size &&
882 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
883 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
884 }
885
886 if (BTF_INT_OFFSET(int_data) ||
887 BITS_PER_BYTE_MASKED(m->offset) ||
888 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
889 BITS_PER_BYTE_MASKED(nr_bits) ||
890 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
891 return false;
892
893 return true;
894}
895
31d0bc81
AM
896/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
897static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
898 u32 id)
899{
900 const struct btf_type *t = btf_type_by_id(btf, id);
901
902 while (btf_type_is_modifier(t) &&
903 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
904 t = btf_type_by_id(btf, t->type);
905 }
906
907 return t;
908}
909
910#define BTF_SHOW_MAX_ITER 10
911
912#define BTF_KIND_BIT(kind) (1ULL << kind)
913
914/*
915 * Populate show->state.name with type name information.
916 * Format of type name is
917 *
918 * [.member_name = ] (type_name)
919 */
920static const char *btf_show_name(struct btf_show *show)
921{
922 /* BTF_MAX_ITER array suffixes "[]" */
923 const char *array_suffixes = "[][][][][][][][][][]";
924 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
925 /* BTF_MAX_ITER pointer suffixes "*" */
926 const char *ptr_suffixes = "**********";
927 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
928 const char *name = NULL, *prefix = "", *parens = "";
929 const struct btf_member *m = show->state.member;
73b6eae5 930 const struct btf_type *t;
31d0bc81
AM
931 const struct btf_array *array;
932 u32 id = show->state.type_id;
933 const char *member = NULL;
934 bool show_member = false;
935 u64 kinds = 0;
936 int i;
937
938 show->state.name[0] = '\0';
939
940 /*
941 * Don't show type name if we're showing an array member;
942 * in that case we show the array type so don't need to repeat
943 * ourselves for each member.
944 */
945 if (show->state.array_member)
946 return "";
947
948 /* Retrieve member name, if any. */
949 if (m) {
950 member = btf_name_by_offset(show->btf, m->name_off);
951 show_member = strlen(member) > 0;
952 id = m->type;
953 }
954
955 /*
956 * Start with type_id, as we have resolved the struct btf_type *
957 * via btf_modifier_show() past the parent typedef to the child
958 * struct, int etc it is defined as. In such cases, the type_id
959 * still represents the starting type while the struct btf_type *
960 * in our show->state points at the resolved type of the typedef.
961 */
962 t = btf_type_by_id(show->btf, id);
963 if (!t)
964 return "";
965
966 /*
967 * The goal here is to build up the right number of pointer and
968 * array suffixes while ensuring the type name for a typedef
969 * is represented. Along the way we accumulate a list of
970 * BTF kinds we have encountered, since these will inform later
971 * display; for example, pointer types will not require an
972 * opening "{" for struct, we will just display the pointer value.
973 *
974 * We also want to accumulate the right number of pointer or array
975 * indices in the format string while iterating until we get to
976 * the typedef/pointee/array member target type.
977 *
978 * We start by pointing at the end of pointer and array suffix
979 * strings; as we accumulate pointers and arrays we move the pointer
980 * or array string backwards so it will show the expected number of
981 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
982 * and/or arrays and typedefs are supported as a precaution.
983 *
984 * We also want to get typedef name while proceeding to resolve
985 * type it points to so that we can add parentheses if it is a
986 * "typedef struct" etc.
987 */
988 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
989
990 switch (BTF_INFO_KIND(t->info)) {
991 case BTF_KIND_TYPEDEF:
992 if (!name)
993 name = btf_name_by_offset(show->btf,
994 t->name_off);
995 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
996 id = t->type;
997 break;
998 case BTF_KIND_ARRAY:
999 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1000 parens = "[";
1001 if (!t)
1002 return "";
1003 array = btf_type_array(t);
1004 if (array_suffix > array_suffixes)
1005 array_suffix -= 2;
1006 id = array->type;
1007 break;
1008 case BTF_KIND_PTR:
1009 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1010 if (ptr_suffix > ptr_suffixes)
1011 ptr_suffix -= 1;
1012 id = t->type;
1013 break;
1014 default:
1015 id = 0;
1016 break;
1017 }
1018 if (!id)
1019 break;
1020 t = btf_type_skip_qualifiers(show->btf, id);
1021 }
1022 /* We may not be able to represent this type; bail to be safe */
1023 if (i == BTF_SHOW_MAX_ITER)
1024 return "";
1025
1026 if (!name)
1027 name = btf_name_by_offset(show->btf, t->name_off);
1028
1029 switch (BTF_INFO_KIND(t->info)) {
1030 case BTF_KIND_STRUCT:
1031 case BTF_KIND_UNION:
1032 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1033 "struct" : "union";
1034 /* if it's an array of struct/union, parens is already set */
1035 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1036 parens = "{";
1037 break;
1038 case BTF_KIND_ENUM:
6089fb32 1039 case BTF_KIND_ENUM64:
31d0bc81
AM
1040 prefix = "enum";
1041 break;
1042 default:
1043 break;
1044 }
1045
1046 /* pointer does not require parens */
1047 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1048 parens = "";
1049 /* typedef does not require struct/union/enum prefix */
1050 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1051 prefix = "";
1052
1053 if (!name)
1054 name = "";
1055
1056 /* Even if we don't want type name info, we want parentheses etc */
1057 if (show->flags & BTF_SHOW_NONAME)
1058 snprintf(show->state.name, sizeof(show->state.name), "%s",
1059 parens);
1060 else
1061 snprintf(show->state.name, sizeof(show->state.name),
1062 "%s%s%s(%s%s%s%s%s%s)%s",
1063 /* first 3 strings comprise ".member = " */
1064 show_member ? "." : "",
1065 show_member ? member : "",
1066 show_member ? " = " : "",
1067 /* ...next is our prefix (struct, enum, etc) */
1068 prefix,
1069 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1070 /* ...this is the type name itself */
1071 name,
1072 /* ...suffixed by the appropriate '*', '[]' suffixes */
1073 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1074 array_suffix, parens);
1075
1076 return show->state.name;
1077}
1078
1079static const char *__btf_show_indent(struct btf_show *show)
1080{
1081 const char *indents = " ";
1082 const char *indent = &indents[strlen(indents)];
1083
1084 if ((indent - show->state.depth) >= indents)
1085 return indent - show->state.depth;
1086 return indents;
1087}
1088
1089static const char *btf_show_indent(struct btf_show *show)
1090{
1091 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1092}
1093
1094static const char *btf_show_newline(struct btf_show *show)
1095{
1096 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1097}
1098
1099static const char *btf_show_delim(struct btf_show *show)
1100{
1101 if (show->state.depth == 0)
1102 return "";
1103
1104 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1105 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1106 return "|";
1107
1108 return ",";
1109}
1110
1111__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1112{
1113 va_list args;
1114
1115 if (!show->state.depth_check) {
1116 va_start(args, fmt);
1117 show->showfn(show, fmt, args);
1118 va_end(args);
1119 }
1120}
1121
1122/* Macros are used here as btf_show_type_value[s]() prepends and appends
1123 * format specifiers to the format specifier passed in; these do the work of
1124 * adding indentation, delimiters etc while the caller simply has to specify
1125 * the type value(s) in the format specifier + value(s).
1126 */
1127#define btf_show_type_value(show, fmt, value) \
1128 do { \
a2a5580f
BD
1129 if ((value) != (__typeof__(value))0 || \
1130 (show->flags & BTF_SHOW_ZERO) || \
31d0bc81
AM
1131 show->state.depth == 0) { \
1132 btf_show(show, "%s%s" fmt "%s%s", \
1133 btf_show_indent(show), \
1134 btf_show_name(show), \
1135 value, btf_show_delim(show), \
1136 btf_show_newline(show)); \
1137 if (show->state.depth > show->state.depth_to_show) \
1138 show->state.depth_to_show = show->state.depth; \
1139 } \
1140 } while (0)
1141
1142#define btf_show_type_values(show, fmt, ...) \
1143 do { \
1144 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1145 btf_show_name(show), \
1146 __VA_ARGS__, btf_show_delim(show), \
1147 btf_show_newline(show)); \
1148 if (show->state.depth > show->state.depth_to_show) \
1149 show->state.depth_to_show = show->state.depth; \
1150 } while (0)
1151
1152/* How much is left to copy to safe buffer after @data? */
1153static int btf_show_obj_size_left(struct btf_show *show, void *data)
1154{
1155 return show->obj.head + show->obj.size - data;
1156}
1157
1158/* Is object pointed to by @data of @size already copied to our safe buffer? */
1159static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1160{
1161 return data >= show->obj.data &&
1162 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1163}
1164
1165/*
1166 * If object pointed to by @data of @size falls within our safe buffer, return
1167 * the equivalent pointer to the same safe data. Assumes
1168 * copy_from_kernel_nofault() has already happened and our safe buffer is
1169 * populated.
1170 */
1171static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1172{
1173 if (btf_show_obj_is_safe(show, data, size))
1174 return show->obj.safe + (data - show->obj.data);
1175 return NULL;
1176}
1177
1178/*
1179 * Return a safe-to-access version of data pointed to by @data.
1180 * We do this by copying the relevant amount of information
1181 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1182 *
1183 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1184 * safe copy is needed.
1185 *
1186 * Otherwise we need to determine if we have the required amount
1187 * of data (determined by the @data pointer and the size of the
1188 * largest base type we can encounter (represented by
1189 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1190 * that we will be able to print some of the current object,
1191 * and if more is needed a copy will be triggered.
1192 * Some objects such as structs will not fit into the buffer;
1193 * in such cases additional copies when we iterate over their
1194 * members may be needed.
1195 *
1196 * btf_show_obj_safe() is used to return a safe buffer for
1197 * btf_show_start_type(); this ensures that as we recurse into
1198 * nested types we always have safe data for the given type.
1199 * This approach is somewhat wasteful; it's possible for example
1200 * that when iterating over a large union we'll end up copying the
1201 * same data repeatedly, but the goal is safety not performance.
1202 * We use stack data as opposed to per-CPU buffers because the
1203 * iteration over a type can take some time, and preemption handling
1204 * would greatly complicate use of the safe buffer.
1205 */
1206static void *btf_show_obj_safe(struct btf_show *show,
1207 const struct btf_type *t,
1208 void *data)
1209{
1210 const struct btf_type *rt;
1211 int size_left, size;
1212 void *safe = NULL;
1213
1214 if (show->flags & BTF_SHOW_UNSAFE)
1215 return data;
1216
1217 rt = btf_resolve_size(show->btf, t, &size);
1218 if (IS_ERR(rt)) {
1219 show->state.status = PTR_ERR(rt);
1220 return NULL;
1221 }
1222
1223 /*
1224 * Is this toplevel object? If so, set total object size and
1225 * initialize pointers. Otherwise check if we still fall within
1226 * our safe object data.
1227 */
1228 if (show->state.depth == 0) {
1229 show->obj.size = size;
1230 show->obj.head = data;
1231 } else {
1232 /*
1233 * If the size of the current object is > our remaining
1234 * safe buffer we _may_ need to do a new copy. However
1235 * consider the case of a nested struct; it's size pushes
1236 * us over the safe buffer limit, but showing any individual
1237 * struct members does not. In such cases, we don't need
1238 * to initiate a fresh copy yet; however we definitely need
1239 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1240 * in our buffer, regardless of the current object size.
1241 * The logic here is that as we resolve types we will
1242 * hit a base type at some point, and we need to be sure
1243 * the next chunk of data is safely available to display
1244 * that type info safely. We cannot rely on the size of
1245 * the current object here because it may be much larger
1246 * than our current buffer (e.g. task_struct is 8k).
1247 * All we want to do here is ensure that we can print the
1248 * next basic type, which we can if either
1249 * - the current type size is within the safe buffer; or
1250 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1251 * the safe buffer.
1252 */
1253 safe = __btf_show_obj_safe(show, data,
1254 min(size,
1255 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1256 }
1257
1258 /*
1259 * We need a new copy to our safe object, either because we haven't
8fb33b60 1260 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1261 * we want falls outside the boundaries of the safe object.
1262 */
1263 if (!safe) {
1264 size_left = btf_show_obj_size_left(show, data);
1265 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1266 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1267 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1268 data, size_left);
1269 if (!show->state.status) {
1270 show->obj.data = data;
1271 safe = show->obj.safe;
1272 }
1273 }
1274
1275 return safe;
1276}
1277
1278/*
1279 * Set the type we are starting to show and return a safe data pointer
1280 * to be used for showing the associated data.
1281 */
1282static void *btf_show_start_type(struct btf_show *show,
1283 const struct btf_type *t,
1284 u32 type_id, void *data)
1285{
1286 show->state.type = t;
1287 show->state.type_id = type_id;
1288 show->state.name[0] = '\0';
1289
1290 return btf_show_obj_safe(show, t, data);
1291}
1292
1293static void btf_show_end_type(struct btf_show *show)
1294{
1295 show->state.type = NULL;
1296 show->state.type_id = 0;
1297 show->state.name[0] = '\0';
1298}
1299
1300static void *btf_show_start_aggr_type(struct btf_show *show,
1301 const struct btf_type *t,
1302 u32 type_id, void *data)
1303{
1304 void *safe_data = btf_show_start_type(show, t, type_id, data);
1305
1306 if (!safe_data)
1307 return safe_data;
1308
1309 btf_show(show, "%s%s%s", btf_show_indent(show),
1310 btf_show_name(show),
1311 btf_show_newline(show));
1312 show->state.depth++;
1313 return safe_data;
1314}
1315
1316static void btf_show_end_aggr_type(struct btf_show *show,
1317 const char *suffix)
1318{
1319 show->state.depth--;
1320 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1321 btf_show_delim(show), btf_show_newline(show));
1322 btf_show_end_type(show);
1323}
1324
1325static void btf_show_start_member(struct btf_show *show,
1326 const struct btf_member *m)
1327{
1328 show->state.member = m;
1329}
1330
1331static void btf_show_start_array_member(struct btf_show *show)
1332{
1333 show->state.array_member = 1;
1334 btf_show_start_member(show, NULL);
1335}
1336
1337static void btf_show_end_member(struct btf_show *show)
1338{
1339 show->state.member = NULL;
1340}
1341
1342static void btf_show_end_array_member(struct btf_show *show)
1343{
1344 show->state.array_member = 0;
1345 btf_show_end_member(show);
1346}
1347
1348static void *btf_show_start_array_type(struct btf_show *show,
1349 const struct btf_type *t,
1350 u32 type_id,
1351 u16 array_encoding,
1352 void *data)
1353{
1354 show->state.array_encoding = array_encoding;
1355 show->state.array_terminated = 0;
1356 return btf_show_start_aggr_type(show, t, type_id, data);
1357}
1358
1359static void btf_show_end_array_type(struct btf_show *show)
1360{
1361 show->state.array_encoding = 0;
1362 show->state.array_terminated = 0;
1363 btf_show_end_aggr_type(show, "]");
1364}
1365
1366static void *btf_show_start_struct_type(struct btf_show *show,
1367 const struct btf_type *t,
1368 u32 type_id,
1369 void *data)
1370{
1371 return btf_show_start_aggr_type(show, t, type_id, data);
1372}
1373
1374static void btf_show_end_struct_type(struct btf_show *show)
1375{
1376 btf_show_end_aggr_type(show, "}");
1377}
1378
69b693f0
MKL
1379__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1380 const char *fmt, ...)
1381{
1382 va_list args;
1383
1384 va_start(args, fmt);
1385 bpf_verifier_vlog(log, fmt, args);
1386 va_end(args);
1387}
1388
1389__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1390 const char *fmt, ...)
1391{
1392 struct bpf_verifier_log *log = &env->log;
1393 va_list args;
1394
1395 if (!bpf_verifier_log_needed(log))
1396 return;
1397
1398 va_start(args, fmt);
1399 bpf_verifier_vlog(log, fmt, args);
1400 va_end(args);
1401}
1402
1403__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1404 const struct btf_type *t,
1405 bool log_details,
1406 const char *fmt, ...)
1407{
1408 struct bpf_verifier_log *log = &env->log;
69b693f0
MKL
1409 struct btf *btf = env->btf;
1410 va_list args;
1411
1412 if (!bpf_verifier_log_needed(log))
1413 return;
1414
9cb61e50
CB
1415 if (log->level == BPF_LOG_KERNEL) {
1416 /* btf verifier prints all types it is processing via
1417 * btf_verifier_log_type(..., fmt = NULL).
1418 * Skip those prints for in-kernel BTF verification.
1419 */
1420 if (!fmt)
1421 return;
1422
1423 /* Skip logging when loading module BTF with mismatches permitted */
1424 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1425 return;
1426 }
8580ac94 1427
69b693f0
MKL
1428 __btf_verifier_log(log, "[%u] %s %s%s",
1429 env->log_type_id,
571f9738 1430 btf_type_str(t),
23127b33 1431 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1432 log_details ? " " : "");
1433
1434 if (log_details)
1435 btf_type_ops(t)->log_details(env, t);
1436
1437 if (fmt && *fmt) {
1438 __btf_verifier_log(log, " ");
1439 va_start(args, fmt);
1440 bpf_verifier_vlog(log, fmt, args);
1441 va_end(args);
1442 }
1443
1444 __btf_verifier_log(log, "\n");
1445}
1446
1447#define btf_verifier_log_type(env, t, ...) \
1448 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1449#define btf_verifier_log_basic(env, t, ...) \
1450 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1451
1452__printf(4, 5)
1453static void btf_verifier_log_member(struct btf_verifier_env *env,
1454 const struct btf_type *struct_type,
1455 const struct btf_member *member,
1456 const char *fmt, ...)
1457{
1458 struct bpf_verifier_log *log = &env->log;
1459 struct btf *btf = env->btf;
1460 va_list args;
1461
1462 if (!bpf_verifier_log_needed(log))
1463 return;
1464
9cb61e50
CB
1465 if (log->level == BPF_LOG_KERNEL) {
1466 if (!fmt)
1467 return;
1468
1469 /* Skip logging when loading module BTF with mismatches permitted */
1470 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1471 return;
1472 }
1473
eb3f595d
MKL
1474 /* The CHECK_META phase already did a btf dump.
1475 *
1476 * If member is logged again, it must hit an error in
1477 * parsing this member. It is useful to print out which
1478 * struct this member belongs to.
1479 */
1480 if (env->phase != CHECK_META)
1481 btf_verifier_log_type(env, struct_type, NULL);
1482
9d5f9f70
YS
1483 if (btf_type_kflag(struct_type))
1484 __btf_verifier_log(log,
1485 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1486 __btf_name_by_offset(btf, member->name_off),
1487 member->type,
1488 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1489 BTF_MEMBER_BIT_OFFSET(member->offset));
1490 else
1491 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1492 __btf_name_by_offset(btf, member->name_off),
1493 member->type, member->offset);
69b693f0
MKL
1494
1495 if (fmt && *fmt) {
1496 __btf_verifier_log(log, " ");
1497 va_start(args, fmt);
1498 bpf_verifier_vlog(log, fmt, args);
1499 va_end(args);
1500 }
1501
1502 __btf_verifier_log(log, "\n");
1503}
1504
1dc92851
DB
1505__printf(4, 5)
1506static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1507 const struct btf_type *datasec_type,
1508 const struct btf_var_secinfo *vsi,
1509 const char *fmt, ...)
1510{
1511 struct bpf_verifier_log *log = &env->log;
1512 va_list args;
1513
1514 if (!bpf_verifier_log_needed(log))
1515 return;
8580ac94
AS
1516 if (log->level == BPF_LOG_KERNEL && !fmt)
1517 return;
1dc92851
DB
1518 if (env->phase != CHECK_META)
1519 btf_verifier_log_type(env, datasec_type, NULL);
1520
1521 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1522 vsi->type, vsi->offset, vsi->size);
1523 if (fmt && *fmt) {
1524 __btf_verifier_log(log, " ");
1525 va_start(args, fmt);
1526 bpf_verifier_vlog(log, fmt, args);
1527 va_end(args);
1528 }
1529
1530 __btf_verifier_log(log, "\n");
1531}
1532
f80442a4
MKL
1533static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1534 u32 btf_data_size)
69b693f0
MKL
1535{
1536 struct bpf_verifier_log *log = &env->log;
1537 const struct btf *btf = env->btf;
1538 const struct btf_header *hdr;
1539
1540 if (!bpf_verifier_log_needed(log))
1541 return;
1542
8580ac94
AS
1543 if (log->level == BPF_LOG_KERNEL)
1544 return;
f80442a4 1545 hdr = &btf->hdr;
69b693f0
MKL
1546 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1547 __btf_verifier_log(log, "version: %u\n", hdr->version);
1548 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1549 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1550 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1551 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1552 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1553 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1554 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1555}
1556
1557static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1558{
1559 struct btf *btf = env->btf;
1560
951bb646 1561 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1562 /* Expand 'types' array */
1563
1564 struct btf_type **new_types;
1565 u32 expand_by, new_size;
1566
951bb646 1567 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1568 btf_verifier_log(env, "Exceeded max num of types");
1569 return -E2BIG;
1570 }
1571
1572 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1573 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1574 btf->types_size + expand_by);
1575
778e1cdd 1576 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1577 GFP_KERNEL | __GFP_NOWARN);
1578 if (!new_types)
1579 return -ENOMEM;
1580
951bb646
AN
1581 if (btf->nr_types == 0) {
1582 if (!btf->base_btf) {
1583 /* lazily init VOID type */
1584 new_types[0] = &btf_void;
1585 btf->nr_types++;
1586 }
1587 } else {
69b693f0 1588 memcpy(new_types, btf->types,
951bb646
AN
1589 sizeof(*btf->types) * btf->nr_types);
1590 }
69b693f0
MKL
1591
1592 kvfree(btf->types);
1593 btf->types = new_types;
1594 btf->types_size = new_size;
1595 }
1596
951bb646 1597 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1598
1599 return 0;
1600}
1601
78958fca
MKL
1602static int btf_alloc_id(struct btf *btf)
1603{
1604 int id;
1605
1606 idr_preload(GFP_KERNEL);
1607 spin_lock_bh(&btf_idr_lock);
1608 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1609 if (id > 0)
1610 btf->id = id;
1611 spin_unlock_bh(&btf_idr_lock);
1612 idr_preload_end();
1613
1614 if (WARN_ON_ONCE(!id))
1615 return -ENOSPC;
1616
1617 return id > 0 ? 0 : id;
1618}
1619
1620static void btf_free_id(struct btf *btf)
1621{
1622 unsigned long flags;
1623
1624 /*
1625 * In map-in-map, calling map_delete_elem() on outer
1626 * map will call bpf_map_put on the inner map.
1627 * It will then eventually call btf_free_id()
1628 * on the inner map. Some of the map_delete_elem()
1629 * implementation may have irq disabled, so
1630 * we need to use the _irqsave() version instead
1631 * of the _bh() version.
1632 */
1633 spin_lock_irqsave(&btf_idr_lock, flags);
1634 idr_remove(&btf_idr, btf->id);
1635 spin_unlock_irqrestore(&btf_idr_lock, flags);
1636}
1637
dee872e1
KKD
1638static void btf_free_kfunc_set_tab(struct btf *btf)
1639{
1640 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
a4703e31 1641 int hook;
dee872e1
KKD
1642
1643 if (!tab)
1644 return;
1645 /* For module BTF, we directly assign the sets being registered, so
1646 * there is nothing to free except kfunc_set_tab.
1647 */
1648 if (btf_is_module(btf))
1649 goto free_tab;
a4703e31
KKD
1650 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1651 kfree(tab->sets[hook]);
dee872e1
KKD
1652free_tab:
1653 kfree(tab);
1654 btf->kfunc_set_tab = NULL;
1655}
1656
5ce937d6
KKD
1657static void btf_free_dtor_kfunc_tab(struct btf *btf)
1658{
1659 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1660
1661 if (!tab)
1662 return;
1663 kfree(tab);
1664 btf->dtor_kfunc_tab = NULL;
1665}
1666
8ffa5cc1
KKD
1667static void btf_struct_metas_free(struct btf_struct_metas *tab)
1668{
1669 int i;
1670
1671 if (!tab)
1672 return;
cd2a8079 1673 for (i = 0; i < tab->cnt; i++)
8ffa5cc1 1674 btf_record_free(tab->types[i].record);
8ffa5cc1
KKD
1675 kfree(tab);
1676}
1677
1678static void btf_free_struct_meta_tab(struct btf *btf)
1679{
1680 struct btf_struct_metas *tab = btf->struct_meta_tab;
1681
1682 btf_struct_metas_free(tab);
1683 btf->struct_meta_tab = NULL;
1684}
1685
69b693f0
MKL
1686static void btf_free(struct btf *btf)
1687{
8ffa5cc1 1688 btf_free_struct_meta_tab(btf);
5ce937d6 1689 btf_free_dtor_kfunc_tab(btf);
dee872e1 1690 btf_free_kfunc_set_tab(btf);
69b693f0 1691 kvfree(btf->types);
eb3f595d
MKL
1692 kvfree(btf->resolved_sizes);
1693 kvfree(btf->resolved_ids);
69b693f0
MKL
1694 kvfree(btf->data);
1695 kfree(btf);
1696}
1697
78958fca 1698static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1699{
78958fca
MKL
1700 struct btf *btf = container_of(rcu, struct btf, rcu);
1701
1702 btf_free(btf);
f56a653c
MKL
1703}
1704
22dc4a0f
AN
1705void btf_get(struct btf *btf)
1706{
1707 refcount_inc(&btf->refcnt);
1708}
1709
f56a653c
MKL
1710void btf_put(struct btf *btf)
1711{
78958fca
MKL
1712 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1713 btf_free_id(btf);
1714 call_rcu(&btf->rcu, btf_free_rcu);
1715 }
f56a653c
MKL
1716}
1717
eb3f595d
MKL
1718static int env_resolve_init(struct btf_verifier_env *env)
1719{
1720 struct btf *btf = env->btf;
1721 u32 nr_types = btf->nr_types;
1722 u32 *resolved_sizes = NULL;
1723 u32 *resolved_ids = NULL;
1724 u8 *visit_states = NULL;
1725
951bb646 1726 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1727 GFP_KERNEL | __GFP_NOWARN);
1728 if (!resolved_sizes)
1729 goto nomem;
1730
951bb646 1731 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1732 GFP_KERNEL | __GFP_NOWARN);
1733 if (!resolved_ids)
1734 goto nomem;
1735
951bb646 1736 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1737 GFP_KERNEL | __GFP_NOWARN);
1738 if (!visit_states)
1739 goto nomem;
1740
1741 btf->resolved_sizes = resolved_sizes;
1742 btf->resolved_ids = resolved_ids;
1743 env->visit_states = visit_states;
1744
1745 return 0;
1746
1747nomem:
1748 kvfree(resolved_sizes);
1749 kvfree(resolved_ids);
1750 kvfree(visit_states);
1751 return -ENOMEM;
1752}
1753
69b693f0
MKL
1754static void btf_verifier_env_free(struct btf_verifier_env *env)
1755{
eb3f595d 1756 kvfree(env->visit_states);
69b693f0
MKL
1757 kfree(env);
1758}
1759
eb3f595d
MKL
1760static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1761 const struct btf_type *next_type)
1762{
1763 switch (env->resolve_mode) {
1764 case RESOLVE_TBD:
1765 /* int, enum or void is a sink */
1766 return !btf_type_needs_resolve(next_type);
1767 case RESOLVE_PTR:
2667a262
MKL
1768 /* int, enum, void, struct, array, func or func_proto is a sink
1769 * for ptr
1770 */
eb3f595d
MKL
1771 return !btf_type_is_modifier(next_type) &&
1772 !btf_type_is_ptr(next_type);
1773 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1774 /* int, enum, void, ptr, func or func_proto is a sink
1775 * for struct and array
1776 */
eb3f595d
MKL
1777 return !btf_type_is_modifier(next_type) &&
1778 !btf_type_is_array(next_type) &&
1779 !btf_type_is_struct(next_type);
1780 default:
53c8036c 1781 BUG();
eb3f595d
MKL
1782 }
1783}
1784
1785static bool env_type_is_resolved(const struct btf_verifier_env *env,
1786 u32 type_id)
1787{
951bb646
AN
1788 /* base BTF types should be resolved by now */
1789 if (type_id < env->btf->start_id)
1790 return true;
1791
1792 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1793}
1794
1795static int env_stack_push(struct btf_verifier_env *env,
1796 const struct btf_type *t, u32 type_id)
1797{
951bb646 1798 const struct btf *btf = env->btf;
eb3f595d
MKL
1799 struct resolve_vertex *v;
1800
1801 if (env->top_stack == MAX_RESOLVE_DEPTH)
1802 return -E2BIG;
1803
951bb646
AN
1804 if (type_id < btf->start_id
1805 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1806 return -EEXIST;
1807
951bb646 1808 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1809
1810 v = &env->stack[env->top_stack++];
1811 v->t = t;
1812 v->type_id = type_id;
1813 v->next_member = 0;
1814
1815 if (env->resolve_mode == RESOLVE_TBD) {
1816 if (btf_type_is_ptr(t))
1817 env->resolve_mode = RESOLVE_PTR;
1818 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1819 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1820 }
1821
1822 return 0;
1823}
1824
1825static void env_stack_set_next_member(struct btf_verifier_env *env,
1826 u16 next_member)
1827{
1828 env->stack[env->top_stack - 1].next_member = next_member;
1829}
1830
1831static void env_stack_pop_resolved(struct btf_verifier_env *env,
1832 u32 resolved_type_id,
1833 u32 resolved_size)
1834{
1835 u32 type_id = env->stack[--(env->top_stack)].type_id;
1836 struct btf *btf = env->btf;
1837
951bb646 1838 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1839 btf->resolved_sizes[type_id] = resolved_size;
1840 btf->resolved_ids[type_id] = resolved_type_id;
1841 env->visit_states[type_id] = RESOLVED;
1842}
1843
1844static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1845{
1846 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1847}
1848
7e3617a7
MKL
1849/* Resolve the size of a passed-in "type"
1850 *
1851 * type: is an array (e.g. u32 array[x][y])
1852 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1853 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1854 * corresponds to the return type.
