bpf: Sync comments for bpf_get_stack
[linux-block.git] / kernel / bpf / btf.c
CommitLineData
c561d110 1// SPDX-License-Identifier: GPL-2.0
69b693f0
MKL
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
91cc1a99
AS
22#include <linux/skmsg.h>
23#include <linux/perf_event.h>
eae2e83e 24#include <linux/bsearch.h>
36e68442
AN
25#include <linux/kobject.h>
26#include <linux/sysfs.h>
91cc1a99 27#include <net/sock.h>
1e89106d 28#include "../tools/lib/bpf/relo_core.h"
69b693f0
MKL
29
30/* BTF (BPF Type Format) is the meta data format which describes
31 * the data types of BPF program/map. Hence, it basically focus
32 * on the C programming language which the modern BPF is primary
33 * using.
34 *
35 * ELF Section:
36 * ~~~~~~~~~~~
37 * The BTF data is stored under the ".BTF" ELF section
38 *
39 * struct btf_type:
40 * ~~~~~~~~~~~~~~~
41 * Each 'struct btf_type' object describes a C data type.
42 * Depending on the type it is describing, a 'struct btf_type'
43 * object may be followed by more data. F.e.
44 * To describe an array, 'struct btf_type' is followed by
45 * 'struct btf_array'.
46 *
47 * 'struct btf_type' and any extra data following it are
48 * 4 bytes aligned.
49 *
50 * Type section:
51 * ~~~~~~~~~~~~~
52 * The BTF type section contains a list of 'struct btf_type' objects.
53 * Each one describes a C type. Recall from the above section
54 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 55 * data in order to describe some particular C types.
69b693f0
MKL
56 *
57 * type_id:
58 * ~~~~~~~
59 * Each btf_type object is identified by a type_id. The type_id
60 * is implicitly implied by the location of the btf_type object in
61 * the BTF type section. The first one has type_id 1. The second
62 * one has type_id 2...etc. Hence, an earlier btf_type has
63 * a smaller type_id.
64 *
65 * A btf_type object may refer to another btf_type object by using
66 * type_id (i.e. the "type" in the "struct btf_type").
67 *
68 * NOTE that we cannot assume any reference-order.
69 * A btf_type object can refer to an earlier btf_type object
70 * but it can also refer to a later btf_type object.
71 *
72 * For example, to describe "const void *". A btf_type
73 * object describing "const" may refer to another btf_type
74 * object describing "void *". This type-reference is done
75 * by specifying type_id:
76 *
77 * [1] CONST (anon) type_id=2
78 * [2] PTR (anon) type_id=0
79 *
80 * The above is the btf_verifier debug log:
81 * - Each line started with "[?]" is a btf_type object
82 * - [?] is the type_id of the btf_type object.
83 * - CONST/PTR is the BTF_KIND_XXX
84 * - "(anon)" is the name of the type. It just
85 * happens that CONST and PTR has no name.
86 * - type_id=XXX is the 'u32 type' in btf_type
87 *
88 * NOTE: "void" has type_id 0
89 *
90 * String section:
91 * ~~~~~~~~~~~~~~
92 * The BTF string section contains the names used by the type section.
93 * Each string is referred by an "offset" from the beginning of the
94 * string section.
95 *
96 * Each string is '\0' terminated.
97 *
98 * The first character in the string section must be '\0'
99 * which is used to mean 'anonymous'. Some btf_type may not
100 * have a name.
101 */
102
103/* BTF verification:
104 *
105 * To verify BTF data, two passes are needed.
106 *
107 * Pass #1
108 * ~~~~~~~
109 * The first pass is to collect all btf_type objects to
110 * an array: "btf->types".
111 *
112 * Depending on the C type that a btf_type is describing,
113 * a btf_type may be followed by extra data. We don't know
114 * how many btf_type is there, and more importantly we don't
115 * know where each btf_type is located in the type section.
116 *
117 * Without knowing the location of each type_id, most verifications
118 * cannot be done. e.g. an earlier btf_type may refer to a later
119 * btf_type (recall the "const void *" above), so we cannot
120 * check this type-reference in the first pass.
121 *
122 * In the first pass, it still does some verifications (e.g.
123 * checking the name is a valid offset to the string section).
eb3f595d
MKL
124 *
125 * Pass #2
126 * ~~~~~~~
127 * The main focus is to resolve a btf_type that is referring
128 * to another type.
129 *
130 * We have to ensure the referring type:
131 * 1) does exist in the BTF (i.e. in btf->types[])
132 * 2) does not cause a loop:
133 * struct A {
134 * struct B b;
135 * };
136 *
137 * struct B {
138 * struct A a;
139 * };
140 *
141 * btf_type_needs_resolve() decides if a btf_type needs
142 * to be resolved.
143 *
144 * The needs_resolve type implements the "resolve()" ops which
145 * essentially does a DFS and detects backedge.
146 *
147 * During resolve (or DFS), different C types have different
148 * "RESOLVED" conditions.
149 *
150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151 * members because a member is always referring to another
152 * type. A struct's member can be treated as "RESOLVED" if
153 * it is referring to a BTF_KIND_PTR. Otherwise, the
154 * following valid C struct would be rejected:
155 *
156 * struct A {
157 * int m;
158 * struct A *a;
159 * };
160 *
161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
163 * detect a pointer loop, e.g.:
164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165 * ^ |
166 * +-----------------------------------------+
167 *
69b693f0
MKL
168 */
169
b1e8818c 170#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
171#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174#define BITS_ROUNDUP_BYTES(bits) \
175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176
b1828f0b 177#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
178#define BTF_INT_MASK 0x0fffffff
179#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181
69b693f0
MKL
182/* 16MB for 64k structs and each has 16 members and
183 * a few MB spaces for the string section.
184 * The hard limit is S32_MAX.
185 */
186#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 187
eb3f595d
MKL
188#define for_each_member_from(i, from, struct_type, member) \
189 for (i = from, member = btf_type_member(struct_type) + from; \
190 i < btf_type_vlen(struct_type); \
191 i++, member++)
192
1dc92851
DB
193#define for_each_vsi_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
1b9ed84e
QM
198DEFINE_IDR(btf_idr);
199DEFINE_SPINLOCK(btf_idr_lock);
78958fca 200
dee872e1
KKD
201enum btf_kfunc_hook {
202 BTF_KFUNC_HOOK_XDP,
203 BTF_KFUNC_HOOK_TC,
204 BTF_KFUNC_HOOK_STRUCT_OPS,
205 BTF_KFUNC_HOOK_MAX,
206};
207
208enum {
209 BTF_KFUNC_SET_MAX_CNT = 32,
210};
211
212struct btf_kfunc_set_tab {
213 struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX];
214};
215
69b693f0 216struct btf {
f80442a4 217 void *data;
69b693f0 218 struct btf_type **types;
eb3f595d
MKL
219 u32 *resolved_ids;
220 u32 *resolved_sizes;
69b693f0
MKL
221 const char *strings;
222 void *nohdr_data;
f80442a4 223 struct btf_header hdr;
951bb646 224 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
225 u32 types_size;
226 u32 data_size;
f56a653c 227 refcount_t refcnt;
78958fca
MKL
228 u32 id;
229 struct rcu_head rcu;
dee872e1 230 struct btf_kfunc_set_tab *kfunc_set_tab;
951bb646
AN
231
232 /* split BTF support */
233 struct btf *base_btf;
234 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
235 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
236 char name[MODULE_NAME_LEN];
237 bool kernel_btf;
69b693f0
MKL
238};
239
eb3f595d
MKL
240enum verifier_phase {
241 CHECK_META,
242 CHECK_TYPE,
243};
244
245struct resolve_vertex {
246 const struct btf_type *t;
247 u32 type_id;
248 u16 next_member;
249};
250
251enum visit_state {
252 NOT_VISITED,
253 VISITED,
254 RESOLVED,
255};
256
257enum resolve_mode {
258 RESOLVE_TBD, /* To Be Determined */
259 RESOLVE_PTR, /* Resolving for Pointer */
260 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
261 * or array
262 */
263};
264
265#define MAX_RESOLVE_DEPTH 32
266
f80442a4
MKL
267struct btf_sec_info {
268 u32 off;
269 u32 len;
270};
271
69b693f0
MKL
272struct btf_verifier_env {
273 struct btf *btf;
eb3f595d
MKL
274 u8 *visit_states;
275 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
276 struct bpf_verifier_log log;
277 u32 log_type_id;
eb3f595d
MKL
278 u32 top_stack;
279 enum verifier_phase phase;
280 enum resolve_mode resolve_mode;
69b693f0
MKL
281};
282
283static const char * const btf_kind_str[NR_BTF_KINDS] = {
284 [BTF_KIND_UNKN] = "UNKNOWN",
285 [BTF_KIND_INT] = "INT",
286 [BTF_KIND_PTR] = "PTR",
287 [BTF_KIND_ARRAY] = "ARRAY",
288 [BTF_KIND_STRUCT] = "STRUCT",
289 [BTF_KIND_UNION] = "UNION",
290 [BTF_KIND_ENUM] = "ENUM",
291 [BTF_KIND_FWD] = "FWD",
292 [BTF_KIND_TYPEDEF] = "TYPEDEF",
293 [BTF_KIND_VOLATILE] = "VOLATILE",
294 [BTF_KIND_CONST] = "CONST",
295 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
296 [BTF_KIND_FUNC] = "FUNC",
297 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
298 [BTF_KIND_VAR] = "VAR",
299 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 300 [BTF_KIND_FLOAT] = "FLOAT",
223f903e 301 [BTF_KIND_DECL_TAG] = "DECL_TAG",
8c42d2fa 302 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
69b693f0
MKL
303};
304
e6ac2450 305const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
306{
307 return btf_kind_str[BTF_INFO_KIND(t->info)];
308}
309
31d0bc81
AM
310/* Chunk size we use in safe copy of data to be shown. */
311#define BTF_SHOW_OBJ_SAFE_SIZE 32
312
313/*
314 * This is the maximum size of a base type value (equivalent to a
315 * 128-bit int); if we are at the end of our safe buffer and have
316 * less than 16 bytes space we can't be assured of being able
317 * to copy the next type safely, so in such cases we will initiate
318 * a new copy.
