selftests/bpf: Tests using bpf_check_mtu BPF-helper
[linux-block.git] / kernel / bpf / btf.c
CommitLineData
69b693f0
MKL
1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
91cc1a99
AS
22#include <linux/skmsg.h>
23#include <linux/perf_event.h>
eae2e83e 24#include <linux/bsearch.h>
36e68442
AN
25#include <linux/kobject.h>
26#include <linux/sysfs.h>
91cc1a99 27#include <net/sock.h>
69b693f0
MKL
28
29/* BTF (BPF Type Format) is the meta data format which describes
30 * the data types of BPF program/map. Hence, it basically focus
31 * on the C programming language which the modern BPF is primary
32 * using.
33 *
34 * ELF Section:
35 * ~~~~~~~~~~~
36 * The BTF data is stored under the ".BTF" ELF section
37 *
38 * struct btf_type:
39 * ~~~~~~~~~~~~~~~
40 * Each 'struct btf_type' object describes a C data type.
41 * Depending on the type it is describing, a 'struct btf_type'
42 * object may be followed by more data. F.e.
43 * To describe an array, 'struct btf_type' is followed by
44 * 'struct btf_array'.
45 *
46 * 'struct btf_type' and any extra data following it are
47 * 4 bytes aligned.
48 *
49 * Type section:
50 * ~~~~~~~~~~~~~
51 * The BTF type section contains a list of 'struct btf_type' objects.
52 * Each one describes a C type. Recall from the above section
53 * that a 'struct btf_type' object could be immediately followed by extra
54 * data in order to desribe some particular C types.
55 *
56 * type_id:
57 * ~~~~~~~
58 * Each btf_type object is identified by a type_id. The type_id
59 * is implicitly implied by the location of the btf_type object in
60 * the BTF type section. The first one has type_id 1. The second
61 * one has type_id 2...etc. Hence, an earlier btf_type has
62 * a smaller type_id.
63 *
64 * A btf_type object may refer to another btf_type object by using
65 * type_id (i.e. the "type" in the "struct btf_type").
66 *
67 * NOTE that we cannot assume any reference-order.
68 * A btf_type object can refer to an earlier btf_type object
69 * but it can also refer to a later btf_type object.
70 *
71 * For example, to describe "const void *". A btf_type
72 * object describing "const" may refer to another btf_type
73 * object describing "void *". This type-reference is done
74 * by specifying type_id:
75 *
76 * [1] CONST (anon) type_id=2
77 * [2] PTR (anon) type_id=0
78 *
79 * The above is the btf_verifier debug log:
80 * - Each line started with "[?]" is a btf_type object
81 * - [?] is the type_id of the btf_type object.
82 * - CONST/PTR is the BTF_KIND_XXX
83 * - "(anon)" is the name of the type. It just
84 * happens that CONST and PTR has no name.
85 * - type_id=XXX is the 'u32 type' in btf_type
86 *
87 * NOTE: "void" has type_id 0
88 *
89 * String section:
90 * ~~~~~~~~~~~~~~
91 * The BTF string section contains the names used by the type section.
92 * Each string is referred by an "offset" from the beginning of the
93 * string section.
94 *
95 * Each string is '\0' terminated.
96 *
97 * The first character in the string section must be '\0'
98 * which is used to mean 'anonymous'. Some btf_type may not
99 * have a name.
100 */
101
102/* BTF verification:
103 *
104 * To verify BTF data, two passes are needed.
105 *
106 * Pass #1
107 * ~~~~~~~
108 * The first pass is to collect all btf_type objects to
109 * an array: "btf->types".
110 *
111 * Depending on the C type that a btf_type is describing,
112 * a btf_type may be followed by extra data. We don't know
113 * how many btf_type is there, and more importantly we don't
114 * know where each btf_type is located in the type section.
115 *
116 * Without knowing the location of each type_id, most verifications
117 * cannot be done. e.g. an earlier btf_type may refer to a later
118 * btf_type (recall the "const void *" above), so we cannot
119 * check this type-reference in the first pass.
120 *
121 * In the first pass, it still does some verifications (e.g.
122 * checking the name is a valid offset to the string section).
eb3f595d
MKL
123 *
124 * Pass #2
125 * ~~~~~~~
126 * The main focus is to resolve a btf_type that is referring
127 * to another type.
128 *
129 * We have to ensure the referring type:
130 * 1) does exist in the BTF (i.e. in btf->types[])
131 * 2) does not cause a loop:
132 * struct A {
133 * struct B b;
134 * };
135 *
136 * struct B {
137 * struct A a;
138 * };
139 *
140 * btf_type_needs_resolve() decides if a btf_type needs
141 * to be resolved.
142 *
143 * The needs_resolve type implements the "resolve()" ops which
144 * essentially does a DFS and detects backedge.
145 *
146 * During resolve (or DFS), different C types have different
147 * "RESOLVED" conditions.
148 *
149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150 * members because a member is always referring to another
151 * type. A struct's member can be treated as "RESOLVED" if
152 * it is referring to a BTF_KIND_PTR. Otherwise, the
153 * following valid C struct would be rejected:
154 *
155 * struct A {
156 * int m;
157 * struct A *a;
158 * };
159 *
160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
162 * detect a pointer loop, e.g.:
163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164 * ^ |
165 * +-----------------------------------------+
166 *
69b693f0
MKL
167 */
168
b1e8818c 169#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
170#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173#define BITS_ROUNDUP_BYTES(bits) \
174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
9d5f9f70 176#define BTF_INFO_MASK 0x8f00ffff
aea2f7b8
MKL
177#define BTF_INT_MASK 0x0fffffff
178#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
69b693f0
MKL
181/* 16MB for 64k structs and each has 16 members and
182 * a few MB spaces for the string section.
183 * The hard limit is S32_MAX.
184 */
185#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 186
eb3f595d
MKL
187#define for_each_member_from(i, from, struct_type, member) \
188 for (i = from, member = btf_type_member(struct_type) + from; \
189 i < btf_type_vlen(struct_type); \
190 i++, member++)
191
1dc92851
DB
192#define for_each_vsi_from(i, from, struct_type, member) \
193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
194 i < btf_type_vlen(struct_type); \
195 i++, member++)
196
1b9ed84e
QM
197DEFINE_IDR(btf_idr);
198DEFINE_SPINLOCK(btf_idr_lock);
78958fca 199
69b693f0 200struct btf {
f80442a4 201 void *data;
69b693f0 202 struct btf_type **types;
eb3f595d
MKL
203 u32 *resolved_ids;
204 u32 *resolved_sizes;
69b693f0
MKL
205 const char *strings;
206 void *nohdr_data;
f80442a4 207 struct btf_header hdr;
951bb646 208 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
209 u32 types_size;
210 u32 data_size;
f56a653c 211 refcount_t refcnt;
78958fca
MKL
212 u32 id;
213 struct rcu_head rcu;
951bb646
AN
214
215 /* split BTF support */
216 struct btf *base_btf;
217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
219 char name[MODULE_NAME_LEN];
220 bool kernel_btf;
69b693f0
MKL
221};
222
eb3f595d
MKL
223enum verifier_phase {
224 CHECK_META,
225 CHECK_TYPE,
226};
227
228struct resolve_vertex {
229 const struct btf_type *t;
230 u32 type_id;
231 u16 next_member;
232};
233
234enum visit_state {
235 NOT_VISITED,
236 VISITED,
237 RESOLVED,
238};
239
240enum resolve_mode {
241 RESOLVE_TBD, /* To Be Determined */
242 RESOLVE_PTR, /* Resolving for Pointer */
243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
244 * or array
245 */
246};
247
248#define MAX_RESOLVE_DEPTH 32
249
f80442a4
MKL
250struct btf_sec_info {
251 u32 off;
252 u32 len;
253};
254
69b693f0
MKL
255struct btf_verifier_env {
256 struct btf *btf;
eb3f595d
MKL
257 u8 *visit_states;
258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
259 struct bpf_verifier_log log;
260 u32 log_type_id;
eb3f595d
MKL
261 u32 top_stack;
262 enum verifier_phase phase;
263 enum resolve_mode resolve_mode;
69b693f0
MKL
264};
265
266static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 [BTF_KIND_UNKN] = "UNKNOWN",
268 [BTF_KIND_INT] = "INT",
269 [BTF_KIND_PTR] = "PTR",
270 [BTF_KIND_ARRAY] = "ARRAY",
271 [BTF_KIND_STRUCT] = "STRUCT",
272 [BTF_KIND_UNION] = "UNION",
273 [BTF_KIND_ENUM] = "ENUM",
274 [BTF_KIND_FWD] = "FWD",
275 [BTF_KIND_TYPEDEF] = "TYPEDEF",
276 [BTF_KIND_VOLATILE] = "VOLATILE",
277 [BTF_KIND_CONST] = "CONST",
278 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
279 [BTF_KIND_FUNC] = "FUNC",
280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
281 [BTF_KIND_VAR] = "VAR",
282 [BTF_KIND_DATASEC] = "DATASEC",
69b693f0
MKL
283};
284
be8704ff
AS
285static const char *btf_type_str(const struct btf_type *t)
286{
287 return btf_kind_str[BTF_INFO_KIND(t->info)];
288}
289
31d0bc81
AM
290/* Chunk size we use in safe copy of data to be shown. */
291#define BTF_SHOW_OBJ_SAFE_SIZE 32
292
293/*
294 * This is the maximum size of a base type value (equivalent to a
295 * 128-bit int); if we are at the end of our safe buffer and have
296 * less than 16 bytes space we can't be assured of being able
297 * to copy the next type safely, so in such cases we will initiate
298 * a new copy.
299 */
300#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
301
302/* Type name size */
303#define BTF_SHOW_NAME_SIZE 80
304
305/*
306 * Common data to all BTF show operations. Private show functions can add
307 * their own data to a structure containing a struct btf_show and consult it
308 * in the show callback. See btf_type_show() below.
309 *
310 * One challenge with showing nested data is we want to skip 0-valued
311 * data, but in order to figure out whether a nested object is all zeros
312 * we need to walk through it. As a result, we need to make two passes
313 * when handling structs, unions and arrays; the first path simply looks
314 * for nonzero data, while the second actually does the display. The first
315 * pass is signalled by show->state.depth_check being set, and if we
316 * encounter a non-zero value we set show->state.depth_to_show to
317 * the depth at which we encountered it. When we have completed the
318 * first pass, we will know if anything needs to be displayed if
319 * depth_to_show > depth. See btf_[struct,array]_show() for the
320 * implementation of this.
321 *
322 * Another problem is we want to ensure the data for display is safe to
323 * access. To support this, the anonymous "struct {} obj" tracks the data
324 * object and our safe copy of it. We copy portions of the data needed
325 * to the object "copy" buffer, but because its size is limited to
326 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
327 * traverse larger objects for display.
328 *
329 * The various data type show functions all start with a call to
330 * btf_show_start_type() which returns a pointer to the safe copy
331 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
332 * raw data itself). btf_show_obj_safe() is responsible for
333 * using copy_from_kernel_nofault() to update the safe data if necessary
334 * as we traverse the object's data. skbuff-like semantics are
335 * used:
336 *
337 * - obj.head points to the start of the toplevel object for display
338 * - obj.size is the size of the toplevel object
339 * - obj.data points to the current point in the original data at
340 * which our safe data starts. obj.data will advance as we copy
341 * portions of the data.
342 *
343 * In most cases a single copy will suffice, but larger data structures
344 * such as "struct task_struct" will require many copies. The logic in
345 * btf_show_obj_safe() handles the logic that determines if a new
346 * copy_from_kernel_nofault() is needed.
347 */
348struct btf_show {
349 u64 flags;
350 void *target; /* target of show operation (seq file, buffer) */
351 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
352 const struct btf *btf;
353 /* below are used during iteration */
354 struct {
355 u8 depth;
356 u8 depth_to_show;
357 u8 depth_check;
358 u8 array_member:1,
359 array_terminated:1;
360 u16 array_encoding;
361 u32 type_id;
362 int status; /* non-zero for error */
363 const struct btf_type *type;
364 const struct btf_member *member;
365 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
366 } state;
367 struct {
368 u32 size;
369 void *head;
370 void *data;
371 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
372 } obj;
373};
374
69b693f0
MKL
375struct btf_kind_operations {
376 s32 (*check_meta)(struct btf_verifier_env *env,
377 const struct btf_type *t,
378 u32 meta_left);
eb3f595d
MKL
379 int (*resolve)(struct btf_verifier_env *env,
380 const struct resolve_vertex *v);
179cde8c
MKL
381 int (*check_member)(struct btf_verifier_env *env,
382 const struct btf_type *struct_type,
383 const struct btf_member *member,
384 const struct btf_type *member_type);
9d5f9f70
YS
385 int (*check_kflag_member)(struct btf_verifier_env *env,
386 const struct btf_type *struct_type,
387 const struct btf_member *member,
388 const struct btf_type *member_type);
69b693f0
MKL
389 void (*log_details)(struct btf_verifier_env *env,
390 const struct btf_type *t);
31d0bc81 391 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 392 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 393 struct btf_show *show);
69b693f0
MKL
394};
395
396static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
397static struct btf_type btf_void;
398
2667a262
MKL
399static int btf_resolve(struct btf_verifier_env *env,
400 const struct btf_type *t, u32 type_id);
401
eb3f595d
MKL
402static bool btf_type_is_modifier(const struct btf_type *t)
403{
404 /* Some of them is not strictly a C modifier
405 * but they are grouped into the same bucket
406 * for BTF concern:
407 * A type (t) that refers to another
408 * type through t->type AND its size cannot
409 * be determined without following the t->type.
410 *
411 * ptr does not fall into this bucket
412 * because its size is always sizeof(void *).
413 */
414 switch (BTF_INFO_KIND(t->info)) {
415 case BTF_KIND_TYPEDEF:
416 case BTF_KIND_VOLATILE:
417 case BTF_KIND_CONST:
418 case BTF_KIND_RESTRICT:
419 return true;
420 }
421
422 return false;
423}
424
2824ecb7 425bool btf_type_is_void(const struct btf_type *t)
eb3f595d 426{
b47a0bd2
MKL
427 return t == &btf_void;
428}
429
430static bool btf_type_is_fwd(const struct btf_type *t)
431{
432 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
433}
434
435static bool btf_type_nosize(const struct btf_type *t)
436{
2667a262
MKL
437 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
438 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
439}
440
b47a0bd2 441static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 442{
b47a0bd2 443 return !t || btf_type_nosize(t);
eb3f595d
MKL
444}
445
d83525ca
AS
446static bool __btf_type_is_struct(const struct btf_type *t)
447{
448 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
449}
450
eb3f595d
MKL
451static bool btf_type_is_array(const struct btf_type *t)
452{
453 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
454}
455
1dc92851
DB
456static bool btf_type_is_datasec(const struct btf_type *t)
457{
458 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
459}
460
541c3bad 461u32 btf_nr_types(const struct btf *btf)
951bb646
AN
462{
463 u32 total = 0;
464
465 while (btf) {
466 total += btf->nr_types;
467 btf = btf->base_btf;
468 }
469
470 return total;
471}
472
27ae7997
MKL
473s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
474{
475 const struct btf_type *t;
476 const char *tname;
951bb646 477 u32 i, total;
27ae7997 478
541c3bad 479 total = btf_nr_types(btf);
951bb646
AN
480 for (i = 1; i < total; i++) {
481 t = btf_type_by_id(btf, i);
27ae7997
MKL
482 if (BTF_INFO_KIND(t->info) != kind)
483 continue;
484
485 tname = btf_name_by_offset(btf, t->name_off);
486 if (!strcmp(tname, name))
487 return i;
488 }
489
490 return -ENOENT;
491}
492
493const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
494 u32 id, u32 *res_id)
495{
496 const struct btf_type *t = btf_type_by_id(btf, id);
497
498 while (btf_type_is_modifier(t)) {
499 id = t->type;
500 t = btf_type_by_id(btf, t->type);
501 }
502
503 if (res_id)
504 *res_id = id;
505
506 return t;
507}
508
509const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
510 u32 id, u32 *res_id)
511{
512 const struct btf_type *t;
513
514 t = btf_type_skip_modifiers(btf, id, NULL);
515 if (!btf_type_is_ptr(t))
516 return NULL;
517
518 return btf_type_skip_modifiers(btf, t->type, res_id);
519}
520
521const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
522 u32 id, u32 *res_id)
523{
524 const struct btf_type *ptype;
525
526 ptype = btf_type_resolve_ptr(btf, id, res_id);
527 if (ptype && btf_type_is_func_proto(ptype))
528 return ptype;
529
530 return NULL;
531}
532
1dc92851
DB
533/* Types that act only as a source, not sink or intermediate
534 * type when resolving.
535 */
536static bool btf_type_is_resolve_source_only(const struct btf_type *t)
537{
538 return btf_type_is_var(t) ||
539 btf_type_is_datasec(t);
540}
541
eb3f595d
MKL
542/* What types need to be resolved?
543 *
544 * btf_type_is_modifier() is an obvious one.
545 *
546 * btf_type_is_struct() because its member refers to
547 * another type (through member->type).
1dc92851
DB
548 *
549 * btf_type_is_var() because the variable refers to
550 * another type. btf_type_is_datasec() holds multiple
551 * btf_type_is_var() types that need resolving.
552 *
eb3f595d
MKL
553 * btf_type_is_array() because its element (array->type)
554 * refers to another type. Array can be thought of a
555 * special case of struct while array just has the same
556 * member-type repeated by array->nelems of times.
557 */
558static bool btf_type_needs_resolve(const struct btf_type *t)
559{
560 return btf_type_is_modifier(t) ||
1dc92851
DB
561 btf_type_is_ptr(t) ||
562 btf_type_is_struct(t) ||
563 btf_type_is_array(t) ||
564 btf_type_is_var(t) ||
565 btf_type_is_datasec(t);
eb3f595d
MKL
566}
567
568/* t->size can be used */
569static bool btf_type_has_size(const struct btf_type *t)
570{
571 switch (BTF_INFO_KIND(t->info)) {
572 case BTF_KIND_INT:
573 case BTF_KIND_STRUCT:
574 case BTF_KIND_UNION:
575 case BTF_KIND_ENUM:
1dc92851 576 case BTF_KIND_DATASEC:
eb3f595d
MKL
577 return true;
578 }
579
580 return false;
581}
582
69b693f0
MKL
583static const char *btf_int_encoding_str(u8 encoding)
584{
585 if (encoding == 0)
586 return "(none)";
587 else if (encoding == BTF_INT_SIGNED)
588 return "SIGNED";
589 else if (encoding == BTF_INT_CHAR)
590 return "CHAR";
591 else if (encoding == BTF_INT_BOOL)
592 return "BOOL";
69b693f0
MKL
593 else
594 return "UNKN";
595}
596
69b693f0
MKL
597static u32 btf_type_int(const struct btf_type *t)
598{
599 return *(u32 *)(t + 1);
600}
601
602static const struct btf_array *btf_type_array(const struct btf_type *t)
603{
604 return (const struct btf_array *)(t + 1);
605}
606
69b693f0
MKL
607static const struct btf_enum *btf_type_enum(const struct btf_type *t)
608{
609 return (const struct btf_enum *)(t + 1);
610}
611
1dc92851
DB
612static const struct btf_var *btf_type_var(const struct btf_type *t)
613{
614 return (const struct btf_var *)(t + 1);
615}
616
69b693f0
MKL
617static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
618{
619 return kind_ops[BTF_INFO_KIND(t->info)];
620}
621
583c5318 622static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 623{
951bb646
AN
624 if (!BTF_STR_OFFSET_VALID(offset))
625 return false;
626
627 while (offset < btf->start_str_off)
628 btf = btf->base_btf;
629
630 offset -= btf->start_str_off;
631 return offset < btf->hdr.str_len;
69b693f0
MKL
632}
633
1dc92851
DB
634static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
635{
636 if ((first ? !isalpha(c) :
637 !isalnum(c)) &&
638 c != '_' &&
639 ((c == '.' && !dot_ok) ||
640 c != '.'))
641 return false;
642 return true;
643}
644
951bb646
AN
645static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
646{
647 while (offset < btf->start_str_off)
648 btf = btf->base_btf;
649
650 offset -= btf->start_str_off;
651 if (offset < btf->hdr.str_len)
652 return &btf->strings[offset];
653
654 return NULL;
655}
656
1dc92851 657static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
658{
659 /* offset must be valid */
951bb646 660 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
661 const char *src_limit;
662
1dc92851 663 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
664 return false;
665
666 /* set a limit on identifier length */
667 src_limit = src + KSYM_NAME_LEN;
668 src++;
669 while (*src && src < src_limit) {
1dc92851 670 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
671 return false;
672 src++;
673 }
674
675 return !*src;
676}
677
1dc92851
DB
678/* Only C-style identifier is permitted. This can be relaxed if
679 * necessary.
680 */
681static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
682{
683 return __btf_name_valid(btf, offset, false);
684}
685
686static bool btf_name_valid_section(const struct btf *btf, u32 offset)
687{
688 return __btf_name_valid(btf, offset, true);
689}
690
23127b33 691static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 692{
951bb646
AN
693 const char *name;
694
aea2f7b8 695 if (!offset)
69b693f0 696 return "(anon)";
951bb646
AN
697
698 name = btf_str_by_offset(btf, offset);
699 return name ?: "(invalid-name-offset)";
69b693f0
MKL
700}
701
23127b33
MKL
702const char *btf_name_by_offset(const struct btf *btf, u32 offset)
703{
951bb646 704 return btf_str_by_offset(btf, offset);
23127b33
MKL
705}
706
838e9690 707const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 708{
951bb646
AN
709 while (type_id < btf->start_id)
710 btf = btf->base_btf;
eb3f595d 711
951bb646
AN
712 type_id -= btf->start_id;
713 if (type_id >= btf->nr_types)
714 return NULL;
eb3f595d
MKL
715 return btf->types[type_id];
716}
717
4ef5f574
MKL
718/*
719 * Regular int is not a bit field and it must be either
b1e8818c 720 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
721 */
722static bool btf_type_int_is_regular(const struct btf_type *t)
723{
36fc3c8c 724 u8 nr_bits, nr_bytes;
4ef5f574
MKL
725 u32 int_data;
726
727 int_data = btf_type_int(t);
728 nr_bits = BTF_INT_BITS(int_data);
729 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
730 if (BITS_PER_BYTE_MASKED(nr_bits) ||
731 BTF_INT_OFFSET(int_data) ||
732 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
733 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
734 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
735 return false;
736 }
737
738 return true;
739}
740
9a1126b6 741/*
ffa0c1cf
YS
742 * Check that given struct member is a regular int with expected
743 * offset and size.
9a1126b6 744 */
ffa0c1cf
YS
745bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
746 const struct btf_member *m,
747 u32 expected_offset, u32 expected_size)
9a1126b6 748{
ffa0c1cf
YS
749 const struct btf_type *t;
750 u32 id, int_data;
751 u8 nr_bits;
9a1126b6 752
ffa0c1cf
YS
753 id = m->type;
754 t = btf_type_id_size(btf, &id, NULL);
755 if (!t || !btf_type_is_int(t))
9a1126b6
RG
756 return false;
757
758 int_data = btf_type_int(t);
759 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
760 if (btf_type_kflag(s)) {
761 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
762 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
763
764 /* if kflag set, int should be a regular int and
765 * bit offset should be at byte boundary.
