libbpf: Clean up legacy bpf maps declaration in bpf_helpers
[linux-block.git] / kernel / bpf / btf.c
CommitLineData
c561d110 1// SPDX-License-Identifier: GPL-2.0
69b693f0
MKL
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
91cc1a99
AS
22#include <linux/skmsg.h>
23#include <linux/perf_event.h>
eae2e83e 24#include <linux/bsearch.h>
36e68442
AN
25#include <linux/kobject.h>
26#include <linux/sysfs.h>
91cc1a99 27#include <net/sock.h>
1e89106d 28#include "../tools/lib/bpf/relo_core.h"
69b693f0
MKL
29
30/* BTF (BPF Type Format) is the meta data format which describes
31 * the data types of BPF program/map. Hence, it basically focus
32 * on the C programming language which the modern BPF is primary
33 * using.
34 *
35 * ELF Section:
36 * ~~~~~~~~~~~
37 * The BTF data is stored under the ".BTF" ELF section
38 *
39 * struct btf_type:
40 * ~~~~~~~~~~~~~~~
41 * Each 'struct btf_type' object describes a C data type.
42 * Depending on the type it is describing, a 'struct btf_type'
43 * object may be followed by more data. F.e.
44 * To describe an array, 'struct btf_type' is followed by
45 * 'struct btf_array'.
46 *
47 * 'struct btf_type' and any extra data following it are
48 * 4 bytes aligned.
49 *
50 * Type section:
51 * ~~~~~~~~~~~~~
52 * The BTF type section contains a list of 'struct btf_type' objects.
53 * Each one describes a C type. Recall from the above section
54 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 55 * data in order to describe some particular C types.
69b693f0
MKL
56 *
57 * type_id:
58 * ~~~~~~~
59 * Each btf_type object is identified by a type_id. The type_id
60 * is implicitly implied by the location of the btf_type object in
61 * the BTF type section. The first one has type_id 1. The second
62 * one has type_id 2...etc. Hence, an earlier btf_type has
63 * a smaller type_id.
64 *
65 * A btf_type object may refer to another btf_type object by using
66 * type_id (i.e. the "type" in the "struct btf_type").
67 *
68 * NOTE that we cannot assume any reference-order.
69 * A btf_type object can refer to an earlier btf_type object
70 * but it can also refer to a later btf_type object.
71 *
72 * For example, to describe "const void *". A btf_type
73 * object describing "const" may refer to another btf_type
74 * object describing "void *". This type-reference is done
75 * by specifying type_id:
76 *
77 * [1] CONST (anon) type_id=2
78 * [2] PTR (anon) type_id=0
79 *
80 * The above is the btf_verifier debug log:
81 * - Each line started with "[?]" is a btf_type object
82 * - [?] is the type_id of the btf_type object.
83 * - CONST/PTR is the BTF_KIND_XXX
84 * - "(anon)" is the name of the type. It just
85 * happens that CONST and PTR has no name.
86 * - type_id=XXX is the 'u32 type' in btf_type
87 *
88 * NOTE: "void" has type_id 0
89 *
90 * String section:
91 * ~~~~~~~~~~~~~~
92 * The BTF string section contains the names used by the type section.
93 * Each string is referred by an "offset" from the beginning of the
94 * string section.
95 *
96 * Each string is '\0' terminated.
97 *
98 * The first character in the string section must be '\0'
99 * which is used to mean 'anonymous'. Some btf_type may not
100 * have a name.
101 */
102
103/* BTF verification:
104 *
105 * To verify BTF data, two passes are needed.
106 *
107 * Pass #1
108 * ~~~~~~~
109 * The first pass is to collect all btf_type objects to
110 * an array: "btf->types".
111 *
112 * Depending on the C type that a btf_type is describing,
113 * a btf_type may be followed by extra data. We don't know
114 * how many btf_type is there, and more importantly we don't
115 * know where each btf_type is located in the type section.
116 *
117 * Without knowing the location of each type_id, most verifications
118 * cannot be done. e.g. an earlier btf_type may refer to a later
119 * btf_type (recall the "const void *" above), so we cannot
120 * check this type-reference in the first pass.
121 *
122 * In the first pass, it still does some verifications (e.g.
123 * checking the name is a valid offset to the string section).
eb3f595d
MKL
124 *
125 * Pass #2
126 * ~~~~~~~
127 * The main focus is to resolve a btf_type that is referring
128 * to another type.
129 *
130 * We have to ensure the referring type:
131 * 1) does exist in the BTF (i.e. in btf->types[])
132 * 2) does not cause a loop:
133 * struct A {
134 * struct B b;
135 * };
136 *
137 * struct B {
138 * struct A a;
139 * };
140 *
141 * btf_type_needs_resolve() decides if a btf_type needs
142 * to be resolved.
143 *
144 * The needs_resolve type implements the "resolve()" ops which
145 * essentially does a DFS and detects backedge.
146 *
147 * During resolve (or DFS), different C types have different
148 * "RESOLVED" conditions.
149 *
150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151 * members because a member is always referring to another
152 * type. A struct's member can be treated as "RESOLVED" if
153 * it is referring to a BTF_KIND_PTR. Otherwise, the
154 * following valid C struct would be rejected:
155 *
156 * struct A {
157 * int m;
158 * struct A *a;
159 * };
160 *
161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
163 * detect a pointer loop, e.g.:
164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165 * ^ |
166 * +-----------------------------------------+
167 *
69b693f0
MKL
168 */
169
b1e8818c 170#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
171#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174#define BITS_ROUNDUP_BYTES(bits) \
175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176
b1828f0b 177#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
178#define BTF_INT_MASK 0x0fffffff
179#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181
69b693f0
MKL
182/* 16MB for 64k structs and each has 16 members and
183 * a few MB spaces for the string section.
184 * The hard limit is S32_MAX.
185 */
186#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 187
eb3f595d
MKL
188#define for_each_member_from(i, from, struct_type, member) \
189 for (i = from, member = btf_type_member(struct_type) + from; \
190 i < btf_type_vlen(struct_type); \
191 i++, member++)
192
1dc92851
DB
193#define for_each_vsi_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
1b9ed84e
QM
198DEFINE_IDR(btf_idr);
199DEFINE_SPINLOCK(btf_idr_lock);
78958fca 200
dee872e1
KKD
201enum btf_kfunc_hook {
202 BTF_KFUNC_HOOK_XDP,
203 BTF_KFUNC_HOOK_TC,
204 BTF_KFUNC_HOOK_STRUCT_OPS,
97949767
BT
205 BTF_KFUNC_HOOK_TRACING,
206 BTF_KFUNC_HOOK_SYSCALL,
dee872e1
KKD
207 BTF_KFUNC_HOOK_MAX,
208};
209
210enum {
f9b34818 211 BTF_KFUNC_SET_MAX_CNT = 256,
5ce937d6 212 BTF_DTOR_KFUNC_MAX_CNT = 256,
dee872e1
KKD
213};
214
215struct btf_kfunc_set_tab {
a4703e31 216 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
dee872e1
KKD
217};
218
5ce937d6
KKD
219struct btf_id_dtor_kfunc_tab {
220 u32 cnt;
221 struct btf_id_dtor_kfunc dtors[];
222};
223
69b693f0 224struct btf {
f80442a4 225 void *data;
69b693f0 226 struct btf_type **types;
eb3f595d
MKL
227 u32 *resolved_ids;
228 u32 *resolved_sizes;
69b693f0
MKL
229 const char *strings;
230 void *nohdr_data;
f80442a4 231 struct btf_header hdr;
951bb646 232 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
233 u32 types_size;
234 u32 data_size;
f56a653c 235 refcount_t refcnt;
78958fca
MKL
236 u32 id;
237 struct rcu_head rcu;
dee872e1 238 struct btf_kfunc_set_tab *kfunc_set_tab;
5ce937d6 239 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
951bb646
AN
240
241 /* split BTF support */
242 struct btf *base_btf;
243 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
244 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
245 char name[MODULE_NAME_LEN];
246 bool kernel_btf;
69b693f0
MKL
247};
248
eb3f595d
MKL
249enum verifier_phase {
250 CHECK_META,
251 CHECK_TYPE,
252};
253
254struct resolve_vertex {
255 const struct btf_type *t;
256 u32 type_id;
257 u16 next_member;
258};
259
260enum visit_state {
261 NOT_VISITED,
262 VISITED,
263 RESOLVED,
264};
265
266enum resolve_mode {
267 RESOLVE_TBD, /* To Be Determined */
268 RESOLVE_PTR, /* Resolving for Pointer */
269 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
270 * or array
271 */
272};
273
274#define MAX_RESOLVE_DEPTH 32
275
f80442a4
MKL
276struct btf_sec_info {
277 u32 off;
278 u32 len;
279};
280
69b693f0
MKL
281struct btf_verifier_env {
282 struct btf *btf;
eb3f595d
MKL
283 u8 *visit_states;
284 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
285 struct bpf_verifier_log log;
286 u32 log_type_id;
eb3f595d
MKL
287 u32 top_stack;
288 enum verifier_phase phase;
289 enum resolve_mode resolve_mode;
69b693f0
MKL
290};
291
292static const char * const btf_kind_str[NR_BTF_KINDS] = {
293 [BTF_KIND_UNKN] = "UNKNOWN",
294 [BTF_KIND_INT] = "INT",
295 [BTF_KIND_PTR] = "PTR",
296 [BTF_KIND_ARRAY] = "ARRAY",
297 [BTF_KIND_STRUCT] = "STRUCT",
298 [BTF_KIND_UNION] = "UNION",
299 [BTF_KIND_ENUM] = "ENUM",
300 [BTF_KIND_FWD] = "FWD",
301 [BTF_KIND_TYPEDEF] = "TYPEDEF",
302 [BTF_KIND_VOLATILE] = "VOLATILE",
303 [BTF_KIND_CONST] = "CONST",
304 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
305 [BTF_KIND_FUNC] = "FUNC",
306 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
307 [BTF_KIND_VAR] = "VAR",
308 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 309 [BTF_KIND_FLOAT] = "FLOAT",
223f903e 310 [BTF_KIND_DECL_TAG] = "DECL_TAG",
8c42d2fa 311 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
6089fb32 312 [BTF_KIND_ENUM64] = "ENUM64",
69b693f0
MKL
313};
314
e6ac2450 315const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
316{
317 return btf_kind_str[BTF_INFO_KIND(t->info)];
318}
319
31d0bc81
AM
320/* Chunk size we use in safe copy of data to be shown. */
321#define BTF_SHOW_OBJ_SAFE_SIZE 32
322
323/*
324 * This is the maximum size of a base type value (equivalent to a
325 * 128-bit int); if we are at the end of our safe buffer and have
326 * less than 16 bytes space we can't be assured of being able
327 * to copy the next type safely, so in such cases we will initiate
328 * a new copy.
329 */
330#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
331
332/* Type name size */
333#define BTF_SHOW_NAME_SIZE 80
334
335/*
336 * Common data to all BTF show operations. Private show functions can add
337 * their own data to a structure containing a struct btf_show and consult it
338 * in the show callback. See btf_type_show() below.
339 *
340 * One challenge with showing nested data is we want to skip 0-valued
341 * data, but in order to figure out whether a nested object is all zeros
342 * we need to walk through it. As a result, we need to make two passes
343 * when handling structs, unions and arrays; the first path simply looks
344 * for nonzero data, while the second actually does the display. The first
345 * pass is signalled by show->state.depth_check being set, and if we
346 * encounter a non-zero value we set show->state.depth_to_show to
347 * the depth at which we encountered it. When we have completed the
348 * first pass, we will know if anything needs to be displayed if
349 * depth_to_show > depth. See btf_[struct,array]_show() for the
350 * implementation of this.
351 *
352 * Another problem is we want to ensure the data for display is safe to
353 * access. To support this, the anonymous "struct {} obj" tracks the data
354 * object and our safe copy of it. We copy portions of the data needed
355 * to the object "copy" buffer, but because its size is limited to
356 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
357 * traverse larger objects for display.
358 *
359 * The various data type show functions all start with a call to
360 * btf_show_start_type() which returns a pointer to the safe copy
361 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
362 * raw data itself). btf_show_obj_safe() is responsible for
363 * using copy_from_kernel_nofault() to update the safe data if necessary
364 * as we traverse the object's data. skbuff-like semantics are
365 * used:
366 *
367 * - obj.head points to the start of the toplevel object for display
368 * - obj.size is the size of the toplevel object
369 * - obj.data points to the current point in the original data at
370 * which our safe data starts. obj.data will advance as we copy
371 * portions of the data.
372 *
373 * In most cases a single copy will suffice, but larger data structures
374 * such as "struct task_struct" will require many copies. The logic in
375 * btf_show_obj_safe() handles the logic that determines if a new
376 * copy_from_kernel_nofault() is needed.
377 */
378struct btf_show {
379 u64 flags;
380 void *target; /* target of show operation (seq file, buffer) */
381 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
382 const struct btf *btf;
383 /* below are used during iteration */
384 struct {
385 u8 depth;
386 u8 depth_to_show;
387 u8 depth_check;
388 u8 array_member:1,
389 array_terminated:1;
390 u16 array_encoding;
391 u32 type_id;
392 int status; /* non-zero for error */
393 const struct btf_type *type;
394 const struct btf_member *member;
395 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
396 } state;
397 struct {
398 u32 size;
399 void *head;
400 void *data;
401 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
402 } obj;
403};
404
69b693f0
MKL
405struct btf_kind_operations {
406 s32 (*check_meta)(struct btf_verifier_env *env,
407 const struct btf_type *t,
408 u32 meta_left);
eb3f595d
MKL
409 int (*resolve)(struct btf_verifier_env *env,
410 const struct resolve_vertex *v);
179cde8c
MKL
411 int (*check_member)(struct btf_verifier_env *env,
412 const struct btf_type *struct_type,
413 const struct btf_member *member,
414 const struct btf_type *member_type);
9d5f9f70
YS
415 int (*check_kflag_member)(struct btf_verifier_env *env,
416 const struct btf_type *struct_type,
417 const struct btf_member *member,
418 const struct btf_type *member_type);
69b693f0
MKL
419 void (*log_details)(struct btf_verifier_env *env,
420 const struct btf_type *t);
31d0bc81 421 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 422 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 423 struct btf_show *show);
69b693f0
MKL
424};
425
426static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
427static struct btf_type btf_void;
428
2667a262
MKL
429static int btf_resolve(struct btf_verifier_env *env,
430 const struct btf_type *t, u32 type_id);
431
d7e7b42f
YS
432static int btf_func_check(struct btf_verifier_env *env,
433 const struct btf_type *t);
434
eb3f595d
MKL
435static bool btf_type_is_modifier(const struct btf_type *t)
436{
437 /* Some of them is not strictly a C modifier
438 * but they are grouped into the same bucket
439 * for BTF concern:
440 * A type (t) that refers to another
441 * type through t->type AND its size cannot
442 * be determined without following the t->type.
443 *
444 * ptr does not fall into this bucket
445 * because its size is always sizeof(void *).
446 */
447 switch (BTF_INFO_KIND(t->info)) {
448 case BTF_KIND_TYPEDEF:
449 case BTF_KIND_VOLATILE:
450 case BTF_KIND_CONST:
451 case BTF_KIND_RESTRICT:
8c42d2fa 452 case BTF_KIND_TYPE_TAG:
eb3f595d
MKL
453 return true;
454 }
455
456 return false;
457}
458
2824ecb7 459bool btf_type_is_void(const struct btf_type *t)
eb3f595d 460{
b47a0bd2
MKL
461 return t == &btf_void;
462}
463
464static bool btf_type_is_fwd(const struct btf_type *t)
465{
466 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
467}
468
469static bool btf_type_nosize(const struct btf_type *t)
470{
2667a262
MKL
471 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
472 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
473}
474
b47a0bd2 475static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 476{
b47a0bd2 477 return !t || btf_type_nosize(t);
eb3f595d
MKL
478}
479
d83525ca
AS
480static bool __btf_type_is_struct(const struct btf_type *t)
481{
482 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
483}
484
eb3f595d
MKL
485static bool btf_type_is_array(const struct btf_type *t)
486{
487 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
488}
489
1dc92851
DB
490static bool btf_type_is_datasec(const struct btf_type *t)
491{
492 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
493}
494
223f903e 495static bool btf_type_is_decl_tag(const struct btf_type *t)
b5ea834d 496{
223f903e 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
b5ea834d
YS
498}
499
223f903e 500static bool btf_type_is_decl_tag_target(const struct btf_type *t)
b5ea834d
YS
501{
502 return btf_type_is_func(t) || btf_type_is_struct(t) ||
bd16dee6 503 btf_type_is_var(t) || btf_type_is_typedef(t);
b5ea834d
YS
504}
505
541c3bad 506u32 btf_nr_types(const struct btf *btf)
951bb646
AN
507{
508 u32 total = 0;
509
510 while (btf) {
511 total += btf->nr_types;
512 btf = btf->base_btf;
513 }
514
515 return total;
516}
517
27ae7997
MKL
518s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
519{
520 const struct btf_type *t;
521 const char *tname;
951bb646 522 u32 i, total;
27ae7997 523
541c3bad 524 total = btf_nr_types(btf);
951bb646
AN
525 for (i = 1; i < total; i++) {
526 t = btf_type_by_id(btf, i);
27ae7997
MKL
527 if (BTF_INFO_KIND(t->info) != kind)
528 continue;
529
530 tname = btf_name_by_offset(btf, t->name_off);
531 if (!strcmp(tname, name))
532 return i;
533 }
534
535 return -ENOENT;
536}
537
edc3ec09
KKD
538static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
539{
540 struct btf *btf;
541 s32 ret;
542 int id;
543
544 btf = bpf_get_btf_vmlinux();
545 if (IS_ERR(btf))
546 return PTR_ERR(btf);
7ada3787
KKD
547 if (!btf)
548 return -EINVAL;
edc3ec09
KKD
549
550 ret = btf_find_by_name_kind(btf, name, kind);
551 /* ret is never zero, since btf_find_by_name_kind returns
552 * positive btf_id or negative error.
553 */
554 if (ret > 0) {
555 btf_get(btf);
556 *btf_p = btf;
557 return ret;
558 }
559
560 /* If name is not found in vmlinux's BTF then search in module's BTFs */
561 spin_lock_bh(&btf_idr_lock);
562 idr_for_each_entry(&btf_idr, btf, id) {
563 if (!btf_is_module(btf))
564 continue;
565 /* linear search could be slow hence unlock/lock
566 * the IDR to avoiding holding it for too long
567 */
568 btf_get(btf);
569 spin_unlock_bh(&btf_idr_lock);
570 ret = btf_find_by_name_kind(btf, name, kind);
571 if (ret > 0) {
572 *btf_p = btf;
573 return ret;
574 }
575 spin_lock_bh(&btf_idr_lock);
576 btf_put(btf);
577 }
578 spin_unlock_bh(&btf_idr_lock);
579 return ret;
580}
581
27ae7997
MKL
582const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
583 u32 id, u32 *res_id)
584{
585 const struct btf_type *t = btf_type_by_id(btf, id);
586
587 while (btf_type_is_modifier(t)) {
588 id = t->type;
589 t = btf_type_by_id(btf, t->type);
590 }
591
592 if (res_id)
593 *res_id = id;
594
595 return t;
596}
597
598const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
599 u32 id, u32 *res_id)
600{
601 const struct btf_type *t;
602
603 t = btf_type_skip_modifiers(btf, id, NULL);
604 if (!btf_type_is_ptr(t))
605 return NULL;
606
607 return btf_type_skip_modifiers(btf, t->type, res_id);
608}
609
610const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
611 u32 id, u32 *res_id)
612{
613 const struct btf_type *ptype;
614
615 ptype = btf_type_resolve_ptr(btf, id, res_id);
616 if (ptype && btf_type_is_func_proto(ptype))
617 return ptype;
618
619 return NULL;
620}
621
1dc92851
DB
622/* Types that act only as a source, not sink or intermediate
623 * type when resolving.
624 */
625static bool btf_type_is_resolve_source_only(const struct btf_type *t)
626{
627 return btf_type_is_var(t) ||
223f903e 628 btf_type_is_decl_tag(t) ||
1dc92851
DB
629 btf_type_is_datasec(t);
630}
631
eb3f595d
MKL
632/* What types need to be resolved?
633 *
634 * btf_type_is_modifier() is an obvious one.
635 *
636 * btf_type_is_struct() because its member refers to
637 * another type (through member->type).
1dc92851
DB
638 *
639 * btf_type_is_var() because the variable refers to
640 * another type. btf_type_is_datasec() holds multiple
641 * btf_type_is_var() types that need resolving.
642 *
eb3f595d
MKL
643 * btf_type_is_array() because its element (array->type)
644 * refers to another type. Array can be thought of a
645 * special case of struct while array just has the same
646 * member-type repeated by array->nelems of times.
647 */
648static bool btf_type_needs_resolve(const struct btf_type *t)
649{
650 return btf_type_is_modifier(t) ||
1dc92851
DB
651 btf_type_is_ptr(t) ||
652 btf_type_is_struct(t) ||
653 btf_type_is_array(t) ||
654 btf_type_is_var(t) ||
d7e7b42f 655 btf_type_is_func(t) ||
223f903e 656 btf_type_is_decl_tag(t) ||
1dc92851 657 btf_type_is_datasec(t);
eb3f595d
MKL
658}
659
660/* t->size can be used */
661static bool btf_type_has_size(const struct btf_type *t)
662{
663 switch (BTF_INFO_KIND(t->info)) {
664 case BTF_KIND_INT:
665 case BTF_KIND_STRUCT:
666 case BTF_KIND_UNION:
667 case BTF_KIND_ENUM:
1dc92851 668 case BTF_KIND_DATASEC:
b1828f0b 669 case BTF_KIND_FLOAT:
6089fb32 670 case BTF_KIND_ENUM64:
eb3f595d
MKL
671 return true;
672 }
673
674 return false;
675}
676
69b693f0
MKL
677static const char *btf_int_encoding_str(u8 encoding)
678{
679 if (encoding == 0)
680 return "(none)";
681 else if (encoding == BTF_INT_SIGNED)
682 return "SIGNED";
683 else if (encoding == BTF_INT_CHAR)
684 return "CHAR";
685 else if (encoding == BTF_INT_BOOL)
686 return "BOOL";
69b693f0
MKL
687 else
688 return "UNKN";
689}
690
69b693f0
MKL
691static u32 btf_type_int(const struct btf_type *t)
692{
693 return *(u32 *)(t + 1);
694}
695
696static const struct btf_array *btf_type_array(const struct btf_type *t)
697{
698 return (const struct btf_array *)(t + 1);
699}
700
69b693f0
MKL
701static const struct btf_enum *btf_type_enum(const struct btf_type *t)
702{
703 return (const struct btf_enum *)(t + 1);
704}
705
1dc92851
DB
706static const struct btf_var *btf_type_var(const struct btf_type *t)
707{
708 return (const struct btf_var *)(t + 1);
709}
710
223f903e 711static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
b5ea834d 712{
223f903e 713 return (const struct btf_decl_tag *)(t + 1);
b5ea834d
YS
714}
715
6089fb32
YS
716static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
717{
718 return (const struct btf_enum64 *)(t + 1);
719}
720
69b693f0
MKL
721static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
722{
723 return kind_ops[BTF_INFO_KIND(t->info)];
724}
725
583c5318 726static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 727{
951bb646
AN
728 if (!BTF_STR_OFFSET_VALID(offset))
729 return false;
730
731 while (offset < btf->start_str_off)
732 btf = btf->base_btf;
733
734 offset -= btf->start_str_off;
735 return offset < btf->hdr.str_len;
69b693f0
MKL
736}
737
1dc92851
DB
738static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
739{
740 if ((first ? !isalpha(c) :
741 !isalnum(c)) &&
742 c != '_' &&
743 ((c == '.' && !dot_ok) ||
744 c != '.'))
745 return false;
746 return true;
747}
748
951bb646
AN
749static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
750{
751 while (offset < btf->start_str_off)
752 btf = btf->base_btf;
753
754 offset -= btf->start_str_off;
755 if (offset < btf->hdr.str_len)
756 return &btf->strings[offset];
757
758 return NULL;
759}
760
1dc92851 761static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
762{
763 /* offset must be valid */
951bb646 764 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
765 const char *src_limit;
766
1dc92851 767 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
768 return false;
769
770 /* set a limit on identifier length */
771 src_limit = src + KSYM_NAME_LEN;
772 src++;
773 while (*src && src < src_limit) {
1dc92851 774 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
775 return false;
776 src++;
777 }
778
779 return !*src;
780}
781
1dc92851
DB
782/* Only C-style identifier is permitted. This can be relaxed if
783 * necessary.
784 */
785static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
786{
787 return __btf_name_valid(btf, offset, false);
788}
789
790static bool btf_name_valid_section(const struct btf *btf, u32 offset)
791{
792 return __btf_name_valid(btf, offset, true);
793}
794
23127b33 795static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 796{
951bb646
AN
797 const char *name;
798
aea2f7b8 799 if (!offset)
69b693f0 800 return "(anon)";
951bb646
AN
801
802 name = btf_str_by_offset(btf, offset);
803 return name ?: "(invalid-name-offset)";
69b693f0
MKL
804}
805
23127b33
MKL
806const char *btf_name_by_offset(const struct btf *btf, u32 offset)
807{
951bb646 808 return btf_str_by_offset(btf, offset);
23127b33
MKL
809}
810
838e9690 811const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 812{
951bb646
AN
813 while (type_id < btf->start_id)
814 btf = btf->base_btf;
eb3f595d 815
951bb646
AN
816 type_id -= btf->start_id;
817 if (type_id >= btf->nr_types)
818 return NULL;
eb3f595d
MKL
819 return btf->types[type_id];
820}
84c6ac41 821EXPORT_SYMBOL_GPL(btf_type_by_id);
eb3f595d 822
4ef5f574
MKL
823/*
824 * Regular int is not a bit field and it must be either
b1e8818c 825 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
826 */
827static bool btf_type_int_is_regular(const struct btf_type *t)
828{
36fc3c8c 829 u8 nr_bits, nr_bytes;
4ef5f574
MKL
830 u32 int_data;
831
832 int_data = btf_type_int(t);
833 nr_bits = BTF_INT_BITS(int_data);
834 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
835 if (BITS_PER_BYTE_MASKED(nr_bits) ||
836 BTF_INT_OFFSET(int_data) ||
837 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
838 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
839 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
840 return false;
841 }
842
843 return true;
844}
845
9a1126b6 846/*
ffa0c1cf
YS
847 * Check that given struct member is a regular int with expected
848 * offset and size.
9a1126b6 849 */
ffa0c1cf
YS
850bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
851 const struct btf_member *m,
852 u32 expected_offset, u32 expected_size)
9a1126b6 853{
ffa0c1cf
YS
854 const struct btf_type *t;
855 u32 id, int_data;
856 u8 nr_bits;
9a1126b6 857
ffa0c1cf
YS
858 id = m->type;
859 t = btf_type_id_size(btf, &id, NULL);
860 if (!t || !btf_type_is_int(t))
9a1126b6
RG
861 return false;
862
863 int_data = btf_type_int(t);
864 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
865 if (btf_type_kflag(s)) {
866 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
867 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
868
869 /* if kflag set, int should be a regular int and
870 * bit offset should be at byte boundary.
871 */
872 return !bitfield_size &&
873 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
874 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
875 }
876
877 if (BTF_INT_OFFSET(int_data) ||
878 BITS_PER_BYTE_MASKED(m->offset) ||
879 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
880 BITS_PER_BYTE_MASKED(nr_bits) ||
881 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
882 return false;
883
884 return true;
885}
886
31d0bc81
AM
887/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
888static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
889 u32 id)
890{
891 const struct btf_type *t = btf_type_by_id(btf, id);
892
893 while (btf_type_is_modifier(t) &&
894 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
895 t = btf_type_by_id(btf, t->type);
896 }
897
898 return t;
899}
900
901#define BTF_SHOW_MAX_ITER 10
902
903#define BTF_KIND_BIT(kind) (1ULL << kind)
904
905/*
906 * Populate show->state.name with type name information.
907 * Format of type name is
908 *
909 * [.member_name = ] (type_name)
910 */
911static const char *btf_show_name(struct btf_show *show)
912{
913 /* BTF_MAX_ITER array suffixes "[]" */
914 const char *array_suffixes = "[][][][][][][][][][]";
915 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
916 /* BTF_MAX_ITER pointer suffixes "*" */
917 const char *ptr_suffixes = "**********";
918 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
919 const char *name = NULL, *prefix = "", *parens = "";
920 const struct btf_member *m = show->state.member;
73b6eae5 921 const struct btf_type *t;
31d0bc81
AM
922 const struct btf_array *array;
923 u32 id = show->state.type_id;
924 const char *member = NULL;
925 bool show_member = false;
926 u64 kinds = 0;
927 int i;
928
929 show->state.name[0] = '\0';
930
931 /*
932 * Don't show type name if we're showing an array member;
933 * in that case we show the array type so don't need to repeat
934 * ourselves for each member.
935 */
936 if (show->state.array_member)
937 return "";
938
939 /* Retrieve member name, if any. */
940 if (m) {
941 member = btf_name_by_offset(show->btf, m->name_off);
942 show_member = strlen(member) > 0;
943 id = m->type;
944 }
945
946 /*
947 * Start with type_id, as we have resolved the struct btf_type *
948 * via btf_modifier_show() past the parent typedef to the child
949 * struct, int etc it is defined as. In such cases, the type_id
950 * still represents the starting type while the struct btf_type *
951 * in our show->state points at the resolved type of the typedef.
952 */
953 t = btf_type_by_id(show->btf, id);
954 if (!t)
955 return "";
956
957 /*
958 * The goal here is to build up the right number of pointer and
959 * array suffixes while ensuring the type name for a typedef
960 * is represented. Along the way we accumulate a list of
961 * BTF kinds we have encountered, since these will inform later
962 * display; for example, pointer types will not require an
963 * opening "{" for struct, we will just display the pointer value.
964 *
965 * We also want to accumulate the right number of pointer or array
966 * indices in the format string while iterating until we get to
967 * the typedef/pointee/array member target type.
968 *
969 * We start by pointing at the end of pointer and array suffix
970 * strings; as we accumulate pointers and arrays we move the pointer
971 * or array string backwards so it will show the expected number of
972 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
973 * and/or arrays and typedefs are supported as a precaution.
974 *
975 * We also want to get typedef name while proceeding to resolve
976 * type it points to so that we can add parentheses if it is a
977 * "typedef struct" etc.