319 */
320#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
321
322/* Type name size */
323#define BTF_SHOW_NAME_SIZE 80
324
325/*
326 * Common data to all BTF show operations. Private show functions can add
327 * their own data to a structure containing a struct btf_show and consult it
328 * in the show callback. See btf_type_show() below.
329 *
330 * One challenge with showing nested data is we want to skip 0-valued
331 * data, but in order to figure out whether a nested object is all zeros
332 * we need to walk through it. As a result, we need to make two passes
333 * when handling structs, unions and arrays; the first path simply looks
334 * for nonzero data, while the second actually does the display. The first
335 * pass is signalled by show->state.depth_check being set, and if we
336 * encounter a non-zero value we set show->state.depth_to_show to
337 * the depth at which we encountered it. When we have completed the
338 * first pass, we will know if anything needs to be displayed if
339 * depth_to_show > depth. See btf_[struct,array]_show() for the
340 * implementation of this.
341 *
342 * Another problem is we want to ensure the data for display is safe to
343 * access. To support this, the anonymous "struct {} obj" tracks the data
344 * object and our safe copy of it. We copy portions of the data needed
345 * to the object "copy" buffer, but because its size is limited to
346 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
347 * traverse larger objects for display.
348 *
349 * The various data type show functions all start with a call to
350 * btf_show_start_type() which returns a pointer to the safe copy
351 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
352 * raw data itself). btf_show_obj_safe() is responsible for
353 * using copy_from_kernel_nofault() to update the safe data if necessary
354 * as we traverse the object's data. skbuff-like semantics are
355 * used:
356 *
357 * - obj.head points to the start of the toplevel object for display
358 * - obj.size is the size of the toplevel object
359 * - obj.data points to the current point in the original data at
360 * which our safe data starts. obj.data will advance as we copy
361 * portions of the data.
362 *
363 * In most cases a single copy will suffice, but larger data structures
364 * such as "struct task_struct" will require many copies. The logic in
365 * btf_show_obj_safe() handles the logic that determines if a new
366 * copy_from_kernel_nofault() is needed.
367 */
368struct btf_show {
369 u64 flags;
370 void *target; /* target of show operation (seq file, buffer) */
371 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
372 const struct btf *btf;
373 /* below are used during iteration */
374 struct {
375 u8 depth;
376 u8 depth_to_show;
377 u8 depth_check;
378 u8 array_member:1,
379 array_terminated:1;
380 u16 array_encoding;
381 u32 type_id;
382 int status; /* non-zero for error */
383 const struct btf_type *type;
384 const struct btf_member *member;
385 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
386 } state;
387 struct {
388 u32 size;
389 void *head;
390 void *data;
391 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
392 } obj;
393};
394
69b693f0
MKL
395struct btf_kind_operations {
396 s32 (*check_meta)(struct btf_verifier_env *env,
397 const struct btf_type *t,
398 u32 meta_left);
eb3f595d
MKL
399 int (*resolve)(struct btf_verifier_env *env,
400 const struct resolve_vertex *v);
179cde8c
MKL
401 int (*check_member)(struct btf_verifier_env *env,
402 const struct btf_type *struct_type,
403 const struct btf_member *member,
404 const struct btf_type *member_type);
9d5f9f70
YS
405 int (*check_kflag_member)(struct btf_verifier_env *env,
406 const struct btf_type *struct_type,
407 const struct btf_member *member,
408 const struct btf_type *member_type);
69b693f0
MKL
409 void (*log_details)(struct btf_verifier_env *env,
410 const struct btf_type *t);
31d0bc81 411 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 412 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 413 struct btf_show *show);
69b693f0
MKL
414};
415
416static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
417static struct btf_type btf_void;
418
2667a262
MKL
419static int btf_resolve(struct btf_verifier_env *env,
420 const struct btf_type *t, u32 type_id);
421
d7e7b42f
YS
422static int btf_func_check(struct btf_verifier_env *env,
423 const struct btf_type *t);
424
eb3f595d
MKL
425static bool btf_type_is_modifier(const struct btf_type *t)
426{
427 /* Some of them is not strictly a C modifier
428 * but they are grouped into the same bucket
429 * for BTF concern:
430 * A type (t) that refers to another
431 * type through t->type AND its size cannot
432 * be determined without following the t->type.
433 *
434 * ptr does not fall into this bucket
435 * because its size is always sizeof(void *).
436 */
437 switch (BTF_INFO_KIND(t->info)) {
438 case BTF_KIND_TYPEDEF:
439 case BTF_KIND_VOLATILE:
440 case BTF_KIND_CONST:
441 case BTF_KIND_RESTRICT:
8c42d2fa 442 case BTF_KIND_TYPE_TAG:
eb3f595d
MKL
443 return true;
444 }
445
446 return false;
447}
448
2824ecb7 449bool btf_type_is_void(const struct btf_type *t)
eb3f595d 450{
b47a0bd2
MKL
451 return t == &btf_void;
452}
453
454static bool btf_type_is_fwd(const struct btf_type *t)
455{
456 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
457}
458
459static bool btf_type_nosize(const struct btf_type *t)
460{
2667a262
MKL
461 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
462 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
463}
464
b47a0bd2 465static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 466{
b47a0bd2 467 return !t || btf_type_nosize(t);
eb3f595d
MKL
468}
469
d83525ca
AS
470static bool __btf_type_is_struct(const struct btf_type *t)
471{
472 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
473}
474
eb3f595d
MKL
475static bool btf_type_is_array(const struct btf_type *t)
476{
477 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
478}
479
1dc92851
DB
480static bool btf_type_is_datasec(const struct btf_type *t)
481{
482 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
483}
484
223f903e 485static bool btf_type_is_decl_tag(const struct btf_type *t)
b5ea834d 486{
223f903e 487 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
b5ea834d
YS
488}
489
223f903e 490static bool btf_type_is_decl_tag_target(const struct btf_type *t)
b5ea834d
YS
491{
492 return btf_type_is_func(t) || btf_type_is_struct(t) ||
bd16dee6 493 btf_type_is_var(t) || btf_type_is_typedef(t);
b5ea834d
YS
494}
495
541c3bad 496u32 btf_nr_types(const struct btf *btf)
951bb646
AN
497{
498 u32 total = 0;
499
500 while (btf) {
501 total += btf->nr_types;
502 btf = btf->base_btf;
503 }
504
505 return total;
506}
507
27ae7997
MKL
508s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
509{
510 const struct btf_type *t;
511 const char *tname;
951bb646 512 u32 i, total;
27ae7997 513
541c3bad 514 total = btf_nr_types(btf);
951bb646
AN
515 for (i = 1; i < total; i++) {
516 t = btf_type_by_id(btf, i);
27ae7997
MKL
517 if (BTF_INFO_KIND(t->info) != kind)
518 continue;
519
520 tname = btf_name_by_offset(btf, t->name_off);
521 if (!strcmp(tname, name))
522 return i;
523 }
524
525 return -ENOENT;
526}
527
edc3ec09
KKD
528static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
529{
530 struct btf *btf;
531 s32 ret;
532 int id;
533
534 btf = bpf_get_btf_vmlinux();
535 if (IS_ERR(btf))
536 return PTR_ERR(btf);
7ada3787
KKD
537 if (!btf)
538 return -EINVAL;
edc3ec09
KKD
539
540 ret = btf_find_by_name_kind(btf, name, kind);
541 /* ret is never zero, since btf_find_by_name_kind returns
542 * positive btf_id or negative error.
543 */
544 if (ret > 0) {
545 btf_get(btf);
546 *btf_p = btf;
547 return ret;
548 }
549
550 /* If name is not found in vmlinux's BTF then search in module's BTFs */
551 spin_lock_bh(&btf_idr_lock);
552 idr_for_each_entry(&btf_idr, btf, id) {
553 if (!btf_is_module(btf))
554 continue;
555 /* linear search could be slow hence unlock/lock
556 * the IDR to avoiding holding it for too long
557 */
558 btf_get(btf);
559 spin_unlock_bh(&btf_idr_lock);
560 ret = btf_find_by_name_kind(btf, name, kind);
561 if (ret > 0) {
562 *btf_p = btf;
563 return ret;
564 }
565 spin_lock_bh(&btf_idr_lock);
566 btf_put(btf);
567 }
568 spin_unlock_bh(&btf_idr_lock);
569 return ret;
570}
571
27ae7997
MKL
572const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
573 u32 id, u32 *res_id)
574{
575 const struct btf_type *t = btf_type_by_id(btf, id);
576
577 while (btf_type_is_modifier(t)) {
578 id = t->type;
579 t = btf_type_by_id(btf, t->type);
580 }
581
582 if (res_id)
583 *res_id = id;
584
585 return t;
586}
587
588const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
589 u32 id, u32 *res_id)
590{
591 const struct btf_type *t;
592
593 t = btf_type_skip_modifiers(btf, id, NULL);
594 if (!btf_type_is_ptr(t))
595 return NULL;
596
597 return btf_type_skip_modifiers(btf, t->type, res_id);
598}
599
600const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
601 u32 id, u32 *res_id)
602{
603 const struct btf_type *ptype;
604
605 ptype = btf_type_resolve_ptr(btf, id, res_id);
606 if (ptype && btf_type_is_func_proto(ptype))
607 return ptype;
608
609 return NULL;
610}
611
1dc92851
DB
612/* Types that act only as a source, not sink or intermediate
613 * type when resolving.
614 */
615static bool btf_type_is_resolve_source_only(const struct btf_type *t)
616{
617 return btf_type_is_var(t) ||
223f903e 618 btf_type_is_decl_tag(t) ||
1dc92851
DB
619 btf_type_is_datasec(t);
620}
621
eb3f595d
MKL
622/* What types need to be resolved?
623 *
624 * btf_type_is_modifier() is an obvious one.
625 *
626 * btf_type_is_struct() because its member refers to
627 * another type (through member->type).
1dc92851
DB
628 *
629 * btf_type_is_var() because the variable refers to
630 * another type. btf_type_is_datasec() holds multiple
631 * btf_type_is_var() types that need resolving.