1855 * *elem_type: u32
69ff3047 1856 * *elem_id: id of u32
7e3617a7
MKL
1857 * *total_nelems: (x * y). Hence, individual elem size is
1858 * (*type_size / *total_nelems)
887c31a3 1859 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1860 *
1861 * type: is not an array (e.g. const struct X)
1862 * return type: type "struct X"
1863 * *type_size: sizeof(struct X)
1864 * *elem_type: same as return type ("struct X")
69ff3047 1865 * *elem_id: 0
7e3617a7 1866 * *total_nelems: 1
887c31a3 1867 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1868 */
6298399b
JO
1869static const struct btf_type *
1870__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1871 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1872 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1873{
1874 const struct btf_type *array_type = NULL;
69ff3047 1875 const struct btf_array *array = NULL;
887c31a3 1876 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1877
1878 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1879 switch (BTF_INFO_KIND(type->info)) {
1880 /* type->size can be used */
1881 case BTF_KIND_INT:
1882 case BTF_KIND_STRUCT:
1883 case BTF_KIND_UNION:
1884 case BTF_KIND_ENUM:
b1828f0b 1885 case BTF_KIND_FLOAT:
6089fb32 1886 case BTF_KIND_ENUM64:
7e3617a7
MKL
1887 size = type->size;
1888 goto resolved;
1889
1890 case BTF_KIND_PTR:
1891 size = sizeof(void *);
1892 goto resolved;
1893
1894 /* Modifiers */
1895 case BTF_KIND_TYPEDEF:
1896 case BTF_KIND_VOLATILE:
1897 case BTF_KIND_CONST:
1898 case BTF_KIND_RESTRICT:
8c42d2fa 1899 case BTF_KIND_TYPE_TAG:
887c31a3 1900 id = type->type;
7e3617a7
MKL
1901 type = btf_type_by_id(btf, type->type);
1902 break;
1903
1904 case BTF_KIND_ARRAY:
1905 if (!array_type)
1906 array_type = type;
1907 array = btf_type_array(type);
1908 if (nelems && array->nelems > U32_MAX / nelems)
1909 return ERR_PTR(-EINVAL);
1910 nelems *= array->nelems;
1911 type = btf_type_by_id(btf, array->type);
1912 break;
1913
1914 /* type without size */
1915 default:
1916 return ERR_PTR(-EINVAL);
1917 }
1918 }
1919
1920 return ERR_PTR(-EINVAL);
1921
1922resolved:
1923 if (nelems && size > U32_MAX / nelems)
1924 return ERR_PTR(-EINVAL);
1925
1926 *type_size = nelems * size;
85d33df3
MKL
1927 if (total_nelems)
1928 *total_nelems = nelems;
1929 if (elem_type)
1930 *elem_type = type;
69ff3047
JO
1931 if (elem_id)
1932 *elem_id = array ? array->type : 0;
887c31a3
JO
1933 if (type_id && id)
1934 *type_id = id;
7e3617a7
MKL
1935
1936 return array_type ? : type;
1937}
1938
6298399b
JO
1939const struct btf_type *
1940btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1941 u32 *type_size)
1942{
887c31a3 1943 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1944}
1945
951bb646
AN
1946static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1947{
1948 while (type_id < btf->start_id)
1949 btf = btf->base_btf;
1950
1951 return btf->resolved_ids[type_id - btf->start_id];
1952}
1953
eb3f595d
MKL
1954/* The input param "type_id" must point to a needs_resolve type */
1955static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1956 u32 *type_id)
1957{
951bb646 1958 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1959 return btf_type_by_id(btf, *type_id);
1960}
1961
951bb646
AN
1962static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1963{
1964 while (type_id < btf->start_id)
1965 btf = btf->base_btf;
1966
1967 return btf->resolved_sizes[type_id - btf->start_id];
1968}
1969
eb3f595d
MKL
1970const struct btf_type *btf_type_id_size(const struct btf *btf,
1971 u32 *type_id, u32 *ret_size)
1972{
1973 const struct btf_type *size_type;
1974 u32 size_type_id = *type_id;
1975 u32 size = 0;
1976
1977 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1978 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1979 return NULL;
1980
1981 if (btf_type_has_size(size_type)) {
1982 size = size_type->size;
1983 } else if (btf_type_is_array(size_type)) {
951bb646 1984 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1985 } else if (btf_type_is_ptr(size_type)) {
1986 size = sizeof(void *);
1987 } else {
1dc92851
DB
1988 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1989 !btf_type_is_var(size_type)))
eb3f595d
MKL
1990 return NULL;
1991
951bb646 1992 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1993 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1994 if (btf_type_nosize_or_null(size_type))
eb3f595d 1995 return NULL;
1acc5d5c
AN
1996 else if (btf_type_has_size(size_type))
1997 size = size_type->size;
1998 else if (btf_type_is_array(size_type))
951bb646 1999 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
2000 else if (btf_type_is_ptr(size_type))
2001 size = sizeof(void *);
2002 else
2003 return NULL;
eb3f595d
MKL
2004 }
2005
2006 *type_id = size_type_id;
2007 if (ret_size)
2008 *ret_size = size;
2009
2010 return size_type;
2011}
2012
179cde8c
MKL
2013static int btf_df_check_member(struct btf_verifier_env *env,
2014 const struct btf_type *struct_type,
2015 const struct btf_member *member,
2016 const struct btf_type *member_type)
2017{
2018 btf_verifier_log_basic(env, struct_type,
2019 "Unsupported check_member");
2020 return -EINVAL;
2021}
2022
9d5f9f70
YS
2023static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2024 const struct btf_type *struct_type,
2025 const struct btf_member *member,
2026 const struct btf_type *member_type)
2027{
2028 btf_verifier_log_basic(env, struct_type,
2029 "Unsupported check_kflag_member");
2030 return -EINVAL;
2031}
2032
b1828f0b 2033/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
2034 * int, enum and modifier types have their specific callback functions.
2035 */
2036static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2037 const struct btf_type *struct_type,
2038 const struct btf_member *member,
2039 const struct btf_type *member_type)
2040{
2041 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2042 btf_verifier_log_member(env, struct_type, member,
2043 "Invalid member bitfield_size");
2044 return -EINVAL;
2045 }
2046
2047 /* bitfield size is 0, so member->offset represents bit offset only.
2048 * It is safe to call non kflag check_member variants.
2049 */
2050 return btf_type_ops(member_type)->check_member(env, struct_type,
2051 member,
2052 member_type);
2053}
2054
eb3f595d
MKL
2055static int btf_df_resolve(struct btf_verifier_env *env,
2056 const struct resolve_vertex *v)
2057{
2058 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2059 return -EINVAL;
2060}
2061
31d0bc81
AM
2062static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2063 u32 type_id, void *data, u8 bits_offsets,
2064 struct btf_show *show)
b00b8dae 2065{
31d0bc81 2066 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
2067}
2068
179cde8c
MKL
2069static int btf_int_check_member(struct btf_verifier_env *env,
2070 const struct btf_type *struct_type,
2071 const struct btf_member *member,
2072 const struct btf_type *member_type)
2073{
2074 u32 int_data = btf_type_int(member_type);
2075 u32 struct_bits_off = member->offset;
2076 u32 struct_size = struct_type->size;
2077 u32 nr_copy_bits;
2078 u32 bytes_offset;
2079
2080 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2081 btf_verifier_log_member(env, struct_type, member,
2082 "bits_offset exceeds U32_MAX");
2083 return -EINVAL;
2084 }
2085
2086 struct_bits_off += BTF_INT_OFFSET(int_data);
2087 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2088 nr_copy_bits = BTF_INT_BITS(int_data) +
2089 BITS_PER_BYTE_MASKED(struct_bits_off);
2090
b1e8818c 2091 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 2092 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2093 "nr_copy_bits exceeds 128");
179cde8c
MKL
2094 return -EINVAL;
2095 }
2096
2097 if (struct_size < bytes_offset ||
2098 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2099 btf_verifier_log_member(env, struct_type, member,
2100 "Member exceeds struct_size");
2101 return -EINVAL;
2102 }
2103
2104 return 0;
2105}
2106
9d5f9f70
YS
2107static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2108 const struct btf_type *struct_type,
2109 const struct btf_member *member,
2110 const struct btf_type *member_type)
2111{
2112 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2113 u32 int_data = btf_type_int(member_type);
2114 u32 struct_size = struct_type->size;
2115 u32 nr_copy_bits;
2116
2117 /* a regular int type is required for the kflag int member */
2118 if (!btf_type_int_is_regular(member_type)) {
2119 btf_verifier_log_member(env, struct_type, member,
2120 "Invalid member base type");
2121 return -EINVAL;
2122 }
2123
2124 /* check sanity of bitfield size */
2125 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2126 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2127 nr_int_data_bits = BTF_INT_BITS(int_data);
2128 if (!nr_bits) {
2129 /* Not a bitfield member, member offset must be at byte
2130 * boundary.
2131 */
2132 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2133 btf_verifier_log_member(env, struct_type, member,
2134 "Invalid member offset");
2135 return -EINVAL;
2136 }
2137
2138 nr_bits = nr_int_data_bits;
2139 } else if (nr_bits > nr_int_data_bits) {
2140 btf_verifier_log_member(env, struct_type, member,
2141 "Invalid member bitfield_size");
2142 return -EINVAL;
2143 }
2144
2145 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2146 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 2147 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 2148 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2149 "nr_copy_bits exceeds 128");
9d5f9f70
YS
2150 return -EINVAL;
2151 }
2152
2153 if (struct_size < bytes_offset ||
2154 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2155 btf_verifier_log_member(env, struct_type, member,
2156 "Member exceeds struct_size");
2157 return -EINVAL;
2158 }
2159
2160 return 0;
2161}
2162
69b693f0
MKL
2163static s32 btf_int_check_meta(struct btf_verifier_env *env,
2164 const struct btf_type *t,
2165 u32 meta_left)
2166{
2167 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2168 u16 encoding;
2169
2170 if (meta_left < meta_needed) {
2171 btf_verifier_log_basic(env, t,
2172 "meta_left:%u meta_needed:%u",
2173 meta_left, meta_needed);
2174 return -EINVAL;
2175 }
2176
2177 if (btf_type_vlen(t)) {
2178 btf_verifier_log_type(env, t, "vlen != 0");
2179 return -EINVAL;
2180 }
2181
9d5f9f70
YS
2182 if (btf_type_kflag(t)) {
2183 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2184 return -EINVAL;
2185 }
2186
69b693f0 2187 int_data = btf_type_int(t);
aea2f7b8
MKL
2188 if (int_data & ~BTF_INT_MASK) {
2189 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2190 int_data);
2191 return -EINVAL;
2192 }
2193
69b693f0
MKL
2194 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2195
b1e8818c 2196 if (nr_bits > BITS_PER_U128) {
69b693f0 2197 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2198 BITS_PER_U128);
69b693f0
MKL
2199 return -EINVAL;
2200 }
2201
2202 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2203 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2204 return -EINVAL;
2205 }
2206
aea2f7b8
MKL
2207 /*
2208 * Only one of the encoding bits is allowed and it
2209 * should be sufficient for the pretty print purpose (i.e. decoding).
2210 * Multiple bits can be allowed later if it is found
2211 * to be insufficient.
2212 */
69b693f0
MKL
2213 encoding = BTF_INT_ENCODING(int_data);
2214 if (encoding &&
2215 encoding != BTF_INT_SIGNED &&
2216 encoding != BTF_INT_CHAR &&
aea2f7b8 2217 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2218 btf_verifier_log_type(env, t, "Unsupported encoding");
2219 return -ENOTSUPP;
2220 }
2221
2222 btf_verifier_log_type(env, t, NULL);
2223
2224 return meta_needed;
2225}
2226
2227static void btf_int_log(struct btf_verifier_env *env,
2228 const struct btf_type *t)
2229{
2230 int int_data = btf_type_int(t);
2231
2232 btf_verifier_log(env,
2233 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2234 t->size, BTF_INT_OFFSET(int_data),
2235 BTF_INT_BITS(int_data),
2236 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2237}
2238
31d0bc81 2239static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2240{
2241 /* data points to a __int128 number.
2242 * Suppose
2243 * int128_num = *(__int128 *)data;
2244 * The below formulas shows what upper_num and lower_num represents:
2245 * upper_num = int128_num >> 64;
2246 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2247 */
2248 u64 upper_num, lower_num;
2249
2250#ifdef __BIG_ENDIAN_BITFIELD
2251 upper_num = *(u64 *)data;
2252 lower_num = *(u64 *)(data + 8);
2253#else
2254 upper_num = *(u64 *)(data + 8);
2255 lower_num = *(u64 *)data;
2256#endif
2257 if (upper_num == 0)
31d0bc81 2258 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2259 else
31d0bc81
AM
2260 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2261 lower_num);
b1e8818c
YS
2262}
2263
2264static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2265 u16 right_shift_bits)
2266{
2267 u64 upper_num, lower_num;
2268
2269#ifdef __BIG_ENDIAN_BITFIELD
2270 upper_num = print_num[0];
2271 lower_num = print_num[1];
2272#else
2273 upper_num = print_num[1];
2274 lower_num = print_num[0];
2275#endif
2276
2277 /* shake out un-needed bits by shift/or operations */
2278 if (left_shift_bits >= 64) {
2279 upper_num = lower_num << (left_shift_bits - 64);
2280 lower_num = 0;
2281 } else {
2282 upper_num = (upper_num << left_shift_bits) |
2283 (lower_num >> (64 - left_shift_bits));
2284 lower_num = lower_num << left_shift_bits;
2285 }
2286
2287 if (right_shift_bits >= 64) {
2288 lower_num = upper_num >> (right_shift_bits - 64);
2289 upper_num = 0;
2290 } else {
2291 lower_num = (lower_num >> right_shift_bits) |
2292 (upper_num << (64 - right_shift_bits));
2293 upper_num = upper_num >> right_shift_bits;
2294 }
2295
2296#ifdef __BIG_ENDIAN_BITFIELD
2297 print_num[0] = upper_num;
2298 print_num[1] = lower_num;
2299#else
2300 print_num[0] = lower_num;
2301 print_num[1] = upper_num;
2302#endif
2303}
2304
31d0bc81
AM
2305static void btf_bitfield_show(void *data, u8 bits_offset,
2306 u8 nr_bits, struct btf_show *show)
b00b8dae 2307{
b65f370d 2308 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2309 u8 nr_copy_bytes;
2310 u8 nr_copy_bits;
b1e8818c 2311 u64 print_num[2] = {};
b00b8dae 2312
b00b8dae
MKL
2313 nr_copy_bits = nr_bits + bits_offset;
2314 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2315
b1e8818c 2316 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2317
b65f370d
OK
2318#ifdef __BIG_ENDIAN_BITFIELD
2319 left_shift_bits = bits_offset;
2320#else
b1e8818c 2321 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2322#endif
b1e8818c 2323 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2324
b1e8818c 2325 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2326 btf_int128_print(show, print_num);
b00b8dae
MKL
2327}
2328
9d5f9f70 2329
31d0bc81
AM
2330static void btf_int_bits_show(const struct btf *btf,
2331 const struct btf_type *t,
2332 void *data, u8 bits_offset,
2333 struct btf_show *show)
f97be3ab
YS
2334{
2335 u32 int_data = btf_type_int(t);
2336 u8 nr_bits = BTF_INT_BITS(int_data);
2337 u8 total_bits_offset;
2338
2339 /*
2340 * bits_offset is at most 7.
b1e8818c 2341 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2342 */
2343 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2344 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2345 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2346 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2347}
2348
31d0bc81
AM
2349static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2350 u32 type_id, void *data, u8 bits_offset,
2351 struct btf_show *show)
b00b8dae
MKL
2352{
2353 u32 int_data = btf_type_int(t);
2354 u8 encoding = BTF_INT_ENCODING(int_data);
2355 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2356 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2357 void *safe_data;
2358
2359 safe_data = btf_show_start_type(show, t, type_id, data);
2360 if (!safe_data)
2361 return;
b00b8dae
MKL
2362
2363 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2364 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2365 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2366 goto out;
b00b8dae
MKL
2367 }
2368
2369 switch (nr_bits) {
b1e8818c 2370 case 128:
31d0bc81 2371 btf_int128_print(show, safe_data);
b1e8818c 2372 break;
b00b8dae
MKL
2373 case 64:
2374 if (sign)
31d0bc81 2375 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2376 else
31d0bc81 2377 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2378 break;
2379 case 32:
2380 if (sign)
31d0bc81 2381 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2382 else
31d0bc81 2383 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2384 break;
2385 case 16:
2386 if (sign)
31d0bc81 2387 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2388 else
31d0bc81 2389 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2390 break;
2391 case 8:
31d0bc81
AM
2392 if (show->state.array_encoding == BTF_INT_CHAR) {
2393 /* check for null terminator */
2394 if (show->state.array_terminated)
2395 break;
2396 if (*(char *)data == '\0') {
2397 show->state.array_terminated = 1;
2398 break;
2399 }
2400 if (isprint(*(char *)data)) {
2401 btf_show_type_value(show, "'%c'",
2402 *(char *)safe_data);
2403 break;
2404 }
2405 }
b00b8dae 2406 if (sign)
31d0bc81 2407 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2408 else
31d0bc81 2409 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2410 break;
2411 default:
31d0bc81
AM
2412 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2413 break;
b00b8dae 2414 }
31d0bc81
AM
2415out:
2416 btf_show_end_type(show);
b00b8dae
MKL
2417}
2418
69b693f0
MKL
2419static const struct btf_kind_operations int_ops = {
2420 .check_meta = btf_int_check_meta,
eb3f595d 2421 .resolve = btf_df_resolve,
179cde8c 2422 .check_member = btf_int_check_member,
9d5f9f70 2423 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2424 .log_details = btf_int_log,
31d0bc81 2425 .show = btf_int_show,
69b693f0
MKL
2426};
2427
179cde8c
MKL
2428static int btf_modifier_check_member(struct btf_verifier_env *env,
2429 const struct btf_type *struct_type,
2430 const struct btf_member *member,
2431 const struct btf_type *member_type)
2432{
2433 const struct btf_type *resolved_type;
2434 u32 resolved_type_id = member->type;
2435 struct btf_member resolved_member;
2436 struct btf *btf = env->btf;
2437
2438 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2439 if (!resolved_type) {
2440 btf_verifier_log_member(env, struct_type, member,
2441 "Invalid member");
2442 return -EINVAL;
2443 }
2444
2445 resolved_member = *member;
2446 resolved_member.type = resolved_type_id;
2447
2448 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2449 &resolved_member,
2450 resolved_type);
2451}
2452
9d5f9f70
YS
2453static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2454 const struct btf_type *struct_type,
2455 const struct btf_member *member,
2456 const struct btf_type *member_type)
2457{
2458 const struct btf_type *resolved_type;
2459 u32 resolved_type_id = member->type;
2460 struct btf_member resolved_member;
2461 struct btf *btf = env->btf;
2462
2463 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2464 if (!resolved_type) {
2465 btf_verifier_log_member(env, struct_type, member,
2466 "Invalid member");
2467 return -EINVAL;
2468 }
2469
2470 resolved_member = *member;
2471 resolved_member.type = resolved_type_id;
2472
2473 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2474 &resolved_member,
2475 resolved_type);
2476}
2477
179cde8c
MKL
2478static int btf_ptr_check_member(struct btf_verifier_env *env,
2479 const struct btf_type *struct_type,
2480 const struct btf_member *member,
2481 const struct btf_type *member_type)
2482{
2483 u32 struct_size, struct_bits_off, bytes_offset;
2484
2485 struct_size = struct_type->size;
2486 struct_bits_off = member->offset;
2487 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2488
2489 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2490 btf_verifier_log_member(env, struct_type, member,
2491 "Member is not byte aligned");
2492 return -EINVAL;
2493 }
2494
2495 if (struct_size - bytes_offset < sizeof(void *)) {
2496 btf_verifier_log_member(env, struct_type, member,
2497 "Member exceeds struct_size");
2498 return -EINVAL;
2499 }
2500
2501 return 0;
2502}
2503
69b693f0
MKL
2504static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2505 const struct btf_type *t,
2506 u32 meta_left)
2507{
8c42d2fa
YS
2508 const char *value;
2509
69b693f0
MKL
2510 if (btf_type_vlen(t)) {
2511 btf_verifier_log_type(env, t, "vlen != 0");
2512 return -EINVAL;
2513 }
2514
9d5f9f70
YS
2515 if (btf_type_kflag(t)) {
2516 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2517 return -EINVAL;
2518 }
2519
aea2f7b8 2520 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2521 btf_verifier_log_type(env, t, "Invalid type_id");
2522 return -EINVAL;
2523 }
2524
8c42d2fa 2525 /* typedef/type_tag type must have a valid name, and other ref types,
eb04bbb6
YS
2526 * volatile, const, restrict, should have a null name.
2527 */
2528 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2529 if (!t->name_off ||
2530 !btf_name_valid_identifier(env->btf, t->name_off)) {
2531 btf_verifier_log_type(env, t, "Invalid name");
2532 return -EINVAL;
2533 }
8c42d2fa
YS
2534 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2535 value = btf_name_by_offset(env->btf, t->name_off);
2536 if (!value || !value[0]) {
2537 btf_verifier_log_type(env, t, "Invalid name");
2538 return -EINVAL;
2539 }
eb04bbb6
YS
2540 } else {
2541 if (t->name_off) {
2542 btf_verifier_log_type(env, t, "Invalid name");
2543 return -EINVAL;
2544 }
2545 }
2546
69b693f0
MKL
2547 btf_verifier_log_type(env, t, NULL);
2548
2549 return 0;
2550}
2551
eb3f595d
MKL
2552static int btf_modifier_resolve(struct btf_verifier_env *env,
2553 const struct resolve_vertex *v)
2554{
2555 const struct btf_type *t = v->t;
2556 const struct btf_type *next_type;
2557 u32 next_type_id = t->type;
2558 struct btf *btf = env->btf;
eb3f595d
MKL
2559
2560 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2561 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2562 btf_verifier_log_type(env, v->t, "Invalid type_id");
2563 return -EINVAL;
2564 }
2565
eb3f595d
MKL
2566 if (!env_type_is_resolve_sink(env, next_type) &&
2567 !env_type_is_resolved(env, next_type_id))
2568 return env_stack_push(env, next_type, next_type_id);
2569
2570 /* Figure out the resolved next_type_id with size.
2571 * They will be stored in the current modifier's
2572 * resolved_ids and resolved_sizes such that it can
2573 * save us a few type-following when we use it later (e.g. in
2574 * pretty print).
2575 */
1acc5d5c 2576 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2577 if (env_type_is_resolved(env, next_type_id))
2578 next_type = btf_type_id_resolve(btf, &next_type_id);
2579
2580 /* "typedef void new_void", "const void"...etc */
2581 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2582 !btf_type_is_fwd(next_type) &&
2583 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2584 btf_verifier_log_type(env, v->t, "Invalid type_id");
2585 return -EINVAL;
2586 }
eb3f595d
MKL
2587 }
2588
1acc5d5c 2589 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2590
2591 return 0;
2592}
2593
1dc92851
DB
2594static int btf_var_resolve(struct btf_verifier_env *env,
2595 const struct resolve_vertex *v)
2596{
2597 const struct btf_type *next_type;
2598 const struct btf_type *t = v->t;
2599 u32 next_type_id = t->type;
2600 struct btf *btf = env->btf;
1dc92851
DB
2601
2602 next_type = btf_type_by_id(btf, next_type_id);
2603 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2604 btf_verifier_log_type(env, v->t, "Invalid type_id");
2605 return -EINVAL;
2606 }
2607
2608 if (!env_type_is_resolve_sink(env, next_type) &&
2609 !env_type_is_resolved(env, next_type_id))
2610 return env_stack_push(env, next_type, next_type_id);
2611
2612 if (btf_type_is_modifier(next_type)) {
2613 const struct btf_type *resolved_type;
2614 u32 resolved_type_id;
2615
2616 resolved_type_id = next_type_id;
2617 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2618
2619 if (btf_type_is_ptr(resolved_type) &&
2620 !env_type_is_resolve_sink(env, resolved_type) &&
2621 !env_type_is_resolved(env, resolved_type_id))
2622 return env_stack_push(env, resolved_type,
2623 resolved_type_id);
2624 }
2625
2626 /* We must resolve to something concrete at this point, no
2627 * forward types or similar that would resolve to size of
2628 * zero is allowed.
2629 */
1acc5d5c 2630 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2631 btf_verifier_log_type(env, v->t, "Invalid type_id");
2632 return -EINVAL;
2633 }
2634
1acc5d5c 2635 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2636
2637 return 0;
2638}
2639
eb3f595d
MKL
2640static int btf_ptr_resolve(struct btf_verifier_env *env,
2641 const struct resolve_vertex *v)
2642{
2643 const struct btf_type *next_type;
2644 const struct btf_type *t = v->t;
2645 u32 next_type_id = t->type;
2646 struct btf *btf = env->btf;
eb3f595d
MKL
2647
2648 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2649 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2650 btf_verifier_log_type(env, v->t, "Invalid type_id");
2651 return -EINVAL;
2652 }
2653
eb3f595d
MKL
2654 if (!env_type_is_resolve_sink(env, next_type) &&
2655 !env_type_is_resolved(env, next_type_id))
2656 return env_stack_push(env, next_type, next_type_id);
2657
2658 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2659 * the modifier may have stopped resolving when it was resolved
2660 * to a ptr (last-resolved-ptr).
2661 *
2662 * We now need to continue from the last-resolved-ptr to
2663 * ensure the last-resolved-ptr will not referring back to
c561d110 2664 * the current ptr (t).
eb3f595d
MKL
2665 */
2666 if (btf_type_is_modifier(next_type)) {
2667 const struct btf_type *resolved_type;
2668 u32 resolved_type_id;
2669
2670 resolved_type_id = next_type_id;
2671 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2672
2673 if (btf_type_is_ptr(resolved_type) &&
2674 !env_type_is_resolve_sink(env, resolved_type) &&
2675 !env_type_is_resolved(env, resolved_type_id))
2676 return env_stack_push(env, resolved_type,
2677 resolved_type_id);
2678 }
2679
2667a262
MKL
2680 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2681 if (env_type_is_resolved(env, next_type_id))
2682 next_type = btf_type_id_resolve(btf, &next_type_id);
2683
2684 if (!btf_type_is_void(next_type) &&
2685 !btf_type_is_fwd(next_type) &&
2686 !btf_type_is_func_proto(next_type)) {
2687 btf_verifier_log_type(env, v->t, "Invalid type_id");
2688 return -EINVAL;
2689 }
eb3f595d
MKL
2690 }
2691
eb3f595d
MKL
2692 env_stack_pop_resolved(env, next_type_id, 0);
2693
2694 return 0;
2695}
2696
31d0bc81
AM
2697static void btf_modifier_show(const struct btf *btf,
2698 const struct btf_type *t,
2699 u32 type_id, void *data,
2700 u8 bits_offset, struct btf_show *show)
b00b8dae 2701{
85d33df3
MKL
2702 if (btf->resolved_ids)
2703 t = btf_type_id_resolve(btf, &type_id);
2704 else
2705 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2706
31d0bc81 2707 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2708}
2709
31d0bc81
AM
2710static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2711 u32 type_id, void *data, u8 bits_offset,
2712 struct btf_show *show)
1dc92851
DB
2713{
2714 t = btf_type_id_resolve(btf, &type_id);
2715
31d0bc81 2716 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2717}
2718
31d0bc81
AM
2719static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2720 u32 type_id, void *data, u8 bits_offset,
2721 struct btf_show *show)
b00b8dae 2722{
31d0bc81
AM
2723 void *safe_data;
2724
2725 safe_data = btf_show_start_type(show, t, type_id, data);
2726 if (!safe_data)
2727 return;
2728
2729 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2730 if (show->flags & BTF_SHOW_PTR_RAW)
2731 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2732 else
2733 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2734 btf_show_end_type(show);
b00b8dae
MKL
2735}
2736
69b693f0
MKL
2737static void btf_ref_type_log(struct btf_verifier_env *env,
2738 const struct btf_type *t)
2739{
2740 btf_verifier_log(env, "type_id=%u", t->type);
2741}
2742
2743static struct btf_kind_operations modifier_ops = {
2744 .check_meta = btf_ref_type_check_meta,
eb3f595d 2745 .resolve = btf_modifier_resolve,
179cde8c 2746 .check_member = btf_modifier_check_member,
9d5f9f70 2747 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2748 .log_details = btf_ref_type_log,
31d0bc81 2749 .show = btf_modifier_show,
69b693f0
MKL
2750};
2751
2752static struct btf_kind_operations ptr_ops = {
2753 .check_meta = btf_ref_type_check_meta,
eb3f595d 2754 .resolve = btf_ptr_resolve,
179cde8c 2755 .check_member = btf_ptr_check_member,
9d5f9f70 2756 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2757 .log_details = btf_ref_type_log,
31d0bc81 2758 .show = btf_ptr_show,
69b693f0
MKL
2759};
2760
8175383f
MKL
2761static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2762 const struct btf_type *t,
2763 u32 meta_left)
2764{
2765 if (btf_type_vlen(t)) {
2766 btf_verifier_log_type(env, t, "vlen != 0");
2767 return -EINVAL;
2768 }
2769
2770 if (t->type) {
2771 btf_verifier_log_type(env, t, "type != 0");
2772 return -EINVAL;
2773 }
2774
eb04bbb6
YS
2775 /* fwd type must have a valid name */
2776 if (!t->name_off ||
2777 !btf_name_valid_identifier(env->btf, t->name_off)) {
2778 btf_verifier_log_type(env, t, "Invalid name");
2779 return -EINVAL;
2780 }
2781
8175383f
MKL
2782 btf_verifier_log_type(env, t, NULL);
2783
2784 return 0;
2785}
2786
76c43ae8
YS
2787static void btf_fwd_type_log(struct btf_verifier_env *env,
2788 const struct btf_type *t)
2789{
2790 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2791}
2792
69b693f0 2793static struct btf_kind_operations fwd_ops = {
8175383f 2794 .check_meta = btf_fwd_check_meta,
eb3f595d 2795 .resolve = btf_df_resolve,
179cde8c 2796 .check_member = btf_df_check_member,
9d5f9f70 2797 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2798 .log_details = btf_fwd_type_log,
31d0bc81 2799 .show = btf_df_show,
69b693f0
MKL
2800};
2801
179cde8c
MKL
2802static int btf_array_check_member(struct btf_verifier_env *env,
2803 const struct btf_type *struct_type,
2804 const struct btf_member *member,
2805 const struct btf_type *member_type)
2806{
2807 u32 struct_bits_off = member->offset;
2808 u32 struct_size, bytes_offset;
2809 u32 array_type_id, array_size;
2810 struct btf *btf = env->btf;
2811
2812 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2813 btf_verifier_log_member(env, struct_type, member,
2814 "Member is not byte aligned");
2815 return -EINVAL;
2816 }
2817
2818 array_type_id = member->type;
2819 btf_type_id_size(btf, &array_type_id, &array_size);
2820 struct_size = struct_type->size;
2821 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2822 if (struct_size - bytes_offset < array_size) {
2823 btf_verifier_log_member(env, struct_type, member,
2824 "Member exceeds struct_size");
2825 return -EINVAL;
2826 }
2827
2828 return 0;
2829}
2830
69b693f0
MKL
2831static s32 btf_array_check_meta(struct btf_verifier_env *env,
2832 const struct btf_type *t,
2833 u32 meta_left)
2834{
2835 const struct btf_array *array = btf_type_array(t);
2836 u32 meta_needed = sizeof(*array);
2837
2838 if (meta_left < meta_needed) {
2839 btf_verifier_log_basic(env, t,
2840 "meta_left:%u meta_needed:%u",
2841 meta_left, meta_needed);
2842 return -EINVAL;
2843 }
2844
eb04bbb6
YS
2845 /* array type should not have a name */
2846 if (t->name_off) {
2847 btf_verifier_log_type(env, t, "Invalid name");
2848 return -EINVAL;
2849 }
2850
69b693f0
MKL
2851 if (btf_type_vlen(t)) {
2852 btf_verifier_log_type(env, t, "vlen != 0");
2853 return -EINVAL;
2854 }
2855
9d5f9f70
YS
2856 if (btf_type_kflag(t)) {
2857 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2858 return -EINVAL;
2859 }
2860
b9308ae6
MKL
2861 if (t->size) {
2862 btf_verifier_log_type(env, t, "size != 0");
2863 return -EINVAL;
2864 }
2865
4ef5f574
MKL
2866 /* Array elem type and index type cannot be in type void,
2867 * so !array->type and !array->index_type are not allowed.