978 */
979 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
980
981 switch (BTF_INFO_KIND(t->info)) {
982 case BTF_KIND_TYPEDEF:
983 if (!name)
984 name = btf_name_by_offset(show->btf,
985 t->name_off);
986 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
987 id = t->type;
988 break;
989 case BTF_KIND_ARRAY:
990 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
991 parens = "[";
992 if (!t)
993 return "";
994 array = btf_type_array(t);
995 if (array_suffix > array_suffixes)
996 array_suffix -= 2;
997 id = array->type;
998 break;
999 case BTF_KIND_PTR:
1000 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1001 if (ptr_suffix > ptr_suffixes)
1002 ptr_suffix -= 1;
1003 id = t->type;
1004 break;
1005 default:
1006 id = 0;
1007 break;
1008 }
1009 if (!id)
1010 break;
1011 t = btf_type_skip_qualifiers(show->btf, id);
1012 }
1013 /* We may not be able to represent this type; bail to be safe */
1014 if (i == BTF_SHOW_MAX_ITER)
1015 return "";
1016
1017 if (!name)
1018 name = btf_name_by_offset(show->btf, t->name_off);
1019
1020 switch (BTF_INFO_KIND(t->info)) {
1021 case BTF_KIND_STRUCT:
1022 case BTF_KIND_UNION:
1023 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1024 "struct" : "union";
1025 /* if it's an array of struct/union, parens is already set */
1026 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1027 parens = "{";
1028 break;
1029 case BTF_KIND_ENUM:
6089fb32 1030 case BTF_KIND_ENUM64:
31d0bc81
AM
1031 prefix = "enum";
1032 break;
1033 default:
1034 break;
1035 }
1036
1037 /* pointer does not require parens */
1038 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1039 parens = "";
1040 /* typedef does not require struct/union/enum prefix */
1041 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1042 prefix = "";
1043
1044 if (!name)
1045 name = "";
1046
1047 /* Even if we don't want type name info, we want parentheses etc */
1048 if (show->flags & BTF_SHOW_NONAME)
1049 snprintf(show->state.name, sizeof(show->state.name), "%s",
1050 parens);
1051 else
1052 snprintf(show->state.name, sizeof(show->state.name),
1053 "%s%s%s(%s%s%s%s%s%s)%s",
1054 /* first 3 strings comprise ".member = " */
1055 show_member ? "." : "",
1056 show_member ? member : "",
1057 show_member ? " = " : "",
1058 /* ...next is our prefix (struct, enum, etc) */
1059 prefix,
1060 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1061 /* ...this is the type name itself */
1062 name,
1063 /* ...suffixed by the appropriate '*', '[]' suffixes */
1064 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1065 array_suffix, parens);
1066
1067 return show->state.name;
1068}
1069
1070static const char *__btf_show_indent(struct btf_show *show)
1071{
1072 const char *indents = " ";
1073 const char *indent = &indents[strlen(indents)];
1074
1075 if ((indent - show->state.depth) >= indents)
1076 return indent - show->state.depth;
1077 return indents;
1078}
1079
1080static const char *btf_show_indent(struct btf_show *show)
1081{
1082 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1083}
1084
1085static const char *btf_show_newline(struct btf_show *show)
1086{
1087 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1088}
1089
1090static const char *btf_show_delim(struct btf_show *show)
1091{
1092 if (show->state.depth == 0)
1093 return "";
1094
1095 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1096 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1097 return "|";
1098
1099 return ",";
1100}
1101
1102__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1103{
1104 va_list args;
1105
1106 if (!show->state.depth_check) {
1107 va_start(args, fmt);
1108 show->showfn(show, fmt, args);
1109 va_end(args);
1110 }
1111}
1112
1113/* Macros are used here as btf_show_type_value[s]() prepends and appends
1114 * format specifiers to the format specifier passed in; these do the work of
1115 * adding indentation, delimiters etc while the caller simply has to specify
1116 * the type value(s) in the format specifier + value(s).
1117 */
1118#define btf_show_type_value(show, fmt, value) \
1119 do { \
a2a5580f
BD
1120 if ((value) != (__typeof__(value))0 || \
1121 (show->flags & BTF_SHOW_ZERO) || \
31d0bc81
AM
1122 show->state.depth == 0) { \
1123 btf_show(show, "%s%s" fmt "%s%s", \
1124 btf_show_indent(show), \
1125 btf_show_name(show), \
1126 value, btf_show_delim(show), \
1127 btf_show_newline(show)); \
1128 if (show->state.depth > show->state.depth_to_show) \
1129 show->state.depth_to_show = show->state.depth; \
1130 } \
1131 } while (0)
1132
1133#define btf_show_type_values(show, fmt, ...) \
1134 do { \
1135 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1136 btf_show_name(show), \
1137 __VA_ARGS__, btf_show_delim(show), \
1138 btf_show_newline(show)); \
1139 if (show->state.depth > show->state.depth_to_show) \
1140 show->state.depth_to_show = show->state.depth; \
1141 } while (0)
1142
1143/* How much is left to copy to safe buffer after @data? */
1144static int btf_show_obj_size_left(struct btf_show *show, void *data)
1145{
1146 return show->obj.head + show->obj.size - data;
1147}
1148
1149/* Is object pointed to by @data of @size already copied to our safe buffer? */
1150static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1151{
1152 return data >= show->obj.data &&
1153 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1154}
1155
1156/*
1157 * If object pointed to by @data of @size falls within our safe buffer, return
1158 * the equivalent pointer to the same safe data. Assumes
1159 * copy_from_kernel_nofault() has already happened and our safe buffer is
1160 * populated.
1161 */
1162static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1163{
1164 if (btf_show_obj_is_safe(show, data, size))
1165 return show->obj.safe + (data - show->obj.data);
1166 return NULL;
1167}
1168
1169/*
1170 * Return a safe-to-access version of data pointed to by @data.
1171 * We do this by copying the relevant amount of information
1172 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1173 *
1174 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1175 * safe copy is needed.
1176 *
1177 * Otherwise we need to determine if we have the required amount
1178 * of data (determined by the @data pointer and the size of the
1179 * largest base type we can encounter (represented by
1180 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1181 * that we will be able to print some of the current object,
1182 * and if more is needed a copy will be triggered.
1183 * Some objects such as structs will not fit into the buffer;
1184 * in such cases additional copies when we iterate over their
1185 * members may be needed.
1186 *
1187 * btf_show_obj_safe() is used to return a safe buffer for
1188 * btf_show_start_type(); this ensures that as we recurse into
1189 * nested types we always have safe data for the given type.
1190 * This approach is somewhat wasteful; it's possible for example
1191 * that when iterating over a large union we'll end up copying the
1192 * same data repeatedly, but the goal is safety not performance.
1193 * We use stack data as opposed to per-CPU buffers because the
1194 * iteration over a type can take some time, and preemption handling
1195 * would greatly complicate use of the safe buffer.
1196 */
1197static void *btf_show_obj_safe(struct btf_show *show,
1198 const struct btf_type *t,
1199 void *data)
1200{
1201 const struct btf_type *rt;
1202 int size_left, size;
1203 void *safe = NULL;
1204
1205 if (show->flags & BTF_SHOW_UNSAFE)
1206 return data;
1207
1208 rt = btf_resolve_size(show->btf, t, &size);
1209 if (IS_ERR(rt)) {
1210 show->state.status = PTR_ERR(rt);
1211 return NULL;
1212 }
1213
1214 /*
1215 * Is this toplevel object? If so, set total object size and
1216 * initialize pointers. Otherwise check if we still fall within
1217 * our safe object data.
1218 */
1219 if (show->state.depth == 0) {
1220 show->obj.size = size;
1221 show->obj.head = data;
1222 } else {
1223 /*
1224 * If the size of the current object is > our remaining
1225 * safe buffer we _may_ need to do a new copy. However
1226 * consider the case of a nested struct; it's size pushes
1227 * us over the safe buffer limit, but showing any individual
1228 * struct members does not. In such cases, we don't need
1229 * to initiate a fresh copy yet; however we definitely need
1230 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1231 * in our buffer, regardless of the current object size.
1232 * The logic here is that as we resolve types we will
1233 * hit a base type at some point, and we need to be sure
1234 * the next chunk of data is safely available to display
1235 * that type info safely. We cannot rely on the size of
1236 * the current object here because it may be much larger
1237 * than our current buffer (e.g. task_struct is 8k).
1238 * All we want to do here is ensure that we can print the
1239 * next basic type, which we can if either
1240 * - the current type size is within the safe buffer; or
1241 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1242 * the safe buffer.
1243 */
1244 safe = __btf_show_obj_safe(show, data,
1245 min(size,
1246 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1247 }
1248
1249 /*
1250 * We need a new copy to our safe object, either because we haven't
8fb33b60 1251 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1252 * we want falls outside the boundaries of the safe object.
1253 */
1254 if (!safe) {
1255 size_left = btf_show_obj_size_left(show, data);
1256 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1257 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1258 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1259 data, size_left);
1260 if (!show->state.status) {
1261 show->obj.data = data;
1262 safe = show->obj.safe;
1263 }
1264 }
1265
1266 return safe;
1267}
1268
1269/*
1270 * Set the type we are starting to show and return a safe data pointer
1271 * to be used for showing the associated data.
1272 */
1273static void *btf_show_start_type(struct btf_show *show,
1274 const struct btf_type *t,
1275 u32 type_id, void *data)
1276{
1277 show->state.type = t;
1278 show->state.type_id = type_id;
1279 show->state.name[0] = '\0';
1280
1281 return btf_show_obj_safe(show, t, data);
1282}
1283
1284static void btf_show_end_type(struct btf_show *show)
1285{
1286 show->state.type = NULL;
1287 show->state.type_id = 0;
1288 show->state.name[0] = '\0';
1289}
1290
1291static void *btf_show_start_aggr_type(struct btf_show *show,
1292 const struct btf_type *t,
1293 u32 type_id, void *data)
1294{
1295 void *safe_data = btf_show_start_type(show, t, type_id, data);
1296
1297 if (!safe_data)
1298 return safe_data;
1299
1300 btf_show(show, "%s%s%s", btf_show_indent(show),
1301 btf_show_name(show),
1302 btf_show_newline(show));
1303 show->state.depth++;
1304 return safe_data;
1305}
1306
1307static void btf_show_end_aggr_type(struct btf_show *show,
1308 const char *suffix)
1309{
1310 show->state.depth--;
1311 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1312 btf_show_delim(show), btf_show_newline(show));
1313 btf_show_end_type(show);
1314}
1315
1316static void btf_show_start_member(struct btf_show *show,
1317 const struct btf_member *m)
1318{
1319 show->state.member = m;
1320}
1321
1322static void btf_show_start_array_member(struct btf_show *show)
1323{
1324 show->state.array_member = 1;
1325 btf_show_start_member(show, NULL);
1326}
1327
1328static void btf_show_end_member(struct btf_show *show)
1329{
1330 show->state.member = NULL;
1331}
1332
1333static void btf_show_end_array_member(struct btf_show *show)
1334{
1335 show->state.array_member = 0;
1336 btf_show_end_member(show);
1337}
1338
1339static void *btf_show_start_array_type(struct btf_show *show,
1340 const struct btf_type *t,
1341 u32 type_id,
1342 u16 array_encoding,
1343 void *data)
1344{
1345 show->state.array_encoding = array_encoding;
1346 show->state.array_terminated = 0;
1347 return btf_show_start_aggr_type(show, t, type_id, data);
1348}
1349
1350static void btf_show_end_array_type(struct btf_show *show)
1351{
1352 show->state.array_encoding = 0;
1353 show->state.array_terminated = 0;
1354 btf_show_end_aggr_type(show, "]");
1355}
1356
1357static void *btf_show_start_struct_type(struct btf_show *show,
1358 const struct btf_type *t,
1359 u32 type_id,
1360 void *data)
1361{
1362 return btf_show_start_aggr_type(show, t, type_id, data);
1363}
1364
1365static void btf_show_end_struct_type(struct btf_show *show)
1366{
1367 btf_show_end_aggr_type(show, "}");
1368}
1369
69b693f0
MKL
1370__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1371 const char *fmt, ...)
1372{
1373 va_list args;
1374
1375 va_start(args, fmt);
1376 bpf_verifier_vlog(log, fmt, args);
1377 va_end(args);
1378}
1379
1380__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1381 const char *fmt, ...)
1382{
1383 struct bpf_verifier_log *log = &env->log;
1384 va_list args;
1385
1386 if (!bpf_verifier_log_needed(log))
1387 return;
1388
1389 va_start(args, fmt);
1390 bpf_verifier_vlog(log, fmt, args);
1391 va_end(args);
1392}
1393
1394__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1395 const struct btf_type *t,
1396 bool log_details,
1397 const char *fmt, ...)
1398{
1399 struct bpf_verifier_log *log = &env->log;
1400 u8 kind = BTF_INFO_KIND(t->info);
1401 struct btf *btf = env->btf;
1402 va_list args;
1403
1404 if (!bpf_verifier_log_needed(log))
1405 return;
1406
8580ac94
AS
1407 /* btf verifier prints all types it is processing via
1408 * btf_verifier_log_type(..., fmt = NULL).
1409 * Skip those prints for in-kernel BTF verification.
1410 */
1411 if (log->level == BPF_LOG_KERNEL && !fmt)
1412 return;
1413
69b693f0
MKL
1414 __btf_verifier_log(log, "[%u] %s %s%s",
1415 env->log_type_id,
1416 btf_kind_str[kind],
23127b33 1417 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1418 log_details ? " " : "");
1419
1420 if (log_details)
1421 btf_type_ops(t)->log_details(env, t);
1422
1423 if (fmt && *fmt) {
1424 __btf_verifier_log(log, " ");
1425 va_start(args, fmt);
1426 bpf_verifier_vlog(log, fmt, args);
1427 va_end(args);
1428 }
1429
1430 __btf_verifier_log(log, "\n");
1431}
1432
1433#define btf_verifier_log_type(env, t, ...) \
1434 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1435#define btf_verifier_log_basic(env, t, ...) \
1436 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1437
1438__printf(4, 5)
1439static void btf_verifier_log_member(struct btf_verifier_env *env,
1440 const struct btf_type *struct_type,
1441 const struct btf_member *member,
1442 const char *fmt, ...)
1443{
1444 struct bpf_verifier_log *log = &env->log;
1445 struct btf *btf = env->btf;
1446 va_list args;
1447
1448 if (!bpf_verifier_log_needed(log))
1449 return;
1450
8580ac94
AS
1451 if (log->level == BPF_LOG_KERNEL && !fmt)
1452 return;
eb3f595d
MKL
1453 /* The CHECK_META phase already did a btf dump.
1454 *
1455 * If member is logged again, it must hit an error in
1456 * parsing this member. It is useful to print out which
1457 * struct this member belongs to.
1458 */
1459 if (env->phase != CHECK_META)
1460 btf_verifier_log_type(env, struct_type, NULL);
1461
9d5f9f70
YS
1462 if (btf_type_kflag(struct_type))
1463 __btf_verifier_log(log,
1464 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1465 __btf_name_by_offset(btf, member->name_off),
1466 member->type,
1467 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1468 BTF_MEMBER_BIT_OFFSET(member->offset));
1469 else
1470 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1471 __btf_name_by_offset(btf, member->name_off),
1472 member->type, member->offset);
69b693f0
MKL
1473
1474 if (fmt && *fmt) {
1475 __btf_verifier_log(log, " ");
1476 va_start(args, fmt);
1477 bpf_verifier_vlog(log, fmt, args);
1478 va_end(args);
1479 }
1480
1481 __btf_verifier_log(log, "\n");
1482}
1483
1dc92851
DB
1484__printf(4, 5)
1485static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1486 const struct btf_type *datasec_type,
1487 const struct btf_var_secinfo *vsi,
1488 const char *fmt, ...)
1489{
1490 struct bpf_verifier_log *log = &env->log;
1491 va_list args;
1492
1493 if (!bpf_verifier_log_needed(log))
1494 return;
8580ac94
AS
1495 if (log->level == BPF_LOG_KERNEL && !fmt)
1496 return;
1dc92851
DB
1497 if (env->phase != CHECK_META)
1498 btf_verifier_log_type(env, datasec_type, NULL);
1499
1500 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1501 vsi->type, vsi->offset, vsi->size);
1502 if (fmt && *fmt) {
1503 __btf_verifier_log(log, " ");
1504 va_start(args, fmt);
1505 bpf_verifier_vlog(log, fmt, args);
1506 va_end(args);
1507 }
1508
1509 __btf_verifier_log(log, "\n");
1510}
1511
f80442a4
MKL
1512static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1513 u32 btf_data_size)
69b693f0
MKL
1514{
1515 struct bpf_verifier_log *log = &env->log;
1516 const struct btf *btf = env->btf;
1517 const struct btf_header *hdr;
1518
1519 if (!bpf_verifier_log_needed(log))
1520 return;
1521
8580ac94
AS
1522 if (log->level == BPF_LOG_KERNEL)
1523 return;
f80442a4 1524 hdr = &btf->hdr;
69b693f0
MKL
1525 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1526 __btf_verifier_log(log, "version: %u\n", hdr->version);
1527 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1528 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1529 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1530 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1531 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1532 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1533 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1534}
1535
1536static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1537{
1538 struct btf *btf = env->btf;
1539
951bb646 1540 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1541 /* Expand 'types' array */
1542
1543 struct btf_type **new_types;
1544 u32 expand_by, new_size;
1545
951bb646 1546 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1547 btf_verifier_log(env, "Exceeded max num of types");
1548 return -E2BIG;
1549 }
1550
1551 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1552 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1553 btf->types_size + expand_by);
1554
778e1cdd 1555 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1556 GFP_KERNEL | __GFP_NOWARN);
1557 if (!new_types)
1558 return -ENOMEM;
1559
951bb646
AN
1560 if (btf->nr_types == 0) {
1561 if (!btf->base_btf) {
1562 /* lazily init VOID type */
1563 new_types[0] = &btf_void;
1564 btf->nr_types++;
1565 }
1566 } else {
69b693f0 1567 memcpy(new_types, btf->types,
951bb646
AN
1568 sizeof(*btf->types) * btf->nr_types);
1569 }
69b693f0
MKL
1570
1571 kvfree(btf->types);
1572 btf->types = new_types;
1573 btf->types_size = new_size;
1574 }
1575
951bb646 1576 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1577
1578 return 0;
1579}
1580
78958fca
MKL
1581static int btf_alloc_id(struct btf *btf)
1582{
1583 int id;
1584
1585 idr_preload(GFP_KERNEL);
1586 spin_lock_bh(&btf_idr_lock);
1587 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1588 if (id > 0)
1589 btf->id = id;
1590 spin_unlock_bh(&btf_idr_lock);
1591 idr_preload_end();
1592
1593 if (WARN_ON_ONCE(!id))
1594 return -ENOSPC;
1595
1596 return id > 0 ? 0 : id;
1597}
1598
1599static void btf_free_id(struct btf *btf)
1600{
1601 unsigned long flags;
1602
1603 /*
1604 * In map-in-map, calling map_delete_elem() on outer
1605 * map will call bpf_map_put on the inner map.
1606 * It will then eventually call btf_free_id()
1607 * on the inner map. Some of the map_delete_elem()
1608 * implementation may have irq disabled, so
1609 * we need to use the _irqsave() version instead
1610 * of the _bh() version.
1611 */
1612 spin_lock_irqsave(&btf_idr_lock, flags);
1613 idr_remove(&btf_idr, btf->id);
1614 spin_unlock_irqrestore(&btf_idr_lock, flags);
1615}
1616
dee872e1
KKD
1617static void btf_free_kfunc_set_tab(struct btf *btf)
1618{
1619 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
a4703e31 1620 int hook;
dee872e1
KKD
1621
1622 if (!tab)
1623 return;
1624 /* For module BTF, we directly assign the sets being registered, so
1625 * there is nothing to free except kfunc_set_tab.
1626 */
1627 if (btf_is_module(btf))
1628 goto free_tab;
a4703e31
KKD
1629 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1630 kfree(tab->sets[hook]);
dee872e1
KKD
1631free_tab:
1632 kfree(tab);
1633 btf->kfunc_set_tab = NULL;
1634}
1635
5ce937d6
KKD
1636static void btf_free_dtor_kfunc_tab(struct btf *btf)
1637{
1638 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1639
1640 if (!tab)
1641 return;
1642 kfree(tab);
1643 btf->dtor_kfunc_tab = NULL;
1644}
1645
69b693f0
MKL
1646static void btf_free(struct btf *btf)
1647{
5ce937d6 1648 btf_free_dtor_kfunc_tab(btf);
dee872e1 1649 btf_free_kfunc_set_tab(btf);
69b693f0 1650 kvfree(btf->types);
eb3f595d
MKL
1651 kvfree(btf->resolved_sizes);
1652 kvfree(btf->resolved_ids);
69b693f0
MKL
1653 kvfree(btf->data);
1654 kfree(btf);
1655}
1656
78958fca 1657static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1658{
78958fca
MKL
1659 struct btf *btf = container_of(rcu, struct btf, rcu);
1660
1661 btf_free(btf);
f56a653c
MKL
1662}
1663
22dc4a0f
AN
1664void btf_get(struct btf *btf)
1665{
1666 refcount_inc(&btf->refcnt);
1667}
1668
f56a653c
MKL
1669void btf_put(struct btf *btf)
1670{
78958fca
MKL
1671 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1672 btf_free_id(btf);
1673 call_rcu(&btf->rcu, btf_free_rcu);
1674 }
f56a653c
MKL
1675}
1676
eb3f595d
MKL
1677static int env_resolve_init(struct btf_verifier_env *env)
1678{
1679 struct btf *btf = env->btf;
1680 u32 nr_types = btf->nr_types;
1681 u32 *resolved_sizes = NULL;
1682 u32 *resolved_ids = NULL;
1683 u8 *visit_states = NULL;
1684
951bb646 1685 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1686 GFP_KERNEL | __GFP_NOWARN);
1687 if (!resolved_sizes)
1688 goto nomem;
1689
951bb646 1690 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1691 GFP_KERNEL | __GFP_NOWARN);
1692 if (!resolved_ids)
1693 goto nomem;
1694
951bb646 1695 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1696 GFP_KERNEL | __GFP_NOWARN);
1697 if (!visit_states)
1698 goto nomem;
1699
1700 btf->resolved_sizes = resolved_sizes;
1701 btf->resolved_ids = resolved_ids;
1702 env->visit_states = visit_states;
1703
1704 return 0;
1705
1706nomem:
1707 kvfree(resolved_sizes);
1708 kvfree(resolved_ids);
1709 kvfree(visit_states);
1710 return -ENOMEM;
1711}
1712
69b693f0
MKL
1713static void btf_verifier_env_free(struct btf_verifier_env *env)
1714{
eb3f595d 1715 kvfree(env->visit_states);
69b693f0
MKL
1716 kfree(env);
1717}
1718
eb3f595d
MKL
1719static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1720 const struct btf_type *next_type)
1721{
1722 switch (env->resolve_mode) {
1723 case RESOLVE_TBD:
1724 /* int, enum or void is a sink */
1725 return !btf_type_needs_resolve(next_type);
1726 case RESOLVE_PTR:
2667a262
MKL
1727 /* int, enum, void, struct, array, func or func_proto is a sink
1728 * for ptr
1729 */
eb3f595d
MKL
1730 return !btf_type_is_modifier(next_type) &&
1731 !btf_type_is_ptr(next_type);
1732 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1733 /* int, enum, void, ptr, func or func_proto is a sink
1734 * for struct and array
1735 */
eb3f595d
MKL
1736 return !btf_type_is_modifier(next_type) &&
1737 !btf_type_is_array(next_type) &&
1738 !btf_type_is_struct(next_type);
1739 default:
53c8036c 1740 BUG();
eb3f595d
MKL
1741 }
1742}
1743
1744static bool env_type_is_resolved(const struct btf_verifier_env *env,
1745 u32 type_id)
1746{
951bb646
AN
1747 /* base BTF types should be resolved by now */
1748 if (type_id < env->btf->start_id)
1749 return true;
1750
1751 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1752}
1753
1754static int env_stack_push(struct btf_verifier_env *env,
1755 const struct btf_type *t, u32 type_id)
1756{
951bb646 1757 const struct btf *btf = env->btf;
eb3f595d
MKL
1758 struct resolve_vertex *v;
1759
1760 if (env->top_stack == MAX_RESOLVE_DEPTH)
1761 return -E2BIG;
1762
951bb646
AN
1763 if (type_id < btf->start_id
1764 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1765 return -EEXIST;
1766
951bb646 1767 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1768
1769 v = &env->stack[env->top_stack++];
1770 v->t = t;
1771 v->type_id = type_id;
1772 v->next_member = 0;
1773
1774 if (env->resolve_mode == RESOLVE_TBD) {
1775 if (btf_type_is_ptr(t))
1776 env->resolve_mode = RESOLVE_PTR;
1777 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1778 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1779 }
1780
1781 return 0;
1782}
1783
1784static void env_stack_set_next_member(struct btf_verifier_env *env,
1785 u16 next_member)
1786{
1787 env->stack[env->top_stack - 1].next_member = next_member;
1788}
1789
1790static void env_stack_pop_resolved(struct btf_verifier_env *env,
1791 u32 resolved_type_id,
1792 u32 resolved_size)
1793{
1794 u32 type_id = env->stack[--(env->top_stack)].type_id;
1795 struct btf *btf = env->btf;
1796
951bb646 1797 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1798 btf->resolved_sizes[type_id] = resolved_size;
1799 btf->resolved_ids[type_id] = resolved_type_id;
1800 env->visit_states[type_id] = RESOLVED;
1801}
1802
1803static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1804{
1805 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1806}
1807
7e3617a7
MKL
1808/* Resolve the size of a passed-in "type"
1809 *
1810 * type: is an array (e.g. u32 array[x][y])
1811 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1812 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1813 * corresponds to the return type.
1814 * *elem_type: u32
69ff3047 1815 * *elem_id: id of u32
7e3617a7
MKL
1816 * *total_nelems: (x * y). Hence, individual elem size is
1817 * (*type_size / *total_nelems)
887c31a3 1818 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1819 *
1820 * type: is not an array (e.g. const struct X)
1821 * return type: type "struct X"
1822 * *type_size: sizeof(struct X)
1823 * *elem_type: same as return type ("struct X")
69ff3047 1824 * *elem_id: 0
7e3617a7 1825 * *total_nelems: 1
887c31a3 1826 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1827 */
6298399b
JO
1828static const struct btf_type *
1829__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1830 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1831 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1832{
1833 const struct btf_type *array_type = NULL;
69ff3047 1834 const struct btf_array *array = NULL;
887c31a3 1835 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1836
1837 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1838 switch (BTF_INFO_KIND(type->info)) {
1839 /* type->size can be used */
1840 case BTF_KIND_INT:
1841 case BTF_KIND_STRUCT:
1842 case BTF_KIND_UNION:
1843 case BTF_KIND_ENUM:
b1828f0b 1844 case BTF_KIND_FLOAT:
6089fb32 1845 case BTF_KIND_ENUM64:
7e3617a7
MKL
1846 size = type->size;
1847 goto resolved;
1848
1849 case BTF_KIND_PTR:
1850 size = sizeof(void *);
1851 goto resolved;
1852
1853 /* Modifiers */
1854 case BTF_KIND_TYPEDEF:
1855 case BTF_KIND_VOLATILE:
1856 case BTF_KIND_CONST:
1857 case BTF_KIND_RESTRICT:
8c42d2fa 1858 case BTF_KIND_TYPE_TAG:
887c31a3 1859 id = type->type;
7e3617a7
MKL
1860 type = btf_type_by_id(btf, type->type);
1861 break;
1862
1863 case BTF_KIND_ARRAY:
1864 if (!array_type)
1865 array_type = type;
1866 array = btf_type_array(type);
1867 if (nelems && array->nelems > U32_MAX / nelems)
1868 return ERR_PTR(-EINVAL);
1869 nelems *= array->nelems;
1870 type = btf_type_by_id(btf, array->type);
1871 break;
1872
1873 /* type without size */
1874 default:
1875 return ERR_PTR(-EINVAL);
1876 }
1877 }
1878
1879 return ERR_PTR(-EINVAL);
1880
1881resolved:
1882 if (nelems && size > U32_MAX / nelems)
1883 return ERR_PTR(-EINVAL);
1884
1885 *type_size = nelems * size;
85d33df3
MKL
1886 if (total_nelems)
1887 *total_nelems = nelems;
1888 if (elem_type)
1889 *elem_type = type;
69ff3047
JO
1890 if (elem_id)
1891 *elem_id = array ? array->type : 0;
887c31a3
JO
1892 if (type_id && id)
1893 *type_id = id;
7e3617a7
MKL
1894
1895 return array_type ? : type;
1896}
1897
6298399b
JO
1898const struct btf_type *
1899btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1900 u32 *type_size)
1901{
887c31a3 1902 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1903}
1904
951bb646
AN
1905static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1906{
1907 while (type_id < btf->start_id)
1908 btf = btf->base_btf;
1909
1910 return btf->resolved_ids[type_id - btf->start_id];
1911}
1912
eb3f595d
MKL
1913/* The input param "type_id" must point to a needs_resolve type */
1914static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1915 u32 *type_id)
1916{
951bb646 1917 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1918 return btf_type_by_id(btf, *type_id);
1919}
1920
951bb646
AN
1921static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1922{
1923 while (type_id < btf->start_id)
1924 btf = btf->base_btf;
1925
1926 return btf->resolved_sizes[type_id - btf->start_id];
1927}
1928
eb3f595d
MKL
1929const struct btf_type *btf_type_id_size(const struct btf *btf,
1930 u32 *type_id, u32 *ret_size)
1931{
1932 const struct btf_type *size_type;
1933 u32 size_type_id = *type_id;
1934 u32 size = 0;
1935
1936 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1937 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1938 return NULL;
1939
1940 if (btf_type_has_size(size_type)) {
1941 size = size_type->size;
1942 } else if (btf_type_is_array(size_type)) {
951bb646 1943 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1944 } else if (btf_type_is_ptr(size_type)) {
1945 size = sizeof(void *);
1946 } else {
1dc92851
DB
1947 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1948 !btf_type_is_var(size_type)))
eb3f595d
MKL
1949 return NULL;
1950
951bb646 1951 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1952 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1953 if (btf_type_nosize_or_null(size_type))
eb3f595d 1954 return NULL;
1acc5d5c
AN
1955 else if (btf_type_has_size(size_type))
1956 size = size_type->size;
1957 else if (btf_type_is_array(size_type))
951bb646 1958 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1959 else if (btf_type_is_ptr(size_type))
1960 size = sizeof(void *);
1961 else
1962 return NULL;
eb3f595d
MKL
1963 }
1964
1965 *type_id = size_type_id;
1966 if (ret_size)
1967 *ret_size = size;
1968
1969 return size_type;
1970}
1971
179cde8c
MKL
1972static int btf_df_check_member(struct btf_verifier_env *env,
1973 const struct btf_type *struct_type,
1974 const struct btf_member *member,
1975 const struct btf_type *member_type)
1976{
1977 btf_verifier_log_basic(env, struct_type,
1978 "Unsupported check_member");
1979 return -EINVAL;
1980}
1981
9d5f9f70
YS
1982static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1983 const struct btf_type *struct_type,
1984 const struct btf_member *member,
1985 const struct btf_type *member_type)
1986{
1987 btf_verifier_log_basic(env, struct_type,
1988 "Unsupported check_kflag_member");
1989 return -EINVAL;
1990}
1991
b1828f0b 1992/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
1993 * int, enum and modifier types have their specific callback functions.
1994 */
1995static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1996 const struct btf_type *struct_type,
1997 const struct btf_member *member,
1998 const struct btf_type *member_type)
1999{
2000 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2001 btf_verifier_log_member(env, struct_type, member,
2002 "Invalid member bitfield_size");
2003 return -EINVAL;
2004 }
2005
2006 /* bitfield size is 0, so member->offset represents bit offset only.
2007 * It is safe to call non kflag check_member variants.
2008 */
2009 return btf_type_ops(member_type)->check_member(env, struct_type,
2010 member,
2011 member_type);
2012}
2013
eb3f595d
MKL
2014static int btf_df_resolve(struct btf_verifier_env *env,
2015 const struct resolve_vertex *v)
2016{
2017 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2018 return -EINVAL;
2019}
2020
31d0bc81
AM
2021static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2022 u32 type_id, void *data, u8 bits_offsets,
2023 struct btf_show *show)
b00b8dae 2024{
31d0bc81 2025 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
2026}
2027
179cde8c
MKL
2028static int btf_int_check_member(struct btf_verifier_env *env,
2029 const struct btf_type *struct_type,
2030 const struct btf_member *member,
2031 const struct btf_type *member_type)
2032{
2033 u32 int_data = btf_type_int(member_type);
2034 u32 struct_bits_off = member->offset;
2035 u32 struct_size = struct_type->size;
2036 u32 nr_copy_bits;
2037 u32 bytes_offset;
2038
2039 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2040 btf_verifier_log_member(env, struct_type, member,
2041 "bits_offset exceeds U32_MAX");
2042 return -EINVAL;
2043 }
2044
2045 struct_bits_off += BTF_INT_OFFSET(int_data);
2046 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2047 nr_copy_bits = BTF_INT_BITS(int_data) +
2048 BITS_PER_BYTE_MASKED(struct_bits_off);
2049
b1e8818c 2050 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 2051 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2052 "nr_copy_bits exceeds 128");
179cde8c
MKL
2053 return -EINVAL;
2054 }
2055
2056 if (struct_size < bytes_offset ||
2057 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2058 btf_verifier_log_member(env, struct_type, member,
2059 "Member exceeds struct_size");
2060 return -EINVAL;
2061 }
2062
2063 return 0;
2064}
2065
9d5f9f70
YS
2066static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2067 const struct btf_type *struct_type,
2068 const struct btf_member *member,
2069 const struct btf_type *member_type)
2070{
2071 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2072 u32 int_data = btf_type_int(member_type);
2073 u32 struct_size = struct_type->size;
2074 u32 nr_copy_bits;
2075
2076 /* a regular int type is required for the kflag int member */
2077 if (!btf_type_int_is_regular(member_type)) {
2078 btf_verifier_log_member(env, struct_type, member,
2079 "Invalid member base type");
2080 return -EINVAL;
2081 }
2082
2083 /* check sanity of bitfield size */
2084 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2085 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2086 nr_int_data_bits = BTF_INT_BITS(int_data);
2087 if (!nr_bits) {
2088 /* Not a bitfield member, member offset must be at byte
2089 * boundary.