632 *
eb3f595d
MKL
633 * btf_type_is_array() because its element (array->type)
634 * refers to another type. Array can be thought of a
635 * special case of struct while array just has the same
636 * member-type repeated by array->nelems of times.
637 */
638static bool btf_type_needs_resolve(const struct btf_type *t)
639{
640 return btf_type_is_modifier(t) ||
1dc92851
DB
641 btf_type_is_ptr(t) ||
642 btf_type_is_struct(t) ||
643 btf_type_is_array(t) ||
644 btf_type_is_var(t) ||
d7e7b42f 645 btf_type_is_func(t) ||
223f903e 646 btf_type_is_decl_tag(t) ||
1dc92851 647 btf_type_is_datasec(t);
eb3f595d
MKL
648}
649
650/* t->size can be used */
651static bool btf_type_has_size(const struct btf_type *t)
652{
653 switch (BTF_INFO_KIND(t->info)) {
654 case BTF_KIND_INT:
655 case BTF_KIND_STRUCT:
656 case BTF_KIND_UNION:
657 case BTF_KIND_ENUM:
1dc92851 658 case BTF_KIND_DATASEC:
b1828f0b 659 case BTF_KIND_FLOAT:
eb3f595d
MKL
660 return true;
661 }
662
663 return false;
664}
665
69b693f0
MKL
666static const char *btf_int_encoding_str(u8 encoding)
667{
668 if (encoding == 0)
669 return "(none)";
670 else if (encoding == BTF_INT_SIGNED)
671 return "SIGNED";
672 else if (encoding == BTF_INT_CHAR)
673 return "CHAR";
674 else if (encoding == BTF_INT_BOOL)
675 return "BOOL";
69b693f0
MKL
676 else
677 return "UNKN";
678}
679
69b693f0
MKL
680static u32 btf_type_int(const struct btf_type *t)
681{
682 return *(u32 *)(t + 1);
683}
684
685static const struct btf_array *btf_type_array(const struct btf_type *t)
686{
687 return (const struct btf_array *)(t + 1);
688}
689
69b693f0
MKL
690static const struct btf_enum *btf_type_enum(const struct btf_type *t)
691{
692 return (const struct btf_enum *)(t + 1);
693}
694
1dc92851
DB
695static const struct btf_var *btf_type_var(const struct btf_type *t)
696{
697 return (const struct btf_var *)(t + 1);
698}
699
223f903e 700static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
b5ea834d 701{
223f903e 702 return (const struct btf_decl_tag *)(t + 1);
b5ea834d
YS
703}
704
69b693f0
MKL
705static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
706{
707 return kind_ops[BTF_INFO_KIND(t->info)];
708}
709
583c5318 710static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 711{
951bb646
AN
712 if (!BTF_STR_OFFSET_VALID(offset))
713 return false;
714
715 while (offset < btf->start_str_off)
716 btf = btf->base_btf;
717
718 offset -= btf->start_str_off;
719 return offset < btf->hdr.str_len;
69b693f0
MKL
720}
721
1dc92851
DB
722static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
723{
724 if ((first ? !isalpha(c) :
725 !isalnum(c)) &&
726 c != '_' &&
727 ((c == '.' && !dot_ok) ||
728 c != '.'))
729 return false;
730 return true;
731}
732
951bb646
AN
733static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
734{
735 while (offset < btf->start_str_off)
736 btf = btf->base_btf;
737
738 offset -= btf->start_str_off;
739 if (offset < btf->hdr.str_len)
740 return &btf->strings[offset];
741
742 return NULL;
743}
744
1dc92851 745static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
746{
747 /* offset must be valid */
951bb646 748 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
749 const char *src_limit;
750
1dc92851 751 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
752 return false;
753
754 /* set a limit on identifier length */
755 src_limit = src + KSYM_NAME_LEN;
756 src++;
757 while (*src && src < src_limit) {
1dc92851 758 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
759 return false;
760 src++;
761 }
762
763 return !*src;
764}
765
1dc92851
DB
766/* Only C-style identifier is permitted. This can be relaxed if
767 * necessary.
768 */
769static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
770{
771 return __btf_name_valid(btf, offset, false);
772}
773
774static bool btf_name_valid_section(const struct btf *btf, u32 offset)
775{
776 return __btf_name_valid(btf, offset, true);
777}
778
23127b33 779static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 780{
951bb646
AN
781 const char *name;
782
aea2f7b8 783 if (!offset)
69b693f0 784 return "(anon)";
951bb646
AN
785
786 name = btf_str_by_offset(btf, offset);
787 return name ?: "(invalid-name-offset)";
69b693f0
MKL
788}
789
23127b33
MKL
790const char *btf_name_by_offset(const struct btf *btf, u32 offset)
791{
951bb646 792 return btf_str_by_offset(btf, offset);
23127b33
MKL
793}
794
838e9690 795const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 796{
951bb646
AN
797 while (type_id < btf->start_id)
798 btf = btf->base_btf;
eb3f595d 799
951bb646
AN
800 type_id -= btf->start_id;
801 if (type_id >= btf->nr_types)
802 return NULL;
eb3f595d
MKL
803 return btf->types[type_id];
804}
805
4ef5f574
MKL
806/*
807 * Regular int is not a bit field and it must be either
b1e8818c 808 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
809 */
810static bool btf_type_int_is_regular(const struct btf_type *t)
811{
36fc3c8c 812 u8 nr_bits, nr_bytes;
4ef5f574
MKL
813 u32 int_data;
814
815 int_data = btf_type_int(t);
816 nr_bits = BTF_INT_BITS(int_data);
817 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
818 if (BITS_PER_BYTE_MASKED(nr_bits) ||
819 BTF_INT_OFFSET(int_data) ||
820 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
821 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
822 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
823 return false;
824 }
825
826 return true;
827}
828
9a1126b6 829/*
ffa0c1cf
YS
830 * Check that given struct member is a regular int with expected
831 * offset and size.
9a1126b6 832 */
ffa0c1cf
YS
833bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
834 const struct btf_member *m,
835 u32 expected_offset, u32 expected_size)
9a1126b6 836{
ffa0c1cf
YS
837 const struct btf_type *t;
838 u32 id, int_data;
839 u8 nr_bits;
9a1126b6 840
ffa0c1cf
YS
841 id = m->type;
842 t = btf_type_id_size(btf, &id, NULL);
843 if (!t || !btf_type_is_int(t))
9a1126b6
RG
844 return false;
845
846 int_data = btf_type_int(t);
847 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
848 if (btf_type_kflag(s)) {
849 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
850 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
851
852 /* if kflag set, int should be a regular int and
853 * bit offset should be at byte boundary.
854 */
855 return !bitfield_size &&
856 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
857 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
858 }
859
860 if (BTF_INT_OFFSET(int_data) ||
861 BITS_PER_BYTE_MASKED(m->offset) ||
862 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
863 BITS_PER_BYTE_MASKED(nr_bits) ||
864 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
865 return false;
866
867 return true;
868}
869
31d0bc81
AM
870/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
871static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
872 u32 id)
873{
874 const struct btf_type *t = btf_type_by_id(btf, id);
875
876 while (btf_type_is_modifier(t) &&
877 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
878 t = btf_type_by_id(btf, t->type);
879 }
880
881 return t;
882}
883
884#define BTF_SHOW_MAX_ITER 10
885
886#define BTF_KIND_BIT(kind) (1ULL << kind)
887
888/*
889 * Populate show->state.name with type name information.
890 * Format of type name is
891 *
892 * [.member_name = ] (type_name)
893 */
894static const char *btf_show_name(struct btf_show *show)
895{
896 /* BTF_MAX_ITER array suffixes "[]" */
897 const char *array_suffixes = "[][][][][][][][][][]";
898 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
899 /* BTF_MAX_ITER pointer suffixes "*" */
900 const char *ptr_suffixes = "**********";
901 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
902 const char *name = NULL, *prefix = "", *parens = "";
903 const struct btf_member *m = show->state.member;
73b6eae5 904 const struct btf_type *t;
31d0bc81
AM
905 const struct btf_array *array;
906 u32 id = show->state.type_id;
907 const char *member = NULL;
908 bool show_member = false;
909 u64 kinds = 0;
910 int i;
911
912 show->state.name[0] = '\0';
913
914 /*
915 * Don't show type name if we're showing an array member;
916 * in that case we show the array type so don't need to repeat
917 * ourselves for each member.
918 */
919 if (show->state.array_member)
920 return "";
921
922 /* Retrieve member name, if any. */
923 if (m) {
924 member = btf_name_by_offset(show->btf, m->name_off);
925 show_member = strlen(member) > 0;
926 id = m->type;
927 }
928
929 /*
930 * Start with type_id, as we have resolved the struct btf_type *
931 * via btf_modifier_show() past the parent typedef to the child
932 * struct, int etc it is defined as. In such cases, the type_id
933 * still represents the starting type while the struct btf_type *
934 * in our show->state points at the resolved type of the typedef.
935 */
936 t = btf_type_by_id(show->btf, id);
937 if (!t)
938 return "";
939
940 /*
941 * The goal here is to build up the right number of pointer and
942 * array suffixes while ensuring the type name for a typedef
943 * is represented. Along the way we accumulate a list of
944 * BTF kinds we have encountered, since these will inform later
945 * display; for example, pointer types will not require an
946 * opening "{" for struct, we will just display the pointer value.
947 *
948 * We also want to accumulate the right number of pointer or array
949 * indices in the format string while iterating until we get to
950 * the typedef/pointee/array member target type.
951 *
952 * We start by pointing at the end of pointer and array suffix
953 * strings; as we accumulate pointers and arrays we move the pointer
954 * or array string backwards so it will show the expected number of
955 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
956 * and/or arrays and typedefs are supported as a precaution.
957 *
958 * We also want to get typedef name while proceeding to resolve
959 * type it points to so that we can add parentheses if it is a
960 * "typedef struct" etc.