69b693f0 2868 */
aea2f7b8 2869 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2870 btf_verifier_log_type(env, t, "Invalid elem");
2871 return -EINVAL;
2872 }
2873
aea2f7b8 2874 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2875 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2876 return -EINVAL;
2877 }
2878
2879 btf_verifier_log_type(env, t, NULL);
2880
2881 return meta_needed;
2882}
2883
eb3f595d
MKL
2884static int btf_array_resolve(struct btf_verifier_env *env,
2885 const struct resolve_vertex *v)
2886{
2887 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2888 const struct btf_type *elem_type, *index_type;
2889 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2890 struct btf *btf = env->btf;
2891 u32 elem_size;
2892
4ef5f574
MKL
2893 /* Check array->index_type */
2894 index_type_id = array->index_type;
2895 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2896 if (btf_type_nosize_or_null(index_type) ||
2897 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2898 btf_verifier_log_type(env, v->t, "Invalid index");
2899 return -EINVAL;
2900 }
2901
2902 if (!env_type_is_resolve_sink(env, index_type) &&
2903 !env_type_is_resolved(env, index_type_id))
2904 return env_stack_push(env, index_type, index_type_id);
2905
2906 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2907 if (!index_type || !btf_type_is_int(index_type) ||
2908 !btf_type_int_is_regular(index_type)) {
2909 btf_verifier_log_type(env, v->t, "Invalid index");
2910 return -EINVAL;
2911 }
2912
2913 /* Check array->type */
2914 elem_type_id = array->type;
eb3f595d 2915 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2916 if (btf_type_nosize_or_null(elem_type) ||
2917 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2918 btf_verifier_log_type(env, v->t,
2919 "Invalid elem");
2920 return -EINVAL;
2921 }
2922
2923 if (!env_type_is_resolve_sink(env, elem_type) &&
2924 !env_type_is_resolved(env, elem_type_id))
2925 return env_stack_push(env, elem_type, elem_type_id);
2926
2927 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2928 if (!elem_type) {
2929 btf_verifier_log_type(env, v->t, "Invalid elem");
2930 return -EINVAL;
2931 }
2932
4ef5f574
MKL
2933 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2934 btf_verifier_log_type(env, v->t, "Invalid array of int");
2935 return -EINVAL;
eb3f595d
MKL
2936 }
2937
2938 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2939 btf_verifier_log_type(env, v->t,
2940 "Array size overflows U32_MAX");
2941 return -EINVAL;
2942 }
2943
2944 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2945
2946 return 0;
2947}
2948
69b693f0
MKL
2949static void btf_array_log(struct btf_verifier_env *env,
2950 const struct btf_type *t)
2951{
2952 const struct btf_array *array = btf_type_array(t);
2953
2954 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2955 array->type, array->index_type, array->nelems);
2956}
2957
31d0bc81
AM
2958static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2959 u32 type_id, void *data, u8 bits_offset,
2960 struct btf_show *show)
b00b8dae
MKL
2961{
2962 const struct btf_array *array = btf_type_array(t);
2963 const struct btf_kind_operations *elem_ops;
2964 const struct btf_type *elem_type;
31d0bc81
AM
2965 u32 i, elem_size = 0, elem_type_id;
2966 u16 encoding = 0;
b00b8dae
MKL
2967
2968 elem_type_id = array->type;
31d0bc81
AM
2969 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2970 if (elem_type && btf_type_has_size(elem_type))
2971 elem_size = elem_type->size;
2972
2973 if (elem_type && btf_type_is_int(elem_type)) {
2974 u32 int_type = btf_type_int(elem_type);
2975
2976 encoding = BTF_INT_ENCODING(int_type);
2977
2978 /*
2979 * BTF_INT_CHAR encoding never seems to be set for
2980 * char arrays, so if size is 1 and element is
2981 * printable as a char, we'll do that.
2982 */
2983 if (elem_size == 1)
2984 encoding = BTF_INT_CHAR;
2985 }
2986
2987 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2988 return;
2989
2990 if (!elem_type)
2991 goto out;
b00b8dae 2992 elem_ops = btf_type_ops(elem_type);
31d0bc81 2993
b00b8dae 2994 for (i = 0; i < array->nelems; i++) {
b00b8dae 2995
31d0bc81
AM
2996 btf_show_start_array_member(show);
2997
2998 elem_ops->show(btf, elem_type, elem_type_id, data,
2999 bits_offset, show);
b00b8dae 3000 data += elem_size;
31d0bc81
AM
3001
3002 btf_show_end_array_member(show);
3003
3004 if (show->state.array_terminated)
3005 break;
b00b8dae 3006 }
31d0bc81
AM
3007out:
3008 btf_show_end_array_type(show);
3009}
3010
3011static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3012 u32 type_id, void *data, u8 bits_offset,
3013 struct btf_show *show)
3014{
3015 const struct btf_member *m = show->state.member;
3016
3017 /*
3018 * First check if any members would be shown (are non-zero).
3019 * See comments above "struct btf_show" definition for more
3020 * details on how this works at a high-level.
3021 */
3022 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3023 if (!show->state.depth_check) {
3024 show->state.depth_check = show->state.depth + 1;
3025 show->state.depth_to_show = 0;
3026 }
3027 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3028 show->state.member = m;
3029
3030 if (show->state.depth_check != show->state.depth + 1)
3031 return;
3032 show->state.depth_check = 0;
3033
3034 if (show->state.depth_to_show <= show->state.depth)
3035 return;
3036 /*
3037 * Reaching here indicates we have recursed and found
3038 * non-zero array member(s).
3039 */
3040 }
3041 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3042}
3043
69b693f0
MKL
3044static struct btf_kind_operations array_ops = {
3045 .check_meta = btf_array_check_meta,
eb3f595d 3046 .resolve = btf_array_resolve,
179cde8c 3047 .check_member = btf_array_check_member,
9d5f9f70 3048 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3049 .log_details = btf_array_log,
31d0bc81 3050 .show = btf_array_show,
69b693f0
MKL
3051};
3052
179cde8c
MKL
3053static int btf_struct_check_member(struct btf_verifier_env *env,
3054 const struct btf_type *struct_type,
3055 const struct btf_member *member,
3056 const struct btf_type *member_type)
3057{
3058 u32 struct_bits_off = member->offset;
3059 u32 struct_size, bytes_offset;
3060
3061 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3062 btf_verifier_log_member(env, struct_type, member,
3063 "Member is not byte aligned");
3064 return -EINVAL;
3065 }
3066
3067 struct_size = struct_type->size;
3068 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3069 if (struct_size - bytes_offset < member_type->size) {
3070 btf_verifier_log_member(env, struct_type, member,
3071 "Member exceeds struct_size");
3072 return -EINVAL;
3073 }
3074
3075 return 0;
3076}
3077
69b693f0
MKL
3078static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3079 const struct btf_type *t,
3080 u32 meta_left)
3081{
3082 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3083 const struct btf_member *member;
6283fa38 3084 u32 meta_needed, last_offset;
69b693f0
MKL
3085 struct btf *btf = env->btf;
3086 u32 struct_size = t->size;
9d5f9f70 3087 u32 offset;
69b693f0
MKL
3088 u16 i;
3089
3090 meta_needed = btf_type_vlen(t) * sizeof(*member);
3091 if (meta_left < meta_needed) {
3092 btf_verifier_log_basic(env, t,
3093 "meta_left:%u meta_needed:%u",
3094 meta_left, meta_needed);
3095 return -EINVAL;
3096 }
3097
eb04bbb6
YS
3098 /* struct type either no name or a valid one */
3099 if (t->name_off &&
3100 !btf_name_valid_identifier(env->btf, t->name_off)) {
3101 btf_verifier_log_type(env, t, "Invalid name");
3102 return -EINVAL;
3103 }
3104
69b693f0
MKL
3105 btf_verifier_log_type(env, t, NULL);
3106
6283fa38 3107 last_offset = 0;
69b693f0 3108 for_each_member(i, t, member) {
fbcf93eb 3109 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
3110 btf_verifier_log_member(env, t, member,
3111 "Invalid member name_offset:%u",
fbcf93eb 3112 member->name_off);
69b693f0
MKL
3113 return -EINVAL;
3114 }
3115
eb04bbb6
YS
3116 /* struct member either no name or a valid one */
3117 if (member->name_off &&
3118 !btf_name_valid_identifier(btf, member->name_off)) {
3119 btf_verifier_log_member(env, t, member, "Invalid name");
3120 return -EINVAL;
3121 }
69b693f0 3122 /* A member cannot be in type void */
aea2f7b8 3123 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
3124 btf_verifier_log_member(env, t, member,
3125 "Invalid type_id");
3126 return -EINVAL;
3127 }
3128
8293eb99 3129 offset = __btf_member_bit_offset(t, member);
9d5f9f70 3130 if (is_union && offset) {
69b693f0
MKL
3131 btf_verifier_log_member(env, t, member,
3132 "Invalid member bits_offset");
3133 return -EINVAL;
3134 }
3135
6283fa38
MKL
3136 /*
3137 * ">" instead of ">=" because the last member could be
3138 * "char a[0];"
3139 */
9d5f9f70 3140 if (last_offset > offset) {
6283fa38
MKL
3141 btf_verifier_log_member(env, t, member,
3142 "Invalid member bits_offset");
3143 return -EINVAL;
3144 }
3145
9d5f9f70 3146 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 3147 btf_verifier_log_member(env, t, member,
311fe1a8 3148 "Member bits_offset exceeds its struct size");
69b693f0
MKL
3149 return -EINVAL;
3150 }
3151
3152 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 3153 last_offset = offset;
69b693f0
MKL
3154 }
3155
3156 return meta_needed;
3157}
3158
eb3f595d
MKL
3159static int btf_struct_resolve(struct btf_verifier_env *env,
3160 const struct resolve_vertex *v)
3161{
3162 const struct btf_member *member;
179cde8c 3163 int err;
eb3f595d
MKL
3164 u16 i;
3165
3166 /* Before continue resolving the next_member,
3167 * ensure the last member is indeed resolved to a
3168 * type with size info.
3169 */
3170 if (v->next_member) {
179cde8c 3171 const struct btf_type *last_member_type;
eb3f595d 3172 const struct btf_member *last_member;
a37a3258 3173 u32 last_member_type_id;
eb3f595d
MKL
3174
3175 last_member = btf_type_member(v->t) + v->next_member - 1;
3176 last_member_type_id = last_member->type;
3177 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3178 last_member_type_id)))
3179 return -EINVAL;
179cde8c
MKL
3180
3181 last_member_type = btf_type_by_id(env->btf,
3182 last_member_type_id);
9d5f9f70
YS
3183 if (btf_type_kflag(v->t))
3184 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3185 last_member,
3186 last_member_type);
3187 else
3188 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3189 last_member,
3190 last_member_type);
179cde8c
MKL
3191 if (err)
3192 return err;
eb3f595d
MKL
3193 }
3194
3195 for_each_member_from(i, v->next_member, v->t, member) {
3196 u32 member_type_id = member->type;
3197 const struct btf_type *member_type = btf_type_by_id(env->btf,
3198 member_type_id);
3199
e4f07120
SF
3200 if (btf_type_nosize_or_null(member_type) ||
3201 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3202 btf_verifier_log_member(env, v->t, member,
3203 "Invalid member");
3204 return -EINVAL;
3205 }
3206
3207 if (!env_type_is_resolve_sink(env, member_type) &&
3208 !env_type_is_resolved(env, member_type_id)) {
3209 env_stack_set_next_member(env, i + 1);
3210 return env_stack_push(env, member_type, member_type_id);
3211 }
179cde8c 3212
9d5f9f70
YS
3213 if (btf_type_kflag(v->t))
3214 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3215 member,
3216 member_type);
3217 else
3218 err = btf_type_ops(member_type)->check_member(env, v->t,
3219 member,
3220 member_type);
179cde8c
MKL
3221 if (err)
3222 return err;
eb3f595d
MKL
3223 }
3224
3225 env_stack_pop_resolved(env, 0, 0);
3226
3227 return 0;
3228}
3229
69b693f0
MKL
3230static void btf_struct_log(struct btf_verifier_env *env,
3231 const struct btf_type *t)
3232{
3233 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3234}
3235
61df10c7
KKD
3236enum {
3237 BTF_FIELD_IGNORE = 0,
3238 BTF_FIELD_FOUND = 1,
42ba1308
KKD
3239};
3240
3241struct btf_field_info {
aa3496ac 3242 enum btf_field_type type;
42ba1308 3243 u32 off;
f0c5941f
KKD
3244 union {
3245 struct {
3246 u32 type_id;
3247 } kptr;
3248 struct {
3249 const char *node_name;
3250 u32 value_btf_id;
30465003 3251 } graph_root;
f0c5941f 3252 };
42ba1308
KKD
3253};
3254
3255static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3256 u32 off, int sz, enum btf_field_type field_type,
3257 struct btf_field_info *info)
42ba1308
KKD
3258{
3259 if (!__btf_type_is_struct(t))
61df10c7 3260 return BTF_FIELD_IGNORE;
42ba1308 3261 if (t->size != sz)
61df10c7 3262 return BTF_FIELD_IGNORE;
db559117 3263 info->type = field_type;
42ba1308 3264 info->off = off;
61df10c7
KKD
3265 return BTF_FIELD_FOUND;
3266}
3267
3268static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3269 u32 off, int sz, struct btf_field_info *info)
3270{
aa3496ac 3271 enum btf_field_type type;
61df10c7
KKD
3272 u32 res_id;
3273
23da464d
KKD
3274 /* Permit modifiers on the pointer itself */
3275 if (btf_type_is_volatile(t))
3276 t = btf_type_by_id(btf, t->type);
61df10c7
KKD
3277 /* For PTR, sz is always == 8 */
3278 if (!btf_type_is_ptr(t))
3279 return BTF_FIELD_IGNORE;
3280 t = btf_type_by_id(btf, t->type);
3281
3282 if (!btf_type_is_type_tag(t))
3283 return BTF_FIELD_IGNORE;
3284 /* Reject extra tags */
3285 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3286 return -EINVAL;
03b77e17 3287 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
c0a5a21c 3288 type = BPF_KPTR_UNREF;
03b77e17 3289 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
c0a5a21c
KKD
3290 type = BPF_KPTR_REF;
3291 else
61df10c7
KKD
3292 return -EINVAL;
3293
3294 /* Get the base type */
3295 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3296 /* Only pointer to struct is allowed */
3297 if (!__btf_type_is_struct(t))
3298 return -EINVAL;
3299
c0a5a21c 3300 info->type = type;
db559117
KKD
3301 info->off = off;
3302 info->kptr.type_id = res_id;
61df10c7 3303 return BTF_FIELD_FOUND;
42ba1308
KKD
3304}
3305
f0c5941f
KKD
3306static const char *btf_find_decl_tag_value(const struct btf *btf,
3307 const struct btf_type *pt,
3308 int comp_idx, const char *tag_key)
3309{
3310 int i;
3311
3312 for (i = 1; i < btf_nr_types(btf); i++) {
3313 const struct btf_type *t = btf_type_by_id(btf, i);
3314 int len = strlen(tag_key);
3315
3316 if (!btf_type_is_decl_tag(t))
3317 continue;
3318 if (pt != btf_type_by_id(btf, t->type) ||
3319 btf_type_decl_tag(t)->component_idx != comp_idx)
3320 continue;
3321 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3322 continue;
3323 return __btf_name_by_offset(btf, t->name_off) + len;
3324 }
3325 return NULL;
3326}
3327
9c395c1b
DM
3328static int
3329btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3330 const struct btf_type *t, int comp_idx, u32 off,
3331 int sz, struct btf_field_info *info,
3332 enum btf_field_type head_type)
f0c5941f 3333{
9c395c1b 3334 const char *node_field_name;
f0c5941f 3335 const char *value_type;
f0c5941f
KKD
3336 s32 id;
3337
3338 if (!__btf_type_is_struct(t))
3339 return BTF_FIELD_IGNORE;
3340 if (t->size != sz)
3341 return BTF_FIELD_IGNORE;
3342 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3343 if (!value_type)
3344 return -EINVAL;
9c395c1b
DM
3345 node_field_name = strstr(value_type, ":");
3346 if (!node_field_name)
f0c5941f 3347 return -EINVAL;
9c395c1b 3348 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
f0c5941f
KKD
3349 if (!value_type)
3350 return -ENOMEM;
3351 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3352 kfree(value_type);
3353 if (id < 0)
3354 return id;
9c395c1b
DM
3355 node_field_name++;
3356 if (str_is_empty(node_field_name))
f0c5941f 3357 return -EINVAL;
9c395c1b 3358 info->type = head_type;
f0c5941f 3359 info->off = off;
30465003 3360 info->graph_root.value_btf_id = id;
9c395c1b 3361 info->graph_root.node_name = node_field_name;
f0c5941f
KKD
3362 return BTF_FIELD_FOUND;
3363}
3364
9c395c1b
DM
3365#define field_mask_test_name(field_type, field_type_str) \
3366 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3367 type = field_type; \
3368 goto end; \
3369 }
3370
db559117
KKD
3371static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3372 int *align, int *sz)
3373{
3374 int type = 0;
3375
3376 if (field_mask & BPF_SPIN_LOCK) {
3377 if (!strcmp(name, "bpf_spin_lock")) {
3378 if (*seen_mask & BPF_SPIN_LOCK)
3379 return -E2BIG;
3380 *seen_mask |= BPF_SPIN_LOCK;
3381 type = BPF_SPIN_LOCK;
3382 goto end;
3383 }
3384 }
3385 if (field_mask & BPF_TIMER) {
3386 if (!strcmp(name, "bpf_timer")) {
3387 if (*seen_mask & BPF_TIMER)
3388 return -E2BIG;
3389 *seen_mask |= BPF_TIMER;
3390 type = BPF_TIMER;
3391 goto end;
3392 }
3393 }
9c395c1b
DM
3394 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3395 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3396 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3397 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
d54730b5 3398 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
9c395c1b 3399
db559117
KKD
3400 /* Only return BPF_KPTR when all other types with matchable names fail */
3401 if (field_mask & BPF_KPTR) {
3402 type = BPF_KPTR_REF;
3403 goto end;
3404 }
3405 return 0;
3406end:
3407 *sz = btf_field_type_size(type);
3408 *align = btf_field_type_align(type);
3409 return type;
3410}
3411
9c395c1b
DM
3412#undef field_mask_test_name
3413
db559117
KKD
3414static int btf_find_struct_field(const struct btf *btf,
3415 const struct btf_type *t, u32 field_mask,
61df10c7 3416 struct btf_field_info *info, int info_cnt)
d83525ca 3417{
db559117 3418 int ret, idx = 0, align, sz, field_type;
d83525ca 3419 const struct btf_member *member;
61df10c7 3420 struct btf_field_info tmp;
db559117 3421 u32 i, off, seen_mask = 0;
d83525ca 3422
d83525ca
AS
3423 for_each_member(i, t, member) {
3424 const struct btf_type *member_type = btf_type_by_id(btf,
3425 member->type);
42ba1308 3426
db559117
KKD
3427 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3428 field_mask, &seen_mask, &align, &sz);
3429 if (field_type == 0)
d83525ca 3430 continue;
db559117
KKD
3431 if (field_type < 0)
3432 return field_type;
42ba1308 3433
8293eb99 3434 off = __btf_member_bit_offset(t, member);
d83525ca
AS
3435 if (off % 8)
3436 /* valid C code cannot generate such BTF */
3437 return -EINVAL;
3438 off /= 8;
68134668 3439 if (off % align)
db559117 3440 continue;
42ba1308
KKD
3441
3442 switch (field_type) {
db559117
KKD
3443 case BPF_SPIN_LOCK:
3444 case BPF_TIMER:
8ffa5cc1 3445 case BPF_LIST_NODE:
9c395c1b 3446 case BPF_RB_NODE:
d54730b5 3447 case BPF_REFCOUNT:
db559117 3448 ret = btf_find_struct(btf, member_type, off, sz, field_type,
61df10c7
KKD
3449 idx < info_cnt ? &info[idx] : &tmp);
3450 if (ret < 0)
3451 return ret;
3452 break;
db559117
KKD
3453 case BPF_KPTR_UNREF:
3454 case BPF_KPTR_REF:
61df10c7
KKD
3455 ret = btf_find_kptr(btf, member_type, off, sz,
3456 idx < info_cnt ? &info[idx] : &tmp);
3457 if (ret < 0)
3458 return ret;
3459 break;
f0c5941f 3460 case BPF_LIST_HEAD:
9c395c1b
DM
3461 case BPF_RB_ROOT:
3462 ret = btf_find_graph_root(btf, t, member_type,
3463 i, off, sz,
3464 idx < info_cnt ? &info[idx] : &tmp,
3465 field_type);
f0c5941f
KKD
3466 if (ret < 0)
3467 return ret;
3468 break;
42ba1308
KKD
3469 default:
3470 return -EFAULT;
3471 }
61df10c7
KKD
3472
3473 if (ret == BTF_FIELD_IGNORE)
3474 continue;
3475 if (idx >= info_cnt)
3476 return -E2BIG;
3477 ++idx;
68134668 3478 }
61df10c7 3479 return idx;
68134668
AS
3480}
3481
3482static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3483 u32 field_mask, struct btf_field_info *info,
3484 int info_cnt)
68134668 3485{
db559117 3486 int ret, idx = 0, align, sz, field_type;
68134668 3487 const struct btf_var_secinfo *vsi;
61df10c7 3488 struct btf_field_info tmp;
db559117 3489 u32 i, off, seen_mask = 0;
68134668
AS
3490
3491 for_each_vsi(i, t, vsi) {
3492 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3493 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3494
db559117
KKD
3495 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3496 field_mask, &seen_mask, &align, &sz);
3497 if (field_type == 0)
68134668 3498 continue;
db559117
KKD
3499 if (field_type < 0)
3500 return field_type;
3501
3502 off = vsi->offset;
68134668
AS
3503 if (vsi->size != sz)
3504 continue;
68134668 3505 if (off % align)
db559117 3506 continue;
42ba1308
KKD
3507
3508 switch (field_type) {
db559117
KKD
3509 case BPF_SPIN_LOCK:
3510 case BPF_TIMER:
8ffa5cc1 3511 case BPF_LIST_NODE:
9c395c1b 3512 case BPF_RB_NODE:
d54730b5 3513 case BPF_REFCOUNT:
db559117 3514 ret = btf_find_struct(btf, var_type, off, sz, field_type,
61df10c7
KKD
3515 idx < info_cnt ? &info[idx] : &tmp);
3516 if (ret < 0)
3517 return ret;
3518 break;
db559117
KKD
3519 case BPF_KPTR_UNREF:
3520 case BPF_KPTR_REF:
61df10c7
KKD
3521 ret = btf_find_kptr(btf, var_type, off, sz,
3522 idx < info_cnt ? &info[idx] : &tmp);
3523 if (ret < 0)
3524 return ret;
3525 break;
f0c5941f 3526 case BPF_LIST_HEAD:
9c395c1b
DM
3527 case BPF_RB_ROOT:
3528 ret = btf_find_graph_root(btf, var, var_type,
3529 -1, off, sz,
3530 idx < info_cnt ? &info[idx] : &tmp,
3531 field_type);
f0c5941f
KKD
3532 if (ret < 0)
3533 return ret;
3534 break;
42ba1308
KKD
3535 default:
3536 return -EFAULT;
3537 }
61df10c7
KKD
3538
3539 if (ret == BTF_FIELD_IGNORE)
3540 continue;
3541 if (idx >= info_cnt)
3542 return -E2BIG;
3543 ++idx;
d83525ca 3544 }
61df10c7 3545 return idx;
d83525ca
AS
3546}
3547
68134668 3548static int btf_find_field(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3549 u32 field_mask, struct btf_field_info *info,
3550 int info_cnt)
68134668 3551{
68134668 3552 if (__btf_type_is_struct(t))
db559117 3553 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
68134668 3554 else if (btf_type_is_datasec(t))
db559117 3555 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
68134668
AS
3556 return -EINVAL;
3557}
3558
db559117
KKD
3559static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3560 struct btf_field_info *info)
68134668 3561{
db559117
KKD
3562 struct module *mod = NULL;
3563 const struct btf_type *t;
c8e18754
DM
3564 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3565 * is that BTF, otherwise it's program BTF
3566 */
3567 struct btf *kptr_btf;
42ba1308 3568 int ret;
db559117 3569 s32 id;
42ba1308 3570
db559117
KKD
3571 /* Find type in map BTF, and use it to look up the matching type
3572 * in vmlinux or module BTFs, by name and kind.
3573 */
3574 t = btf_type_by_id(btf, info->kptr.type_id);
3575 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
c8e18754
DM
3576 &kptr_btf);
3577 if (id == -ENOENT) {
3578 /* btf_parse_kptr should only be called w/ btf = program BTF */
3579 WARN_ON_ONCE(btf_is_kernel(btf));
3580
3581 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3582 * kptr allocated via bpf_obj_new
3583 */
9e36a204 3584 field->kptr.dtor = NULL;
c8e18754
DM
3585 id = info->kptr.type_id;
3586 kptr_btf = (struct btf *)btf;
3587 btf_get(kptr_btf);
3588 goto found_dtor;
3589 }
db559117
KKD
3590 if (id < 0)
3591 return id;
3592
3593 /* Find and stash the function pointer for the destruction function that
3594 * needs to be eventually invoked from the map free path.
3595 */
3596 if (info->type == BPF_KPTR_REF) {
3597 const struct btf_type *dtor_func;
3598 const char *dtor_func_name;
3599 unsigned long addr;
3600 s32 dtor_btf_id;
3601
3602 /* This call also serves as a whitelist of allowed objects that
3603 * can be used as a referenced pointer and be stored in a map at
3604 * the same time.
3605 */
c8e18754 3606 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
db559117
KKD
3607 if (dtor_btf_id < 0) {
3608 ret = dtor_btf_id;
3609 goto end_btf;
3610 }
68134668 3611
c8e18754 3612 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
db559117
KKD
3613 if (!dtor_func) {
3614 ret = -ENOENT;
3615 goto end_btf;
3616 }
42ba1308 3617
c8e18754
DM
3618 if (btf_is_module(kptr_btf)) {
3619 mod = btf_try_get_module(kptr_btf);
db559117
KKD
3620 if (!mod) {
3621 ret = -ENXIO;
3622 goto end_btf;
3623 }
3624 }
3625
3626 /* We already verified dtor_func to be btf_type_is_func
3627 * in register_btf_id_dtor_kfuncs.
3628 */
c8e18754 3629 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
db559117
KKD
3630 addr = kallsyms_lookup_name(dtor_func_name);
3631 if (!addr) {
3632 ret = -EINVAL;
3633 goto end_mod;
3634 }
3635 field->kptr.dtor = (void *)addr;
3636 }
3637
c8e18754 3638found_dtor:
db559117 3639 field->kptr.btf_id = id;
c8e18754 3640 field->kptr.btf = kptr_btf;
db559117
KKD
3641 field->kptr.module = mod;
3642 return 0;
3643end_mod:
3644 module_put(mod);
3645end_btf:
c8e18754 3646 btf_put(kptr_btf);
db559117 3647 return ret;
68134668
AS
3648}
3649
9c395c1b
DM
3650static int btf_parse_graph_root(const struct btf *btf,
3651 struct btf_field *field,
3652 struct btf_field_info *info,
3653 const char *node_type_name,
3654 size_t node_type_align)
f0c5941f
KKD
3655{
3656 const struct btf_type *t, *n = NULL;
3657 const struct btf_member *member;
3658 u32 offset;
3659 int i;
3660
30465003 3661 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
f0c5941f
KKD
3662 /* We've already checked that value_btf_id is a struct type. We
3663 * just need to figure out the offset of the list_node, and
3664 * verify its type.
3665 */
3666 for_each_member(i, t, member) {
30465003
DM
3667 if (strcmp(info->graph_root.node_name,
3668 __btf_name_by_offset(btf, member->name_off)))
f0c5941f
KKD
3669 continue;
3670 /* Invalid BTF, two members with same name */
3671 if (n)
3672 return -EINVAL;
3673 n = btf_type_by_id(btf, member->type);
3674 if (!__btf_type_is_struct(n))
3675 return -EINVAL;
9c395c1b 3676 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
f0c5941f
KKD
3677 return -EINVAL;
3678 offset = __btf_member_bit_offset(n, member);
3679 if (offset % 8)
3680 return -EINVAL;
3681 offset /= 8;
9c395c1b 3682 if (offset % node_type_align)
f0c5941f
KKD
3683 return -EINVAL;
3684
30465003
DM
3685 field->graph_root.btf = (struct btf *)btf;
3686 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3687 field->graph_root.node_offset = offset;
f0c5941f
KKD
3688 }
3689 if (!n)
3690 return -ENOENT;
3691 return 0;
3692}
3693
9c395c1b
DM
3694static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3695 struct btf_field_info *info)
3696{
3697 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3698 __alignof__(struct bpf_list_node));
3699}
3700
3701static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3702 struct btf_field_info *info)
3703{
3704 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3705 __alignof__(struct bpf_rb_node));
3706}
3707
cd2a8079
DM
3708static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3709{
3710 const struct btf_field *a = (const struct btf_field *)_a;
3711 const struct btf_field *b = (const struct btf_field *)_b;
3712
3713 if (a->offset < b->offset)
3714 return -1;
3715 else if (a->offset > b->offset)
3716 return 1;
3717 return 0;
3718}
3719
db559117
KKD
3720struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3721 u32 field_mask, u32 value_size)
61df10c7 3722{
aa3496ac 3723 struct btf_field_info info_arr[BTF_FIELDS_MAX];
cd2a8079 3724 u32 next_off = 0, field_type_size;
aa3496ac
KKD
3725 struct btf_record *rec;
3726 int ret, i, cnt;
61df10c7 3727
db559117 3728 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
61df10c7
KKD
3729 if (ret < 0)
3730 return ERR_PTR(ret);
3731 if (!ret)
3732 return NULL;
3733
aa3496ac 3734 cnt = ret;
c22dfdd2
KKD
3735 /* This needs to be kzalloc to zero out padding and unused fields, see
3736 * comment in btf_record_equal.