2090 */
2091 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2092 btf_verifier_log_member(env, struct_type, member,
2093 "Invalid member offset");
2094 return -EINVAL;
2095 }
2096
2097 nr_bits = nr_int_data_bits;
2098 } else if (nr_bits > nr_int_data_bits) {
2099 btf_verifier_log_member(env, struct_type, member,
2100 "Invalid member bitfield_size");
2101 return -EINVAL;
2102 }
2103
2104 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2105 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 2106 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 2107 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2108 "nr_copy_bits exceeds 128");
9d5f9f70
YS
2109 return -EINVAL;
2110 }
2111
2112 if (struct_size < bytes_offset ||
2113 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2114 btf_verifier_log_member(env, struct_type, member,
2115 "Member exceeds struct_size");
2116 return -EINVAL;
2117 }
2118
2119 return 0;
2120}
2121
69b693f0
MKL
2122static s32 btf_int_check_meta(struct btf_verifier_env *env,
2123 const struct btf_type *t,
2124 u32 meta_left)
2125{
2126 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2127 u16 encoding;
2128
2129 if (meta_left < meta_needed) {
2130 btf_verifier_log_basic(env, t,
2131 "meta_left:%u meta_needed:%u",
2132 meta_left, meta_needed);
2133 return -EINVAL;
2134 }
2135
2136 if (btf_type_vlen(t)) {
2137 btf_verifier_log_type(env, t, "vlen != 0");
2138 return -EINVAL;
2139 }
2140
9d5f9f70
YS
2141 if (btf_type_kflag(t)) {
2142 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2143 return -EINVAL;
2144 }
2145
69b693f0 2146 int_data = btf_type_int(t);
aea2f7b8
MKL
2147 if (int_data & ~BTF_INT_MASK) {
2148 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2149 int_data);
2150 return -EINVAL;
2151 }
2152
69b693f0
MKL
2153 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2154
b1e8818c 2155 if (nr_bits > BITS_PER_U128) {
69b693f0 2156 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2157 BITS_PER_U128);
69b693f0
MKL
2158 return -EINVAL;
2159 }
2160
2161 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2162 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2163 return -EINVAL;
2164 }
2165
aea2f7b8
MKL
2166 /*
2167 * Only one of the encoding bits is allowed and it
2168 * should be sufficient for the pretty print purpose (i.e. decoding).
2169 * Multiple bits can be allowed later if it is found
2170 * to be insufficient.
2171 */
69b693f0
MKL
2172 encoding = BTF_INT_ENCODING(int_data);
2173 if (encoding &&
2174 encoding != BTF_INT_SIGNED &&
2175 encoding != BTF_INT_CHAR &&
aea2f7b8 2176 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2177 btf_verifier_log_type(env, t, "Unsupported encoding");
2178 return -ENOTSUPP;
2179 }
2180
2181 btf_verifier_log_type(env, t, NULL);
2182
2183 return meta_needed;
2184}
2185
2186static void btf_int_log(struct btf_verifier_env *env,
2187 const struct btf_type *t)
2188{
2189 int int_data = btf_type_int(t);
2190
2191 btf_verifier_log(env,
2192 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2193 t->size, BTF_INT_OFFSET(int_data),
2194 BTF_INT_BITS(int_data),
2195 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2196}
2197
31d0bc81 2198static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2199{
2200 /* data points to a __int128 number.
2201 * Suppose
2202 * int128_num = *(__int128 *)data;
2203 * The below formulas shows what upper_num and lower_num represents:
2204 * upper_num = int128_num >> 64;
2205 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2206 */
2207 u64 upper_num, lower_num;
2208
2209#ifdef __BIG_ENDIAN_BITFIELD
2210 upper_num = *(u64 *)data;
2211 lower_num = *(u64 *)(data + 8);
2212#else
2213 upper_num = *(u64 *)(data + 8);
2214 lower_num = *(u64 *)data;
2215#endif
2216 if (upper_num == 0)
31d0bc81 2217 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2218 else
31d0bc81
AM
2219 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2220 lower_num);
b1e8818c
YS
2221}
2222
2223static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2224 u16 right_shift_bits)
2225{
2226 u64 upper_num, lower_num;
2227
2228#ifdef __BIG_ENDIAN_BITFIELD
2229 upper_num = print_num[0];
2230 lower_num = print_num[1];
2231#else
2232 upper_num = print_num[1];
2233 lower_num = print_num[0];
2234#endif
2235
2236 /* shake out un-needed bits by shift/or operations */
2237 if (left_shift_bits >= 64) {
2238 upper_num = lower_num << (left_shift_bits - 64);
2239 lower_num = 0;
2240 } else {
2241 upper_num = (upper_num << left_shift_bits) |
2242 (lower_num >> (64 - left_shift_bits));
2243 lower_num = lower_num << left_shift_bits;
2244 }
2245
2246 if (right_shift_bits >= 64) {
2247 lower_num = upper_num >> (right_shift_bits - 64);
2248 upper_num = 0;
2249 } else {
2250 lower_num = (lower_num >> right_shift_bits) |
2251 (upper_num << (64 - right_shift_bits));
2252 upper_num = upper_num >> right_shift_bits;
2253 }
2254
2255#ifdef __BIG_ENDIAN_BITFIELD
2256 print_num[0] = upper_num;
2257 print_num[1] = lower_num;
2258#else
2259 print_num[0] = lower_num;
2260 print_num[1] = upper_num;
2261#endif
2262}
2263
31d0bc81
AM
2264static void btf_bitfield_show(void *data, u8 bits_offset,
2265 u8 nr_bits, struct btf_show *show)
b00b8dae 2266{
b65f370d 2267 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2268 u8 nr_copy_bytes;
2269 u8 nr_copy_bits;
b1e8818c 2270 u64 print_num[2] = {};
b00b8dae 2271
b00b8dae
MKL
2272 nr_copy_bits = nr_bits + bits_offset;
2273 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2274
b1e8818c 2275 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2276
b65f370d
OK
2277#ifdef __BIG_ENDIAN_BITFIELD
2278 left_shift_bits = bits_offset;
2279#else
b1e8818c 2280 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2281#endif
b1e8818c 2282 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2283
b1e8818c 2284 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2285 btf_int128_print(show, print_num);
b00b8dae
MKL
2286}
2287
9d5f9f70 2288
31d0bc81
AM
2289static void btf_int_bits_show(const struct btf *btf,
2290 const struct btf_type *t,
2291 void *data, u8 bits_offset,
2292 struct btf_show *show)
f97be3ab
YS
2293{
2294 u32 int_data = btf_type_int(t);
2295 u8 nr_bits = BTF_INT_BITS(int_data);
2296 u8 total_bits_offset;
2297
2298 /*
2299 * bits_offset is at most 7.
b1e8818c 2300 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2301 */
2302 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2303 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2304 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2305 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2306}
2307
31d0bc81
AM
2308static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2309 u32 type_id, void *data, u8 bits_offset,
2310 struct btf_show *show)
b00b8dae
MKL
2311{
2312 u32 int_data = btf_type_int(t);
2313 u8 encoding = BTF_INT_ENCODING(int_data);
2314 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2315 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2316 void *safe_data;
2317
2318 safe_data = btf_show_start_type(show, t, type_id, data);
2319 if (!safe_data)
2320 return;
b00b8dae
MKL
2321
2322 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2323 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2324 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2325 goto out;
b00b8dae
MKL
2326 }
2327
2328 switch (nr_bits) {
b1e8818c 2329 case 128:
31d0bc81 2330 btf_int128_print(show, safe_data);
b1e8818c 2331 break;
b00b8dae
MKL
2332 case 64:
2333 if (sign)
31d0bc81 2334 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2335 else
31d0bc81 2336 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2337 break;
2338 case 32:
2339 if (sign)
31d0bc81 2340 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2341 else
31d0bc81 2342 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2343 break;
2344 case 16:
2345 if (sign)
31d0bc81 2346 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2347 else
31d0bc81 2348 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2349 break;
2350 case 8:
31d0bc81
AM
2351 if (show->state.array_encoding == BTF_INT_CHAR) {
2352 /* check for null terminator */
2353 if (show->state.array_terminated)
2354 break;
2355 if (*(char *)data == '\0') {
2356 show->state.array_terminated = 1;
2357 break;
2358 }
2359 if (isprint(*(char *)data)) {
2360 btf_show_type_value(show, "'%c'",
2361 *(char *)safe_data);
2362 break;
2363 }
2364 }
b00b8dae 2365 if (sign)
31d0bc81 2366 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2367 else
31d0bc81 2368 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2369 break;
2370 default:
31d0bc81
AM
2371 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2372 break;
b00b8dae 2373 }
31d0bc81
AM
2374out:
2375 btf_show_end_type(show);
b00b8dae
MKL
2376}
2377
69b693f0
MKL
2378static const struct btf_kind_operations int_ops = {
2379 .check_meta = btf_int_check_meta,
eb3f595d 2380 .resolve = btf_df_resolve,
179cde8c 2381 .check_member = btf_int_check_member,
9d5f9f70 2382 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2383 .log_details = btf_int_log,
31d0bc81 2384 .show = btf_int_show,
69b693f0
MKL
2385};
2386
179cde8c
MKL
2387static int btf_modifier_check_member(struct btf_verifier_env *env,
2388 const struct btf_type *struct_type,
2389 const struct btf_member *member,
2390 const struct btf_type *member_type)
2391{
2392 const struct btf_type *resolved_type;
2393 u32 resolved_type_id = member->type;
2394 struct btf_member resolved_member;
2395 struct btf *btf = env->btf;
2396
2397 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2398 if (!resolved_type) {
2399 btf_verifier_log_member(env, struct_type, member,
2400 "Invalid member");
2401 return -EINVAL;
2402 }
2403
2404 resolved_member = *member;
2405 resolved_member.type = resolved_type_id;
2406
2407 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2408 &resolved_member,
2409 resolved_type);
2410}
2411
9d5f9f70
YS
2412static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2413 const struct btf_type *struct_type,
2414 const struct btf_member *member,
2415 const struct btf_type *member_type)
2416{
2417 const struct btf_type *resolved_type;
2418 u32 resolved_type_id = member->type;
2419 struct btf_member resolved_member;
2420 struct btf *btf = env->btf;
2421
2422 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2423 if (!resolved_type) {
2424 btf_verifier_log_member(env, struct_type, member,
2425 "Invalid member");
2426 return -EINVAL;
2427 }
2428
2429 resolved_member = *member;
2430 resolved_member.type = resolved_type_id;
2431
2432 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2433 &resolved_member,
2434 resolved_type);
2435}
2436
179cde8c
MKL
2437static int btf_ptr_check_member(struct btf_verifier_env *env,
2438 const struct btf_type *struct_type,
2439 const struct btf_member *member,
2440 const struct btf_type *member_type)
2441{
2442 u32 struct_size, struct_bits_off, bytes_offset;
2443
2444 struct_size = struct_type->size;
2445 struct_bits_off = member->offset;
2446 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2447
2448 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2449 btf_verifier_log_member(env, struct_type, member,
2450 "Member is not byte aligned");
2451 return -EINVAL;
2452 }
2453
2454 if (struct_size - bytes_offset < sizeof(void *)) {
2455 btf_verifier_log_member(env, struct_type, member,
2456 "Member exceeds struct_size");
2457 return -EINVAL;
2458 }
2459
2460 return 0;
2461}
2462
69b693f0
MKL
2463static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2464 const struct btf_type *t,
2465 u32 meta_left)
2466{
8c42d2fa
YS
2467 const char *value;
2468
69b693f0
MKL
2469 if (btf_type_vlen(t)) {
2470 btf_verifier_log_type(env, t, "vlen != 0");
2471 return -EINVAL;
2472 }
2473
9d5f9f70
YS
2474 if (btf_type_kflag(t)) {
2475 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2476 return -EINVAL;
2477 }
2478
aea2f7b8 2479 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2480 btf_verifier_log_type(env, t, "Invalid type_id");
2481 return -EINVAL;
2482 }
2483
8c42d2fa 2484 /* typedef/type_tag type must have a valid name, and other ref types,
eb04bbb6
YS
2485 * volatile, const, restrict, should have a null name.
2486 */
2487 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2488 if (!t->name_off ||
2489 !btf_name_valid_identifier(env->btf, t->name_off)) {
2490 btf_verifier_log_type(env, t, "Invalid name");
2491 return -EINVAL;
2492 }
8c42d2fa
YS
2493 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2494 value = btf_name_by_offset(env->btf, t->name_off);
2495 if (!value || !value[0]) {
2496 btf_verifier_log_type(env, t, "Invalid name");
2497 return -EINVAL;
2498 }
eb04bbb6
YS
2499 } else {
2500 if (t->name_off) {
2501 btf_verifier_log_type(env, t, "Invalid name");
2502 return -EINVAL;
2503 }
2504 }
2505
69b693f0
MKL
2506 btf_verifier_log_type(env, t, NULL);
2507
2508 return 0;
2509}
2510
eb3f595d
MKL
2511static int btf_modifier_resolve(struct btf_verifier_env *env,
2512 const struct resolve_vertex *v)
2513{
2514 const struct btf_type *t = v->t;
2515 const struct btf_type *next_type;
2516 u32 next_type_id = t->type;
2517 struct btf *btf = env->btf;
eb3f595d
MKL
2518
2519 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2520 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2521 btf_verifier_log_type(env, v->t, "Invalid type_id");
2522 return -EINVAL;
2523 }
2524
eb3f595d
MKL
2525 if (!env_type_is_resolve_sink(env, next_type) &&
2526 !env_type_is_resolved(env, next_type_id))
2527 return env_stack_push(env, next_type, next_type_id);
2528
2529 /* Figure out the resolved next_type_id with size.
2530 * They will be stored in the current modifier's
2531 * resolved_ids and resolved_sizes such that it can
2532 * save us a few type-following when we use it later (e.g. in
2533 * pretty print).
2534 */
1acc5d5c 2535 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2536 if (env_type_is_resolved(env, next_type_id))
2537 next_type = btf_type_id_resolve(btf, &next_type_id);
2538
2539 /* "typedef void new_void", "const void"...etc */
2540 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2541 !btf_type_is_fwd(next_type) &&
2542 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2543 btf_verifier_log_type(env, v->t, "Invalid type_id");
2544 return -EINVAL;
2545 }
eb3f595d
MKL
2546 }
2547
1acc5d5c 2548 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2549
2550 return 0;
2551}
2552
1dc92851
DB
2553static int btf_var_resolve(struct btf_verifier_env *env,
2554 const struct resolve_vertex *v)
2555{
2556 const struct btf_type *next_type;
2557 const struct btf_type *t = v->t;
2558 u32 next_type_id = t->type;
2559 struct btf *btf = env->btf;
1dc92851
DB
2560
2561 next_type = btf_type_by_id(btf, next_type_id);
2562 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2563 btf_verifier_log_type(env, v->t, "Invalid type_id");
2564 return -EINVAL;
2565 }
2566
2567 if (!env_type_is_resolve_sink(env, next_type) &&
2568 !env_type_is_resolved(env, next_type_id))
2569 return env_stack_push(env, next_type, next_type_id);
2570
2571 if (btf_type_is_modifier(next_type)) {
2572 const struct btf_type *resolved_type;
2573 u32 resolved_type_id;
2574
2575 resolved_type_id = next_type_id;
2576 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2577
2578 if (btf_type_is_ptr(resolved_type) &&
2579 !env_type_is_resolve_sink(env, resolved_type) &&
2580 !env_type_is_resolved(env, resolved_type_id))
2581 return env_stack_push(env, resolved_type,
2582 resolved_type_id);
2583 }
2584
2585 /* We must resolve to something concrete at this point, no
2586 * forward types or similar that would resolve to size of
2587 * zero is allowed.
2588 */
1acc5d5c 2589 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2590 btf_verifier_log_type(env, v->t, "Invalid type_id");
2591 return -EINVAL;
2592 }
2593
1acc5d5c 2594 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2595
2596 return 0;
2597}
2598
eb3f595d
MKL
2599static int btf_ptr_resolve(struct btf_verifier_env *env,
2600 const struct resolve_vertex *v)
2601{
2602 const struct btf_type *next_type;
2603 const struct btf_type *t = v->t;
2604 u32 next_type_id = t->type;
2605 struct btf *btf = env->btf;
eb3f595d
MKL
2606
2607 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2608 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2609 btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 return -EINVAL;
2611 }
2612
eb3f595d
MKL
2613 if (!env_type_is_resolve_sink(env, next_type) &&
2614 !env_type_is_resolved(env, next_type_id))
2615 return env_stack_push(env, next_type, next_type_id);
2616
2617 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2618 * the modifier may have stopped resolving when it was resolved
2619 * to a ptr (last-resolved-ptr).
2620 *
2621 * We now need to continue from the last-resolved-ptr to
2622 * ensure the last-resolved-ptr will not referring back to
c561d110 2623 * the current ptr (t).
eb3f595d
MKL
2624 */
2625 if (btf_type_is_modifier(next_type)) {
2626 const struct btf_type *resolved_type;
2627 u32 resolved_type_id;
2628
2629 resolved_type_id = next_type_id;
2630 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2631
2632 if (btf_type_is_ptr(resolved_type) &&
2633 !env_type_is_resolve_sink(env, resolved_type) &&
2634 !env_type_is_resolved(env, resolved_type_id))
2635 return env_stack_push(env, resolved_type,
2636 resolved_type_id);
2637 }
2638
2667a262
MKL
2639 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2640 if (env_type_is_resolved(env, next_type_id))
2641 next_type = btf_type_id_resolve(btf, &next_type_id);
2642
2643 if (!btf_type_is_void(next_type) &&
2644 !btf_type_is_fwd(next_type) &&
2645 !btf_type_is_func_proto(next_type)) {
2646 btf_verifier_log_type(env, v->t, "Invalid type_id");
2647 return -EINVAL;
2648 }
eb3f595d
MKL
2649 }
2650
eb3f595d
MKL
2651 env_stack_pop_resolved(env, next_type_id, 0);
2652
2653 return 0;
2654}
2655
31d0bc81
AM
2656static void btf_modifier_show(const struct btf *btf,
2657 const struct btf_type *t,
2658 u32 type_id, void *data,
2659 u8 bits_offset, struct btf_show *show)
b00b8dae 2660{
85d33df3
MKL
2661 if (btf->resolved_ids)
2662 t = btf_type_id_resolve(btf, &type_id);
2663 else
2664 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2665
31d0bc81 2666 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2667}
2668
31d0bc81
AM
2669static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2670 u32 type_id, void *data, u8 bits_offset,
2671 struct btf_show *show)
1dc92851
DB
2672{
2673 t = btf_type_id_resolve(btf, &type_id);
2674
31d0bc81 2675 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2676}
2677
31d0bc81
AM
2678static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2679 u32 type_id, void *data, u8 bits_offset,
2680 struct btf_show *show)
b00b8dae 2681{
31d0bc81
AM
2682 void *safe_data;
2683
2684 safe_data = btf_show_start_type(show, t, type_id, data);
2685 if (!safe_data)
2686 return;
2687
2688 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2689 if (show->flags & BTF_SHOW_PTR_RAW)
2690 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2691 else
2692 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2693 btf_show_end_type(show);
b00b8dae
MKL
2694}
2695
69b693f0
MKL
2696static void btf_ref_type_log(struct btf_verifier_env *env,
2697 const struct btf_type *t)
2698{
2699 btf_verifier_log(env, "type_id=%u", t->type);
2700}
2701
2702static struct btf_kind_operations modifier_ops = {
2703 .check_meta = btf_ref_type_check_meta,
eb3f595d 2704 .resolve = btf_modifier_resolve,
179cde8c 2705 .check_member = btf_modifier_check_member,
9d5f9f70 2706 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2707 .log_details = btf_ref_type_log,
31d0bc81 2708 .show = btf_modifier_show,
69b693f0
MKL
2709};
2710
2711static struct btf_kind_operations ptr_ops = {
2712 .check_meta = btf_ref_type_check_meta,
eb3f595d 2713 .resolve = btf_ptr_resolve,
179cde8c 2714 .check_member = btf_ptr_check_member,
9d5f9f70 2715 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2716 .log_details = btf_ref_type_log,
31d0bc81 2717 .show = btf_ptr_show,
69b693f0
MKL
2718};
2719
8175383f
MKL
2720static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2721 const struct btf_type *t,
2722 u32 meta_left)
2723{
2724 if (btf_type_vlen(t)) {
2725 btf_verifier_log_type(env, t, "vlen != 0");
2726 return -EINVAL;
2727 }
2728
2729 if (t->type) {
2730 btf_verifier_log_type(env, t, "type != 0");
2731 return -EINVAL;
2732 }
2733
eb04bbb6
YS
2734 /* fwd type must have a valid name */
2735 if (!t->name_off ||
2736 !btf_name_valid_identifier(env->btf, t->name_off)) {
2737 btf_verifier_log_type(env, t, "Invalid name");
2738 return -EINVAL;
2739 }
2740
8175383f
MKL
2741 btf_verifier_log_type(env, t, NULL);
2742
2743 return 0;
2744}
2745
76c43ae8
YS
2746static void btf_fwd_type_log(struct btf_verifier_env *env,
2747 const struct btf_type *t)
2748{
2749 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2750}
2751
69b693f0 2752static struct btf_kind_operations fwd_ops = {
8175383f 2753 .check_meta = btf_fwd_check_meta,
eb3f595d 2754 .resolve = btf_df_resolve,
179cde8c 2755 .check_member = btf_df_check_member,
9d5f9f70 2756 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2757 .log_details = btf_fwd_type_log,
31d0bc81 2758 .show = btf_df_show,
69b693f0
MKL
2759};
2760
179cde8c
MKL
2761static int btf_array_check_member(struct btf_verifier_env *env,
2762 const struct btf_type *struct_type,
2763 const struct btf_member *member,
2764 const struct btf_type *member_type)
2765{
2766 u32 struct_bits_off = member->offset;
2767 u32 struct_size, bytes_offset;
2768 u32 array_type_id, array_size;
2769 struct btf *btf = env->btf;
2770
2771 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2772 btf_verifier_log_member(env, struct_type, member,
2773 "Member is not byte aligned");
2774 return -EINVAL;
2775 }
2776
2777 array_type_id = member->type;
2778 btf_type_id_size(btf, &array_type_id, &array_size);
2779 struct_size = struct_type->size;
2780 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2781 if (struct_size - bytes_offset < array_size) {
2782 btf_verifier_log_member(env, struct_type, member,
2783 "Member exceeds struct_size");
2784 return -EINVAL;
2785 }
2786
2787 return 0;
2788}
2789
69b693f0
MKL
2790static s32 btf_array_check_meta(struct btf_verifier_env *env,
2791 const struct btf_type *t,
2792 u32 meta_left)
2793{
2794 const struct btf_array *array = btf_type_array(t);
2795 u32 meta_needed = sizeof(*array);
2796
2797 if (meta_left < meta_needed) {
2798 btf_verifier_log_basic(env, t,
2799 "meta_left:%u meta_needed:%u",
2800 meta_left, meta_needed);
2801 return -EINVAL;
2802 }
2803
eb04bbb6
YS
2804 /* array type should not have a name */
2805 if (t->name_off) {
2806 btf_verifier_log_type(env, t, "Invalid name");
2807 return -EINVAL;
2808 }
2809
69b693f0
MKL
2810 if (btf_type_vlen(t)) {
2811 btf_verifier_log_type(env, t, "vlen != 0");
2812 return -EINVAL;
2813 }
2814
9d5f9f70
YS
2815 if (btf_type_kflag(t)) {
2816 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2817 return -EINVAL;
2818 }
2819
b9308ae6
MKL
2820 if (t->size) {
2821 btf_verifier_log_type(env, t, "size != 0");
2822 return -EINVAL;
2823 }
2824
4ef5f574
MKL
2825 /* Array elem type and index type cannot be in type void,
2826 * so !array->type and !array->index_type are not allowed.
69b693f0 2827 */
aea2f7b8 2828 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2829 btf_verifier_log_type(env, t, "Invalid elem");
2830 return -EINVAL;
2831 }
2832
aea2f7b8 2833 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2834 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2835 return -EINVAL;
2836 }
2837
2838 btf_verifier_log_type(env, t, NULL);
2839
2840 return meta_needed;
2841}
2842
eb3f595d
MKL
2843static int btf_array_resolve(struct btf_verifier_env *env,
2844 const struct resolve_vertex *v)
2845{
2846 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2847 const struct btf_type *elem_type, *index_type;
2848 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2849 struct btf *btf = env->btf;
2850 u32 elem_size;
2851
4ef5f574
MKL
2852 /* Check array->index_type */
2853 index_type_id = array->index_type;
2854 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2855 if (btf_type_nosize_or_null(index_type) ||
2856 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2857 btf_verifier_log_type(env, v->t, "Invalid index");
2858 return -EINVAL;
2859 }
2860
2861 if (!env_type_is_resolve_sink(env, index_type) &&
2862 !env_type_is_resolved(env, index_type_id))
2863 return env_stack_push(env, index_type, index_type_id);
2864
2865 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2866 if (!index_type || !btf_type_is_int(index_type) ||
2867 !btf_type_int_is_regular(index_type)) {
2868 btf_verifier_log_type(env, v->t, "Invalid index");
2869 return -EINVAL;
2870 }
2871
2872 /* Check array->type */
2873 elem_type_id = array->type;
eb3f595d 2874 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2875 if (btf_type_nosize_or_null(elem_type) ||
2876 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2877 btf_verifier_log_type(env, v->t,
2878 "Invalid elem");
2879 return -EINVAL;
2880 }
2881
2882 if (!env_type_is_resolve_sink(env, elem_type) &&
2883 !env_type_is_resolved(env, elem_type_id))
2884 return env_stack_push(env, elem_type, elem_type_id);
2885
2886 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2887 if (!elem_type) {
2888 btf_verifier_log_type(env, v->t, "Invalid elem");
2889 return -EINVAL;
2890 }
2891
4ef5f574
MKL
2892 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2893 btf_verifier_log_type(env, v->t, "Invalid array of int");
2894 return -EINVAL;
eb3f595d
MKL
2895 }
2896
2897 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2898 btf_verifier_log_type(env, v->t,
2899 "Array size overflows U32_MAX");
2900 return -EINVAL;
2901 }
2902
2903 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2904
2905 return 0;
2906}
2907
69b693f0
MKL
2908static void btf_array_log(struct btf_verifier_env *env,
2909 const struct btf_type *t)
2910{
2911 const struct btf_array *array = btf_type_array(t);
2912
2913 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2914 array->type, array->index_type, array->nelems);
2915}
2916
31d0bc81
AM
2917static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2918 u32 type_id, void *data, u8 bits_offset,
2919 struct btf_show *show)
b00b8dae
MKL
2920{
2921 const struct btf_array *array = btf_type_array(t);
2922 const struct btf_kind_operations *elem_ops;
2923 const struct btf_type *elem_type;
31d0bc81
AM
2924 u32 i, elem_size = 0, elem_type_id;
2925 u16 encoding = 0;
b00b8dae
MKL
2926
2927 elem_type_id = array->type;
31d0bc81
AM
2928 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2929 if (elem_type && btf_type_has_size(elem_type))
2930 elem_size = elem_type->size;
2931
2932 if (elem_type && btf_type_is_int(elem_type)) {
2933 u32 int_type = btf_type_int(elem_type);
2934
2935 encoding = BTF_INT_ENCODING(int_type);
2936
2937 /*
2938 * BTF_INT_CHAR encoding never seems to be set for
2939 * char arrays, so if size is 1 and element is
2940 * printable as a char, we'll do that.
2941 */
2942 if (elem_size == 1)
2943 encoding = BTF_INT_CHAR;
2944 }
2945
2946 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2947 return;
2948
2949 if (!elem_type)
2950 goto out;
b00b8dae 2951 elem_ops = btf_type_ops(elem_type);
31d0bc81 2952
b00b8dae 2953 for (i = 0; i < array->nelems; i++) {
b00b8dae 2954
31d0bc81
AM
2955 btf_show_start_array_member(show);
2956
2957 elem_ops->show(btf, elem_type, elem_type_id, data,
2958 bits_offset, show);
b00b8dae 2959 data += elem_size;
31d0bc81
AM
2960
2961 btf_show_end_array_member(show);
2962
2963 if (show->state.array_terminated)
2964 break;
b00b8dae 2965 }
31d0bc81
AM
2966out:
2967 btf_show_end_array_type(show);
2968}
2969
2970static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2971 u32 type_id, void *data, u8 bits_offset,
2972 struct btf_show *show)
2973{
2974 const struct btf_member *m = show->state.member;
2975
2976 /*
2977 * First check if any members would be shown (are non-zero).
2978 * See comments above "struct btf_show" definition for more
2979 * details on how this works at a high-level.
2980 */
2981 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2982 if (!show->state.depth_check) {
2983 show->state.depth_check = show->state.depth + 1;
2984 show->state.depth_to_show = 0;
2985 }
2986 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2987 show->state.member = m;
2988
2989 if (show->state.depth_check != show->state.depth + 1)
2990 return;
2991 show->state.depth_check = 0;
2992
2993 if (show->state.depth_to_show <= show->state.depth)
2994 return;
2995 /*
2996 * Reaching here indicates we have recursed and found
2997 * non-zero array member(s).