961 */
962 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
963
964 switch (BTF_INFO_KIND(t->info)) {
965 case BTF_KIND_TYPEDEF:
966 if (!name)
967 name = btf_name_by_offset(show->btf,
968 t->name_off);
969 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
970 id = t->type;
971 break;
972 case BTF_KIND_ARRAY:
973 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
974 parens = "[";
975 if (!t)
976 return "";
977 array = btf_type_array(t);
978 if (array_suffix > array_suffixes)
979 array_suffix -= 2;
980 id = array->type;
981 break;
982 case BTF_KIND_PTR:
983 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
984 if (ptr_suffix > ptr_suffixes)
985 ptr_suffix -= 1;
986 id = t->type;
987 break;
988 default:
989 id = 0;
990 break;
991 }
992 if (!id)
993 break;
994 t = btf_type_skip_qualifiers(show->btf, id);
995 }
996 /* We may not be able to represent this type; bail to be safe */
997 if (i == BTF_SHOW_MAX_ITER)
998 return "";
999
1000 if (!name)
1001 name = btf_name_by_offset(show->btf, t->name_off);
1002
1003 switch (BTF_INFO_KIND(t->info)) {
1004 case BTF_KIND_STRUCT:
1005 case BTF_KIND_UNION:
1006 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1007 "struct" : "union";
1008 /* if it's an array of struct/union, parens is already set */
1009 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1010 parens = "{";
1011 break;
1012 case BTF_KIND_ENUM:
1013 prefix = "enum";
1014 break;
1015 default:
1016 break;
1017 }
1018
1019 /* pointer does not require parens */
1020 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1021 parens = "";
1022 /* typedef does not require struct/union/enum prefix */
1023 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1024 prefix = "";
1025
1026 if (!name)
1027 name = "";
1028
1029 /* Even if we don't want type name info, we want parentheses etc */
1030 if (show->flags & BTF_SHOW_NONAME)
1031 snprintf(show->state.name, sizeof(show->state.name), "%s",
1032 parens);
1033 else
1034 snprintf(show->state.name, sizeof(show->state.name),
1035 "%s%s%s(%s%s%s%s%s%s)%s",
1036 /* first 3 strings comprise ".member = " */
1037 show_member ? "." : "",
1038 show_member ? member : "",
1039 show_member ? " = " : "",
1040 /* ...next is our prefix (struct, enum, etc) */
1041 prefix,
1042 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1043 /* ...this is the type name itself */
1044 name,
1045 /* ...suffixed by the appropriate '*', '[]' suffixes */
1046 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1047 array_suffix, parens);
1048
1049 return show->state.name;
1050}
1051
1052static const char *__btf_show_indent(struct btf_show *show)
1053{
1054 const char *indents = " ";
1055 const char *indent = &indents[strlen(indents)];
1056
1057 if ((indent - show->state.depth) >= indents)
1058 return indent - show->state.depth;
1059 return indents;
1060}
1061
1062static const char *btf_show_indent(struct btf_show *show)
1063{
1064 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1065}
1066
1067static const char *btf_show_newline(struct btf_show *show)
1068{
1069 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1070}
1071
1072static const char *btf_show_delim(struct btf_show *show)
1073{
1074 if (show->state.depth == 0)
1075 return "";
1076
1077 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1078 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1079 return "|";
1080
1081 return ",";
1082}
1083
1084__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1085{
1086 va_list args;
1087
1088 if (!show->state.depth_check) {
1089 va_start(args, fmt);
1090 show->showfn(show, fmt, args);
1091 va_end(args);
1092 }
1093}
1094
1095/* Macros are used here as btf_show_type_value[s]() prepends and appends
1096 * format specifiers to the format specifier passed in; these do the work of
1097 * adding indentation, delimiters etc while the caller simply has to specify
1098 * the type value(s) in the format specifier + value(s).
1099 */
1100#define btf_show_type_value(show, fmt, value) \
1101 do { \
1102 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1103 show->state.depth == 0) { \
1104 btf_show(show, "%s%s" fmt "%s%s", \
1105 btf_show_indent(show), \
1106 btf_show_name(show), \
1107 value, btf_show_delim(show), \
1108 btf_show_newline(show)); \
1109 if (show->state.depth > show->state.depth_to_show) \
1110 show->state.depth_to_show = show->state.depth; \
1111 } \
1112 } while (0)
1113
1114#define btf_show_type_values(show, fmt, ...) \
1115 do { \
1116 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1117 btf_show_name(show), \
1118 __VA_ARGS__, btf_show_delim(show), \
1119 btf_show_newline(show)); \
1120 if (show->state.depth > show->state.depth_to_show) \
1121 show->state.depth_to_show = show->state.depth; \
1122 } while (0)
1123
1124/* How much is left to copy to safe buffer after @data? */
1125static int btf_show_obj_size_left(struct btf_show *show, void *data)
1126{
1127 return show->obj.head + show->obj.size - data;
1128}
1129
1130/* Is object pointed to by @data of @size already copied to our safe buffer? */
1131static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1132{
1133 return data >= show->obj.data &&
1134 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1135}
1136
1137/*
1138 * If object pointed to by @data of @size falls within our safe buffer, return
1139 * the equivalent pointer to the same safe data. Assumes
1140 * copy_from_kernel_nofault() has already happened and our safe buffer is
1141 * populated.
1142 */
1143static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1144{
1145 if (btf_show_obj_is_safe(show, data, size))
1146 return show->obj.safe + (data - show->obj.data);
1147 return NULL;
1148}
1149
1150/*
1151 * Return a safe-to-access version of data pointed to by @data.
1152 * We do this by copying the relevant amount of information
1153 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1154 *
1155 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1156 * safe copy is needed.
1157 *
1158 * Otherwise we need to determine if we have the required amount
1159 * of data (determined by the @data pointer and the size of the
1160 * largest base type we can encounter (represented by
1161 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1162 * that we will be able to print some of the current object,
1163 * and if more is needed a copy will be triggered.
1164 * Some objects such as structs will not fit into the buffer;
1165 * in such cases additional copies when we iterate over their
1166 * members may be needed.
1167 *
1168 * btf_show_obj_safe() is used to return a safe buffer for
1169 * btf_show_start_type(); this ensures that as we recurse into
1170 * nested types we always have safe data for the given type.
1171 * This approach is somewhat wasteful; it's possible for example
1172 * that when iterating over a large union we'll end up copying the
1173 * same data repeatedly, but the goal is safety not performance.
1174 * We use stack data as opposed to per-CPU buffers because the
1175 * iteration over a type can take some time, and preemption handling
1176 * would greatly complicate use of the safe buffer.
1177 */
1178static void *btf_show_obj_safe(struct btf_show *show,
1179 const struct btf_type *t,
1180 void *data)
1181{
1182 const struct btf_type *rt;
1183 int size_left, size;
1184 void *safe = NULL;
1185
1186 if (show->flags & BTF_SHOW_UNSAFE)
1187 return data;
1188
1189 rt = btf_resolve_size(show->btf, t, &size);
1190 if (IS_ERR(rt)) {
1191 show->state.status = PTR_ERR(rt);
1192 return NULL;
1193 }
1194
1195 /*
1196 * Is this toplevel object? If so, set total object size and
1197 * initialize pointers. Otherwise check if we still fall within
1198 * our safe object data.
1199 */
1200 if (show->state.depth == 0) {
1201 show->obj.size = size;
1202 show->obj.head = data;
1203 } else {
1204 /*
1205 * If the size of the current object is > our remaining
1206 * safe buffer we _may_ need to do a new copy. However
1207 * consider the case of a nested struct; it's size pushes
1208 * us over the safe buffer limit, but showing any individual
1209 * struct members does not. In such cases, we don't need
1210 * to initiate a fresh copy yet; however we definitely need
1211 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1212 * in our buffer, regardless of the current object size.
1213 * The logic here is that as we resolve types we will
1214 * hit a base type at some point, and we need to be sure
1215 * the next chunk of data is safely available to display
1216 * that type info safely. We cannot rely on the size of
1217 * the current object here because it may be much larger
1218 * than our current buffer (e.g. task_struct is 8k).
1219 * All we want to do here is ensure that we can print the
1220 * next basic type, which we can if either
1221 * - the current type size is within the safe buffer; or
1222 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1223 * the safe buffer.
1224 */
1225 safe = __btf_show_obj_safe(show, data,
1226 min(size,
1227 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1228 }
1229
1230 /*
1231 * We need a new copy to our safe object, either because we haven't
8fb33b60 1232 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1233 * we want falls outside the boundaries of the safe object.
1234 */
1235 if (!safe) {
1236 size_left = btf_show_obj_size_left(show, data);
1237 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1238 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1239 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1240 data, size_left);
1241 if (!show->state.status) {
1242 show->obj.data = data;
1243 safe = show->obj.safe;
1244 }
1245 }
1246
1247 return safe;
1248}
1249
1250/*
1251 * Set the type we are starting to show and return a safe data pointer
1252 * to be used for showing the associated data.