3737 */
aa3496ac
KKD
3738 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3739 if (!rec)
61df10c7 3740 return ERR_PTR(-ENOMEM);
61df10c7 3741
db559117
KKD
3742 rec->spin_lock_off = -EINVAL;
3743 rec->timer_off = -EINVAL;
d54730b5 3744 rec->refcount_off = -EINVAL;
db559117 3745 for (i = 0; i < cnt; i++) {
cd2a8079
DM
3746 field_type_size = btf_field_type_size(info_arr[i].type);
3747 if (info_arr[i].off + field_type_size > value_size) {
db559117
KKD
3748 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3749 ret = -EFAULT;
61df10c7
KKD
3750 goto end;
3751 }
f0c5941f
KKD
3752 if (info_arr[i].off < next_off) {
3753 ret = -EEXIST;
3754 goto end;
3755 }
cd2a8079 3756 next_off = info_arr[i].off + field_type_size;
61df10c7 3757
aa3496ac
KKD
3758 rec->field_mask |= info_arr[i].type;
3759 rec->fields[i].offset = info_arr[i].off;
3760 rec->fields[i].type = info_arr[i].type;
cd2a8079 3761 rec->fields[i].size = field_type_size;
db559117
KKD
3762
3763 switch (info_arr[i].type) {
3764 case BPF_SPIN_LOCK:
3765 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3766 /* Cache offset for faster lookup at runtime */
3767 rec->spin_lock_off = rec->fields[i].offset;
3768 break;
3769 case BPF_TIMER:
3770 WARN_ON_ONCE(rec->timer_off >= 0);
3771 /* Cache offset for faster lookup at runtime */
3772 rec->timer_off = rec->fields[i].offset;
3773 break;
d54730b5
DM
3774 case BPF_REFCOUNT:
3775 WARN_ON_ONCE(rec->refcount_off >= 0);
3776 /* Cache offset for faster lookup at runtime */
3777 rec->refcount_off = rec->fields[i].offset;
3778 break;
db559117
KKD
3779 case BPF_KPTR_UNREF:
3780 case BPF_KPTR_REF:
3781 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3782 if (ret < 0)
3783 goto end;
3784 break;
f0c5941f
KKD
3785 case BPF_LIST_HEAD:
3786 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3787 if (ret < 0)
3788 goto end;
3789 break;
9c395c1b
DM
3790 case BPF_RB_ROOT:
3791 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3792 if (ret < 0)
3793 goto end;
3794 break;
8ffa5cc1 3795 case BPF_LIST_NODE:
9c395c1b 3796 case BPF_RB_NODE:
8ffa5cc1 3797 break;
db559117
KKD
3798 default:
3799 ret = -EFAULT;
3800 goto end;
3801 }
aa3496ac 3802 rec->cnt++;
61df10c7 3803 }
f0c5941f 3804
9c395c1b
DM
3805 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3806 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3807 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
f0c5941f
KKD
3808 ret = -EINVAL;
3809 goto end;
3810 }
3811
404ad75a
DM
3812 if (rec->refcount_off < 0 &&
3813 btf_record_has_field(rec, BPF_LIST_NODE) &&
a40d3632
DM
3814 btf_record_has_field(rec, BPF_RB_NODE)) {
3815 ret = -EINVAL;
3816 goto end;
3817 }
3818
cd2a8079
DM
3819 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3820 NULL, rec);
3821
aa3496ac 3822 return rec;
61df10c7 3823end:
aa3496ac 3824 btf_record_free(rec);
61df10c7
KKD
3825 return ERR_PTR(ret);
3826}
3827
9c395c1b
DM
3828#define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3829#define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3830
865ce09a
KKD
3831int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3832{
3833 int i;
3834
9c395c1b
DM
3835 /* There are three types that signify ownership of some other type:
3836 * kptr_ref, bpf_list_head, bpf_rb_root.
3837 * kptr_ref only supports storing kernel types, which can't store
3838 * references to program allocated local types.
3839 *
3840 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3841 * does not form cycles.
865ce09a 3842 */
9c395c1b 3843 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
865ce09a
KKD
3844 return 0;
3845 for (i = 0; i < rec->cnt; i++) {
3846 struct btf_struct_meta *meta;
3847 u32 btf_id;
3848
9c395c1b 3849 if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
865ce09a 3850 continue;
30465003 3851 btf_id = rec->fields[i].graph_root.value_btf_id;
865ce09a
KKD
3852 meta = btf_find_struct_meta(btf, btf_id);
3853 if (!meta)
3854 return -EFAULT;
30465003 3855 rec->fields[i].graph_root.value_rec = meta->record;
865ce09a 3856
9c395c1b
DM
3857 /* We need to set value_rec for all root types, but no need
3858 * to check ownership cycle for a type unless it's also a
3859 * node type.
3860 */
3861 if (!(rec->field_mask & GRAPH_NODE_MASK))
865ce09a
KKD
3862 continue;
3863
3864 /* We need to ensure ownership acyclicity among all types. The
3865 * proper way to do it would be to topologically sort all BTF
3866 * IDs based on the ownership edges, since there can be multiple
9c395c1b
DM
3867 * bpf_{list_head,rb_node} in a type. Instead, we use the
3868 * following resaoning:
865ce09a
KKD
3869 *
3870 * - A type can only be owned by another type in user BTF if it
9c395c1b 3871 * has a bpf_{list,rb}_node. Let's call these node types.
865ce09a 3872 * - A type can only _own_ another type in user BTF if it has a
9c395c1b 3873 * bpf_{list_head,rb_root}. Let's call these root types.
865ce09a 3874 *
9c395c1b
DM
3875 * We ensure that if a type is both a root and node, its
3876 * element types cannot be root types.
865ce09a
KKD
3877 *
3878 * To ensure acyclicity:
3879 *
9c395c1b
DM
3880 * When A is an root type but not a node, its ownership
3881 * chain can be:
865ce09a
KKD
3882 * A -> B -> C
3883 * Where:
9c395c1b
DM
3884 * - A is an root, e.g. has bpf_rb_root.
3885 * - B is both a root and node, e.g. has bpf_rb_node and
3886 * bpf_list_head.
3887 * - C is only an root, e.g. has bpf_list_node
865ce09a 3888 *
9c395c1b
DM
3889 * When A is both a root and node, some other type already
3890 * owns it in the BTF domain, hence it can not own
3891 * another root type through any of the ownership edges.
865ce09a
KKD
3892 * A -> B
3893 * Where:
9c395c1b
DM
3894 * - A is both an root and node.
3895 * - B is only an node.
865ce09a 3896 */
9c395c1b 3897 if (meta->record->field_mask & GRAPH_ROOT_MASK)
865ce09a
KKD
3898 return -ELOOP;
3899 }
3900 return 0;
3901}
3902
31d0bc81
AM
3903static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3904 u32 type_id, void *data, u8 bits_offset,
3905 struct btf_show *show)
b00b8dae 3906{
b00b8dae 3907 const struct btf_member *member;
31d0bc81 3908 void *safe_data;
b00b8dae
MKL
3909 u32 i;
3910
31d0bc81
AM
3911 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3912 if (!safe_data)
3913 return;
3914
b00b8dae
MKL
3915 for_each_member(i, t, member) {
3916 const struct btf_type *member_type = btf_type_by_id(btf,
3917 member->type);
b00b8dae 3918 const struct btf_kind_operations *ops;
9d5f9f70
YS
3919 u32 member_offset, bitfield_size;
3920 u32 bytes_offset;
3921 u8 bits8_offset;
b00b8dae 3922
31d0bc81 3923 btf_show_start_member(show, member);
b00b8dae 3924
8293eb99
AS
3925 member_offset = __btf_member_bit_offset(t, member);
3926 bitfield_size = __btf_member_bitfield_size(t, member);
17e3ac81
YS
3927 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3928 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3929 if (bitfield_size) {
31d0bc81
AM
3930 safe_data = btf_show_start_type(show, member_type,
3931 member->type,
3932 data + bytes_offset);
3933 if (safe_data)
3934 btf_bitfield_show(safe_data,
3935 bits8_offset,
3936 bitfield_size, show);
3937 btf_show_end_type(show);
9d5f9f70 3938 } else {
9d5f9f70 3939 ops = btf_type_ops(member_type);
31d0bc81
AM
3940 ops->show(btf, member_type, member->type,
3941 data + bytes_offset, bits8_offset, show);
9d5f9f70 3942 }
31d0bc81
AM
3943
3944 btf_show_end_member(show);
b00b8dae 3945 }
31d0bc81
AM
3946
3947 btf_show_end_struct_type(show);
3948}
3949
3950static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3951 u32 type_id, void *data, u8 bits_offset,
3952 struct btf_show *show)
3953{
3954 const struct btf_member *m = show->state.member;
3955
3956 /*
3957 * First check if any members would be shown (are non-zero).
3958 * See comments above "struct btf_show" definition for more
3959 * details on how this works at a high-level.
3960 */
3961 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3962 if (!show->state.depth_check) {
3963 show->state.depth_check = show->state.depth + 1;
3964 show->state.depth_to_show = 0;
3965 }
3966 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3967 /* Restore saved member data here */
3968 show->state.member = m;
3969 if (show->state.depth_check != show->state.depth + 1)
3970 return;
3971 show->state.depth_check = 0;
3972
3973 if (show->state.depth_to_show <= show->state.depth)
3974 return;
3975 /*
3976 * Reaching here indicates we have recursed and found
3977 * non-zero child values.
3978 */
3979 }
3980
3981 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3982}
3983
69b693f0
MKL
3984static struct btf_kind_operations struct_ops = {
3985 .check_meta = btf_struct_check_meta,
eb3f595d 3986 .resolve = btf_struct_resolve,
179cde8c 3987 .check_member = btf_struct_check_member,
9d5f9f70 3988 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3989 .log_details = btf_struct_log,
31d0bc81 3990 .show = btf_struct_show,
69b693f0
MKL
3991};
3992
179cde8c
MKL
3993static int btf_enum_check_member(struct btf_verifier_env *env,
3994 const struct btf_type *struct_type,
3995 const struct btf_member *member,
3996 const struct btf_type *member_type)
3997{
3998 u32 struct_bits_off = member->offset;
3999 u32 struct_size, bytes_offset;
4000
4001 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4002 btf_verifier_log_member(env, struct_type, member,
4003 "Member is not byte aligned");
4004 return -EINVAL;
4005 }
4006
4007 struct_size = struct_type->size;
4008 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 4009 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
4010 btf_verifier_log_member(env, struct_type, member,
4011 "Member exceeds struct_size");
4012 return -EINVAL;
4013 }
4014
4015 return 0;
4016}
4017
9d5f9f70
YS
4018static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4019 const struct btf_type *struct_type,
4020 const struct btf_member *member,
4021 const struct btf_type *member_type)
4022{
4023 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4024 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4025
4026 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4027 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4028 if (!nr_bits) {
4029 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4030 btf_verifier_log_member(env, struct_type, member,
4031 "Member is not byte aligned");
e3439af4 4032 return -EINVAL;
9d5f9f70
YS
4033 }
4034
4035 nr_bits = int_bitsize;
4036 } else if (nr_bits > int_bitsize) {
4037 btf_verifier_log_member(env, struct_type, member,
4038 "Invalid member bitfield_size");
4039 return -EINVAL;
4040 }
4041
4042 struct_size = struct_type->size;
4043 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4044 if (struct_size < bytes_end) {
4045 btf_verifier_log_member(env, struct_type, member,
4046 "Member exceeds struct_size");
4047 return -EINVAL;
4048 }
4049
4050 return 0;
4051}
4052
69b693f0
MKL
4053static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4054 const struct btf_type *t,
4055 u32 meta_left)
4056{
4057 const struct btf_enum *enums = btf_type_enum(t);
4058 struct btf *btf = env->btf;
6089fb32 4059 const char *fmt_str;
69b693f0
MKL
4060 u16 i, nr_enums;
4061 u32 meta_needed;
4062
4063 nr_enums = btf_type_vlen(t);
4064 meta_needed = nr_enums * sizeof(*enums);
4065
4066 if (meta_left < meta_needed) {
4067 btf_verifier_log_basic(env, t,
4068 "meta_left:%u meta_needed:%u",
4069 meta_left, meta_needed);
4070 return -EINVAL;
4071 }
4072
9eea9849
AS
4073 if (t->size > 8 || !is_power_of_2(t->size)) {
4074 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
4075 return -EINVAL;
4076 }
4077
eb04bbb6
YS
4078 /* enum type either no name or a valid one */
4079 if (t->name_off &&
4080 !btf_name_valid_identifier(env->btf, t->name_off)) {
4081 btf_verifier_log_type(env, t, "Invalid name");
4082 return -EINVAL;
4083 }
4084
69b693f0
MKL
4085 btf_verifier_log_type(env, t, NULL);
4086
4087 for (i = 0; i < nr_enums; i++) {
fbcf93eb 4088 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 4089 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 4090 enums[i].name_off);
69b693f0
MKL
4091 return -EINVAL;
4092 }
4093
eb04bbb6
YS
4094 /* enum member must have a valid name */
4095 if (!enums[i].name_off ||
4096 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4097 btf_verifier_log_type(env, t, "Invalid name");
4098 return -EINVAL;
4099 }
4100
8580ac94
AS
4101 if (env->log.level == BPF_LOG_KERNEL)
4102 continue;
6089fb32
YS
4103 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4104 btf_verifier_log(env, fmt_str,
23127b33 4105 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
4106 enums[i].val);
4107 }
4108
4109 return meta_needed;
4110}
4111
4112static void btf_enum_log(struct btf_verifier_env *env,
4113 const struct btf_type *t)
4114{
4115 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4116}
4117
31d0bc81
AM
4118static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4119 u32 type_id, void *data, u8 bits_offset,
4120 struct btf_show *show)
b00b8dae
MKL
4121{
4122 const struct btf_enum *enums = btf_type_enum(t);
4123 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
4124 void *safe_data;
4125 int v;
4126
4127 safe_data = btf_show_start_type(show, t, type_id, data);
4128 if (!safe_data)
4129 return;
4130
4131 v = *(int *)safe_data;
b00b8dae
MKL
4132
4133 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
4134 if (v != enums[i].val)
4135 continue;
4136
4137 btf_show_type_value(show, "%s",
4138 __btf_name_by_offset(btf,
4139 enums[i].name_off));
4140
4141 btf_show_end_type(show);
4142 return;
b00b8dae
MKL
4143 }
4144
6089fb32
YS
4145 if (btf_type_kflag(t))
4146 btf_show_type_value(show, "%d", v);
4147 else
4148 btf_show_type_value(show, "%u", v);
31d0bc81 4149 btf_show_end_type(show);
b00b8dae
MKL
4150}
4151
69b693f0
MKL
4152static struct btf_kind_operations enum_ops = {
4153 .check_meta = btf_enum_check_meta,
eb3f595d 4154 .resolve = btf_df_resolve,
179cde8c 4155 .check_member = btf_enum_check_member,
9d5f9f70 4156 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 4157 .log_details = btf_enum_log,
31d0bc81 4158 .show = btf_enum_show,
69b693f0
MKL
4159};
4160
6089fb32
YS
4161static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4162 const struct btf_type *t,
4163 u32 meta_left)
4164{
4165 const struct btf_enum64 *enums = btf_type_enum64(t);
4166 struct btf *btf = env->btf;
4167 const char *fmt_str;
4168 u16 i, nr_enums;
4169 u32 meta_needed;
4170
4171 nr_enums = btf_type_vlen(t);
4172 meta_needed = nr_enums * sizeof(*enums);
4173
4174 if (meta_left < meta_needed) {
4175 btf_verifier_log_basic(env, t,
4176 "meta_left:%u meta_needed:%u",
4177 meta_left, meta_needed);
4178 return -EINVAL;
4179 }
4180
4181 if (t->size > 8 || !is_power_of_2(t->size)) {
4182 btf_verifier_log_type(env, t, "Unexpected size");
4183 return -EINVAL;
4184 }
4185
4186 /* enum type either no name or a valid one */
4187 if (t->name_off &&
4188 !btf_name_valid_identifier(env->btf, t->name_off)) {
4189 btf_verifier_log_type(env, t, "Invalid name");
4190 return -EINVAL;
4191 }
4192
4193 btf_verifier_log_type(env, t, NULL);
4194
4195 for (i = 0; i < nr_enums; i++) {
4196 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4197 btf_verifier_log(env, "\tInvalid name_offset:%u",
4198 enums[i].name_off);
4199 return -EINVAL;
4200 }
4201
4202 /* enum member must have a valid name */
4203 if (!enums[i].name_off ||
4204 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4205 btf_verifier_log_type(env, t, "Invalid name");
4206 return -EINVAL;
4207 }
4208
4209 if (env->log.level == BPF_LOG_KERNEL)
4210 continue;
4211
4212 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4213 btf_verifier_log(env, fmt_str,
4214 __btf_name_by_offset(btf, enums[i].name_off),
4215 btf_enum64_value(enums + i));
4216 }
4217
4218 return meta_needed;
4219}
4220
4221static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4222 u32 type_id, void *data, u8 bits_offset,
4223 struct btf_show *show)
4224{
4225 const struct btf_enum64 *enums = btf_type_enum64(t);
4226 u32 i, nr_enums = btf_type_vlen(t);
4227 void *safe_data;
4228 s64 v;
4229
4230 safe_data = btf_show_start_type(show, t, type_id, data);
4231 if (!safe_data)
4232 return;
4233
4234 v = *(u64 *)safe_data;
4235
4236 for (i = 0; i < nr_enums; i++) {
4237 if (v != btf_enum64_value(enums + i))
4238 continue;
4239
4240 btf_show_type_value(show, "%s",
4241 __btf_name_by_offset(btf,
4242 enums[i].name_off));
4243
4244 btf_show_end_type(show);
4245 return;
4246 }
4247
4248 if (btf_type_kflag(t))
4249 btf_show_type_value(show, "%lld", v);
4250 else
4251 btf_show_type_value(show, "%llu", v);
4252 btf_show_end_type(show);
4253}
4254
4255static struct btf_kind_operations enum64_ops = {
4256 .check_meta = btf_enum64_check_meta,
4257 .resolve = btf_df_resolve,
4258 .check_member = btf_enum_check_member,
4259 .check_kflag_member = btf_enum_check_kflag_member,
4260 .log_details = btf_enum_log,
4261 .show = btf_enum64_show,
4262};
4263
2667a262
MKL
4264static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4265 const struct btf_type *t,
4266 u32 meta_left)
4267{
4268 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4269
4270 if (meta_left < meta_needed) {
4271 btf_verifier_log_basic(env, t,
4272 "meta_left:%u meta_needed:%u",
4273 meta_left, meta_needed);
4274 return -EINVAL;
4275 }
4276
4277 if (t->name_off) {
4278 btf_verifier_log_type(env, t, "Invalid name");
4279 return -EINVAL;
4280 }
4281
9d5f9f70
YS
4282 if (btf_type_kflag(t)) {
4283 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4284 return -EINVAL;
4285 }
4286
2667a262
MKL
4287 btf_verifier_log_type(env, t, NULL);
4288
4289 return meta_needed;
4290}
4291
4292static void btf_func_proto_log(struct btf_verifier_env *env,
4293 const struct btf_type *t)
4294{
4295 const struct btf_param *args = (const struct btf_param *)(t + 1);
4296 u16 nr_args = btf_type_vlen(t), i;
4297
4298 btf_verifier_log(env, "return=%u args=(", t->type);
4299 if (!nr_args) {
4300 btf_verifier_log(env, "void");
4301 goto done;
4302 }
4303
4304 if (nr_args == 1 && !args[0].type) {
4305 /* Only one vararg */
4306 btf_verifier_log(env, "vararg");
4307 goto done;
4308 }
4309
4310 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
4311 __btf_name_by_offset(env->btf,
4312 args[0].name_off));
2667a262
MKL
4313 for (i = 1; i < nr_args - 1; i++)
4314 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
4315 __btf_name_by_offset(env->btf,
4316 args[i].name_off));
2667a262
MKL
4317
4318 if (nr_args > 1) {
4319 const struct btf_param *last_arg = &args[nr_args - 1];
4320
4321 if (last_arg->type)
4322 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
4323 __btf_name_by_offset(env->btf,
4324 last_arg->name_off));
2667a262
MKL
4325 else
4326 btf_verifier_log(env, ", vararg");
4327 }
4328
4329done:
4330 btf_verifier_log(env, ")");
4331}
4332
4333static struct btf_kind_operations func_proto_ops = {
4334 .check_meta = btf_func_proto_check_meta,
4335 .resolve = btf_df_resolve,
4336 /*
4337 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4338 * a struct's member.
4339 *
8fb33b60 4340 * It should be a function pointer instead.
2667a262
MKL
4341 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4342 *
4343 * Hence, there is no btf_func_check_member().
4344 */
4345 .check_member = btf_df_check_member,
9d5f9f70 4346 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4347 .log_details = btf_func_proto_log,
31d0bc81 4348 .show = btf_df_show,
2667a262
MKL
4349};
4350
4351static s32 btf_func_check_meta(struct btf_verifier_env *env,
4352 const struct btf_type *t,
4353 u32 meta_left)
4354{
4355 if (!t->name_off ||
4356 !btf_name_valid_identifier(env->btf, t->name_off)) {
4357 btf_verifier_log_type(env, t, "Invalid name");
4358 return -EINVAL;
4359 }
4360
51c39bb1
AS
4361 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4362 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
4363 return -EINVAL;
4364 }
4365
9d5f9f70
YS
4366 if (btf_type_kflag(t)) {
4367 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4368 return -EINVAL;
4369 }
4370
2667a262
MKL
4371 btf_verifier_log_type(env, t, NULL);
4372
4373 return 0;
4374}
4375
d7e7b42f
YS
4376static int btf_func_resolve(struct btf_verifier_env *env,
4377 const struct resolve_vertex *v)
4378{
4379 const struct btf_type *t = v->t;
4380 u32 next_type_id = t->type;
4381 int err;
4382
4383 err = btf_func_check(env, t);
4384 if (err)
4385 return err;
4386
4387 env_stack_pop_resolved(env, next_type_id, 0);
4388 return 0;
4389}
4390
2667a262
MKL
4391static struct btf_kind_operations func_ops = {
4392 .check_meta = btf_func_check_meta,
d7e7b42f 4393 .resolve = btf_func_resolve,
2667a262 4394 .check_member = btf_df_check_member,
9d5f9f70 4395 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4396 .log_details = btf_ref_type_log,
31d0bc81 4397 .show = btf_df_show,
2667a262
MKL
4398};
4399
1dc92851
DB
4400static s32 btf_var_check_meta(struct btf_verifier_env *env,
4401 const struct btf_type *t,
4402 u32 meta_left)
4403{
4404 const struct btf_var *var;
4405 u32 meta_needed = sizeof(*var);
4406
4407 if (meta_left < meta_needed) {
4408 btf_verifier_log_basic(env, t,
4409 "meta_left:%u meta_needed:%u",
4410 meta_left, meta_needed);
4411 return -EINVAL;
4412 }
4413
4414 if (btf_type_vlen(t)) {
4415 btf_verifier_log_type(env, t, "vlen != 0");
4416 return -EINVAL;
4417 }
4418
4419 if (btf_type_kflag(t)) {
4420 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4421 return -EINVAL;
4422 }
4423
4424 if (!t->name_off ||
4425 !__btf_name_valid(env->btf, t->name_off, true)) {
4426 btf_verifier_log_type(env, t, "Invalid name");
4427 return -EINVAL;
4428 }
4429
4430 /* A var cannot be in type void */
4431 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4432 btf_verifier_log_type(env, t, "Invalid type_id");
4433 return -EINVAL;
4434 }
4435
4436 var = btf_type_var(t);
4437 if (var->linkage != BTF_VAR_STATIC &&
4438 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4439 btf_verifier_log_type(env, t, "Linkage not supported");
4440 return -EINVAL;
4441 }
4442
4443 btf_verifier_log_type(env, t, NULL);
4444
4445 return meta_needed;
4446}
4447
4448static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4449{
4450 const struct btf_var *var = btf_type_var(t);
4451
4452 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4453}
4454
4455static const struct btf_kind_operations var_ops = {
4456 .check_meta = btf_var_check_meta,
4457 .resolve = btf_var_resolve,
4458 .check_member = btf_df_check_member,
4459 .check_kflag_member = btf_df_check_kflag_member,
4460 .log_details = btf_var_log,
31d0bc81 4461 .show = btf_var_show,
1dc92851
DB
4462};
4463
4464static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4465 const struct btf_type *t,
4466 u32 meta_left)
4467{
4468 const struct btf_var_secinfo *vsi;
4469 u64 last_vsi_end_off = 0, sum = 0;
4470 u32 i, meta_needed;
4471
4472 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4473 if (meta_left < meta_needed) {
4474 btf_verifier_log_basic(env, t,
4475 "meta_left:%u meta_needed:%u",
4476 meta_left, meta_needed);
4477 return -EINVAL;
4478 }
4479
1dc92851
DB
4480 if (!t->size) {
4481 btf_verifier_log_type(env, t, "size == 0");
4482 return -EINVAL;
4483 }
4484
4485 if (btf_type_kflag(t)) {
4486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4487 return -EINVAL;
4488 }
4489
4490 if (!t->name_off ||
4491 !btf_name_valid_section(env->btf, t->name_off)) {
4492 btf_verifier_log_type(env, t, "Invalid name");
4493 return -EINVAL;
4494 }
4495
4496 btf_verifier_log_type(env, t, NULL);
4497
4498 for_each_vsi(i, t, vsi) {
4499 /* A var cannot be in type void */
4500 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4501 btf_verifier_log_vsi(env, t, vsi,
4502 "Invalid type_id");
4503 return -EINVAL;
4504 }
4505
4506 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4507 btf_verifier_log_vsi(env, t, vsi,
4508 "Invalid offset");
4509 return -EINVAL;
4510 }
4511
4512 if (!vsi->size || vsi->size > t->size) {
4513 btf_verifier_log_vsi(env, t, vsi,
4514 "Invalid size");
4515 return -EINVAL;
4516 }
4517
4518 last_vsi_end_off = vsi->offset + vsi->size;
4519 if (last_vsi_end_off > t->size) {
4520 btf_verifier_log_vsi(env, t, vsi,
4521 "Invalid offset+size");
4522 return -EINVAL;
4523 }
4524
4525 btf_verifier_log_vsi(env, t, vsi, NULL);
4526 sum += vsi->size;
4527 }
4528
4529 if (t->size < sum) {
4530 btf_verifier_log_type(env, t, "Invalid btf_info size");
4531 return -EINVAL;
4532 }
4533
4534 return meta_needed;
4535}
4536
4537static int btf_datasec_resolve(struct btf_verifier_env *env,
4538 const struct resolve_vertex *v)
4539{
4540 const struct btf_var_secinfo *vsi;
4541 struct btf *btf = env->btf;
4542 u16 i;
4543
9b459804 4544 env->resolve_mode = RESOLVE_TBD;
1dc92851
DB
4545 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4546 u32 var_type_id = vsi->type, type_id, type_size = 0;
4547 const struct btf_type *var_type = btf_type_by_id(env->btf,
4548 var_type_id);
4549 if (!var_type || !btf_type_is_var(var_type)) {
4550 btf_verifier_log_vsi(env, v->t, vsi,
4551 "Not a VAR kind member");
4552 return -EINVAL;
4553 }
4554
4555 if (!env_type_is_resolve_sink(env, var_type) &&
4556 !env_type_is_resolved(env, var_type_id)) {
4557 env_stack_set_next_member(env, i + 1);
4558 return env_stack_push(env, var_type, var_type_id);
4559 }
4560
4561 type_id = var_type->type;
4562 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4563 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4564 return -EINVAL;
4565 }
4566
4567 if (vsi->size < type_size) {
4568 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4569 return -EINVAL;
4570 }
4571 }
4572
4573 env_stack_pop_resolved(env, 0, 0);
4574 return 0;
4575}
4576
4577static void btf_datasec_log(struct btf_verifier_env *env,
4578 const struct btf_type *t)
4579{
4580 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4581}
4582
31d0bc81
AM
4583static void btf_datasec_show(const struct btf *btf,
4584 const struct btf_type *t, u32 type_id,
4585 void *data, u8 bits_offset,
4586 struct btf_show *show)
1dc92851
DB
4587{
4588 const struct btf_var_secinfo *vsi;
4589 const struct btf_type *var;
4590 u32 i;
4591
31d0bc81
AM
4592 if (!btf_show_start_type(show, t, type_id, data))
4593 return;
4594
4595 btf_show_type_value(show, "section (\"%s\") = {",
4596 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
4597 for_each_vsi(i, t, vsi) {
4598 var = btf_type_by_id(btf, vsi->type);
4599 if (i)
31d0bc81
AM
4600 btf_show(show, ",");
4601 btf_type_ops(var)->show(btf, var, vsi->type,
4602 data + vsi->offset, bits_offset, show);
1dc92851 4603 }
31d0bc81 4604 btf_show_end_type(show);
1dc92851
DB
4605}
4606
4607static const struct btf_kind_operations datasec_ops = {
4608 .check_meta = btf_datasec_check_meta,
4609 .resolve = btf_datasec_resolve,
4610 .check_member = btf_df_check_member,
4611 .check_kflag_member = btf_df_check_kflag_member,
4612 .log_details = btf_datasec_log,
31d0bc81 4613 .show = btf_datasec_show,
1dc92851
DB
4614};
4615
b1828f0b
IL
4616static s32 btf_float_check_meta(struct btf_verifier_env *env,
4617 const struct btf_type *t,
4618 u32 meta_left)
4619{
4620 if (btf_type_vlen(t)) {
4621 btf_verifier_log_type(env, t, "vlen != 0");
4622 return -EINVAL;
4623 }
4624
4625 if (btf_type_kflag(t)) {
4626 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4627 return -EINVAL;
4628 }
4629
4630 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4631 t->size != 16) {
4632 btf_verifier_log_type(env, t, "Invalid type_size");
4633 return -EINVAL;
4634 }
4635
4636 btf_verifier_log_type(env, t, NULL);
4637
4638 return 0;
4639}
4640
4641static int btf_float_check_member(struct btf_verifier_env *env,
4642 const struct btf_type *struct_type,
4643 const struct btf_member *member,
4644 const struct btf_type *member_type)
4645{
4646 u64 start_offset_bytes;
4647 u64 end_offset_bytes;
4648 u64 misalign_bits;
4649 u64 align_bytes;
4650 u64 align_bits;
4651
4652 /* Different architectures have different alignment requirements, so
4653 * here we check only for the reasonable minimum. This way we ensure
4654 * that types after CO-RE can pass the kernel BTF verifier.