2998 */
2999 }
3000 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3001}
3002
69b693f0
MKL
3003static struct btf_kind_operations array_ops = {
3004 .check_meta = btf_array_check_meta,
eb3f595d 3005 .resolve = btf_array_resolve,
179cde8c 3006 .check_member = btf_array_check_member,
9d5f9f70 3007 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3008 .log_details = btf_array_log,
31d0bc81 3009 .show = btf_array_show,
69b693f0
MKL
3010};
3011
179cde8c
MKL
3012static int btf_struct_check_member(struct btf_verifier_env *env,
3013 const struct btf_type *struct_type,
3014 const struct btf_member *member,
3015 const struct btf_type *member_type)
3016{
3017 u32 struct_bits_off = member->offset;
3018 u32 struct_size, bytes_offset;
3019
3020 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3021 btf_verifier_log_member(env, struct_type, member,
3022 "Member is not byte aligned");
3023 return -EINVAL;
3024 }
3025
3026 struct_size = struct_type->size;
3027 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3028 if (struct_size - bytes_offset < member_type->size) {
3029 btf_verifier_log_member(env, struct_type, member,
3030 "Member exceeds struct_size");
3031 return -EINVAL;
3032 }
3033
3034 return 0;
3035}
3036
69b693f0
MKL
3037static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3038 const struct btf_type *t,
3039 u32 meta_left)
3040{
3041 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3042 const struct btf_member *member;
6283fa38 3043 u32 meta_needed, last_offset;
69b693f0
MKL
3044 struct btf *btf = env->btf;
3045 u32 struct_size = t->size;
9d5f9f70 3046 u32 offset;
69b693f0
MKL
3047 u16 i;
3048
3049 meta_needed = btf_type_vlen(t) * sizeof(*member);
3050 if (meta_left < meta_needed) {
3051 btf_verifier_log_basic(env, t,
3052 "meta_left:%u meta_needed:%u",
3053 meta_left, meta_needed);
3054 return -EINVAL;
3055 }
3056
eb04bbb6
YS
3057 /* struct type either no name or a valid one */
3058 if (t->name_off &&
3059 !btf_name_valid_identifier(env->btf, t->name_off)) {
3060 btf_verifier_log_type(env, t, "Invalid name");
3061 return -EINVAL;
3062 }
3063
69b693f0
MKL
3064 btf_verifier_log_type(env, t, NULL);
3065
6283fa38 3066 last_offset = 0;
69b693f0 3067 for_each_member(i, t, member) {
fbcf93eb 3068 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
3069 btf_verifier_log_member(env, t, member,
3070 "Invalid member name_offset:%u",
fbcf93eb 3071 member->name_off);
69b693f0
MKL
3072 return -EINVAL;
3073 }
3074
eb04bbb6
YS
3075 /* struct member either no name or a valid one */
3076 if (member->name_off &&
3077 !btf_name_valid_identifier(btf, member->name_off)) {
3078 btf_verifier_log_member(env, t, member, "Invalid name");
3079 return -EINVAL;
3080 }
69b693f0 3081 /* A member cannot be in type void */
aea2f7b8 3082 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
3083 btf_verifier_log_member(env, t, member,
3084 "Invalid type_id");
3085 return -EINVAL;
3086 }
3087
8293eb99 3088 offset = __btf_member_bit_offset(t, member);
9d5f9f70 3089 if (is_union && offset) {
69b693f0
MKL
3090 btf_verifier_log_member(env, t, member,
3091 "Invalid member bits_offset");
3092 return -EINVAL;
3093 }
3094
6283fa38
MKL
3095 /*
3096 * ">" instead of ">=" because the last member could be
3097 * "char a[0];"
3098 */
9d5f9f70 3099 if (last_offset > offset) {
6283fa38
MKL
3100 btf_verifier_log_member(env, t, member,
3101 "Invalid member bits_offset");
3102 return -EINVAL;
3103 }
3104
9d5f9f70 3105 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 3106 btf_verifier_log_member(env, t, member,
311fe1a8 3107 "Member bits_offset exceeds its struct size");
69b693f0
MKL
3108 return -EINVAL;
3109 }
3110
3111 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 3112 last_offset = offset;
69b693f0
MKL
3113 }
3114
3115 return meta_needed;
3116}
3117
eb3f595d
MKL
3118static int btf_struct_resolve(struct btf_verifier_env *env,
3119 const struct resolve_vertex *v)
3120{
3121 const struct btf_member *member;
179cde8c 3122 int err;
eb3f595d
MKL
3123 u16 i;
3124
3125 /* Before continue resolving the next_member,
3126 * ensure the last member is indeed resolved to a
3127 * type with size info.
3128 */
3129 if (v->next_member) {
179cde8c 3130 const struct btf_type *last_member_type;
eb3f595d
MKL
3131 const struct btf_member *last_member;
3132 u16 last_member_type_id;
3133
3134 last_member = btf_type_member(v->t) + v->next_member - 1;
3135 last_member_type_id = last_member->type;
3136 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3137 last_member_type_id)))
3138 return -EINVAL;
179cde8c
MKL
3139
3140 last_member_type = btf_type_by_id(env->btf,
3141 last_member_type_id);
9d5f9f70
YS
3142 if (btf_type_kflag(v->t))
3143 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3144 last_member,
3145 last_member_type);
3146 else
3147 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3148 last_member,
3149 last_member_type);
179cde8c
MKL
3150 if (err)
3151 return err;
eb3f595d
MKL
3152 }
3153
3154 for_each_member_from(i, v->next_member, v->t, member) {
3155 u32 member_type_id = member->type;
3156 const struct btf_type *member_type = btf_type_by_id(env->btf,
3157 member_type_id);
3158
e4f07120
SF
3159 if (btf_type_nosize_or_null(member_type) ||
3160 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3161 btf_verifier_log_member(env, v->t, member,
3162 "Invalid member");
3163 return -EINVAL;
3164 }
3165
3166 if (!env_type_is_resolve_sink(env, member_type) &&
3167 !env_type_is_resolved(env, member_type_id)) {
3168 env_stack_set_next_member(env, i + 1);
3169 return env_stack_push(env, member_type, member_type_id);
3170 }
179cde8c 3171
9d5f9f70
YS
3172 if (btf_type_kflag(v->t))
3173 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3174 member,
3175 member_type);
3176 else
3177 err = btf_type_ops(member_type)->check_member(env, v->t,
3178 member,
3179 member_type);
179cde8c
MKL
3180 if (err)
3181 return err;
eb3f595d
MKL
3182 }
3183
3184 env_stack_pop_resolved(env, 0, 0);
3185
3186 return 0;
3187}
3188
69b693f0
MKL
3189static void btf_struct_log(struct btf_verifier_env *env,
3190 const struct btf_type *t)
3191{
3192 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3193}
3194
42ba1308
KKD
3195enum btf_field_type {
3196 BTF_FIELD_SPIN_LOCK,
3197 BTF_FIELD_TIMER,
61df10c7
KKD
3198 BTF_FIELD_KPTR,
3199};
3200
3201enum {
3202 BTF_FIELD_IGNORE = 0,
3203 BTF_FIELD_FOUND = 1,
42ba1308
KKD
3204};
3205
3206struct btf_field_info {
61df10c7 3207 u32 type_id;
42ba1308 3208 u32 off;
c0a5a21c 3209 enum bpf_kptr_type type;
42ba1308
KKD
3210};
3211
3212static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3213 u32 off, int sz, struct btf_field_info *info)
3214{
3215 if (!__btf_type_is_struct(t))
61df10c7 3216 return BTF_FIELD_IGNORE;
42ba1308 3217 if (t->size != sz)
61df10c7 3218 return BTF_FIELD_IGNORE;
42ba1308 3219 info->off = off;
61df10c7
KKD
3220 return BTF_FIELD_FOUND;
3221}
3222
3223static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3224 u32 off, int sz, struct btf_field_info *info)
3225{
c0a5a21c 3226 enum bpf_kptr_type type;
61df10c7
KKD
3227 u32 res_id;
3228
3229 /* For PTR, sz is always == 8 */
3230 if (!btf_type_is_ptr(t))
3231 return BTF_FIELD_IGNORE;
3232 t = btf_type_by_id(btf, t->type);
3233
3234 if (!btf_type_is_type_tag(t))
3235 return BTF_FIELD_IGNORE;
3236 /* Reject extra tags */
3237 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3238 return -EINVAL;
c0a5a21c
KKD
3239 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3240 type = BPF_KPTR_UNREF;
3241 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3242 type = BPF_KPTR_REF;
3243 else
61df10c7
KKD
3244 return -EINVAL;
3245
3246 /* Get the base type */
3247 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3248 /* Only pointer to struct is allowed */
3249 if (!__btf_type_is_struct(t))
3250 return -EINVAL;
3251
3252 info->type_id = res_id;
3253 info->off = off;
c0a5a21c 3254 info->type = type;
61df10c7 3255 return BTF_FIELD_FOUND;
42ba1308
KKD
3256}
3257
68134668 3258static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
42ba1308
KKD
3259 const char *name, int sz, int align,
3260 enum btf_field_type field_type,
61df10c7 3261 struct btf_field_info *info, int info_cnt)
d83525ca
AS
3262{
3263 const struct btf_member *member;
61df10c7
KKD
3264 struct btf_field_info tmp;
3265 int ret, idx = 0;
42ba1308 3266 u32 i, off;
d83525ca 3267
d83525ca
AS
3268 for_each_member(i, t, member) {
3269 const struct btf_type *member_type = btf_type_by_id(btf,
3270 member->type);
42ba1308 3271
61df10c7 3272 if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
d83525ca 3273 continue;
42ba1308 3274
8293eb99 3275 off = __btf_member_bit_offset(t, member);
d83525ca
AS
3276 if (off % 8)
3277 /* valid C code cannot generate such BTF */
3278 return -EINVAL;
3279 off /= 8;
68134668
AS
3280 if (off % align)
3281 return -EINVAL;
42ba1308
KKD
3282
3283 switch (field_type) {
3284 case BTF_FIELD_SPIN_LOCK:
3285 case BTF_FIELD_TIMER:
61df10c7
KKD
3286 ret = btf_find_struct(btf, member_type, off, sz,
3287 idx < info_cnt ? &info[idx] : &tmp);
3288 if (ret < 0)
3289 return ret;
3290 break;
3291 case BTF_FIELD_KPTR:
3292 ret = btf_find_kptr(btf, member_type, off, sz,
3293 idx < info_cnt ? &info[idx] : &tmp);
3294 if (ret < 0)
3295 return ret;
3296 break;
42ba1308
KKD
3297 default:
3298 return -EFAULT;
3299 }
61df10c7
KKD
3300
3301 if (ret == BTF_FIELD_IGNORE)
3302 continue;
3303 if (idx >= info_cnt)
3304 return -E2BIG;
3305 ++idx;
68134668 3306 }
61df10c7 3307 return idx;
68134668
AS
3308}
3309
3310static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
42ba1308
KKD
3311 const char *name, int sz, int align,
3312 enum btf_field_type field_type,
61df10c7 3313 struct btf_field_info *info, int info_cnt)
68134668
AS
3314{
3315 const struct btf_var_secinfo *vsi;
61df10c7
KKD
3316 struct btf_field_info tmp;
3317 int ret, idx = 0;
42ba1308 3318 u32 i, off;
68134668
AS
3319
3320 for_each_vsi(i, t, vsi) {
3321 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3322 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3323
42ba1308
KKD
3324 off = vsi->offset;
3325
61df10c7 3326 if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
68134668
AS
3327 continue;
3328 if (vsi->size != sz)
3329 continue;
68134668 3330 if (off % align)
d83525ca 3331 return -EINVAL;
42ba1308
KKD
3332
3333 switch (field_type) {
3334 case BTF_FIELD_SPIN_LOCK:
3335 case BTF_FIELD_TIMER:
61df10c7
KKD
3336 ret = btf_find_struct(btf, var_type, off, sz,
3337 idx < info_cnt ? &info[idx] : &tmp);
3338 if (ret < 0)
3339 return ret;
3340 break;
3341 case BTF_FIELD_KPTR:
3342 ret = btf_find_kptr(btf, var_type, off, sz,
3343 idx < info_cnt ? &info[idx] : &tmp);
3344 if (ret < 0)
3345 return ret;
3346 break;
42ba1308
KKD
3347 default:
3348 return -EFAULT;
3349 }
61df10c7
KKD
3350
3351 if (ret == BTF_FIELD_IGNORE)
3352 continue;
3353 if (idx >= info_cnt)
3354 return -E2BIG;
3355 ++idx;
d83525ca 3356 }
61df10c7 3357 return idx;
d83525ca
AS
3358}
3359
68134668 3360static int btf_find_field(const struct btf *btf, const struct btf_type *t,
42ba1308 3361 enum btf_field_type field_type,
61df10c7 3362 struct btf_field_info *info, int info_cnt)
68134668 3363{
42ba1308
KKD
3364 const char *name;
3365 int sz, align;
3366
3367 switch (field_type) {
3368 case BTF_FIELD_SPIN_LOCK:
3369 name = "bpf_spin_lock";
3370 sz = sizeof(struct bpf_spin_lock);
3371 align = __alignof__(struct bpf_spin_lock);
3372 break;
3373 case BTF_FIELD_TIMER:
3374 name = "bpf_timer";
3375 sz = sizeof(struct bpf_timer);
3376 align = __alignof__(struct bpf_timer);
3377 break;
61df10c7
KKD
3378 case BTF_FIELD_KPTR:
3379 name = NULL;
3380 sz = sizeof(u64);
3381 align = 8;
3382 break;
42ba1308
KKD
3383 default:
3384 return -EFAULT;
3385 }
68134668
AS
3386
3387 if (__btf_type_is_struct(t))
61df10c7 3388 return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
68134668 3389 else if (btf_type_is_datasec(t))
61df10c7 3390 return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
68134668
AS
3391 return -EINVAL;
3392}
3393
3394/* find 'struct bpf_spin_lock' in map value.
3395 * return >= 0 offset if found
3396 * and < 0 in case of error
3397 */
3398int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3399{
61df10c7 3400 struct btf_field_info info;
42ba1308
KKD
3401 int ret;
3402
61df10c7 3403 ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
42ba1308
KKD
3404 if (ret < 0)
3405 return ret;
61df10c7
KKD
3406 if (!ret)
3407 return -ENOENT;
42ba1308 3408 return info.off;
68134668
AS
3409}
3410
3411int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3412{
61df10c7 3413 struct btf_field_info info;
42ba1308
KKD
3414 int ret;
3415
61df10c7 3416 ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
42ba1308
KKD
3417 if (ret < 0)
3418 return ret;
61df10c7
KKD
3419 if (!ret)
3420 return -ENOENT;
42ba1308 3421 return info.off;
68134668
AS
3422}
3423
61df10c7
KKD
3424struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
3425 const struct btf_type *t)
3426{
3427 struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
3428 struct bpf_map_value_off *tab;
3429 struct btf *kernel_btf = NULL;
14a324f6 3430 struct module *mod = NULL;
61df10c7
KKD
3431 int ret, i, nr_off;
3432
3433 ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
3434 if (ret < 0)
3435 return ERR_PTR(ret);
3436 if (!ret)
3437 return NULL;
3438
3439 nr_off = ret;
3440 tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
3441 if (!tab)
3442 return ERR_PTR(-ENOMEM);
3443
3444 for (i = 0; i < nr_off; i++) {
3445 const struct btf_type *t;
3446 s32 id;
3447
3448 /* Find type in map BTF, and use it to look up the matching type
3449 * in vmlinux or module BTFs, by name and kind.
3450 */
3451 t = btf_type_by_id(btf, info_arr[i].type_id);
3452 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3453 &kernel_btf);
3454 if (id < 0) {
3455 ret = id;
3456 goto end;
3457 }
3458
14a324f6
KKD
3459 /* Find and stash the function pointer for the destruction function that
3460 * needs to be eventually invoked from the map free path.
3461 */
3462 if (info_arr[i].type == BPF_KPTR_REF) {
3463 const struct btf_type *dtor_func;
3464 const char *dtor_func_name;
3465 unsigned long addr;
3466 s32 dtor_btf_id;
3467
3468 /* This call also serves as a whitelist of allowed objects that
3469 * can be used as a referenced pointer and be stored in a map at
3470 * the same time.
3471 */
3472 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3473 if (dtor_btf_id < 0) {
3474 ret = dtor_btf_id;
3475 goto end_btf;
3476 }
3477
3478 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3479 if (!dtor_func) {
3480 ret = -ENOENT;
3481 goto end_btf;
3482 }
3483
3484 if (btf_is_module(kernel_btf)) {
3485 mod = btf_try_get_module(kernel_btf);
3486 if (!mod) {
3487 ret = -ENXIO;
3488 goto end_btf;
3489 }
3490 }
3491
3492 /* We already verified dtor_func to be btf_type_is_func
3493 * in register_btf_id_dtor_kfuncs.
3494 */
3495 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3496 addr = kallsyms_lookup_name(dtor_func_name);
3497 if (!addr) {
3498 ret = -EINVAL;
3499 goto end_mod;
3500 }
3501 tab->off[i].kptr.dtor = (void *)addr;
3502 }
3503
61df10c7 3504 tab->off[i].offset = info_arr[i].off;
c0a5a21c 3505 tab->off[i].type = info_arr[i].type;
61df10c7
KKD
3506 tab->off[i].kptr.btf_id = id;
3507 tab->off[i].kptr.btf = kernel_btf;
14a324f6 3508 tab->off[i].kptr.module = mod;
61df10c7
KKD
3509 }
3510 tab->nr_off = nr_off;
3511 return tab;
14a324f6
KKD
3512end_mod:
3513 module_put(mod);
3514end_btf:
3515 btf_put(kernel_btf);
61df10c7 3516end:
14a324f6 3517 while (i--) {
61df10c7 3518 btf_put(tab->off[i].kptr.btf);
14a324f6
KKD
3519 if (tab->off[i].kptr.module)
3520 module_put(tab->off[i].kptr.module);
3521 }
61df10c7
KKD
3522 kfree(tab);
3523 return ERR_PTR(ret);
3524}
3525
31d0bc81
AM
3526static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3527 u32 type_id, void *data, u8 bits_offset,
3528 struct btf_show *show)
b00b8dae 3529{
b00b8dae 3530 const struct btf_member *member;
31d0bc81 3531 void *safe_data;
b00b8dae
MKL
3532 u32 i;
3533
31d0bc81
AM
3534 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3535 if (!safe_data)
3536 return;
3537
b00b8dae
MKL
3538 for_each_member(i, t, member) {
3539 const struct btf_type *member_type = btf_type_by_id(btf,
3540 member->type);
b00b8dae 3541 const struct btf_kind_operations *ops;
9d5f9f70
YS
3542 u32 member_offset, bitfield_size;
3543 u32 bytes_offset;
3544 u8 bits8_offset;
b00b8dae 3545
31d0bc81 3546 btf_show_start_member(show, member);
b00b8dae 3547
8293eb99
AS
3548 member_offset = __btf_member_bit_offset(t, member);
3549 bitfield_size = __btf_member_bitfield_size(t, member);
17e3ac81
YS
3550 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3551 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3552 if (bitfield_size) {
31d0bc81
AM
3553 safe_data = btf_show_start_type(show, member_type,
3554 member->type,
3555 data + bytes_offset);
3556 if (safe_data)
3557 btf_bitfield_show(safe_data,
3558 bits8_offset,
3559 bitfield_size, show);
3560 btf_show_end_type(show);
9d5f9f70 3561 } else {
9d5f9f70 3562 ops = btf_type_ops(member_type);
31d0bc81
AM
3563 ops->show(btf, member_type, member->type,
3564 data + bytes_offset, bits8_offset, show);
9d5f9f70 3565 }
31d0bc81
AM
3566
3567 btf_show_end_member(show);
b00b8dae 3568 }
31d0bc81
AM
3569
3570 btf_show_end_struct_type(show);
3571}
3572
3573static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3574 u32 type_id, void *data, u8 bits_offset,
3575 struct btf_show *show)
3576{
3577 const struct btf_member *m = show->state.member;
3578
3579 /*
3580 * First check if any members would be shown (are non-zero).
3581 * See comments above "struct btf_show" definition for more
3582 * details on how this works at a high-level.
3583 */
3584 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3585 if (!show->state.depth_check) {
3586 show->state.depth_check = show->state.depth + 1;
3587 show->state.depth_to_show = 0;
3588 }
3589 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3590 /* Restore saved member data here */
3591 show->state.member = m;
3592 if (show->state.depth_check != show->state.depth + 1)
3593 return;
3594 show->state.depth_check = 0;
3595
3596 if (show->state.depth_to_show <= show->state.depth)
3597 return;
3598 /*
3599 * Reaching here indicates we have recursed and found
3600 * non-zero child values.
3601 */
3602 }
3603
3604 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3605}
3606
69b693f0
MKL
3607static struct btf_kind_operations struct_ops = {
3608 .check_meta = btf_struct_check_meta,
eb3f595d 3609 .resolve = btf_struct_resolve,
179cde8c 3610 .check_member = btf_struct_check_member,
9d5f9f70 3611 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3612 .log_details = btf_struct_log,
31d0bc81 3613 .show = btf_struct_show,
69b693f0
MKL
3614};
3615
179cde8c
MKL
3616static int btf_enum_check_member(struct btf_verifier_env *env,
3617 const struct btf_type *struct_type,
3618 const struct btf_member *member,
3619 const struct btf_type *member_type)
3620{
3621 u32 struct_bits_off = member->offset;
3622 u32 struct_size, bytes_offset;
3623
3624 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3625 btf_verifier_log_member(env, struct_type, member,
3626 "Member is not byte aligned");
3627 return -EINVAL;
3628 }
3629
3630 struct_size = struct_type->size;
3631 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3632 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3633 btf_verifier_log_member(env, struct_type, member,
3634 "Member exceeds struct_size");
3635 return -EINVAL;
3636 }
3637
3638 return 0;
3639}
3640
9d5f9f70
YS
3641static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3642 const struct btf_type *struct_type,
3643 const struct btf_member *member,
3644 const struct btf_type *member_type)
3645{
3646 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3647 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3648
3649 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3650 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3651 if (!nr_bits) {
3652 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3653 btf_verifier_log_member(env, struct_type, member,
3654 "Member is not byte aligned");
e3439af4 3655 return -EINVAL;
9d5f9f70
YS
3656 }
3657
3658 nr_bits = int_bitsize;
3659 } else if (nr_bits > int_bitsize) {
3660 btf_verifier_log_member(env, struct_type, member,
3661 "Invalid member bitfield_size");
3662 return -EINVAL;
3663 }
3664
3665 struct_size = struct_type->size;
3666 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3667 if (struct_size < bytes_end) {
3668 btf_verifier_log_member(env, struct_type, member,
3669 "Member exceeds struct_size");
3670 return -EINVAL;
3671 }
3672
3673 return 0;
3674}
3675
69b693f0
MKL
3676static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3677 const struct btf_type *t,
3678 u32 meta_left)
3679{
3680 const struct btf_enum *enums = btf_type_enum(t);
3681 struct btf *btf = env->btf;
6089fb32 3682 const char *fmt_str;
69b693f0
MKL
3683 u16 i, nr_enums;
3684 u32 meta_needed;
3685
3686 nr_enums = btf_type_vlen(t);
3687 meta_needed = nr_enums * sizeof(*enums);
3688
3689 if (meta_left < meta_needed) {
3690 btf_verifier_log_basic(env, t,
3691 "meta_left:%u meta_needed:%u",
3692 meta_left, meta_needed);
3693 return -EINVAL;
3694 }
3695
9eea9849
AS
3696 if (t->size > 8 || !is_power_of_2(t->size)) {
3697 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
3698 return -EINVAL;
3699 }
3700
eb04bbb6
YS
3701 /* enum type either no name or a valid one */
3702 if (t->name_off &&
3703 !btf_name_valid_identifier(env->btf, t->name_off)) {
3704 btf_verifier_log_type(env, t, "Invalid name");
3705 return -EINVAL;
3706 }
3707
69b693f0
MKL
3708 btf_verifier_log_type(env, t, NULL);
3709
3710 for (i = 0; i < nr_enums; i++) {
fbcf93eb 3711 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 3712 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 3713 enums[i].name_off);
69b693f0
MKL
3714 return -EINVAL;
3715 }
3716
eb04bbb6
YS
3717 /* enum member must have a valid name */
3718 if (!enums[i].name_off ||
3719 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3720 btf_verifier_log_type(env, t, "Invalid name");
3721 return -EINVAL;
3722 }
3723
8580ac94
AS
3724 if (env->log.level == BPF_LOG_KERNEL)
3725 continue;
6089fb32
YS
3726 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
3727 btf_verifier_log(env, fmt_str,
23127b33 3728 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
3729 enums[i].val);
3730 }
3731
3732 return meta_needed;
3733}
3734
3735static void btf_enum_log(struct btf_verifier_env *env,
3736 const struct btf_type *t)
3737{
3738 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3739}
3740
31d0bc81
AM
3741static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3742 u32 type_id, void *data, u8 bits_offset,
3743 struct btf_show *show)
b00b8dae
MKL
3744{
3745 const struct btf_enum *enums = btf_type_enum(t);
3746 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
3747 void *safe_data;
3748 int v;
3749
3750 safe_data = btf_show_start_type(show, t, type_id, data);
3751 if (!safe_data)
3752 return;
3753
3754 v = *(int *)safe_data;
b00b8dae
MKL
3755
3756 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
3757 if (v != enums[i].val)
3758 continue;
3759
3760 btf_show_type_value(show, "%s",
3761 __btf_name_by_offset(btf,
3762 enums[i].name_off));
3763
3764 btf_show_end_type(show);
3765 return;
b00b8dae
MKL
3766 }
3767
6089fb32
YS
3768 if (btf_type_kflag(t))
3769 btf_show_type_value(show, "%d", v);
3770 else
3771 btf_show_type_value(show, "%u", v);
31d0bc81 3772 btf_show_end_type(show);
b00b8dae
MKL
3773}
3774
69b693f0
MKL
3775static struct btf_kind_operations enum_ops = {
3776 .check_meta = btf_enum_check_meta,
eb3f595d 3777 .resolve = btf_df_resolve,
179cde8c 3778 .check_member = btf_enum_check_member,
9d5f9f70 3779 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 3780 .log_details = btf_enum_log,
31d0bc81 3781 .show = btf_enum_show,
69b693f0
MKL
3782};
3783
6089fb32
YS
3784static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
3785 const struct btf_type *t,
3786 u32 meta_left)
3787{
3788 const struct btf_enum64 *enums = btf_type_enum64(t);
3789 struct btf *btf = env->btf;
3790 const char *fmt_str;
3791 u16 i, nr_enums;
3792 u32 meta_needed;
3793
3794 nr_enums = btf_type_vlen(t);
3795 meta_needed = nr_enums * sizeof(*enums);
3796
3797 if (meta_left < meta_needed) {
3798 btf_verifier_log_basic(env, t,
3799 "meta_left:%u meta_needed:%u",
3800 meta_left, meta_needed);
3801 return -EINVAL;
3802 }
3803
3804 if (t->size > 8 || !is_power_of_2(t->size)) {
3805 btf_verifier_log_type(env, t, "Unexpected size");
3806 return -EINVAL;
3807 }
3808
3809 /* enum type either no name or a valid one */
3810 if (t->name_off &&
3811 !btf_name_valid_identifier(env->btf, t->name_off)) {
3812 btf_verifier_log_type(env, t, "Invalid name");
3813 return -EINVAL;
3814 }
3815
3816 btf_verifier_log_type(env, t, NULL);
3817
3818 for (i = 0; i < nr_enums; i++) {
3819 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3820 btf_verifier_log(env, "\tInvalid name_offset:%u",
3821 enums[i].name_off);
3822 return -EINVAL;
3823 }
3824
3825 /* enum member must have a valid name */
3826 if (!enums[i].name_off ||
3827 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3828 btf_verifier_log_type(env, t, "Invalid name");
3829 return -EINVAL;
3830 }
3831
3832 if (env->log.level == BPF_LOG_KERNEL)
3833 continue;
3834
3835 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
3836 btf_verifier_log(env, fmt_str,
3837 __btf_name_by_offset(btf, enums[i].name_off),
3838 btf_enum64_value(enums + i));
3839 }
3840
3841 return meta_needed;
3842}
3843
3844static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
3845 u32 type_id, void *data, u8 bits_offset,
3846 struct btf_show *show)
3847{
3848 const struct btf_enum64 *enums = btf_type_enum64(t);
3849 u32 i, nr_enums = btf_type_vlen(t);
3850 void *safe_data;
3851 s64 v;
3852
3853 safe_data = btf_show_start_type(show, t, type_id, data);
3854 if (!safe_data)
3855 return;
3856
3857 v = *(u64 *)safe_data;
3858
3859 for (i = 0; i < nr_enums; i++) {
3860 if (v != btf_enum64_value(enums + i))
3861 continue;
3862
3863 btf_show_type_value(show, "%s",
3864 __btf_name_by_offset(btf,
3865 enums[i].name_off));
3866
3867 btf_show_end_type(show);
3868 return;
3869 }
3870
3871 if (btf_type_kflag(t))
3872 btf_show_type_value(show, "%lld", v);
3873 else
3874 btf_show_type_value(show, "%llu", v);
3875 btf_show_end_type(show);
3876}
3877
3878static struct btf_kind_operations enum64_ops = {
3879 .check_meta = btf_enum64_check_meta,
3880 .resolve = btf_df_resolve,
3881 .check_member = btf_enum_check_member,
3882 .check_kflag_member = btf_enum_check_kflag_member,
3883 .log_details = btf_enum_log,
3884 .show = btf_enum64_show,
3885};
3886
2667a262
MKL
3887static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3888 const struct btf_type *t,
3889 u32 meta_left)
3890{
3891 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3892
3893 if (meta_left < meta_needed) {
3894 btf_verifier_log_basic(env, t,
3895 "meta_left:%u meta_needed:%u",
3896 meta_left, meta_needed);
3897 return -EINVAL;
3898 }
3899
3900 if (t->name_off) {
3901 btf_verifier_log_type(env, t, "Invalid name");
3902 return -EINVAL;
3903 }
3904
9d5f9f70
YS
3905 if (btf_type_kflag(t)) {
3906 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3907 return -EINVAL;
3908 }
3909
2667a262
MKL
3910 btf_verifier_log_type(env, t, NULL);
3911
3912 return meta_needed;
3913}
3914
3915static void btf_func_proto_log(struct btf_verifier_env *env,
3916 const struct btf_type *t)
3917{
3918 const struct btf_param *args = (const struct btf_param *)(t + 1);
3919 u16 nr_args = btf_type_vlen(t), i;
3920
3921 btf_verifier_log(env, "return=%u args=(", t->type);
3922 if (!nr_args) {
3923 btf_verifier_log(env, "void");
3924 goto done;
3925 }
3926
3927 if (nr_args == 1 && !args[0].type) {
3928 /* Only one vararg */
3929 btf_verifier_log(env, "vararg");
3930 goto done;
3931 }
3932
3933 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
3934 __btf_name_by_offset(env->btf,
3935 args[0].name_off));
2667a262
MKL
3936 for (i = 1; i < nr_args - 1; i++)
3937 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
3938 __btf_name_by_offset(env->btf,
3939 args[i].name_off));
2667a262
MKL
3940
3941 if (nr_args > 1) {
3942 const struct btf_param *last_arg = &args[nr_args - 1];
3943
3944 if (last_arg->type)
3945 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
3946 __btf_name_by_offset(env->btf,
3947 last_arg->name_off));
2667a262
MKL
3948 else
3949 btf_verifier_log(env, ", vararg");
3950 }
3951
3952done:
3953 btf_verifier_log(env, ")");
3954}
3955
3956static struct btf_kind_operations func_proto_ops = {
3957 .check_meta = btf_func_proto_check_meta,
3958 .resolve = btf_df_resolve,
3959 /*
3960 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3961 * a struct's member.
3962 *
8fb33b60 3963 * It should be a function pointer instead.
2667a262
MKL
3964 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3965 *
3966 * Hence, there is no btf_func_check_member().