1253 */
1254static void *btf_show_start_type(struct btf_show *show,
1255 const struct btf_type *t,
1256 u32 type_id, void *data)
1257{
1258 show->state.type = t;
1259 show->state.type_id = type_id;
1260 show->state.name[0] = '\0';
1261
1262 return btf_show_obj_safe(show, t, data);
1263}
1264
1265static void btf_show_end_type(struct btf_show *show)
1266{
1267 show->state.type = NULL;
1268 show->state.type_id = 0;
1269 show->state.name[0] = '\0';
1270}
1271
1272static void *btf_show_start_aggr_type(struct btf_show *show,
1273 const struct btf_type *t,
1274 u32 type_id, void *data)
1275{
1276 void *safe_data = btf_show_start_type(show, t, type_id, data);
1277
1278 if (!safe_data)
1279 return safe_data;
1280
1281 btf_show(show, "%s%s%s", btf_show_indent(show),
1282 btf_show_name(show),
1283 btf_show_newline(show));
1284 show->state.depth++;
1285 return safe_data;
1286}
1287
1288static void btf_show_end_aggr_type(struct btf_show *show,
1289 const char *suffix)
1290{
1291 show->state.depth--;
1292 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1293 btf_show_delim(show), btf_show_newline(show));
1294 btf_show_end_type(show);
1295}
1296
1297static void btf_show_start_member(struct btf_show *show,
1298 const struct btf_member *m)
1299{
1300 show->state.member = m;
1301}
1302
1303static void btf_show_start_array_member(struct btf_show *show)
1304{
1305 show->state.array_member = 1;
1306 btf_show_start_member(show, NULL);
1307}
1308
1309static void btf_show_end_member(struct btf_show *show)
1310{
1311 show->state.member = NULL;
1312}
1313
1314static void btf_show_end_array_member(struct btf_show *show)
1315{
1316 show->state.array_member = 0;
1317 btf_show_end_member(show);
1318}
1319
1320static void *btf_show_start_array_type(struct btf_show *show,
1321 const struct btf_type *t,
1322 u32 type_id,
1323 u16 array_encoding,
1324 void *data)
1325{
1326 show->state.array_encoding = array_encoding;
1327 show->state.array_terminated = 0;
1328 return btf_show_start_aggr_type(show, t, type_id, data);
1329}
1330
1331static void btf_show_end_array_type(struct btf_show *show)
1332{
1333 show->state.array_encoding = 0;
1334 show->state.array_terminated = 0;
1335 btf_show_end_aggr_type(show, "]");
1336}
1337
1338static void *btf_show_start_struct_type(struct btf_show *show,
1339 const struct btf_type *t,
1340 u32 type_id,
1341 void *data)
1342{
1343 return btf_show_start_aggr_type(show, t, type_id, data);
1344}
1345
1346static void btf_show_end_struct_type(struct btf_show *show)
1347{
1348 btf_show_end_aggr_type(show, "}");
1349}
1350
69b693f0
MKL
1351__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1352 const char *fmt, ...)
1353{
1354 va_list args;
1355
1356 va_start(args, fmt);
1357 bpf_verifier_vlog(log, fmt, args);
1358 va_end(args);
1359}
1360
1361__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1362 const char *fmt, ...)
1363{
1364 struct bpf_verifier_log *log = &env->log;
1365 va_list args;
1366
1367 if (!bpf_verifier_log_needed(log))
1368 return;
1369
1370 va_start(args, fmt);
1371 bpf_verifier_vlog(log, fmt, args);
1372 va_end(args);
1373}
1374
1375__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1376 const struct btf_type *t,
1377 bool log_details,
1378 const char *fmt, ...)
1379{
1380 struct bpf_verifier_log *log = &env->log;
1381 u8 kind = BTF_INFO_KIND(t->info);
1382 struct btf *btf = env->btf;
1383 va_list args;
1384
1385 if (!bpf_verifier_log_needed(log))
1386 return;
1387
8580ac94
AS
1388 /* btf verifier prints all types it is processing via
1389 * btf_verifier_log_type(..., fmt = NULL).
1390 * Skip those prints for in-kernel BTF verification.
1391 */
1392 if (log->level == BPF_LOG_KERNEL && !fmt)
1393 return;
1394
69b693f0
MKL
1395 __btf_verifier_log(log, "[%u] %s %s%s",
1396 env->log_type_id,
1397 btf_kind_str[kind],
23127b33 1398 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1399 log_details ? " " : "");
1400
1401 if (log_details)
1402 btf_type_ops(t)->log_details(env, t);
1403
1404 if (fmt && *fmt) {
1405 __btf_verifier_log(log, " ");
1406 va_start(args, fmt);
1407 bpf_verifier_vlog(log, fmt, args);
1408 va_end(args);
1409 }
1410
1411 __btf_verifier_log(log, "\n");
1412}
1413
1414#define btf_verifier_log_type(env, t, ...) \
1415 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1416#define btf_verifier_log_basic(env, t, ...) \
1417 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1418
1419__printf(4, 5)
1420static void btf_verifier_log_member(struct btf_verifier_env *env,
1421 const struct btf_type *struct_type,
1422 const struct btf_member *member,
1423 const char *fmt, ...)
1424{
1425 struct bpf_verifier_log *log = &env->log;
1426 struct btf *btf = env->btf;
1427 va_list args;
1428
1429 if (!bpf_verifier_log_needed(log))
1430 return;
1431
8580ac94
AS
1432 if (log->level == BPF_LOG_KERNEL && !fmt)
1433 return;
eb3f595d
MKL
1434 /* The CHECK_META phase already did a btf dump.
1435 *
1436 * If member is logged again, it must hit an error in
1437 * parsing this member. It is useful to print out which
1438 * struct this member belongs to.
1439 */
1440 if (env->phase != CHECK_META)
1441 btf_verifier_log_type(env, struct_type, NULL);
1442
9d5f9f70
YS
1443 if (btf_type_kflag(struct_type))
1444 __btf_verifier_log(log,
1445 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1446 __btf_name_by_offset(btf, member->name_off),
1447 member->type,
1448 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1449 BTF_MEMBER_BIT_OFFSET(member->offset));
1450 else
1451 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1452 __btf_name_by_offset(btf, member->name_off),
1453 member->type, member->offset);
69b693f0
MKL
1454
1455 if (fmt && *fmt) {
1456 __btf_verifier_log(log, " ");
1457 va_start(args, fmt);
1458 bpf_verifier_vlog(log, fmt, args);
1459 va_end(args);
1460 }
1461
1462 __btf_verifier_log(log, "\n");
1463}
1464
1dc92851
DB
1465__printf(4, 5)
1466static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1467 const struct btf_type *datasec_type,
1468 const struct btf_var_secinfo *vsi,
1469 const char *fmt, ...)
1470{
1471 struct bpf_verifier_log *log = &env->log;
1472 va_list args;
1473
1474 if (!bpf_verifier_log_needed(log))
1475 return;
8580ac94
AS
1476 if (log->level == BPF_LOG_KERNEL && !fmt)
1477 return;
1dc92851
DB
1478 if (env->phase != CHECK_META)
1479 btf_verifier_log_type(env, datasec_type, NULL);
1480
1481 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1482 vsi->type, vsi->offset, vsi->size);
1483 if (fmt && *fmt) {
1484 __btf_verifier_log(log, " ");
1485 va_start(args, fmt);
1486 bpf_verifier_vlog(log, fmt, args);
1487 va_end(args);
1488 }
1489
1490 __btf_verifier_log(log, "\n");
1491}
1492
f80442a4
MKL
1493static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1494 u32 btf_data_size)
69b693f0
MKL
1495{
1496 struct bpf_verifier_log *log = &env->log;
1497 const struct btf *btf = env->btf;
1498 const struct btf_header *hdr;
1499
1500 if (!bpf_verifier_log_needed(log))
1501 return;
1502
8580ac94
AS
1503 if (log->level == BPF_LOG_KERNEL)
1504 return;
f80442a4 1505 hdr = &btf->hdr;
69b693f0
MKL
1506 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1507 __btf_verifier_log(log, "version: %u\n", hdr->version);
1508 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1509 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1510 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1511 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1512 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1513 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1514 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1515}
1516
1517static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1518{
1519 struct btf *btf = env->btf;
1520
951bb646 1521 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1522 /* Expand 'types' array */
1523
1524 struct btf_type **new_types;
1525 u32 expand_by, new_size;
1526
951bb646 1527 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1528 btf_verifier_log(env, "Exceeded max num of types");
1529 return -E2BIG;
1530 }
1531
1532 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1533 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1534 btf->types_size + expand_by);
1535
778e1cdd 1536 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1537 GFP_KERNEL | __GFP_NOWARN);
1538 if (!new_types)
1539 return -ENOMEM;
1540
951bb646
AN
1541 if (btf->nr_types == 0) {
1542 if (!btf->base_btf) {
1543 /* lazily init VOID type */
1544 new_types[0] = &btf_void;
1545 btf->nr_types++;
1546 }
1547 } else {
69b693f0 1548 memcpy(new_types, btf->types,
951bb646
AN
1549 sizeof(*btf->types) * btf->nr_types);
1550 }
69b693f0
MKL
1551
1552 kvfree(btf->types);
1553 btf->types = new_types;
1554 btf->types_size = new_size;
1555 }
1556
951bb646 1557 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1558
1559 return 0;
1560}
1561
78958fca
MKL
1562static int btf_alloc_id(struct btf *btf)
1563{
1564 int id;
1565
1566 idr_preload(GFP_KERNEL);
1567 spin_lock_bh(&btf_idr_lock);
1568 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1569 if (id > 0)
1570 btf->id = id;
1571 spin_unlock_bh(&btf_idr_lock);
1572 idr_preload_end();
1573
1574 if (WARN_ON_ONCE(!id))
1575 return -ENOSPC;
1576
1577 return id > 0 ? 0 : id;
1578}
1579
1580static void btf_free_id(struct btf *btf)
1581{
1582 unsigned long flags;
1583
1584 /*
1585 * In map-in-map, calling map_delete_elem() on outer
1586 * map will call bpf_map_put on the inner map.
1587 * It will then eventually call btf_free_id()
1588 * on the inner map. Some of the map_delete_elem()
1589 * implementation may have irq disabled, so
1590 * we need to use the _irqsave() version instead
1591 * of the _bh() version.
1592 */
1593 spin_lock_irqsave(&btf_idr_lock, flags);
1594 idr_remove(&btf_idr, btf->id);
1595 spin_unlock_irqrestore(&btf_idr_lock, flags);
1596}
1597
dee872e1
KKD
1598static void btf_free_kfunc_set_tab(struct btf *btf)
1599{
1600 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1601 int hook, type;
1602
1603 if (!tab)
1604 return;
1605 /* For module BTF, we directly assign the sets being registered, so
1606 * there is nothing to free except kfunc_set_tab.