766 */
767 return !bitfield_size &&
768 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
769 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
770 }
771
772 if (BTF_INT_OFFSET(int_data) ||
773 BITS_PER_BYTE_MASKED(m->offset) ||
774 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
775 BITS_PER_BYTE_MASKED(nr_bits) ||
776 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
777 return false;
778
779 return true;
780}
781
31d0bc81
AM
782/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
783static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
784 u32 id)
785{
786 const struct btf_type *t = btf_type_by_id(btf, id);
787
788 while (btf_type_is_modifier(t) &&
789 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
790 id = t->type;
791 t = btf_type_by_id(btf, t->type);
792 }
793
794 return t;
795}
796
797#define BTF_SHOW_MAX_ITER 10
798
799#define BTF_KIND_BIT(kind) (1ULL << kind)
800
801/*
802 * Populate show->state.name with type name information.
803 * Format of type name is
804 *
805 * [.member_name = ] (type_name)
806 */
807static const char *btf_show_name(struct btf_show *show)
808{
809 /* BTF_MAX_ITER array suffixes "[]" */
810 const char *array_suffixes = "[][][][][][][][][][]";
811 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
812 /* BTF_MAX_ITER pointer suffixes "*" */
813 const char *ptr_suffixes = "**********";
814 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
815 const char *name = NULL, *prefix = "", *parens = "";
816 const struct btf_member *m = show->state.member;
817 const struct btf_type *t = show->state.type;
818 const struct btf_array *array;
819 u32 id = show->state.type_id;
820 const char *member = NULL;
821 bool show_member = false;
822 u64 kinds = 0;
823 int i;
824
825 show->state.name[0] = '\0';
826
827 /*
828 * Don't show type name if we're showing an array member;
829 * in that case we show the array type so don't need to repeat
830 * ourselves for each member.
831 */
832 if (show->state.array_member)
833 return "";
834
835 /* Retrieve member name, if any. */
836 if (m) {
837 member = btf_name_by_offset(show->btf, m->name_off);
838 show_member = strlen(member) > 0;
839 id = m->type;
840 }
841
842 /*
843 * Start with type_id, as we have resolved the struct btf_type *
844 * via btf_modifier_show() past the parent typedef to the child
845 * struct, int etc it is defined as. In such cases, the type_id
846 * still represents the starting type while the struct btf_type *
847 * in our show->state points at the resolved type of the typedef.
848 */
849 t = btf_type_by_id(show->btf, id);
850 if (!t)
851 return "";
852
853 /*
854 * The goal here is to build up the right number of pointer and
855 * array suffixes while ensuring the type name for a typedef
856 * is represented. Along the way we accumulate a list of
857 * BTF kinds we have encountered, since these will inform later
858 * display; for example, pointer types will not require an
859 * opening "{" for struct, we will just display the pointer value.
860 *
861 * We also want to accumulate the right number of pointer or array
862 * indices in the format string while iterating until we get to
863 * the typedef/pointee/array member target type.
864 *
865 * We start by pointing at the end of pointer and array suffix
866 * strings; as we accumulate pointers and arrays we move the pointer
867 * or array string backwards so it will show the expected number of
868 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
869 * and/or arrays and typedefs are supported as a precaution.
870 *
871 * We also want to get typedef name while proceeding to resolve
872 * type it points to so that we can add parentheses if it is a
873 * "typedef struct" etc.
874 */
875 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
876
877 switch (BTF_INFO_KIND(t->info)) {
878 case BTF_KIND_TYPEDEF:
879 if (!name)
880 name = btf_name_by_offset(show->btf,
881 t->name_off);
882 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
883 id = t->type;
884 break;
885 case BTF_KIND_ARRAY:
886 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
887 parens = "[";
888 if (!t)
889 return "";
890 array = btf_type_array(t);
891 if (array_suffix > array_suffixes)
892 array_suffix -= 2;
893 id = array->type;
894 break;
895 case BTF_KIND_PTR:
896 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
897 if (ptr_suffix > ptr_suffixes)
898 ptr_suffix -= 1;
899 id = t->type;
900 break;
901 default:
902 id = 0;
903 break;
904 }
905 if (!id)
906 break;
907 t = btf_type_skip_qualifiers(show->btf, id);
908 }
909 /* We may not be able to represent this type; bail to be safe */
910 if (i == BTF_SHOW_MAX_ITER)
911 return "";
912
913 if (!name)
914 name = btf_name_by_offset(show->btf, t->name_off);
915
916 switch (BTF_INFO_KIND(t->info)) {
917 case BTF_KIND_STRUCT:
918 case BTF_KIND_UNION:
919 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
920 "struct" : "union";
921 /* if it's an array of struct/union, parens is already set */
922 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
923 parens = "{";
924 break;
925 case BTF_KIND_ENUM:
926 prefix = "enum";
927 break;
928 default:
929 break;
930 }
931
932 /* pointer does not require parens */
933 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
934 parens = "";
935 /* typedef does not require struct/union/enum prefix */
936 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
937 prefix = "";
938
939 if (!name)
940 name = "";
941
942 /* Even if we don't want type name info, we want parentheses etc */
943 if (show->flags & BTF_SHOW_NONAME)
944 snprintf(show->state.name, sizeof(show->state.name), "%s",
945 parens);
946 else
947 snprintf(show->state.name, sizeof(show->state.name),
948 "%s%s%s(%s%s%s%s%s%s)%s",
949 /* first 3 strings comprise ".member = " */
950 show_member ? "." : "",
951 show_member ? member : "",
952 show_member ? " = " : "",
953 /* ...next is our prefix (struct, enum, etc) */
954 prefix,
955 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
956 /* ...this is the type name itself */
957 name,
958 /* ...suffixed by the appropriate '*', '[]' suffixes */
959 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
960 array_suffix, parens);
961
962 return show->state.name;
963}
964
965static const char *__btf_show_indent(struct btf_show *show)
966{
967 const char *indents = " ";
968 const char *indent = &indents[strlen(indents)];
969
970 if ((indent - show->state.depth) >= indents)
971 return indent - show->state.depth;
972 return indents;
973}
974
975static const char *btf_show_indent(struct btf_show *show)
976{
977 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
978}
979
980static const char *btf_show_newline(struct btf_show *show)
981{
982 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
983}
984
985static const char *btf_show_delim(struct btf_show *show)
986{
987 if (show->state.depth == 0)
988 return "";
989
990 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
991 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
992 return "|";
993
994 return ",";
995}
996
997__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
998{
999 va_list args;
1000
1001 if (!show->state.depth_check) {
1002 va_start(args, fmt);
1003 show->showfn(show, fmt, args);
1004 va_end(args);
1005 }
1006}
1007
1008/* Macros are used here as btf_show_type_value[s]() prepends and appends
1009 * format specifiers to the format specifier passed in; these do the work of
1010 * adding indentation, delimiters etc while the caller simply has to specify
1011 * the type value(s) in the format specifier + value(s).
1012 */
1013#define btf_show_type_value(show, fmt, value) \
1014 do { \
1015 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1016 show->state.depth == 0) { \
1017 btf_show(show, "%s%s" fmt "%s%s", \
1018 btf_show_indent(show), \
1019 btf_show_name(show), \
1020 value, btf_show_delim(show), \
1021 btf_show_newline(show)); \
1022 if (show->state.depth > show->state.depth_to_show) \
1023 show->state.depth_to_show = show->state.depth; \
1024 } \
1025 } while (0)
1026
1027#define btf_show_type_values(show, fmt, ...) \
1028 do { \
1029 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1030 btf_show_name(show), \
1031 __VA_ARGS__, btf_show_delim(show), \
1032 btf_show_newline(show)); \
1033 if (show->state.depth > show->state.depth_to_show) \
1034 show->state.depth_to_show = show->state.depth; \
1035 } while (0)
1036
1037/* How much is left to copy to safe buffer after @data? */
1038static int btf_show_obj_size_left(struct btf_show *show, void *data)
1039{
1040 return show->obj.head + show->obj.size - data;
1041}
1042
1043/* Is object pointed to by @data of @size already copied to our safe buffer? */
1044static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1045{
1046 return data >= show->obj.data &&
1047 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1048}
1049
1050/*
1051 * If object pointed to by @data of @size falls within our safe buffer, return
1052 * the equivalent pointer to the same safe data. Assumes
1053 * copy_from_kernel_nofault() has already happened and our safe buffer is
1054 * populated.
1055 */
1056static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1057{
1058 if (btf_show_obj_is_safe(show, data, size))
1059 return show->obj.safe + (data - show->obj.data);
1060 return NULL;
1061}
1062
1063/*
1064 * Return a safe-to-access version of data pointed to by @data.
1065 * We do this by copying the relevant amount of information
1066 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1067 *
1068 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1069 * safe copy is needed.
1070 *
1071 * Otherwise we need to determine if we have the required amount
1072 * of data (determined by the @data pointer and the size of the
1073 * largest base type we can encounter (represented by
1074 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1075 * that we will be able to print some of the current object,
1076 * and if more is needed a copy will be triggered.
1077 * Some objects such as structs will not fit into the buffer;
1078 * in such cases additional copies when we iterate over their
1079 * members may be needed.
1080 *
1081 * btf_show_obj_safe() is used to return a safe buffer for
1082 * btf_show_start_type(); this ensures that as we recurse into
1083 * nested types we always have safe data for the given type.
1084 * This approach is somewhat wasteful; it's possible for example
1085 * that when iterating over a large union we'll end up copying the
1086 * same data repeatedly, but the goal is safety not performance.
1087 * We use stack data as opposed to per-CPU buffers because the
1088 * iteration over a type can take some time, and preemption handling
1089 * would greatly complicate use of the safe buffer.
1090 */
1091static void *btf_show_obj_safe(struct btf_show *show,
1092 const struct btf_type *t,
1093 void *data)
1094{
1095 const struct btf_type *rt;
1096 int size_left, size;
1097 void *safe = NULL;
1098
1099 if (show->flags & BTF_SHOW_UNSAFE)
1100 return data;
1101
1102 rt = btf_resolve_size(show->btf, t, &size);
1103 if (IS_ERR(rt)) {
1104 show->state.status = PTR_ERR(rt);
1105 return NULL;
1106 }
1107
1108 /*
1109 * Is this toplevel object? If so, set total object size and
1110 * initialize pointers. Otherwise check if we still fall within
1111 * our safe object data.
1112 */
1113 if (show->state.depth == 0) {
1114 show->obj.size = size;
1115 show->obj.head = data;
1116 } else {
1117 /*
1118 * If the size of the current object is > our remaining
1119 * safe buffer we _may_ need to do a new copy. However
1120 * consider the case of a nested struct; it's size pushes
1121 * us over the safe buffer limit, but showing any individual
1122 * struct members does not. In such cases, we don't need
1123 * to initiate a fresh copy yet; however we definitely need
1124 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1125 * in our buffer, regardless of the current object size.
1126 * The logic here is that as we resolve types we will
1127 * hit a base type at some point, and we need to be sure
1128 * the next chunk of data is safely available to display
1129 * that type info safely. We cannot rely on the size of
1130 * the current object here because it may be much larger
1131 * than our current buffer (e.g. task_struct is 8k).
1132 * All we want to do here is ensure that we can print the
1133 * next basic type, which we can if either
1134 * - the current type size is within the safe buffer; or
1135 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1136 * the safe buffer.
1137 */
1138 safe = __btf_show_obj_safe(show, data,
1139 min(size,
1140 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1141 }
1142
1143 /*
1144 * We need a new copy to our safe object, either because we haven't
1145 * yet copied and are intializing safe data, or because the data
1146 * we want falls outside the boundaries of the safe object.
1147 */
1148 if (!safe) {
1149 size_left = btf_show_obj_size_left(show, data);
1150 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1151 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1152 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1153 data, size_left);
1154 if (!show->state.status) {
1155 show->obj.data = data;
1156 safe = show->obj.safe;
1157 }
1158 }
1159
1160 return safe;
1161}
1162
1163/*
1164 * Set the type we are starting to show and return a safe data pointer
1165 * to be used for showing the associated data.
1166 */
1167static void *btf_show_start_type(struct btf_show *show,
1168 const struct btf_type *t,
1169 u32 type_id, void *data)
1170{
1171 show->state.type = t;
1172 show->state.type_id = type_id;
1173 show->state.name[0] = '\0';
1174
1175 return btf_show_obj_safe(show, t, data);
1176}
1177
1178static void btf_show_end_type(struct btf_show *show)
1179{
1180 show->state.type = NULL;
1181 show->state.type_id = 0;
1182 show->state.name[0] = '\0';
1183}
1184
1185static void *btf_show_start_aggr_type(struct btf_show *show,
1186 const struct btf_type *t,
1187 u32 type_id, void *data)
1188{
1189 void *safe_data = btf_show_start_type(show, t, type_id, data);
1190
1191 if (!safe_data)
1192 return safe_data;
1193
1194 btf_show(show, "%s%s%s", btf_show_indent(show),
1195 btf_show_name(show),
1196 btf_show_newline(show));
1197 show->state.depth++;
1198 return safe_data;
1199}
1200
1201static void btf_show_end_aggr_type(struct btf_show *show,
1202 const char *suffix)
1203{
1204 show->state.depth--;
1205 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1206 btf_show_delim(show), btf_show_newline(show));
1207 btf_show_end_type(show);
1208}
1209
1210static void btf_show_start_member(struct btf_show *show,
1211 const struct btf_member *m)
1212{
1213 show->state.member = m;
1214}
1215
1216static void btf_show_start_array_member(struct btf_show *show)
1217{
1218 show->state.array_member = 1;
1219 btf_show_start_member(show, NULL);
1220}
1221
1222static void btf_show_end_member(struct btf_show *show)
1223{
1224 show->state.member = NULL;
1225}
1226
1227static void btf_show_end_array_member(struct btf_show *show)
1228{
1229 show->state.array_member = 0;
1230 btf_show_end_member(show);
1231}
1232
1233static void *btf_show_start_array_type(struct btf_show *show,
1234 const struct btf_type *t,
1235 u32 type_id,
1236 u16 array_encoding,
1237 void *data)
1238{
1239 show->state.array_encoding = array_encoding;
1240 show->state.array_terminated = 0;
1241 return btf_show_start_aggr_type(show, t, type_id, data);
1242}
1243
1244static void btf_show_end_array_type(struct btf_show *show)
1245{
1246 show->state.array_encoding = 0;
1247 show->state.array_terminated = 0;
1248 btf_show_end_aggr_type(show, "]");
1249}
1250
1251static void *btf_show_start_struct_type(struct btf_show *show,
1252 const struct btf_type *t,
1253 u32 type_id,
1254 void *data)
1255{
1256 return btf_show_start_aggr_type(show, t, type_id, data);
1257}
1258
1259static void btf_show_end_struct_type(struct btf_show *show)
1260{
1261 btf_show_end_aggr_type(show, "}");
1262}
1263
69b693f0
MKL
1264__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1265 const char *fmt, ...)
1266{
1267 va_list args;
1268
1269 va_start(args, fmt);
1270 bpf_verifier_vlog(log, fmt, args);
1271 va_end(args);
1272}
1273
1274__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1275 const char *fmt, ...)
1276{
1277 struct bpf_verifier_log *log = &env->log;
1278 va_list args;
1279
1280 if (!bpf_verifier_log_needed(log))
1281 return;
1282
1283 va_start(args, fmt);
1284 bpf_verifier_vlog(log, fmt, args);
1285 va_end(args);
1286}
1287
1288__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1289 const struct btf_type *t,
1290 bool log_details,
1291 const char *fmt, ...)
1292{
1293 struct bpf_verifier_log *log = &env->log;
1294 u8 kind = BTF_INFO_KIND(t->info);
1295 struct btf *btf = env->btf;
1296 va_list args;
1297
1298 if (!bpf_verifier_log_needed(log))
1299 return;
1300
8580ac94
AS
1301 /* btf verifier prints all types it is processing via
1302 * btf_verifier_log_type(..., fmt = NULL).
1303 * Skip those prints for in-kernel BTF verification.
1304 */
1305 if (log->level == BPF_LOG_KERNEL && !fmt)
1306 return;
1307
69b693f0
MKL
1308 __btf_verifier_log(log, "[%u] %s %s%s",
1309 env->log_type_id,
1310 btf_kind_str[kind],
23127b33 1311 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1312 log_details ? " " : "");
1313
1314 if (log_details)
1315 btf_type_ops(t)->log_details(env, t);
1316
1317 if (fmt && *fmt) {
1318 __btf_verifier_log(log, " ");
1319 va_start(args, fmt);
1320 bpf_verifier_vlog(log, fmt, args);
1321 va_end(args);
1322 }
1323
1324 __btf_verifier_log(log, "\n");
1325}
1326
1327#define btf_verifier_log_type(env, t, ...) \
1328 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1329#define btf_verifier_log_basic(env, t, ...) \
1330 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1331
1332__printf(4, 5)
1333static void btf_verifier_log_member(struct btf_verifier_env *env,
1334 const struct btf_type *struct_type,
1335 const struct btf_member *member,
1336 const char *fmt, ...)
1337{
1338 struct bpf_verifier_log *log = &env->log;
1339 struct btf *btf = env->btf;
1340 va_list args;
1341
1342 if (!bpf_verifier_log_needed(log))
1343 return;
1344
8580ac94
AS
1345 if (log->level == BPF_LOG_KERNEL && !fmt)
1346 return;
eb3f595d
MKL
1347 /* The CHECK_META phase already did a btf dump.
1348 *
1349 * If member is logged again, it must hit an error in
1350 * parsing this member. It is useful to print out which
1351 * struct this member belongs to.
1352 */
1353 if (env->phase != CHECK_META)
1354 btf_verifier_log_type(env, struct_type, NULL);
1355
9d5f9f70
YS
1356 if (btf_type_kflag(struct_type))
1357 __btf_verifier_log(log,
1358 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1359 __btf_name_by_offset(btf, member->name_off),
1360 member->type,
1361 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1362 BTF_MEMBER_BIT_OFFSET(member->offset));
1363 else
1364 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1365 __btf_name_by_offset(btf, member->name_off),
1366 member->type, member->offset);
69b693f0
MKL
1367
1368 if (fmt && *fmt) {
1369 __btf_verifier_log(log, " ");
1370 va_start(args, fmt);
1371 bpf_verifier_vlog(log, fmt, args);
1372 va_end(args);
1373 }
1374
1375 __btf_verifier_log(log, "\n");
1376}
1377
1dc92851
DB
1378__printf(4, 5)
1379static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1380 const struct btf_type *datasec_type,
1381 const struct btf_var_secinfo *vsi,
1382 const char *fmt, ...)
1383{
1384 struct bpf_verifier_log *log = &env->log;
1385 va_list args;
1386
1387 if (!bpf_verifier_log_needed(log))
1388 return;
8580ac94
AS
1389 if (log->level == BPF_LOG_KERNEL && !fmt)
1390 return;
1dc92851
DB
1391 if (env->phase != CHECK_META)
1392 btf_verifier_log_type(env, datasec_type, NULL);
1393
1394 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1395 vsi->type, vsi->offset, vsi->size);
1396 if (fmt && *fmt) {
1397 __btf_verifier_log(log, " ");
1398 va_start(args, fmt);
1399 bpf_verifier_vlog(log, fmt, args);
1400 va_end(args);
1401 }
1402
1403 __btf_verifier_log(log, "\n");
1404}
1405
f80442a4
MKL
1406static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1407 u32 btf_data_size)
69b693f0
MKL
1408{
1409 struct bpf_verifier_log *log = &env->log;
1410 const struct btf *btf = env->btf;
1411 const struct btf_header *hdr;
1412
1413 if (!bpf_verifier_log_needed(log))
1414 return;
1415
8580ac94
AS
1416 if (log->level == BPF_LOG_KERNEL)
1417 return;
f80442a4 1418 hdr = &btf->hdr;
69b693f0
MKL
1419 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1420 __btf_verifier_log(log, "version: %u\n", hdr->version);
1421 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1422 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1423 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1424 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1425 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1426 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1427 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1428}
1429
1430static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1431{
1432 struct btf *btf = env->btf;
1433
951bb646 1434 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1435 /* Expand 'types' array */
1436
1437 struct btf_type **new_types;
1438 u32 expand_by, new_size;
1439
951bb646 1440 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1441 btf_verifier_log(env, "Exceeded max num of types");
1442 return -E2BIG;
1443 }
1444
1445 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1446 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1447 btf->types_size + expand_by);
1448
778e1cdd 1449 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1450 GFP_KERNEL | __GFP_NOWARN);
1451 if (!new_types)
1452 return -ENOMEM;
1453
951bb646
AN
1454 if (btf->nr_types == 0) {
1455 if (!btf->base_btf) {
1456 /* lazily init VOID type */
1457 new_types[0] = &btf_void;
1458 btf->nr_types++;
1459 }
1460 } else {
69b693f0 1461 memcpy(new_types, btf->types,
951bb646
AN
1462 sizeof(*btf->types) * btf->nr_types);
1463 }
69b693f0
MKL
1464
1465 kvfree(btf->types);
1466 btf->types = new_types;
1467 btf->types_size = new_size;
1468 }
1469
951bb646 1470 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1471
1472 return 0;
1473}
1474
78958fca
MKL
1475static int btf_alloc_id(struct btf *btf)
1476{
1477 int id;
1478
1479 idr_preload(GFP_KERNEL);
1480 spin_lock_bh(&btf_idr_lock);
1481 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1482 if (id > 0)
1483 btf->id = id;
1484 spin_unlock_bh(&btf_idr_lock);
1485 idr_preload_end();
1486
1487 if (WARN_ON_ONCE(!id))
1488 return -ENOSPC;
1489
1490 return id > 0 ? 0 : id;
1491}
1492
1493static void btf_free_id(struct btf *btf)
1494{
1495 unsigned long flags;
1496
1497 /*
1498 * In map-in-map, calling map_delete_elem() on outer
1499 * map will call bpf_map_put on the inner map.
1500 * It will then eventually call btf_free_id()
1501 * on the inner map. Some of the map_delete_elem()
1502 * implementation may have irq disabled, so
1503 * we need to use the _irqsave() version instead
1504 * of the _bh() version.