4655 */
4656 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4657 align_bits = align_bytes * BITS_PER_BYTE;
4658 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4659 if (misalign_bits) {
4660 btf_verifier_log_member(env, struct_type, member,
4661 "Member is not properly aligned");
4662 return -EINVAL;
4663 }
4664
4665 start_offset_bytes = member->offset / BITS_PER_BYTE;
4666 end_offset_bytes = start_offset_bytes + member_type->size;
4667 if (end_offset_bytes > struct_type->size) {
4668 btf_verifier_log_member(env, struct_type, member,
4669 "Member exceeds struct_size");
4670 return -EINVAL;
4671 }
4672
4673 return 0;
4674}
4675
4676static void btf_float_log(struct btf_verifier_env *env,
4677 const struct btf_type *t)
4678{
4679 btf_verifier_log(env, "size=%u", t->size);
4680}
4681
4682static const struct btf_kind_operations float_ops = {
4683 .check_meta = btf_float_check_meta,
4684 .resolve = btf_df_resolve,
4685 .check_member = btf_float_check_member,
4686 .check_kflag_member = btf_generic_check_kflag_member,
4687 .log_details = btf_float_log,
4688 .show = btf_df_show,
4689};
4690
223f903e 4691static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
b5ea834d
YS
4692 const struct btf_type *t,
4693 u32 meta_left)
4694{
223f903e 4695 const struct btf_decl_tag *tag;
b5ea834d
YS
4696 u32 meta_needed = sizeof(*tag);
4697 s32 component_idx;
4698 const char *value;
4699
4700 if (meta_left < meta_needed) {
4701 btf_verifier_log_basic(env, t,
4702 "meta_left:%u meta_needed:%u",
4703 meta_left, meta_needed);
4704 return -EINVAL;
4705 }
4706
4707 value = btf_name_by_offset(env->btf, t->name_off);
4708 if (!value || !value[0]) {
4709 btf_verifier_log_type(env, t, "Invalid value");
4710 return -EINVAL;
4711 }
4712
4713 if (btf_type_vlen(t)) {
4714 btf_verifier_log_type(env, t, "vlen != 0");
4715 return -EINVAL;
4716 }
4717
4718 if (btf_type_kflag(t)) {
4719 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4720 return -EINVAL;
4721 }
4722
223f903e 4723 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d
YS
4724 if (component_idx < -1) {
4725 btf_verifier_log_type(env, t, "Invalid component_idx");
4726 return -EINVAL;
4727 }
4728
4729 btf_verifier_log_type(env, t, NULL);
4730
4731 return meta_needed;
4732}
4733
223f903e 4734static int btf_decl_tag_resolve(struct btf_verifier_env *env,
b5ea834d
YS
4735 const struct resolve_vertex *v)
4736{
4737 const struct btf_type *next_type;
4738 const struct btf_type *t = v->t;
4739 u32 next_type_id = t->type;
4740 struct btf *btf = env->btf;
4741 s32 component_idx;
4742 u32 vlen;
4743
4744 next_type = btf_type_by_id(btf, next_type_id);
223f903e 4745 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
b5ea834d
YS
4746 btf_verifier_log_type(env, v->t, "Invalid type_id");
4747 return -EINVAL;
4748 }
4749
4750 if (!env_type_is_resolve_sink(env, next_type) &&
4751 !env_type_is_resolved(env, next_type_id))
4752 return env_stack_push(env, next_type, next_type_id);
4753
223f903e 4754 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d 4755 if (component_idx != -1) {
bd16dee6 4756 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
b5ea834d
YS
4757 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4758 return -EINVAL;
4759 }
4760
4761 if (btf_type_is_struct(next_type)) {
4762 vlen = btf_type_vlen(next_type);
4763 } else {
4764 /* next_type should be a function */
4765 next_type = btf_type_by_id(btf, next_type->type);
4766 vlen = btf_type_vlen(next_type);
4767 }
4768
4769 if ((u32)component_idx >= vlen) {
4770 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4771 return -EINVAL;
4772 }
4773 }
4774
4775 env_stack_pop_resolved(env, next_type_id, 0);
4776
4777 return 0;
4778}
4779
223f903e 4780static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
b5ea834d
YS
4781{
4782 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
223f903e 4783 btf_type_decl_tag(t)->component_idx);
b5ea834d
YS
4784}
4785
223f903e
YS
4786static const struct btf_kind_operations decl_tag_ops = {
4787 .check_meta = btf_decl_tag_check_meta,
4788 .resolve = btf_decl_tag_resolve,
b5ea834d
YS
4789 .check_member = btf_df_check_member,
4790 .check_kflag_member = btf_df_check_kflag_member,
223f903e 4791 .log_details = btf_decl_tag_log,
b5ea834d
YS
4792 .show = btf_df_show,
4793};
4794
2667a262
MKL
4795static int btf_func_proto_check(struct btf_verifier_env *env,
4796 const struct btf_type *t)
4797{
4798 const struct btf_type *ret_type;
4799 const struct btf_param *args;
4800 const struct btf *btf;
4801 u16 nr_args, i;
4802 int err;
4803
4804 btf = env->btf;
4805 args = (const struct btf_param *)(t + 1);
4806 nr_args = btf_type_vlen(t);
4807
4808 /* Check func return type which could be "void" (t->type == 0) */
4809 if (t->type) {
4810 u32 ret_type_id = t->type;
4811
4812 ret_type = btf_type_by_id(btf, ret_type_id);
4813 if (!ret_type) {
4814 btf_verifier_log_type(env, t, "Invalid return type");
4815 return -EINVAL;
4816 }
4817
ea68376c
SF
4818 if (btf_type_is_resolve_source_only(ret_type)) {
4819 btf_verifier_log_type(env, t, "Invalid return type");
4820 return -EINVAL;
4821 }
4822
2667a262
MKL
4823 if (btf_type_needs_resolve(ret_type) &&
4824 !env_type_is_resolved(env, ret_type_id)) {
4825 err = btf_resolve(env, ret_type, ret_type_id);
4826 if (err)
4827 return err;
4828 }
4829
4830 /* Ensure the return type is a type that has a size */
4831 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4832 btf_verifier_log_type(env, t, "Invalid return type");
4833 return -EINVAL;
4834 }
4835 }
4836
4837 if (!nr_args)
4838 return 0;
4839
4840 /* Last func arg type_id could be 0 if it is a vararg */
4841 if (!args[nr_args - 1].type) {
4842 if (args[nr_args - 1].name_off) {
4843 btf_verifier_log_type(env, t, "Invalid arg#%u",
4844 nr_args);
4845 return -EINVAL;
4846 }
4847 nr_args--;
4848 }
4849
2667a262
MKL
4850 for (i = 0; i < nr_args; i++) {
4851 const struct btf_type *arg_type;
4852 u32 arg_type_id;
4853
4854 arg_type_id = args[i].type;
4855 arg_type = btf_type_by_id(btf, arg_type_id);
4856 if (!arg_type) {
4857 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4858 return -EINVAL;
2667a262
MKL
4859 }
4860
f17472d4
SF
4861 if (btf_type_is_resolve_source_only(arg_type)) {
4862 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4863 return -EINVAL;
4864 }
4865
2667a262
MKL
4866 if (args[i].name_off &&
4867 (!btf_name_offset_valid(btf, args[i].name_off) ||
4868 !btf_name_valid_identifier(btf, args[i].name_off))) {
4869 btf_verifier_log_type(env, t,
4870 "Invalid arg#%u", i + 1);
5bad3587 4871 return -EINVAL;
2667a262
MKL
4872 }
4873
4874 if (btf_type_needs_resolve(arg_type) &&
4875 !env_type_is_resolved(env, arg_type_id)) {
4876 err = btf_resolve(env, arg_type, arg_type_id);
4877 if (err)
5bad3587 4878 return err;
2667a262
MKL
4879 }
4880
4881 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4882 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4883 return -EINVAL;
2667a262
MKL
4884 }
4885 }
4886
5bad3587 4887 return 0;
2667a262
MKL
4888}
4889
4890static int btf_func_check(struct btf_verifier_env *env,
4891 const struct btf_type *t)
4892{
4893 const struct btf_type *proto_type;
4894 const struct btf_param *args;
4895 const struct btf *btf;
4896 u16 nr_args, i;
4897
4898 btf = env->btf;
4899 proto_type = btf_type_by_id(btf, t->type);
4900
4901 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4902 btf_verifier_log_type(env, t, "Invalid type_id");
4903 return -EINVAL;
4904 }
4905
4906 args = (const struct btf_param *)(proto_type + 1);
4907 nr_args = btf_type_vlen(proto_type);
4908 for (i = 0; i < nr_args; i++) {
4909 if (!args[i].name_off && args[i].type) {
4910 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4911 return -EINVAL;
4912 }
4913 }
4914
4915 return 0;
4916}
4917
69b693f0
MKL
4918static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4919 [BTF_KIND_INT] = &int_ops,
4920 [BTF_KIND_PTR] = &ptr_ops,
4921 [BTF_KIND_ARRAY] = &array_ops,
4922 [BTF_KIND_STRUCT] = &struct_ops,
4923 [BTF_KIND_UNION] = &struct_ops,
4924 [BTF_KIND_ENUM] = &enum_ops,
4925 [BTF_KIND_FWD] = &fwd_ops,
4926 [BTF_KIND_TYPEDEF] = &modifier_ops,
4927 [BTF_KIND_VOLATILE] = &modifier_ops,
4928 [BTF_KIND_CONST] = &modifier_ops,
4929 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
4930 [BTF_KIND_FUNC] = &func_ops,
4931 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
4932 [BTF_KIND_VAR] = &var_ops,
4933 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 4934 [BTF_KIND_FLOAT] = &float_ops,
223f903e 4935 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
8c42d2fa 4936 [BTF_KIND_TYPE_TAG] = &modifier_ops,
6089fb32 4937 [BTF_KIND_ENUM64] = &enum64_ops,
69b693f0
MKL
4938};
4939
4940static s32 btf_check_meta(struct btf_verifier_env *env,
4941 const struct btf_type *t,
4942 u32 meta_left)
4943{
4944 u32 saved_meta_left = meta_left;
4945 s32 var_meta_size;
4946
4947 if (meta_left < sizeof(*t)) {
4948 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4949 env->log_type_id, meta_left, sizeof(*t));
4950 return -EINVAL;
4951 }
4952 meta_left -= sizeof(*t);
4953
aea2f7b8
MKL
4954 if (t->info & ~BTF_INFO_MASK) {
4955 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4956 env->log_type_id, t->info);
4957 return -EINVAL;
4958 }
4959
69b693f0
MKL
4960 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4961 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4962 btf_verifier_log(env, "[%u] Invalid kind:%u",
4963 env->log_type_id, BTF_INFO_KIND(t->info));
4964 return -EINVAL;
4965 }
4966
fbcf93eb 4967 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 4968 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 4969 env->log_type_id, t->name_off);
69b693f0
MKL
4970 return -EINVAL;
4971 }
4972
4973 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4974 if (var_meta_size < 0)
4975 return var_meta_size;
4976
4977 meta_left -= var_meta_size;
4978
4979 return saved_meta_left - meta_left;
4980}
4981
4982static int btf_check_all_metas(struct btf_verifier_env *env)
4983{
4984 struct btf *btf = env->btf;
4985 struct btf_header *hdr;
4986 void *cur, *end;
4987
f80442a4 4988 hdr = &btf->hdr;
69b693f0 4989 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 4990 end = cur + hdr->type_len;
69b693f0 4991
951bb646 4992 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
4993 while (cur < end) {
4994 struct btf_type *t = cur;
4995 s32 meta_size;
4996
4997 meta_size = btf_check_meta(env, t, end - cur);
4998 if (meta_size < 0)
4999 return meta_size;
5000
5001 btf_add_type(env, t);
5002 cur += meta_size;
5003 env->log_type_id++;
5004 }
5005
5006 return 0;
5007}
5008
eb3f595d
MKL
5009static bool btf_resolve_valid(struct btf_verifier_env *env,
5010 const struct btf_type *t,
5011 u32 type_id)
5012{
5013 struct btf *btf = env->btf;
5014
5015 if (!env_type_is_resolved(env, type_id))
5016 return false;
5017
1dc92851 5018 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
5019 return !btf_resolved_type_id(btf, type_id) &&
5020 !btf_resolved_type_size(btf, type_id);
eb3f595d 5021
d7e7b42f 5022 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
b5ea834d
YS
5023 return btf_resolved_type_id(btf, type_id) &&
5024 !btf_resolved_type_size(btf, type_id);
5025
1dc92851
DB
5026 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5027 btf_type_is_var(t)) {
eb3f595d 5028 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
5029 return t &&
5030 !btf_type_is_modifier(t) &&
5031 !btf_type_is_var(t) &&
5032 !btf_type_is_datasec(t);
eb3f595d
MKL
5033 }
5034
5035 if (btf_type_is_array(t)) {
5036 const struct btf_array *array = btf_type_array(t);
5037 const struct btf_type *elem_type;
5038 u32 elem_type_id = array->type;
5039 u32 elem_size;
5040
5041 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5042 return elem_type && !btf_type_is_modifier(elem_type) &&
5043 (array->nelems * elem_size ==
951bb646 5044 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
5045 }
5046
5047 return false;
5048}
5049
2667a262
MKL
5050static int btf_resolve(struct btf_verifier_env *env,
5051 const struct btf_type *t, u32 type_id)
5052{
5053 u32 save_log_type_id = env->log_type_id;
5054 const struct resolve_vertex *v;
5055 int err = 0;
5056
5057 env->resolve_mode = RESOLVE_TBD;
5058 env_stack_push(env, t, type_id);
5059 while (!err && (v = env_stack_peak(env))) {
5060 env->log_type_id = v->type_id;
5061 err = btf_type_ops(v->t)->resolve(env, v);
5062 }
5063
5064 env->log_type_id = type_id;
5065 if (err == -E2BIG) {
5066 btf_verifier_log_type(env, t,
5067 "Exceeded max resolving depth:%u",
5068 MAX_RESOLVE_DEPTH);
5069 } else if (err == -EEXIST) {
5070 btf_verifier_log_type(env, t, "Loop detected");
5071 }
5072
5073 /* Final sanity check */
5074 if (!err && !btf_resolve_valid(env, t, type_id)) {
5075 btf_verifier_log_type(env, t, "Invalid resolve state");
5076 err = -EINVAL;
5077 }
5078
5079 env->log_type_id = save_log_type_id;
5080 return err;
5081}
5082
eb3f595d
MKL
5083static int btf_check_all_types(struct btf_verifier_env *env)
5084{
5085 struct btf *btf = env->btf;
951bb646
AN
5086 const struct btf_type *t;
5087 u32 type_id, i;
eb3f595d
MKL
5088 int err;
5089
5090 err = env_resolve_init(env);
5091 if (err)
5092 return err;
5093
5094 env->phase++;
951bb646
AN
5095 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5096 type_id = btf->start_id + i;
5097 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
5098
5099 env->log_type_id = type_id;
5100 if (btf_type_needs_resolve(t) &&
5101 !env_type_is_resolved(env, type_id)) {
5102 err = btf_resolve(env, t, type_id);
5103 if (err)
5104 return err;
5105 }
5106
2667a262
MKL
5107 if (btf_type_is_func_proto(t)) {
5108 err = btf_func_proto_check(env, t);
5109 if (err)
5110 return err;
5111 }
eb3f595d
MKL
5112 }
5113
5114 return 0;
5115}
5116
69b693f0
MKL
5117static int btf_parse_type_sec(struct btf_verifier_env *env)
5118{
f80442a4 5119 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
5120 int err;
5121
f80442a4
MKL
5122 /* Type section must align to 4 bytes */
5123 if (hdr->type_off & (sizeof(u32) - 1)) {
5124 btf_verifier_log(env, "Unaligned type_off");
5125 return -EINVAL;
5126 }
5127
951bb646 5128 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
5129 btf_verifier_log(env, "No type found");
5130 return -EINVAL;
5131 }
5132
eb3f595d
MKL
5133 err = btf_check_all_metas(env);
5134 if (err)
5135 return err;
5136
5137 return btf_check_all_types(env);
69b693f0
MKL
5138}
5139
5140static int btf_parse_str_sec(struct btf_verifier_env *env)
5141{
5142 const struct btf_header *hdr;
5143 struct btf *btf = env->btf;
5144 const char *start, *end;
5145
f80442a4 5146 hdr = &btf->hdr;
69b693f0
MKL
5147 start = btf->nohdr_data + hdr->str_off;
5148 end = start + hdr->str_len;
5149
f80442a4
MKL
5150 if (end != btf->data + btf->data_size) {
5151 btf_verifier_log(env, "String section is not at the end");
5152 return -EINVAL;
5153 }
5154
951bb646
AN
5155 btf->strings = start;
5156
5157 if (btf->base_btf && !hdr->str_len)
5158 return 0;
5159 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5160 btf_verifier_log(env, "Invalid string section");
5161 return -EINVAL;
5162 }
5163 if (!btf->base_btf && start[0]) {
69b693f0
MKL
5164 btf_verifier_log(env, "Invalid string section");
5165 return -EINVAL;
5166 }
69b693f0
MKL
5167
5168 return 0;
5169}
5170
f80442a4
MKL
5171static const size_t btf_sec_info_offset[] = {
5172 offsetof(struct btf_header, type_off),
5173 offsetof(struct btf_header, str_off),
5174};
5175
5176static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 5177{
f80442a4
MKL
5178 const struct btf_sec_info *x = a;
5179 const struct btf_sec_info *y = b;
5180
5181 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5182}
5183
5184static int btf_check_sec_info(struct btf_verifier_env *env,
5185 u32 btf_data_size)
5186{
a2889a4c 5187 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 5188 u32 total, expected_total, i;
69b693f0 5189 const struct btf_header *hdr;
f80442a4
MKL
5190 const struct btf *btf;
5191
5192 btf = env->btf;
5193 hdr = &btf->hdr;
5194
5195 /* Populate the secs from hdr */
a2889a4c 5196 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
5197 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5198 btf_sec_info_offset[i]);
5199
a2889a4c
MKL
5200 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5201 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
5202
5203 /* Check for gaps and overlap among sections */
5204 total = 0;
5205 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 5206 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
5207 if (expected_total < secs[i].off) {
5208 btf_verifier_log(env, "Invalid section offset");
5209 return -EINVAL;
5210 }
5211 if (total < secs[i].off) {
5212 /* gap */
5213 btf_verifier_log(env, "Unsupported section found");
5214 return -EINVAL;
5215 }
5216 if (total > secs[i].off) {
5217 btf_verifier_log(env, "Section overlap found");
5218 return -EINVAL;
5219 }
5220 if (expected_total - total < secs[i].len) {
5221 btf_verifier_log(env,
5222 "Total section length too long");
5223 return -EINVAL;
5224 }
5225 total += secs[i].len;
5226 }
5227
5228 /* There is data other than hdr and known sections */
5229 if (expected_total != total) {
5230 btf_verifier_log(env, "Unsupported section found");
5231 return -EINVAL;
5232 }
5233
5234 return 0;
5235}
5236
4a6998af 5237static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 5238{
4a6998af 5239 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 5240 const struct btf_header *hdr;
f80442a4 5241 struct btf *btf;
69b693f0 5242
f80442a4 5243 btf = env->btf;
4a6998af 5244 btf_data_size = btf->data_size;
f80442a4 5245
583669ab 5246 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
f80442a4
MKL
5247 btf_verifier_log(env, "hdr_len not found");
5248 return -EINVAL;
5249 }
5250
4a6998af
ML
5251 hdr = btf->data;
5252 hdr_len = hdr->hdr_len;
f80442a4 5253 if (btf_data_size < hdr_len) {
69b693f0
MKL
5254 btf_verifier_log(env, "btf_header not found");
5255 return -EINVAL;
5256 }
5257
4a6998af
ML
5258 /* Ensure the unsupported header fields are zero */
5259 if (hdr_len > sizeof(btf->hdr)) {
5260 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5261 u8 *end = btf->data + hdr_len;
5262
5263 for (; expected_zero < end; expected_zero++) {
5264 if (*expected_zero) {
5265 btf_verifier_log(env, "Unsupported btf_header");
5266 return -E2BIG;
5267 }
5268 }
f80442a4
MKL
5269 }
5270
5271 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 5272 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
5273
5274 hdr = &btf->hdr;
5275
5276 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 5277
69b693f0
MKL
5278 if (hdr->magic != BTF_MAGIC) {
5279 btf_verifier_log(env, "Invalid magic");
5280 return -EINVAL;
5281 }
5282
5283 if (hdr->version != BTF_VERSION) {
5284 btf_verifier_log(env, "Unsupported version");
5285 return -ENOTSUPP;
5286 }
5287
5288 if (hdr->flags) {
5289 btf_verifier_log(env, "Unsupported flags");
5290 return -ENOTSUPP;
5291 }
5292
bcc5e616 5293 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
5294 btf_verifier_log(env, "No data");
5295 return -EINVAL;
5296 }
5297
3a74904c 5298 return btf_check_sec_info(env, btf_data_size);
69b693f0
MKL
5299}
5300
8ffa5cc1
KKD
5301static const char *alloc_obj_fields[] = {
5302 "bpf_spin_lock",
5303 "bpf_list_head",
5304 "bpf_list_node",
9c395c1b
DM
5305 "bpf_rb_root",
5306 "bpf_rb_node",
d54730b5 5307 "bpf_refcount",
8ffa5cc1
KKD
5308};
5309
5310static struct btf_struct_metas *
5311btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5312{
5313 union {
5314 struct btf_id_set set;
5315 struct {
5316 u32 _cnt;
5317 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5318 } _arr;
5319 } aof;
5320 struct btf_struct_metas *tab = NULL;
5321 int i, n, id, ret;
5322
5323 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5324 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5325
5326 memset(&aof, 0, sizeof(aof));
5327 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5328 /* Try to find whether this special type exists in user BTF, and
5329 * if so remember its ID so we can easily find it among members
5330 * of structs that we iterate in the next loop.
5331 */
5332 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5333 if (id < 0)
5334 continue;
5335 aof.set.ids[aof.set.cnt++] = id;
5336 }
5337
5338 if (!aof.set.cnt)
5339 return NULL;
5340 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5341
5342 n = btf_nr_types(btf);
5343 for (i = 1; i < n; i++) {
5344 struct btf_struct_metas *new_tab;
5345 const struct btf_member *member;
8ffa5cc1
KKD
5346 struct btf_struct_meta *type;
5347 struct btf_record *record;
5348 const struct btf_type *t;
5349 int j, tab_cnt;
5350
5351 t = btf_type_by_id(btf, i);
5352 if (!t) {
5353 ret = -EINVAL;
5354 goto free;
5355 }
5356 if (!__btf_type_is_struct(t))
5357 continue;
5358
5359 cond_resched();
5360
5361 for_each_member(j, t, member) {
5362 if (btf_id_set_contains(&aof.set, member->type))
5363 goto parse;
5364 }
5365 continue;
5366 parse:
5367 tab_cnt = tab ? tab->cnt : 0;
5368 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5369 GFP_KERNEL | __GFP_NOWARN);
5370 if (!new_tab) {
5371 ret = -ENOMEM;
5372 goto free;
5373 }
5374 if (!tab)
5375 new_tab->cnt = 0;
5376 tab = new_tab;
5377
5378 type = &tab->types[tab->cnt];
5379 type->btf_id = i;
9c395c1b 5380 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
d54730b5 5381 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
8ffa5cc1
KKD
5382 /* The record cannot be unset, treat it as an error if so */
5383 if (IS_ERR_OR_NULL(record)) {
5384 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5385 goto free;
5386 }
8ffa5cc1 5387 type->record = record;
8ffa5cc1
KKD
5388 tab->cnt++;
5389 }
5390 return tab;
5391free:
5392 btf_struct_metas_free(tab);
5393 return ERR_PTR(ret);
5394}
5395
5396struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5397{
5398 struct btf_struct_metas *tab;
5399
5400 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5401 tab = btf->struct_meta_tab;
5402 if (!tab)
5403 return NULL;
5404 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5405}
5406
eb596b09
KKD
5407static int btf_check_type_tags(struct btf_verifier_env *env,
5408 struct btf *btf, int start_id)
5409{
5410 int i, n, good_id = start_id - 1;
5411 bool in_tags;
5412
5413 n = btf_nr_types(btf);
5414 for (i = start_id; i < n; i++) {
5415 const struct btf_type *t;
d1a374a1 5416 int chain_limit = 32;
eb596b09
KKD
5417 u32 cur_id = i;
5418
5419 t = btf_type_by_id(btf, i);
5420 if (!t)
5421 return -EINVAL;
5422 if (!btf_type_is_modifier(t))
5423 continue;
5424
5425 cond_resched();
5426
5427 in_tags = btf_type_is_type_tag(t);
5428 while (btf_type_is_modifier(t)) {
d1a374a1
KKD
5429 if (!chain_limit--) {
5430 btf_verifier_log(env, "Max chain length or cycle detected");
5431 return -ELOOP;
5432 }
eb596b09
KKD
5433 if (btf_type_is_type_tag(t)) {
5434 if (!in_tags) {
5435 btf_verifier_log(env, "Type tags don't precede modifiers");
5436 return -EINVAL;
5437 }
5438 } else if (in_tags) {
5439 in_tags = false;
5440 }
5441 if (cur_id <= good_id)
5442 break;
5443 /* Move to next type */
5444 cur_id = t->type;
5445 t = btf_type_by_id(btf, cur_id);
5446 if (!t)
5447 return -EINVAL;
5448 }
5449 good_id = i;
5450 }
5451 return 0;
5452}
5453
bdcab414 5454static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
69b693f0 5455{
bdcab414
AN
5456 u32 log_true_size;
5457 int err;
5458
5459 err = bpf_vlog_finalize(log, &log_true_size);
5460
5461 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5462 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5463 &log_true_size, sizeof(log_true_size)))
5464 err = -EFAULT;
5465
5466 return err;
5467}
5468
47a71c1f 5469static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
69b693f0 5470{
47a71c1f
AN
5471 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5472 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
8ffa5cc1 5473 struct btf_struct_metas *struct_meta_tab;
69b693f0 5474 struct btf_verifier_env *env = NULL;
69b693f0
MKL
5475 struct btf *btf = NULL;
5476 u8 *data;
bdcab414 5477 int err, ret;
69b693f0 5478
47a71c1f 5479 if (attr->btf_size > BTF_MAX_SIZE)
69b693f0
MKL
5480 return ERR_PTR(-E2BIG);
5481
5482 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5483 if (!env)
5484 return ERR_PTR(-ENOMEM);
5485
bdcab414
AN
5486 /* user could have requested verbose verifier output
5487 * and supplied buffer to store the verification trace
5488 */
5489 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5490 log_ubuf, attr->btf_log_size);
5491 if (err)
5492 goto errout_free;
69b693f0
MKL
5493
5494 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5495 if (!btf) {
5496 err = -ENOMEM;
5497 goto errout;
5498 }
f80442a4
MKL
5499 env->btf = btf;
5500
47a71c1f 5501 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
69b693f0
MKL
5502 if (!data) {
5503 err = -ENOMEM;
5504 goto errout;
5505 }
5506
5507 btf->data = data;
47a71c1f 5508 btf->data_size = attr->btf_size;
69b693f0 5509
47a71c1f 5510 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
69b693f0
MKL
5511 err = -EFAULT;
5512 goto errout;
5513 }
5514
4a6998af
ML
5515 err = btf_parse_hdr(env);
5516 if (err)
5517 goto errout;
5518
5519 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5520
69b693f0
MKL
5521 err = btf_parse_str_sec(env);
5522 if (err)
5523 goto errout;
5524
5525 err = btf_parse_type_sec(env);
5526 if (err)
5527 goto errout;
5528
eb596b09
KKD
5529 err = btf_check_type_tags(env, btf, 1);
5530 if (err)
5531 goto errout;
5532
bdcab414 5533 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
8ffa5cc1
KKD
5534 if (IS_ERR(struct_meta_tab)) {
5535 err = PTR_ERR(struct_meta_tab);
5536 goto errout;
5537 }
5538 btf->struct_meta_tab = struct_meta_tab;
5539
865ce09a
KKD
5540 if (struct_meta_tab) {
5541 int i;
5542
5543 for (i = 0; i < struct_meta_tab->cnt; i++) {
5544 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5545 if (err < 0)
5546 goto errout_meta;
5547 }
5548 }
5549
bdcab414
AN
5550 err = finalize_log(&env->log, uattr, uattr_size);
5551 if (err)
5552 goto errout_free;
69b693f0 5553
f80442a4
MKL
5554 btf_verifier_env_free(env);
5555 refcount_set(&btf->refcnt, 1);
5556 return btf;
69b693f0 5557
8ffa5cc1
KKD
5558errout_meta:
5559 btf_free_struct_meta_tab(btf);
69b693f0 5560errout:
bdcab414
AN
5561 /* overwrite err with -ENOSPC or -EFAULT */
5562 ret = finalize_log(&env->log, uattr, uattr_size);
5563 if (ret)
5564 err = ret;
5565errout_free:
69b693f0
MKL
5566 btf_verifier_env_free(env);
5567 if (btf)
5568 btf_free(btf);
5569 return ERR_PTR(err);
5570}
b00b8dae 5571
90ceddcb
FS
5572extern char __weak __start_BTF[];
5573extern char __weak __stop_BTF[];
91cc1a99
AS
5574extern struct btf *btf_vmlinux;
5575
5576#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 5577#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
5578static union {
5579 struct bpf_ctx_convert {
5580#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5581 prog_ctx_type _id##_prog; \
5582 kern_ctx_type _id##_kern;
5583#include <linux/bpf_types.h>
5584#undef BPF_PROG_TYPE
5585 } *__t;
5586 /* 't' is written once under lock. Read many times. */
5587 const struct btf_type *t;
5588} bpf_ctx_convert;
5589enum {
5590#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5591 __ctx_convert##_id,
5592#include <linux/bpf_types.h>
5593#undef BPF_PROG_TYPE
ce27709b 5594 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
5595};
5596static u8 bpf_ctx_convert_map[] = {
5597#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5598 [_id] = __ctx_convert##_id,
5599#include <linux/bpf_types.h>
5600#undef BPF_PROG_TYPE
4c80c7bc 5601 0, /* avoid empty array */
91cc1a99
AS
5602};
5603#undef BPF_MAP_TYPE
f2e10bff 5604#undef BPF_LINK_TYPE
91cc1a99 5605
00b85860 5606const struct btf_member *
34747c41 5607btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
5608 const struct btf_type *t, enum bpf_prog_type prog_type,
5609 int arg)
91cc1a99
AS
5610{
5611 const struct btf_type *conv_struct;
5612 const struct btf_type *ctx_struct;
5613 const struct btf_member *ctx_type;
5614 const char *tname, *ctx_tname;
5615
5616 conv_struct = bpf_ctx_convert.t;
5617 if (!conv_struct) {
5618 bpf_log(log, "btf_vmlinux is malformed\n");
5619 return NULL;
5620 }
5621 t = btf_type_by_id(btf, t->type);
5622 while (btf_type_is_modifier(t))
5623 t = btf_type_by_id(btf, t->type);
5624 if (!btf_type_is_struct(t)) {
5625 /* Only pointer to struct is supported for now.
5626 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5627 * is not supported yet.
5628 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5629 */
91cc1a99
AS
5630 return NULL;
5631 }
5632 tname = btf_name_by_offset(btf, t->name_off);
5633 if (!tname) {
51c39bb1 5634 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
5635 return NULL;
5636 }
5637 /* prog_type is valid bpf program type. No need for bounds check. */
5638 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5639 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5640 * Like 'struct __sk_buff'
5641 */
5642 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5643 if (!ctx_struct)
5644 /* should not happen */
5645 return NULL;
d384dce2 5646again:
91cc1a99
AS
5647 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5648 if (!ctx_tname) {
5649 /* should not happen */
5650 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5651 return NULL;
5652 }
5653 /* only compare that prog's ctx type name is the same as
5654 * kernel expects. No need to compare field by field.