3967 */
3968 .check_member = btf_df_check_member,
9d5f9f70 3969 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3970 .log_details = btf_func_proto_log,
31d0bc81 3971 .show = btf_df_show,
2667a262
MKL
3972};
3973
3974static s32 btf_func_check_meta(struct btf_verifier_env *env,
3975 const struct btf_type *t,
3976 u32 meta_left)
3977{
3978 if (!t->name_off ||
3979 !btf_name_valid_identifier(env->btf, t->name_off)) {
3980 btf_verifier_log_type(env, t, "Invalid name");
3981 return -EINVAL;
3982 }
3983
51c39bb1
AS
3984 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3985 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
3986 return -EINVAL;
3987 }
3988
9d5f9f70
YS
3989 if (btf_type_kflag(t)) {
3990 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3991 return -EINVAL;
3992 }
3993
2667a262
MKL
3994 btf_verifier_log_type(env, t, NULL);
3995
3996 return 0;
3997}
3998
d7e7b42f
YS
3999static int btf_func_resolve(struct btf_verifier_env *env,
4000 const struct resolve_vertex *v)
4001{
4002 const struct btf_type *t = v->t;
4003 u32 next_type_id = t->type;
4004 int err;
4005
4006 err = btf_func_check(env, t);
4007 if (err)
4008 return err;
4009
4010 env_stack_pop_resolved(env, next_type_id, 0);
4011 return 0;
4012}
4013
2667a262
MKL
4014static struct btf_kind_operations func_ops = {
4015 .check_meta = btf_func_check_meta,
d7e7b42f 4016 .resolve = btf_func_resolve,
2667a262 4017 .check_member = btf_df_check_member,
9d5f9f70 4018 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4019 .log_details = btf_ref_type_log,
31d0bc81 4020 .show = btf_df_show,
2667a262
MKL
4021};
4022
1dc92851
DB
4023static s32 btf_var_check_meta(struct btf_verifier_env *env,
4024 const struct btf_type *t,
4025 u32 meta_left)
4026{
4027 const struct btf_var *var;
4028 u32 meta_needed = sizeof(*var);
4029
4030 if (meta_left < meta_needed) {
4031 btf_verifier_log_basic(env, t,
4032 "meta_left:%u meta_needed:%u",
4033 meta_left, meta_needed);
4034 return -EINVAL;
4035 }
4036
4037 if (btf_type_vlen(t)) {
4038 btf_verifier_log_type(env, t, "vlen != 0");
4039 return -EINVAL;
4040 }
4041
4042 if (btf_type_kflag(t)) {
4043 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4044 return -EINVAL;
4045 }
4046
4047 if (!t->name_off ||
4048 !__btf_name_valid(env->btf, t->name_off, true)) {
4049 btf_verifier_log_type(env, t, "Invalid name");
4050 return -EINVAL;
4051 }
4052
4053 /* A var cannot be in type void */
4054 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4055 btf_verifier_log_type(env, t, "Invalid type_id");
4056 return -EINVAL;
4057 }
4058
4059 var = btf_type_var(t);
4060 if (var->linkage != BTF_VAR_STATIC &&
4061 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4062 btf_verifier_log_type(env, t, "Linkage not supported");
4063 return -EINVAL;
4064 }
4065
4066 btf_verifier_log_type(env, t, NULL);
4067
4068 return meta_needed;
4069}
4070
4071static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4072{
4073 const struct btf_var *var = btf_type_var(t);
4074
4075 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4076}
4077
4078static const struct btf_kind_operations var_ops = {
4079 .check_meta = btf_var_check_meta,
4080 .resolve = btf_var_resolve,
4081 .check_member = btf_df_check_member,
4082 .check_kflag_member = btf_df_check_kflag_member,
4083 .log_details = btf_var_log,
31d0bc81 4084 .show = btf_var_show,
1dc92851
DB
4085};
4086
4087static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4088 const struct btf_type *t,
4089 u32 meta_left)
4090{
4091 const struct btf_var_secinfo *vsi;
4092 u64 last_vsi_end_off = 0, sum = 0;
4093 u32 i, meta_needed;
4094
4095 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4096 if (meta_left < meta_needed) {
4097 btf_verifier_log_basic(env, t,
4098 "meta_left:%u meta_needed:%u",
4099 meta_left, meta_needed);
4100 return -EINVAL;
4101 }
4102
1dc92851
DB
4103 if (!t->size) {
4104 btf_verifier_log_type(env, t, "size == 0");
4105 return -EINVAL;
4106 }
4107
4108 if (btf_type_kflag(t)) {
4109 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4110 return -EINVAL;
4111 }
4112
4113 if (!t->name_off ||
4114 !btf_name_valid_section(env->btf, t->name_off)) {
4115 btf_verifier_log_type(env, t, "Invalid name");
4116 return -EINVAL;
4117 }
4118
4119 btf_verifier_log_type(env, t, NULL);
4120
4121 for_each_vsi(i, t, vsi) {
4122 /* A var cannot be in type void */
4123 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4124 btf_verifier_log_vsi(env, t, vsi,
4125 "Invalid type_id");
4126 return -EINVAL;
4127 }
4128
4129 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4130 btf_verifier_log_vsi(env, t, vsi,
4131 "Invalid offset");
4132 return -EINVAL;
4133 }
4134
4135 if (!vsi->size || vsi->size > t->size) {
4136 btf_verifier_log_vsi(env, t, vsi,
4137 "Invalid size");
4138 return -EINVAL;
4139 }
4140
4141 last_vsi_end_off = vsi->offset + vsi->size;
4142 if (last_vsi_end_off > t->size) {
4143 btf_verifier_log_vsi(env, t, vsi,
4144 "Invalid offset+size");
4145 return -EINVAL;
4146 }
4147
4148 btf_verifier_log_vsi(env, t, vsi, NULL);
4149 sum += vsi->size;
4150 }
4151
4152 if (t->size < sum) {
4153 btf_verifier_log_type(env, t, "Invalid btf_info size");
4154 return -EINVAL;
4155 }
4156
4157 return meta_needed;
4158}
4159
4160static int btf_datasec_resolve(struct btf_verifier_env *env,
4161 const struct resolve_vertex *v)
4162{
4163 const struct btf_var_secinfo *vsi;
4164 struct btf *btf = env->btf;
4165 u16 i;
4166
4167 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4168 u32 var_type_id = vsi->type, type_id, type_size = 0;
4169 const struct btf_type *var_type = btf_type_by_id(env->btf,
4170 var_type_id);
4171 if (!var_type || !btf_type_is_var(var_type)) {
4172 btf_verifier_log_vsi(env, v->t, vsi,
4173 "Not a VAR kind member");
4174 return -EINVAL;
4175 }
4176
4177 if (!env_type_is_resolve_sink(env, var_type) &&
4178 !env_type_is_resolved(env, var_type_id)) {
4179 env_stack_set_next_member(env, i + 1);
4180 return env_stack_push(env, var_type, var_type_id);
4181 }
4182
4183 type_id = var_type->type;
4184 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4185 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4186 return -EINVAL;
4187 }
4188
4189 if (vsi->size < type_size) {
4190 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4191 return -EINVAL;
4192 }
4193 }
4194
4195 env_stack_pop_resolved(env, 0, 0);
4196 return 0;
4197}
4198
4199static void btf_datasec_log(struct btf_verifier_env *env,
4200 const struct btf_type *t)
4201{
4202 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4203}
4204
31d0bc81
AM
4205static void btf_datasec_show(const struct btf *btf,
4206 const struct btf_type *t, u32 type_id,
4207 void *data, u8 bits_offset,
4208 struct btf_show *show)
1dc92851
DB
4209{
4210 const struct btf_var_secinfo *vsi;
4211 const struct btf_type *var;
4212 u32 i;
4213
31d0bc81
AM
4214 if (!btf_show_start_type(show, t, type_id, data))
4215 return;
4216
4217 btf_show_type_value(show, "section (\"%s\") = {",
4218 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
4219 for_each_vsi(i, t, vsi) {
4220 var = btf_type_by_id(btf, vsi->type);
4221 if (i)
31d0bc81
AM
4222 btf_show(show, ",");
4223 btf_type_ops(var)->show(btf, var, vsi->type,
4224 data + vsi->offset, bits_offset, show);
1dc92851 4225 }
31d0bc81 4226 btf_show_end_type(show);
1dc92851
DB
4227}
4228
4229static const struct btf_kind_operations datasec_ops = {
4230 .check_meta = btf_datasec_check_meta,
4231 .resolve = btf_datasec_resolve,
4232 .check_member = btf_df_check_member,
4233 .check_kflag_member = btf_df_check_kflag_member,
4234 .log_details = btf_datasec_log,
31d0bc81 4235 .show = btf_datasec_show,
1dc92851
DB
4236};
4237
b1828f0b
IL
4238static s32 btf_float_check_meta(struct btf_verifier_env *env,
4239 const struct btf_type *t,
4240 u32 meta_left)
4241{
4242 if (btf_type_vlen(t)) {
4243 btf_verifier_log_type(env, t, "vlen != 0");
4244 return -EINVAL;
4245 }
4246
4247 if (btf_type_kflag(t)) {
4248 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4249 return -EINVAL;
4250 }
4251
4252 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4253 t->size != 16) {
4254 btf_verifier_log_type(env, t, "Invalid type_size");
4255 return -EINVAL;
4256 }
4257
4258 btf_verifier_log_type(env, t, NULL);
4259
4260 return 0;
4261}
4262
4263static int btf_float_check_member(struct btf_verifier_env *env,
4264 const struct btf_type *struct_type,
4265 const struct btf_member *member,
4266 const struct btf_type *member_type)
4267{
4268 u64 start_offset_bytes;
4269 u64 end_offset_bytes;
4270 u64 misalign_bits;
4271 u64 align_bytes;
4272 u64 align_bits;
4273
4274 /* Different architectures have different alignment requirements, so
4275 * here we check only for the reasonable minimum. This way we ensure
4276 * that types after CO-RE can pass the kernel BTF verifier.
4277 */
4278 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4279 align_bits = align_bytes * BITS_PER_BYTE;
4280 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4281 if (misalign_bits) {
4282 btf_verifier_log_member(env, struct_type, member,
4283 "Member is not properly aligned");
4284 return -EINVAL;
4285 }
4286
4287 start_offset_bytes = member->offset / BITS_PER_BYTE;
4288 end_offset_bytes = start_offset_bytes + member_type->size;
4289 if (end_offset_bytes > struct_type->size) {
4290 btf_verifier_log_member(env, struct_type, member,
4291 "Member exceeds struct_size");
4292 return -EINVAL;
4293 }
4294
4295 return 0;
4296}
4297
4298static void btf_float_log(struct btf_verifier_env *env,
4299 const struct btf_type *t)
4300{
4301 btf_verifier_log(env, "size=%u", t->size);
4302}
4303
4304static const struct btf_kind_operations float_ops = {
4305 .check_meta = btf_float_check_meta,
4306 .resolve = btf_df_resolve,
4307 .check_member = btf_float_check_member,
4308 .check_kflag_member = btf_generic_check_kflag_member,
4309 .log_details = btf_float_log,
4310 .show = btf_df_show,
4311};
4312
223f903e 4313static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
b5ea834d
YS
4314 const struct btf_type *t,
4315 u32 meta_left)
4316{
223f903e 4317 const struct btf_decl_tag *tag;
b5ea834d
YS
4318 u32 meta_needed = sizeof(*tag);
4319 s32 component_idx;
4320 const char *value;
4321
4322 if (meta_left < meta_needed) {
4323 btf_verifier_log_basic(env, t,
4324 "meta_left:%u meta_needed:%u",
4325 meta_left, meta_needed);
4326 return -EINVAL;
4327 }
4328
4329 value = btf_name_by_offset(env->btf, t->name_off);
4330 if (!value || !value[0]) {
4331 btf_verifier_log_type(env, t, "Invalid value");
4332 return -EINVAL;
4333 }
4334
4335 if (btf_type_vlen(t)) {
4336 btf_verifier_log_type(env, t, "vlen != 0");
4337 return -EINVAL;
4338 }
4339
4340 if (btf_type_kflag(t)) {
4341 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4342 return -EINVAL;
4343 }
4344
223f903e 4345 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d
YS
4346 if (component_idx < -1) {
4347 btf_verifier_log_type(env, t, "Invalid component_idx");
4348 return -EINVAL;
4349 }
4350
4351 btf_verifier_log_type(env, t, NULL);
4352
4353 return meta_needed;
4354}
4355
223f903e 4356static int btf_decl_tag_resolve(struct btf_verifier_env *env,
b5ea834d
YS
4357 const struct resolve_vertex *v)
4358{
4359 const struct btf_type *next_type;
4360 const struct btf_type *t = v->t;
4361 u32 next_type_id = t->type;
4362 struct btf *btf = env->btf;
4363 s32 component_idx;
4364 u32 vlen;
4365
4366 next_type = btf_type_by_id(btf, next_type_id);
223f903e 4367 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
b5ea834d
YS
4368 btf_verifier_log_type(env, v->t, "Invalid type_id");
4369 return -EINVAL;
4370 }
4371
4372 if (!env_type_is_resolve_sink(env, next_type) &&
4373 !env_type_is_resolved(env, next_type_id))
4374 return env_stack_push(env, next_type, next_type_id);
4375
223f903e 4376 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d 4377 if (component_idx != -1) {
bd16dee6 4378 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
b5ea834d
YS
4379 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4380 return -EINVAL;
4381 }
4382
4383 if (btf_type_is_struct(next_type)) {
4384 vlen = btf_type_vlen(next_type);
4385 } else {
4386 /* next_type should be a function */
4387 next_type = btf_type_by_id(btf, next_type->type);
4388 vlen = btf_type_vlen(next_type);
4389 }
4390
4391 if ((u32)component_idx >= vlen) {
4392 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4393 return -EINVAL;
4394 }
4395 }
4396
4397 env_stack_pop_resolved(env, next_type_id, 0);
4398
4399 return 0;
4400}
4401
223f903e 4402static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
b5ea834d
YS
4403{
4404 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
223f903e 4405 btf_type_decl_tag(t)->component_idx);
b5ea834d
YS
4406}
4407
223f903e
YS
4408static const struct btf_kind_operations decl_tag_ops = {
4409 .check_meta = btf_decl_tag_check_meta,
4410 .resolve = btf_decl_tag_resolve,
b5ea834d
YS
4411 .check_member = btf_df_check_member,
4412 .check_kflag_member = btf_df_check_kflag_member,
223f903e 4413 .log_details = btf_decl_tag_log,
b5ea834d
YS
4414 .show = btf_df_show,
4415};
4416
2667a262
MKL
4417static int btf_func_proto_check(struct btf_verifier_env *env,
4418 const struct btf_type *t)
4419{
4420 const struct btf_type *ret_type;
4421 const struct btf_param *args;
4422 const struct btf *btf;
4423 u16 nr_args, i;
4424 int err;
4425
4426 btf = env->btf;
4427 args = (const struct btf_param *)(t + 1);
4428 nr_args = btf_type_vlen(t);
4429
4430 /* Check func return type which could be "void" (t->type == 0) */
4431 if (t->type) {
4432 u32 ret_type_id = t->type;
4433
4434 ret_type = btf_type_by_id(btf, ret_type_id);
4435 if (!ret_type) {
4436 btf_verifier_log_type(env, t, "Invalid return type");
4437 return -EINVAL;
4438 }
4439
4440 if (btf_type_needs_resolve(ret_type) &&
4441 !env_type_is_resolved(env, ret_type_id)) {
4442 err = btf_resolve(env, ret_type, ret_type_id);
4443 if (err)
4444 return err;
4445 }
4446
4447 /* Ensure the return type is a type that has a size */
4448 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4449 btf_verifier_log_type(env, t, "Invalid return type");
4450 return -EINVAL;
4451 }
4452 }
4453
4454 if (!nr_args)
4455 return 0;
4456
4457 /* Last func arg type_id could be 0 if it is a vararg */
4458 if (!args[nr_args - 1].type) {
4459 if (args[nr_args - 1].name_off) {
4460 btf_verifier_log_type(env, t, "Invalid arg#%u",
4461 nr_args);
4462 return -EINVAL;
4463 }
4464 nr_args--;
4465 }
4466
4467 err = 0;
4468 for (i = 0; i < nr_args; i++) {
4469 const struct btf_type *arg_type;
4470 u32 arg_type_id;
4471
4472 arg_type_id = args[i].type;
4473 arg_type = btf_type_by_id(btf, arg_type_id);
4474 if (!arg_type) {
4475 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4476 err = -EINVAL;
4477 break;
4478 }
4479
4480 if (args[i].name_off &&
4481 (!btf_name_offset_valid(btf, args[i].name_off) ||
4482 !btf_name_valid_identifier(btf, args[i].name_off))) {
4483 btf_verifier_log_type(env, t,
4484 "Invalid arg#%u", i + 1);
4485 err = -EINVAL;
4486 break;
4487 }
4488
4489 if (btf_type_needs_resolve(arg_type) &&
4490 !env_type_is_resolved(env, arg_type_id)) {
4491 err = btf_resolve(env, arg_type, arg_type_id);
4492 if (err)
4493 break;
4494 }
4495
4496 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4497 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4498 err = -EINVAL;
4499 break;
4500 }
4501 }
4502
4503 return err;
4504}
4505
4506static int btf_func_check(struct btf_verifier_env *env,
4507 const struct btf_type *t)
4508{
4509 const struct btf_type *proto_type;
4510 const struct btf_param *args;
4511 const struct btf *btf;
4512 u16 nr_args, i;
4513
4514 btf = env->btf;
4515 proto_type = btf_type_by_id(btf, t->type);
4516
4517 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4518 btf_verifier_log_type(env, t, "Invalid type_id");
4519 return -EINVAL;
4520 }
4521
4522 args = (const struct btf_param *)(proto_type + 1);
4523 nr_args = btf_type_vlen(proto_type);
4524 for (i = 0; i < nr_args; i++) {
4525 if (!args[i].name_off && args[i].type) {
4526 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4527 return -EINVAL;
4528 }
4529 }
4530
4531 return 0;
4532}
4533
69b693f0
MKL
4534static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4535 [BTF_KIND_INT] = &int_ops,
4536 [BTF_KIND_PTR] = &ptr_ops,
4537 [BTF_KIND_ARRAY] = &array_ops,
4538 [BTF_KIND_STRUCT] = &struct_ops,
4539 [BTF_KIND_UNION] = &struct_ops,
4540 [BTF_KIND_ENUM] = &enum_ops,
4541 [BTF_KIND_FWD] = &fwd_ops,
4542 [BTF_KIND_TYPEDEF] = &modifier_ops,
4543 [BTF_KIND_VOLATILE] = &modifier_ops,
4544 [BTF_KIND_CONST] = &modifier_ops,
4545 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
4546 [BTF_KIND_FUNC] = &func_ops,
4547 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
4548 [BTF_KIND_VAR] = &var_ops,
4549 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 4550 [BTF_KIND_FLOAT] = &float_ops,
223f903e 4551 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
8c42d2fa 4552 [BTF_KIND_TYPE_TAG] = &modifier_ops,
6089fb32 4553 [BTF_KIND_ENUM64] = &enum64_ops,
69b693f0
MKL
4554};
4555
4556static s32 btf_check_meta(struct btf_verifier_env *env,
4557 const struct btf_type *t,
4558 u32 meta_left)
4559{
4560 u32 saved_meta_left = meta_left;
4561 s32 var_meta_size;
4562
4563 if (meta_left < sizeof(*t)) {
4564 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4565 env->log_type_id, meta_left, sizeof(*t));
4566 return -EINVAL;
4567 }
4568 meta_left -= sizeof(*t);
4569
aea2f7b8
MKL
4570 if (t->info & ~BTF_INFO_MASK) {
4571 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4572 env->log_type_id, t->info);
4573 return -EINVAL;
4574 }
4575
69b693f0
MKL
4576 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4577 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4578 btf_verifier_log(env, "[%u] Invalid kind:%u",
4579 env->log_type_id, BTF_INFO_KIND(t->info));
4580 return -EINVAL;
4581 }
4582
fbcf93eb 4583 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 4584 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 4585 env->log_type_id, t->name_off);
69b693f0
MKL
4586 return -EINVAL;
4587 }
4588
4589 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4590 if (var_meta_size < 0)
4591 return var_meta_size;
4592
4593 meta_left -= var_meta_size;
4594
4595 return saved_meta_left - meta_left;
4596}
4597
4598static int btf_check_all_metas(struct btf_verifier_env *env)
4599{
4600 struct btf *btf = env->btf;
4601 struct btf_header *hdr;
4602 void *cur, *end;
4603
f80442a4 4604 hdr = &btf->hdr;
69b693f0 4605 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 4606 end = cur + hdr->type_len;
69b693f0 4607
951bb646 4608 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
4609 while (cur < end) {
4610 struct btf_type *t = cur;
4611 s32 meta_size;
4612
4613 meta_size = btf_check_meta(env, t, end - cur);
4614 if (meta_size < 0)
4615 return meta_size;
4616
4617 btf_add_type(env, t);
4618 cur += meta_size;
4619 env->log_type_id++;
4620 }
4621
4622 return 0;
4623}
4624
eb3f595d
MKL
4625static bool btf_resolve_valid(struct btf_verifier_env *env,
4626 const struct btf_type *t,
4627 u32 type_id)
4628{
4629 struct btf *btf = env->btf;
4630
4631 if (!env_type_is_resolved(env, type_id))
4632 return false;
4633
1dc92851 4634 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
4635 return !btf_resolved_type_id(btf, type_id) &&
4636 !btf_resolved_type_size(btf, type_id);
eb3f595d 4637
d7e7b42f 4638 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
b5ea834d
YS
4639 return btf_resolved_type_id(btf, type_id) &&
4640 !btf_resolved_type_size(btf, type_id);
4641
1dc92851
DB
4642 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4643 btf_type_is_var(t)) {
eb3f595d 4644 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
4645 return t &&
4646 !btf_type_is_modifier(t) &&
4647 !btf_type_is_var(t) &&
4648 !btf_type_is_datasec(t);
eb3f595d
MKL
4649 }
4650
4651 if (btf_type_is_array(t)) {
4652 const struct btf_array *array = btf_type_array(t);
4653 const struct btf_type *elem_type;
4654 u32 elem_type_id = array->type;
4655 u32 elem_size;
4656
4657 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4658 return elem_type && !btf_type_is_modifier(elem_type) &&
4659 (array->nelems * elem_size ==
951bb646 4660 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
4661 }
4662
4663 return false;
4664}
4665
2667a262
MKL
4666static int btf_resolve(struct btf_verifier_env *env,
4667 const struct btf_type *t, u32 type_id)
4668{
4669 u32 save_log_type_id = env->log_type_id;
4670 const struct resolve_vertex *v;
4671 int err = 0;
4672
4673 env->resolve_mode = RESOLVE_TBD;
4674 env_stack_push(env, t, type_id);
4675 while (!err && (v = env_stack_peak(env))) {
4676 env->log_type_id = v->type_id;
4677 err = btf_type_ops(v->t)->resolve(env, v);
4678 }
4679
4680 env->log_type_id = type_id;
4681 if (err == -E2BIG) {
4682 btf_verifier_log_type(env, t,
4683 "Exceeded max resolving depth:%u",
4684 MAX_RESOLVE_DEPTH);
4685 } else if (err == -EEXIST) {
4686 btf_verifier_log_type(env, t, "Loop detected");
4687 }
4688
4689 /* Final sanity check */
4690 if (!err && !btf_resolve_valid(env, t, type_id)) {
4691 btf_verifier_log_type(env, t, "Invalid resolve state");
4692 err = -EINVAL;
4693 }
4694
4695 env->log_type_id = save_log_type_id;
4696 return err;
4697}
4698
eb3f595d
MKL
4699static int btf_check_all_types(struct btf_verifier_env *env)
4700{
4701 struct btf *btf = env->btf;
951bb646
AN
4702 const struct btf_type *t;
4703 u32 type_id, i;
eb3f595d
MKL
4704 int err;
4705
4706 err = env_resolve_init(env);
4707 if (err)
4708 return err;
4709
4710 env->phase++;
951bb646
AN
4711 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4712 type_id = btf->start_id + i;
4713 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
4714
4715 env->log_type_id = type_id;
4716 if (btf_type_needs_resolve(t) &&
4717 !env_type_is_resolved(env, type_id)) {
4718 err = btf_resolve(env, t, type_id);
4719 if (err)
4720 return err;
4721 }
4722
2667a262
MKL
4723 if (btf_type_is_func_proto(t)) {
4724 err = btf_func_proto_check(env, t);
4725 if (err)
4726 return err;
4727 }
eb3f595d
MKL
4728 }
4729
4730 return 0;
4731}
4732
69b693f0
MKL
4733static int btf_parse_type_sec(struct btf_verifier_env *env)
4734{
f80442a4 4735 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
4736 int err;
4737
f80442a4
MKL
4738 /* Type section must align to 4 bytes */
4739 if (hdr->type_off & (sizeof(u32) - 1)) {
4740 btf_verifier_log(env, "Unaligned type_off");
4741 return -EINVAL;
4742 }
4743
951bb646 4744 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
4745 btf_verifier_log(env, "No type found");
4746 return -EINVAL;
4747 }
4748
eb3f595d
MKL
4749 err = btf_check_all_metas(env);
4750 if (err)
4751 return err;
4752
4753 return btf_check_all_types(env);
69b693f0
MKL
4754}
4755
4756static int btf_parse_str_sec(struct btf_verifier_env *env)
4757{
4758 const struct btf_header *hdr;
4759 struct btf *btf = env->btf;
4760 const char *start, *end;
4761
f80442a4 4762 hdr = &btf->hdr;
69b693f0
MKL
4763 start = btf->nohdr_data + hdr->str_off;
4764 end = start + hdr->str_len;
4765
f80442a4
MKL
4766 if (end != btf->data + btf->data_size) {
4767 btf_verifier_log(env, "String section is not at the end");
4768 return -EINVAL;
4769 }
4770
951bb646
AN
4771 btf->strings = start;
4772
4773 if (btf->base_btf && !hdr->str_len)
4774 return 0;
4775 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4776 btf_verifier_log(env, "Invalid string section");
4777 return -EINVAL;
4778 }
4779 if (!btf->base_btf && start[0]) {
69b693f0
MKL
4780 btf_verifier_log(env, "Invalid string section");
4781 return -EINVAL;
4782 }
69b693f0
MKL
4783
4784 return 0;
4785}
4786
f80442a4
MKL
4787static const size_t btf_sec_info_offset[] = {
4788 offsetof(struct btf_header, type_off),
4789 offsetof(struct btf_header, str_off),
4790};
4791
4792static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 4793{
f80442a4
MKL
4794 const struct btf_sec_info *x = a;
4795 const struct btf_sec_info *y = b;
4796
4797 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4798}
4799
4800static int btf_check_sec_info(struct btf_verifier_env *env,
4801 u32 btf_data_size)
4802{
a2889a4c 4803 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 4804 u32 total, expected_total, i;
69b693f0 4805 const struct btf_header *hdr;
f80442a4
MKL
4806 const struct btf *btf;
4807
4808 btf = env->btf;
4809 hdr = &btf->hdr;
4810
4811 /* Populate the secs from hdr */
a2889a4c 4812 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
4813 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4814 btf_sec_info_offset[i]);
4815
a2889a4c
MKL
4816 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4817 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
4818
4819 /* Check for gaps and overlap among sections */
4820 total = 0;
4821 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 4822 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
4823 if (expected_total < secs[i].off) {
4824 btf_verifier_log(env, "Invalid section offset");
4825 return -EINVAL;
4826 }
4827 if (total < secs[i].off) {
4828 /* gap */
4829 btf_verifier_log(env, "Unsupported section found");
4830 return -EINVAL;
4831 }
4832 if (total > secs[i].off) {
4833 btf_verifier_log(env, "Section overlap found");
4834 return -EINVAL;
4835 }
4836 if (expected_total - total < secs[i].len) {
4837 btf_verifier_log(env,
4838 "Total section length too long");
4839 return -EINVAL;
4840 }
4841 total += secs[i].len;
4842 }
4843
4844 /* There is data other than hdr and known sections */
4845 if (expected_total != total) {
4846 btf_verifier_log(env, "Unsupported section found");
4847 return -EINVAL;
4848 }
4849
4850 return 0;
4851}
4852
4a6998af 4853static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 4854{
4a6998af 4855 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 4856 const struct btf_header *hdr;
f80442a4
MKL
4857 struct btf *btf;
4858 int err;
69b693f0 4859
f80442a4 4860 btf = env->btf;
4a6998af 4861 btf_data_size = btf->data_size;
f80442a4 4862
583669ab 4863 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
f80442a4
MKL
4864 btf_verifier_log(env, "hdr_len not found");
4865 return -EINVAL;
4866 }
4867
4a6998af
ML
4868 hdr = btf->data;
4869 hdr_len = hdr->hdr_len;
f80442a4 4870 if (btf_data_size < hdr_len) {
69b693f0
MKL
4871 btf_verifier_log(env, "btf_header not found");
4872 return -EINVAL;
4873 }
4874
4a6998af
ML
4875 /* Ensure the unsupported header fields are zero */
4876 if (hdr_len > sizeof(btf->hdr)) {
4877 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4878 u8 *end = btf->data + hdr_len;
4879
4880 for (; expected_zero < end; expected_zero++) {
4881 if (*expected_zero) {
4882 btf_verifier_log(env, "Unsupported btf_header");
4883 return -E2BIG;
4884 }
4885 }
f80442a4
MKL
4886 }
4887
4888 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 4889 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
4890
4891 hdr = &btf->hdr;
4892
4893 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 4894
69b693f0
MKL
4895 if (hdr->magic != BTF_MAGIC) {
4896 btf_verifier_log(env, "Invalid magic");
4897 return -EINVAL;
4898 }
4899
4900 if (hdr->version != BTF_VERSION) {
4901 btf_verifier_log(env, "Unsupported version");
4902 return -ENOTSUPP;
4903 }
4904
4905 if (hdr->flags) {
4906 btf_verifier_log(env, "Unsupported flags");
4907 return -ENOTSUPP;
4908 }
4909
bcc5e616 4910 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
4911 btf_verifier_log(env, "No data");
4912 return -EINVAL;
4913 }
4914
f80442a4
MKL
4915 err = btf_check_sec_info(env, btf_data_size);
4916 if (err)
4917 return err;
69b693f0
MKL
4918
4919 return 0;
4920}
4921
eb596b09
KKD
4922static int btf_check_type_tags(struct btf_verifier_env *env,
4923 struct btf *btf, int start_id)
4924{
4925 int i, n, good_id = start_id - 1;
4926 bool in_tags;
4927
4928 n = btf_nr_types(btf);
4929 for (i = start_id; i < n; i++) {
4930 const struct btf_type *t;
d1a374a1 4931 int chain_limit = 32;
eb596b09
KKD
4932 u32 cur_id = i;
4933
4934 t = btf_type_by_id(btf, i);
4935 if (!t)
4936 return -EINVAL;
4937 if (!btf_type_is_modifier(t))
4938 continue;
4939
4940 cond_resched();
4941
4942 in_tags = btf_type_is_type_tag(t);
4943 while (btf_type_is_modifier(t)) {
d1a374a1
KKD
4944 if (!chain_limit--) {
4945 btf_verifier_log(env, "Max chain length or cycle detected");
4946 return -ELOOP;
4947 }
eb596b09
KKD
4948 if (btf_type_is_type_tag(t)) {
4949 if (!in_tags) {
4950 btf_verifier_log(env, "Type tags don't precede modifiers");
4951 return -EINVAL;
4952 }
4953 } else if (in_tags) {
4954 in_tags = false;
4955 }
4956 if (cur_id <= good_id)
4957 break;
4958 /* Move to next type */
4959 cur_id = t->type;
4960 t = btf_type_by_id(btf, cur_id);
4961 if (!t)
4962 return -EINVAL;
4963 }
4964 good_id = i;
4965 }
4966 return 0;
4967}
4968
c571bd75 4969static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
69b693f0
MKL
4970 u32 log_level, char __user *log_ubuf, u32 log_size)
4971{
4972 struct btf_verifier_env *env = NULL;
4973 struct bpf_verifier_log *log;
4974 struct btf *btf = NULL;
4975 u8 *data;
4976 int err;
4977
4978 if (btf_data_size > BTF_MAX_SIZE)
4979 return ERR_PTR(-E2BIG);
4980
4981 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4982 if (!env)
4983 return ERR_PTR(-ENOMEM);
4984
4985 log = &env->log;
4986 if (log_level || log_ubuf || log_size) {
4987 /* user requested verbose verifier output
4988 * and supplied buffer to store the verification trace
4989 */
4990 log->level = log_level;
4991 log->ubuf = log_ubuf;
4992 log->len_total = log_size;
4993
4994 /* log attributes have to be sane */
866de407 4995 if (!bpf_verifier_log_attr_valid(log)) {
69b693f0
MKL
4996 err = -EINVAL;
4997 goto errout;
4998 }
4999 }
5000
5001 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5002 if (!btf) {
5003 err = -ENOMEM;
5004 goto errout;
5005 }
f80442a4
MKL
5006 env->btf = btf;
5007
69b693f0
MKL
5008 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5009 if (!data) {
5010 err = -ENOMEM;
5011 goto errout;
5012 }
5013
5014 btf->data = data;
5015 btf->data_size = btf_data_size;
5016
c571bd75 5017 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
69b693f0
MKL
5018 err = -EFAULT;
5019 goto errout;
5020 }
5021
4a6998af
ML
5022 err = btf_parse_hdr(env);
5023 if (err)
5024 goto errout;
5025
5026 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5027
69b693f0
MKL
5028 err = btf_parse_str_sec(env);
5029 if (err)
5030 goto errout;
5031
5032 err = btf_parse_type_sec(env);
5033 if (err)
5034 goto errout;
5035
eb596b09
KKD
5036 err = btf_check_type_tags(env, btf, 1);
5037 if (err)
5038 goto errout;
5039
f80442a4 5040 if (log->level && bpf_verifier_log_full(log)) {
69b693f0
MKL
5041 err = -ENOSPC;
5042 goto errout;
5043 }
5044
f80442a4
MKL
5045 btf_verifier_env_free(env);
5046 refcount_set(&btf->refcnt, 1);
5047 return btf;
69b693f0
MKL
5048
5049errout:
5050 btf_verifier_env_free(env);
5051 if (btf)
5052 btf_free(btf);
5053 return ERR_PTR(err);
5054}
b00b8dae 5055
90ceddcb
FS
5056extern char __weak __start_BTF[];
5057extern char __weak __stop_BTF[];
91cc1a99
AS
5058extern struct btf *btf_vmlinux;
5059
5060#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 5061#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
5062static union {
5063 struct bpf_ctx_convert {
5064#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5065 prog_ctx_type _id##_prog; \
5066 kern_ctx_type _id##_kern;
5067#include <linux/bpf_types.h>
5068#undef BPF_PROG_TYPE
5069 } *__t;
5070 /* 't' is written once under lock. Read many times. */
5071 const struct btf_type *t;
5072} bpf_ctx_convert;
5073enum {
5074#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5075 __ctx_convert##_id,
5076#include <linux/bpf_types.h>
5077#undef BPF_PROG_TYPE
ce27709b 5078 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
5079};
5080static u8 bpf_ctx_convert_map[] = {
5081#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5082 [_id] = __ctx_convert##_id,
5083#include <linux/bpf_types.h>
5084#undef BPF_PROG_TYPE
4c80c7bc 5085 0, /* avoid empty array */
91cc1a99
AS
5086};
5087#undef BPF_MAP_TYPE
f2e10bff 5088#undef BPF_LINK_TYPE
91cc1a99
AS
5089
5090static const struct btf_member *
34747c41 5091btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
5092 const struct btf_type *t, enum bpf_prog_type prog_type,
5093 int arg)
91cc1a99
AS
5094{
5095 const struct btf_type *conv_struct;
5096 const struct btf_type *ctx_struct;
5097 const struct btf_member *ctx_type;
5098 const char *tname, *ctx_tname;
5099
5100 conv_struct = bpf_ctx_convert.t;
5101 if (!conv_struct) {
5102 bpf_log(log, "btf_vmlinux is malformed\n");
5103 return NULL;
5104 }
5105 t = btf_type_by_id(btf, t->type);
5106 while (btf_type_is_modifier(t))
5107 t = btf_type_by_id(btf, t->type);
5108 if (!btf_type_is_struct(t)) {
5109 /* Only pointer to struct is supported for now.