1505 */
1506 spin_lock_irqsave(&btf_idr_lock, flags);
1507 idr_remove(&btf_idr, btf->id);
1508 spin_unlock_irqrestore(&btf_idr_lock, flags);
1509}
1510
69b693f0
MKL
1511static void btf_free(struct btf *btf)
1512{
1513 kvfree(btf->types);
eb3f595d
MKL
1514 kvfree(btf->resolved_sizes);
1515 kvfree(btf->resolved_ids);
69b693f0
MKL
1516 kvfree(btf->data);
1517 kfree(btf);
1518}
1519
78958fca 1520static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1521{
78958fca
MKL
1522 struct btf *btf = container_of(rcu, struct btf, rcu);
1523
1524 btf_free(btf);
f56a653c
MKL
1525}
1526
22dc4a0f
AN
1527void btf_get(struct btf *btf)
1528{
1529 refcount_inc(&btf->refcnt);
1530}
1531
f56a653c
MKL
1532void btf_put(struct btf *btf)
1533{
78958fca
MKL
1534 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1535 btf_free_id(btf);
1536 call_rcu(&btf->rcu, btf_free_rcu);
1537 }
f56a653c
MKL
1538}
1539
eb3f595d
MKL
1540static int env_resolve_init(struct btf_verifier_env *env)
1541{
1542 struct btf *btf = env->btf;
1543 u32 nr_types = btf->nr_types;
1544 u32 *resolved_sizes = NULL;
1545 u32 *resolved_ids = NULL;
1546 u8 *visit_states = NULL;
1547
951bb646 1548 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1549 GFP_KERNEL | __GFP_NOWARN);
1550 if (!resolved_sizes)
1551 goto nomem;
1552
951bb646 1553 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1554 GFP_KERNEL | __GFP_NOWARN);
1555 if (!resolved_ids)
1556 goto nomem;
1557
951bb646 1558 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1559 GFP_KERNEL | __GFP_NOWARN);
1560 if (!visit_states)
1561 goto nomem;
1562
1563 btf->resolved_sizes = resolved_sizes;
1564 btf->resolved_ids = resolved_ids;
1565 env->visit_states = visit_states;
1566
1567 return 0;
1568
1569nomem:
1570 kvfree(resolved_sizes);
1571 kvfree(resolved_ids);
1572 kvfree(visit_states);
1573 return -ENOMEM;
1574}
1575
69b693f0
MKL
1576static void btf_verifier_env_free(struct btf_verifier_env *env)
1577{
eb3f595d 1578 kvfree(env->visit_states);
69b693f0
MKL
1579 kfree(env);
1580}
1581
eb3f595d
MKL
1582static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1583 const struct btf_type *next_type)
1584{
1585 switch (env->resolve_mode) {
1586 case RESOLVE_TBD:
1587 /* int, enum or void is a sink */
1588 return !btf_type_needs_resolve(next_type);
1589 case RESOLVE_PTR:
2667a262
MKL
1590 /* int, enum, void, struct, array, func or func_proto is a sink
1591 * for ptr
1592 */
eb3f595d
MKL
1593 return !btf_type_is_modifier(next_type) &&
1594 !btf_type_is_ptr(next_type);
1595 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1596 /* int, enum, void, ptr, func or func_proto is a sink
1597 * for struct and array
1598 */
eb3f595d
MKL
1599 return !btf_type_is_modifier(next_type) &&
1600 !btf_type_is_array(next_type) &&
1601 !btf_type_is_struct(next_type);
1602 default:
53c8036c 1603 BUG();
eb3f595d
MKL
1604 }
1605}
1606
1607static bool env_type_is_resolved(const struct btf_verifier_env *env,
1608 u32 type_id)
1609{
951bb646
AN
1610 /* base BTF types should be resolved by now */
1611 if (type_id < env->btf->start_id)
1612 return true;
1613
1614 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1615}
1616
1617static int env_stack_push(struct btf_verifier_env *env,
1618 const struct btf_type *t, u32 type_id)
1619{
951bb646 1620 const struct btf *btf = env->btf;
eb3f595d
MKL
1621 struct resolve_vertex *v;
1622
1623 if (env->top_stack == MAX_RESOLVE_DEPTH)
1624 return -E2BIG;
1625
951bb646
AN
1626 if (type_id < btf->start_id
1627 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1628 return -EEXIST;
1629
951bb646 1630 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1631
1632 v = &env->stack[env->top_stack++];
1633 v->t = t;
1634 v->type_id = type_id;
1635 v->next_member = 0;
1636
1637 if (env->resolve_mode == RESOLVE_TBD) {
1638 if (btf_type_is_ptr(t))
1639 env->resolve_mode = RESOLVE_PTR;
1640 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1641 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1642 }
1643
1644 return 0;
1645}
1646
1647static void env_stack_set_next_member(struct btf_verifier_env *env,
1648 u16 next_member)
1649{
1650 env->stack[env->top_stack - 1].next_member = next_member;
1651}
1652
1653static void env_stack_pop_resolved(struct btf_verifier_env *env,
1654 u32 resolved_type_id,
1655 u32 resolved_size)
1656{
1657 u32 type_id = env->stack[--(env->top_stack)].type_id;
1658 struct btf *btf = env->btf;
1659
951bb646 1660 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1661 btf->resolved_sizes[type_id] = resolved_size;
1662 btf->resolved_ids[type_id] = resolved_type_id;
1663 env->visit_states[type_id] = RESOLVED;
1664}
1665
1666static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1667{
1668 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1669}
1670
7e3617a7
MKL
1671/* Resolve the size of a passed-in "type"
1672 *
1673 * type: is an array (e.g. u32 array[x][y])
1674 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1675 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1676 * corresponds to the return type.
1677 * *elem_type: u32
69ff3047 1678 * *elem_id: id of u32
7e3617a7
MKL
1679 * *total_nelems: (x * y). Hence, individual elem size is
1680 * (*type_size / *total_nelems)
887c31a3 1681 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1682 *
1683 * type: is not an array (e.g. const struct X)
1684 * return type: type "struct X"
1685 * *type_size: sizeof(struct X)
1686 * *elem_type: same as return type ("struct X")
69ff3047 1687 * *elem_id: 0
7e3617a7 1688 * *total_nelems: 1
887c31a3 1689 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1690 */
6298399b
JO
1691static const struct btf_type *
1692__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1693 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1694 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1695{
1696 const struct btf_type *array_type = NULL;
69ff3047 1697 const struct btf_array *array = NULL;
887c31a3 1698 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1699
1700 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1701 switch (BTF_INFO_KIND(type->info)) {
1702 /* type->size can be used */
1703 case BTF_KIND_INT:
1704 case BTF_KIND_STRUCT:
1705 case BTF_KIND_UNION:
1706 case BTF_KIND_ENUM:
1707 size = type->size;
1708 goto resolved;
1709
1710 case BTF_KIND_PTR:
1711 size = sizeof(void *);
1712 goto resolved;
1713
1714 /* Modifiers */
1715 case BTF_KIND_TYPEDEF:
1716 case BTF_KIND_VOLATILE:
1717 case BTF_KIND_CONST:
1718 case BTF_KIND_RESTRICT:
887c31a3 1719 id = type->type;
7e3617a7
MKL
1720 type = btf_type_by_id(btf, type->type);
1721 break;
1722
1723 case BTF_KIND_ARRAY:
1724 if (!array_type)
1725 array_type = type;
1726 array = btf_type_array(type);
1727 if (nelems && array->nelems > U32_MAX / nelems)
1728 return ERR_PTR(-EINVAL);
1729 nelems *= array->nelems;
1730 type = btf_type_by_id(btf, array->type);
1731 break;
1732
1733 /* type without size */
1734 default:
1735 return ERR_PTR(-EINVAL);
1736 }
1737 }
1738
1739 return ERR_PTR(-EINVAL);
1740
1741resolved:
1742 if (nelems && size > U32_MAX / nelems)
1743 return ERR_PTR(-EINVAL);
1744
1745 *type_size = nelems * size;
85d33df3
MKL
1746 if (total_nelems)
1747 *total_nelems = nelems;
1748 if (elem_type)
1749 *elem_type = type;
69ff3047
JO
1750 if (elem_id)
1751 *elem_id = array ? array->type : 0;
887c31a3
JO
1752 if (type_id && id)
1753 *type_id = id;
7e3617a7
MKL
1754
1755 return array_type ? : type;
1756}
1757
6298399b
JO
1758const struct btf_type *
1759btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1760 u32 *type_size)
1761{
887c31a3 1762 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1763}
1764
951bb646
AN
1765static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1766{
1767 while (type_id < btf->start_id)
1768 btf = btf->base_btf;
1769
1770 return btf->resolved_ids[type_id - btf->start_id];
1771}
1772
eb3f595d
MKL
1773/* The input param "type_id" must point to a needs_resolve type */
1774static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1775 u32 *type_id)
1776{
951bb646 1777 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1778 return btf_type_by_id(btf, *type_id);
1779}
1780
951bb646
AN
1781static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1782{
1783 while (type_id < btf->start_id)
1784 btf = btf->base_btf;
1785
1786 return btf->resolved_sizes[type_id - btf->start_id];
1787}
1788
eb3f595d
MKL
1789const struct btf_type *btf_type_id_size(const struct btf *btf,
1790 u32 *type_id, u32 *ret_size)
1791{
1792 const struct btf_type *size_type;
1793 u32 size_type_id = *type_id;
1794 u32 size = 0;
1795
1796 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1797 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1798 return NULL;
1799
1800 if (btf_type_has_size(size_type)) {
1801 size = size_type->size;
1802 } else if (btf_type_is_array(size_type)) {
951bb646 1803 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1804 } else if (btf_type_is_ptr(size_type)) {
1805 size = sizeof(void *);
1806 } else {
1dc92851
DB
1807 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1808 !btf_type_is_var(size_type)))
eb3f595d
MKL
1809 return NULL;
1810
951bb646 1811 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1812 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1813 if (btf_type_nosize_or_null(size_type))
eb3f595d 1814 return NULL;
1acc5d5c
AN
1815 else if (btf_type_has_size(size_type))
1816 size = size_type->size;
1817 else if (btf_type_is_array(size_type))
951bb646 1818 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1819 else if (btf_type_is_ptr(size_type))
1820 size = sizeof(void *);
1821 else
1822 return NULL;
eb3f595d
MKL
1823 }
1824
1825 *type_id = size_type_id;
1826 if (ret_size)
1827 *ret_size = size;
1828
1829 return size_type;
1830}
1831
179cde8c
MKL
1832static int btf_df_check_member(struct btf_verifier_env *env,
1833 const struct btf_type *struct_type,
1834 const struct btf_member *member,
1835 const struct btf_type *member_type)
1836{
1837 btf_verifier_log_basic(env, struct_type,
1838 "Unsupported check_member");
1839 return -EINVAL;
1840}
1841
9d5f9f70
YS
1842static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1843 const struct btf_type *struct_type,
1844 const struct btf_member *member,
1845 const struct btf_type *member_type)
1846{
1847 btf_verifier_log_basic(env, struct_type,
1848 "Unsupported check_kflag_member");
1849 return -EINVAL;
1850}
1851
1852/* Used for ptr, array and struct/union type members.
1853 * int, enum and modifier types have their specific callback functions.
1854 */
1855static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1856 const struct btf_type *struct_type,
1857 const struct btf_member *member,
1858 const struct btf_type *member_type)
1859{
1860 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1861 btf_verifier_log_member(env, struct_type, member,
1862 "Invalid member bitfield_size");
1863 return -EINVAL;
1864 }
1865
1866 /* bitfield size is 0, so member->offset represents bit offset only.
1867 * It is safe to call non kflag check_member variants.
1868 */
1869 return btf_type_ops(member_type)->check_member(env, struct_type,
1870 member,
1871 member_type);
1872}
1873
eb3f595d
MKL
1874static int btf_df_resolve(struct btf_verifier_env *env,
1875 const struct resolve_vertex *v)
1876{
1877 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1878 return -EINVAL;
1879}
1880
31d0bc81
AM
1881static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1882 u32 type_id, void *data, u8 bits_offsets,
1883 struct btf_show *show)
b00b8dae 1884{
31d0bc81 1885 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
1886}
1887
179cde8c
MKL
1888static int btf_int_check_member(struct btf_verifier_env *env,
1889 const struct btf_type *struct_type,
1890 const struct btf_member *member,
1891 const struct btf_type *member_type)
1892{
1893 u32 int_data = btf_type_int(member_type);
1894 u32 struct_bits_off = member->offset;
1895 u32 struct_size = struct_type->size;
1896 u32 nr_copy_bits;
1897 u32 bytes_offset;
1898
1899 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1900 btf_verifier_log_member(env, struct_type, member,
1901 "bits_offset exceeds U32_MAX");
1902 return -EINVAL;
1903 }
1904
1905 struct_bits_off += BTF_INT_OFFSET(int_data);
1906 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1907 nr_copy_bits = BTF_INT_BITS(int_data) +
1908 BITS_PER_BYTE_MASKED(struct_bits_off);
1909
b1e8818c 1910 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 1911 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1912 "nr_copy_bits exceeds 128");
179cde8c
MKL
1913 return -EINVAL;
1914 }
1915
1916 if (struct_size < bytes_offset ||
1917 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1918 btf_verifier_log_member(env, struct_type, member,
1919 "Member exceeds struct_size");
1920 return -EINVAL;
1921 }
1922
1923 return 0;
1924}
1925
9d5f9f70
YS
1926static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1927 const struct btf_type *struct_type,
1928 const struct btf_member *member,
1929 const struct btf_type *member_type)
1930{
1931 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1932 u32 int_data = btf_type_int(member_type);
1933 u32 struct_size = struct_type->size;
1934 u32 nr_copy_bits;
1935
1936 /* a regular int type is required for the kflag int member */
1937 if (!btf_type_int_is_regular(member_type)) {
1938 btf_verifier_log_member(env, struct_type, member,
1939 "Invalid member base type");
1940 return -EINVAL;
1941 }
1942
1943 /* check sanity of bitfield size */
1944 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1945 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1946 nr_int_data_bits = BTF_INT_BITS(int_data);
1947 if (!nr_bits) {
1948 /* Not a bitfield member, member offset must be at byte
1949 * boundary.
1950 */
1951 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1952 btf_verifier_log_member(env, struct_type, member,
1953 "Invalid member offset");
1954 return -EINVAL;
1955 }
1956
1957 nr_bits = nr_int_data_bits;
1958 } else if (nr_bits > nr_int_data_bits) {
1959 btf_verifier_log_member(env, struct_type, member,
1960 "Invalid member bitfield_size");
1961 return -EINVAL;
1962 }
1963
1964 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1965 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 1966 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 1967 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1968 "nr_copy_bits exceeds 128");
9d5f9f70
YS
1969 return -EINVAL;
1970 }
1971
1972 if (struct_size < bytes_offset ||
1973 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1974 btf_verifier_log_member(env, struct_type, member,
1975 "Member exceeds struct_size");
1976 return -EINVAL;
1977 }
1978
1979 return 0;
1980}
1981
69b693f0
MKL
1982static s32 btf_int_check_meta(struct btf_verifier_env *env,
1983 const struct btf_type *t,
1984 u32 meta_left)
1985{
1986 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1987 u16 encoding;
1988
1989 if (meta_left < meta_needed) {
1990 btf_verifier_log_basic(env, t,
1991 "meta_left:%u meta_needed:%u",
1992 meta_left, meta_needed);
1993 return -EINVAL;
1994 }
1995
1996 if (btf_type_vlen(t)) {
1997 btf_verifier_log_type(env, t, "vlen != 0");
1998 return -EINVAL;
1999 }
2000
9d5f9f70
YS
2001 if (btf_type_kflag(t)) {
2002 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2003 return -EINVAL;
2004 }
2005
69b693f0 2006 int_data = btf_type_int(t);
aea2f7b8
MKL
2007 if (int_data & ~BTF_INT_MASK) {
2008 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2009 int_data);
2010 return -EINVAL;
2011 }
2012
69b693f0
MKL
2013 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2014
b1e8818c 2015 if (nr_bits > BITS_PER_U128) {
69b693f0 2016 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2017 BITS_PER_U128);
69b693f0
MKL
2018 return -EINVAL;
2019 }
2020
2021 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2022 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2023 return -EINVAL;
2024 }
2025
aea2f7b8
MKL
2026 /*
2027 * Only one of the encoding bits is allowed and it
2028 * should be sufficient for the pretty print purpose (i.e. decoding).
2029 * Multiple bits can be allowed later if it is found
2030 * to be insufficient.
2031 */
69b693f0
MKL
2032 encoding = BTF_INT_ENCODING(int_data);
2033 if (encoding &&
2034 encoding != BTF_INT_SIGNED &&
2035 encoding != BTF_INT_CHAR &&
aea2f7b8 2036 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2037 btf_verifier_log_type(env, t, "Unsupported encoding");
2038 return -ENOTSUPP;
2039 }
2040
2041 btf_verifier_log_type(env, t, NULL);
2042
2043 return meta_needed;
2044}
2045
2046static void btf_int_log(struct btf_verifier_env *env,
2047 const struct btf_type *t)
2048{
2049 int int_data = btf_type_int(t);
2050
2051 btf_verifier_log(env,
2052 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2053 t->size, BTF_INT_OFFSET(int_data),
2054 BTF_INT_BITS(int_data),
2055 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2056}
2057
31d0bc81 2058static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2059{
2060 /* data points to a __int128 number.
2061 * Suppose
2062 * int128_num = *(__int128 *)data;
2063 * The below formulas shows what upper_num and lower_num represents:
2064 * upper_num = int128_num >> 64;
2065 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2066 */
2067 u64 upper_num, lower_num;
2068
2069#ifdef __BIG_ENDIAN_BITFIELD
2070 upper_num = *(u64 *)data;
2071 lower_num = *(u64 *)(data + 8);
2072#else
2073 upper_num = *(u64 *)(data + 8);
2074 lower_num = *(u64 *)data;
2075#endif
2076 if (upper_num == 0)
31d0bc81 2077 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2078 else
31d0bc81
AM
2079 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2080 lower_num);
b1e8818c
YS
2081}
2082
2083static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2084 u16 right_shift_bits)
2085{
2086 u64 upper_num, lower_num;
2087
2088#ifdef __BIG_ENDIAN_BITFIELD
2089 upper_num = print_num[0];
2090 lower_num = print_num[1];
2091#else
2092 upper_num = print_num[1];
2093 lower_num = print_num[0];
2094#endif
2095
2096 /* shake out un-needed bits by shift/or operations */
2097 if (left_shift_bits >= 64) {
2098 upper_num = lower_num << (left_shift_bits - 64);
2099 lower_num = 0;
2100 } else {
2101 upper_num = (upper_num << left_shift_bits) |
2102 (lower_num >> (64 - left_shift_bits));
2103 lower_num = lower_num << left_shift_bits;
2104 }
2105
2106 if (right_shift_bits >= 64) {
2107 lower_num = upper_num >> (right_shift_bits - 64);
2108 upper_num = 0;
2109 } else {
2110 lower_num = (lower_num >> right_shift_bits) |
2111 (upper_num << (64 - right_shift_bits));
2112 upper_num = upper_num >> right_shift_bits;
2113 }
2114
2115#ifdef __BIG_ENDIAN_BITFIELD
2116 print_num[0] = upper_num;
2117 print_num[1] = lower_num;
2118#else
2119 print_num[0] = lower_num;
2120 print_num[1] = upper_num;
2121#endif
2122}
2123
31d0bc81
AM
2124static void btf_bitfield_show(void *data, u8 bits_offset,
2125 u8 nr_bits, struct btf_show *show)
b00b8dae 2126{
b65f370d 2127 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2128 u8 nr_copy_bytes;
2129 u8 nr_copy_bits;
b1e8818c 2130 u64 print_num[2] = {};
b00b8dae 2131
b00b8dae
MKL
2132 nr_copy_bits = nr_bits + bits_offset;
2133 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2134
b1e8818c 2135 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2136
b65f370d
OK
2137#ifdef __BIG_ENDIAN_BITFIELD
2138 left_shift_bits = bits_offset;
2139#else
b1e8818c 2140 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2141#endif
b1e8818c 2142 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2143
b1e8818c 2144 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2145 btf_int128_print(show, print_num);
b00b8dae
MKL
2146}
2147
9d5f9f70 2148
31d0bc81
AM
2149static void btf_int_bits_show(const struct btf *btf,
2150 const struct btf_type *t,
2151 void *data, u8 bits_offset,
2152 struct btf_show *show)
f97be3ab
YS
2153{
2154 u32 int_data = btf_type_int(t);
2155 u8 nr_bits = BTF_INT_BITS(int_data);
2156 u8 total_bits_offset;
2157
2158 /*
2159 * bits_offset is at most 7.
b1e8818c 2160 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2161 */
2162 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2163 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2164 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2165 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2166}
2167
31d0bc81
AM
2168static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2169 u32 type_id, void *data, u8 bits_offset,
2170 struct btf_show *show)
b00b8dae
MKL
2171{
2172 u32 int_data = btf_type_int(t);
2173 u8 encoding = BTF_INT_ENCODING(int_data);
2174 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2175 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2176 void *safe_data;
2177
2178 safe_data = btf_show_start_type(show, t, type_id, data);
2179 if (!safe_data)
2180 return;
b00b8dae
MKL
2181
2182 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2183 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2184 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2185 goto out;
b00b8dae
MKL
2186 }
2187
2188 switch (nr_bits) {
b1e8818c 2189 case 128:
31d0bc81 2190 btf_int128_print(show, safe_data);
b1e8818c 2191 break;
b00b8dae
MKL
2192 case 64:
2193 if (sign)
31d0bc81 2194 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2195 else
31d0bc81 2196 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2197 break;
2198 case 32:
2199 if (sign)
31d0bc81 2200 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2201 else
31d0bc81 2202 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2203 break;
2204 case 16:
2205 if (sign)
31d0bc81 2206 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2207 else
31d0bc81 2208 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2209 break;
2210 case 8:
31d0bc81
AM
2211 if (show->state.array_encoding == BTF_INT_CHAR) {
2212 /* check for null terminator */
2213 if (show->state.array_terminated)
2214 break;
2215 if (*(char *)data == '\0') {
2216 show->state.array_terminated = 1;
2217 break;
2218 }
2219 if (isprint(*(char *)data)) {
2220 btf_show_type_value(show, "'%c'",
2221 *(char *)safe_data);
2222 break;
2223 }
2224 }
b00b8dae 2225 if (sign)
31d0bc81 2226 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2227 else
31d0bc81 2228 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2229 break;
2230 default:
31d0bc81
AM
2231 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2232 break;
b00b8dae 2233 }
31d0bc81
AM
2234out:
2235 btf_show_end_type(show);
b00b8dae
MKL
2236}
2237
69b693f0
MKL
2238static const struct btf_kind_operations int_ops = {
2239 .check_meta = btf_int_check_meta,
eb3f595d 2240 .resolve = btf_df_resolve,
179cde8c 2241 .check_member = btf_int_check_member,
9d5f9f70 2242 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2243 .log_details = btf_int_log,
31d0bc81 2244 .show = btf_int_show,
69b693f0
MKL
2245};
2246
179cde8c
MKL
2247static int btf_modifier_check_member(struct btf_verifier_env *env,
2248 const struct btf_type *struct_type,
2249 const struct btf_member *member,
2250 const struct btf_type *member_type)
2251{
2252 const struct btf_type *resolved_type;
2253 u32 resolved_type_id = member->type;
2254 struct btf_member resolved_member;
2255 struct btf *btf = env->btf;
2256
2257 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2258 if (!resolved_type) {
2259 btf_verifier_log_member(env, struct_type, member,
2260 "Invalid member");
2261 return -EINVAL;
2262 }
2263
2264 resolved_member = *member;
2265 resolved_member.type = resolved_type_id;
2266
2267 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2268 &resolved_member,
2269 resolved_type);
2270}
2271
9d5f9f70
YS
2272static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2273 const struct btf_type *struct_type,
2274 const struct btf_member *member,
2275 const struct btf_type *member_type)
2276{
2277 const struct btf_type *resolved_type;
2278 u32 resolved_type_id = member->type;
2279 struct btf_member resolved_member;
2280 struct btf *btf = env->btf;
2281
2282 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2283 if (!resolved_type) {
2284 btf_verifier_log_member(env, struct_type, member,
2285 "Invalid member");
2286 return -EINVAL;
2287 }
2288
2289 resolved_member = *member;
2290 resolved_member.type = resolved_type_id;
2291
2292 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2293 &resolved_member,
2294 resolved_type);
2295}
2296
179cde8c
MKL
2297static int btf_ptr_check_member(struct btf_verifier_env *env,
2298 const struct btf_type *struct_type,
2299 const struct btf_member *member,
2300 const struct btf_type *member_type)
2301{
2302 u32 struct_size, struct_bits_off, bytes_offset;
2303
2304 struct_size = struct_type->size;
2305 struct_bits_off = member->offset;
2306 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307
2308 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2309 btf_verifier_log_member(env, struct_type, member,
2310 "Member is not byte aligned");
2311 return -EINVAL;
2312 }
2313
2314 if (struct_size - bytes_offset < sizeof(void *)) {
2315 btf_verifier_log_member(env, struct_type, member,
2316 "Member exceeds struct_size");
2317 return -EINVAL;
2318 }
2319
2320 return 0;
2321}
2322
69b693f0
MKL
2323static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2324 const struct btf_type *t,
2325 u32 meta_left)
2326{
2327 if (btf_type_vlen(t)) {
2328 btf_verifier_log_type(env, t, "vlen != 0");
2329 return -EINVAL;
2330 }
2331
9d5f9f70
YS
2332 if (btf_type_kflag(t)) {
2333 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2334 return -EINVAL;
2335 }
2336
aea2f7b8 2337 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2338 btf_verifier_log_type(env, t, "Invalid type_id");
2339 return -EINVAL;
2340 }
2341
eb04bbb6
YS
2342 /* typedef type must have a valid name, and other ref types,
2343 * volatile, const, restrict, should have a null name.