5655 * It's ok for bpf prog to do:
5656 * struct __sk_buff {};
5657 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5658 * { // no fields of skb are ever used }
5659 */
2f464393
JK
5660 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5661 return ctx_type;
5662 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5663 return ctx_type;
d384dce2
AN
5664 if (strcmp(ctx_tname, tname)) {
5665 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5666 * underlying struct and check name again
5667 */
5668 if (!btf_type_is_modifier(ctx_struct))
5669 return NULL;
5670 while (btf_type_is_modifier(ctx_struct))
5671 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5672 goto again;
5673 }
91cc1a99
AS
5674 return ctx_type;
5675}
8580ac94 5676
5b92a28a
AS
5677static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5678 struct btf *btf,
5679 const struct btf_type *t,
51c39bb1
AS
5680 enum bpf_prog_type prog_type,
5681 int arg)
5b92a28a
AS
5682{
5683 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5684
51c39bb1 5685 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
5686 if (!prog_ctx_type)
5687 return -ENOENT;
5688 kern_ctx_type = prog_ctx_type + 1;
5689 return kern_ctx_type->type;
5690}
5691
fd264ca0
YS
5692int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5693{
5694 const struct btf_member *kctx_member;
5695 const struct btf_type *conv_struct;
5696 const struct btf_type *kctx_type;
5697 u32 kctx_type_id;
5698
5699 conv_struct = bpf_ctx_convert.t;
5700 /* get member for kernel ctx type */
5701 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5702 kctx_type_id = kctx_member->type;
5703 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5704 if (!btf_type_is_struct(kctx_type)) {
5705 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5706 return -EINVAL;
5707 }
5708
5709 return kctx_type_id;
5710}
5711
49f4e672
JO
5712BTF_ID_LIST(bpf_ctx_convert_btf_id)
5713BTF_ID(struct, bpf_ctx_convert)
5714
8580ac94
AS
5715struct btf *btf_parse_vmlinux(void)
5716{
5717 struct btf_verifier_env *env = NULL;
5718 struct bpf_verifier_log *log;
5719 struct btf *btf = NULL;
49f4e672 5720 int err;
8580ac94
AS
5721
5722 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5723 if (!env)
5724 return ERR_PTR(-ENOMEM);
5725
5726 log = &env->log;
5727 log->level = BPF_LOG_KERNEL;
5728
5729 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5730 if (!btf) {
5731 err = -ENOMEM;
5732 goto errout;
5733 }
5734 env->btf = btf;
5735
90ceddcb
FS
5736 btf->data = __start_BTF;
5737 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
5738 btf->kernel_btf = true;
5739 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
5740
5741 err = btf_parse_hdr(env);
5742 if (err)
5743 goto errout;
5744
5745 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5746
5747 err = btf_parse_str_sec(env);
5748 if (err)
5749 goto errout;
5750
5751 err = btf_check_all_metas(env);
5752 if (err)
5753 goto errout;
5754
eb596b09
KKD
5755 err = btf_check_type_tags(env, btf, 1);
5756 if (err)
5757 goto errout;
5758
a2d0d62f 5759 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 5760 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 5761
d3e42bb0 5762 bpf_struct_ops_init(btf, log);
27ae7997 5763
8580ac94 5764 refcount_set(&btf->refcnt, 1);
53297220
AN
5765
5766 err = btf_alloc_id(btf);
5767 if (err)
5768 goto errout;
5769
5770 btf_verifier_env_free(env);
8580ac94
AS
5771 return btf;
5772
5773errout:
5774 btf_verifier_env_free(env);
5775 if (btf) {
5776 kvfree(btf->types);
5777 kfree(btf);
5778 }
5779 return ERR_PTR(err);
5780}
5781
7112d127
AN
5782#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5783
36e68442
AN
5784static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5785{
5786 struct btf_verifier_env *env = NULL;
5787 struct bpf_verifier_log *log;
5788 struct btf *btf = NULL, *base_btf;
5789 int err;
5790
5791 base_btf = bpf_get_btf_vmlinux();
5792 if (IS_ERR(base_btf))
5793 return base_btf;
5794 if (!base_btf)
5795 return ERR_PTR(-EINVAL);
5796
5797 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5798 if (!env)
5799 return ERR_PTR(-ENOMEM);
5800
5801 log = &env->log;
5802 log->level = BPF_LOG_KERNEL;
5803
5804 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5805 if (!btf) {
5806 err = -ENOMEM;
5807 goto errout;
5808 }
5809 env->btf = btf;
5810
5811 btf->base_btf = base_btf;
5812 btf->start_id = base_btf->nr_types;
5813 btf->start_str_off = base_btf->hdr.str_len;
5814 btf->kernel_btf = true;
5815 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5816
5817 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5818 if (!btf->data) {
5819 err = -ENOMEM;
5820 goto errout;
5821 }
5822 memcpy(btf->data, data, data_size);
5823 btf->data_size = data_size;
5824
5825 err = btf_parse_hdr(env);
5826 if (err)
5827 goto errout;
5828
5829 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5830
5831 err = btf_parse_str_sec(env);
5832 if (err)
5833 goto errout;
5834
5835 err = btf_check_all_metas(env);
5836 if (err)
5837 goto errout;
5838
eb596b09
KKD
5839 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5840 if (err)
5841 goto errout;
5842
36e68442
AN
5843 btf_verifier_env_free(env);
5844 refcount_set(&btf->refcnt, 1);
5845 return btf;
5846
5847errout:
5848 btf_verifier_env_free(env);
5849 if (btf) {
5850 kvfree(btf->data);
5851 kvfree(btf->types);
5852 kfree(btf);
5853 }
5854 return ERR_PTR(err);
5855}
5856
7112d127
AN
5857#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5858
5b92a28a
AS
5859struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5860{
3aac1ead 5861 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5862
22dc4a0f 5863 if (tgt_prog)
5b92a28a 5864 return tgt_prog->aux->btf;
22dc4a0f
AN
5865 else
5866 return prog->aux->attach_btf;
5b92a28a
AS
5867}
5868
bb6728d7 5869static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
84ad7a7a 5870{
91f2dc68
FZ
5871 /* skip modifiers */
5872 t = btf_type_skip_modifiers(btf, t->type, NULL);
84ad7a7a 5873
bb6728d7 5874 return btf_type_is_int(t);
84ad7a7a
JO
5875}
5876
720e6a43
YS
5877static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5878 int off)
5879{
5880 const struct btf_param *args;
5881 const struct btf_type *t;
5882 u32 offset = 0, nr_args;
5883 int i;
5884
5885 if (!func_proto)
5886 return off / 8;
5887
5888 nr_args = btf_type_vlen(func_proto);
5889 args = (const struct btf_param *)(func_proto + 1);
5890 for (i = 0; i < nr_args; i++) {
5891 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5892 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5893 if (off < offset)
5894 return i;
5895 }
5896
5897 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5898 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5899 if (off < offset)
5900 return nr_args;
5901
5902 return nr_args + 1;
5903}
5904
c6b0337f 5905static bool prog_args_trusted(const struct bpf_prog *prog)
3f00c523 5906{
c6b0337f
AS
5907 enum bpf_attach_type atype = prog->expected_attach_type;
5908
5909 switch (prog->type) {
5910 case BPF_PROG_TYPE_TRACING:
5911 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5912 case BPF_PROG_TYPE_LSM:
c0c852dd 5913 return bpf_lsm_is_trusted(prog);
c6b0337f
AS
5914 case BPF_PROG_TYPE_STRUCT_OPS:
5915 return true;
5916 default:
5917 return false;
5918 }
3f00c523
DV
5919}
5920
9e15db66
AS
5921bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5922 const struct bpf_prog *prog,
5923 struct bpf_insn_access_aux *info)
5924{
38207291 5925 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 5926 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5927 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 5928 const char *tname = prog->aux->attach_func_name;
9e15db66 5929 struct bpf_verifier_log *log = info->log;
9e15db66 5930 const struct btf_param *args;
c6f1bfe8 5931 const char *tag_value;
9e15db66 5932 u32 nr_args, arg;
3c32cc1b 5933 int i, ret;
9e15db66 5934
9e15db66 5935 if (off % 8) {
38207291 5936 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
5937 tname, off);
5938 return false;
5939 }
720e6a43 5940 arg = get_ctx_arg_idx(btf, t, off);
9e15db66 5941 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
5942 /* if (t == NULL) Fall back to default BPF prog with
5943 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5944 */
5945 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
5946 if (prog->aux->attach_btf_trace) {
5947 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5948 args++;
5949 nr_args--;
5950 }
fec56f58 5951
f50b49a0
KS
5952 if (arg > nr_args) {
5953 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5954 tname, arg + 1);
5955 return false;
5956 }
5957
6ba43b76 5958 if (arg == nr_args) {
f50b49a0 5959 switch (prog->expected_attach_type) {
69fd337a 5960 case BPF_LSM_CGROUP:
f50b49a0
KS
5961 case BPF_LSM_MAC:
5962 case BPF_TRACE_FEXIT:
9e4e01df
KS
5963 /* When LSM programs are attached to void LSM hooks
5964 * they use FEXIT trampolines and when attached to
5965 * int LSM hooks, they use MODIFY_RETURN trampolines.
5966 *
5967 * While the LSM programs are BPF_MODIFY_RETURN-like
5968 * the check:
5969 *
5970 * if (ret_type != 'int')
5971 * return -EINVAL;
5972 *
5973 * is _not_ done here. This is still safe as LSM hooks
5974 * have only void and int return types.
5975 */
6ba43b76
KS
5976 if (!t)
5977 return true;
5978 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
5979 break;
5980 case BPF_MODIFY_RETURN:
6ba43b76
KS
5981 /* For now the BPF_MODIFY_RETURN can only be attached to
5982 * functions that return an int.
5983 */
5984 if (!t)
5985 return false;
5986
5987 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 5988 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
5989 bpf_log(log,
5990 "ret type %s not allowed for fmod_ret\n",
571f9738 5991 btf_type_str(t));
6ba43b76
KS
5992 return false;
5993 }
f50b49a0
KS
5994 break;
5995 default:
5996 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5997 tname, arg + 1);
5998 return false;
6ba43b76 5999 }
fec56f58 6000 } else {
5b92a28a 6001 if (!t)
523a4cf4 6002 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
6003 return true;
6004 t = btf_type_by_id(btf, args[arg].type);
9e15db66 6005 }
f50b49a0 6006
9e15db66
AS
6007 /* skip modifiers */
6008 while (btf_type_is_modifier(t))
5b92a28a 6009 t = btf_type_by_id(btf, t->type);
720e6a43 6010 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
9e15db66
AS
6011 /* accessing a scalar */
6012 return true;
6013 if (!btf_type_is_ptr(t)) {
6014 bpf_log(log,
38207291 6015 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 6016 tname, arg,
5b92a28a 6017 __btf_name_by_offset(btf, t->name_off),
571f9738 6018 btf_type_str(t));
9e15db66
AS
6019 return false;
6020 }
afbf21dc
YS
6021
6022 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6023 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6024 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
c25b2ae1 6025 u32 type, flag;
afbf21dc 6026
c25b2ae1
HL
6027 type = base_type(ctx_arg_info->reg_type);
6028 flag = type_flag(ctx_arg_info->reg_type);
20b2aff4 6029 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
c25b2ae1 6030 (flag & PTR_MAYBE_NULL)) {
afbf21dc
YS
6031 info->reg_type = ctx_arg_info->reg_type;
6032 return true;
6033 }
6034 }
6035
9e15db66
AS
6036 if (t->type == 0)
6037 /* This is a pointer to void.
6038 * It is the same as scalar from the verifier safety pov.
6039 * No further pointer walking is allowed.
6040 */
6041 return true;
6042
bb6728d7 6043 if (is_int_ptr(btf, t))
84ad7a7a
JO
6044 return true;
6045
9e15db66 6046 /* this is a pointer to another type */
3c32cc1b
YS
6047 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6048 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6049
6050 if (ctx_arg_info->offset == off) {
d3621642
YS
6051 if (!ctx_arg_info->btf_id) {
6052 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6053 return false;
6054 }
6055
3c32cc1b 6056 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 6057 info->btf = btf_vmlinux;
951cf368
YS
6058 info->btf_id = ctx_arg_info->btf_id;
6059 return true;
3c32cc1b
YS
6060 }
6061 }
9e15db66 6062
951cf368 6063 info->reg_type = PTR_TO_BTF_ID;
c6b0337f 6064 if (prog_args_trusted(prog))
3f00c523
DV
6065 info->reg_type |= PTR_TRUSTED;
6066
5b92a28a 6067 if (tgt_prog) {
43bc2874
THJ
6068 enum bpf_prog_type tgt_type;
6069
6070 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6071 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6072 else
6073 tgt_type = tgt_prog->type;
6074
6075 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 6076 if (ret > 0) {
22dc4a0f 6077 info->btf = btf_vmlinux;
5b92a28a
AS
6078 info->btf_id = ret;
6079 return true;
6080 } else {
6081 return false;
6082 }
6083 }
275517ff 6084
22dc4a0f 6085 info->btf = btf;
275517ff 6086 info->btf_id = t->type;
5b92a28a 6087 t = btf_type_by_id(btf, t->type);
c6f1bfe8
YS
6088
6089 if (btf_type_is_type_tag(t)) {
6090 tag_value = __btf_name_by_offset(btf, t->name_off);
6091 if (strcmp(tag_value, "user") == 0)
6092 info->reg_type |= MEM_USER;
5844101a
HL
6093 if (strcmp(tag_value, "percpu") == 0)
6094 info->reg_type |= MEM_PERCPU;
c6f1bfe8
YS
6095 }
6096
9e15db66 6097 /* skip modifiers */
275517ff
MKL
6098 while (btf_type_is_modifier(t)) {
6099 info->btf_id = t->type;
5b92a28a 6100 t = btf_type_by_id(btf, t->type);
275517ff 6101 }
9e15db66
AS
6102 if (!btf_type_is_struct(t)) {
6103 bpf_log(log,
38207291 6104 "func '%s' arg%d type %s is not a struct\n",
571f9738 6105 tname, arg, btf_type_str(t));
9e15db66
AS
6106 return false;
6107 }
38207291 6108 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
571f9738 6109 tname, arg, info->btf_id, btf_type_str(t),
5b92a28a 6110 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
6111 return true;
6112}
6113
1c6d28a6
JO
6114enum bpf_struct_walk_result {
6115 /* < 0 error */
6116 WALK_SCALAR = 0,
6117 WALK_PTR,
6118 WALK_STRUCT,
6119};
6120
22dc4a0f 6121static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6 6122 const struct btf_type *t, int off, int size,
63260df1
AS
6123 u32 *next_btf_id, enum bpf_type_flag *flag,
6124 const char **field_name)
9e15db66 6125{
7e3617a7
MKL
6126 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6127 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 6128 const struct btf_member *member;
c6f1bfe8 6129 const char *tname, *mname, *tag_value;
1c6d28a6 6130 u32 vlen, elem_id, mid;
9e15db66 6131
6fcd486b 6132 *flag = 0;
9e15db66 6133again:
22dc4a0f 6134 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 6135 if (!btf_type_is_struct(t)) {
275517ff 6136 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
6137 return -EINVAL;
6138 }
6139
9c5f8a10 6140 vlen = btf_type_vlen(t);
976aba00 6141 if (off + size > t->size) {
9c5f8a10
YS
6142 /* If the last element is a variable size array, we may
6143 * need to relax the rule.
6144 */
6145 struct btf_array *array_elem;
6146
6147 if (vlen == 0)
6148 goto error;
6149
6150 member = btf_type_member(t) + vlen - 1;
22dc4a0f 6151 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
6152 NULL);
6153 if (!btf_type_is_array(mtype))
6154 goto error;
6155
6156 array_elem = (struct btf_array *)(mtype + 1);
6157 if (array_elem->nelems != 0)
6158 goto error;
6159
8293eb99 6160 moff = __btf_member_bit_offset(t, member) / 8;
9c5f8a10
YS
6161 if (off < moff)
6162 goto error;
6163
2569c7b8 6164 /* allow structure and integer */
22dc4a0f 6165 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc 6166 NULL);
2569c7b8
FZ
6167
6168 if (btf_type_is_int(t))
6169 return WALK_SCALAR;
6170
dafe58fc 6171 if (!btf_type_is_struct(t))
9c5f8a10
YS
6172 goto error;
6173
dafe58fc
JO
6174 off = (off - moff) % t->size;
6175 goto again;
9c5f8a10
YS
6176
6177error:
976aba00
MKL
6178 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6179 tname, off, size);
6180 return -EACCES;
6181 }
9e15db66 6182
976aba00 6183 for_each_member(i, t, member) {
7e3617a7 6184 /* offset of the field in bytes */
8293eb99 6185 moff = __btf_member_bit_offset(t, member) / 8;
7e3617a7 6186 if (off + size <= moff)
9e15db66
AS
6187 /* won't find anything, field is already too far */
6188 break;
976aba00 6189
8293eb99
AS
6190 if (__btf_member_bitfield_size(t, member)) {
6191 u32 end_bit = __btf_member_bit_offset(t, member) +
6192 __btf_member_bitfield_size(t, member);
976aba00
MKL
6193
6194 /* off <= moff instead of off == moff because clang
6195 * does not generate a BTF member for anonymous
6196 * bitfield like the ":16" here:
6197 * struct {
6198 * int :16;
6199 * int x:8;
6200 * };
6201 */
6202 if (off <= moff &&
6203 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 6204 return WALK_SCALAR;
976aba00
MKL
6205
6206 /* off may be accessing a following member
6207 *
6208 * or
6209 *
6210 * Doing partial access at either end of this
6211 * bitfield. Continue on this case also to
6212 * treat it as not accessing this bitfield
6213 * and eventually error out as field not
6214 * found to keep it simple.
6215 * It could be relaxed if there was a legit
6216 * partial access case later.
6217 */
6218 continue;
6219 }
6220
7e3617a7
MKL
6221 /* In case of "off" is pointing to holes of a struct */
6222 if (off < moff)
976aba00 6223 break;
9e15db66
AS
6224
6225 /* type of the field */
1c6d28a6 6226 mid = member->type;
22dc4a0f
AN
6227 mtype = btf_type_by_id(btf, member->type);
6228 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 6229
22dc4a0f 6230 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
6231 &elem_type, &elem_id, &total_nelems,
6232 &mid);
7e3617a7 6233 if (IS_ERR(mtype)) {
9e15db66
AS
6234 bpf_log(log, "field %s doesn't have size\n", mname);
6235 return -EFAULT;
6236 }
7e3617a7
MKL
6237
6238 mtrue_end = moff + msize;
6239 if (off >= mtrue_end)
9e15db66
AS
6240 /* no overlap with member, keep iterating */
6241 continue;
7e3617a7
MKL
6242
6243 if (btf_type_is_array(mtype)) {
6244 u32 elem_idx;
6245
6298399b 6246 /* __btf_resolve_size() above helps to
7e3617a7
MKL
6247 * linearize a multi-dimensional array.
6248 *
6249 * The logic here is treating an array
6250 * in a struct as the following way:
6251 *
6252 * struct outer {
6253 * struct inner array[2][2];
6254 * };
6255 *
6256 * looks like:
6257 *
6258 * struct outer {
6259 * struct inner array_elem0;
6260 * struct inner array_elem1;
6261 * struct inner array_elem2;
6262 * struct inner array_elem3;
6263 * };
6264 *
6265 * When accessing outer->array[1][0], it moves
6266 * moff to "array_elem2", set mtype to
6267 * "struct inner", and msize also becomes
6268 * sizeof(struct inner). Then most of the
6269 * remaining logic will fall through without
6270 * caring the current member is an array or
6271 * not.
6272 *
6273 * Unlike mtype/msize/moff, mtrue_end does not
6274 * change. The naming difference ("_true") tells
6275 * that it is not always corresponding to
6276 * the current mtype/msize/moff.
6277 * It is the true end of the current
6278 * member (i.e. array in this case). That
6279 * will allow an int array to be accessed like
6280 * a scratch space,
6281 * i.e. allow access beyond the size of
6282 * the array's element as long as it is
6283 * within the mtrue_end boundary.
6284 */
6285
6286 /* skip empty array */
6287 if (moff == mtrue_end)
6288 continue;
6289
6290 msize /= total_nelems;
6291 elem_idx = (off - moff) / msize;
6292 moff += elem_idx * msize;
6293 mtype = elem_type;
1c6d28a6 6294 mid = elem_id;
7e3617a7
MKL
6295 }
6296
9e15db66
AS
6297 /* the 'off' we're looking for is either equal to start
6298 * of this field or inside of this struct
6299 */
6300 if (btf_type_is_struct(mtype)) {
6fcd486b
AS
6301 if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION &&
6302 btf_type_vlen(mtype) != 1)
6303 /*
6304 * walking unions yields untrusted pointers
6305 * with exception of __bpf_md_ptr and other
6306 * unions with a single member
6307 */
6308 *flag |= PTR_UNTRUSTED;
6309
9e15db66
AS
6310 /* our field must be inside that union or struct */
6311 t = mtype;
6312
1c6d28a6
JO
6313 /* return if the offset matches the member offset */
6314 if (off == moff) {
6315 *next_btf_id = mid;
6316 return WALK_STRUCT;
6317 }
6318
9e15db66 6319 /* adjust offset we're looking for */
7e3617a7 6320 off -= moff;
9e15db66
AS
6321 goto again;
6322 }
9e15db66
AS
6323
6324 if (btf_type_is_ptr(mtype)) {
c6f1bfe8
YS
6325 const struct btf_type *stype, *t;
6326 enum bpf_type_flag tmp_flag = 0;
257af63d 6327 u32 id;
9e15db66 6328
7e3617a7
MKL
6329 if (msize != size || off != moff) {
6330 bpf_log(log,
6331 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6332 mname, moff, tname, off, size);
6333 return -EACCES;
6334 }
c6f1bfe8 6335
5844101a 6336 /* check type tag */
c6f1bfe8
YS
6337 t = btf_type_by_id(btf, mtype->type);
6338 if (btf_type_is_type_tag(t)) {
6339 tag_value = __btf_name_by_offset(btf, t->name_off);
5844101a 6340 /* check __user tag */
c6f1bfe8
YS
6341 if (strcmp(tag_value, "user") == 0)
6342 tmp_flag = MEM_USER;
5844101a
HL
6343 /* check __percpu tag */
6344 if (strcmp(tag_value, "percpu") == 0)
6345 tmp_flag = MEM_PERCPU;
9bb00b28
YS
6346 /* check __rcu tag */
6347 if (strcmp(tag_value, "rcu") == 0)
6348 tmp_flag = MEM_RCU;
c6f1bfe8
YS
6349 }
6350
22dc4a0f 6351 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 6352 if (btf_type_is_struct(stype)) {
257af63d 6353 *next_btf_id = id;
6fcd486b 6354 *flag |= tmp_flag;
63260df1
AS
6355 if (field_name)
6356 *field_name = mname;
1c6d28a6 6357 return WALK_PTR;
9e15db66
AS
6358 }
6359 }
7e3617a7
MKL
6360
6361 /* Allow more flexible access within an int as long as
6362 * it is within mtrue_end.
6363 * Since mtrue_end could be the end of an array,
6364 * that also allows using an array of int as a scratch
6365 * space. e.g. skb->cb[].
6366 */
6367 if (off + size > mtrue_end) {
6368 bpf_log(log,
6369 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6370 mname, mtrue_end, tname, off, size);
6371 return -EACCES;
6372 }
6373
1c6d28a6 6374 return WALK_SCALAR;
9e15db66
AS
6375 }
6376 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6377 return -EINVAL;
6378}
6379
6728aea7
KKD
6380int btf_struct_access(struct bpf_verifier_log *log,
6381 const struct bpf_reg_state *reg,
6382 int off, int size, enum bpf_access_type atype __maybe_unused,
63260df1
AS
6383 u32 *next_btf_id, enum bpf_type_flag *flag,
6384 const char **field_name)
1c6d28a6 6385{
6728aea7 6386 const struct btf *btf = reg->btf;
c6f1bfe8 6387 enum bpf_type_flag tmp_flag = 0;
6728aea7
KKD
6388 const struct btf_type *t;
6389 u32 id = reg->btf_id;
1c6d28a6 6390 int err;
1c6d28a6 6391
8ffa5cc1
KKD
6392 while (type_is_alloc(reg->type)) {
6393 struct btf_struct_meta *meta;
6394 struct btf_record *rec;
6395 int i;
6396
6397 meta = btf_find_struct_meta(btf, id);
6398 if (!meta)
6399 break;
6400 rec = meta->record;
6401 for (i = 0; i < rec->cnt; i++) {
6402 struct btf_field *field = &rec->fields[i];
6403 u32 offset = field->offset;
6404 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6405 bpf_log(log,
6406 "direct access to %s is disallowed\n",
6407 btf_field_type_name(field->type));
6408 return -EACCES;
6409 }
6410 }
6411 break;
6412 }
6413
6728aea7 6414 t = btf_type_by_id(btf, id);
1c6d28a6 6415 do {
63260df1 6416 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
1c6d28a6
JO
6417
6418 switch (err) {
6419 case WALK_PTR:
282de143
KKD
6420 /* For local types, the destination register cannot
6421 * become a pointer again.
6422 */
6423 if (type_is_alloc(reg->type))
6424 return SCALAR_VALUE;
1c6d28a6
JO
6425 /* If we found the pointer or scalar on t+off,
6426 * we're done.
6427 */
6428 *next_btf_id = id;
c6f1bfe8 6429 *flag = tmp_flag;
1c6d28a6
JO
6430 return PTR_TO_BTF_ID;
6431 case WALK_SCALAR:
6432 return SCALAR_VALUE;
6433 case WALK_STRUCT:
6434 /* We found nested struct, so continue the search
6435 * by diving in it. At this point the offset is
6436 * aligned with the new type, so set it to 0.
6437 */
22dc4a0f 6438 t = btf_type_by_id(btf, id);
1c6d28a6
JO
6439 off = 0;
6440 break;
6441 default:
6442 /* It's either error or unknown return value..
6443 * scream and leave.
6444 */
6445 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6446 return -EINVAL;
6447 return err;
6448 }
6449 } while (t);
6450
6451 return -EINVAL;
6452}
6453
22dc4a0f
AN
6454/* Check that two BTF types, each specified as an BTF object + id, are exactly
6455 * the same. Trivial ID check is not enough due to module BTFs, because we can
6456 * end up with two different module BTFs, but IDs point to the common type in
6457 * vmlinux BTF.
6458 */
00b85860
KKD
6459bool btf_types_are_same(const struct btf *btf1, u32 id1,
6460 const struct btf *btf2, u32 id2)
22dc4a0f
AN
6461{
6462 if (id1 != id2)
6463 return false;
6464 if (btf1 == btf2)
6465 return true;
6466 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6467}
6468
faaf4a79 6469bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f 6470 const struct btf *btf, u32 id, int off,
2ab3b380
KKD
6471 const struct btf *need_btf, u32 need_type_id,
6472 bool strict)
faaf4a79
JO
6473{
6474 const struct btf_type *type;
c6f1bfe8 6475 enum bpf_type_flag flag;
faaf4a79
JO
6476 int err;
6477
6478 /* Are we already done? */
22dc4a0f 6479 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79 6480 return true;
2ab3b380
KKD
6481 /* In case of strict type match, we do not walk struct, the top level
6482 * type match must succeed. When strict is true, off should have already
6483 * been 0.
6484 */
6485 if (strict)
6486 return false;
faaf4a79 6487again:
22dc4a0f 6488 type = btf_type_by_id(btf, id);
faaf4a79
JO
6489 if (!type)
6490 return false;
63260df1 6491 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
faaf4a79
JO
6492 if (err != WALK_STRUCT)
6493 return false;
6494
6495 /* We found nested struct object. If it matches
6496 * the requested ID, we're done. Otherwise let's
6497 * continue the search with offset 0 in the new
6498 * type.
6499 */
22dc4a0f 6500 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
6501 off = 0;
6502 goto again;
6503 }
6504
6505 return true;
6506}
6507
fec56f58 6508static int __get_type_size(struct btf *btf, u32 btf_id,
a00ed843 6509 const struct btf_type **ret_type)
fec56f58
AS
6510{
6511 const struct btf_type *t;
6512
a00ed843 6513 *ret_type = btf_type_by_id(btf, 0);
fec56f58
AS
6514 if (!btf_id)
6515 /* void */
6516 return 0;
6517 t = btf_type_by_id(btf, btf_id);
6518 while (t && btf_type_is_modifier(t))
6519 t = btf_type_by_id(btf, t->type);
a00ed843 6520 if (!t)
fec56f58 6521 return -EINVAL;
a00ed843 6522 *ret_type = t;
fec56f58
AS
6523 if (btf_type_is_ptr(t))
6524 /* kernel size of pointer. Not BPF's size of pointer*/
6525 return sizeof(void *);
720e6a43 6526 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
fec56f58 6527 return t->size;
fec56f58
AS
6528 return -EINVAL;
6529}
6530
49f67f39
IL
6531static u8 __get_type_fmodel_flags(const struct btf_type *t)
6532{
6533 u8 flags = 0;
6534
6535 if (__btf_type_is_struct(t))
6536 flags |= BTF_FMODEL_STRUCT_ARG;
6537 if (btf_type_is_signed_int(t))
6538 flags |= BTF_FMODEL_SIGNED_ARG;
6539
6540 return flags;
6541}
6542
fec56f58
AS
6543int btf_distill_func_proto(struct bpf_verifier_log *log,
6544 struct btf *btf,
6545 const struct btf_type *func,
6546 const char *tname,
6547 struct btf_func_model *m)
6548{
6549 const struct btf_param *args;
6550 const struct btf_type *t;
6551 u32 i, nargs;
6552 int ret;
6553
5b92a28a
AS
6554 if (!func) {
6555 /* BTF function prototype doesn't match the verifier types.
523a4cf4 6556 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 6557 */
720e6a43 6558 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5b92a28a 6559 m->arg_size[i] = 8;
720e6a43
YS
6560 m->arg_flags[i] = 0;
6561 }
5b92a28a 6562 m->ret_size = 8;
49f67f39 6563 m->ret_flags = 0;
523a4cf4 6564 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
6565 return 0;
6566 }
fec56f58
AS
6567 args = (const struct btf_param *)(func + 1);
6568 nargs = btf_type_vlen(func);
c29a4920 6569 if (nargs > MAX_BPF_FUNC_ARGS) {
fec56f58
AS
6570 bpf_log(log,
6571 "The function %s has %d arguments. Too many.\n",
6572 tname, nargs);
6573 return -EINVAL;
6574 }
6575 ret = __get_type_size(btf, func->type, &t);
720e6a43 6576 if (ret < 0 || __btf_type_is_struct(t)) {
fec56f58
AS
6577 bpf_log(log,
6578 "The function %s return type %s is unsupported.\n",
571f9738 6579 tname, btf_type_str(t));
fec56f58
AS
6580 return -EINVAL;
6581 }
6582 m->ret_size = ret;
49f67f39 6583 m->ret_flags = __get_type_fmodel_flags(t);
fec56f58
AS
6584
6585 for (i = 0; i < nargs; i++) {
31379397
JO
6586 if (i == nargs - 1 && args[i].type == 0) {
6587 bpf_log(log,
6588 "The function %s with variable args is unsupported.\n",
6589 tname);
6590 return -EINVAL;
6591 }
fec56f58 6592 ret = __get_type_size(btf, args[i].type, &t);
720e6a43
YS
6593
6594 /* No support of struct argument size greater than 16 bytes */
6595 if (ret < 0 || ret > 16) {
fec56f58
AS
6596 bpf_log(log,
6597 "The function %s arg%d type %s is unsupported.\n",
571f9738 6598 tname, i, btf_type_str(t));
fec56f58
AS
6599 return -EINVAL;
6600 }
31379397
JO
6601 if (ret == 0) {
6602 bpf_log(log,
6603 "The function %s has malformed void argument.\n",
6604 tname);
6605 return -EINVAL;
6606 }
fec56f58 6607 m->arg_size[i] = ret;
49f67f39 6608 m->arg_flags[i] = __get_type_fmodel_flags(t);
fec56f58
AS
6609 }
6610 m->nr_args = nargs;
6611 return 0;
6612}
6613
be8704ff
AS
6614/* Compare BTFs of two functions assuming only scalars and pointers to context.
6615 * t1 points to BTF_KIND_FUNC in btf1
6616 * t2 points to BTF_KIND_FUNC in btf2
6617 * Returns:
6618 * EINVAL - function prototype mismatch
6619 * EFAULT - verifier bug
6620 * 0 - 99% match. The last 1% is validated by the verifier.