5110 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5111 * is not supported yet.
5112 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5113 */
91cc1a99
AS
5114 return NULL;
5115 }
5116 tname = btf_name_by_offset(btf, t->name_off);
5117 if (!tname) {
51c39bb1 5118 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
5119 return NULL;
5120 }
5121 /* prog_type is valid bpf program type. No need for bounds check. */
5122 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5123 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5124 * Like 'struct __sk_buff'
5125 */
5126 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5127 if (!ctx_struct)
5128 /* should not happen */
5129 return NULL;
5130 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5131 if (!ctx_tname) {
5132 /* should not happen */
5133 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5134 return NULL;
5135 }
5136 /* only compare that prog's ctx type name is the same as
5137 * kernel expects. No need to compare field by field.
5138 * It's ok for bpf prog to do:
5139 * struct __sk_buff {};
5140 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5141 * { // no fields of skb are ever used }
5142 */
5143 if (strcmp(ctx_tname, tname))
5144 return NULL;
5145 return ctx_type;
5146}
8580ac94 5147
5b92a28a
AS
5148static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5149 struct btf *btf,
5150 const struct btf_type *t,
51c39bb1
AS
5151 enum bpf_prog_type prog_type,
5152 int arg)
5b92a28a
AS
5153{
5154 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5155
51c39bb1 5156 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
5157 if (!prog_ctx_type)
5158 return -ENOENT;
5159 kern_ctx_type = prog_ctx_type + 1;
5160 return kern_ctx_type->type;
5161}
5162
49f4e672
JO
5163BTF_ID_LIST(bpf_ctx_convert_btf_id)
5164BTF_ID(struct, bpf_ctx_convert)
5165
8580ac94
AS
5166struct btf *btf_parse_vmlinux(void)
5167{
5168 struct btf_verifier_env *env = NULL;
5169 struct bpf_verifier_log *log;
5170 struct btf *btf = NULL;
49f4e672 5171 int err;
8580ac94
AS
5172
5173 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5174 if (!env)
5175 return ERR_PTR(-ENOMEM);
5176
5177 log = &env->log;
5178 log->level = BPF_LOG_KERNEL;
5179
5180 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5181 if (!btf) {
5182 err = -ENOMEM;
5183 goto errout;
5184 }
5185 env->btf = btf;
5186
90ceddcb
FS
5187 btf->data = __start_BTF;
5188 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
5189 btf->kernel_btf = true;
5190 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
5191
5192 err = btf_parse_hdr(env);
5193 if (err)
5194 goto errout;
5195
5196 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5197
5198 err = btf_parse_str_sec(env);
5199 if (err)
5200 goto errout;
5201
5202 err = btf_check_all_metas(env);
5203 if (err)
5204 goto errout;
5205
eb596b09
KKD
5206 err = btf_check_type_tags(env, btf, 1);
5207 if (err)
5208 goto errout;
5209
a2d0d62f 5210 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 5211 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 5212
d3e42bb0 5213 bpf_struct_ops_init(btf, log);
27ae7997 5214
8580ac94 5215 refcount_set(&btf->refcnt, 1);
53297220
AN
5216
5217 err = btf_alloc_id(btf);
5218 if (err)
5219 goto errout;
5220
5221 btf_verifier_env_free(env);
8580ac94
AS
5222 return btf;
5223
5224errout:
5225 btf_verifier_env_free(env);
5226 if (btf) {
5227 kvfree(btf->types);
5228 kfree(btf);
5229 }
5230 return ERR_PTR(err);
5231}
5232
7112d127
AN
5233#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5234
36e68442
AN
5235static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5236{
5237 struct btf_verifier_env *env = NULL;
5238 struct bpf_verifier_log *log;
5239 struct btf *btf = NULL, *base_btf;
5240 int err;
5241
5242 base_btf = bpf_get_btf_vmlinux();
5243 if (IS_ERR(base_btf))
5244 return base_btf;
5245 if (!base_btf)
5246 return ERR_PTR(-EINVAL);
5247
5248 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5249 if (!env)
5250 return ERR_PTR(-ENOMEM);
5251
5252 log = &env->log;
5253 log->level = BPF_LOG_KERNEL;
5254
5255 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5256 if (!btf) {
5257 err = -ENOMEM;
5258 goto errout;
5259 }
5260 env->btf = btf;
5261
5262 btf->base_btf = base_btf;
5263 btf->start_id = base_btf->nr_types;
5264 btf->start_str_off = base_btf->hdr.str_len;
5265 btf->kernel_btf = true;
5266 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5267
5268 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5269 if (!btf->data) {
5270 err = -ENOMEM;
5271 goto errout;
5272 }
5273 memcpy(btf->data, data, data_size);
5274 btf->data_size = data_size;
5275
5276 err = btf_parse_hdr(env);
5277 if (err)
5278 goto errout;
5279
5280 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5281
5282 err = btf_parse_str_sec(env);
5283 if (err)
5284 goto errout;
5285
5286 err = btf_check_all_metas(env);
5287 if (err)
5288 goto errout;
5289
eb596b09
KKD
5290 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5291 if (err)
5292 goto errout;
5293
36e68442
AN
5294 btf_verifier_env_free(env);
5295 refcount_set(&btf->refcnt, 1);
5296 return btf;
5297
5298errout:
5299 btf_verifier_env_free(env);
5300 if (btf) {
5301 kvfree(btf->data);
5302 kvfree(btf->types);
5303 kfree(btf);
5304 }
5305 return ERR_PTR(err);
5306}
5307
7112d127
AN
5308#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5309
5b92a28a
AS
5310struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5311{
3aac1ead 5312 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5313
22dc4a0f 5314 if (tgt_prog)
5b92a28a 5315 return tgt_prog->aux->btf;
22dc4a0f
AN
5316 else
5317 return prog->aux->attach_btf;
5b92a28a
AS
5318}
5319
bb6728d7 5320static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
84ad7a7a
JO
5321{
5322 /* t comes in already as a pointer */
5323 t = btf_type_by_id(btf, t->type);
5324
5325 /* allow const */
5326 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5327 t = btf_type_by_id(btf, t->type);
5328
bb6728d7 5329 return btf_type_is_int(t);
84ad7a7a
JO
5330}
5331
720e6a43
YS
5332static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5333 int off)
5334{
5335 const struct btf_param *args;
5336 const struct btf_type *t;
5337 u32 offset = 0, nr_args;
5338 int i;
5339
5340 if (!func_proto)
5341 return off / 8;
5342
5343 nr_args = btf_type_vlen(func_proto);
5344 args = (const struct btf_param *)(func_proto + 1);
5345 for (i = 0; i < nr_args; i++) {
5346 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5347 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5348 if (off < offset)
5349 return i;
5350 }
5351
5352 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5353 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5354 if (off < offset)
5355 return nr_args;
5356
5357 return nr_args + 1;
5358}
5359
9e15db66
AS
5360bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5361 const struct bpf_prog *prog,
5362 struct bpf_insn_access_aux *info)
5363{
38207291 5364 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 5365 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5366 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 5367 const char *tname = prog->aux->attach_func_name;
9e15db66 5368 struct bpf_verifier_log *log = info->log;
9e15db66 5369 const struct btf_param *args;
c6f1bfe8 5370 const char *tag_value;
9e15db66 5371 u32 nr_args, arg;
3c32cc1b 5372 int i, ret;
9e15db66 5373
9e15db66 5374 if (off % 8) {
38207291 5375 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
5376 tname, off);
5377 return false;
5378 }
720e6a43 5379 arg = get_ctx_arg_idx(btf, t, off);
9e15db66 5380 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
5381 /* if (t == NULL) Fall back to default BPF prog with
5382 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5383 */
5384 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
5385 if (prog->aux->attach_btf_trace) {
5386 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5387 args++;
5388 nr_args--;
5389 }
fec56f58 5390
f50b49a0
KS
5391 if (arg > nr_args) {
5392 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5393 tname, arg + 1);
5394 return false;
5395 }
5396
6ba43b76 5397 if (arg == nr_args) {
f50b49a0 5398 switch (prog->expected_attach_type) {
69fd337a 5399 case BPF_LSM_CGROUP:
f50b49a0
KS
5400 case BPF_LSM_MAC:
5401 case BPF_TRACE_FEXIT:
9e4e01df
KS
5402 /* When LSM programs are attached to void LSM hooks
5403 * they use FEXIT trampolines and when attached to
5404 * int LSM hooks, they use MODIFY_RETURN trampolines.
5405 *
5406 * While the LSM programs are BPF_MODIFY_RETURN-like
5407 * the check:
5408 *
5409 * if (ret_type != 'int')
5410 * return -EINVAL;
5411 *
5412 * is _not_ done here. This is still safe as LSM hooks
5413 * have only void and int return types.
5414 */
6ba43b76
KS
5415 if (!t)
5416 return true;
5417 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
5418 break;
5419 case BPF_MODIFY_RETURN:
6ba43b76
KS
5420 /* For now the BPF_MODIFY_RETURN can only be attached to
5421 * functions that return an int.
5422 */
5423 if (!t)
5424 return false;
5425
5426 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 5427 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
5428 bpf_log(log,
5429 "ret type %s not allowed for fmod_ret\n",
5430 btf_kind_str[BTF_INFO_KIND(t->info)]);
5431 return false;
5432 }
f50b49a0
KS
5433 break;
5434 default:
5435 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5436 tname, arg + 1);
5437 return false;
6ba43b76 5438 }
fec56f58 5439 } else {
5b92a28a 5440 if (!t)
523a4cf4 5441 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
5442 return true;
5443 t = btf_type_by_id(btf, args[arg].type);
9e15db66 5444 }
f50b49a0 5445
9e15db66
AS
5446 /* skip modifiers */
5447 while (btf_type_is_modifier(t))
5b92a28a 5448 t = btf_type_by_id(btf, t->type);
720e6a43 5449 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
9e15db66
AS
5450 /* accessing a scalar */
5451 return true;
5452 if (!btf_type_is_ptr(t)) {
5453 bpf_log(log,
38207291 5454 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 5455 tname, arg,
5b92a28a 5456 __btf_name_by_offset(btf, t->name_off),
9e15db66
AS
5457 btf_kind_str[BTF_INFO_KIND(t->info)]);
5458 return false;
5459 }
afbf21dc
YS
5460
5461 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5462 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5463 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
c25b2ae1 5464 u32 type, flag;
afbf21dc 5465
c25b2ae1
HL
5466 type = base_type(ctx_arg_info->reg_type);
5467 flag = type_flag(ctx_arg_info->reg_type);
20b2aff4 5468 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
c25b2ae1 5469 (flag & PTR_MAYBE_NULL)) {
afbf21dc
YS
5470 info->reg_type = ctx_arg_info->reg_type;
5471 return true;
5472 }
5473 }
5474
9e15db66
AS
5475 if (t->type == 0)
5476 /* This is a pointer to void.
5477 * It is the same as scalar from the verifier safety pov.
5478 * No further pointer walking is allowed.
5479 */
5480 return true;
5481
bb6728d7 5482 if (is_int_ptr(btf, t))
84ad7a7a
JO
5483 return true;
5484
9e15db66 5485 /* this is a pointer to another type */
3c32cc1b
YS
5486 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5487 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5488
5489 if (ctx_arg_info->offset == off) {
d3621642
YS
5490 if (!ctx_arg_info->btf_id) {
5491 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5492 return false;
5493 }
5494
3c32cc1b 5495 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 5496 info->btf = btf_vmlinux;
951cf368
YS
5497 info->btf_id = ctx_arg_info->btf_id;
5498 return true;
3c32cc1b
YS
5499 }
5500 }
9e15db66 5501
951cf368 5502 info->reg_type = PTR_TO_BTF_ID;
5b92a28a 5503 if (tgt_prog) {
43bc2874
THJ
5504 enum bpf_prog_type tgt_type;
5505
5506 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5507 tgt_type = tgt_prog->aux->saved_dst_prog_type;
5508 else
5509 tgt_type = tgt_prog->type;
5510
5511 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 5512 if (ret > 0) {
22dc4a0f 5513 info->btf = btf_vmlinux;
5b92a28a
AS
5514 info->btf_id = ret;
5515 return true;
5516 } else {
5517 return false;
5518 }
5519 }
275517ff 5520
22dc4a0f 5521 info->btf = btf;
275517ff 5522 info->btf_id = t->type;
5b92a28a 5523 t = btf_type_by_id(btf, t->type);
c6f1bfe8
YS
5524
5525 if (btf_type_is_type_tag(t)) {
5526 tag_value = __btf_name_by_offset(btf, t->name_off);
5527 if (strcmp(tag_value, "user") == 0)
5528 info->reg_type |= MEM_USER;
5844101a
HL
5529 if (strcmp(tag_value, "percpu") == 0)
5530 info->reg_type |= MEM_PERCPU;
c6f1bfe8
YS
5531 }
5532
9e15db66 5533 /* skip modifiers */
275517ff
MKL
5534 while (btf_type_is_modifier(t)) {
5535 info->btf_id = t->type;
5b92a28a 5536 t = btf_type_by_id(btf, t->type);
275517ff 5537 }
9e15db66
AS
5538 if (!btf_type_is_struct(t)) {
5539 bpf_log(log,
38207291 5540 "func '%s' arg%d type %s is not a struct\n",
9e15db66
AS
5541 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5542 return false;
5543 }
38207291 5544 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
9e15db66 5545 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5b92a28a 5546 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
5547 return true;
5548}
5549
1c6d28a6
JO
5550enum bpf_struct_walk_result {
5551 /* < 0 error */
5552 WALK_SCALAR = 0,
5553 WALK_PTR,
5554 WALK_STRUCT,
5555};
5556
22dc4a0f 5557static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6 5558 const struct btf_type *t, int off, int size,
c6f1bfe8 5559 u32 *next_btf_id, enum bpf_type_flag *flag)
9e15db66 5560{
7e3617a7
MKL
5561 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5562 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 5563 const struct btf_member *member;
c6f1bfe8 5564 const char *tname, *mname, *tag_value;
1c6d28a6 5565 u32 vlen, elem_id, mid;
9e15db66
AS
5566
5567again:
22dc4a0f 5568 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 5569 if (!btf_type_is_struct(t)) {
275517ff 5570 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
5571 return -EINVAL;
5572 }
5573
9c5f8a10 5574 vlen = btf_type_vlen(t);
976aba00 5575 if (off + size > t->size) {
9c5f8a10
YS
5576 /* If the last element is a variable size array, we may
5577 * need to relax the rule.
5578 */
5579 struct btf_array *array_elem;
5580
5581 if (vlen == 0)
5582 goto error;
5583
5584 member = btf_type_member(t) + vlen - 1;
22dc4a0f 5585 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
5586 NULL);
5587 if (!btf_type_is_array(mtype))
5588 goto error;
5589
5590 array_elem = (struct btf_array *)(mtype + 1);
5591 if (array_elem->nelems != 0)
5592 goto error;
5593
8293eb99 5594 moff = __btf_member_bit_offset(t, member) / 8;
9c5f8a10
YS
5595 if (off < moff)
5596 goto error;
5597
5598 /* Only allow structure for now, can be relaxed for
5599 * other types later.
5600 */
22dc4a0f 5601 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
5602 NULL);
5603 if (!btf_type_is_struct(t))
9c5f8a10
YS
5604 goto error;
5605
dafe58fc
JO
5606 off = (off - moff) % t->size;
5607 goto again;
9c5f8a10
YS
5608
5609error:
976aba00
MKL
5610 bpf_log(log, "access beyond struct %s at off %u size %u\n",
5611 tname, off, size);
5612 return -EACCES;
5613 }
9e15db66 5614
976aba00 5615 for_each_member(i, t, member) {
7e3617a7 5616 /* offset of the field in bytes */
8293eb99 5617 moff = __btf_member_bit_offset(t, member) / 8;
7e3617a7 5618 if (off + size <= moff)
9e15db66
AS
5619 /* won't find anything, field is already too far */
5620 break;
976aba00 5621
8293eb99
AS
5622 if (__btf_member_bitfield_size(t, member)) {
5623 u32 end_bit = __btf_member_bit_offset(t, member) +
5624 __btf_member_bitfield_size(t, member);
976aba00
MKL
5625
5626 /* off <= moff instead of off == moff because clang
5627 * does not generate a BTF member for anonymous
5628 * bitfield like the ":16" here:
5629 * struct {
5630 * int :16;
5631 * int x:8;
5632 * };
5633 */
5634 if (off <= moff &&
5635 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 5636 return WALK_SCALAR;
976aba00
MKL
5637
5638 /* off may be accessing a following member
5639 *
5640 * or
5641 *
5642 * Doing partial access at either end of this
5643 * bitfield. Continue on this case also to
5644 * treat it as not accessing this bitfield
5645 * and eventually error out as field not
5646 * found to keep it simple.
5647 * It could be relaxed if there was a legit
5648 * partial access case later.
5649 */
5650 continue;
5651 }
5652
7e3617a7
MKL
5653 /* In case of "off" is pointing to holes of a struct */
5654 if (off < moff)
976aba00 5655 break;
9e15db66
AS
5656
5657 /* type of the field */
1c6d28a6 5658 mid = member->type;
22dc4a0f
AN
5659 mtype = btf_type_by_id(btf, member->type);
5660 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 5661
22dc4a0f 5662 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
5663 &elem_type, &elem_id, &total_nelems,
5664 &mid);
7e3617a7 5665 if (IS_ERR(mtype)) {
9e15db66
AS
5666 bpf_log(log, "field %s doesn't have size\n", mname);
5667 return -EFAULT;
5668 }
7e3617a7
MKL
5669
5670 mtrue_end = moff + msize;
5671 if (off >= mtrue_end)
9e15db66
AS
5672 /* no overlap with member, keep iterating */
5673 continue;
7e3617a7
MKL
5674
5675 if (btf_type_is_array(mtype)) {
5676 u32 elem_idx;
5677
6298399b 5678 /* __btf_resolve_size() above helps to
7e3617a7
MKL
5679 * linearize a multi-dimensional array.
5680 *
5681 * The logic here is treating an array
5682 * in a struct as the following way:
5683 *
5684 * struct outer {
5685 * struct inner array[2][2];
5686 * };
5687 *
5688 * looks like:
5689 *
5690 * struct outer {
5691 * struct inner array_elem0;
5692 * struct inner array_elem1;
5693 * struct inner array_elem2;
5694 * struct inner array_elem3;
5695 * };
5696 *
5697 * When accessing outer->array[1][0], it moves
5698 * moff to "array_elem2", set mtype to
5699 * "struct inner", and msize also becomes
5700 * sizeof(struct inner). Then most of the
5701 * remaining logic will fall through without
5702 * caring the current member is an array or
5703 * not.
5704 *
5705 * Unlike mtype/msize/moff, mtrue_end does not
5706 * change. The naming difference ("_true") tells
5707 * that it is not always corresponding to
5708 * the current mtype/msize/moff.
5709 * It is the true end of the current
5710 * member (i.e. array in this case). That
5711 * will allow an int array to be accessed like
5712 * a scratch space,
5713 * i.e. allow access beyond the size of
5714 * the array's element as long as it is
5715 * within the mtrue_end boundary.
5716 */
5717
5718 /* skip empty array */
5719 if (moff == mtrue_end)
5720 continue;
5721
5722 msize /= total_nelems;
5723 elem_idx = (off - moff) / msize;
5724 moff += elem_idx * msize;
5725 mtype = elem_type;
1c6d28a6 5726 mid = elem_id;
7e3617a7
MKL
5727 }
5728
9e15db66
AS
5729 /* the 'off' we're looking for is either equal to start
5730 * of this field or inside of this struct
5731 */
5732 if (btf_type_is_struct(mtype)) {
5733 /* our field must be inside that union or struct */
5734 t = mtype;
5735
1c6d28a6
JO
5736 /* return if the offset matches the member offset */
5737 if (off == moff) {
5738 *next_btf_id = mid;
5739 return WALK_STRUCT;
5740 }
5741
9e15db66 5742 /* adjust offset we're looking for */
7e3617a7 5743 off -= moff;
9e15db66
AS
5744 goto again;
5745 }
9e15db66
AS
5746
5747 if (btf_type_is_ptr(mtype)) {
c6f1bfe8
YS
5748 const struct btf_type *stype, *t;
5749 enum bpf_type_flag tmp_flag = 0;
257af63d 5750 u32 id;
9e15db66 5751
7e3617a7
MKL
5752 if (msize != size || off != moff) {
5753 bpf_log(log,
5754 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5755 mname, moff, tname, off, size);
5756 return -EACCES;
5757 }
c6f1bfe8 5758
5844101a 5759 /* check type tag */
c6f1bfe8
YS
5760 t = btf_type_by_id(btf, mtype->type);
5761 if (btf_type_is_type_tag(t)) {
5762 tag_value = __btf_name_by_offset(btf, t->name_off);
5844101a 5763 /* check __user tag */
c6f1bfe8
YS
5764 if (strcmp(tag_value, "user") == 0)
5765 tmp_flag = MEM_USER;
5844101a
HL
5766 /* check __percpu tag */
5767 if (strcmp(tag_value, "percpu") == 0)
5768 tmp_flag = MEM_PERCPU;
c6f1bfe8
YS
5769 }
5770
22dc4a0f 5771 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 5772 if (btf_type_is_struct(stype)) {
257af63d 5773 *next_btf_id = id;
c6f1bfe8 5774 *flag = tmp_flag;
1c6d28a6 5775 return WALK_PTR;
9e15db66
AS
5776 }
5777 }
7e3617a7
MKL
5778
5779 /* Allow more flexible access within an int as long as
5780 * it is within mtrue_end.
5781 * Since mtrue_end could be the end of an array,
5782 * that also allows using an array of int as a scratch
5783 * space. e.g. skb->cb[].
5784 */
5785 if (off + size > mtrue_end) {
5786 bpf_log(log,
5787 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5788 mname, mtrue_end, tname, off, size);
5789 return -EACCES;
5790 }
5791
1c6d28a6 5792 return WALK_SCALAR;
9e15db66
AS
5793 }
5794 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5795 return -EINVAL;
5796}
5797
22dc4a0f 5798int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
5799 const struct btf_type *t, int off, int size,
5800 enum bpf_access_type atype __maybe_unused,
c6f1bfe8 5801 u32 *next_btf_id, enum bpf_type_flag *flag)
1c6d28a6 5802{
c6f1bfe8 5803 enum bpf_type_flag tmp_flag = 0;
1c6d28a6
JO
5804 int err;
5805 u32 id;
5806
5807 do {
c6f1bfe8 5808 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
1c6d28a6
JO
5809
5810 switch (err) {
5811 case WALK_PTR:
5812 /* If we found the pointer or scalar on t+off,
5813 * we're done.
5814 */
5815 *next_btf_id = id;
c6f1bfe8 5816 *flag = tmp_flag;
1c6d28a6
JO
5817 return PTR_TO_BTF_ID;
5818 case WALK_SCALAR:
5819 return SCALAR_VALUE;
5820 case WALK_STRUCT:
5821 /* We found nested struct, so continue the search
5822 * by diving in it. At this point the offset is
5823 * aligned with the new type, so set it to 0.
5824 */
22dc4a0f 5825 t = btf_type_by_id(btf, id);
1c6d28a6
JO
5826 off = 0;
5827 break;
5828 default:
5829 /* It's either error or unknown return value..
5830 * scream and leave.
5831 */
5832 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5833 return -EINVAL;
5834 return err;
5835 }
5836 } while (t);
5837
5838 return -EINVAL;
5839}
5840
22dc4a0f
AN
5841/* Check that two BTF types, each specified as an BTF object + id, are exactly
5842 * the same. Trivial ID check is not enough due to module BTFs, because we can
5843 * end up with two different module BTFs, but IDs point to the common type in
5844 * vmlinux BTF.
5845 */
5846static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5847 const struct btf *btf2, u32 id2)
5848{
5849 if (id1 != id2)
5850 return false;
5851 if (btf1 == btf2)
5852 return true;
5853 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5854}
5855
faaf4a79 5856bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f 5857 const struct btf *btf, u32 id, int off,
2ab3b380
KKD
5858 const struct btf *need_btf, u32 need_type_id,
5859 bool strict)
faaf4a79
JO
5860{
5861 const struct btf_type *type;
c6f1bfe8 5862 enum bpf_type_flag flag;
faaf4a79
JO
5863 int err;
5864
5865 /* Are we already done? */
22dc4a0f 5866 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79 5867 return true;
2ab3b380
KKD
5868 /* In case of strict type match, we do not walk struct, the top level
5869 * type match must succeed. When strict is true, off should have already
5870 * been 0.
5871 */
5872 if (strict)
5873 return false;
faaf4a79 5874again:
22dc4a0f 5875 type = btf_type_by_id(btf, id);
faaf4a79
JO
5876 if (!type)
5877 return false;
c6f1bfe8 5878 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
faaf4a79
JO
5879 if (err != WALK_STRUCT)
5880 return false;
5881
5882 /* We found nested struct object. If it matches
5883 * the requested ID, we're done. Otherwise let's
5884 * continue the search with offset 0 in the new
5885 * type.
5886 */
22dc4a0f 5887 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
5888 off = 0;
5889 goto again;
5890 }
5891
5892 return true;
5893}
5894
fec56f58 5895static int __get_type_size(struct btf *btf, u32 btf_id,
a00ed843 5896 const struct btf_type **ret_type)
fec56f58
AS
5897{
5898 const struct btf_type *t;
5899
a00ed843 5900 *ret_type = btf_type_by_id(btf, 0);
fec56f58
AS
5901 if (!btf_id)
5902 /* void */
5903 return 0;
5904 t = btf_type_by_id(btf, btf_id);
5905 while (t && btf_type_is_modifier(t))
5906 t = btf_type_by_id(btf, t->type);
a00ed843 5907 if (!t)
fec56f58 5908 return -EINVAL;
a00ed843 5909 *ret_type = t;
fec56f58
AS
5910 if (btf_type_is_ptr(t))
5911 /* kernel size of pointer. Not BPF's size of pointer*/
5912 return sizeof(void *);
720e6a43 5913 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
fec56f58 5914 return t->size;
fec56f58
AS
5915 return -EINVAL;
5916}
5917
5918int btf_distill_func_proto(struct bpf_verifier_log *log,
5919 struct btf *btf,
5920 const struct btf_type *func,
5921 const char *tname,
5922 struct btf_func_model *m)
5923{
5924 const struct btf_param *args;
5925 const struct btf_type *t;
5926 u32 i, nargs;
5927 int ret;
5928
5b92a28a
AS
5929 if (!func) {
5930 /* BTF function prototype doesn't match the verifier types.
523a4cf4 5931 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 5932 */
720e6a43 5933 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5b92a28a 5934 m->arg_size[i] = 8;
720e6a43
YS
5935 m->arg_flags[i] = 0;
5936 }
5b92a28a 5937 m->ret_size = 8;
523a4cf4 5938 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
5939 return 0;
5940 }
fec56f58
AS
5941 args = (const struct btf_param *)(func + 1);
5942 nargs = btf_type_vlen(func);
c29a4920 5943 if (nargs > MAX_BPF_FUNC_ARGS) {
fec56f58
AS
5944 bpf_log(log,
5945 "The function %s has %d arguments. Too many.\n",
5946 tname, nargs);
5947 return -EINVAL;
5948 }
5949 ret = __get_type_size(btf, func->type, &t);
720e6a43 5950 if (ret < 0 || __btf_type_is_struct(t)) {
fec56f58
AS
5951 bpf_log(log,
5952 "The function %s return type %s is unsupported.\n",
5953 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5954 return -EINVAL;
5955 }
5956 m->ret_size = ret;
5957
5958 for (i = 0; i < nargs; i++) {
31379397
JO
5959 if (i == nargs - 1 && args[i].type == 0) {
5960 bpf_log(log,
5961 "The function %s with variable args is unsupported.\n",
5962 tname);
5963 return -EINVAL;
5964 }
fec56f58 5965 ret = __get_type_size(btf, args[i].type, &t);
720e6a43
YS
5966
5967 /* No support of struct argument size greater than 16 bytes */
5968 if (ret < 0 || ret > 16) {
fec56f58
AS
5969 bpf_log(log,
5970 "The function %s arg%d type %s is unsupported.\n",
5971 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5972 return -EINVAL;
5973 }
31379397
JO
5974 if (ret == 0) {
5975 bpf_log(log,
5976 "The function %s has malformed void argument.\n",
5977 tname);
5978 return -EINVAL;
5979 }
fec56f58 5980 m->arg_size[i] = ret;
720e6a43 5981 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
fec56f58
AS
5982 }
5983 m->nr_args = nargs;
5984 return 0;
5985}
5986
be8704ff
AS
5987/* Compare BTFs of two functions assuming only scalars and pointers to context.
5988 * t1 points to BTF_KIND_FUNC in btf1
5989 * t2 points to BTF_KIND_FUNC in btf2
5990 * Returns:
5991 * EINVAL - function prototype mismatch
5992 * EFAULT - verifier bug
5993 * 0 - 99% match. The last 1% is validated by the verifier.