2344 */
2345 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2346 if (!t->name_off ||
2347 !btf_name_valid_identifier(env->btf, t->name_off)) {
2348 btf_verifier_log_type(env, t, "Invalid name");
2349 return -EINVAL;
2350 }
2351 } else {
2352 if (t->name_off) {
2353 btf_verifier_log_type(env, t, "Invalid name");
2354 return -EINVAL;
2355 }
2356 }
2357
69b693f0
MKL
2358 btf_verifier_log_type(env, t, NULL);
2359
2360 return 0;
2361}
2362
eb3f595d
MKL
2363static int btf_modifier_resolve(struct btf_verifier_env *env,
2364 const struct resolve_vertex *v)
2365{
2366 const struct btf_type *t = v->t;
2367 const struct btf_type *next_type;
2368 u32 next_type_id = t->type;
2369 struct btf *btf = env->btf;
eb3f595d
MKL
2370
2371 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2372 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2373 btf_verifier_log_type(env, v->t, "Invalid type_id");
2374 return -EINVAL;
2375 }
2376
eb3f595d
MKL
2377 if (!env_type_is_resolve_sink(env, next_type) &&
2378 !env_type_is_resolved(env, next_type_id))
2379 return env_stack_push(env, next_type, next_type_id);
2380
2381 /* Figure out the resolved next_type_id with size.
2382 * They will be stored in the current modifier's
2383 * resolved_ids and resolved_sizes such that it can
2384 * save us a few type-following when we use it later (e.g. in
2385 * pretty print).
2386 */
1acc5d5c 2387 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2388 if (env_type_is_resolved(env, next_type_id))
2389 next_type = btf_type_id_resolve(btf, &next_type_id);
2390
2391 /* "typedef void new_void", "const void"...etc */
2392 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2393 !btf_type_is_fwd(next_type) &&
2394 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2395 btf_verifier_log_type(env, v->t, "Invalid type_id");
2396 return -EINVAL;
2397 }
eb3f595d
MKL
2398 }
2399
1acc5d5c 2400 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2401
2402 return 0;
2403}
2404
1dc92851
DB
2405static int btf_var_resolve(struct btf_verifier_env *env,
2406 const struct resolve_vertex *v)
2407{
2408 const struct btf_type *next_type;
2409 const struct btf_type *t = v->t;
2410 u32 next_type_id = t->type;
2411 struct btf *btf = env->btf;
1dc92851
DB
2412
2413 next_type = btf_type_by_id(btf, next_type_id);
2414 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2415 btf_verifier_log_type(env, v->t, "Invalid type_id");
2416 return -EINVAL;
2417 }
2418
2419 if (!env_type_is_resolve_sink(env, next_type) &&
2420 !env_type_is_resolved(env, next_type_id))
2421 return env_stack_push(env, next_type, next_type_id);
2422
2423 if (btf_type_is_modifier(next_type)) {
2424 const struct btf_type *resolved_type;
2425 u32 resolved_type_id;
2426
2427 resolved_type_id = next_type_id;
2428 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2429
2430 if (btf_type_is_ptr(resolved_type) &&
2431 !env_type_is_resolve_sink(env, resolved_type) &&
2432 !env_type_is_resolved(env, resolved_type_id))
2433 return env_stack_push(env, resolved_type,
2434 resolved_type_id);
2435 }
2436
2437 /* We must resolve to something concrete at this point, no
2438 * forward types or similar that would resolve to size of
2439 * zero is allowed.
2440 */
1acc5d5c 2441 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2442 btf_verifier_log_type(env, v->t, "Invalid type_id");
2443 return -EINVAL;
2444 }
2445
1acc5d5c 2446 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2447
2448 return 0;
2449}
2450
eb3f595d
MKL
2451static int btf_ptr_resolve(struct btf_verifier_env *env,
2452 const struct resolve_vertex *v)
2453{
2454 const struct btf_type *next_type;
2455 const struct btf_type *t = v->t;
2456 u32 next_type_id = t->type;
2457 struct btf *btf = env->btf;
eb3f595d
MKL
2458
2459 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2460 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2461 btf_verifier_log_type(env, v->t, "Invalid type_id");
2462 return -EINVAL;
2463 }
2464
eb3f595d
MKL
2465 if (!env_type_is_resolve_sink(env, next_type) &&
2466 !env_type_is_resolved(env, next_type_id))
2467 return env_stack_push(env, next_type, next_type_id);
2468
2469 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2470 * the modifier may have stopped resolving when it was resolved
2471 * to a ptr (last-resolved-ptr).
2472 *
2473 * We now need to continue from the last-resolved-ptr to
2474 * ensure the last-resolved-ptr will not referring back to
2475 * the currenct ptr (t).
2476 */
2477 if (btf_type_is_modifier(next_type)) {
2478 const struct btf_type *resolved_type;
2479 u32 resolved_type_id;
2480
2481 resolved_type_id = next_type_id;
2482 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2483
2484 if (btf_type_is_ptr(resolved_type) &&
2485 !env_type_is_resolve_sink(env, resolved_type) &&
2486 !env_type_is_resolved(env, resolved_type_id))
2487 return env_stack_push(env, resolved_type,
2488 resolved_type_id);
2489 }
2490
2667a262
MKL
2491 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2492 if (env_type_is_resolved(env, next_type_id))
2493 next_type = btf_type_id_resolve(btf, &next_type_id);
2494
2495 if (!btf_type_is_void(next_type) &&
2496 !btf_type_is_fwd(next_type) &&
2497 !btf_type_is_func_proto(next_type)) {
2498 btf_verifier_log_type(env, v->t, "Invalid type_id");
2499 return -EINVAL;
2500 }
eb3f595d
MKL
2501 }
2502
eb3f595d
MKL
2503 env_stack_pop_resolved(env, next_type_id, 0);
2504
2505 return 0;
2506}
2507
31d0bc81
AM
2508static void btf_modifier_show(const struct btf *btf,
2509 const struct btf_type *t,
2510 u32 type_id, void *data,
2511 u8 bits_offset, struct btf_show *show)
b00b8dae 2512{
85d33df3
MKL
2513 if (btf->resolved_ids)
2514 t = btf_type_id_resolve(btf, &type_id);
2515 else
2516 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2517
31d0bc81 2518 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2519}
2520
31d0bc81
AM
2521static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2522 u32 type_id, void *data, u8 bits_offset,
2523 struct btf_show *show)
1dc92851
DB
2524{
2525 t = btf_type_id_resolve(btf, &type_id);
2526
31d0bc81 2527 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2528}
2529
31d0bc81
AM
2530static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2531 u32 type_id, void *data, u8 bits_offset,
2532 struct btf_show *show)
b00b8dae 2533{
31d0bc81
AM
2534 void *safe_data;
2535
2536 safe_data = btf_show_start_type(show, t, type_id, data);
2537 if (!safe_data)
2538 return;
2539
2540 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2541 if (show->flags & BTF_SHOW_PTR_RAW)
2542 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2543 else
2544 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2545 btf_show_end_type(show);
b00b8dae
MKL
2546}
2547
69b693f0
MKL
2548static void btf_ref_type_log(struct btf_verifier_env *env,
2549 const struct btf_type *t)
2550{
2551 btf_verifier_log(env, "type_id=%u", t->type);
2552}
2553
2554static struct btf_kind_operations modifier_ops = {
2555 .check_meta = btf_ref_type_check_meta,
eb3f595d 2556 .resolve = btf_modifier_resolve,
179cde8c 2557 .check_member = btf_modifier_check_member,
9d5f9f70 2558 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2559 .log_details = btf_ref_type_log,
31d0bc81 2560 .show = btf_modifier_show,
69b693f0
MKL
2561};
2562
2563static struct btf_kind_operations ptr_ops = {
2564 .check_meta = btf_ref_type_check_meta,
eb3f595d 2565 .resolve = btf_ptr_resolve,
179cde8c 2566 .check_member = btf_ptr_check_member,
9d5f9f70 2567 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2568 .log_details = btf_ref_type_log,
31d0bc81 2569 .show = btf_ptr_show,
69b693f0
MKL
2570};
2571
8175383f
MKL
2572static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2573 const struct btf_type *t,
2574 u32 meta_left)
2575{
2576 if (btf_type_vlen(t)) {
2577 btf_verifier_log_type(env, t, "vlen != 0");
2578 return -EINVAL;
2579 }
2580
2581 if (t->type) {
2582 btf_verifier_log_type(env, t, "type != 0");
2583 return -EINVAL;
2584 }
2585
eb04bbb6
YS
2586 /* fwd type must have a valid name */
2587 if (!t->name_off ||
2588 !btf_name_valid_identifier(env->btf, t->name_off)) {
2589 btf_verifier_log_type(env, t, "Invalid name");
2590 return -EINVAL;
2591 }
2592
8175383f
MKL
2593 btf_verifier_log_type(env, t, NULL);
2594
2595 return 0;
2596}
2597
76c43ae8
YS
2598static void btf_fwd_type_log(struct btf_verifier_env *env,
2599 const struct btf_type *t)
2600{
2601 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2602}
2603
69b693f0 2604static struct btf_kind_operations fwd_ops = {
8175383f 2605 .check_meta = btf_fwd_check_meta,
eb3f595d 2606 .resolve = btf_df_resolve,
179cde8c 2607 .check_member = btf_df_check_member,
9d5f9f70 2608 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2609 .log_details = btf_fwd_type_log,
31d0bc81 2610 .show = btf_df_show,
69b693f0
MKL
2611};
2612
179cde8c
MKL
2613static int btf_array_check_member(struct btf_verifier_env *env,
2614 const struct btf_type *struct_type,
2615 const struct btf_member *member,
2616 const struct btf_type *member_type)
2617{
2618 u32 struct_bits_off = member->offset;
2619 u32 struct_size, bytes_offset;
2620 u32 array_type_id, array_size;
2621 struct btf *btf = env->btf;
2622
2623 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2624 btf_verifier_log_member(env, struct_type, member,
2625 "Member is not byte aligned");
2626 return -EINVAL;
2627 }
2628
2629 array_type_id = member->type;
2630 btf_type_id_size(btf, &array_type_id, &array_size);
2631 struct_size = struct_type->size;
2632 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2633 if (struct_size - bytes_offset < array_size) {
2634 btf_verifier_log_member(env, struct_type, member,
2635 "Member exceeds struct_size");
2636 return -EINVAL;
2637 }
2638
2639 return 0;
2640}
2641
69b693f0
MKL
2642static s32 btf_array_check_meta(struct btf_verifier_env *env,
2643 const struct btf_type *t,
2644 u32 meta_left)
2645{
2646 const struct btf_array *array = btf_type_array(t);
2647 u32 meta_needed = sizeof(*array);
2648
2649 if (meta_left < meta_needed) {
2650 btf_verifier_log_basic(env, t,
2651 "meta_left:%u meta_needed:%u",
2652 meta_left, meta_needed);
2653 return -EINVAL;
2654 }
2655
eb04bbb6
YS
2656 /* array type should not have a name */
2657 if (t->name_off) {
2658 btf_verifier_log_type(env, t, "Invalid name");
2659 return -EINVAL;
2660 }
2661
69b693f0
MKL
2662 if (btf_type_vlen(t)) {
2663 btf_verifier_log_type(env, t, "vlen != 0");
2664 return -EINVAL;
2665 }
2666
9d5f9f70
YS
2667 if (btf_type_kflag(t)) {
2668 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2669 return -EINVAL;
2670 }
2671
b9308ae6
MKL
2672 if (t->size) {
2673 btf_verifier_log_type(env, t, "size != 0");
2674 return -EINVAL;
2675 }
2676
4ef5f574
MKL
2677 /* Array elem type and index type cannot be in type void,
2678 * so !array->type and !array->index_type are not allowed.
69b693f0 2679 */
aea2f7b8 2680 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2681 btf_verifier_log_type(env, t, "Invalid elem");
2682 return -EINVAL;
2683 }
2684
aea2f7b8 2685 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2686 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2687 return -EINVAL;
2688 }
2689
2690 btf_verifier_log_type(env, t, NULL);
2691
2692 return meta_needed;
2693}
2694
eb3f595d
MKL
2695static int btf_array_resolve(struct btf_verifier_env *env,
2696 const struct resolve_vertex *v)
2697{
2698 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2699 const struct btf_type *elem_type, *index_type;
2700 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2701 struct btf *btf = env->btf;
2702 u32 elem_size;
2703
4ef5f574
MKL
2704 /* Check array->index_type */
2705 index_type_id = array->index_type;
2706 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2707 if (btf_type_nosize_or_null(index_type) ||
2708 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2709 btf_verifier_log_type(env, v->t, "Invalid index");
2710 return -EINVAL;
2711 }
2712
2713 if (!env_type_is_resolve_sink(env, index_type) &&
2714 !env_type_is_resolved(env, index_type_id))
2715 return env_stack_push(env, index_type, index_type_id);
2716
2717 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2718 if (!index_type || !btf_type_is_int(index_type) ||
2719 !btf_type_int_is_regular(index_type)) {
2720 btf_verifier_log_type(env, v->t, "Invalid index");
2721 return -EINVAL;
2722 }
2723
2724 /* Check array->type */
2725 elem_type_id = array->type;
eb3f595d 2726 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2727 if (btf_type_nosize_or_null(elem_type) ||
2728 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2729 btf_verifier_log_type(env, v->t,
2730 "Invalid elem");
2731 return -EINVAL;
2732 }
2733
2734 if (!env_type_is_resolve_sink(env, elem_type) &&
2735 !env_type_is_resolved(env, elem_type_id))
2736 return env_stack_push(env, elem_type, elem_type_id);
2737
2738 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2739 if (!elem_type) {
2740 btf_verifier_log_type(env, v->t, "Invalid elem");
2741 return -EINVAL;
2742 }
2743
4ef5f574
MKL
2744 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2745 btf_verifier_log_type(env, v->t, "Invalid array of int");
2746 return -EINVAL;
eb3f595d
MKL
2747 }
2748
2749 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2750 btf_verifier_log_type(env, v->t,
2751 "Array size overflows U32_MAX");
2752 return -EINVAL;
2753 }
2754
2755 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2756
2757 return 0;
2758}
2759
69b693f0
MKL
2760static void btf_array_log(struct btf_verifier_env *env,
2761 const struct btf_type *t)
2762{
2763 const struct btf_array *array = btf_type_array(t);
2764
2765 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2766 array->type, array->index_type, array->nelems);
2767}
2768
31d0bc81
AM
2769static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2770 u32 type_id, void *data, u8 bits_offset,
2771 struct btf_show *show)
b00b8dae
MKL
2772{
2773 const struct btf_array *array = btf_type_array(t);
2774 const struct btf_kind_operations *elem_ops;
2775 const struct btf_type *elem_type;
31d0bc81
AM
2776 u32 i, elem_size = 0, elem_type_id;
2777 u16 encoding = 0;
b00b8dae
MKL
2778
2779 elem_type_id = array->type;
31d0bc81
AM
2780 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2781 if (elem_type && btf_type_has_size(elem_type))
2782 elem_size = elem_type->size;
2783
2784 if (elem_type && btf_type_is_int(elem_type)) {
2785 u32 int_type = btf_type_int(elem_type);
2786
2787 encoding = BTF_INT_ENCODING(int_type);
2788
2789 /*
2790 * BTF_INT_CHAR encoding never seems to be set for
2791 * char arrays, so if size is 1 and element is
2792 * printable as a char, we'll do that.
2793 */
2794 if (elem_size == 1)
2795 encoding = BTF_INT_CHAR;
2796 }
2797
2798 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2799 return;
2800
2801 if (!elem_type)
2802 goto out;
b00b8dae 2803 elem_ops = btf_type_ops(elem_type);
31d0bc81 2804
b00b8dae 2805 for (i = 0; i < array->nelems; i++) {
b00b8dae 2806
31d0bc81
AM
2807 btf_show_start_array_member(show);
2808
2809 elem_ops->show(btf, elem_type, elem_type_id, data,
2810 bits_offset, show);
b00b8dae 2811 data += elem_size;
31d0bc81
AM
2812
2813 btf_show_end_array_member(show);
2814
2815 if (show->state.array_terminated)
2816 break;
b00b8dae 2817 }
31d0bc81
AM
2818out:
2819 btf_show_end_array_type(show);
2820}
2821
2822static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2823 u32 type_id, void *data, u8 bits_offset,
2824 struct btf_show *show)
2825{
2826 const struct btf_member *m = show->state.member;
2827
2828 /*
2829 * First check if any members would be shown (are non-zero).
2830 * See comments above "struct btf_show" definition for more
2831 * details on how this works at a high-level.
2832 */
2833 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2834 if (!show->state.depth_check) {
2835 show->state.depth_check = show->state.depth + 1;
2836 show->state.depth_to_show = 0;
2837 }
2838 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2839 show->state.member = m;
2840
2841 if (show->state.depth_check != show->state.depth + 1)
2842 return;
2843 show->state.depth_check = 0;
2844
2845 if (show->state.depth_to_show <= show->state.depth)
2846 return;
2847 /*
2848 * Reaching here indicates we have recursed and found
2849 * non-zero array member(s).
2850 */
2851 }
2852 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2853}
2854
69b693f0
MKL
2855static struct btf_kind_operations array_ops = {
2856 .check_meta = btf_array_check_meta,
eb3f595d 2857 .resolve = btf_array_resolve,
179cde8c 2858 .check_member = btf_array_check_member,
9d5f9f70 2859 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2860 .log_details = btf_array_log,
31d0bc81 2861 .show = btf_array_show,
69b693f0
MKL
2862};
2863
179cde8c
MKL
2864static int btf_struct_check_member(struct btf_verifier_env *env,
2865 const struct btf_type *struct_type,
2866 const struct btf_member *member,
2867 const struct btf_type *member_type)
2868{
2869 u32 struct_bits_off = member->offset;
2870 u32 struct_size, bytes_offset;
2871
2872 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2873 btf_verifier_log_member(env, struct_type, member,
2874 "Member is not byte aligned");
2875 return -EINVAL;
2876 }
2877
2878 struct_size = struct_type->size;
2879 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2880 if (struct_size - bytes_offset < member_type->size) {
2881 btf_verifier_log_member(env, struct_type, member,
2882 "Member exceeds struct_size");
2883 return -EINVAL;
2884 }
2885
2886 return 0;
2887}
2888
69b693f0
MKL
2889static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2890 const struct btf_type *t,
2891 u32 meta_left)
2892{
2893 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2894 const struct btf_member *member;
6283fa38 2895 u32 meta_needed, last_offset;
69b693f0
MKL
2896 struct btf *btf = env->btf;
2897 u32 struct_size = t->size;
9d5f9f70 2898 u32 offset;
69b693f0
MKL
2899 u16 i;
2900
2901 meta_needed = btf_type_vlen(t) * sizeof(*member);
2902 if (meta_left < meta_needed) {
2903 btf_verifier_log_basic(env, t,
2904 "meta_left:%u meta_needed:%u",
2905 meta_left, meta_needed);
2906 return -EINVAL;
2907 }
2908
eb04bbb6
YS
2909 /* struct type either no name or a valid one */
2910 if (t->name_off &&
2911 !btf_name_valid_identifier(env->btf, t->name_off)) {
2912 btf_verifier_log_type(env, t, "Invalid name");
2913 return -EINVAL;
2914 }
2915
69b693f0
MKL
2916 btf_verifier_log_type(env, t, NULL);
2917
6283fa38 2918 last_offset = 0;
69b693f0 2919 for_each_member(i, t, member) {
fbcf93eb 2920 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
2921 btf_verifier_log_member(env, t, member,
2922 "Invalid member name_offset:%u",
fbcf93eb 2923 member->name_off);
69b693f0
MKL
2924 return -EINVAL;
2925 }
2926
eb04bbb6
YS
2927 /* struct member either no name or a valid one */
2928 if (member->name_off &&
2929 !btf_name_valid_identifier(btf, member->name_off)) {
2930 btf_verifier_log_member(env, t, member, "Invalid name");
2931 return -EINVAL;
2932 }
69b693f0 2933 /* A member cannot be in type void */
aea2f7b8 2934 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
2935 btf_verifier_log_member(env, t, member,
2936 "Invalid type_id");
2937 return -EINVAL;
2938 }
2939
9d5f9f70
YS
2940 offset = btf_member_bit_offset(t, member);
2941 if (is_union && offset) {
69b693f0
MKL
2942 btf_verifier_log_member(env, t, member,
2943 "Invalid member bits_offset");
2944 return -EINVAL;
2945 }
2946
6283fa38
MKL
2947 /*
2948 * ">" instead of ">=" because the last member could be
2949 * "char a[0];"
2950 */
9d5f9f70 2951 if (last_offset > offset) {
6283fa38
MKL
2952 btf_verifier_log_member(env, t, member,
2953 "Invalid member bits_offset");
2954 return -EINVAL;
2955 }
2956
9d5f9f70 2957 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 2958 btf_verifier_log_member(env, t, member,
311fe1a8 2959 "Member bits_offset exceeds its struct size");
69b693f0
MKL
2960 return -EINVAL;
2961 }
2962
2963 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 2964 last_offset = offset;
69b693f0
MKL
2965 }
2966
2967 return meta_needed;
2968}
2969
eb3f595d
MKL
2970static int btf_struct_resolve(struct btf_verifier_env *env,
2971 const struct resolve_vertex *v)
2972{
2973 const struct btf_member *member;
179cde8c 2974 int err;
eb3f595d
MKL
2975 u16 i;
2976
2977 /* Before continue resolving the next_member,
2978 * ensure the last member is indeed resolved to a
2979 * type with size info.