6621 */
2bf0eb9b
HY
6622static int btf_check_func_type_match(struct bpf_verifier_log *log,
6623 struct btf *btf1, const struct btf_type *t1,
6624 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
6625{
6626 const struct btf_param *args1, *args2;
6627 const char *fn1, *fn2, *s1, *s2;
6628 u32 nargs1, nargs2, i;
6629
6630 fn1 = btf_name_by_offset(btf1, t1->name_off);
6631 fn2 = btf_name_by_offset(btf2, t2->name_off);
6632
6633 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6634 bpf_log(log, "%s() is not a global function\n", fn1);
6635 return -EINVAL;
6636 }
6637 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6638 bpf_log(log, "%s() is not a global function\n", fn2);
6639 return -EINVAL;
6640 }
6641
6642 t1 = btf_type_by_id(btf1, t1->type);
6643 if (!t1 || !btf_type_is_func_proto(t1))
6644 return -EFAULT;
6645 t2 = btf_type_by_id(btf2, t2->type);
6646 if (!t2 || !btf_type_is_func_proto(t2))
6647 return -EFAULT;
6648
6649 args1 = (const struct btf_param *)(t1 + 1);
6650 nargs1 = btf_type_vlen(t1);
6651 args2 = (const struct btf_param *)(t2 + 1);
6652 nargs2 = btf_type_vlen(t2);
6653
6654 if (nargs1 != nargs2) {
6655 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6656 fn1, nargs1, fn2, nargs2);
6657 return -EINVAL;
6658 }
6659
6660 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6661 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6662 if (t1->info != t2->info) {
6663 bpf_log(log,
6664 "Return type %s of %s() doesn't match type %s of %s()\n",
6665 btf_type_str(t1), fn1,
6666 btf_type_str(t2), fn2);
6667 return -EINVAL;
6668 }
6669
6670 for (i = 0; i < nargs1; i++) {
6671 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6672 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6673
6674 if (t1->info != t2->info) {
6675 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6676 i, fn1, btf_type_str(t1),
6677 fn2, btf_type_str(t2));
6678 return -EINVAL;
6679 }
6680 if (btf_type_has_size(t1) && t1->size != t2->size) {
6681 bpf_log(log,
6682 "arg%d in %s() has size %d while %s() has %d\n",
6683 i, fn1, t1->size,
6684 fn2, t2->size);
6685 return -EINVAL;
6686 }
6687
6688 /* global functions are validated with scalars and pointers
6689 * to context only. And only global functions can be replaced.
6690 * Hence type check only those types.
6691 */
6089fb32 6692 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
be8704ff
AS
6693 continue;
6694 if (!btf_type_is_ptr(t1)) {
6695 bpf_log(log,
6696 "arg%d in %s() has unrecognized type\n",
6697 i, fn1);
6698 return -EINVAL;
6699 }
6700 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6701 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6702 if (!btf_type_is_struct(t1)) {
6703 bpf_log(log,
6704 "arg%d in %s() is not a pointer to context\n",
6705 i, fn1);
6706 return -EINVAL;
6707 }
6708 if (!btf_type_is_struct(t2)) {
6709 bpf_log(log,
6710 "arg%d in %s() is not a pointer to context\n",
6711 i, fn2);
6712 return -EINVAL;
6713 }
6714 /* This is an optional check to make program writing easier.
6715 * Compare names of structs and report an error to the user.
6716 * btf_prepare_func_args() already checked that t2 struct
6717 * is a context type. btf_prepare_func_args() will check
6718 * later that t1 struct is a context type as well.
6719 */
6720 s1 = btf_name_by_offset(btf1, t1->name_off);
6721 s2 = btf_name_by_offset(btf2, t2->name_off);
6722 if (strcmp(s1, s2)) {
6723 bpf_log(log,
6724 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6725 i, fn1, s1, fn2, s2);
6726 return -EINVAL;
6727 }
6728 }
6729 return 0;
6730}
6731
6732/* Compare BTFs of given program with BTF of target program */
efc68158 6733int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
6734 struct btf *btf2, const struct btf_type *t2)
6735{
6736 struct btf *btf1 = prog->aux->btf;
6737 const struct btf_type *t1;
6738 u32 btf_id = 0;
6739
6740 if (!prog->aux->func_info) {
efc68158 6741 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
6742 return -EINVAL;
6743 }
6744
6745 btf_id = prog->aux->func_info[0].type_id;
6746 if (!btf_id)
6747 return -EFAULT;
6748
6749 t1 = btf_type_by_id(btf1, btf_id);
6750 if (!t1 || !btf_type_is_func(t1))
6751 return -EFAULT;
6752
efc68158 6753 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
6754}
6755
34747c41
MKL
6756static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6757 const struct btf *btf, u32 func_id,
6758 struct bpf_reg_state *regs,
a4703e31 6759 bool ptr_to_mem_ok,
95f2f26f 6760 bool processing_call)
8c1b6e69 6761{
f858c2b2 6762 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8c1b6e69 6763 struct bpf_verifier_log *log = &env->log;
34747c41 6764 const char *func_name, *ref_tname;
e5069b9c 6765 const struct btf_type *t, *ref_t;
34747c41 6766 const struct btf_param *args;
00b85860
KKD
6767 u32 i, nargs, ref_id;
6768 int ret;
8c1b6e69 6769
34747c41 6770 t = btf_type_by_id(btf, func_id);
8c1b6e69 6771 if (!t || !btf_type_is_func(t)) {
51c39bb1 6772 /* These checks were already done by the verifier while loading
e6ac2450 6773 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 6774 */
34747c41
MKL
6775 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6776 func_id);
51c39bb1 6777 return -EFAULT;
8c1b6e69 6778 }
34747c41 6779 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
6780
6781 t = btf_type_by_id(btf, t->type);
6782 if (!t || !btf_type_is_func_proto(t)) {
34747c41 6783 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 6784 return -EFAULT;
8c1b6e69
AS
6785 }
6786 args = (const struct btf_param *)(t + 1);
6787 nargs = btf_type_vlen(t);
523a4cf4 6788 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 6789 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 6790 MAX_BPF_FUNC_REG_ARGS);
34747c41 6791 return -EINVAL;
8c1b6e69 6792 }
e5069b9c 6793
8c1b6e69
AS
6794 /* check that BTF function arguments match actual types that the
6795 * verifier sees.
6796 */
6797 for (i = 0; i < nargs; i++) {
8f14852e 6798 enum bpf_arg_type arg_type = ARG_DONTCARE;
34747c41
MKL
6799 u32 regno = i + 1;
6800 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 6801
34747c41
MKL
6802 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6803 if (btf_type_is_scalar(t)) {
feb4adfa 6804 if (reg->type == SCALAR_VALUE)
8c1b6e69 6805 continue;
34747c41
MKL
6806 bpf_log(log, "R%d is not a scalar\n", regno);
6807 return -EINVAL;
8c1b6e69 6808 }
34747c41
MKL
6809
6810 if (!btf_type_is_ptr(t)) {
6811 bpf_log(log, "Unrecognized arg#%d type %s\n",
6812 i, btf_type_str(t));
6813 return -EINVAL;
6814 }
6815
e6ac2450 6816 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 6817 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
655efe50 6818
8f14852e 6819 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
655efe50
KKD
6820 if (ret < 0)
6821 return ret;
6822
00b85860 6823 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
3363bd0c
KKD
6824 /* If function expects ctx type in BTF check that caller
6825 * is passing PTR_TO_CTX.
6826 */
6827 if (reg->type != PTR_TO_CTX) {
6828 bpf_log(log,
6829 "arg#%d expected pointer to ctx, but got %s\n",
6830 i, btf_type_str(t));
6831 return -EINVAL;
6832 }
95f2f26f 6833 } else if (ptr_to_mem_ok && processing_call) {
34747c41
MKL
6834 const struct btf_type *resolve_ret;
6835 u32 type_size;
e5069b9c 6836
34747c41
MKL
6837 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6838 if (IS_ERR(resolve_ret)) {
e5069b9c 6839 bpf_log(log,
34747c41
MKL
6840 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6841 i, btf_type_str(ref_t), ref_tname,
6842 PTR_ERR(resolve_ret));
6843 return -EINVAL;
e5069b9c
DB
6844 }
6845
34747c41
MKL
6846 if (check_mem_reg(env, reg, regno, type_size))
6847 return -EINVAL;
6848 } else {
00b85860
KKD
6849 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6850 func_name, func_id);
34747c41 6851 return -EINVAL;
8c1b6e69 6852 }
8c1b6e69 6853 }
34747c41 6854
00b85860 6855 return 0;
34747c41
MKL
6856}
6857
95f2f26f 6858/* Compare BTF of a function declaration with given bpf_reg_state.
34747c41
MKL
6859 * Returns:
6860 * EFAULT - there is a verifier bug. Abort verification.
6861 * EINVAL - there is a type mismatch or BTF is not available.
6862 * 0 - BTF matches with what bpf_reg_state expects.
6863 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6864 */
6865int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6866 struct bpf_reg_state *regs)
6867{
6868 struct bpf_prog *prog = env->prog;
6869 struct btf *btf = prog->aux->btf;
6870 bool is_global;
6871 u32 btf_id;
6872 int err;
6873
6874 if (!prog->aux->func_info)
6875 return -EINVAL;
6876
6877 btf_id = prog->aux->func_info[subprog].type_id;
6878 if (!btf_id)
6879 return -EFAULT;
6880
6881 if (prog->aux->func_info_aux[subprog].unreliable)
6882 return -EINVAL;
6883
6884 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6885 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
95f2f26f
BT
6886
6887 /* Compiler optimizations can remove arguments from static functions
6888 * or mismatched type can be passed into a global function.
6889 * In such cases mark the function as unreliable from BTF point of view.
6890 */
6891 if (err)
6892 prog->aux->func_info_aux[subprog].unreliable = true;
6893 return err;
6894}
6895
6896/* Compare BTF of a function call with given bpf_reg_state.
6897 * Returns:
6898 * EFAULT - there is a verifier bug. Abort verification.
6899 * EINVAL - there is a type mismatch or BTF is not available.
6900 * 0 - BTF matches with what bpf_reg_state expects.
6901 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6902 *
6903 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6904 * because btf_check_func_arg_match() is still doing both. Once that
6905 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6906 * first, and then treat the calling part in a new code path.
6907 */
6908int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6909 struct bpf_reg_state *regs)
6910{
6911 struct bpf_prog *prog = env->prog;
6912 struct btf *btf = prog->aux->btf;
6913 bool is_global;
6914 u32 btf_id;
6915 int err;
6916
6917 if (!prog->aux->func_info)
6918 return -EINVAL;
6919
6920 btf_id = prog->aux->func_info[subprog].type_id;
6921 if (!btf_id)
6922 return -EFAULT;
6923
6924 if (prog->aux->func_info_aux[subprog].unreliable)
6925 return -EINVAL;
6926
6927 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6928 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
34747c41 6929
51c39bb1
AS
6930 /* Compiler optimizations can remove arguments from static functions
6931 * or mismatched type can be passed into a global function.
6932 * In such cases mark the function as unreliable from BTF point of view.
6933 */
34747c41
MKL
6934 if (err)
6935 prog->aux->func_info_aux[subprog].unreliable = true;
6936 return err;
51c39bb1
AS
6937}
6938
6939/* Convert BTF of a function into bpf_reg_state if possible
6940 * Returns:
6941 * EFAULT - there is a verifier bug. Abort verification.
6942 * EINVAL - cannot convert BTF.
6943 * 0 - Successfully converted BTF into bpf_reg_state
6944 * (either PTR_TO_CTX or SCALAR_VALUE).
6945 */
6946int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 6947 struct bpf_reg_state *regs)
51c39bb1
AS
6948{
6949 struct bpf_verifier_log *log = &env->log;
6950 struct bpf_prog *prog = env->prog;
be8704ff 6951 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
6952 struct btf *btf = prog->aux->btf;
6953 const struct btf_param *args;
e5069b9c 6954 const struct btf_type *t, *ref_t;
51c39bb1
AS
6955 u32 i, nargs, btf_id;
6956 const char *tname;
6957
6958 if (!prog->aux->func_info ||
6959 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6960 bpf_log(log, "Verifier bug\n");
6961 return -EFAULT;
6962 }
6963
6964 btf_id = prog->aux->func_info[subprog].type_id;
6965 if (!btf_id) {
6966 bpf_log(log, "Global functions need valid BTF\n");
6967 return -EFAULT;
6968 }
6969
6970 t = btf_type_by_id(btf, btf_id);
6971 if (!t || !btf_type_is_func(t)) {
6972 /* These checks were already done by the verifier while loading
6973 * struct bpf_func_info
6974 */
6975 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6976 subprog);
6977 return -EFAULT;
6978 }
6979 tname = btf_name_by_offset(btf, t->name_off);
6980
6981 if (log->level & BPF_LOG_LEVEL)
6982 bpf_log(log, "Validating %s() func#%d...\n",
6983 tname, subprog);
6984
6985 if (prog->aux->func_info_aux[subprog].unreliable) {
6986 bpf_log(log, "Verifier bug in function %s()\n", tname);
6987 return -EFAULT;
6988 }
be8704ff 6989 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 6990 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
6991
6992 t = btf_type_by_id(btf, t->type);
6993 if (!t || !btf_type_is_func_proto(t)) {
6994 bpf_log(log, "Invalid type of function %s()\n", tname);
6995 return -EFAULT;
6996 }
6997 args = (const struct btf_param *)(t + 1);
6998 nargs = btf_type_vlen(t);
523a4cf4
DB
6999 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7000 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7001 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
7002 return -EINVAL;
7003 }
7004 /* check that function returns int */
7005 t = btf_type_by_id(btf, t->type);
7006 while (btf_type_is_modifier(t))
7007 t = btf_type_by_id(btf, t->type);
6089fb32 7008 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
51c39bb1
AS
7009 bpf_log(log,
7010 "Global function %s() doesn't return scalar. Only those are supported.\n",
7011 tname);
7012 return -EINVAL;
7013 }
7014 /* Convert BTF function arguments into verifier types.
7015 * Only PTR_TO_CTX and SCALAR are supported atm.
7016 */
7017 for (i = 0; i < nargs; i++) {
feb4adfa
DB
7018 struct bpf_reg_state *reg = &regs[i + 1];
7019
51c39bb1
AS
7020 t = btf_type_by_id(btf, args[i].type);
7021 while (btf_type_is_modifier(t))
7022 t = btf_type_by_id(btf, t->type);
6089fb32 7023 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
feb4adfa 7024 reg->type = SCALAR_VALUE;
51c39bb1
AS
7025 continue;
7026 }
e5069b9c
DB
7027 if (btf_type_is_ptr(t)) {
7028 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7029 reg->type = PTR_TO_CTX;
7030 continue;
7031 }
7032
7033 t = btf_type_skip_modifiers(btf, t->type, NULL);
7034
7035 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7036 if (IS_ERR(ref_t)) {
7037 bpf_log(log,
7038 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7039 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7040 PTR_ERR(ref_t));
7041 return -EINVAL;
7042 }
7043
cf9f2f8d 7044 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
e5069b9c
DB
7045 reg->id = ++env->id_gen;
7046
51c39bb1
AS
7047 continue;
7048 }
7049 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
571f9738 7050 i, btf_type_str(t), tname);
51c39bb1
AS
7051 return -EINVAL;
7052 }
8c1b6e69
AS
7053 return 0;
7054}
7055
31d0bc81
AM
7056static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7057 struct btf_show *show)
7058{
7059 const struct btf_type *t = btf_type_by_id(btf, type_id);
7060
7061 show->btf = btf;
7062 memset(&show->state, 0, sizeof(show->state));
7063 memset(&show->obj, 0, sizeof(show->obj));
7064
7065 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7066}
7067
7068static void btf_seq_show(struct btf_show *show, const char *fmt,
7069 va_list args)
7070{
7071 seq_vprintf((struct seq_file *)show->target, fmt, args);
7072}
7073
eb411377
AM
7074int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7075 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
7076{
7077 struct btf_show sseq;
7078
7079 sseq.target = m;
7080 sseq.showfn = btf_seq_show;
7081 sseq.flags = flags;
7082
7083 btf_type_show(btf, type_id, obj, &sseq);
7084
7085 return sseq.state.status;
7086}
7087
b00b8dae
MKL
7088void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7089 struct seq_file *m)
7090{
31d0bc81
AM
7091 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7092 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7093 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7094}
7095
7096struct btf_show_snprintf {
7097 struct btf_show show;
7098 int len_left; /* space left in string */
7099 int len; /* length we would have written */
7100};
7101
7102static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7103 va_list args)
7104{
7105 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7106 int len;
7107
7108 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7109
7110 if (len < 0) {
7111 ssnprintf->len_left = 0;
7112 ssnprintf->len = len;
58250ae3 7113 } else if (len >= ssnprintf->len_left) {
31d0bc81
AM
7114 /* no space, drive on to get length we would have written */
7115 ssnprintf->len_left = 0;
7116 ssnprintf->len += len;
7117 } else {
7118 ssnprintf->len_left -= len;
7119 ssnprintf->len += len;
7120 show->target += len;
7121 }
7122}
7123
7124int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7125 char *buf, int len, u64 flags)
7126{
7127 struct btf_show_snprintf ssnprintf;
7128
7129 ssnprintf.show.target = buf;
7130 ssnprintf.show.flags = flags;
7131 ssnprintf.show.showfn = btf_snprintf_show;
7132 ssnprintf.len_left = len;
7133 ssnprintf.len = 0;
7134
7135 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7136
c561d110 7137 /* If we encountered an error, return it. */
31d0bc81
AM
7138 if (ssnprintf.show.state.status)
7139 return ssnprintf.show.state.status;
b00b8dae 7140
31d0bc81
AM
7141 /* Otherwise return length we would have written */
7142 return ssnprintf.len;
b00b8dae 7143}
f56a653c 7144
3481e64b
QM
7145#ifdef CONFIG_PROC_FS
7146static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7147{
7148 const struct btf *btf = filp->private_data;
7149
7150 seq_printf(m, "btf_id:\t%u\n", btf->id);
7151}
7152#endif
7153
f56a653c
MKL
7154static int btf_release(struct inode *inode, struct file *filp)
7155{
7156 btf_put(filp->private_data);
7157 return 0;
7158}
7159
60197cfb 7160const struct file_operations btf_fops = {
3481e64b
QM
7161#ifdef CONFIG_PROC_FS
7162 .show_fdinfo = bpf_btf_show_fdinfo,
7163#endif
f56a653c
MKL
7164 .release = btf_release,
7165};
7166
78958fca
MKL
7167static int __btf_new_fd(struct btf *btf)
7168{
7169 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7170}
7171
47a71c1f 7172int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
f56a653c
MKL
7173{
7174 struct btf *btf;
78958fca 7175 int ret;
f56a653c 7176
47a71c1f 7177 btf = btf_parse(attr, uattr, uattr_size);
f56a653c
MKL
7178 if (IS_ERR(btf))
7179 return PTR_ERR(btf);
7180
78958fca
MKL
7181 ret = btf_alloc_id(btf);
7182 if (ret) {
7183 btf_free(btf);
7184 return ret;
7185 }
7186
7187 /*
7188 * The BTF ID is published to the userspace.
7189 * All BTF free must go through call_rcu() from
7190 * now on (i.e. free by calling btf_put()).
7191 */
7192
7193 ret = __btf_new_fd(btf);
7194 if (ret < 0)
f56a653c
MKL
7195 btf_put(btf);
7196
78958fca 7197 return ret;
f56a653c
MKL
7198}
7199
7200struct btf *btf_get_by_fd(int fd)
7201{
7202 struct btf *btf;
7203 struct fd f;
7204
7205 f = fdget(fd);
7206
7207 if (!f.file)
7208 return ERR_PTR(-EBADF);
7209
7210 if (f.file->f_op != &btf_fops) {
7211 fdput(f);
7212 return ERR_PTR(-EINVAL);
7213 }
7214
7215 btf = f.file->private_data;
78958fca 7216 refcount_inc(&btf->refcnt);
f56a653c
MKL
7217 fdput(f);
7218
7219 return btf;
7220}
60197cfb
MKL
7221
7222int btf_get_info_by_fd(const struct btf *btf,
7223 const union bpf_attr *attr,
7224 union bpf_attr __user *uattr)
7225{
62dab84c 7226 struct bpf_btf_info __user *uinfo;
5c6f2588 7227 struct bpf_btf_info info;
62dab84c
MKL
7228 u32 info_copy, btf_copy;
7229 void __user *ubtf;
53297220
AN
7230 char __user *uname;
7231 u32 uinfo_len, uname_len, name_len;
7232 int ret = 0;
60197cfb 7233
62dab84c
MKL
7234 uinfo = u64_to_user_ptr(attr->info.info);
7235 uinfo_len = attr->info.info_len;
7236
7237 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 7238 memset(&info, 0, sizeof(info));
62dab84c
MKL
7239 if (copy_from_user(&info, uinfo, info_copy))
7240 return -EFAULT;
7241
7242 info.id = btf->id;
7243 ubtf = u64_to_user_ptr(info.btf);
7244 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7245 if (copy_to_user(ubtf, btf->data, btf_copy))
7246 return -EFAULT;
7247 info.btf_size = btf->data_size;
7248
53297220
AN
7249 info.kernel_btf = btf->kernel_btf;
7250
7251 uname = u64_to_user_ptr(info.name);
7252 uname_len = info.name_len;
7253 if (!uname ^ !uname_len)
7254 return -EINVAL;
7255
7256 name_len = strlen(btf->name);
7257 info.name_len = name_len;
7258
7259 if (uname) {
7260 if (uname_len >= name_len + 1) {
7261 if (copy_to_user(uname, btf->name, name_len + 1))
7262 return -EFAULT;
7263 } else {
7264 char zero = '\0';
7265
7266 if (copy_to_user(uname, btf->name, uname_len - 1))
7267 return -EFAULT;
7268 if (put_user(zero, uname + uname_len - 1))
7269 return -EFAULT;
7270 /* let user-space know about too short buffer */
7271 ret = -ENOSPC;
7272 }
7273 }
7274
62dab84c
MKL
7275 if (copy_to_user(uinfo, &info, info_copy) ||
7276 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
7277 return -EFAULT;
7278
53297220 7279 return ret;
60197cfb 7280}
78958fca
MKL
7281
7282int btf_get_fd_by_id(u32 id)
7283{
7284 struct btf *btf;
7285 int fd;
7286
7287 rcu_read_lock();
7288 btf = idr_find(&btf_idr, id);
7289 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7290 btf = ERR_PTR(-ENOENT);
7291 rcu_read_unlock();
7292
7293 if (IS_ERR(btf))
7294 return PTR_ERR(btf);
7295
7296 fd = __btf_new_fd(btf);
7297 if (fd < 0)
7298 btf_put(btf);
7299
7300 return fd;
7301}
7302
22dc4a0f 7303u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
7304{
7305 return btf->id;
7306}
eae2e83e 7307
290248a5
AN
7308bool btf_is_kernel(const struct btf *btf)
7309{
7310 return btf->kernel_btf;
7311}
7312
541c3bad
AN
7313bool btf_is_module(const struct btf *btf)
7314{
7315 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7316}
7317
18688de2
KKD
7318enum {
7319 BTF_MODULE_F_LIVE = (1 << 0),
7320};
7321
36e68442
AN
7322#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7323struct btf_module {
7324 struct list_head list;
7325 struct module *module;
7326 struct btf *btf;
7327 struct bin_attribute *sysfs_attr;
18688de2 7328 int flags;
36e68442
AN
7329};
7330
7331static LIST_HEAD(btf_modules);
7332static DEFINE_MUTEX(btf_module_mutex);
7333
7334static ssize_t
7335btf_module_read(struct file *file, struct kobject *kobj,
7336 struct bin_attribute *bin_attr,
7337 char *buf, loff_t off, size_t len)
7338{
7339 const struct btf *btf = bin_attr->private;
7340
7341 memcpy(buf, btf->data + off, len);
7342 return len;
7343}
7344
1e89106d
AS
7345static void purge_cand_cache(struct btf *btf);
7346
36e68442
AN
7347static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7348 void *module)
7349{
7350 struct btf_module *btf_mod, *tmp;
7351 struct module *mod = module;
7352 struct btf *btf;
7353 int err = 0;
7354
7355 if (mod->btf_data_size == 0 ||
18688de2
KKD
7356 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7357 op != MODULE_STATE_GOING))
36e68442
AN
7358 goto out;
7359
7360 switch (op) {
7361 case MODULE_STATE_COMING:
7362 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7363 if (!btf_mod) {
7364 err = -ENOMEM;
7365 goto out;
7366 }
7367 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7368 if (IS_ERR(btf)) {
36e68442 7369 kfree(btf_mod);
9cb61e50
CB
7370 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7371 pr_warn("failed to validate module [%s] BTF: %ld\n",
7372 mod->name, PTR_ERR(btf));
5e214f2e 7373 err = PTR_ERR(btf);
9cb61e50
CB
7374 } else {
7375 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7376 }
36e68442
AN
7377 goto out;
7378 }
7379 err = btf_alloc_id(btf);
7380 if (err) {
7381 btf_free(btf);
7382 kfree(btf_mod);
7383 goto out;
7384 }
7385
1e89106d 7386 purge_cand_cache(NULL);
36e68442
AN
7387 mutex_lock(&btf_module_mutex);
7388 btf_mod->module = module;
7389 btf_mod->btf = btf;
7390 list_add(&btf_mod->list, &btf_modules);
7391 mutex_unlock(&btf_module_mutex);
7392
7393 if (IS_ENABLED(CONFIG_SYSFS)) {
7394 struct bin_attribute *attr;
7395
7396 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7397 if (!attr)
7398 goto out;
7399
7400 sysfs_bin_attr_init(attr);
7401 attr->attr.name = btf->name;
7402 attr->attr.mode = 0444;
7403 attr->size = btf->data_size;
7404 attr->private = btf;
7405 attr->read = btf_module_read;
7406
7407 err = sysfs_create_bin_file(btf_kobj, attr);
7408 if (err) {
7409 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7410 mod->name, err);
7411 kfree(attr);
7412 err = 0;
7413 goto out;
7414 }
7415
7416 btf_mod->sysfs_attr = attr;
7417 }
7418
18688de2
KKD
7419 break;
7420 case MODULE_STATE_LIVE:
7421 mutex_lock(&btf_module_mutex);
7422 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7423 if (btf_mod->module != module)
7424 continue;
7425
7426 btf_mod->flags |= BTF_MODULE_F_LIVE;
7427 break;
7428 }
7429 mutex_unlock(&btf_module_mutex);
36e68442
AN
7430 break;
7431 case MODULE_STATE_GOING:
7432 mutex_lock(&btf_module_mutex);
7433 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7434 if (btf_mod->module != module)
7435 continue;
7436
7437 list_del(&btf_mod->list);
7438 if (btf_mod->sysfs_attr)
7439 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
1e89106d 7440 purge_cand_cache(btf_mod->btf);
36e68442
AN
7441 btf_put(btf_mod->btf);
7442 kfree(btf_mod->sysfs_attr);
7443 kfree(btf_mod);
7444 break;
7445 }
7446 mutex_unlock(&btf_module_mutex);
7447 break;
7448 }
7449out:
7450 return notifier_from_errno(err);
7451}
7452
7453static struct notifier_block btf_module_nb = {
7454 .notifier_call = btf_module_notify,
7455};
7456
7457static int __init btf_module_init(void)
7458{
7459 register_module_notifier(&btf_module_nb);
7460 return 0;
7461}
7462
7463fs_initcall(btf_module_init);
7464#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
7465
7466struct module *btf_try_get_module(const struct btf *btf)
7467{
7468 struct module *res = NULL;
7469#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7470 struct btf_module *btf_mod, *tmp;
7471
7472 mutex_lock(&btf_module_mutex);
7473 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7474 if (btf_mod->btf != btf)
7475 continue;
7476
18688de2
KKD
7477 /* We must only consider module whose __init routine has
7478 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7479 * which is set from the notifier callback for
7480 * MODULE_STATE_LIVE.
7481 */
7482 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
541c3bad
AN
7483 res = btf_mod->module;
7484
7485 break;
7486 }
7487 mutex_unlock(&btf_module_mutex);
7488#endif
7489
7490 return res;
7491}
3d78417b 7492
9492450f
KKD
7493/* Returns struct btf corresponding to the struct module.