5994 */
2bf0eb9b
HY
5995static int btf_check_func_type_match(struct bpf_verifier_log *log,
5996 struct btf *btf1, const struct btf_type *t1,
5997 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
5998{
5999 const struct btf_param *args1, *args2;
6000 const char *fn1, *fn2, *s1, *s2;
6001 u32 nargs1, nargs2, i;
6002
6003 fn1 = btf_name_by_offset(btf1, t1->name_off);
6004 fn2 = btf_name_by_offset(btf2, t2->name_off);
6005
6006 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6007 bpf_log(log, "%s() is not a global function\n", fn1);
6008 return -EINVAL;
6009 }
6010 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6011 bpf_log(log, "%s() is not a global function\n", fn2);
6012 return -EINVAL;
6013 }
6014
6015 t1 = btf_type_by_id(btf1, t1->type);
6016 if (!t1 || !btf_type_is_func_proto(t1))
6017 return -EFAULT;
6018 t2 = btf_type_by_id(btf2, t2->type);
6019 if (!t2 || !btf_type_is_func_proto(t2))
6020 return -EFAULT;
6021
6022 args1 = (const struct btf_param *)(t1 + 1);
6023 nargs1 = btf_type_vlen(t1);
6024 args2 = (const struct btf_param *)(t2 + 1);
6025 nargs2 = btf_type_vlen(t2);
6026
6027 if (nargs1 != nargs2) {
6028 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6029 fn1, nargs1, fn2, nargs2);
6030 return -EINVAL;
6031 }
6032
6033 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6034 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6035 if (t1->info != t2->info) {
6036 bpf_log(log,
6037 "Return type %s of %s() doesn't match type %s of %s()\n",
6038 btf_type_str(t1), fn1,
6039 btf_type_str(t2), fn2);
6040 return -EINVAL;
6041 }
6042
6043 for (i = 0; i < nargs1; i++) {
6044 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6045 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6046
6047 if (t1->info != t2->info) {
6048 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6049 i, fn1, btf_type_str(t1),
6050 fn2, btf_type_str(t2));
6051 return -EINVAL;
6052 }
6053 if (btf_type_has_size(t1) && t1->size != t2->size) {
6054 bpf_log(log,
6055 "arg%d in %s() has size %d while %s() has %d\n",
6056 i, fn1, t1->size,
6057 fn2, t2->size);
6058 return -EINVAL;
6059 }
6060
6061 /* global functions are validated with scalars and pointers
6062 * to context only. And only global functions can be replaced.
6063 * Hence type check only those types.
6064 */
6089fb32 6065 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
be8704ff
AS
6066 continue;
6067 if (!btf_type_is_ptr(t1)) {
6068 bpf_log(log,
6069 "arg%d in %s() has unrecognized type\n",
6070 i, fn1);
6071 return -EINVAL;
6072 }
6073 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6074 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6075 if (!btf_type_is_struct(t1)) {
6076 bpf_log(log,
6077 "arg%d in %s() is not a pointer to context\n",
6078 i, fn1);
6079 return -EINVAL;
6080 }
6081 if (!btf_type_is_struct(t2)) {
6082 bpf_log(log,
6083 "arg%d in %s() is not a pointer to context\n",
6084 i, fn2);
6085 return -EINVAL;
6086 }
6087 /* This is an optional check to make program writing easier.
6088 * Compare names of structs and report an error to the user.
6089 * btf_prepare_func_args() already checked that t2 struct
6090 * is a context type. btf_prepare_func_args() will check
6091 * later that t1 struct is a context type as well.
6092 */
6093 s1 = btf_name_by_offset(btf1, t1->name_off);
6094 s2 = btf_name_by_offset(btf2, t2->name_off);
6095 if (strcmp(s1, s2)) {
6096 bpf_log(log,
6097 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6098 i, fn1, s1, fn2, s2);
6099 return -EINVAL;
6100 }
6101 }
6102 return 0;
6103}
6104
6105/* Compare BTFs of given program with BTF of target program */
efc68158 6106int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
6107 struct btf *btf2, const struct btf_type *t2)
6108{
6109 struct btf *btf1 = prog->aux->btf;
6110 const struct btf_type *t1;
6111 u32 btf_id = 0;
6112
6113 if (!prog->aux->func_info) {
efc68158 6114 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
6115 return -EINVAL;
6116 }
6117
6118 btf_id = prog->aux->func_info[0].type_id;
6119 if (!btf_id)
6120 return -EFAULT;
6121
6122 t1 = btf_type_by_id(btf1, btf_id);
6123 if (!t1 || !btf_type_is_func(t1))
6124 return -EFAULT;
6125
efc68158 6126 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
6127}
6128
e6ac2450
MKL
6129static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6130#ifdef CONFIG_NET
6131 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6132 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6133 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6134#endif
6135};
6136
3363bd0c
KKD
6137/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
6138static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
6139 const struct btf *btf,
6140 const struct btf_type *t, int rec)
6141{
6142 const struct btf_type *member_type;
6143 const struct btf_member *member;
6144 u32 i;
6145
6146 if (!btf_type_is_struct(t))
6147 return false;
6148
6149 for_each_member(i, t, member) {
6150 const struct btf_array *array;
6151
6152 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
6153 if (btf_type_is_struct(member_type)) {
6154 if (rec >= 3) {
6155 bpf_log(log, "max struct nesting depth exceeded\n");
6156 return false;
6157 }
6158 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
6159 return false;
6160 continue;
6161 }
6162 if (btf_type_is_array(member_type)) {
6163 array = btf_type_array(member_type);
6164 if (!array->nelems)
6165 return false;
6166 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
6167 if (!btf_type_is_scalar(member_type))
6168 return false;
6169 continue;
6170 }
6171 if (!btf_type_is_scalar(member_type))
6172 return false;
6173 }
6174 return true;
6175}
6176
d583691c
KKD
6177static bool is_kfunc_arg_mem_size(const struct btf *btf,
6178 const struct btf_param *arg,
6179 const struct bpf_reg_state *reg)
6180{
6181 int len, sfx_len = sizeof("__sz") - 1;
6182 const struct btf_type *t;
6183 const char *param_name;
6184
6185 t = btf_type_skip_modifiers(btf, arg->type, NULL);
6186 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6187 return false;
6188
6189 /* In the future, this can be ported to use BTF tagging */
6190 param_name = btf_name_by_offset(btf, arg->name_off);
6191 if (str_is_empty(param_name))
6192 return false;
6193 len = strlen(param_name);
6194 if (len < sfx_len)
6195 return false;
6196 param_name += len - sfx_len;
6197 if (strncmp(param_name, "__sz", sfx_len))
6198 return false;
6199
6200 return true;
6201}
6202
eb1f7f71
BT
6203static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
6204 const struct btf_param *arg,
6205 const struct bpf_reg_state *reg,
6206 const char *name)
6207{
6208 int len, target_len = strlen(name);
6209 const struct btf_type *t;
6210 const char *param_name;
6211
6212 t = btf_type_skip_modifiers(btf, arg->type, NULL);
6213 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6214 return false;
6215
6216 param_name = btf_name_by_offset(btf, arg->name_off);
6217 if (str_is_empty(param_name))
6218 return false;
6219 len = strlen(param_name);
6220 if (len != target_len)
6221 return false;
6222 if (strcmp(param_name, name))
6223 return false;
6224
6225 return true;
6226}
6227
34747c41
MKL
6228static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6229 const struct btf *btf, u32 func_id,
6230 struct bpf_reg_state *regs,
a4703e31 6231 bool ptr_to_mem_ok,
eb1f7f71 6232 struct bpf_kfunc_arg_meta *kfunc_meta,
95f2f26f 6233 bool processing_call)
8c1b6e69 6234{
f858c2b2 6235 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
56e948ff 6236 bool rel = false, kptr_get = false, trusted_arg = false;
fa96b242 6237 bool sleepable = false;
8c1b6e69 6238 struct bpf_verifier_log *log = &env->log;
5c073f26 6239 u32 i, nargs, ref_id, ref_obj_id = 0;
3363bd0c 6240 bool is_kfunc = btf_is_kernel(btf);
34747c41 6241 const char *func_name, *ref_tname;
e5069b9c 6242 const struct btf_type *t, *ref_t;
34747c41 6243 const struct btf_param *args;
655efe50 6244 int ref_regno = 0, ret;
8c1b6e69 6245
34747c41 6246 t = btf_type_by_id(btf, func_id);
8c1b6e69 6247 if (!t || !btf_type_is_func(t)) {
51c39bb1 6248 /* These checks were already done by the verifier while loading
e6ac2450 6249 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 6250 */
34747c41
MKL
6251 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6252 func_id);
51c39bb1 6253 return -EFAULT;
8c1b6e69 6254 }
34747c41 6255 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
6256
6257 t = btf_type_by_id(btf, t->type);
6258 if (!t || !btf_type_is_func_proto(t)) {
34747c41 6259 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 6260 return -EFAULT;
8c1b6e69
AS
6261 }
6262 args = (const struct btf_param *)(t + 1);
6263 nargs = btf_type_vlen(t);
523a4cf4 6264 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 6265 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 6266 MAX_BPF_FUNC_REG_ARGS);
34747c41 6267 return -EINVAL;
8c1b6e69 6268 }
e5069b9c 6269
eb1f7f71 6270 if (is_kfunc && kfunc_meta) {
a1ef1959 6271 /* Only kfunc can be release func */
eb1f7f71
BT
6272 rel = kfunc_meta->flags & KF_RELEASE;
6273 kptr_get = kfunc_meta->flags & KF_KPTR_GET;
6274 trusted_arg = kfunc_meta->flags & KF_TRUSTED_ARGS;
6275 sleepable = kfunc_meta->flags & KF_SLEEPABLE;
a1ef1959
KKD
6276 }
6277
8c1b6e69
AS
6278 /* check that BTF function arguments match actual types that the
6279 * verifier sees.
6280 */
6281 for (i = 0; i < nargs; i++) {
8f14852e 6282 enum bpf_arg_type arg_type = ARG_DONTCARE;
34747c41
MKL
6283 u32 regno = i + 1;
6284 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 6285
34747c41
MKL
6286 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6287 if (btf_type_is_scalar(t)) {
eb1f7f71
BT
6288 if (is_kfunc && kfunc_meta) {
6289 bool is_buf_size = false;
6290
6291 /* check for any const scalar parameter of name "rdonly_buf_size"
6292 * or "rdwr_buf_size"
6293 */
6294 if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6295 "rdonly_buf_size")) {
6296 kfunc_meta->r0_rdonly = true;
6297 is_buf_size = true;
6298 } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6299 "rdwr_buf_size"))
6300 is_buf_size = true;
6301
6302 if (is_buf_size) {
6303 if (kfunc_meta->r0_size) {
6304 bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
6305 return -EINVAL;
6306 }
6307
6308 if (!tnum_is_const(reg->var_off)) {
6309 bpf_log(log, "R%d is not a const\n", regno);
6310 return -EINVAL;
6311 }
6312
6313 kfunc_meta->r0_size = reg->var_off.value;
6314 ret = mark_chain_precision(env, regno);
6315 if (ret)
6316 return ret;
6317 }
6318 }
6319
feb4adfa 6320 if (reg->type == SCALAR_VALUE)
8c1b6e69 6321 continue;
34747c41
MKL
6322 bpf_log(log, "R%d is not a scalar\n", regno);
6323 return -EINVAL;
8c1b6e69 6324 }
34747c41
MKL
6325
6326 if (!btf_type_is_ptr(t)) {
6327 bpf_log(log, "Unrecognized arg#%d type %s\n",
6328 i, btf_type_str(t));
6329 return -EINVAL;
6330 }
6331
56e948ff
KKD
6332 /* Check if argument must be a referenced pointer, args + i has
6333 * been verified to be a pointer (after skipping modifiers).
6334 */
6335 if (is_kfunc && trusted_arg && !reg->ref_obj_id) {
6336 bpf_log(log, "R%d must be referenced\n", regno);
6337 return -EINVAL;
6338 }
6339
e6ac2450 6340 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 6341 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
655efe50 6342
56e948ff
KKD
6343 /* Trusted args have the same offset checks as release arguments */
6344 if (trusted_arg || (rel && reg->ref_obj_id))
8f14852e
KKD
6345 arg_type |= OBJ_RELEASE;
6346 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
655efe50
KKD
6347 if (ret < 0)
6348 return ret;
6349
eb1f7f71
BT
6350 if (is_kfunc && reg->ref_obj_id) {
6351 /* Ensure only one argument is referenced PTR_TO_BTF_ID */
6352 if (ref_obj_id) {
6353 bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6354 regno, reg->ref_obj_id, ref_obj_id);
6355 return -EFAULT;
6356 }
6357 ref_regno = regno;
6358 ref_obj_id = reg->ref_obj_id;
6359 }
6360
a1ef1959
KKD
6361 /* kptr_get is only true for kfunc */
6362 if (i == 0 && kptr_get) {
6363 struct bpf_map_value_off_desc *off_desc;
6364
6365 if (reg->type != PTR_TO_MAP_VALUE) {
6366 bpf_log(log, "arg#0 expected pointer to map value\n");
6367 return -EINVAL;
6368 }
6369
6370 /* check_func_arg_reg_off allows var_off for
6371 * PTR_TO_MAP_VALUE, but we need fixed offset to find
6372 * off_desc.
6373 */
6374 if (!tnum_is_const(reg->var_off)) {
6375 bpf_log(log, "arg#0 must have constant offset\n");
6376 return -EINVAL;
6377 }
6378
6379 off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
6380 if (!off_desc || off_desc->type != BPF_KPTR_REF) {
6381 bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
6382 reg->off + reg->var_off.value);
6383 return -EINVAL;
6384 }
6385
6386 if (!btf_type_is_ptr(ref_t)) {
6387 bpf_log(log, "arg#0 BTF type must be a double pointer\n");
6388 return -EINVAL;
6389 }
6390
6391 ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
6392 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6393
6394 if (!btf_type_is_struct(ref_t)) {
6395 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6396 func_name, i, btf_type_str(ref_t), ref_tname);
6397 return -EINVAL;
6398 }
6399 if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
2ab3b380 6400 off_desc->kptr.btf_id, true)) {
a1ef1959
KKD
6401 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
6402 func_name, i, btf_type_str(ref_t), ref_tname);
6403 return -EINVAL;
6404 }
6405 /* rest of the arguments can be anything, like normal kfunc */
f858c2b2 6406 } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
3363bd0c
KKD
6407 /* If function expects ctx type in BTF check that caller
6408 * is passing PTR_TO_CTX.
6409 */
6410 if (reg->type != PTR_TO_CTX) {
6411 bpf_log(log,
6412 "arg#%d expected pointer to ctx, but got %s\n",
6413 i, btf_type_str(t));
6414 return -EINVAL;
6415 }
45ce4b4f
KKD
6416 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
6417 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
e6ac2450
MKL
6418 const struct btf_type *reg_ref_t;
6419 const struct btf *reg_btf;
6420 const char *reg_ref_tname;
6421 u32 reg_ref_id;
6422
6423 if (!btf_type_is_struct(ref_t)) {
6424 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6425 func_name, i, btf_type_str(ref_t),
6426 ref_tname);
6427 return -EINVAL;
6428 }
6429
6430 if (reg->type == PTR_TO_BTF_ID) {
6431 reg_btf = reg->btf;
6432 reg_ref_id = reg->btf_id;
3363bd0c 6433 } else {
e6ac2450 6434 reg_btf = btf_vmlinux;
45ce4b4f 6435 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
e6ac2450
MKL
6436 }
6437
6438 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
6439 &reg_ref_id);
6440 reg_ref_tname = btf_name_by_offset(reg_btf,
6441 reg_ref_t->name_off);
6442 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
56e948ff
KKD
6443 reg->off, btf, ref_id,
6444 trusted_arg || (rel && reg->ref_obj_id))) {
e6ac2450
MKL
6445 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
6446 func_name, i,
6447 btf_type_str(ref_t), ref_tname,
6448 regno, btf_type_str(reg_ref_t),
6449 reg_ref_tname);
6450 return -EINVAL;
6451 }
95f2f26f 6452 } else if (ptr_to_mem_ok && processing_call) {
34747c41
MKL
6453 const struct btf_type *resolve_ret;
6454 u32 type_size;
e5069b9c 6455
3363bd0c 6456 if (is_kfunc) {
d583691c
KKD
6457 bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
6458
3363bd0c
KKD
6459 /* Permit pointer to mem, but only when argument
6460 * type is pointer to scalar, or struct composed
6461 * (recursively) of scalars.
d583691c
KKD
6462 * When arg_mem_size is true, the pointer can be
6463 * void *.
3363bd0c
KKD
6464 */
6465 if (!btf_type_is_scalar(ref_t) &&
d583691c
KKD
6466 !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
6467 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
3363bd0c 6468 bpf_log(log,
d583691c
KKD
6469 "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
6470 i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
3363bd0c
KKD
6471 return -EINVAL;
6472 }
d583691c
KKD
6473
6474 /* Check for mem, len pair */
6475 if (arg_mem_size) {
6476 if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
6477 bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
6478 i, i + 1);
6479 return -EINVAL;
6480 }
6481 i++;
6482 continue;
6483 }
3363bd0c
KKD
6484 }
6485
34747c41
MKL
6486 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6487 if (IS_ERR(resolve_ret)) {
e5069b9c 6488 bpf_log(log,
34747c41
MKL
6489 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6490 i, btf_type_str(ref_t), ref_tname,
6491 PTR_ERR(resolve_ret));
6492 return -EINVAL;
e5069b9c
DB
6493 }
6494
34747c41
MKL
6495 if (check_mem_reg(env, reg, regno, type_size))
6496 return -EINVAL;
6497 } else {
3363bd0c
KKD
6498 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
6499 is_kfunc ? "kernel " : "", func_name, func_id);
34747c41 6500 return -EINVAL;
8c1b6e69 6501 }
8c1b6e69 6502 }
34747c41 6503
5c073f26
KKD
6504 /* Either both are set, or neither */
6505 WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
24d5bb80
KKD
6506 /* We already made sure ref_obj_id is set only for one argument. We do
6507 * allow (!rel && ref_obj_id), so that passing such referenced
6508 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
6509 * is_kfunc is true.
6510 */
6511 if (rel && !ref_obj_id) {
6512 bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
6513 func_name);
6514 return -EINVAL;
5c073f26 6515 }
fa96b242
BT
6516
6517 if (sleepable && !env->prog->aux->sleepable) {
6518 bpf_log(log, "kernel function %s is sleepable but the program is not\n",
6519 func_name);
6520 return -EINVAL;
6521 }
6522
eb1f7f71
BT
6523 if (kfunc_meta && ref_obj_id)
6524 kfunc_meta->ref_obj_id = ref_obj_id;
6525
5c073f26
KKD
6526 /* returns argument register number > 0 in case of reference release kfunc */
6527 return rel ? ref_regno : 0;
34747c41
MKL
6528}
6529
95f2f26f 6530/* Compare BTF of a function declaration with given bpf_reg_state.
34747c41
MKL
6531 * Returns:
6532 * EFAULT - there is a verifier bug. Abort verification.
6533 * EINVAL - there is a type mismatch or BTF is not available.
6534 * 0 - BTF matches with what bpf_reg_state expects.
6535 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6536 */
6537int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6538 struct bpf_reg_state *regs)
6539{
6540 struct bpf_prog *prog = env->prog;
6541 struct btf *btf = prog->aux->btf;
6542 bool is_global;
6543 u32 btf_id;
6544 int err;
6545
6546 if (!prog->aux->func_info)
6547 return -EINVAL;
6548
6549 btf_id = prog->aux->func_info[subprog].type_id;
6550 if (!btf_id)
6551 return -EFAULT;
6552
6553 if (prog->aux->func_info_aux[subprog].unreliable)
6554 return -EINVAL;
6555
6556 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
eb1f7f71 6557 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
95f2f26f
BT
6558
6559 /* Compiler optimizations can remove arguments from static functions
6560 * or mismatched type can be passed into a global function.
6561 * In such cases mark the function as unreliable from BTF point of view.
6562 */
6563 if (err)
6564 prog->aux->func_info_aux[subprog].unreliable = true;
6565 return err;
6566}
6567
6568/* Compare BTF of a function call with given bpf_reg_state.
6569 * Returns:
6570 * EFAULT - there is a verifier bug. Abort verification.
6571 * EINVAL - there is a type mismatch or BTF is not available.
6572 * 0 - BTF matches with what bpf_reg_state expects.
6573 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6574 *
6575 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6576 * because btf_check_func_arg_match() is still doing both. Once that
6577 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6578 * first, and then treat the calling part in a new code path.
6579 */
6580int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6581 struct bpf_reg_state *regs)
6582{
6583 struct bpf_prog *prog = env->prog;
6584 struct btf *btf = prog->aux->btf;
6585 bool is_global;
6586 u32 btf_id;
6587 int err;
6588
6589 if (!prog->aux->func_info)
6590 return -EINVAL;
6591
6592 btf_id = prog->aux->func_info[subprog].type_id;
6593 if (!btf_id)
6594 return -EFAULT;
6595
6596 if (prog->aux->func_info_aux[subprog].unreliable)
6597 return -EINVAL;
6598
6599 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
eb1f7f71 6600 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
34747c41 6601
51c39bb1
AS
6602 /* Compiler optimizations can remove arguments from static functions
6603 * or mismatched type can be passed into a global function.
6604 * In such cases mark the function as unreliable from BTF point of view.
6605 */
34747c41
MKL
6606 if (err)
6607 prog->aux->func_info_aux[subprog].unreliable = true;
6608 return err;
51c39bb1
AS
6609}
6610
e6ac2450
MKL
6611int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6612 const struct btf *btf, u32 func_id,
a4703e31 6613 struct bpf_reg_state *regs,
eb1f7f71 6614 struct bpf_kfunc_arg_meta *meta)
e6ac2450 6615{
eb1f7f71 6616 return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
e6ac2450
MKL
6617}
6618
51c39bb1
AS
6619/* Convert BTF of a function into bpf_reg_state if possible
6620 * Returns:
6621 * EFAULT - there is a verifier bug. Abort verification.
6622 * EINVAL - cannot convert BTF.
6623 * 0 - Successfully converted BTF into bpf_reg_state
6624 * (either PTR_TO_CTX or SCALAR_VALUE).
6625 */
6626int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 6627 struct bpf_reg_state *regs)
51c39bb1
AS
6628{
6629 struct bpf_verifier_log *log = &env->log;
6630 struct bpf_prog *prog = env->prog;
be8704ff 6631 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
6632 struct btf *btf = prog->aux->btf;
6633 const struct btf_param *args;
e5069b9c 6634 const struct btf_type *t, *ref_t;
51c39bb1
AS
6635 u32 i, nargs, btf_id;
6636 const char *tname;
6637
6638 if (!prog->aux->func_info ||
6639 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6640 bpf_log(log, "Verifier bug\n");
6641 return -EFAULT;
6642 }
6643
6644 btf_id = prog->aux->func_info[subprog].type_id;
6645 if (!btf_id) {
6646 bpf_log(log, "Global functions need valid BTF\n");
6647 return -EFAULT;
6648 }
6649
6650 t = btf_type_by_id(btf, btf_id);
6651 if (!t || !btf_type_is_func(t)) {
6652 /* These checks were already done by the verifier while loading
6653 * struct bpf_func_info
6654 */
6655 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6656 subprog);
6657 return -EFAULT;
6658 }
6659 tname = btf_name_by_offset(btf, t->name_off);
6660
6661 if (log->level & BPF_LOG_LEVEL)
6662 bpf_log(log, "Validating %s() func#%d...\n",
6663 tname, subprog);
6664
6665 if (prog->aux->func_info_aux[subprog].unreliable) {
6666 bpf_log(log, "Verifier bug in function %s()\n", tname);
6667 return -EFAULT;
6668 }
be8704ff 6669 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 6670 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
6671
6672 t = btf_type_by_id(btf, t->type);
6673 if (!t || !btf_type_is_func_proto(t)) {
6674 bpf_log(log, "Invalid type of function %s()\n", tname);
6675 return -EFAULT;
6676 }
6677 args = (const struct btf_param *)(t + 1);
6678 nargs = btf_type_vlen(t);
523a4cf4
DB
6679 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6680 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6681 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
6682 return -EINVAL;
6683 }
6684 /* check that function returns int */
6685 t = btf_type_by_id(btf, t->type);
6686 while (btf_type_is_modifier(t))
6687 t = btf_type_by_id(btf, t->type);
6089fb32 6688 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
51c39bb1
AS
6689 bpf_log(log,
6690 "Global function %s() doesn't return scalar. Only those are supported.\n",
6691 tname);
6692 return -EINVAL;
6693 }
6694 /* Convert BTF function arguments into verifier types.
6695 * Only PTR_TO_CTX and SCALAR are supported atm.
6696 */
6697 for (i = 0; i < nargs; i++) {
feb4adfa
DB
6698 struct bpf_reg_state *reg = &regs[i + 1];
6699
51c39bb1
AS
6700 t = btf_type_by_id(btf, args[i].type);
6701 while (btf_type_is_modifier(t))
6702 t = btf_type_by_id(btf, t->type);
6089fb32 6703 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
feb4adfa 6704 reg->type = SCALAR_VALUE;
51c39bb1
AS
6705 continue;
6706 }
e5069b9c
DB
6707 if (btf_type_is_ptr(t)) {
6708 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6709 reg->type = PTR_TO_CTX;
6710 continue;
6711 }
6712
6713 t = btf_type_skip_modifiers(btf, t->type, NULL);
6714
6715 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6716 if (IS_ERR(ref_t)) {
6717 bpf_log(log,
6718 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6719 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6720 PTR_ERR(ref_t));
6721 return -EINVAL;
6722 }
6723
cf9f2f8d 6724 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
e5069b9c
DB
6725 reg->id = ++env->id_gen;
6726
51c39bb1
AS
6727 continue;
6728 }
6729 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6730 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
6731 return -EINVAL;
6732 }
8c1b6e69
AS
6733 return 0;
6734}
6735
31d0bc81
AM
6736static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6737 struct btf_show *show)
6738{
6739 const struct btf_type *t = btf_type_by_id(btf, type_id);
6740
6741 show->btf = btf;
6742 memset(&show->state, 0, sizeof(show->state));
6743 memset(&show->obj, 0, sizeof(show->obj));
6744
6745 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6746}
6747
6748static void btf_seq_show(struct btf_show *show, const char *fmt,
6749 va_list args)
6750{
6751 seq_vprintf((struct seq_file *)show->target, fmt, args);
6752}
6753
eb411377
AM
6754int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6755 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
6756{
6757 struct btf_show sseq;
6758
6759 sseq.target = m;
6760 sseq.showfn = btf_seq_show;
6761 sseq.flags = flags;
6762
6763 btf_type_show(btf, type_id, obj, &sseq);
6764
6765 return sseq.state.status;
6766}
6767
b00b8dae
MKL
6768void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6769 struct seq_file *m)
6770{
31d0bc81
AM
6771 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
6772 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6773 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6774}
6775
6776struct btf_show_snprintf {
6777 struct btf_show show;
6778 int len_left; /* space left in string */
6779 int len; /* length we would have written */
6780};
6781
6782static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6783 va_list args)
6784{
6785 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6786 int len;
6787
6788 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6789
6790 if (len < 0) {
6791 ssnprintf->len_left = 0;
6792 ssnprintf->len = len;
58250ae3 6793 } else if (len >= ssnprintf->len_left) {
31d0bc81
AM
6794 /* no space, drive on to get length we would have written */
6795 ssnprintf->len_left = 0;
6796 ssnprintf->len += len;
6797 } else {
6798 ssnprintf->len_left -= len;
6799 ssnprintf->len += len;
6800 show->target += len;
6801 }
6802}
6803
6804int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6805 char *buf, int len, u64 flags)
6806{
6807 struct btf_show_snprintf ssnprintf;
6808
6809 ssnprintf.show.target = buf;
6810 ssnprintf.show.flags = flags;
6811 ssnprintf.show.showfn = btf_snprintf_show;
6812 ssnprintf.len_left = len;
6813 ssnprintf.len = 0;
6814
6815 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6816
c561d110 6817 /* If we encountered an error, return it. */
31d0bc81
AM
6818 if (ssnprintf.show.state.status)
6819 return ssnprintf.show.state.status;
b00b8dae 6820
31d0bc81
AM
6821 /* Otherwise return length we would have written */
6822 return ssnprintf.len;
b00b8dae 6823}
f56a653c 6824
3481e64b
QM
6825#ifdef CONFIG_PROC_FS
6826static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6827{
6828 const struct btf *btf = filp->private_data;
6829
6830 seq_printf(m, "btf_id:\t%u\n", btf->id);
6831}
6832#endif
6833
f56a653c
MKL
6834static int btf_release(struct inode *inode, struct file *filp)
6835{
6836 btf_put(filp->private_data);
6837 return 0;
6838}
6839
60197cfb 6840const struct file_operations btf_fops = {
3481e64b
QM
6841#ifdef CONFIG_PROC_FS
6842 .show_fdinfo = bpf_btf_show_fdinfo,
6843#endif
f56a653c
MKL
6844 .release = btf_release,
6845};
6846
78958fca
MKL
6847static int __btf_new_fd(struct btf *btf)
6848{
6849 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6850}
6851
c571bd75 6852int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
f56a653c
MKL
6853{
6854 struct btf *btf;
78958fca 6855 int ret;
f56a653c 6856
c571bd75 6857 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
f56a653c
MKL
6858 attr->btf_size, attr->btf_log_level,
6859 u64_to_user_ptr(attr->btf_log_buf),
6860 attr->btf_log_size);
6861 if (IS_ERR(btf))
6862 return PTR_ERR(btf);
6863
78958fca
MKL
6864 ret = btf_alloc_id(btf);
6865 if (ret) {
6866 btf_free(btf);
6867 return ret;
6868 }
6869
6870 /*
6871 * The BTF ID is published to the userspace.
6872 * All BTF free must go through call_rcu() from
6873 * now on (i.e. free by calling btf_put()).