2980 */
2981 if (v->next_member) {
179cde8c 2982 const struct btf_type *last_member_type;
eb3f595d
MKL
2983 const struct btf_member *last_member;
2984 u16 last_member_type_id;
2985
2986 last_member = btf_type_member(v->t) + v->next_member - 1;
2987 last_member_type_id = last_member->type;
2988 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2989 last_member_type_id)))
2990 return -EINVAL;
179cde8c
MKL
2991
2992 last_member_type = btf_type_by_id(env->btf,
2993 last_member_type_id);
9d5f9f70
YS
2994 if (btf_type_kflag(v->t))
2995 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2996 last_member,
2997 last_member_type);
2998 else
2999 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3000 last_member,
3001 last_member_type);
179cde8c
MKL
3002 if (err)
3003 return err;
eb3f595d
MKL
3004 }
3005
3006 for_each_member_from(i, v->next_member, v->t, member) {
3007 u32 member_type_id = member->type;
3008 const struct btf_type *member_type = btf_type_by_id(env->btf,
3009 member_type_id);
3010
e4f07120
SF
3011 if (btf_type_nosize_or_null(member_type) ||
3012 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3013 btf_verifier_log_member(env, v->t, member,
3014 "Invalid member");
3015 return -EINVAL;
3016 }
3017
3018 if (!env_type_is_resolve_sink(env, member_type) &&
3019 !env_type_is_resolved(env, member_type_id)) {
3020 env_stack_set_next_member(env, i + 1);
3021 return env_stack_push(env, member_type, member_type_id);
3022 }
179cde8c 3023
9d5f9f70
YS
3024 if (btf_type_kflag(v->t))
3025 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3026 member,
3027 member_type);
3028 else
3029 err = btf_type_ops(member_type)->check_member(env, v->t,
3030 member,
3031 member_type);
179cde8c
MKL
3032 if (err)
3033 return err;
eb3f595d
MKL
3034 }
3035
3036 env_stack_pop_resolved(env, 0, 0);
3037
3038 return 0;
3039}
3040
69b693f0
MKL
3041static void btf_struct_log(struct btf_verifier_env *env,
3042 const struct btf_type *t)
3043{
3044 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3045}
3046
d83525ca
AS
3047/* find 'struct bpf_spin_lock' in map value.
3048 * return >= 0 offset if found
3049 * and < 0 in case of error
3050 */
3051int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3052{
3053 const struct btf_member *member;
3054 u32 i, off = -ENOENT;
3055
3056 if (!__btf_type_is_struct(t))
3057 return -EINVAL;
3058
3059 for_each_member(i, t, member) {
3060 const struct btf_type *member_type = btf_type_by_id(btf,
3061 member->type);
3062 if (!__btf_type_is_struct(member_type))
3063 continue;
3064 if (member_type->size != sizeof(struct bpf_spin_lock))
3065 continue;
3066 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3067 "bpf_spin_lock"))
3068 continue;
3069 if (off != -ENOENT)
3070 /* only one 'struct bpf_spin_lock' is allowed */
3071 return -E2BIG;
3072 off = btf_member_bit_offset(t, member);
3073 if (off % 8)
3074 /* valid C code cannot generate such BTF */
3075 return -EINVAL;
3076 off /= 8;
3077 if (off % __alignof__(struct bpf_spin_lock))
3078 /* valid struct bpf_spin_lock will be 4 byte aligned */
3079 return -EINVAL;
3080 }
3081 return off;
3082}
3083
31d0bc81
AM
3084static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3085 u32 type_id, void *data, u8 bits_offset,
3086 struct btf_show *show)
b00b8dae 3087{
b00b8dae 3088 const struct btf_member *member;
31d0bc81 3089 void *safe_data;
b00b8dae
MKL
3090 u32 i;
3091
31d0bc81
AM
3092 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3093 if (!safe_data)
3094 return;
3095
b00b8dae
MKL
3096 for_each_member(i, t, member) {
3097 const struct btf_type *member_type = btf_type_by_id(btf,
3098 member->type);
b00b8dae 3099 const struct btf_kind_operations *ops;
9d5f9f70
YS
3100 u32 member_offset, bitfield_size;
3101 u32 bytes_offset;
3102 u8 bits8_offset;
b00b8dae 3103
31d0bc81 3104 btf_show_start_member(show, member);
b00b8dae 3105
9d5f9f70
YS
3106 member_offset = btf_member_bit_offset(t, member);
3107 bitfield_size = btf_member_bitfield_size(t, member);
17e3ac81
YS
3108 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3109 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3110 if (bitfield_size) {
31d0bc81
AM
3111 safe_data = btf_show_start_type(show, member_type,
3112 member->type,
3113 data + bytes_offset);
3114 if (safe_data)
3115 btf_bitfield_show(safe_data,
3116 bits8_offset,
3117 bitfield_size, show);
3118 btf_show_end_type(show);
9d5f9f70 3119 } else {
9d5f9f70 3120 ops = btf_type_ops(member_type);
31d0bc81
AM
3121 ops->show(btf, member_type, member->type,
3122 data + bytes_offset, bits8_offset, show);
9d5f9f70 3123 }
31d0bc81
AM
3124
3125 btf_show_end_member(show);
b00b8dae 3126 }
31d0bc81
AM
3127
3128 btf_show_end_struct_type(show);
3129}
3130
3131static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3132 u32 type_id, void *data, u8 bits_offset,
3133 struct btf_show *show)
3134{
3135 const struct btf_member *m = show->state.member;
3136
3137 /*
3138 * First check if any members would be shown (are non-zero).
3139 * See comments above "struct btf_show" definition for more
3140 * details on how this works at a high-level.
3141 */
3142 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3143 if (!show->state.depth_check) {
3144 show->state.depth_check = show->state.depth + 1;
3145 show->state.depth_to_show = 0;
3146 }
3147 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3148 /* Restore saved member data here */
3149 show->state.member = m;
3150 if (show->state.depth_check != show->state.depth + 1)
3151 return;
3152 show->state.depth_check = 0;
3153
3154 if (show->state.depth_to_show <= show->state.depth)
3155 return;
3156 /*
3157 * Reaching here indicates we have recursed and found
3158 * non-zero child values.
3159 */
3160 }
3161
3162 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3163}
3164
69b693f0
MKL
3165static struct btf_kind_operations struct_ops = {
3166 .check_meta = btf_struct_check_meta,
eb3f595d 3167 .resolve = btf_struct_resolve,
179cde8c 3168 .check_member = btf_struct_check_member,
9d5f9f70 3169 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3170 .log_details = btf_struct_log,
31d0bc81 3171 .show = btf_struct_show,
69b693f0
MKL
3172};
3173
179cde8c
MKL
3174static int btf_enum_check_member(struct btf_verifier_env *env,
3175 const struct btf_type *struct_type,
3176 const struct btf_member *member,
3177 const struct btf_type *member_type)
3178{
3179 u32 struct_bits_off = member->offset;
3180 u32 struct_size, bytes_offset;
3181
3182 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3183 btf_verifier_log_member(env, struct_type, member,
3184 "Member is not byte aligned");
3185 return -EINVAL;
3186 }
3187
3188 struct_size = struct_type->size;
3189 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3190 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3191 btf_verifier_log_member(env, struct_type, member,
3192 "Member exceeds struct_size");
3193 return -EINVAL;
3194 }
3195
3196 return 0;
3197}
3198
9d5f9f70
YS
3199static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3200 const struct btf_type *struct_type,
3201 const struct btf_member *member,
3202 const struct btf_type *member_type)
3203{
3204 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3205 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3206
3207 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3208 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3209 if (!nr_bits) {
3210 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3211 btf_verifier_log_member(env, struct_type, member,
3212 "Member is not byte aligned");
e3439af4 3213 return -EINVAL;
9d5f9f70
YS
3214 }
3215
3216 nr_bits = int_bitsize;
3217 } else if (nr_bits > int_bitsize) {
3218 btf_verifier_log_member(env, struct_type, member,
3219 "Invalid member bitfield_size");
3220 return -EINVAL;
3221 }
3222
3223 struct_size = struct_type->size;
3224 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3225 if (struct_size < bytes_end) {
3226 btf_verifier_log_member(env, struct_type, member,
3227 "Member exceeds struct_size");
3228 return -EINVAL;
3229 }
3230
3231 return 0;
3232}
3233
69b693f0
MKL
3234static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3235 const struct btf_type *t,
3236 u32 meta_left)
3237{
3238 const struct btf_enum *enums = btf_type_enum(t);
3239 struct btf *btf = env->btf;
3240 u16 i, nr_enums;
3241 u32 meta_needed;
3242
3243 nr_enums = btf_type_vlen(t);
3244 meta_needed = nr_enums * sizeof(*enums);
3245
3246 if (meta_left < meta_needed) {
3247 btf_verifier_log_basic(env, t,
3248 "meta_left:%u meta_needed:%u",
3249 meta_left, meta_needed);
3250 return -EINVAL;
3251 }
3252
9d5f9f70
YS
3253 if (btf_type_kflag(t)) {
3254 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3255 return -EINVAL;
3256 }
3257
9eea9849
AS
3258 if (t->size > 8 || !is_power_of_2(t->size)) {
3259 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
3260 return -EINVAL;
3261 }
3262
eb04bbb6
YS
3263 /* enum type either no name or a valid one */
3264 if (t->name_off &&
3265 !btf_name_valid_identifier(env->btf, t->name_off)) {
3266 btf_verifier_log_type(env, t, "Invalid name");
3267 return -EINVAL;
3268 }
3269
69b693f0
MKL
3270 btf_verifier_log_type(env, t, NULL);
3271
3272 for (i = 0; i < nr_enums; i++) {
fbcf93eb 3273 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 3274 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 3275 enums[i].name_off);
69b693f0
MKL
3276 return -EINVAL;
3277 }
3278
eb04bbb6
YS
3279 /* enum member must have a valid name */
3280 if (!enums[i].name_off ||
3281 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3282 btf_verifier_log_type(env, t, "Invalid name");
3283 return -EINVAL;
3284 }
3285
8580ac94
AS
3286 if (env->log.level == BPF_LOG_KERNEL)
3287 continue;
69b693f0 3288 btf_verifier_log(env, "\t%s val=%d\n",
23127b33 3289 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
3290 enums[i].val);
3291 }
3292
3293 return meta_needed;
3294}
3295
3296static void btf_enum_log(struct btf_verifier_env *env,
3297 const struct btf_type *t)
3298{
3299 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3300}
3301
31d0bc81
AM
3302static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3303 u32 type_id, void *data, u8 bits_offset,
3304 struct btf_show *show)
b00b8dae
MKL
3305{
3306 const struct btf_enum *enums = btf_type_enum(t);
3307 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
3308 void *safe_data;
3309 int v;
3310
3311 safe_data = btf_show_start_type(show, t, type_id, data);
3312 if (!safe_data)
3313 return;
3314
3315 v = *(int *)safe_data;
b00b8dae
MKL
3316
3317 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
3318 if (v != enums[i].val)
3319 continue;
3320
3321 btf_show_type_value(show, "%s",
3322 __btf_name_by_offset(btf,
3323 enums[i].name_off));
3324
3325 btf_show_end_type(show);
3326 return;
b00b8dae
MKL
3327 }
3328
31d0bc81
AM
3329 btf_show_type_value(show, "%d", v);
3330 btf_show_end_type(show);
b00b8dae
MKL
3331}
3332
69b693f0
MKL
3333static struct btf_kind_operations enum_ops = {
3334 .check_meta = btf_enum_check_meta,
eb3f595d 3335 .resolve = btf_df_resolve,
179cde8c 3336 .check_member = btf_enum_check_member,
9d5f9f70 3337 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 3338 .log_details = btf_enum_log,
31d0bc81 3339 .show = btf_enum_show,
69b693f0
MKL
3340};
3341
2667a262
MKL
3342static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3343 const struct btf_type *t,
3344 u32 meta_left)
3345{
3346 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3347
3348 if (meta_left < meta_needed) {
3349 btf_verifier_log_basic(env, t,
3350 "meta_left:%u meta_needed:%u",
3351 meta_left, meta_needed);
3352 return -EINVAL;
3353 }
3354
3355 if (t->name_off) {
3356 btf_verifier_log_type(env, t, "Invalid name");
3357 return -EINVAL;
3358 }
3359
9d5f9f70
YS
3360 if (btf_type_kflag(t)) {
3361 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3362 return -EINVAL;
3363 }
3364
2667a262
MKL
3365 btf_verifier_log_type(env, t, NULL);
3366
3367 return meta_needed;
3368}
3369
3370static void btf_func_proto_log(struct btf_verifier_env *env,
3371 const struct btf_type *t)
3372{
3373 const struct btf_param *args = (const struct btf_param *)(t + 1);
3374 u16 nr_args = btf_type_vlen(t), i;
3375
3376 btf_verifier_log(env, "return=%u args=(", t->type);
3377 if (!nr_args) {
3378 btf_verifier_log(env, "void");
3379 goto done;
3380 }
3381
3382 if (nr_args == 1 && !args[0].type) {
3383 /* Only one vararg */
3384 btf_verifier_log(env, "vararg");
3385 goto done;
3386 }
3387
3388 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
3389 __btf_name_by_offset(env->btf,
3390 args[0].name_off));
2667a262
MKL
3391 for (i = 1; i < nr_args - 1; i++)
3392 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
3393 __btf_name_by_offset(env->btf,
3394 args[i].name_off));
2667a262
MKL
3395
3396 if (nr_args > 1) {
3397 const struct btf_param *last_arg = &args[nr_args - 1];
3398
3399 if (last_arg->type)
3400 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
3401 __btf_name_by_offset(env->btf,
3402 last_arg->name_off));
2667a262
MKL
3403 else
3404 btf_verifier_log(env, ", vararg");
3405 }
3406
3407done:
3408 btf_verifier_log(env, ")");
3409}
3410
3411static struct btf_kind_operations func_proto_ops = {
3412 .check_meta = btf_func_proto_check_meta,
3413 .resolve = btf_df_resolve,
3414 /*
3415 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3416 * a struct's member.
3417 *
3418 * It should be a funciton pointer instead.
3419 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3420 *
3421 * Hence, there is no btf_func_check_member().
3422 */
3423 .check_member = btf_df_check_member,
9d5f9f70 3424 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3425 .log_details = btf_func_proto_log,
31d0bc81 3426 .show = btf_df_show,
2667a262
MKL
3427};
3428
3429static s32 btf_func_check_meta(struct btf_verifier_env *env,
3430 const struct btf_type *t,
3431 u32 meta_left)
3432{
3433 if (!t->name_off ||
3434 !btf_name_valid_identifier(env->btf, t->name_off)) {
3435 btf_verifier_log_type(env, t, "Invalid name");
3436 return -EINVAL;
3437 }
3438
51c39bb1
AS
3439 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3440 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
3441 return -EINVAL;
3442 }
3443
9d5f9f70
YS
3444 if (btf_type_kflag(t)) {
3445 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3446 return -EINVAL;
3447 }
3448
2667a262
MKL
3449 btf_verifier_log_type(env, t, NULL);
3450
3451 return 0;
3452}
3453
3454static struct btf_kind_operations func_ops = {
3455 .check_meta = btf_func_check_meta,
3456 .resolve = btf_df_resolve,
3457 .check_member = btf_df_check_member,
9d5f9f70 3458 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3459 .log_details = btf_ref_type_log,
31d0bc81 3460 .show = btf_df_show,
2667a262
MKL
3461};
3462
1dc92851
DB
3463static s32 btf_var_check_meta(struct btf_verifier_env *env,
3464 const struct btf_type *t,
3465 u32 meta_left)
3466{
3467 const struct btf_var *var;
3468 u32 meta_needed = sizeof(*var);
3469
3470 if (meta_left < meta_needed) {
3471 btf_verifier_log_basic(env, t,
3472 "meta_left:%u meta_needed:%u",
3473 meta_left, meta_needed);
3474 return -EINVAL;
3475 }
3476
3477 if (btf_type_vlen(t)) {
3478 btf_verifier_log_type(env, t, "vlen != 0");
3479 return -EINVAL;
3480 }
3481
3482 if (btf_type_kflag(t)) {
3483 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3484 return -EINVAL;
3485 }
3486
3487 if (!t->name_off ||
3488 !__btf_name_valid(env->btf, t->name_off, true)) {
3489 btf_verifier_log_type(env, t, "Invalid name");
3490 return -EINVAL;
3491 }
3492
3493 /* A var cannot be in type void */
3494 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3495 btf_verifier_log_type(env, t, "Invalid type_id");
3496 return -EINVAL;
3497 }
3498
3499 var = btf_type_var(t);
3500 if (var->linkage != BTF_VAR_STATIC &&
3501 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3502 btf_verifier_log_type(env, t, "Linkage not supported");
3503 return -EINVAL;
3504 }
3505
3506 btf_verifier_log_type(env, t, NULL);
3507
3508 return meta_needed;
3509}
3510
3511static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3512{
3513 const struct btf_var *var = btf_type_var(t);
3514
3515 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3516}
3517
3518static const struct btf_kind_operations var_ops = {
3519 .check_meta = btf_var_check_meta,
3520 .resolve = btf_var_resolve,
3521 .check_member = btf_df_check_member,
3522 .check_kflag_member = btf_df_check_kflag_member,
3523 .log_details = btf_var_log,
31d0bc81 3524 .show = btf_var_show,
1dc92851
DB
3525};
3526
3527static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3528 const struct btf_type *t,
3529 u32 meta_left)
3530{
3531 const struct btf_var_secinfo *vsi;
3532 u64 last_vsi_end_off = 0, sum = 0;
3533 u32 i, meta_needed;
3534
3535 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3536 if (meta_left < meta_needed) {
3537 btf_verifier_log_basic(env, t,
3538 "meta_left:%u meta_needed:%u",
3539 meta_left, meta_needed);
3540 return -EINVAL;
3541 }
3542
1dc92851
DB
3543 if (!t->size) {
3544 btf_verifier_log_type(env, t, "size == 0");
3545 return -EINVAL;
3546 }
3547
3548 if (btf_type_kflag(t)) {
3549 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3550 return -EINVAL;
3551 }
3552
3553 if (!t->name_off ||
3554 !btf_name_valid_section(env->btf, t->name_off)) {
3555 btf_verifier_log_type(env, t, "Invalid name");
3556 return -EINVAL;
3557 }
3558
3559 btf_verifier_log_type(env, t, NULL);
3560
3561 for_each_vsi(i, t, vsi) {
3562 /* A var cannot be in type void */
3563 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3564 btf_verifier_log_vsi(env, t, vsi,
3565 "Invalid type_id");
3566 return -EINVAL;
3567 }
3568
3569 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3570 btf_verifier_log_vsi(env, t, vsi,
3571 "Invalid offset");
3572 return -EINVAL;
3573 }
3574
3575 if (!vsi->size || vsi->size > t->size) {
3576 btf_verifier_log_vsi(env, t, vsi,
3577 "Invalid size");
3578 return -EINVAL;
3579 }
3580
3581 last_vsi_end_off = vsi->offset + vsi->size;
3582 if (last_vsi_end_off > t->size) {
3583 btf_verifier_log_vsi(env, t, vsi,
3584 "Invalid offset+size");
3585 return -EINVAL;
3586 }
3587
3588 btf_verifier_log_vsi(env, t, vsi, NULL);
3589 sum += vsi->size;
3590 }
3591
3592 if (t->size < sum) {
3593 btf_verifier_log_type(env, t, "Invalid btf_info size");
3594 return -EINVAL;
3595 }
3596
3597 return meta_needed;
3598}
3599
3600static int btf_datasec_resolve(struct btf_verifier_env *env,
3601 const struct resolve_vertex *v)
3602{
3603 const struct btf_var_secinfo *vsi;
3604 struct btf *btf = env->btf;
3605 u16 i;
3606
3607 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3608 u32 var_type_id = vsi->type, type_id, type_size = 0;
3609 const struct btf_type *var_type = btf_type_by_id(env->btf,
3610 var_type_id);
3611 if (!var_type || !btf_type_is_var(var_type)) {
3612 btf_verifier_log_vsi(env, v->t, vsi,
3613 "Not a VAR kind member");
3614 return -EINVAL;
3615 }
3616
3617 if (!env_type_is_resolve_sink(env, var_type) &&
3618 !env_type_is_resolved(env, var_type_id)) {
3619 env_stack_set_next_member(env, i + 1);
3620 return env_stack_push(env, var_type, var_type_id);
3621 }
3622
3623 type_id = var_type->type;
3624 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3625 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3626 return -EINVAL;
3627 }
3628
3629 if (vsi->size < type_size) {
3630 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3631 return -EINVAL;
3632 }
3633 }
3634
3635 env_stack_pop_resolved(env, 0, 0);
3636 return 0;
3637}
3638
3639static void btf_datasec_log(struct btf_verifier_env *env,
3640 const struct btf_type *t)
3641{
3642 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3643}
3644
31d0bc81
AM
3645static void btf_datasec_show(const struct btf *btf,
3646 const struct btf_type *t, u32 type_id,
3647 void *data, u8 bits_offset,
3648 struct btf_show *show)
1dc92851
DB
3649{
3650 const struct btf_var_secinfo *vsi;
3651 const struct btf_type *var;
3652 u32 i;
3653
31d0bc81
AM
3654 if (!btf_show_start_type(show, t, type_id, data))
3655 return;