1607 */
1608 if (btf_is_module(btf))
1609 goto free_tab;
1610 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) {
1611 for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++)
1612 kfree(tab->sets[hook][type]);
1613 }
1614free_tab:
1615 kfree(tab);
1616 btf->kfunc_set_tab = NULL;
1617}
1618
69b693f0
MKL
1619static void btf_free(struct btf *btf)
1620{
dee872e1 1621 btf_free_kfunc_set_tab(btf);
69b693f0 1622 kvfree(btf->types);
eb3f595d
MKL
1623 kvfree(btf->resolved_sizes);
1624 kvfree(btf->resolved_ids);
69b693f0
MKL
1625 kvfree(btf->data);
1626 kfree(btf);
1627}
1628
78958fca 1629static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1630{
78958fca
MKL
1631 struct btf *btf = container_of(rcu, struct btf, rcu);
1632
1633 btf_free(btf);
f56a653c
MKL
1634}
1635
22dc4a0f
AN
1636void btf_get(struct btf *btf)
1637{
1638 refcount_inc(&btf->refcnt);
1639}
1640
f56a653c
MKL
1641void btf_put(struct btf *btf)
1642{
78958fca
MKL
1643 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1644 btf_free_id(btf);
1645 call_rcu(&btf->rcu, btf_free_rcu);
1646 }
f56a653c
MKL
1647}
1648
eb3f595d
MKL
1649static int env_resolve_init(struct btf_verifier_env *env)
1650{
1651 struct btf *btf = env->btf;
1652 u32 nr_types = btf->nr_types;
1653 u32 *resolved_sizes = NULL;
1654 u32 *resolved_ids = NULL;
1655 u8 *visit_states = NULL;
1656
951bb646 1657 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1658 GFP_KERNEL | __GFP_NOWARN);
1659 if (!resolved_sizes)
1660 goto nomem;
1661
951bb646 1662 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1663 GFP_KERNEL | __GFP_NOWARN);
1664 if (!resolved_ids)
1665 goto nomem;
1666
951bb646 1667 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1668 GFP_KERNEL | __GFP_NOWARN);
1669 if (!visit_states)
1670 goto nomem;
1671
1672 btf->resolved_sizes = resolved_sizes;
1673 btf->resolved_ids = resolved_ids;
1674 env->visit_states = visit_states;
1675
1676 return 0;
1677
1678nomem:
1679 kvfree(resolved_sizes);
1680 kvfree(resolved_ids);
1681 kvfree(visit_states);
1682 return -ENOMEM;
1683}
1684
69b693f0
MKL
1685static void btf_verifier_env_free(struct btf_verifier_env *env)
1686{
eb3f595d 1687 kvfree(env->visit_states);
69b693f0
MKL
1688 kfree(env);
1689}
1690
eb3f595d
MKL
1691static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1692 const struct btf_type *next_type)
1693{
1694 switch (env->resolve_mode) {
1695 case RESOLVE_TBD:
1696 /* int, enum or void is a sink */
1697 return !btf_type_needs_resolve(next_type);
1698 case RESOLVE_PTR:
2667a262
MKL
1699 /* int, enum, void, struct, array, func or func_proto is a sink
1700 * for ptr
1701 */
eb3f595d
MKL
1702 return !btf_type_is_modifier(next_type) &&
1703 !btf_type_is_ptr(next_type);
1704 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1705 /* int, enum, void, ptr, func or func_proto is a sink
1706 * for struct and array
1707 */
eb3f595d
MKL
1708 return !btf_type_is_modifier(next_type) &&
1709 !btf_type_is_array(next_type) &&
1710 !btf_type_is_struct(next_type);
1711 default:
53c8036c 1712 BUG();
eb3f595d
MKL
1713 }
1714}
1715
1716static bool env_type_is_resolved(const struct btf_verifier_env *env,
1717 u32 type_id)
1718{
951bb646
AN
1719 /* base BTF types should be resolved by now */
1720 if (type_id < env->btf->start_id)
1721 return true;
1722
1723 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1724}
1725
1726static int env_stack_push(struct btf_verifier_env *env,
1727 const struct btf_type *t, u32 type_id)
1728{
951bb646 1729 const struct btf *btf = env->btf;
eb3f595d
MKL
1730 struct resolve_vertex *v;
1731
1732 if (env->top_stack == MAX_RESOLVE_DEPTH)
1733 return -E2BIG;
1734
951bb646
AN
1735 if (type_id < btf->start_id
1736 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1737 return -EEXIST;
1738
951bb646 1739 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1740
1741 v = &env->stack[env->top_stack++];
1742 v->t = t;
1743 v->type_id = type_id;
1744 v->next_member = 0;
1745
1746 if (env->resolve_mode == RESOLVE_TBD) {
1747 if (btf_type_is_ptr(t))
1748 env->resolve_mode = RESOLVE_PTR;
1749 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1750 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1751 }
1752
1753 return 0;
1754}
1755
1756static void env_stack_set_next_member(struct btf_verifier_env *env,
1757 u16 next_member)
1758{
1759 env->stack[env->top_stack - 1].next_member = next_member;
1760}
1761
1762static void env_stack_pop_resolved(struct btf_verifier_env *env,
1763 u32 resolved_type_id,
1764 u32 resolved_size)
1765{
1766 u32 type_id = env->stack[--(env->top_stack)].type_id;
1767 struct btf *btf = env->btf;
1768
951bb646 1769 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1770 btf->resolved_sizes[type_id] = resolved_size;
1771 btf->resolved_ids[type_id] = resolved_type_id;
1772 env->visit_states[type_id] = RESOLVED;
1773}
1774
1775static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1776{
1777 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1778}
1779
7e3617a7
MKL
1780/* Resolve the size of a passed-in "type"
1781 *
1782 * type: is an array (e.g. u32 array[x][y])
1783 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1784 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1785 * corresponds to the return type.
1786 * *elem_type: u32
69ff3047 1787 * *elem_id: id of u32
7e3617a7
MKL
1788 * *total_nelems: (x * y). Hence, individual elem size is
1789 * (*type_size / *total_nelems)
887c31a3 1790 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1791 *
1792 * type: is not an array (e.g. const struct X)
1793 * return type: type "struct X"
1794 * *type_size: sizeof(struct X)
1795 * *elem_type: same as return type ("struct X")
69ff3047 1796 * *elem_id: 0
7e3617a7 1797 * *total_nelems: 1
887c31a3 1798 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1799 */
6298399b
JO
1800static const struct btf_type *
1801__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1802 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1803 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1804{
1805 const struct btf_type *array_type = NULL;
69ff3047 1806 const struct btf_array *array = NULL;
887c31a3 1807 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1808
1809 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1810 switch (BTF_INFO_KIND(type->info)) {
1811 /* type->size can be used */
1812 case BTF_KIND_INT:
1813 case BTF_KIND_STRUCT:
1814 case BTF_KIND_UNION:
1815 case BTF_KIND_ENUM:
b1828f0b 1816 case BTF_KIND_FLOAT:
7e3617a7
MKL
1817 size = type->size;
1818 goto resolved;
1819
1820 case BTF_KIND_PTR:
1821 size = sizeof(void *);
1822 goto resolved;
1823
1824 /* Modifiers */
1825 case BTF_KIND_TYPEDEF:
1826 case BTF_KIND_VOLATILE:
1827 case BTF_KIND_CONST:
1828 case BTF_KIND_RESTRICT:
8c42d2fa 1829 case BTF_KIND_TYPE_TAG:
887c31a3 1830 id = type->type;
7e3617a7
MKL
1831 type = btf_type_by_id(btf, type->type);
1832 break;
1833
1834 case BTF_KIND_ARRAY:
1835 if (!array_type)
1836 array_type = type;
1837 array = btf_type_array(type);
1838 if (nelems && array->nelems > U32_MAX / nelems)
1839 return ERR_PTR(-EINVAL);
1840 nelems *= array->nelems;
1841 type = btf_type_by_id(btf, array->type);
1842 break;
1843
1844 /* type without size */
1845 default:
1846 return ERR_PTR(-EINVAL);
1847 }
1848 }
1849
1850 return ERR_PTR(-EINVAL);
1851
1852resolved:
1853 if (nelems && size > U32_MAX / nelems)
1854 return ERR_PTR(-EINVAL);
1855
1856 *type_size = nelems * size;
85d33df3
MKL
1857 if (total_nelems)
1858 *total_nelems = nelems;
1859 if (elem_type)
1860 *elem_type = type;
69ff3047
JO
1861 if (elem_id)
1862 *elem_id = array ? array->type : 0;
887c31a3
JO
1863 if (type_id && id)
1864 *type_id = id;
7e3617a7
MKL
1865
1866 return array_type ? : type;
1867}
1868
6298399b
JO
1869const struct btf_type *
1870btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1871 u32 *type_size)
1872{
887c31a3 1873 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1874}
1875
951bb646
AN
1876static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1877{
1878 while (type_id < btf->start_id)
1879 btf = btf->base_btf;
1880
1881 return btf->resolved_ids[type_id - btf->start_id];
1882}
1883
eb3f595d
MKL
1884/* The input param "type_id" must point to a needs_resolve type */
1885static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1886 u32 *type_id)
1887{
951bb646 1888 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1889 return btf_type_by_id(btf, *type_id);
1890}
1891
951bb646
AN
1892static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1893{
1894 while (type_id < btf->start_id)
1895 btf = btf->base_btf;
1896
1897 return btf->resolved_sizes[type_id - btf->start_id];
1898}
1899
eb3f595d
MKL
1900const struct btf_type *btf_type_id_size(const struct btf *btf,
1901 u32 *type_id, u32 *ret_size)
1902{
1903 const struct btf_type *size_type;
1904 u32 size_type_id = *type_id;
1905 u32 size = 0;
1906
1907 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1908 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1909 return NULL;
1910
1911 if (btf_type_has_size(size_type)) {
1912 size = size_type->size;
1913 } else if (btf_type_is_array(size_type)) {
951bb646 1914 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1915 } else if (btf_type_is_ptr(size_type)) {
1916 size = sizeof(void *);
1917 } else {
1dc92851
DB
1918 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1919 !btf_type_is_var(size_type)))
eb3f595d
MKL
1920 return NULL;
1921
951bb646 1922 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1923 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1924 if (btf_type_nosize_or_null(size_type))
eb3f595d 1925 return NULL;
1acc5d5c
AN
1926 else if (btf_type_has_size(size_type))
1927 size = size_type->size;
1928 else if (btf_type_is_array(size_type))
951bb646 1929 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1930 else if (btf_type_is_ptr(size_type))
1931 size = sizeof(void *);
1932 else
1933 return NULL;
eb3f595d
MKL
1934 }
1935
1936 *type_id = size_type_id;
1937 if (ret_size)
1938 *ret_size = size;
1939
1940 return size_type;
1941}
1942
179cde8c
MKL
1943static int btf_df_check_member(struct btf_verifier_env *env,
1944 const struct btf_type *struct_type,
1945 const struct btf_member *member,
1946 const struct btf_type *member_type)
1947{
1948 btf_verifier_log_basic(env, struct_type,
1949 "Unsupported check_member");
1950 return -EINVAL;
1951}
1952
9d5f9f70
YS
1953static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1954 const struct btf_type *struct_type,
1955 const struct btf_member *member,
1956 const struct btf_type *member_type)
1957{
1958 btf_verifier_log_basic(env, struct_type,
1959 "Unsupported check_kflag_member");
1960 return -EINVAL;
1961}
1962
b1828f0b 1963/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
1964 * int, enum and modifier types have their specific callback functions.