6874 */
6875
6876 ret = __btf_new_fd(btf);
6877 if (ret < 0)
f56a653c
MKL
6878 btf_put(btf);
6879
78958fca 6880 return ret;
f56a653c
MKL
6881}
6882
6883struct btf *btf_get_by_fd(int fd)
6884{
6885 struct btf *btf;
6886 struct fd f;
6887
6888 f = fdget(fd);
6889
6890 if (!f.file)
6891 return ERR_PTR(-EBADF);
6892
6893 if (f.file->f_op != &btf_fops) {
6894 fdput(f);
6895 return ERR_PTR(-EINVAL);
6896 }
6897
6898 btf = f.file->private_data;
78958fca 6899 refcount_inc(&btf->refcnt);
f56a653c
MKL
6900 fdput(f);
6901
6902 return btf;
6903}
60197cfb
MKL
6904
6905int btf_get_info_by_fd(const struct btf *btf,
6906 const union bpf_attr *attr,
6907 union bpf_attr __user *uattr)
6908{
62dab84c 6909 struct bpf_btf_info __user *uinfo;
5c6f2588 6910 struct bpf_btf_info info;
62dab84c
MKL
6911 u32 info_copy, btf_copy;
6912 void __user *ubtf;
53297220
AN
6913 char __user *uname;
6914 u32 uinfo_len, uname_len, name_len;
6915 int ret = 0;
60197cfb 6916
62dab84c
MKL
6917 uinfo = u64_to_user_ptr(attr->info.info);
6918 uinfo_len = attr->info.info_len;
6919
6920 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 6921 memset(&info, 0, sizeof(info));
62dab84c
MKL
6922 if (copy_from_user(&info, uinfo, info_copy))
6923 return -EFAULT;
6924
6925 info.id = btf->id;
6926 ubtf = u64_to_user_ptr(info.btf);
6927 btf_copy = min_t(u32, btf->data_size, info.btf_size);
6928 if (copy_to_user(ubtf, btf->data, btf_copy))
6929 return -EFAULT;
6930 info.btf_size = btf->data_size;
6931
53297220
AN
6932 info.kernel_btf = btf->kernel_btf;
6933
6934 uname = u64_to_user_ptr(info.name);
6935 uname_len = info.name_len;
6936 if (!uname ^ !uname_len)
6937 return -EINVAL;
6938
6939 name_len = strlen(btf->name);
6940 info.name_len = name_len;
6941
6942 if (uname) {
6943 if (uname_len >= name_len + 1) {
6944 if (copy_to_user(uname, btf->name, name_len + 1))
6945 return -EFAULT;
6946 } else {
6947 char zero = '\0';
6948
6949 if (copy_to_user(uname, btf->name, uname_len - 1))
6950 return -EFAULT;
6951 if (put_user(zero, uname + uname_len - 1))
6952 return -EFAULT;
6953 /* let user-space know about too short buffer */
6954 ret = -ENOSPC;
6955 }
6956 }
6957
62dab84c
MKL
6958 if (copy_to_user(uinfo, &info, info_copy) ||
6959 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
6960 return -EFAULT;
6961
53297220 6962 return ret;
60197cfb 6963}
78958fca
MKL
6964
6965int btf_get_fd_by_id(u32 id)
6966{
6967 struct btf *btf;
6968 int fd;
6969
6970 rcu_read_lock();
6971 btf = idr_find(&btf_idr, id);
6972 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6973 btf = ERR_PTR(-ENOENT);
6974 rcu_read_unlock();
6975
6976 if (IS_ERR(btf))
6977 return PTR_ERR(btf);
6978
6979 fd = __btf_new_fd(btf);
6980 if (fd < 0)
6981 btf_put(btf);
6982
6983 return fd;
6984}
6985
22dc4a0f 6986u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
6987{
6988 return btf->id;
6989}
eae2e83e 6990
290248a5
AN
6991bool btf_is_kernel(const struct btf *btf)
6992{
6993 return btf->kernel_btf;
6994}
6995
541c3bad
AN
6996bool btf_is_module(const struct btf *btf)
6997{
6998 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6999}
7000
eae2e83e
JO
7001static int btf_id_cmp_func(const void *a, const void *b)
7002{
7003 const int *pa = a, *pb = b;
7004
7005 return *pa - *pb;
7006}
7007
2af30f11 7008bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
eae2e83e
JO
7009{
7010 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
7011}
36e68442 7012
a4703e31
KKD
7013static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
7014{
7015 return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
7016}
7017
18688de2
KKD
7018enum {
7019 BTF_MODULE_F_LIVE = (1 << 0),
7020};
7021
36e68442
AN
7022#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7023struct btf_module {
7024 struct list_head list;
7025 struct module *module;
7026 struct btf *btf;
7027 struct bin_attribute *sysfs_attr;
18688de2 7028 int flags;
36e68442
AN
7029};
7030
7031static LIST_HEAD(btf_modules);
7032static DEFINE_MUTEX(btf_module_mutex);
7033
7034static ssize_t
7035btf_module_read(struct file *file, struct kobject *kobj,
7036 struct bin_attribute *bin_attr,
7037 char *buf, loff_t off, size_t len)
7038{
7039 const struct btf *btf = bin_attr->private;
7040
7041 memcpy(buf, btf->data + off, len);
7042 return len;
7043}
7044
1e89106d
AS
7045static void purge_cand_cache(struct btf *btf);
7046
36e68442
AN
7047static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7048 void *module)
7049{
7050 struct btf_module *btf_mod, *tmp;
7051 struct module *mod = module;
7052 struct btf *btf;
7053 int err = 0;
7054
7055 if (mod->btf_data_size == 0 ||
18688de2
KKD
7056 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7057 op != MODULE_STATE_GOING))
36e68442
AN
7058 goto out;
7059
7060 switch (op) {
7061 case MODULE_STATE_COMING:
7062 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7063 if (!btf_mod) {
7064 err = -ENOMEM;
7065 goto out;
7066 }
7067 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7068 if (IS_ERR(btf)) {
7069 pr_warn("failed to validate module [%s] BTF: %ld\n",
7070 mod->name, PTR_ERR(btf));
7071 kfree(btf_mod);
5e214f2e
CB
7072 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
7073 err = PTR_ERR(btf);
36e68442
AN
7074 goto out;
7075 }
7076 err = btf_alloc_id(btf);
7077 if (err) {
7078 btf_free(btf);
7079 kfree(btf_mod);
7080 goto out;
7081 }
7082
1e89106d 7083 purge_cand_cache(NULL);
36e68442
AN
7084 mutex_lock(&btf_module_mutex);
7085 btf_mod->module = module;
7086 btf_mod->btf = btf;
7087 list_add(&btf_mod->list, &btf_modules);
7088 mutex_unlock(&btf_module_mutex);
7089
7090 if (IS_ENABLED(CONFIG_SYSFS)) {
7091 struct bin_attribute *attr;
7092
7093 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7094 if (!attr)
7095 goto out;
7096
7097 sysfs_bin_attr_init(attr);
7098 attr->attr.name = btf->name;
7099 attr->attr.mode = 0444;
7100 attr->size = btf->data_size;
7101 attr->private = btf;
7102 attr->read = btf_module_read;
7103
7104 err = sysfs_create_bin_file(btf_kobj, attr);
7105 if (err) {
7106 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7107 mod->name, err);
7108 kfree(attr);
7109 err = 0;
7110 goto out;
7111 }
7112
7113 btf_mod->sysfs_attr = attr;
7114 }
7115
18688de2
KKD
7116 break;
7117 case MODULE_STATE_LIVE:
7118 mutex_lock(&btf_module_mutex);
7119 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7120 if (btf_mod->module != module)
7121 continue;
7122
7123 btf_mod->flags |= BTF_MODULE_F_LIVE;
7124 break;
7125 }
7126 mutex_unlock(&btf_module_mutex);
36e68442
AN
7127 break;
7128 case MODULE_STATE_GOING:
7129 mutex_lock(&btf_module_mutex);
7130 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7131 if (btf_mod->module != module)
7132 continue;
7133
7134 list_del(&btf_mod->list);
7135 if (btf_mod->sysfs_attr)
7136 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
1e89106d 7137 purge_cand_cache(btf_mod->btf);
36e68442
AN
7138 btf_put(btf_mod->btf);
7139 kfree(btf_mod->sysfs_attr);
7140 kfree(btf_mod);
7141 break;
7142 }
7143 mutex_unlock(&btf_module_mutex);
7144 break;
7145 }
7146out:
7147 return notifier_from_errno(err);
7148}
7149
7150static struct notifier_block btf_module_nb = {
7151 .notifier_call = btf_module_notify,
7152};
7153
7154static int __init btf_module_init(void)
7155{
7156 register_module_notifier(&btf_module_nb);
7157 return 0;
7158}
7159
7160fs_initcall(btf_module_init);
7161#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
7162
7163struct module *btf_try_get_module(const struct btf *btf)
7164{
7165 struct module *res = NULL;
7166#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7167 struct btf_module *btf_mod, *tmp;
7168
7169 mutex_lock(&btf_module_mutex);
7170 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7171 if (btf_mod->btf != btf)
7172 continue;
7173
18688de2
KKD
7174 /* We must only consider module whose __init routine has
7175 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7176 * which is set from the notifier callback for
7177 * MODULE_STATE_LIVE.
7178 */
7179 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
541c3bad
AN
7180 res = btf_mod->module;
7181
7182 break;
7183 }
7184 mutex_unlock(&btf_module_mutex);
7185#endif
7186
7187 return res;
7188}
3d78417b 7189
9492450f
KKD
7190/* Returns struct btf corresponding to the struct module.
7191 * This function can return NULL or ERR_PTR.
dee872e1
KKD
7192 */
7193static struct btf *btf_get_module_btf(const struct module *module)
7194{
dee872e1
KKD
7195#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7196 struct btf_module *btf_mod, *tmp;
7197#endif
9492450f
KKD
7198 struct btf *btf = NULL;
7199
7200 if (!module) {
7201 btf = bpf_get_btf_vmlinux();
7ada3787 7202 if (!IS_ERR_OR_NULL(btf))
9492450f
KKD
7203 btf_get(btf);
7204 return btf;
7205 }
dee872e1 7206
dee872e1
KKD
7207#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7208 mutex_lock(&btf_module_mutex);
7209 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7210 if (btf_mod->module != module)
7211 continue;
7212
7213 btf_get(btf_mod->btf);
7214 btf = btf_mod->btf;
7215 break;
7216 }
7217 mutex_unlock(&btf_module_mutex);
7218#endif
7219
7220 return btf;
7221}
7222
3d78417b
AS
7223BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7224{
edc3ec09
KKD
7225 struct btf *btf = NULL;
7226 int btf_obj_fd = 0;
3d78417b
AS
7227 long ret;
7228
7229 if (flags)
7230 return -EINVAL;
7231
7232 if (name_sz <= 1 || name[name_sz - 1])
7233 return -EINVAL;
7234
edc3ec09
KKD
7235 ret = bpf_find_btf_id(name, kind, &btf);
7236 if (ret > 0 && btf_is_module(btf)) {
7237 btf_obj_fd = __btf_new_fd(btf);
7238 if (btf_obj_fd < 0) {
7239 btf_put(btf);
7240 return btf_obj_fd;
3d78417b 7241 }
edc3ec09 7242 return ret | (((u64)btf_obj_fd) << 32);
3d78417b 7243 }
edc3ec09
KKD
7244 if (ret > 0)
7245 btf_put(btf);
3d78417b
AS
7246 return ret;
7247}
7248
7249const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7250 .func = bpf_btf_find_by_name_kind,
7251 .gpl_only = false,
7252 .ret_type = RET_INTEGER,
216e3cd2 7253 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
3d78417b
AS
7254 .arg2_type = ARG_CONST_SIZE,
7255 .arg3_type = ARG_ANYTHING,
7256 .arg4_type = ARG_ANYTHING,
7257};
eb529c5b 7258
d19ddb47
SL
7259BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7260#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7261BTF_TRACING_TYPE_xxx
7262#undef BTF_TRACING_TYPE
14f267d9 7263
dee872e1 7264/* Kernel Function (kfunc) BTF ID set registration API */
14f267d9 7265
a4703e31
KKD
7266static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7267 struct btf_id_set8 *add_set)
14f267d9 7268{
a4703e31 7269 bool vmlinux_set = !btf_is_module(btf);
dee872e1 7270 struct btf_kfunc_set_tab *tab;
a4703e31 7271 struct btf_id_set8 *set;
dee872e1
KKD
7272 u32 set_cnt;
7273 int ret;
7274
a4703e31 7275 if (hook >= BTF_KFUNC_HOOK_MAX) {
dee872e1
KKD
7276 ret = -EINVAL;
7277 goto end;
7278 }
7279
7280 if (!add_set->cnt)
7281 return 0;
7282
7283 tab = btf->kfunc_set_tab;
7284 if (!tab) {
7285 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7286 if (!tab)
7287 return -ENOMEM;
7288 btf->kfunc_set_tab = tab;
7289 }
7290
a4703e31 7291 set = tab->sets[hook];
dee872e1
KKD
7292 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7293 * for module sets.
7294 */
7295 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7296 ret = -EINVAL;
7297 goto end;
7298 }
7299
7300 /* We don't need to allocate, concatenate, and sort module sets, because
7301 * only one is allowed per hook. Hence, we can directly assign the
7302 * pointer and return.
7303 */
7304 if (!vmlinux_set) {
a4703e31 7305 tab->sets[hook] = add_set;
dee872e1
KKD
7306 return 0;
7307 }
7308
7309 /* In case of vmlinux sets, there may be more than one set being
7310 * registered per hook. To create a unified set, we allocate a new set
7311 * and concatenate all individual sets being registered. While each set
7312 * is individually sorted, they may become unsorted when concatenated,
7313 * hence re-sorting the final set again is required to make binary
a4703e31 7314 * searching the set using btf_id_set8_contains function work.
dee872e1
KKD
7315 */
7316 set_cnt = set ? set->cnt : 0;
7317
7318 if (set_cnt > U32_MAX - add_set->cnt) {
7319 ret = -EOVERFLOW;
7320 goto end;
7321 }
7322
7323 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7324 ret = -E2BIG;
7325 goto end;
7326 }
7327
7328 /* Grow set */
a4703e31
KKD
7329 set = krealloc(tab->sets[hook],
7330 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
dee872e1
KKD
7331 GFP_KERNEL | __GFP_NOWARN);
7332 if (!set) {
7333 ret = -ENOMEM;
7334 goto end;
7335 }
7336
7337 /* For newly allocated set, initialize set->cnt to 0 */
a4703e31 7338 if (!tab->sets[hook])
dee872e1 7339 set->cnt = 0;
a4703e31 7340 tab->sets[hook] = set;
dee872e1
KKD
7341
7342 /* Concatenate the two sets */
a4703e31 7343 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
dee872e1
KKD
7344 set->cnt += add_set->cnt;
7345
a4703e31 7346 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
dee872e1
KKD
7347
7348 return 0;
7349end:
7350 btf_free_kfunc_set_tab(btf);
7351 return ret;
14f267d9 7352}
14f267d9 7353
a4703e31 7354static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7355 enum btf_kfunc_hook hook,
dee872e1 7356 u32 kfunc_btf_id)
14f267d9 7357{
a4703e31
KKD
7358 struct btf_id_set8 *set;
7359 u32 *id;
14f267d9 7360
a4703e31
KKD
7361 if (hook >= BTF_KFUNC_HOOK_MAX)
7362 return NULL;
dee872e1 7363 if (!btf->kfunc_set_tab)
a4703e31
KKD
7364 return NULL;
7365 set = btf->kfunc_set_tab->sets[hook];
dee872e1 7366 if (!set)
a4703e31
KKD
7367 return NULL;
7368 id = btf_id_set8_contains(set, kfunc_btf_id);
7369 if (!id)
7370 return NULL;
7371 /* The flags for BTF ID are located next to it */
7372 return id + 1;
dee872e1
KKD
7373}
7374
7375static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7376{
7377 switch (prog_type) {
7378 case BPF_PROG_TYPE_XDP:
7379 return BTF_KFUNC_HOOK_XDP;
7380 case BPF_PROG_TYPE_SCHED_CLS:
7381 return BTF_KFUNC_HOOK_TC;
7382 case BPF_PROG_TYPE_STRUCT_OPS:
7383 return BTF_KFUNC_HOOK_STRUCT_OPS;
97949767
BT
7384 case BPF_PROG_TYPE_TRACING:
7385 return BTF_KFUNC_HOOK_TRACING;
7386 case BPF_PROG_TYPE_SYSCALL:
7387 return BTF_KFUNC_HOOK_SYSCALL;
dee872e1
KKD
7388 default:
7389 return BTF_KFUNC_HOOK_MAX;
14f267d9 7390 }
14f267d9
KKD
7391}
7392
dee872e1
KKD
7393/* Caution:
7394 * Reference to the module (obtained using btf_try_get_module) corresponding to
7395 * the struct btf *MUST* be held when calling this function from verifier
7396 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7397 * keeping the reference for the duration of the call provides the necessary
7398 * protection for looking up a well-formed btf->kfunc_set_tab.
7399 */
a4703e31 7400u32 *btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7401 enum bpf_prog_type prog_type,
a4703e31 7402 u32 kfunc_btf_id)
dee872e1
KKD
7403{
7404 enum btf_kfunc_hook hook;
0e32dfc8 7405
dee872e1 7406 hook = bpf_prog_type_to_kfunc_hook(prog_type);
a4703e31 7407 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
dee872e1 7408}
d9847eb8 7409
dee872e1
KKD
7410/* This function must be invoked only from initcalls/module init functions */
7411int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7412 const struct btf_kfunc_id_set *kset)
7413{
7414 enum btf_kfunc_hook hook;
7415 struct btf *btf;
7416 int ret;
7417
7418 btf = btf_get_module_btf(kset->owner);
c446fdac
SF
7419 if (!btf) {
7420 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7421 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7422 return -ENOENT;
7423 }
7424 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7425 pr_err("missing module BTF, cannot register kfuncs\n");
7426 return -ENOENT;
7427 }
7428 return 0;
7429 }
7430 if (IS_ERR(btf))
7431 return PTR_ERR(btf);
dee872e1
KKD
7432
7433 hook = bpf_prog_type_to_kfunc_hook(prog_type);
a4703e31 7434 ret = btf_populate_kfunc_set(btf, hook, kset->set);
9492450f 7435 btf_put(btf);
dee872e1
KKD
7436 return ret;
7437}
7438EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
be315829 7439
5ce937d6
KKD
7440s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7441{
7442 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7443 struct btf_id_dtor_kfunc *dtor;
7444
7445 if (!tab)
7446 return -ENOENT;
7447 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7448 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7449 */
7450 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7451 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7452 if (!dtor)
7453 return -ENOENT;
7454 return dtor->kfunc_btf_id;
7455}
7456
14a324f6
KKD
7457static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7458{
7459 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7460 const struct btf_param *args;
7461 s32 dtor_btf_id;
7462 u32 nr_args, i;
7463
7464 for (i = 0; i < cnt; i++) {
7465 dtor_btf_id = dtors[i].kfunc_btf_id;
7466
7467 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7468 if (!dtor_func || !btf_type_is_func(dtor_func))
7469 return -EINVAL;
7470
7471 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7472 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7473 return -EINVAL;
7474
7475 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7476 t = btf_type_by_id(btf, dtor_func_proto->type);
7477 if (!t || !btf_type_is_void(t))
7478 return -EINVAL;
7479
7480 nr_args = btf_type_vlen(dtor_func_proto);
7481 if (nr_args != 1)
7482 return -EINVAL;
7483 args = btf_params(dtor_func_proto);
7484 t = btf_type_by_id(btf, args[0].type);
7485 /* Allow any pointer type, as width on targets Linux supports
7486 * will be same for all pointer types (i.e. sizeof(void *))
7487 */
7488 if (!t || !btf_type_is_ptr(t))
7489 return -EINVAL;
7490 }
7491 return 0;
7492}
7493
5ce937d6
KKD
7494/* This function must be invoked only from initcalls/module init functions */
7495int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7496 struct module *owner)
7497{
7498 struct btf_id_dtor_kfunc_tab *tab;
7499 struct btf *btf;
7500 u32 tab_cnt;
7501 int ret;
7502
7503 btf = btf_get_module_btf(owner);
7504 if (!btf) {
7505 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7506 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7507 return -ENOENT;
7508 }
7509 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7510 pr_err("missing module BTF, cannot register dtor kfuncs\n");
7511 return -ENOENT;
7512 }
7513 return 0;
7514 }
7515 if (IS_ERR(btf))
7516 return PTR_ERR(btf);
7517
7518 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7519 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7520 ret = -E2BIG;
7521 goto end;
7522 }
7523
14a324f6
KKD
7524 /* Ensure that the prototype of dtor kfuncs being registered is sane */
7525 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7526 if (ret < 0)
7527 goto end;
7528
5ce937d6
KKD
7529 tab = btf->dtor_kfunc_tab;
7530 /* Only one call allowed for modules */
7531 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7532 ret = -EINVAL;
7533 goto end;
7534 }
7535
7536 tab_cnt = tab ? tab->cnt : 0;
7537 if (tab_cnt > U32_MAX - add_cnt) {
7538 ret = -EOVERFLOW;
7539 goto end;
7540 }
7541 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7542 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7543 ret = -E2BIG;
7544 goto end;
7545 }
7546
7547 tab = krealloc(btf->dtor_kfunc_tab,
7548 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7549 GFP_KERNEL | __GFP_NOWARN);
7550 if (!tab) {
7551 ret = -ENOMEM;
7552 goto end;
7553 }
7554
7555 if (!btf->dtor_kfunc_tab)
7556 tab->cnt = 0;
7557 btf->dtor_kfunc_tab = tab;
7558
7559 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7560 tab->cnt += add_cnt;
7561
7562 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7563
7564 return 0;
7565end:
7566 btf_free_dtor_kfunc_tab(btf);
7567 btf_put(btf);
7568 return ret;
7569}
7570EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7571
e70e13e7
MC
7572#define MAX_TYPES_ARE_COMPAT_DEPTH 2
7573
e70e13e7
MC
7574/* Check local and target types for compatibility. This check is used for
7575 * type-based CO-RE relocations and follow slightly different rules than
7576 * field-based relocations. This function assumes that root types were already
7577 * checked for name match. Beyond that initial root-level name check, names
7578 * are completely ignored. Compatibility rules are as follows:
6089fb32 7579 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
e70e13e7
MC
7580 * kind should match for local and target types (i.e., STRUCT is not
7581 * compatible with UNION);
6089fb32 7582 * - for ENUMs/ENUM64s, the size is ignored;
e70e13e7
MC
7583 * - for INT, size and signedness are ignored;
7584 * - for ARRAY, dimensionality is ignored, element types are checked for
7585 * compatibility recursively;
7586 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
7587 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7588 * - FUNC_PROTOs are compatible if they have compatible signature: same
7589 * number of input args and compatible return and argument types.
7590 * These rules are not set in stone and probably will be adjusted as we get
7591 * more experience with using BPF CO-RE relocations.
7592 */
29db4bea
AS
7593int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7594 const struct btf *targ_btf, __u32 targ_id)
7595{
fd75733d 7596 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
e70e13e7 7597 MAX_TYPES_ARE_COMPAT_DEPTH);
29db4bea
AS
7598}
7599
ec6209c8
DM
7600#define MAX_TYPES_MATCH_DEPTH 2
7601
7602int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7603 const struct btf *targ_btf, u32 targ_id)
7604{
7605 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7606 MAX_TYPES_MATCH_DEPTH);
7607}
7608
29db4bea
AS
7609static bool bpf_core_is_flavor_sep(const char *s)
7610{
7611 /* check X___Y name pattern, where X and Y are not underscores */
7612 return s[0] != '_' && /* X */
7613 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
7614 s[4] != '_'; /* Y */
7615}
7616
7617size_t bpf_core_essential_name_len(const char *name)
7618{
7619 size_t n = strlen(name);
7620 int i;
7621
7622 for (i = n - 5; i >= 0; i--) {
7623 if (bpf_core_is_flavor_sep(name + i))
7624 return i + 1;
7625 }
7626 return n;
7627}
fbd94c7a 7628
1e89106d
AS
7629struct bpf_cand_cache {
7630 const char *name;
7631 u32 name_len;
7632 u16 kind;
7633 u16 cnt;
7634 struct {
7635 const struct btf *btf;
7636 u32 id;
7637 } cands[];
7638};
7639
7640static void bpf_free_cands(struct bpf_cand_cache *cands)
7641{
7642 if (!cands->cnt)
7643 /* empty candidate array was allocated on stack */
7644 return;
7645 kfree(cands);
7646}
7647
7648static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7649{
7650 kfree(cands->name);
7651 kfree(cands);
7652}
7653
7654#define VMLINUX_CAND_CACHE_SIZE 31
7655static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7656
7657#define MODULE_CAND_CACHE_SIZE 31
7658static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7659
7660static DEFINE_MUTEX(cand_cache_mutex);
7661
7662static void __print_cand_cache(struct bpf_verifier_log *log,
7663 struct bpf_cand_cache **cache,
7664 int cache_size)
7665{
7666 struct bpf_cand_cache *cc;
7667 int i, j;
7668
7669 for (i = 0; i < cache_size; i++) {
7670 cc = cache[i];
7671 if (!cc)
7672 continue;
7673 bpf_log(log, "[%d]%s(", i, cc->name);
7674 for (j = 0; j < cc->cnt; j++) {
7675 bpf_log(log, "%d", cc->cands[j].id);
7676 if (j < cc->cnt - 1)
7677 bpf_log(log, " ");
7678 }
7679 bpf_log(log, "), ");
7680 }
7681}
7682
7683static void print_cand_cache(struct bpf_verifier_log *log)
7684{
7685 mutex_lock(&cand_cache_mutex);
7686 bpf_log(log, "vmlinux_cand_cache:");
7687 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7688 bpf_log(log, "\nmodule_cand_cache:");
7689 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7690 bpf_log(log, "\n");
7691 mutex_unlock(&cand_cache_mutex);
7692}
7693
7694static u32 hash_cands(struct bpf_cand_cache *cands)
7695{
7696 return jhash(cands->name, cands->name_len, 0);
7697}
7698
7699static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7700 struct bpf_cand_cache **cache,
7701 int cache_size)
7702{
7703 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7704
7705 if (cc && cc->name_len == cands->name_len &&
7706 !strncmp(cc->name, cands->name, cands->name_len))
7707 return cc;
7708 return NULL;
7709}
7710
7711static size_t sizeof_cands(int cnt)
7712{
7713 return offsetof(struct bpf_cand_cache, cands[cnt]);
7714}
7715
7716static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7717 struct bpf_cand_cache **cache,
7718 int cache_size)
7719{
7720 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7721
7722 if (*cc) {
7723 bpf_free_cands_from_cache(*cc);
7724 *cc = NULL;
7725 }
4674f210 7726 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
1e89106d
AS
7727 if (!new_cands) {
7728 bpf_free_cands(cands);
7729 return ERR_PTR(-ENOMEM);
7730 }
1e89106d
AS
7731 /* strdup the name, since it will stay in cache.
7732 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7733 */
7734 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7735 bpf_free_cands(cands);
7736 if (!new_cands->name) {
7737 kfree(new_cands);
7738 return ERR_PTR(-ENOMEM);
7739 }
7740 *cc = new_cands;
7741 return new_cands;
7742}
7743
29f2e5bd 7744#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
1e89106d
AS
7745static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7746 int cache_size)
7747{
7748 struct bpf_cand_cache *cc;
7749 int i, j;
7750
7751 for (i = 0; i < cache_size; i++) {
7752 cc = cache[i];
7753 if (!cc)
7754 continue;
7755 if (!btf) {
7756 /* when new module is loaded purge all of module_cand_cache,
7757 * since new module might have candidates with the name
7758 * that matches cached cands.
7759 */
7760 bpf_free_cands_from_cache(cc);
7761 cache[i] = NULL;
7762 continue;
7763 }
7764 /* when module is unloaded purge cache entries
7765 * that match module's btf
7766 */
7767 for (j = 0; j < cc->cnt; j++)
7768 if (cc->cands[j].btf == btf) {
7769 bpf_free_cands_from_cache(cc);
7770 cache[i] = NULL;
7771 break;
7772 }
7773 }
7774
7775}
7776
7777static void purge_cand_cache(struct btf *btf)
7778{
7779 mutex_lock(&cand_cache_mutex);
7780 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7781 mutex_unlock(&cand_cache_mutex);
7782}
29f2e5bd 7783#endif
1e89106d
AS
7784
7785static struct bpf_cand_cache *
7786bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7787 int targ_start_id)
7788{
7789 struct bpf_cand_cache *new_cands;
7790 const struct btf_type *t;
7791 const char *targ_name;
7792 size_t targ_essent_len;
7793 int n, i;
7794
7795 n = btf_nr_types(targ_btf);
7796 for (i = targ_start_id; i < n; i++) {
7797 t = btf_type_by_id(targ_btf, i);
7798 if (btf_kind(t) != cands->kind)
7799 continue;
7800
7801 targ_name = btf_name_by_offset(targ_btf, t->name_off);
7802 if (!targ_name)
7803 continue;
7804
7805 /* the resched point is before strncmp to make sure that search
7806 * for non-existing name will have a chance to schedule().
7807 */
7808 cond_resched();
7809
7810 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7811 continue;
7812
7813 targ_essent_len = bpf_core_essential_name_len(targ_name);
7814 if (targ_essent_len != cands->name_len)
7815 continue;
7816
7817 /* most of the time there is only one candidate for a given kind+name pair */
7818 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7819 if (!new_cands) {
7820 bpf_free_cands(cands);
7821 return ERR_PTR(-ENOMEM);
7822 }
7823
7824 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7825 bpf_free_cands(cands);
7826 cands = new_cands;
7827 cands->cands[cands->cnt].btf = targ_btf;
7828 cands->cands[cands->cnt].id = i;
7829 cands->cnt++;
7830 }
7831 return cands;
7832}
7833
7834static struct bpf_cand_cache *
7835bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7836{
7837 struct bpf_cand_cache *cands, *cc, local_cand = {};
7838 const struct btf *local_btf = ctx->btf;
7839 const struct btf_type *local_type;
7840 const struct btf *main_btf;
7841 size_t local_essent_len;
7842 struct btf *mod_btf;
7843 const char *name;
7844 int id;
7845
7846 main_btf = bpf_get_btf_vmlinux();
7847 if (IS_ERR(main_btf))
f18a4997 7848 return ERR_CAST(main_btf);
7ada3787
KKD
7849 if (!main_btf)
7850 return ERR_PTR(-EINVAL);
1e89106d
AS
7851
7852 local_type = btf_type_by_id(local_btf, local_type_id);
7853 if (!local_type)
7854 return ERR_PTR(-EINVAL);
7855
7856 name = btf_name_by_offset(local_btf, local_type->name_off);
7857 if (str_is_empty(name))
7858 return ERR_PTR(-EINVAL);
7859 local_essent_len = bpf_core_essential_name_len(name);
7860
7861 cands = &local_cand;
7862 cands->name = name;
7863 cands->kind = btf_kind(local_type);
7864 cands->name_len = local_essent_len;
7865
7866 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7867 /* cands is a pointer to stack here */
7868 if (cc) {
7869 if (cc->cnt)
7870 return cc;
7871 goto check_modules;
7872 }
7873
7874 /* Attempt to find target candidates in vmlinux BTF first */
7875 cands = bpf_core_add_cands(cands, main_btf, 1);
7876 if (IS_ERR(cands))
f18a4997 7877 return ERR_CAST(cands);
1e89106d
AS
7878
7879 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7880
7881 /* populate cache even when cands->cnt == 0 */
7882 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7883 if (IS_ERR(cc))
f18a4997 7884 return ERR_CAST(cc);
1e89106d
AS
7885
7886 /* if vmlinux BTF has any candidate, don't go for module BTFs */
7887 if (cc->cnt)
7888 return cc;
7889
7890check_modules:
7891 /* cands is a pointer to stack here and cands->cnt == 0 */
7892 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7893 if (cc)
7894 /* if cache has it return it even if cc->cnt == 0 */
7895 return cc;
7896
7897 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7898 spin_lock_bh(&btf_idr_lock);
7899 idr_for_each_entry(&btf_idr, mod_btf, id) {
7900 if (!btf_is_module(mod_btf))
7901 continue;
7902 /* linear search could be slow hence unlock/lock
7903 * the IDR to avoiding holding it for too long
7904 */
7905 btf_get(mod_btf);
7906 spin_unlock_bh(&btf_idr_lock);
7907 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7908 if (IS_ERR(cands)) {
7909 btf_put(mod_btf);
f18a4997 7910 return ERR_CAST(cands);
1e89106d
AS
7911 }
7912 spin_lock_bh(&btf_idr_lock);
7913 btf_put(mod_btf);
7914 }
7915 spin_unlock_bh(&btf_idr_lock);
7916 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
7917 * or pointer to stack if cands->cnd == 0.
7918 * Copy it into the cache even when cands->cnt == 0 and
7919 * return the result.
7920 */
7921 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7922}
7923
fbd94c7a
AS
7924int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7925 int relo_idx, void *insn)
7926{
1e89106d
AS
7927 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7928 struct bpf_core_cand_list cands = {};
adb8fa19 7929 struct bpf_core_relo_res targ_res;
78c1f8d0 7930 struct bpf_core_spec *specs;
1e89106d
AS
7931 int err;
7932
78c1f8d0
AS
7933 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7934 * into arrays of btf_ids of struct fields and array indices.
7935 */
7936 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7937 if (!specs)
7938 return -ENOMEM;
7939
1e89106d
AS
7940 if (need_cands) {
7941 struct bpf_cand_cache *cc;
7942 int i;
7943
7944 mutex_lock(&cand_cache_mutex);
7945 cc = bpf_core_find_cands(ctx, relo->type_id);
7946 if (IS_ERR(cc)) {
7947 bpf_log(ctx->log, "target candidate search failed for %d\n",
7948 relo->type_id);
7949 err = PTR_ERR(cc);
7950 goto out;
7951 }
7952 if (cc->cnt) {
7953 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7954 if (!cands.cands) {
7955 err = -ENOMEM;
7956 goto out;
7957 }
7958 }
7959 for (i = 0; i < cc->cnt; i++) {
7960 bpf_log(ctx->log,
7961 "CO-RE relocating %s %s: found target candidate [%d]\n",
7962 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
7963 cands.cands[i].btf = cc->cands[i].btf;
7964 cands.cands[i].id = cc->cands[i].id;
7965 }
7966 cands.len = cc->cnt;
7967 /* cand_cache_mutex needs to span the cache lookup and
7968 * copy of btf pointer into bpf_core_cand_list,
adb8fa19 7969 * since module can be unloaded while bpf_core_calc_relo_insn
1e89106d
AS
7970 * is working with module's btf.
7971 */
7972 }
7973
adb8fa19
MV
7974 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
7975 &targ_res);
7976 if (err)
7977 goto out;
7978
7979 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
7980 &targ_res);
7981
1e89106d 7982out:
78c1f8d0 7983 kfree(specs);
1e89106d
AS
7984 if (need_cands) {
7985 kfree(cands.cands);
7986 mutex_unlock(&cand_cache_mutex);
7987 if (ctx->log->level & BPF_LOG_LEVEL2)
7988 print_cand_cache(ctx->log);
7989 }
7990 return err;
fbd94c7a 7991}