3656
3657 btf_show_type_value(show, "section (\"%s\") = {",
3658 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
3659 for_each_vsi(i, t, vsi) {
3660 var = btf_type_by_id(btf, vsi->type);
3661 if (i)
31d0bc81
AM
3662 btf_show(show, ",");
3663 btf_type_ops(var)->show(btf, var, vsi->type,
3664 data + vsi->offset, bits_offset, show);
1dc92851 3665 }
31d0bc81 3666 btf_show_end_type(show);
1dc92851
DB
3667}
3668
3669static const struct btf_kind_operations datasec_ops = {
3670 .check_meta = btf_datasec_check_meta,
3671 .resolve = btf_datasec_resolve,
3672 .check_member = btf_df_check_member,
3673 .check_kflag_member = btf_df_check_kflag_member,
3674 .log_details = btf_datasec_log,
31d0bc81 3675 .show = btf_datasec_show,
1dc92851
DB
3676};
3677
2667a262
MKL
3678static int btf_func_proto_check(struct btf_verifier_env *env,
3679 const struct btf_type *t)
3680{
3681 const struct btf_type *ret_type;
3682 const struct btf_param *args;
3683 const struct btf *btf;
3684 u16 nr_args, i;
3685 int err;
3686
3687 btf = env->btf;
3688 args = (const struct btf_param *)(t + 1);
3689 nr_args = btf_type_vlen(t);
3690
3691 /* Check func return type which could be "void" (t->type == 0) */
3692 if (t->type) {
3693 u32 ret_type_id = t->type;
3694
3695 ret_type = btf_type_by_id(btf, ret_type_id);
3696 if (!ret_type) {
3697 btf_verifier_log_type(env, t, "Invalid return type");
3698 return -EINVAL;
3699 }
3700
3701 if (btf_type_needs_resolve(ret_type) &&
3702 !env_type_is_resolved(env, ret_type_id)) {
3703 err = btf_resolve(env, ret_type, ret_type_id);
3704 if (err)
3705 return err;
3706 }
3707
3708 /* Ensure the return type is a type that has a size */
3709 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3710 btf_verifier_log_type(env, t, "Invalid return type");
3711 return -EINVAL;
3712 }
3713 }
3714
3715 if (!nr_args)
3716 return 0;
3717
3718 /* Last func arg type_id could be 0 if it is a vararg */
3719 if (!args[nr_args - 1].type) {
3720 if (args[nr_args - 1].name_off) {
3721 btf_verifier_log_type(env, t, "Invalid arg#%u",
3722 nr_args);
3723 return -EINVAL;
3724 }
3725 nr_args--;
3726 }
3727
3728 err = 0;
3729 for (i = 0; i < nr_args; i++) {
3730 const struct btf_type *arg_type;
3731 u32 arg_type_id;
3732
3733 arg_type_id = args[i].type;
3734 arg_type = btf_type_by_id(btf, arg_type_id);
3735 if (!arg_type) {
3736 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3737 err = -EINVAL;
3738 break;
3739 }
3740
3741 if (args[i].name_off &&
3742 (!btf_name_offset_valid(btf, args[i].name_off) ||
3743 !btf_name_valid_identifier(btf, args[i].name_off))) {
3744 btf_verifier_log_type(env, t,
3745 "Invalid arg#%u", i + 1);
3746 err = -EINVAL;
3747 break;
3748 }
3749
3750 if (btf_type_needs_resolve(arg_type) &&
3751 !env_type_is_resolved(env, arg_type_id)) {
3752 err = btf_resolve(env, arg_type, arg_type_id);
3753 if (err)
3754 break;
3755 }
3756
3757 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3758 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3759 err = -EINVAL;
3760 break;
3761 }
3762 }
3763
3764 return err;
3765}
3766
3767static int btf_func_check(struct btf_verifier_env *env,
3768 const struct btf_type *t)
3769{
3770 const struct btf_type *proto_type;
3771 const struct btf_param *args;
3772 const struct btf *btf;
3773 u16 nr_args, i;
3774
3775 btf = env->btf;
3776 proto_type = btf_type_by_id(btf, t->type);
3777
3778 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3779 btf_verifier_log_type(env, t, "Invalid type_id");
3780 return -EINVAL;
3781 }
3782
3783 args = (const struct btf_param *)(proto_type + 1);
3784 nr_args = btf_type_vlen(proto_type);
3785 for (i = 0; i < nr_args; i++) {
3786 if (!args[i].name_off && args[i].type) {
3787 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3788 return -EINVAL;
3789 }
3790 }
3791
3792 return 0;
3793}
3794
69b693f0
MKL
3795static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3796 [BTF_KIND_INT] = &int_ops,
3797 [BTF_KIND_PTR] = &ptr_ops,
3798 [BTF_KIND_ARRAY] = &array_ops,
3799 [BTF_KIND_STRUCT] = &struct_ops,
3800 [BTF_KIND_UNION] = &struct_ops,
3801 [BTF_KIND_ENUM] = &enum_ops,
3802 [BTF_KIND_FWD] = &fwd_ops,
3803 [BTF_KIND_TYPEDEF] = &modifier_ops,
3804 [BTF_KIND_VOLATILE] = &modifier_ops,
3805 [BTF_KIND_CONST] = &modifier_ops,
3806 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
3807 [BTF_KIND_FUNC] = &func_ops,
3808 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
3809 [BTF_KIND_VAR] = &var_ops,
3810 [BTF_KIND_DATASEC] = &datasec_ops,
69b693f0
MKL
3811};
3812
3813static s32 btf_check_meta(struct btf_verifier_env *env,
3814 const struct btf_type *t,
3815 u32 meta_left)
3816{
3817 u32 saved_meta_left = meta_left;
3818 s32 var_meta_size;
3819
3820 if (meta_left < sizeof(*t)) {
3821 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3822 env->log_type_id, meta_left, sizeof(*t));
3823 return -EINVAL;
3824 }
3825 meta_left -= sizeof(*t);
3826
aea2f7b8
MKL
3827 if (t->info & ~BTF_INFO_MASK) {
3828 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3829 env->log_type_id, t->info);
3830 return -EINVAL;
3831 }
3832
69b693f0
MKL
3833 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3834 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3835 btf_verifier_log(env, "[%u] Invalid kind:%u",
3836 env->log_type_id, BTF_INFO_KIND(t->info));
3837 return -EINVAL;
3838 }
3839
fbcf93eb 3840 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 3841 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 3842 env->log_type_id, t->name_off);
69b693f0
MKL
3843 return -EINVAL;
3844 }
3845
3846 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3847 if (var_meta_size < 0)
3848 return var_meta_size;
3849
3850 meta_left -= var_meta_size;
3851
3852 return saved_meta_left - meta_left;
3853}
3854
3855static int btf_check_all_metas(struct btf_verifier_env *env)
3856{
3857 struct btf *btf = env->btf;
3858 struct btf_header *hdr;
3859 void *cur, *end;
3860
f80442a4 3861 hdr = &btf->hdr;
69b693f0 3862 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 3863 end = cur + hdr->type_len;
69b693f0 3864
951bb646 3865 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
3866 while (cur < end) {
3867 struct btf_type *t = cur;
3868 s32 meta_size;
3869
3870 meta_size = btf_check_meta(env, t, end - cur);
3871 if (meta_size < 0)
3872 return meta_size;
3873
3874 btf_add_type(env, t);
3875 cur += meta_size;
3876 env->log_type_id++;
3877 }
3878
3879 return 0;
3880}
3881
eb3f595d
MKL
3882static bool btf_resolve_valid(struct btf_verifier_env *env,
3883 const struct btf_type *t,
3884 u32 type_id)
3885{
3886 struct btf *btf = env->btf;
3887
3888 if (!env_type_is_resolved(env, type_id))
3889 return false;
3890
1dc92851 3891 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
3892 return !btf_resolved_type_id(btf, type_id) &&
3893 !btf_resolved_type_size(btf, type_id);
eb3f595d 3894
1dc92851
DB
3895 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3896 btf_type_is_var(t)) {
eb3f595d 3897 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
3898 return t &&
3899 !btf_type_is_modifier(t) &&
3900 !btf_type_is_var(t) &&
3901 !btf_type_is_datasec(t);
eb3f595d
MKL
3902 }
3903
3904 if (btf_type_is_array(t)) {
3905 const struct btf_array *array = btf_type_array(t);
3906 const struct btf_type *elem_type;
3907 u32 elem_type_id = array->type;
3908 u32 elem_size;
3909
3910 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3911 return elem_type && !btf_type_is_modifier(elem_type) &&
3912 (array->nelems * elem_size ==
951bb646 3913 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
3914 }
3915
3916 return false;
3917}
3918
2667a262
MKL
3919static int btf_resolve(struct btf_verifier_env *env,
3920 const struct btf_type *t, u32 type_id)
3921{
3922 u32 save_log_type_id = env->log_type_id;
3923 const struct resolve_vertex *v;
3924 int err = 0;
3925
3926 env->resolve_mode = RESOLVE_TBD;
3927 env_stack_push(env, t, type_id);
3928 while (!err && (v = env_stack_peak(env))) {
3929 env->log_type_id = v->type_id;
3930 err = btf_type_ops(v->t)->resolve(env, v);
3931 }
3932
3933 env->log_type_id = type_id;
3934 if (err == -E2BIG) {
3935 btf_verifier_log_type(env, t,
3936 "Exceeded max resolving depth:%u",
3937 MAX_RESOLVE_DEPTH);
3938 } else if (err == -EEXIST) {
3939 btf_verifier_log_type(env, t, "Loop detected");
3940 }
3941
3942 /* Final sanity check */
3943 if (!err && !btf_resolve_valid(env, t, type_id)) {
3944 btf_verifier_log_type(env, t, "Invalid resolve state");
3945 err = -EINVAL;
3946 }
3947
3948 env->log_type_id = save_log_type_id;
3949 return err;
3950}
3951
eb3f595d
MKL
3952static int btf_check_all_types(struct btf_verifier_env *env)
3953{
3954 struct btf *btf = env->btf;
951bb646
AN
3955 const struct btf_type *t;
3956 u32 type_id, i;
eb3f595d
MKL
3957 int err;
3958
3959 err = env_resolve_init(env);
3960 if (err)
3961 return err;
3962
3963 env->phase++;
951bb646
AN
3964 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
3965 type_id = btf->start_id + i;
3966 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
3967
3968 env->log_type_id = type_id;
3969 if (btf_type_needs_resolve(t) &&
3970 !env_type_is_resolved(env, type_id)) {
3971 err = btf_resolve(env, t, type_id);
3972 if (err)
3973 return err;
3974 }
3975
2667a262
MKL
3976 if (btf_type_is_func_proto(t)) {
3977 err = btf_func_proto_check(env, t);
3978 if (err)
3979 return err;
3980 }
3981
3982 if (btf_type_is_func(t)) {
3983 err = btf_func_check(env, t);
3984 if (err)
3985 return err;
eb3f595d
MKL
3986 }
3987 }
3988
3989 return 0;
3990}
3991
69b693f0
MKL
3992static int btf_parse_type_sec(struct btf_verifier_env *env)
3993{
f80442a4 3994 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
3995 int err;
3996
f80442a4
MKL
3997 /* Type section must align to 4 bytes */
3998 if (hdr->type_off & (sizeof(u32) - 1)) {
3999 btf_verifier_log(env, "Unaligned type_off");
4000 return -EINVAL;
4001 }
4002
951bb646 4003 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
4004 btf_verifier_log(env, "No type found");
4005 return -EINVAL;
4006 }
4007
eb3f595d
MKL
4008 err = btf_check_all_metas(env);
4009 if (err)
4010 return err;
4011
4012 return btf_check_all_types(env);
69b693f0
MKL
4013}
4014
4015static int btf_parse_str_sec(struct btf_verifier_env *env)
4016{
4017 const struct btf_header *hdr;
4018 struct btf *btf = env->btf;
4019 const char *start, *end;
4020
f80442a4 4021 hdr = &btf->hdr;
69b693f0
MKL
4022 start = btf->nohdr_data + hdr->str_off;
4023 end = start + hdr->str_len;
4024
f80442a4
MKL
4025 if (end != btf->data + btf->data_size) {
4026 btf_verifier_log(env, "String section is not at the end");
4027 return -EINVAL;
4028 }
4029
951bb646
AN
4030 btf->strings = start;
4031
4032 if (btf->base_btf && !hdr->str_len)
4033 return 0;
4034 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4035 btf_verifier_log(env, "Invalid string section");
4036 return -EINVAL;
4037 }
4038 if (!btf->base_btf && start[0]) {
69b693f0
MKL
4039 btf_verifier_log(env, "Invalid string section");
4040 return -EINVAL;
4041 }
69b693f0
MKL
4042
4043 return 0;
4044}
4045
f80442a4
MKL
4046static const size_t btf_sec_info_offset[] = {
4047 offsetof(struct btf_header, type_off),
4048 offsetof(struct btf_header, str_off),
4049};
4050
4051static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 4052{
f80442a4
MKL
4053 const struct btf_sec_info *x = a;
4054 const struct btf_sec_info *y = b;
4055
4056 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4057}
4058
4059static int btf_check_sec_info(struct btf_verifier_env *env,
4060 u32 btf_data_size)
4061{
a2889a4c 4062 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 4063 u32 total, expected_total, i;
69b693f0 4064 const struct btf_header *hdr;
f80442a4
MKL
4065 const struct btf *btf;
4066
4067 btf = env->btf;
4068 hdr = &btf->hdr;
4069
4070 /* Populate the secs from hdr */
a2889a4c 4071 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
4072 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4073 btf_sec_info_offset[i]);
4074
a2889a4c
MKL
4075 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4076 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
4077
4078 /* Check for gaps and overlap among sections */
4079 total = 0;
4080 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 4081 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
4082 if (expected_total < secs[i].off) {
4083 btf_verifier_log(env, "Invalid section offset");
4084 return -EINVAL;
4085 }
4086 if (total < secs[i].off) {
4087 /* gap */
4088 btf_verifier_log(env, "Unsupported section found");
4089 return -EINVAL;
4090 }
4091 if (total > secs[i].off) {
4092 btf_verifier_log(env, "Section overlap found");
4093 return -EINVAL;
4094 }
4095 if (expected_total - total < secs[i].len) {
4096 btf_verifier_log(env,
4097 "Total section length too long");
4098 return -EINVAL;
4099 }
4100 total += secs[i].len;
4101 }
4102
4103 /* There is data other than hdr and known sections */
4104 if (expected_total != total) {
4105 btf_verifier_log(env, "Unsupported section found");
4106 return -EINVAL;
4107 }
4108
4109 return 0;
4110}
4111
4a6998af 4112static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 4113{
4a6998af 4114 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 4115 const struct btf_header *hdr;
f80442a4
MKL
4116 struct btf *btf;
4117 int err;
69b693f0 4118
f80442a4 4119 btf = env->btf;
4a6998af 4120 btf_data_size = btf->data_size;
f80442a4 4121
4a6998af
ML
4122 if (btf_data_size <
4123 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
f80442a4
MKL
4124 btf_verifier_log(env, "hdr_len not found");
4125 return -EINVAL;
4126 }
4127
4a6998af
ML
4128 hdr = btf->data;
4129 hdr_len = hdr->hdr_len;
f80442a4 4130 if (btf_data_size < hdr_len) {
69b693f0
MKL
4131 btf_verifier_log(env, "btf_header not found");
4132 return -EINVAL;
4133 }
4134
4a6998af
ML
4135 /* Ensure the unsupported header fields are zero */
4136 if (hdr_len > sizeof(btf->hdr)) {
4137 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4138 u8 *end = btf->data + hdr_len;
4139
4140 for (; expected_zero < end; expected_zero++) {
4141 if (*expected_zero) {
4142 btf_verifier_log(env, "Unsupported btf_header");
4143 return -E2BIG;
4144 }
4145 }
f80442a4
MKL
4146 }
4147
4148 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 4149 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
4150
4151 hdr = &btf->hdr;
4152
4153 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 4154
69b693f0
MKL
4155 if (hdr->magic != BTF_MAGIC) {
4156 btf_verifier_log(env, "Invalid magic");
4157 return -EINVAL;
4158 }
4159
4160 if (hdr->version != BTF_VERSION) {
4161 btf_verifier_log(env, "Unsupported version");
4162 return -ENOTSUPP;
4163 }
4164
4165 if (hdr->flags) {
4166 btf_verifier_log(env, "Unsupported flags");
4167 return -ENOTSUPP;
4168 }
4169
bcc5e616 4170 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
4171 btf_verifier_log(env, "No data");
4172 return -EINVAL;
4173 }
4174
f80442a4
MKL
4175 err = btf_check_sec_info(env, btf_data_size);
4176 if (err)
4177 return err;
69b693f0
MKL
4178
4179 return 0;
4180}
4181
4182static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4183 u32 log_level, char __user *log_ubuf, u32 log_size)
4184{
4185 struct btf_verifier_env *env = NULL;
4186 struct bpf_verifier_log *log;
4187 struct btf *btf = NULL;
4188 u8 *data;
4189 int err;
4190
4191 if (btf_data_size > BTF_MAX_SIZE)
4192 return ERR_PTR(-E2BIG);
4193
4194 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4195 if (!env)
4196 return ERR_PTR(-ENOMEM);
4197
4198 log = &env->log;
4199 if (log_level || log_ubuf || log_size) {
4200 /* user requested verbose verifier output
4201 * and supplied buffer to store the verification trace
4202 */
4203 log->level = log_level;
4204 log->ubuf = log_ubuf;
4205 log->len_total = log_size;
4206
4207 /* log attributes have to be sane */
4208 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4209 !log->level || !log->ubuf) {
4210 err = -EINVAL;
4211 goto errout;
4212 }
4213 }
4214
4215 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4216 if (!btf) {
4217 err = -ENOMEM;
4218 goto errout;
4219 }
f80442a4
MKL
4220 env->btf = btf;
4221
69b693f0
MKL
4222 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4223 if (!data) {
4224 err = -ENOMEM;
4225 goto errout;
4226 }
4227
4228 btf->data = data;
4229 btf->data_size = btf_data_size;
4230
4231 if (copy_from_user(data, btf_data, btf_data_size)) {
4232 err = -EFAULT;
4233 goto errout;
4234 }
4235
4a6998af
ML
4236 err = btf_parse_hdr(env);
4237 if (err)
4238 goto errout;
4239
4240 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4241
69b693f0
MKL
4242 err = btf_parse_str_sec(env);
4243 if (err)
4244 goto errout;
4245
4246 err = btf_parse_type_sec(env);
4247 if (err)
4248 goto errout;
4249
f80442a4 4250 if (log->level && bpf_verifier_log_full(log)) {
69b693f0
MKL
4251 err = -ENOSPC;
4252 goto errout;
4253 }
4254
f80442a4
MKL
4255 btf_verifier_env_free(env);
4256 refcount_set(&btf->refcnt, 1);
4257 return btf;
69b693f0
MKL
4258
4259errout:
4260 btf_verifier_env_free(env);
4261 if (btf)
4262 btf_free(btf);
4263 return ERR_PTR(err);
4264}
b00b8dae 4265
90ceddcb
FS
4266extern char __weak __start_BTF[];
4267extern char __weak __stop_BTF[];
91cc1a99
AS
4268extern struct btf *btf_vmlinux;
4269
4270#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 4271#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
4272static union {
4273 struct bpf_ctx_convert {
4274#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4275 prog_ctx_type _id##_prog; \
4276 kern_ctx_type _id##_kern;
4277#include <linux/bpf_types.h>
4278#undef BPF_PROG_TYPE
4279 } *__t;
4280 /* 't' is written once under lock. Read many times. */
4281 const struct btf_type *t;
4282} bpf_ctx_convert;
4283enum {
4284#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4285 __ctx_convert##_id,
4286#include <linux/bpf_types.h>
4287#undef BPF_PROG_TYPE
ce27709b 4288 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
4289};
4290static u8 bpf_ctx_convert_map[] = {
4291#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4292 [_id] = __ctx_convert##_id,
4293#include <linux/bpf_types.h>
4294#undef BPF_PROG_TYPE
4c80c7bc 4295 0, /* avoid empty array */
91cc1a99
AS
4296};
4297#undef BPF_MAP_TYPE
f2e10bff 4298#undef BPF_LINK_TYPE
91cc1a99
AS
4299
4300static const struct btf_member *
4301btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
51c39bb1
AS
4302 const struct btf_type *t, enum bpf_prog_type prog_type,
4303 int arg)
91cc1a99
AS
4304{
4305 const struct btf_type *conv_struct;
4306 const struct btf_type *ctx_struct;
4307 const struct btf_member *ctx_type;
4308 const char *tname, *ctx_tname;
4309
4310 conv_struct = bpf_ctx_convert.t;
4311 if (!conv_struct) {
4312 bpf_log(log, "btf_vmlinux is malformed\n");
4313 return NULL;
4314 }
4315 t = btf_type_by_id(btf, t->type);
4316 while (btf_type_is_modifier(t))
4317 t = btf_type_by_id(btf, t->type);
4318 if (!btf_type_is_struct(t)) {
4319 /* Only pointer to struct is supported for now.
4320 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4321 * is not supported yet.
4322 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4323 */
51c39bb1
AS
4324 if (log->level & BPF_LOG_LEVEL)
4325 bpf_log(log, "arg#%d type is not a struct\n", arg);
91cc1a99
AS
4326 return NULL;
4327 }
4328 tname = btf_name_by_offset(btf, t->name_off);
4329 if (!tname) {
51c39bb1 4330 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
4331 return NULL;
4332 }
4333 /* prog_type is valid bpf program type. No need for bounds check. */
4334 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4335 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4336 * Like 'struct __sk_buff'
4337 */
4338 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4339 if (!ctx_struct)
4340 /* should not happen */
4341 return NULL;
4342 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4343 if (!ctx_tname) {
4344 /* should not happen */
4345 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4346 return NULL;
4347 }
4348 /* only compare that prog's ctx type name is the same as
4349 * kernel expects. No need to compare field by field.