1965 */
1966static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1967 const struct btf_type *struct_type,
1968 const struct btf_member *member,
1969 const struct btf_type *member_type)
1970{
1971 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1972 btf_verifier_log_member(env, struct_type, member,
1973 "Invalid member bitfield_size");
1974 return -EINVAL;
1975 }
1976
1977 /* bitfield size is 0, so member->offset represents bit offset only.
1978 * It is safe to call non kflag check_member variants.
1979 */
1980 return btf_type_ops(member_type)->check_member(env, struct_type,
1981 member,
1982 member_type);
1983}
1984
eb3f595d
MKL
1985static int btf_df_resolve(struct btf_verifier_env *env,
1986 const struct resolve_vertex *v)
1987{
1988 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1989 return -EINVAL;
1990}
1991
31d0bc81
AM
1992static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1993 u32 type_id, void *data, u8 bits_offsets,
1994 struct btf_show *show)
b00b8dae 1995{
31d0bc81 1996 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
1997}
1998
179cde8c
MKL
1999static int btf_int_check_member(struct btf_verifier_env *env,
2000 const struct btf_type *struct_type,
2001 const struct btf_member *member,
2002 const struct btf_type *member_type)
2003{
2004 u32 int_data = btf_type_int(member_type);
2005 u32 struct_bits_off = member->offset;
2006 u32 struct_size = struct_type->size;
2007 u32 nr_copy_bits;
2008 u32 bytes_offset;
2009
2010 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2011 btf_verifier_log_member(env, struct_type, member,
2012 "bits_offset exceeds U32_MAX");
2013 return -EINVAL;
2014 }
2015
2016 struct_bits_off += BTF_INT_OFFSET(int_data);
2017 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2018 nr_copy_bits = BTF_INT_BITS(int_data) +
2019 BITS_PER_BYTE_MASKED(struct_bits_off);
2020
b1e8818c 2021 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 2022 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2023 "nr_copy_bits exceeds 128");
179cde8c
MKL
2024 return -EINVAL;
2025 }
2026
2027 if (struct_size < bytes_offset ||
2028 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2029 btf_verifier_log_member(env, struct_type, member,
2030 "Member exceeds struct_size");
2031 return -EINVAL;
2032 }
2033
2034 return 0;
2035}
2036
9d5f9f70
YS
2037static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2038 const struct btf_type *struct_type,
2039 const struct btf_member *member,
2040 const struct btf_type *member_type)
2041{
2042 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2043 u32 int_data = btf_type_int(member_type);
2044 u32 struct_size = struct_type->size;
2045 u32 nr_copy_bits;
2046
2047 /* a regular int type is required for the kflag int member */
2048 if (!btf_type_int_is_regular(member_type)) {
2049 btf_verifier_log_member(env, struct_type, member,
2050 "Invalid member base type");
2051 return -EINVAL;
2052 }
2053
2054 /* check sanity of bitfield size */
2055 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2056 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2057 nr_int_data_bits = BTF_INT_BITS(int_data);
2058 if (!nr_bits) {
2059 /* Not a bitfield member, member offset must be at byte
2060 * boundary.
2061 */
2062 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2063 btf_verifier_log_member(env, struct_type, member,
2064 "Invalid member offset");
2065 return -EINVAL;
2066 }
2067
2068 nr_bits = nr_int_data_bits;
2069 } else if (nr_bits > nr_int_data_bits) {
2070 btf_verifier_log_member(env, struct_type, member,
2071 "Invalid member bitfield_size");
2072 return -EINVAL;
2073 }
2074
2075 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2076 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 2077 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 2078 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2079 "nr_copy_bits exceeds 128");
9d5f9f70
YS
2080 return -EINVAL;
2081 }
2082
2083 if (struct_size < bytes_offset ||
2084 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2085 btf_verifier_log_member(env, struct_type, member,
2086 "Member exceeds struct_size");
2087 return -EINVAL;
2088 }
2089
2090 return 0;
2091}
2092
69b693f0
MKL
2093static s32 btf_int_check_meta(struct btf_verifier_env *env,
2094 const struct btf_type *t,
2095 u32 meta_left)
2096{
2097 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2098 u16 encoding;
2099
2100 if (meta_left < meta_needed) {
2101 btf_verifier_log_basic(env, t,
2102 "meta_left:%u meta_needed:%u",
2103 meta_left, meta_needed);
2104 return -EINVAL;
2105 }
2106
2107 if (btf_type_vlen(t)) {
2108 btf_verifier_log_type(env, t, "vlen != 0");
2109 return -EINVAL;
2110 }
2111
9d5f9f70
YS
2112 if (btf_type_kflag(t)) {
2113 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2114 return -EINVAL;
2115 }
2116
69b693f0 2117 int_data = btf_type_int(t);
aea2f7b8
MKL
2118 if (int_data & ~BTF_INT_MASK) {
2119 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2120 int_data);
2121 return -EINVAL;
2122 }
2123
69b693f0
MKL
2124 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2125
b1e8818c 2126 if (nr_bits > BITS_PER_U128) {
69b693f0 2127 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2128 BITS_PER_U128);
69b693f0
MKL
2129 return -EINVAL;
2130 }
2131
2132 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2133 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2134 return -EINVAL;
2135 }
2136
aea2f7b8
MKL
2137 /*
2138 * Only one of the encoding bits is allowed and it
2139 * should be sufficient for the pretty print purpose (i.e. decoding).
2140 * Multiple bits can be allowed later if it is found
2141 * to be insufficient.
2142 */
69b693f0
MKL
2143 encoding = BTF_INT_ENCODING(int_data);
2144 if (encoding &&
2145 encoding != BTF_INT_SIGNED &&
2146 encoding != BTF_INT_CHAR &&
aea2f7b8 2147 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2148 btf_verifier_log_type(env, t, "Unsupported encoding");
2149 return -ENOTSUPP;
2150 }
2151
2152 btf_verifier_log_type(env, t, NULL);
2153
2154 return meta_needed;
2155}
2156
2157static void btf_int_log(struct btf_verifier_env *env,
2158 const struct btf_type *t)
2159{
2160 int int_data = btf_type_int(t);
2161
2162 btf_verifier_log(env,
2163 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2164 t->size, BTF_INT_OFFSET(int_data),
2165 BTF_INT_BITS(int_data),
2166 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2167}
2168
31d0bc81 2169static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2170{
2171 /* data points to a __int128 number.
2172 * Suppose
2173 * int128_num = *(__int128 *)data;
2174 * The below formulas shows what upper_num and lower_num represents:
2175 * upper_num = int128_num >> 64;
2176 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2177 */
2178 u64 upper_num, lower_num;
2179
2180#ifdef __BIG_ENDIAN_BITFIELD
2181 upper_num = *(u64 *)data;
2182 lower_num = *(u64 *)(data + 8);
2183#else
2184 upper_num = *(u64 *)(data + 8);
2185 lower_num = *(u64 *)data;
2186#endif
2187 if (upper_num == 0)
31d0bc81 2188 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2189 else
31d0bc81
AM
2190 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2191 lower_num);
b1e8818c
YS
2192}
2193
2194static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2195 u16 right_shift_bits)
2196{
2197 u64 upper_num, lower_num;
2198
2199#ifdef __BIG_ENDIAN_BITFIELD
2200 upper_num = print_num[0];
2201 lower_num = print_num[1];
2202#else
2203 upper_num = print_num[1];
2204 lower_num = print_num[0];
2205#endif
2206
2207 /* shake out un-needed bits by shift/or operations */
2208 if (left_shift_bits >= 64) {
2209 upper_num = lower_num << (left_shift_bits - 64);
2210 lower_num = 0;
2211 } else {
2212 upper_num = (upper_num << left_shift_bits) |
2213 (lower_num >> (64 - left_shift_bits));
2214 lower_num = lower_num << left_shift_bits;
2215 }
2216
2217 if (right_shift_bits >= 64) {
2218 lower_num = upper_num >> (right_shift_bits - 64);
2219 upper_num = 0;
2220 } else {
2221 lower_num = (lower_num >> right_shift_bits) |
2222 (upper_num << (64 - right_shift_bits));
2223 upper_num = upper_num >> right_shift_bits;
2224 }
2225
2226#ifdef __BIG_ENDIAN_BITFIELD
2227 print_num[0] = upper_num;
2228 print_num[1] = lower_num;
2229#else
2230 print_num[0] = lower_num;
2231 print_num[1] = upper_num;
2232#endif
2233}
2234
31d0bc81
AM
2235static void btf_bitfield_show(void *data, u8 bits_offset,
2236 u8 nr_bits, struct btf_show *show)
b00b8dae 2237{
b65f370d 2238 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2239 u8 nr_copy_bytes;
2240 u8 nr_copy_bits;
b1e8818c 2241 u64 print_num[2] = {};
b00b8dae 2242
b00b8dae
MKL
2243 nr_copy_bits = nr_bits + bits_offset;
2244 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2245
b1e8818c 2246 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2247
b65f370d
OK
2248#ifdef __BIG_ENDIAN_BITFIELD
2249 left_shift_bits = bits_offset;
2250#else
b1e8818c 2251 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2252#endif
b1e8818c 2253 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2254
b1e8818c 2255 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2256 btf_int128_print(show, print_num);
b00b8dae
MKL
2257}
2258
9d5f9f70 2259
31d0bc81
AM
2260static void btf_int_bits_show(const struct btf *btf,
2261 const struct btf_type *t,
2262 void *data, u8 bits_offset,
2263 struct btf_show *show)
f97be3ab
YS
2264{
2265 u32 int_data = btf_type_int(t);
2266 u8 nr_bits = BTF_INT_BITS(int_data);
2267 u8 total_bits_offset;
2268
2269 /*
2270 * bits_offset is at most 7.