7494 * This function can return NULL or ERR_PTR.
dee872e1
KKD
7495 */
7496static struct btf *btf_get_module_btf(const struct module *module)
7497{
dee872e1
KKD
7498#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7499 struct btf_module *btf_mod, *tmp;
7500#endif
9492450f
KKD
7501 struct btf *btf = NULL;
7502
7503 if (!module) {
7504 btf = bpf_get_btf_vmlinux();
7ada3787 7505 if (!IS_ERR_OR_NULL(btf))
9492450f
KKD
7506 btf_get(btf);
7507 return btf;
7508 }
dee872e1 7509
dee872e1
KKD
7510#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7511 mutex_lock(&btf_module_mutex);
7512 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7513 if (btf_mod->module != module)
7514 continue;
7515
7516 btf_get(btf_mod->btf);
7517 btf = btf_mod->btf;
7518 break;
7519 }
7520 mutex_unlock(&btf_module_mutex);
7521#endif
7522
7523 return btf;
7524}
7525
3d78417b
AS
7526BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7527{
edc3ec09
KKD
7528 struct btf *btf = NULL;
7529 int btf_obj_fd = 0;
3d78417b
AS
7530 long ret;
7531
7532 if (flags)
7533 return -EINVAL;
7534
7535 if (name_sz <= 1 || name[name_sz - 1])
7536 return -EINVAL;
7537
edc3ec09
KKD
7538 ret = bpf_find_btf_id(name, kind, &btf);
7539 if (ret > 0 && btf_is_module(btf)) {
7540 btf_obj_fd = __btf_new_fd(btf);
7541 if (btf_obj_fd < 0) {
7542 btf_put(btf);
7543 return btf_obj_fd;
3d78417b 7544 }
edc3ec09 7545 return ret | (((u64)btf_obj_fd) << 32);
3d78417b 7546 }
edc3ec09
KKD
7547 if (ret > 0)
7548 btf_put(btf);
3d78417b
AS
7549 return ret;
7550}
7551
7552const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7553 .func = bpf_btf_find_by_name_kind,
7554 .gpl_only = false,
7555 .ret_type = RET_INTEGER,
216e3cd2 7556 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
3d78417b
AS
7557 .arg2_type = ARG_CONST_SIZE,
7558 .arg3_type = ARG_ANYTHING,
7559 .arg4_type = ARG_ANYTHING,
7560};
eb529c5b 7561
d19ddb47
SL
7562BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7563#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7564BTF_TRACING_TYPE_xxx
7565#undef BTF_TRACING_TYPE
14f267d9 7566
215bf496
AN
7567static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7568 const struct btf_type *func, u32 func_flags)
7569{
7570 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7571 const char *name, *sfx, *iter_name;
7572 const struct btf_param *arg;
7573 const struct btf_type *t;
7574 char exp_name[128];
7575 u32 nr_args;
7576
7577 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7578 if (!flags || (flags & (flags - 1)))
7579 return -EINVAL;
7580
7581 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7582 nr_args = btf_type_vlen(func);
7583 if (nr_args < 1)
7584 return -EINVAL;
7585
7586 arg = &btf_params(func)[0];
7587 t = btf_type_skip_modifiers(btf, arg->type, NULL);
7588 if (!t || !btf_type_is_ptr(t))
7589 return -EINVAL;
7590 t = btf_type_skip_modifiers(btf, t->type, NULL);
7591 if (!t || !__btf_type_is_struct(t))
7592 return -EINVAL;
7593
7594 name = btf_name_by_offset(btf, t->name_off);
7595 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7596 return -EINVAL;
7597
7598 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7599 * fit nicely in stack slots
7600 */
7601 if (t->size == 0 || (t->size % 8))
7602 return -EINVAL;
7603
7604 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7605 * naming pattern
7606 */
7607 iter_name = name + sizeof(ITER_PREFIX) - 1;
7608 if (flags & KF_ITER_NEW)
7609 sfx = "new";
7610 else if (flags & KF_ITER_NEXT)
7611 sfx = "next";
7612 else /* (flags & KF_ITER_DESTROY) */
7613 sfx = "destroy";
7614
7615 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7616 if (strcmp(func_name, exp_name))
7617 return -EINVAL;
7618
7619 /* only iter constructor should have extra arguments */
7620 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7621 return -EINVAL;
7622
7623 if (flags & KF_ITER_NEXT) {
7624 /* bpf_iter_<type>_next() should return pointer */
7625 t = btf_type_skip_modifiers(btf, func->type, NULL);
7626 if (!t || !btf_type_is_ptr(t))
7627 return -EINVAL;
7628 }
7629
7630 if (flags & KF_ITER_DESTROY) {
7631 /* bpf_iter_<type>_destroy() should return void */
7632 t = btf_type_by_id(btf, func->type);
7633 if (!t || !btf_type_is_void(t))
7634 return -EINVAL;
7635 }
7636
7637 return 0;
7638}
7639
7640static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7641{
7642 const struct btf_type *func;
7643 const char *func_name;
7644 int err;
7645
7646 /* any kfunc should be FUNC -> FUNC_PROTO */
7647 func = btf_type_by_id(btf, func_id);
7648 if (!func || !btf_type_is_func(func))
7649 return -EINVAL;
7650
7651 /* sanity check kfunc name */
7652 func_name = btf_name_by_offset(btf, func->name_off);
7653 if (!func_name || !func_name[0])
7654 return -EINVAL;
7655
7656 func = btf_type_by_id(btf, func->type);
7657 if (!func || !btf_type_is_func_proto(func))
7658 return -EINVAL;
7659
7660 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7661 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7662 if (err)
7663 return err;
7664 }
7665
7666 return 0;
7667}
7668
dee872e1 7669/* Kernel Function (kfunc) BTF ID set registration API */
14f267d9 7670
a4703e31
KKD
7671static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7672 struct btf_id_set8 *add_set)
14f267d9 7673{
a4703e31 7674 bool vmlinux_set = !btf_is_module(btf);
dee872e1 7675 struct btf_kfunc_set_tab *tab;
a4703e31 7676 struct btf_id_set8 *set;
dee872e1
KKD
7677 u32 set_cnt;
7678 int ret;
7679
a4703e31 7680 if (hook >= BTF_KFUNC_HOOK_MAX) {
dee872e1
KKD
7681 ret = -EINVAL;
7682 goto end;
7683 }
7684
7685 if (!add_set->cnt)
7686 return 0;
7687
7688 tab = btf->kfunc_set_tab;
7689 if (!tab) {
7690 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7691 if (!tab)
7692 return -ENOMEM;
7693 btf->kfunc_set_tab = tab;
7694 }
7695
a4703e31 7696 set = tab->sets[hook];
dee872e1
KKD
7697 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7698 * for module sets.
7699 */
7700 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7701 ret = -EINVAL;
7702 goto end;
7703 }
7704
7705 /* We don't need to allocate, concatenate, and sort module sets, because
7706 * only one is allowed per hook. Hence, we can directly assign the
7707 * pointer and return.
7708 */
7709 if (!vmlinux_set) {
a4703e31 7710 tab->sets[hook] = add_set;
dee872e1
KKD
7711 return 0;
7712 }
7713
7714 /* In case of vmlinux sets, there may be more than one set being
7715 * registered per hook. To create a unified set, we allocate a new set
7716 * and concatenate all individual sets being registered. While each set
7717 * is individually sorted, they may become unsorted when concatenated,
7718 * hence re-sorting the final set again is required to make binary
a4703e31 7719 * searching the set using btf_id_set8_contains function work.
dee872e1
KKD
7720 */
7721 set_cnt = set ? set->cnt : 0;
7722
7723 if (set_cnt > U32_MAX - add_set->cnt) {
7724 ret = -EOVERFLOW;
7725 goto end;
7726 }
7727
7728 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7729 ret = -E2BIG;
7730 goto end;
7731 }
7732
7733 /* Grow set */
a4703e31
KKD
7734 set = krealloc(tab->sets[hook],
7735 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
dee872e1
KKD
7736 GFP_KERNEL | __GFP_NOWARN);
7737 if (!set) {
7738 ret = -ENOMEM;
7739 goto end;
7740 }
7741
7742 /* For newly allocated set, initialize set->cnt to 0 */
a4703e31 7743 if (!tab->sets[hook])
dee872e1 7744 set->cnt = 0;
a4703e31 7745 tab->sets[hook] = set;
dee872e1
KKD
7746
7747 /* Concatenate the two sets */
a4703e31 7748 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
dee872e1
KKD
7749 set->cnt += add_set->cnt;
7750
a4703e31 7751 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
dee872e1
KKD
7752
7753 return 0;
7754end:
7755 btf_free_kfunc_set_tab(btf);
7756 return ret;
14f267d9 7757}
14f267d9 7758
a4703e31 7759static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7760 enum btf_kfunc_hook hook,
dee872e1 7761 u32 kfunc_btf_id)
14f267d9 7762{
a4703e31
KKD
7763 struct btf_id_set8 *set;
7764 u32 *id;
14f267d9 7765
a4703e31
KKD
7766 if (hook >= BTF_KFUNC_HOOK_MAX)
7767 return NULL;
dee872e1 7768 if (!btf->kfunc_set_tab)
a4703e31
KKD
7769 return NULL;
7770 set = btf->kfunc_set_tab->sets[hook];
dee872e1 7771 if (!set)
a4703e31
KKD
7772 return NULL;
7773 id = btf_id_set8_contains(set, kfunc_btf_id);
7774 if (!id)
7775 return NULL;
7776 /* The flags for BTF ID are located next to it */
7777 return id + 1;
dee872e1
KKD
7778}
7779
7780static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7781{
7782 switch (prog_type) {
cfe14564
YS
7783 case BPF_PROG_TYPE_UNSPEC:
7784 return BTF_KFUNC_HOOK_COMMON;
dee872e1
KKD
7785 case BPF_PROG_TYPE_XDP:
7786 return BTF_KFUNC_HOOK_XDP;
7787 case BPF_PROG_TYPE_SCHED_CLS:
7788 return BTF_KFUNC_HOOK_TC;
7789 case BPF_PROG_TYPE_STRUCT_OPS:
7790 return BTF_KFUNC_HOOK_STRUCT_OPS;
97949767 7791 case BPF_PROG_TYPE_TRACING:
d15bf150 7792 case BPF_PROG_TYPE_LSM:
97949767
BT
7793 return BTF_KFUNC_HOOK_TRACING;
7794 case BPF_PROG_TYPE_SYSCALL:
7795 return BTF_KFUNC_HOOK_SYSCALL;
b5964b96
JK
7796 case BPF_PROG_TYPE_CGROUP_SKB:
7797 return BTF_KFUNC_HOOK_CGROUP_SKB;
7798 case BPF_PROG_TYPE_SCHED_ACT:
7799 return BTF_KFUNC_HOOK_SCHED_ACT;
7800 case BPF_PROG_TYPE_SK_SKB:
7801 return BTF_KFUNC_HOOK_SK_SKB;
7802 case BPF_PROG_TYPE_SOCKET_FILTER:
7803 return BTF_KFUNC_HOOK_SOCKET_FILTER;
7804 case BPF_PROG_TYPE_LWT_OUT:
7805 case BPF_PROG_TYPE_LWT_IN:
7806 case BPF_PROG_TYPE_LWT_XMIT:
7807 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7808 return BTF_KFUNC_HOOK_LWT;
fd9c663b
FW
7809 case BPF_PROG_TYPE_NETFILTER:
7810 return BTF_KFUNC_HOOK_NETFILTER;
dee872e1
KKD
7811 default:
7812 return BTF_KFUNC_HOOK_MAX;
14f267d9 7813 }
14f267d9
KKD
7814}
7815
dee872e1
KKD
7816/* Caution:
7817 * Reference to the module (obtained using btf_try_get_module) corresponding to
7818 * the struct btf *MUST* be held when calling this function from verifier
7819 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7820 * keeping the reference for the duration of the call provides the necessary
7821 * protection for looking up a well-formed btf->kfunc_set_tab.
7822 */
a4703e31 7823u32 *btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7824 enum bpf_prog_type prog_type,
a4703e31 7825 u32 kfunc_btf_id)
dee872e1
KKD
7826{
7827 enum btf_kfunc_hook hook;
cfe14564
YS
7828 u32 *kfunc_flags;
7829
7830 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7831 if (kfunc_flags)
7832 return kfunc_flags;
0e32dfc8 7833
dee872e1 7834 hook = bpf_prog_type_to_kfunc_hook(prog_type);
a4703e31 7835 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
dee872e1 7836}
d9847eb8 7837
5b481aca
BT
7838u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7839{
7840 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7841}
7842
7843static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7844 const struct btf_kfunc_id_set *kset)
dee872e1 7845{
dee872e1 7846 struct btf *btf;
215bf496 7847 int ret, i;
dee872e1
KKD
7848
7849 btf = btf_get_module_btf(kset->owner);
c446fdac
SF
7850 if (!btf) {
7851 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7852 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7853 return -ENOENT;
7854 }
7855 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7856 pr_err("missing module BTF, cannot register kfuncs\n");
7857 return -ENOENT;
7858 }
7859 return 0;
7860 }
7861 if (IS_ERR(btf))
7862 return PTR_ERR(btf);
dee872e1 7863
215bf496
AN
7864 for (i = 0; i < kset->set->cnt; i++) {
7865 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7866 kset->set->pairs[i].flags);
7867 if (ret)
7868 goto err_out;
7869 }
7870
a4703e31 7871 ret = btf_populate_kfunc_set(btf, hook, kset->set);
215bf496 7872err_out:
9492450f 7873 btf_put(btf);
dee872e1
KKD
7874 return ret;
7875}
5b481aca
BT
7876
7877/* This function must be invoked only from initcalls/module init functions */
7878int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7879 const struct btf_kfunc_id_set *kset)
7880{
7881 enum btf_kfunc_hook hook;
7882
7883 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7884 return __register_btf_kfunc_id_set(hook, kset);
7885}
dee872e1 7886EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
be315829 7887
5b481aca
BT
7888/* This function must be invoked only from initcalls/module init functions */
7889int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7890{
7891 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7892}
7893EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7894
5ce937d6
KKD
7895s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7896{
7897 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7898 struct btf_id_dtor_kfunc *dtor;
7899
7900 if (!tab)
7901 return -ENOENT;
7902 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7903 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7904 */
7905 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7906 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7907 if (!dtor)
7908 return -ENOENT;
7909 return dtor->kfunc_btf_id;
7910}
7911
14a324f6
KKD
7912static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7913{
7914 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7915 const struct btf_param *args;
7916 s32 dtor_btf_id;
7917 u32 nr_args, i;
7918
7919 for (i = 0; i < cnt; i++) {
7920 dtor_btf_id = dtors[i].kfunc_btf_id;
7921
7922 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7923 if (!dtor_func || !btf_type_is_func(dtor_func))
7924 return -EINVAL;
7925
7926 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7927 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7928 return -EINVAL;
7929
7930 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7931 t = btf_type_by_id(btf, dtor_func_proto->type);
7932 if (!t || !btf_type_is_void(t))
7933 return -EINVAL;
7934
7935 nr_args = btf_type_vlen(dtor_func_proto);
7936 if (nr_args != 1)
7937 return -EINVAL;
7938 args = btf_params(dtor_func_proto);
7939 t = btf_type_by_id(btf, args[0].type);
7940 /* Allow any pointer type, as width on targets Linux supports
7941 * will be same for all pointer types (i.e. sizeof(void *))
7942 */
7943 if (!t || !btf_type_is_ptr(t))
7944 return -EINVAL;
7945 }
7946 return 0;
7947}
7948
5ce937d6
KKD
7949/* This function must be invoked only from initcalls/module init functions */
7950int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7951 struct module *owner)
7952{
7953 struct btf_id_dtor_kfunc_tab *tab;
7954 struct btf *btf;
7955 u32 tab_cnt;
7956 int ret;
7957
7958 btf = btf_get_module_btf(owner);
7959 if (!btf) {
7960 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7961 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7962 return -ENOENT;
7963 }
7964 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7965 pr_err("missing module BTF, cannot register dtor kfuncs\n");
7966 return -ENOENT;
7967 }
7968 return 0;
7969 }
7970 if (IS_ERR(btf))
7971 return PTR_ERR(btf);
7972
7973 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7974 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7975 ret = -E2BIG;
7976 goto end;
7977 }
7978
14a324f6
KKD
7979 /* Ensure that the prototype of dtor kfuncs being registered is sane */
7980 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7981 if (ret < 0)
7982 goto end;
7983
5ce937d6
KKD
7984 tab = btf->dtor_kfunc_tab;
7985 /* Only one call allowed for modules */
7986 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7987 ret = -EINVAL;
7988 goto end;
7989 }
7990
7991 tab_cnt = tab ? tab->cnt : 0;
7992 if (tab_cnt > U32_MAX - add_cnt) {
7993 ret = -EOVERFLOW;
7994 goto end;
7995 }
7996 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7997 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7998 ret = -E2BIG;
7999 goto end;
8000 }
8001
8002 tab = krealloc(btf->dtor_kfunc_tab,
8003 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8004 GFP_KERNEL | __GFP_NOWARN);
8005 if (!tab) {
8006 ret = -ENOMEM;
8007 goto end;
8008 }
8009
8010 if (!btf->dtor_kfunc_tab)
8011 tab->cnt = 0;
8012 btf->dtor_kfunc_tab = tab;
8013
8014 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8015 tab->cnt += add_cnt;
8016
8017 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8018
5ce937d6 8019end:
74bc3a5a
JO
8020 if (ret)
8021 btf_free_dtor_kfunc_tab(btf);
5ce937d6
KKD
8022 btf_put(btf);
8023 return ret;
8024}
8025EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8026
e70e13e7
MC
8027#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8028
e70e13e7
MC
8029/* Check local and target types for compatibility. This check is used for
8030 * type-based CO-RE relocations and follow slightly different rules than
8031 * field-based relocations. This function assumes that root types were already
8032 * checked for name match. Beyond that initial root-level name check, names
8033 * are completely ignored. Compatibility rules are as follows:
6089fb32 8034 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
e70e13e7
MC
8035 * kind should match for local and target types (i.e., STRUCT is not
8036 * compatible with UNION);
6089fb32 8037 * - for ENUMs/ENUM64s, the size is ignored;
e70e13e7
MC
8038 * - for INT, size and signedness are ignored;
8039 * - for ARRAY, dimensionality is ignored, element types are checked for
8040 * compatibility recursively;
8041 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8042 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8043 * - FUNC_PROTOs are compatible if they have compatible signature: same
8044 * number of input args and compatible return and argument types.
8045 * These rules are not set in stone and probably will be adjusted as we get
8046 * more experience with using BPF CO-RE relocations.
8047 */
29db4bea
AS
8048int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8049 const struct btf *targ_btf, __u32 targ_id)
8050{
fd75733d 8051 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
e70e13e7 8052 MAX_TYPES_ARE_COMPAT_DEPTH);
29db4bea
AS
8053}
8054
ec6209c8
DM
8055#define MAX_TYPES_MATCH_DEPTH 2
8056
8057int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8058 const struct btf *targ_btf, u32 targ_id)
8059{
8060 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8061 MAX_TYPES_MATCH_DEPTH);
8062}
8063
29db4bea
AS
8064static bool bpf_core_is_flavor_sep(const char *s)
8065{
8066 /* check X___Y name pattern, where X and Y are not underscores */
8067 return s[0] != '_' && /* X */
8068 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8069 s[4] != '_'; /* Y */
8070}
8071
8072size_t bpf_core_essential_name_len(const char *name)
8073{
8074 size_t n = strlen(name);
8075 int i;
8076
8077 for (i = n - 5; i >= 0; i--) {
8078 if (bpf_core_is_flavor_sep(name + i))
8079 return i + 1;
8080 }
8081 return n;
8082}
fbd94c7a 8083
1e89106d
AS
8084struct bpf_cand_cache {
8085 const char *name;
8086 u32 name_len;
8087 u16 kind;
8088 u16 cnt;
8089 struct {
8090 const struct btf *btf;
8091 u32 id;
8092 } cands[];
8093};
8094
8095static void bpf_free_cands(struct bpf_cand_cache *cands)
8096{
8097 if (!cands->cnt)
8098 /* empty candidate array was allocated on stack */
8099 return;
8100 kfree(cands);
8101}
8102
8103static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8104{
8105 kfree(cands->name);
8106 kfree(cands);
8107}
8108
8109#define VMLINUX_CAND_CACHE_SIZE 31
8110static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8111
8112#define MODULE_CAND_CACHE_SIZE 31
8113static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8114
8115static DEFINE_MUTEX(cand_cache_mutex);
8116
8117static void __print_cand_cache(struct bpf_verifier_log *log,
8118 struct bpf_cand_cache **cache,
8119 int cache_size)
8120{
8121 struct bpf_cand_cache *cc;
8122 int i, j;
8123
8124 for (i = 0; i < cache_size; i++) {
8125 cc = cache[i];
8126 if (!cc)
8127 continue;
8128 bpf_log(log, "[%d]%s(", i, cc->name);
8129 for (j = 0; j < cc->cnt; j++) {
8130 bpf_log(log, "%d", cc->cands[j].id);
8131 if (j < cc->cnt - 1)
8132 bpf_log(log, " ");
8133 }
8134 bpf_log(log, "), ");
8135 }
8136}
8137
8138static void print_cand_cache(struct bpf_verifier_log *log)
8139{
8140 mutex_lock(&cand_cache_mutex);
8141 bpf_log(log, "vmlinux_cand_cache:");
8142 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8143 bpf_log(log, "\nmodule_cand_cache:");
8144 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8145 bpf_log(log, "\n");
8146 mutex_unlock(&cand_cache_mutex);
8147}
8148
8149static u32 hash_cands(struct bpf_cand_cache *cands)
8150{
8151 return jhash(cands->name, cands->name_len, 0);
8152}
8153
8154static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8155 struct bpf_cand_cache **cache,
8156 int cache_size)
8157{
8158 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8159
8160 if (cc && cc->name_len == cands->name_len &&
8161 !strncmp(cc->name, cands->name, cands->name_len))
8162 return cc;
8163 return NULL;
8164}
8165
8166static size_t sizeof_cands(int cnt)
8167{
8168 return offsetof(struct bpf_cand_cache, cands[cnt]);
8169}
8170
8171static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8172 struct bpf_cand_cache **cache,
8173 int cache_size)
8174{
8175 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8176
8177 if (*cc) {
8178 bpf_free_cands_from_cache(*cc);
8179 *cc = NULL;
8180 }
4674f210 8181 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
1e89106d
AS
8182 if (!new_cands) {
8183 bpf_free_cands(cands);
8184 return ERR_PTR(-ENOMEM);
8185 }
1e89106d
AS
8186 /* strdup the name, since it will stay in cache.
8187 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8188 */
8189 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8190 bpf_free_cands(cands);
8191 if (!new_cands->name) {
8192 kfree(new_cands);
8193 return ERR_PTR(-ENOMEM);
8194 }
8195 *cc = new_cands;
8196 return new_cands;
8197}
8198
29f2e5bd 8199#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
1e89106d
AS
8200static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8201 int cache_size)
8202{
8203 struct bpf_cand_cache *cc;
8204 int i, j;
8205
8206 for (i = 0; i < cache_size; i++) {
8207 cc = cache[i];
8208 if (!cc)
8209 continue;
8210 if (!btf) {
8211 /* when new module is loaded purge all of module_cand_cache,
8212 * since new module might have candidates with the name
8213 * that matches cached cands.
8214 */
8215 bpf_free_cands_from_cache(cc);
8216 cache[i] = NULL;
8217 continue;
8218 }
8219 /* when module is unloaded purge cache entries
8220 * that match module's btf
8221 */
8222 for (j = 0; j < cc->cnt; j++)
8223 if (cc->cands[j].btf == btf) {
8224 bpf_free_cands_from_cache(cc);
8225 cache[i] = NULL;
8226 break;
8227 }
8228 }
8229
8230}
8231
8232static void purge_cand_cache(struct btf *btf)
8233{
8234 mutex_lock(&cand_cache_mutex);
8235 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8236 mutex_unlock(&cand_cache_mutex);
8237}
29f2e5bd 8238#endif
1e89106d
AS
8239
8240static struct bpf_cand_cache *
8241bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8242 int targ_start_id)
8243{
8244 struct bpf_cand_cache *new_cands;
8245 const struct btf_type *t;
8246 const char *targ_name;
8247 size_t targ_essent_len;
8248 int n, i;
8249
8250 n = btf_nr_types(targ_btf);
8251 for (i = targ_start_id; i < n; i++) {
8252 t = btf_type_by_id(targ_btf, i);
8253 if (btf_kind(t) != cands->kind)
8254 continue;
8255
8256 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8257 if (!targ_name)
8258 continue;
8259
8260 /* the resched point is before strncmp to make sure that search
8261 * for non-existing name will have a chance to schedule().
8262 */
8263 cond_resched();
8264
8265 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8266 continue;
8267
8268 targ_essent_len = bpf_core_essential_name_len(targ_name);
8269 if (targ_essent_len != cands->name_len)
8270 continue;
8271
8272 /* most of the time there is only one candidate for a given kind+name pair */
8273 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8274 if (!new_cands) {
8275 bpf_free_cands(cands);
8276 return ERR_PTR(-ENOMEM);
8277 }
8278
8279 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8280 bpf_free_cands(cands);
8281 cands = new_cands;
8282 cands->cands[cands->cnt].btf = targ_btf;
8283 cands->cands[cands->cnt].id = i;
8284 cands->cnt++;
8285 }
8286 return cands;
8287}
8288
8289static struct bpf_cand_cache *
8290bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8291{
8292 struct bpf_cand_cache *cands, *cc, local_cand = {};
8293 const struct btf *local_btf = ctx->btf;
8294 const struct btf_type *local_type;
8295 const struct btf *main_btf;
8296 size_t local_essent_len;
8297 struct btf *mod_btf;
8298 const char *name;
8299 int id;
8300
8301 main_btf = bpf_get_btf_vmlinux();
8302 if (IS_ERR(main_btf))
f18a4997 8303 return ERR_CAST(main_btf);
7ada3787
KKD
8304 if (!main_btf)
8305 return ERR_PTR(-EINVAL);
1e89106d
AS
8306
8307 local_type = btf_type_by_id(local_btf, local_type_id);
8308 if (!local_type)
8309 return ERR_PTR(-EINVAL);
8310
8311 name = btf_name_by_offset(local_btf, local_type->name_off);
8312 if (str_is_empty(name))
8313 return ERR_PTR(-EINVAL);
8314 local_essent_len = bpf_core_essential_name_len(name);
8315
8316 cands = &local_cand;
8317 cands->name = name;
8318 cands->kind = btf_kind(local_type);
8319 cands->name_len = local_essent_len;
8320
8321 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8322 /* cands is a pointer to stack here */
8323 if (cc) {
8324 if (cc->cnt)
8325 return cc;
8326 goto check_modules;
8327 }
8328
8329 /* Attempt to find target candidates in vmlinux BTF first */
8330 cands = bpf_core_add_cands(cands, main_btf, 1);
8331 if (IS_ERR(cands))
f18a4997 8332 return ERR_CAST(cands);
1e89106d
AS
8333
8334 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8335
8336 /* populate cache even when cands->cnt == 0 */
8337 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8338 if (IS_ERR(cc))
f18a4997 8339 return ERR_CAST(cc);
1e89106d
AS
8340
8341 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8342 if (cc->cnt)
8343 return cc;
8344
8345check_modules:
8346 /* cands is a pointer to stack here and cands->cnt == 0 */
8347 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8348 if (cc)
8349 /* if cache has it return it even if cc->cnt == 0 */
8350 return cc;
8351
8352 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8353 spin_lock_bh(&btf_idr_lock);
8354 idr_for_each_entry(&btf_idr, mod_btf, id) {
8355 if (!btf_is_module(mod_btf))
8356 continue;
8357 /* linear search could be slow hence unlock/lock
8358 * the IDR to avoiding holding it for too long
8359 */
8360 btf_get(mod_btf);
8361 spin_unlock_bh(&btf_idr_lock);
8362 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
acf1c3d6
AS
8363 btf_put(mod_btf);
8364 if (IS_ERR(cands))
f18a4997 8365 return ERR_CAST(cands);
1e89106d 8366 spin_lock_bh(&btf_idr_lock);
1e89106d
AS
8367 }
8368 spin_unlock_bh(&btf_idr_lock);
8369 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8370 * or pointer to stack if cands->cnd == 0.
8371 * Copy it into the cache even when cands->cnt == 0 and
8372 * return the result.
8373 */
8374 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8375}
8376
fbd94c7a
AS
8377int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8378 int relo_idx, void *insn)
8379{
1e89106d
AS
8380 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8381 struct bpf_core_cand_list cands = {};
adb8fa19 8382 struct bpf_core_relo_res targ_res;
78c1f8d0 8383 struct bpf_core_spec *specs;
1e89106d
AS
8384 int err;
8385
78c1f8d0
AS
8386 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8387 * into arrays of btf_ids of struct fields and array indices.
8388 */
8389 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8390 if (!specs)
8391 return -ENOMEM;
8392
1e89106d
AS
8393 if (need_cands) {
8394 struct bpf_cand_cache *cc;
8395 int i;
8396
8397 mutex_lock(&cand_cache_mutex);
8398 cc = bpf_core_find_cands(ctx, relo->type_id);
8399 if (IS_ERR(cc)) {
8400 bpf_log(ctx->log, "target candidate search failed for %d\n",
8401 relo->type_id);
8402 err = PTR_ERR(cc);
8403 goto out;
8404 }
8405 if (cc->cnt) {
8406 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8407 if (!cands.cands) {
8408 err = -ENOMEM;
8409 goto out;
8410 }
8411 }
8412 for (i = 0; i < cc->cnt; i++) {
8413 bpf_log(ctx->log,
8414 "CO-RE relocating %s %s: found target candidate [%d]\n",
8415 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8416 cands.cands[i].btf = cc->cands[i].btf;
8417 cands.cands[i].id = cc->cands[i].id;
8418 }
8419 cands.len = cc->cnt;
8420 /* cand_cache_mutex needs to span the cache lookup and
8421 * copy of btf pointer into bpf_core_cand_list,
adb8fa19 8422 * since module can be unloaded while bpf_core_calc_relo_insn
1e89106d
AS
8423 * is working with module's btf.
8424 */
8425 }
8426
adb8fa19
MV
8427 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8428 &targ_res);
8429 if (err)
8430 goto out;
8431
8432 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8433 &targ_res);
8434
1e89106d 8435out:
78c1f8d0 8436 kfree(specs);
1e89106d
AS
8437 if (need_cands) {
8438 kfree(cands.cands);
8439 mutex_unlock(&cand_cache_mutex);
8440 if (ctx->log->level & BPF_LOG_LEVEL2)
8441 print_cand_cache(ctx->log);
8442 }
8443 return err;
fbd94c7a 8444}
57539b1c
DV
8445
8446bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8447 const struct bpf_reg_state *reg,
63260df1 8448 const char *field_name, u32 btf_id, const char *suffix)
57539b1c
DV
8449{
8450 struct btf *btf = reg->btf;
8451 const struct btf_type *walk_type, *safe_type;
8452 const char *tname;
8453 char safe_tname[64];
8454 long ret, safe_id;
63260df1 8455 const struct btf_member *member;
57539b1c 8456 u32 i;
57539b1c
DV
8457
8458 walk_type = btf_type_by_id(btf, reg->btf_id);
8459 if (!walk_type)
8460 return false;
8461
8462 tname = btf_name_by_offset(btf, walk_type->name_off);
8463
6fcd486b 8464 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
57539b1c
DV
8465 if (ret < 0)
8466 return false;
8467
8468 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8469 if (safe_id < 0)
8470 return false;
8471
8472 safe_type = btf_type_by_id(btf, safe_id);
8473 if (!safe_type)
8474 return false;
8475
57539b1c
DV
8476 for_each_member(i, safe_type, member) {
8477 const char *m_name = __btf_name_by_offset(btf, member->name_off);
63260df1
AS
8478 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8479 u32 id;
8480
8481 if (!btf_type_is_ptr(mtype))
8482 continue;
57539b1c 8483
63260df1 8484 btf_type_skip_modifiers(btf, mtype->type, &id);
57539b1c 8485 /* If we match on both type and name, the field is considered trusted. */
63260df1 8486 if (btf_id == id && !strcmp(field_name, m_name))
57539b1c
DV
8487 return true;
8488 }
8489
8490 return false;
8491}
b613d335
DV
8492
8493bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8494 const struct btf *reg_btf, u32 reg_id,
8495 const struct btf *arg_btf, u32 arg_id)
8496{
8497 const char *reg_name, *arg_name, *search_needle;
8498 const struct btf_type *reg_type, *arg_type;
8499 int reg_len, arg_len, cmp_len;
8500 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8501
8502 reg_type = btf_type_by_id(reg_btf, reg_id);
8503 if (!reg_type)
8504 return false;
8505
8506 arg_type = btf_type_by_id(arg_btf, arg_id);
8507 if (!arg_type)
8508 return false;
8509
8510 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8511 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8512
8513 reg_len = strlen(reg_name);
8514 arg_len = strlen(arg_name);
8515
8516 /* Exactly one of the two type names may be suffixed with ___init, so
8517 * if the strings are the same size, they can't possibly be no-cast
8518 * aliases of one another. If you have two of the same type names, e.g.
8519 * they're both nf_conn___init, it would be improper to return true
8520 * because they are _not_ no-cast aliases, they are the same type.
8521 */
8522 if (reg_len == arg_len)
8523 return false;
8524
8525 /* Either of the two names must be the other name, suffixed with ___init. */
8526 if ((reg_len != arg_len + pattern_len) &&
8527 (arg_len != reg_len + pattern_len))
8528 return false;
8529
8530 if (reg_len < arg_len) {
8531 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8532 cmp_len = reg_len;
8533 } else {
8534 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8535 cmp_len = arg_len;
8536 }
8537
8538 if (!search_needle)
8539 return false;
8540
8541 /* ___init suffix must come at the end of the name */
8542 if (*(search_needle + pattern_len) != '\0')
8543 return false;
8544
8545 return !strncmp(reg_name, arg_name, cmp_len);
8546}