4350 * It's ok for bpf prog to do:
4351 * struct __sk_buff {};
4352 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4353 * { // no fields of skb are ever used }
4354 */
4355 if (strcmp(ctx_tname, tname))
4356 return NULL;
4357 return ctx_type;
4358}
8580ac94 4359
41c48f3a
AI
4360static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4361#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4362#define BPF_LINK_TYPE(_id, _name)
4363#define BPF_MAP_TYPE(_id, _ops) \
4364 [_id] = &_ops,
4365#include <linux/bpf_types.h>
4366#undef BPF_PROG_TYPE
4367#undef BPF_LINK_TYPE
4368#undef BPF_MAP_TYPE
4369};
4370
4371static int btf_vmlinux_map_ids_init(const struct btf *btf,
4372 struct bpf_verifier_log *log)
4373{
4374 const struct bpf_map_ops *ops;
4375 int i, btf_id;
4376
4377 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4378 ops = btf_vmlinux_map_ops[i];
4379 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4380 continue;
4381 if (!ops->map_btf_name || !ops->map_btf_id) {
4382 bpf_log(log, "map type %d is misconfigured\n", i);
4383 return -EINVAL;
4384 }
4385 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4386 BTF_KIND_STRUCT);
4387 if (btf_id < 0)
4388 return btf_id;
4389 *ops->map_btf_id = btf_id;
4390 }
4391
4392 return 0;
4393}
4394
5b92a28a
AS
4395static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4396 struct btf *btf,
4397 const struct btf_type *t,
51c39bb1
AS
4398 enum bpf_prog_type prog_type,
4399 int arg)
5b92a28a
AS
4400{
4401 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4402
51c39bb1 4403 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
4404 if (!prog_ctx_type)
4405 return -ENOENT;
4406 kern_ctx_type = prog_ctx_type + 1;
4407 return kern_ctx_type->type;
4408}
4409
49f4e672
JO
4410BTF_ID_LIST(bpf_ctx_convert_btf_id)
4411BTF_ID(struct, bpf_ctx_convert)
4412
8580ac94
AS
4413struct btf *btf_parse_vmlinux(void)
4414{
4415 struct btf_verifier_env *env = NULL;
4416 struct bpf_verifier_log *log;
4417 struct btf *btf = NULL;
49f4e672 4418 int err;
8580ac94
AS
4419
4420 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4421 if (!env)
4422 return ERR_PTR(-ENOMEM);
4423
4424 log = &env->log;
4425 log->level = BPF_LOG_KERNEL;
4426
4427 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4428 if (!btf) {
4429 err = -ENOMEM;
4430 goto errout;
4431 }
4432 env->btf = btf;
4433
90ceddcb
FS
4434 btf->data = __start_BTF;
4435 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
4436 btf->kernel_btf = true;
4437 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
4438
4439 err = btf_parse_hdr(env);
4440 if (err)
4441 goto errout;
4442
4443 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4444
4445 err = btf_parse_str_sec(env);
4446 if (err)
4447 goto errout;
4448
4449 err = btf_check_all_metas(env);
4450 if (err)
4451 goto errout;
4452
a2d0d62f 4453 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 4454 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 4455
41c48f3a
AI
4456 /* find bpf map structs for map_ptr access checking */
4457 err = btf_vmlinux_map_ids_init(btf, log);
4458 if (err < 0)
4459 goto errout;
4460
d3e42bb0 4461 bpf_struct_ops_init(btf, log);
27ae7997 4462
8580ac94 4463 refcount_set(&btf->refcnt, 1);
53297220
AN
4464
4465 err = btf_alloc_id(btf);
4466 if (err)
4467 goto errout;
4468
4469 btf_verifier_env_free(env);
8580ac94
AS
4470 return btf;
4471
4472errout:
4473 btf_verifier_env_free(env);
4474 if (btf) {
4475 kvfree(btf->types);
4476 kfree(btf);
4477 }
4478 return ERR_PTR(err);
4479}
4480
7112d127
AN
4481#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4482
36e68442
AN
4483static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4484{
4485 struct btf_verifier_env *env = NULL;
4486 struct bpf_verifier_log *log;
4487 struct btf *btf = NULL, *base_btf;
4488 int err;
4489
4490 base_btf = bpf_get_btf_vmlinux();
4491 if (IS_ERR(base_btf))
4492 return base_btf;
4493 if (!base_btf)
4494 return ERR_PTR(-EINVAL);
4495
4496 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4497 if (!env)
4498 return ERR_PTR(-ENOMEM);
4499
4500 log = &env->log;
4501 log->level = BPF_LOG_KERNEL;
4502
4503 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4504 if (!btf) {
4505 err = -ENOMEM;
4506 goto errout;
4507 }
4508 env->btf = btf;
4509
4510 btf->base_btf = base_btf;
4511 btf->start_id = base_btf->nr_types;
4512 btf->start_str_off = base_btf->hdr.str_len;
4513 btf->kernel_btf = true;
4514 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4515
4516 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4517 if (!btf->data) {
4518 err = -ENOMEM;
4519 goto errout;
4520 }
4521 memcpy(btf->data, data, data_size);
4522 btf->data_size = data_size;
4523
4524 err = btf_parse_hdr(env);
4525 if (err)
4526 goto errout;
4527
4528 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4529
4530 err = btf_parse_str_sec(env);
4531 if (err)
4532 goto errout;
4533
4534 err = btf_check_all_metas(env);
4535 if (err)
4536 goto errout;
4537
4538 btf_verifier_env_free(env);
4539 refcount_set(&btf->refcnt, 1);
4540 return btf;
4541
4542errout:
4543 btf_verifier_env_free(env);
4544 if (btf) {
4545 kvfree(btf->data);
4546 kvfree(btf->types);
4547 kfree(btf);
4548 }
4549 return ERR_PTR(err);
4550}
4551
7112d127
AN
4552#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4553
5b92a28a
AS
4554struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4555{
3aac1ead 4556 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4557
22dc4a0f 4558 if (tgt_prog)
5b92a28a 4559 return tgt_prog->aux->btf;
22dc4a0f
AN
4560 else
4561 return prog->aux->attach_btf;
5b92a28a
AS
4562}
4563
84ad7a7a
JO
4564static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4565{
4566 /* t comes in already as a pointer */
4567 t = btf_type_by_id(btf, t->type);
4568
4569 /* allow const */
4570 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4571 t = btf_type_by_id(btf, t->type);
4572
4573 /* char, signed char, unsigned char */
4574 return btf_type_is_int(t) && t->size == 1;
4575}
4576
9e15db66
AS
4577bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4578 const struct bpf_prog *prog,
4579 struct bpf_insn_access_aux *info)
4580{
38207291 4581 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 4582 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4583 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 4584 const char *tname = prog->aux->attach_func_name;
9e15db66 4585 struct bpf_verifier_log *log = info->log;
9e15db66 4586 const struct btf_param *args;
9e15db66 4587 u32 nr_args, arg;
3c32cc1b 4588 int i, ret;
9e15db66 4589
9e15db66 4590 if (off % 8) {
38207291 4591 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
4592 tname, off);
4593 return false;
4594 }
4595 arg = off / 8;
4596 args = (const struct btf_param *)(t + 1);
5b92a28a
AS
4597 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4598 nr_args = t ? btf_type_vlen(t) : 5;
38207291
MKL
4599 if (prog->aux->attach_btf_trace) {
4600 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4601 args++;
4602 nr_args--;
4603 }
fec56f58 4604
f50b49a0
KS
4605 if (arg > nr_args) {
4606 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4607 tname, arg + 1);
4608 return false;
4609 }
4610
6ba43b76 4611 if (arg == nr_args) {
f50b49a0
KS
4612 switch (prog->expected_attach_type) {
4613 case BPF_LSM_MAC:
4614 case BPF_TRACE_FEXIT:
9e4e01df
KS
4615 /* When LSM programs are attached to void LSM hooks
4616 * they use FEXIT trampolines and when attached to
4617 * int LSM hooks, they use MODIFY_RETURN trampolines.
4618 *
4619 * While the LSM programs are BPF_MODIFY_RETURN-like
4620 * the check:
4621 *
4622 * if (ret_type != 'int')
4623 * return -EINVAL;
4624 *
4625 * is _not_ done here. This is still safe as LSM hooks
4626 * have only void and int return types.
4627 */
6ba43b76
KS
4628 if (!t)
4629 return true;
4630 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
4631 break;
4632 case BPF_MODIFY_RETURN:
6ba43b76
KS
4633 /* For now the BPF_MODIFY_RETURN can only be attached to
4634 * functions that return an int.
4635 */
4636 if (!t)
4637 return false;
4638
4639 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 4640 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
4641 bpf_log(log,
4642 "ret type %s not allowed for fmod_ret\n",
4643 btf_kind_str[BTF_INFO_KIND(t->info)]);
4644 return false;
4645 }
f50b49a0
KS
4646 break;
4647 default:
4648 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4649 tname, arg + 1);
4650 return false;
6ba43b76 4651 }
fec56f58 4652 } else {
5b92a28a
AS
4653 if (!t)
4654 /* Default prog with 5 args */
4655 return true;
4656 t = btf_type_by_id(btf, args[arg].type);
9e15db66 4657 }
f50b49a0 4658
9e15db66
AS
4659 /* skip modifiers */
4660 while (btf_type_is_modifier(t))
5b92a28a 4661 t = btf_type_by_id(btf, t->type);
a9b59159 4662 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
9e15db66
AS
4663 /* accessing a scalar */
4664 return true;
4665 if (!btf_type_is_ptr(t)) {
4666 bpf_log(log,
38207291 4667 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 4668 tname, arg,
5b92a28a 4669 __btf_name_by_offset(btf, t->name_off),
9e15db66
AS
4670 btf_kind_str[BTF_INFO_KIND(t->info)]);
4671 return false;
4672 }
afbf21dc
YS
4673
4674 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4675 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4676 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4677
4678 if (ctx_arg_info->offset == off &&
4679 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4680 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4681 info->reg_type = ctx_arg_info->reg_type;
4682 return true;
4683 }
4684 }
4685
9e15db66
AS
4686 if (t->type == 0)
4687 /* This is a pointer to void.
4688 * It is the same as scalar from the verifier safety pov.
4689 * No further pointer walking is allowed.
4690 */
4691 return true;
4692
84ad7a7a
JO
4693 if (is_string_ptr(btf, t))
4694 return true;
4695
9e15db66 4696 /* this is a pointer to another type */
3c32cc1b
YS
4697 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4698 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4699
4700 if (ctx_arg_info->offset == off) {
4701 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 4702 info->btf = btf_vmlinux;
951cf368
YS
4703 info->btf_id = ctx_arg_info->btf_id;
4704 return true;
3c32cc1b
YS
4705 }
4706 }
9e15db66 4707
951cf368 4708 info->reg_type = PTR_TO_BTF_ID;
5b92a28a 4709 if (tgt_prog) {
43bc2874
THJ
4710 enum bpf_prog_type tgt_type;
4711
4712 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4713 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4714 else
4715 tgt_type = tgt_prog->type;
4716
4717 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 4718 if (ret > 0) {
22dc4a0f 4719 info->btf = btf_vmlinux;
5b92a28a
AS
4720 info->btf_id = ret;
4721 return true;
4722 } else {
4723 return false;
4724 }
4725 }
275517ff 4726
22dc4a0f 4727 info->btf = btf;
275517ff 4728 info->btf_id = t->type;
5b92a28a 4729 t = btf_type_by_id(btf, t->type);
9e15db66 4730 /* skip modifiers */
275517ff
MKL
4731 while (btf_type_is_modifier(t)) {
4732 info->btf_id = t->type;
5b92a28a 4733 t = btf_type_by_id(btf, t->type);
275517ff 4734 }
9e15db66
AS
4735 if (!btf_type_is_struct(t)) {
4736 bpf_log(log,
38207291 4737 "func '%s' arg%d type %s is not a struct\n",
9e15db66
AS
4738 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4739 return false;
4740 }
38207291 4741 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
9e15db66 4742 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5b92a28a 4743 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
4744 return true;
4745}
4746
1c6d28a6
JO
4747enum bpf_struct_walk_result {
4748 /* < 0 error */
4749 WALK_SCALAR = 0,
4750 WALK_PTR,
4751 WALK_STRUCT,
4752};
4753
22dc4a0f 4754static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
4755 const struct btf_type *t, int off, int size,
4756 u32 *next_btf_id)
9e15db66 4757{
7e3617a7
MKL
4758 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4759 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 4760 const struct btf_member *member;
9e15db66 4761 const char *tname, *mname;
1c6d28a6 4762 u32 vlen, elem_id, mid;
9e15db66
AS
4763
4764again:
22dc4a0f 4765 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 4766 if (!btf_type_is_struct(t)) {
275517ff 4767 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
4768 return -EINVAL;
4769 }
4770
9c5f8a10 4771 vlen = btf_type_vlen(t);
976aba00 4772 if (off + size > t->size) {
9c5f8a10
YS
4773 /* If the last element is a variable size array, we may
4774 * need to relax the rule.
4775 */
4776 struct btf_array *array_elem;
4777
4778 if (vlen == 0)
4779 goto error;
4780
4781 member = btf_type_member(t) + vlen - 1;
22dc4a0f 4782 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
4783 NULL);
4784 if (!btf_type_is_array(mtype))
4785 goto error;
4786
4787 array_elem = (struct btf_array *)(mtype + 1);
4788 if (array_elem->nelems != 0)
4789 goto error;
4790
4791 moff = btf_member_bit_offset(t, member) / 8;
4792 if (off < moff)
4793 goto error;
4794
4795 /* Only allow structure for now, can be relaxed for
4796 * other types later.
4797 */
22dc4a0f 4798 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
4799 NULL);
4800 if (!btf_type_is_struct(t))
9c5f8a10
YS
4801 goto error;
4802
dafe58fc
JO
4803 off = (off - moff) % t->size;
4804 goto again;
9c5f8a10
YS
4805
4806error:
976aba00
MKL
4807 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4808 tname, off, size);
4809 return -EACCES;
4810 }
9e15db66 4811
976aba00 4812 for_each_member(i, t, member) {
7e3617a7
MKL
4813 /* offset of the field in bytes */
4814 moff = btf_member_bit_offset(t, member) / 8;
4815 if (off + size <= moff)
9e15db66
AS
4816 /* won't find anything, field is already too far */
4817 break;
976aba00
MKL
4818
4819 if (btf_member_bitfield_size(t, member)) {
4820 u32 end_bit = btf_member_bit_offset(t, member) +
4821 btf_member_bitfield_size(t, member);
4822
4823 /* off <= moff instead of off == moff because clang
4824 * does not generate a BTF member for anonymous
4825 * bitfield like the ":16" here:
4826 * struct {
4827 * int :16;
4828 * int x:8;
4829 * };
4830 */
4831 if (off <= moff &&
4832 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 4833 return WALK_SCALAR;
976aba00
MKL
4834
4835 /* off may be accessing a following member
4836 *
4837 * or
4838 *
4839 * Doing partial access at either end of this
4840 * bitfield. Continue on this case also to
4841 * treat it as not accessing this bitfield
4842 * and eventually error out as field not
4843 * found to keep it simple.
4844 * It could be relaxed if there was a legit
4845 * partial access case later.
4846 */
4847 continue;
4848 }
4849
7e3617a7
MKL
4850 /* In case of "off" is pointing to holes of a struct */
4851 if (off < moff)
976aba00 4852 break;
9e15db66
AS
4853
4854 /* type of the field */
1c6d28a6 4855 mid = member->type;
22dc4a0f
AN
4856 mtype = btf_type_by_id(btf, member->type);
4857 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 4858
22dc4a0f 4859 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
4860 &elem_type, &elem_id, &total_nelems,
4861 &mid);
7e3617a7 4862 if (IS_ERR(mtype)) {
9e15db66
AS
4863 bpf_log(log, "field %s doesn't have size\n", mname);
4864 return -EFAULT;
4865 }
7e3617a7
MKL
4866
4867 mtrue_end = moff + msize;
4868 if (off >= mtrue_end)
9e15db66
AS
4869 /* no overlap with member, keep iterating */
4870 continue;
7e3617a7
MKL
4871
4872 if (btf_type_is_array(mtype)) {
4873 u32 elem_idx;
4874
6298399b 4875 /* __btf_resolve_size() above helps to
7e3617a7
MKL
4876 * linearize a multi-dimensional array.
4877 *
4878 * The logic here is treating an array
4879 * in a struct as the following way:
4880 *
4881 * struct outer {
4882 * struct inner array[2][2];
4883 * };
4884 *
4885 * looks like:
4886 *
4887 * struct outer {
4888 * struct inner array_elem0;
4889 * struct inner array_elem1;
4890 * struct inner array_elem2;
4891 * struct inner array_elem3;
4892 * };
4893 *
4894 * When accessing outer->array[1][0], it moves
4895 * moff to "array_elem2", set mtype to
4896 * "struct inner", and msize also becomes
4897 * sizeof(struct inner). Then most of the
4898 * remaining logic will fall through without
4899 * caring the current member is an array or
4900 * not.
4901 *
4902 * Unlike mtype/msize/moff, mtrue_end does not
4903 * change. The naming difference ("_true") tells
4904 * that it is not always corresponding to
4905 * the current mtype/msize/moff.
4906 * It is the true end of the current
4907 * member (i.e. array in this case). That
4908 * will allow an int array to be accessed like
4909 * a scratch space,
4910 * i.e. allow access beyond the size of
4911 * the array's element as long as it is
4912 * within the mtrue_end boundary.
4913 */
4914
4915 /* skip empty array */
4916 if (moff == mtrue_end)
4917 continue;
4918
4919 msize /= total_nelems;
4920 elem_idx = (off - moff) / msize;
4921 moff += elem_idx * msize;
4922 mtype = elem_type;
1c6d28a6 4923 mid = elem_id;
7e3617a7
MKL
4924 }
4925
9e15db66
AS
4926 /* the 'off' we're looking for is either equal to start
4927 * of this field or inside of this struct
4928 */
4929 if (btf_type_is_struct(mtype)) {
4930 /* our field must be inside that union or struct */
4931 t = mtype;
4932
1c6d28a6
JO
4933 /* return if the offset matches the member offset */
4934 if (off == moff) {
4935 *next_btf_id = mid;
4936 return WALK_STRUCT;
4937 }
4938
9e15db66 4939 /* adjust offset we're looking for */
7e3617a7 4940 off -= moff;
9e15db66
AS
4941 goto again;
4942 }
9e15db66
AS
4943
4944 if (btf_type_is_ptr(mtype)) {
4945 const struct btf_type *stype;
257af63d 4946 u32 id;
9e15db66 4947
7e3617a7
MKL
4948 if (msize != size || off != moff) {
4949 bpf_log(log,
4950 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4951 mname, moff, tname, off, size);
4952 return -EACCES;
4953 }
22dc4a0f 4954 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 4955 if (btf_type_is_struct(stype)) {
257af63d 4956 *next_btf_id = id;
1c6d28a6 4957 return WALK_PTR;
9e15db66
AS
4958 }
4959 }
7e3617a7
MKL
4960
4961 /* Allow more flexible access within an int as long as
4962 * it is within mtrue_end.
4963 * Since mtrue_end could be the end of an array,
4964 * that also allows using an array of int as a scratch
4965 * space. e.g. skb->cb[].
4966 */
4967 if (off + size > mtrue_end) {
4968 bpf_log(log,
4969 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4970 mname, mtrue_end, tname, off, size);
4971 return -EACCES;
4972 }
4973
1c6d28a6 4974 return WALK_SCALAR;
9e15db66
AS
4975 }
4976 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4977 return -EINVAL;
4978}
4979
22dc4a0f 4980int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
4981 const struct btf_type *t, int off, int size,
4982 enum bpf_access_type atype __maybe_unused,
4983 u32 *next_btf_id)
4984{
4985 int err;
4986 u32 id;
4987
4988 do {
22dc4a0f 4989 err = btf_struct_walk(log, btf, t, off, size, &id);
1c6d28a6
JO
4990
4991 switch (err) {
4992 case WALK_PTR:
4993 /* If we found the pointer or scalar on t+off,
4994 * we're done.
4995 */
4996 *next_btf_id = id;
4997 return PTR_TO_BTF_ID;
4998 case WALK_SCALAR:
4999 return SCALAR_VALUE;
5000 case WALK_STRUCT:
5001 /* We found nested struct, so continue the search
5002 * by diving in it. At this point the offset is
5003 * aligned with the new type, so set it to 0.
5004 */
22dc4a0f 5005 t = btf_type_by_id(btf, id);
1c6d28a6
JO
5006 off = 0;
5007 break;
5008 default:
5009 /* It's either error or unknown return value..
5010 * scream and leave.
5011 */
5012 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5013 return -EINVAL;
5014 return err;
5015 }
5016 } while (t);
5017
5018 return -EINVAL;
5019}
5020
22dc4a0f
AN
5021/* Check that two BTF types, each specified as an BTF object + id, are exactly
5022 * the same. Trivial ID check is not enough due to module BTFs, because we can
5023 * end up with two different module BTFs, but IDs point to the common type in
5024 * vmlinux BTF.
5025 */
5026static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5027 const struct btf *btf2, u32 id2)
5028{
5029 if (id1 != id2)
5030 return false;
5031 if (btf1 == btf2)
5032 return true;
5033 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5034}
5035
faaf4a79 5036bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f
AN
5037 const struct btf *btf, u32 id, int off,
5038 const struct btf *need_btf, u32 need_type_id)
faaf4a79
JO
5039{
5040 const struct btf_type *type;
5041 int err;
5042
5043 /* Are we already done? */
22dc4a0f 5044 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79
JO
5045 return true;
5046
5047again:
22dc4a0f 5048 type = btf_type_by_id(btf, id);
faaf4a79
JO
5049 if (!type)
5050 return false;
22dc4a0f 5051 err = btf_struct_walk(log, btf, type, off, 1, &id);
faaf4a79
JO
5052 if (err != WALK_STRUCT)
5053 return false;
5054
5055 /* We found nested struct object. If it matches
5056 * the requested ID, we're done. Otherwise let's
5057 * continue the search with offset 0 in the new
5058 * type.
5059 */
22dc4a0f 5060 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
5061 off = 0;
5062 goto again;
5063 }
5064
5065 return true;
5066}
5067
fec56f58
AS
5068static int __get_type_size(struct btf *btf, u32 btf_id,
5069 const struct btf_type **bad_type)
5070{
5071 const struct btf_type *t;
5072
5073 if (!btf_id)
5074 /* void */
5075 return 0;
5076 t = btf_type_by_id(btf, btf_id);
5077 while (t && btf_type_is_modifier(t))
5078 t = btf_type_by_id(btf, t->type);
d0f01043 5079 if (!t) {
951bb646 5080 *bad_type = btf_type_by_id(btf, 0);
fec56f58 5081 return -EINVAL;
d0f01043 5082 }
fec56f58
AS
5083 if (btf_type_is_ptr(t))
5084 /* kernel size of pointer. Not BPF's size of pointer*/
5085 return sizeof(void *);
5086 if (btf_type_is_int(t) || btf_type_is_enum(t))
5087 return t->size;
5088 *bad_type = t;
5089 return -EINVAL;
5090}
5091
5092int btf_distill_func_proto(struct bpf_verifier_log *log,
5093 struct btf *btf,
5094 const struct btf_type *func,
5095 const char *tname,
5096 struct btf_func_model *m)
5097{
5098 const struct btf_param *args;
5099 const struct btf_type *t;
5100 u32 i, nargs;
5101 int ret;
5102
5b92a28a
AS
5103 if (!func) {
5104 /* BTF function prototype doesn't match the verifier types.
5105 * Fall back to 5 u64 args.
5106 */
5107 for (i = 0; i < 5; i++)
5108 m->arg_size[i] = 8;
5109 m->ret_size = 8;
5110 m->nr_args = 5;
5111 return 0;
5112 }
fec56f58
AS
5113 args = (const struct btf_param *)(func + 1);
5114 nargs = btf_type_vlen(func);
5115 if (nargs >= MAX_BPF_FUNC_ARGS) {
5116 bpf_log(log,
5117 "The function %s has %d arguments. Too many.\n",
5118 tname, nargs);
5119 return -EINVAL;
5120 }
5121 ret = __get_type_size(btf, func->type, &t);
5122 if (ret < 0) {
5123 bpf_log(log,
5124 "The function %s return type %s is unsupported.\n",
5125 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5126 return -EINVAL;
5127 }
5128 m->ret_size = ret;
5129
5130 for (i = 0; i < nargs; i++) {
5131 ret = __get_type_size(btf, args[i].type, &t);
5132 if (ret < 0) {
5133 bpf_log(log,
5134 "The function %s arg%d type %s is unsupported.\n",
5135 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5136 return -EINVAL;
5137 }
5138 m->arg_size[i] = ret;
5139 }
5140 m->nr_args = nargs;
5141 return 0;
5142}
5143
be8704ff
AS
5144/* Compare BTFs of two functions assuming only scalars and pointers to context.
5145 * t1 points to BTF_KIND_FUNC in btf1
5146 * t2 points to BTF_KIND_FUNC in btf2
5147 * Returns:
5148 * EINVAL - function prototype mismatch
5149 * EFAULT - verifier bug
5150 * 0 - 99% match. The last 1% is validated by the verifier.
5151 */
2bf0eb9b
HY
5152static int btf_check_func_type_match(struct bpf_verifier_log *log,
5153 struct btf *btf1, const struct btf_type *t1,
5154 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
5155{
5156 const struct btf_param *args1, *args2;
5157 const char *fn1, *fn2, *s1, *s2;
5158 u32 nargs1, nargs2, i;
5159
5160 fn1 = btf_name_by_offset(btf1, t1->name_off);
5161 fn2 = btf_name_by_offset(btf2, t2->name_off);
5162
5163 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5164 bpf_log(log, "%s() is not a global function\n", fn1);
5165 return -EINVAL;
5166 }
5167 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5168 bpf_log(log, "%s() is not a global function\n", fn2);
5169 return -EINVAL;
5170 }
5171
5172 t1 = btf_type_by_id(btf1, t1->type);
5173 if (!t1 || !btf_type_is_func_proto(t1))
5174 return -EFAULT;
5175 t2 = btf_type_by_id(btf2, t2->type);
5176 if (!t2 || !btf_type_is_func_proto(t2))
5177 return -EFAULT;
5178
5179 args1 = (const struct btf_param *)(t1 + 1);
5180 nargs1 = btf_type_vlen(t1);
5181 args2 = (const struct btf_param *)(t2 + 1);
5182 nargs2 = btf_type_vlen(t2);
5183
5184 if (nargs1 != nargs2) {
5185 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5186 fn1, nargs1, fn2, nargs2);
5187 return -EINVAL;
5188 }
5189
5190 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5191 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5192 if (t1->info != t2->info) {
5193 bpf_log(log,
5194 "Return type %s of %s() doesn't match type %s of %s()\n",
5195 btf_type_str(t1), fn1,
5196 btf_type_str(t2), fn2);
5197 return -EINVAL;
5198 }
5199
5200 for (i = 0; i < nargs1; i++) {
5201 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5202 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5203
5204 if (t1->info != t2->info) {
5205 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5206 i, fn1, btf_type_str(t1),
5207 fn2, btf_type_str(t2));
5208 return -EINVAL;
5209 }
5210 if (btf_type_has_size(t1) && t1->size != t2->size) {
5211 bpf_log(log,
5212 "arg%d in %s() has size %d while %s() has %d\n",
5213 i, fn1, t1->size,
5214 fn2, t2->size);
5215 return -EINVAL;
5216 }
5217
5218 /* global functions are validated with scalars and pointers
5219 * to context only. And only global functions can be replaced.
5220 * Hence type check only those types.
5221 */
5222 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5223 continue;
5224 if (!btf_type_is_ptr(t1)) {
5225 bpf_log(log,
5226 "arg%d in %s() has unrecognized type\n",
5227 i, fn1);
5228 return -EINVAL;
5229 }
5230 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5231 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5232 if (!btf_type_is_struct(t1)) {
5233 bpf_log(log,
5234 "arg%d in %s() is not a pointer to context\n",
5235 i, fn1);
5236 return -EINVAL;
5237 }
5238 if (!btf_type_is_struct(t2)) {
5239 bpf_log(log,
5240 "arg%d in %s() is not a pointer to context\n",
5241 i, fn2);
5242 return -EINVAL;
5243 }
5244 /* This is an optional check to make program writing easier.
5245 * Compare names of structs and report an error to the user.
5246 * btf_prepare_func_args() already checked that t2 struct
5247 * is a context type. btf_prepare_func_args() will check
5248 * later that t1 struct is a context type as well.
5249 */
5250 s1 = btf_name_by_offset(btf1, t1->name_off);
5251 s2 = btf_name_by_offset(btf2, t2->name_off);
5252 if (strcmp(s1, s2)) {
5253 bpf_log(log,
5254 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5255 i, fn1, s1, fn2, s2);
5256 return -EINVAL;
5257 }
5258 }
5259 return 0;
5260}
5261
5262/* Compare BTFs of given program with BTF of target program */
efc68158 5263int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
5264 struct btf *btf2, const struct btf_type *t2)
5265{
5266 struct btf *btf1 = prog->aux->btf;
5267 const struct btf_type *t1;
5268 u32 btf_id = 0;
5269
5270 if (!prog->aux->func_info) {
efc68158 5271 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
5272 return -EINVAL;
5273 }
5274
5275 btf_id = prog->aux->func_info[0].type_id;
5276 if (!btf_id)
5277 return -EFAULT;
5278
5279 t1 = btf_type_by_id(btf1, btf_id);
5280 if (!t1 || !btf_type_is_func(t1))
5281 return -EFAULT;
5282
efc68158 5283 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
5284}
5285
51c39bb1
AS
5286/* Compare BTF of a function with given bpf_reg_state.
5287 * Returns:
5288 * EFAULT - there is a verifier bug. Abort verification.
5289 * EINVAL - there is a type mismatch or BTF is not available.
5290 * 0 - BTF matches with what bpf_reg_state expects.
5291 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5292 */
5293int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5294 struct bpf_reg_state *reg)
8c1b6e69 5295{
8c1b6e69
AS
5296 struct bpf_verifier_log *log = &env->log;
5297 struct bpf_prog *prog = env->prog;
5298 struct btf *btf = prog->aux->btf;
5299 const struct btf_param *args;
5300 const struct btf_type *t;
5301 u32 i, nargs, btf_id;
5302 const char *tname;
5303
5304 if (!prog->aux->func_info)
51c39bb1 5305 return -EINVAL;
8c1b6e69
AS
5306
5307 btf_id = prog->aux->func_info[subprog].type_id;
5308 if (!btf_id)
51c39bb1 5309 return -EFAULT;
8c1b6e69
AS
5310
5311 if (prog->aux->func_info_aux[subprog].unreliable)
51c39bb1 5312 return -EINVAL;
8c1b6e69
AS
5313
5314 t = btf_type_by_id(btf, btf_id);
5315 if (!t || !btf_type_is_func(t)) {
51c39bb1
AS
5316 /* These checks were already done by the verifier while loading
5317 * struct bpf_func_info
5318 */
5319 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
8c1b6e69 5320 subprog);
51c39bb1 5321 return -EFAULT;
8c1b6e69
AS
5322 }
5323 tname = btf_name_by_offset(btf, t->name_off);
5324
5325 t = btf_type_by_id(btf, t->type);
5326 if (!t || !btf_type_is_func_proto(t)) {
51c39bb1
AS
5327 bpf_log(log, "Invalid BTF of func %s\n", tname);
5328 return -EFAULT;
8c1b6e69
AS
5329 }
5330 args = (const struct btf_param *)(t + 1);
5331 nargs = btf_type_vlen(t);
5332 if (nargs > 5) {
5333 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5334 goto out;
5335 }
5336 /* check that BTF function arguments match actual types that the
5337 * verifier sees.
5338 */
5339 for (i = 0; i < nargs; i++) {
5340 t = btf_type_by_id(btf, args[i].type);
5341 while (btf_type_is_modifier(t))
5342 t = btf_type_by_id(btf, t->type);
5343 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5344 if (reg[i + 1].type == SCALAR_VALUE)
5345 continue;
5346 bpf_log(log, "R%d is not a scalar\n", i + 1);
5347 goto out;
5348 }
5349 if (btf_type_is_ptr(t)) {
5350 if (reg[i + 1].type == SCALAR_VALUE) {
5351 bpf_log(log, "R%d is not a pointer\n", i + 1);
5352 goto out;
5353 }
51c39bb1
AS
5354 /* If function expects ctx type in BTF check that caller
5355 * is passing PTR_TO_CTX.
8c1b6e69 5356 */
51c39bb1
AS
5357 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5358 if (reg[i + 1].type != PTR_TO_CTX) {
5359 bpf_log(log,
5360 "arg#%d expected pointer to ctx, but got %s\n",
5361 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5362 goto out;
5363 }
5364 if (check_ctx_reg(env, &reg[i + 1], i + 1))
5365 goto out;
5366 continue;
5367 }
8c1b6e69 5368 }
51c39bb1
AS
5369 bpf_log(log, "Unrecognized arg#%d type %s\n",
5370 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
8c1b6e69
AS
5371 goto out;
5372 }
5373 return 0;
5374out:
51c39bb1
AS
5375 /* Compiler optimizations can remove arguments from static functions
5376 * or mismatched type can be passed into a global function.
5377 * In such cases mark the function as unreliable from BTF point of view.
5378 */
8c1b6e69 5379 prog->aux->func_info_aux[subprog].unreliable = true;
51c39bb1
AS
5380 return -EINVAL;
5381}
5382
5383/* Convert BTF of a function into bpf_reg_state if possible
5384 * Returns:
5385 * EFAULT - there is a verifier bug. Abort verification.
5386 * EINVAL - cannot convert BTF.
5387 * 0 - Successfully converted BTF into bpf_reg_state
5388 * (either PTR_TO_CTX or SCALAR_VALUE).
5389 */
5390int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5391 struct bpf_reg_state *reg)
5392{
5393 struct bpf_verifier_log *log = &env->log;
5394 struct bpf_prog *prog = env->prog;
be8704ff 5395 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
5396 struct btf *btf = prog->aux->btf;
5397 const struct btf_param *args;
5398 const struct btf_type *t;
5399 u32 i, nargs, btf_id;
5400 const char *tname;
5401
5402 if (!prog->aux->func_info ||
5403 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5404 bpf_log(log, "Verifier bug\n");
5405 return -EFAULT;
5406 }
5407
5408 btf_id = prog->aux->func_info[subprog].type_id;
5409 if (!btf_id) {
5410 bpf_log(log, "Global functions need valid BTF\n");
5411 return -EFAULT;
5412 }
5413
5414 t = btf_type_by_id(btf, btf_id);
5415 if (!t || !btf_type_is_func(t)) {
5416 /* These checks were already done by the verifier while loading
5417 * struct bpf_func_info
5418 */
5419 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5420 subprog);
5421 return -EFAULT;
5422 }
5423 tname = btf_name_by_offset(btf, t->name_off);
5424
5425 if (log->level & BPF_LOG_LEVEL)
5426 bpf_log(log, "Validating %s() func#%d...\n",
5427 tname, subprog);
5428
5429 if (prog->aux->func_info_aux[subprog].unreliable) {
5430 bpf_log(log, "Verifier bug in function %s()\n", tname);
5431 return -EFAULT;
5432 }
be8704ff 5433 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 5434 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
5435
5436 t = btf_type_by_id(btf, t->type);
5437 if (!t || !btf_type_is_func_proto(t)) {
5438 bpf_log(log, "Invalid type of function %s()\n", tname);
5439 return -EFAULT;
5440 }
5441 args = (const struct btf_param *)(t + 1);
5442 nargs = btf_type_vlen(t);
5443 if (nargs > 5) {
5444 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5445 tname, nargs);
5446 return -EINVAL;
5447 }
5448 /* check that function returns int */
5449 t = btf_type_by_id(btf, t->type);
5450 while (btf_type_is_modifier(t))
5451 t = btf_type_by_id(btf, t->type);
5452 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5453 bpf_log(log,
5454 "Global function %s() doesn't return scalar. Only those are supported.\n",
5455 tname);
5456 return -EINVAL;
5457 }
5458 /* Convert BTF function arguments into verifier types.
5459 * Only PTR_TO_CTX and SCALAR are supported atm.
5460 */
5461 for (i = 0; i < nargs; i++) {
5462 t = btf_type_by_id(btf, args[i].type);
5463 while (btf_type_is_modifier(t))
5464 t = btf_type_by_id(btf, t->type);
5465 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5466 reg[i + 1].type = SCALAR_VALUE;
5467 continue;
5468 }
5469 if (btf_type_is_ptr(t) &&
be8704ff 5470 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
51c39bb1
AS
5471 reg[i + 1].type = PTR_TO_CTX;
5472 continue;
5473 }
5474 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5475 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5476 return -EINVAL;
5477 }
8c1b6e69
AS
5478 return 0;
5479}
5480
31d0bc81
AM
5481static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5482 struct btf_show *show)
5483{
5484 const struct btf_type *t = btf_type_by_id(btf, type_id);
5485
5486 show->btf = btf;
5487 memset(&show->state, 0, sizeof(show->state));
5488 memset(&show->obj, 0, sizeof(show->obj));
5489
5490 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5491}
5492
5493static void btf_seq_show(struct btf_show *show, const char *fmt,
5494 va_list args)
5495{
5496 seq_vprintf((struct seq_file *)show->target, fmt, args);
5497}
5498
eb411377
AM
5499int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5500 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
5501{
5502 struct btf_show sseq;
5503
5504 sseq.target = m;
5505 sseq.showfn = btf_seq_show;
5506 sseq.flags = flags;
5507
5508 btf_type_show(btf, type_id, obj, &sseq);
5509
5510 return sseq.state.status;
5511}
5512
b00b8dae
MKL
5513void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5514 struct seq_file *m)
5515{
31d0bc81
AM
5516 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5517 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5518 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5519}
5520
5521struct btf_show_snprintf {
5522 struct btf_show show;
5523 int len_left; /* space left in string */
5524 int len; /* length we would have written */
5525};
5526
5527static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5528 va_list args)
5529{
5530 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5531 int len;
5532
5533 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5534
5535 if (len < 0) {
5536 ssnprintf->len_left = 0;
5537 ssnprintf->len = len;
5538 } else if (len > ssnprintf->len_left) {
5539 /* no space, drive on to get length we would have written */
5540 ssnprintf->len_left = 0;
5541 ssnprintf->len += len;
5542 } else {
5543 ssnprintf->len_left -= len;
5544 ssnprintf->len += len;
5545 show->target += len;
5546 }
5547}
5548
5549int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5550 char *buf, int len, u64 flags)
5551{
5552 struct btf_show_snprintf ssnprintf;
5553
5554 ssnprintf.show.target = buf;
5555 ssnprintf.show.flags = flags;
5556 ssnprintf.show.showfn = btf_snprintf_show;
5557 ssnprintf.len_left = len;
5558 ssnprintf.len = 0;
5559
5560 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5561
5562 /* If we encontered an error, return it. */
5563 if (ssnprintf.show.state.status)
5564 return ssnprintf.show.state.status;
b00b8dae 5565
31d0bc81
AM
5566 /* Otherwise return length we would have written */
5567 return ssnprintf.len;
b00b8dae 5568}
f56a653c 5569
3481e64b
QM
5570#ifdef CONFIG_PROC_FS
5571static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5572{
5573 const struct btf *btf = filp->private_data;
5574
5575 seq_printf(m, "btf_id:\t%u\n", btf->id);
5576}
5577#endif
5578
f56a653c
MKL
5579static int btf_release(struct inode *inode, struct file *filp)
5580{
5581 btf_put(filp->private_data);
5582 return 0;
5583}
5584
60197cfb 5585const struct file_operations btf_fops = {
3481e64b
QM
5586#ifdef CONFIG_PROC_FS
5587 .show_fdinfo = bpf_btf_show_fdinfo,
5588#endif
f56a653c
MKL
5589 .release = btf_release,
5590};
5591
78958fca
MKL
5592static int __btf_new_fd(struct btf *btf)
5593{
5594 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5595}
5596
f56a653c
MKL
5597int btf_new_fd(const union bpf_attr *attr)
5598{
5599 struct btf *btf;
78958fca 5600 int ret;
f56a653c
MKL
5601
5602 btf = btf_parse(u64_to_user_ptr(attr->btf),
5603 attr->btf_size, attr->btf_log_level,
5604 u64_to_user_ptr(attr->btf_log_buf),
5605 attr->btf_log_size);
5606 if (IS_ERR(btf))
5607 return PTR_ERR(btf);
5608
78958fca
MKL
5609 ret = btf_alloc_id(btf);
5610 if (ret) {
5611 btf_free(btf);
5612 return ret;
5613 }
5614
5615 /*
5616 * The BTF ID is published to the userspace.
5617 * All BTF free must go through call_rcu() from
5618 * now on (i.e. free by calling btf_put()).
5619 */
5620
5621 ret = __btf_new_fd(btf);
5622 if (ret < 0)
f56a653c
MKL
5623 btf_put(btf);
5624
78958fca 5625 return ret;
f56a653c
MKL
5626}
5627
5628struct btf *btf_get_by_fd(int fd)
5629{
5630 struct btf *btf;
5631 struct fd f;
5632
5633 f = fdget(fd);
5634
5635 if (!f.file)
5636 return ERR_PTR(-EBADF);
5637
5638 if (f.file->f_op != &btf_fops) {
5639 fdput(f);
5640 return ERR_PTR(-EINVAL);
5641 }
5642
5643 btf = f.file->private_data;
78958fca 5644 refcount_inc(&btf->refcnt);
f56a653c
MKL
5645 fdput(f);
5646
5647 return btf;
5648}
60197cfb
MKL
5649
5650int btf_get_info_by_fd(const struct btf *btf,
5651 const union bpf_attr *attr,
5652 union bpf_attr __user *uattr)
5653{
62dab84c 5654 struct bpf_btf_info __user *uinfo;
5c6f2588 5655 struct bpf_btf_info info;
62dab84c
MKL
5656 u32 info_copy, btf_copy;
5657 void __user *ubtf;
53297220
AN
5658 char __user *uname;
5659 u32 uinfo_len, uname_len, name_len;
5660 int ret = 0;
60197cfb 5661
62dab84c
MKL
5662 uinfo = u64_to_user_ptr(attr->info.info);
5663 uinfo_len = attr->info.info_len;
5664
5665 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 5666 memset(&info, 0, sizeof(info));
62dab84c
MKL
5667 if (copy_from_user(&info, uinfo, info_copy))
5668 return -EFAULT;
5669
5670 info.id = btf->id;
5671 ubtf = u64_to_user_ptr(info.btf);
5672 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5673 if (copy_to_user(ubtf, btf->data, btf_copy))
5674 return -EFAULT;
5675 info.btf_size = btf->data_size;
5676
53297220
AN
5677 info.kernel_btf = btf->kernel_btf;
5678
5679 uname = u64_to_user_ptr(info.name);
5680 uname_len = info.name_len;
5681 if (!uname ^ !uname_len)
5682 return -EINVAL;
5683
5684 name_len = strlen(btf->name);
5685 info.name_len = name_len;
5686
5687 if (uname) {
5688 if (uname_len >= name_len + 1) {
5689 if (copy_to_user(uname, btf->name, name_len + 1))
5690 return -EFAULT;
5691 } else {
5692 char zero = '\0';
5693
5694 if (copy_to_user(uname, btf->name, uname_len - 1))
5695 return -EFAULT;
5696 if (put_user(zero, uname + uname_len - 1))
5697 return -EFAULT;
5698 /* let user-space know about too short buffer */
5699 ret = -ENOSPC;
5700 }
5701 }
5702
62dab84c
MKL
5703 if (copy_to_user(uinfo, &info, info_copy) ||
5704 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
5705 return -EFAULT;
5706
53297220 5707 return ret;
60197cfb 5708}
78958fca
MKL
5709
5710int btf_get_fd_by_id(u32 id)
5711{
5712 struct btf *btf;
5713 int fd;
5714
5715 rcu_read_lock();
5716 btf = idr_find(&btf_idr, id);
5717 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5718 btf = ERR_PTR(-ENOENT);
5719 rcu_read_unlock();
5720
5721 if (IS_ERR(btf))
5722 return PTR_ERR(btf);
5723
5724 fd = __btf_new_fd(btf);
5725 if (fd < 0)
5726 btf_put(btf);
5727
5728 return fd;
5729}
5730
22dc4a0f 5731u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
5732{
5733 return btf->id;
5734}
eae2e83e 5735
290248a5
AN
5736bool btf_is_kernel(const struct btf *btf)
5737{
5738 return btf->kernel_btf;
5739}
5740
541c3bad
AN
5741bool btf_is_module(const struct btf *btf)
5742{
5743 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5744}
5745
eae2e83e
JO
5746static int btf_id_cmp_func(const void *a, const void *b)
5747{
5748 const int *pa = a, *pb = b;
5749
5750 return *pa - *pb;
5751}
5752
2af30f11 5753bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
eae2e83e
JO
5754{
5755 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5756}
36e68442
AN
5757
5758#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5759struct btf_module {
5760 struct list_head list;
5761 struct module *module;
5762 struct btf *btf;
5763 struct bin_attribute *sysfs_attr;
5764};
5765
5766static LIST_HEAD(btf_modules);
5767static DEFINE_MUTEX(btf_module_mutex);
5768
5769static ssize_t
5770btf_module_read(struct file *file, struct kobject *kobj,
5771 struct bin_attribute *bin_attr,
5772 char *buf, loff_t off, size_t len)
5773{
5774 const struct btf *btf = bin_attr->private;
5775
5776 memcpy(buf, btf->data + off, len);
5777 return len;
5778}
5779
5780static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5781 void *module)
5782{
5783 struct btf_module *btf_mod, *tmp;
5784 struct module *mod = module;
5785 struct btf *btf;
5786 int err = 0;
5787
5788 if (mod->btf_data_size == 0 ||
5789 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5790 goto out;
5791
5792 switch (op) {
5793 case MODULE_STATE_COMING:
5794 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5795 if (!btf_mod) {
5796 err = -ENOMEM;
5797 goto out;
5798 }
5799 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5800 if (IS_ERR(btf)) {
5801 pr_warn("failed to validate module [%s] BTF: %ld\n",
5802 mod->name, PTR_ERR(btf));
5803 kfree(btf_mod);
5804 err = PTR_ERR(btf);
5805 goto out;
5806 }
5807 err = btf_alloc_id(btf);
5808 if (err) {
5809 btf_free(btf);
5810 kfree(btf_mod);
5811 goto out;
5812 }
5813
5814 mutex_lock(&btf_module_mutex);
5815 btf_mod->module = module;
5816 btf_mod->btf = btf;
5817 list_add(&btf_mod->list, &btf_modules);
5818 mutex_unlock(&btf_module_mutex);
5819
5820 if (IS_ENABLED(CONFIG_SYSFS)) {
5821 struct bin_attribute *attr;
5822
5823 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
5824 if (!attr)
5825 goto out;
5826
5827 sysfs_bin_attr_init(attr);
5828 attr->attr.name = btf->name;
5829 attr->attr.mode = 0444;
5830 attr->size = btf->data_size;
5831 attr->private = btf;
5832 attr->read = btf_module_read;
5833
5834 err = sysfs_create_bin_file(btf_kobj, attr);
5835 if (err) {
5836 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
5837 mod->name, err);
5838 kfree(attr);
5839 err = 0;
5840 goto out;
5841 }
5842
5843 btf_mod->sysfs_attr = attr;
5844 }
5845
5846 break;
5847 case MODULE_STATE_GOING:
5848 mutex_lock(&btf_module_mutex);
5849 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5850 if (btf_mod->module != module)
5851 continue;
5852
5853 list_del(&btf_mod->list);
5854 if (btf_mod->sysfs_attr)
5855 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
5856 btf_put(btf_mod->btf);
5857 kfree(btf_mod->sysfs_attr);
5858 kfree(btf_mod);
5859 break;
5860 }
5861 mutex_unlock(&btf_module_mutex);
5862 break;
5863 }
5864out:
5865 return notifier_from_errno(err);
5866}
5867
5868static struct notifier_block btf_module_nb = {
5869 .notifier_call = btf_module_notify,
5870};
5871
5872static int __init btf_module_init(void)
5873{
5874 register_module_notifier(&btf_module_nb);
5875 return 0;
5876}
5877
5878fs_initcall(btf_module_init);
5879#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
5880
5881struct module *btf_try_get_module(const struct btf *btf)
5882{
5883 struct module *res = NULL;
5884#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5885 struct btf_module *btf_mod, *tmp;
5886
5887 mutex_lock(&btf_module_mutex);
5888 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5889 if (btf_mod->btf != btf)
5890 continue;
5891
5892 if (try_module_get(btf_mod->module))
5893 res = btf_mod->module;
5894
5895 break;
5896 }
5897 mutex_unlock(&btf_module_mutex);
5898#endif
5899
5900 return res;
5901}