b1e8818c 2271 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2272 */
2273 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2274 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2275 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2276 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2277}
2278
31d0bc81
AM
2279static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2280 u32 type_id, void *data, u8 bits_offset,
2281 struct btf_show *show)
b00b8dae
MKL
2282{
2283 u32 int_data = btf_type_int(t);
2284 u8 encoding = BTF_INT_ENCODING(int_data);
2285 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2286 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2287 void *safe_data;
2288
2289 safe_data = btf_show_start_type(show, t, type_id, data);
2290 if (!safe_data)
2291 return;
b00b8dae
MKL
2292
2293 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2294 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2295 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2296 goto out;
b00b8dae
MKL
2297 }
2298
2299 switch (nr_bits) {
b1e8818c 2300 case 128:
31d0bc81 2301 btf_int128_print(show, safe_data);
b1e8818c 2302 break;
b00b8dae
MKL
2303 case 64:
2304 if (sign)
31d0bc81 2305 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2306 else
31d0bc81 2307 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2308 break;
2309 case 32:
2310 if (sign)
31d0bc81 2311 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2312 else
31d0bc81 2313 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2314 break;
2315 case 16:
2316 if (sign)
31d0bc81 2317 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2318 else
31d0bc81 2319 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2320 break;
2321 case 8:
31d0bc81
AM
2322 if (show->state.array_encoding == BTF_INT_CHAR) {
2323 /* check for null terminator */
2324 if (show->state.array_terminated)
2325 break;
2326 if (*(char *)data == '\0') {
2327 show->state.array_terminated = 1;
2328 break;
2329 }
2330 if (isprint(*(char *)data)) {
2331 btf_show_type_value(show, "'%c'",
2332 *(char *)safe_data);
2333 break;
2334 }
2335 }
b00b8dae 2336 if (sign)
31d0bc81 2337 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2338 else
31d0bc81 2339 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2340 break;
2341 default:
31d0bc81
AM
2342 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2343 break;
b00b8dae 2344 }
31d0bc81
AM
2345out:
2346 btf_show_end_type(show);
b00b8dae
MKL
2347}
2348
69b693f0
MKL
2349static const struct btf_kind_operations int_ops = {
2350 .check_meta = btf_int_check_meta,
eb3f595d 2351 .resolve = btf_df_resolve,
179cde8c 2352 .check_member = btf_int_check_member,
9d5f9f70 2353 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2354 .log_details = btf_int_log,
31d0bc81 2355 .show = btf_int_show,
69b693f0
MKL
2356};
2357
179cde8c
MKL
2358static int btf_modifier_check_member(struct btf_verifier_env *env,
2359 const struct btf_type *struct_type,
2360 const struct btf_member *member,
2361 const struct btf_type *member_type)
2362{
2363 const struct btf_type *resolved_type;
2364 u32 resolved_type_id = member->type;
2365 struct btf_member resolved_member;
2366 struct btf *btf = env->btf;
2367
2368 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2369 if (!resolved_type) {
2370 btf_verifier_log_member(env, struct_type, member,
2371 "Invalid member");
2372 return -EINVAL;
2373 }
2374
2375 resolved_member = *member;
2376 resolved_member.type = resolved_type_id;
2377
2378 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2379 &resolved_member,
2380 resolved_type);
2381}
2382
9d5f9f70
YS
2383static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2384 const struct btf_type *struct_type,
2385 const struct btf_member *member,
2386 const struct btf_type *member_type)
2387{
2388 const struct btf_type *resolved_type;
2389 u32 resolved_type_id = member->type;
2390 struct btf_member resolved_member;
2391 struct btf *btf = env->btf;
2392
2393 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2394 if (!resolved_type) {
2395 btf_verifier_log_member(env, struct_type, member,
2396 "Invalid member");
2397 return -EINVAL;
2398 }
2399
2400 resolved_member = *member;
2401 resolved_member.type = resolved_type_id;
2402
2403 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2404 &resolved_member,
2405 resolved_type);
2406}
2407
179cde8c
MKL
2408static int btf_ptr_check_member(struct btf_verifier_env *env,
2409 const struct btf_type *struct_type,
2410 const struct btf_member *member,
2411 const struct btf_type *member_type)
2412{
2413 u32 struct_size, struct_bits_off, bytes_offset;
2414
2415 struct_size = struct_type->size;
2416 struct_bits_off = member->offset;
2417 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2418
2419 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2420 btf_verifier_log_member(env, struct_type, member,
2421 "Member is not byte aligned");
2422 return -EINVAL;
2423 }
2424
2425 if (struct_size - bytes_offset < sizeof(void *)) {
2426 btf_verifier_log_member(env, struct_type, member,
2427 "Member exceeds struct_size");
2428 return -EINVAL;
2429 }
2430
2431 return 0;
2432}
2433
69b693f0
MKL
2434static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2435 const struct btf_type *t,
2436 u32 meta_left)
2437{
8c42d2fa
YS
2438 const char *value;
2439
69b693f0
MKL
2440 if (btf_type_vlen(t)) {
2441 btf_verifier_log_type(env, t, "vlen != 0");
2442 return -EINVAL;
2443 }
2444
9d5f9f70
YS
2445 if (btf_type_kflag(t)) {
2446 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2447 return -EINVAL;
2448 }
2449
aea2f7b8 2450 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2451 btf_verifier_log_type(env, t, "Invalid type_id");
2452 return -EINVAL;
2453 }
2454
8c42d2fa 2455 /* typedef/type_tag type must have a valid name, and other ref types,
eb04bbb6
YS
2456 * volatile, const, restrict, should have a null name.
2457 */
2458 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2459 if (!t->name_off ||
2460 !btf_name_valid_identifier(env->btf, t->name_off)) {
2461 btf_verifier_log_type(env, t, "Invalid name");
2462 return -EINVAL;
2463 }
8c42d2fa
YS
2464 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2465 value = btf_name_by_offset(env->btf, t->name_off);
2466 if (!value || !value[0]) {
2467 btf_verifier_log_type(env, t, "Invalid name");
2468 return -EINVAL;
2469 }
eb04bbb6
YS
2470 } else {
2471 if (t->name_off) {
2472 btf_verifier_log_type(env, t, "Invalid name");
2473 return -EINVAL;
2474 }
2475 }
2476
69b693f0
MKL
2477 btf_verifier_log_type(env, t, NULL);
2478
2479 return 0;
2480}
2481
eb3f595d
MKL
2482static int btf_modifier_resolve(struct btf_verifier_env *env,
2483 const struct resolve_vertex *v)
2484{
2485 const struct btf_type *t = v->t;
2486 const struct btf_type *next_type;
2487 u32 next_type_id = t->type;
2488 struct btf *btf = env->btf;
eb3f595d
MKL
2489
2490 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2491 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2492 btf_verifier_log_type(env, v->t, "Invalid type_id");
2493 return -EINVAL;
2494 }
2495
eb3f595d
MKL
2496 if (!env_type_is_resolve_sink(env, next_type) &&
2497 !env_type_is_resolved(env, next_type_id))
2498 return env_stack_push(env, next_type, next_type_id);
2499
2500 /* Figure out the resolved next_type_id with size.
2501 * They will be stored in the current modifier's
2502 * resolved_ids and resolved_sizes such that it can
2503 * save us a few type-following when we use it later (e.g. in
2504 * pretty print).
2505 */
1acc5d5c 2506 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2507 if (env_type_is_resolved(env, next_type_id))
2508 next_type = btf_type_id_resolve(btf, &next_type_id);
2509
2510 /* "typedef void new_void", "const void"...etc */
2511 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2512 !btf_type_is_fwd(next_type) &&
2513 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2514 btf_verifier_log_type(env, v->t, "Invalid type_id");
2515 return -EINVAL;
2516 }
eb3f595d
MKL
2517 }
2518
1acc5d5c 2519 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2520
2521 return 0;
2522}
2523
1dc92851
DB
2524static int btf_var_resolve(struct btf_verifier_env *env,
2525 const struct resolve_vertex *v)
2526{
2527 const struct btf_type *next_type;
2528 const struct btf_type *t = v->t;
2529 u32 next_type_id = t->type;
2530 struct btf *btf = env->btf;
1dc92851
DB
2531
2532 next_type = btf_type_by_id(btf, next_type_id);
2533 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2534 btf_verifier_log_type(env, v->t, "Invalid type_id");
2535 return -EINVAL;
2536 }
2537
2538 if (!env_type_is_resolve_sink(env, next_type) &&
2539 !env_type_is_resolved(env, next_type_id))
2540 return env_stack_push(env, next_type, next_type_id);
2541
2542 if (btf_type_is_modifier(next_type)) {
2543 const struct btf_type *resolved_type;
2544 u32 resolved_type_id;
2545
2546 resolved_type_id = next_type_id;
2547 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2548
2549 if (btf_type_is_ptr(resolved_type) &&
2550 !env_type_is_resolve_sink(env, resolved_type) &&
2551 !env_type_is_resolved(env, resolved_type_id))
2552 return env_stack_push(env, resolved_type,
2553 resolved_type_id);
2554 }
2555
2556 /* We must resolve to something concrete at this point, no
2557 * forward types or similar that would resolve to size of
2558 * zero is allowed.
2559 */
1acc5d5c 2560 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2561 btf_verifier_log_type(env, v->t, "Invalid type_id");
2562 return -EINVAL;
2563 }
2564
1acc5d5c 2565 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2566
2567 return 0;
2568}
2569
eb3f595d
MKL
2570static int btf_ptr_resolve(struct btf_verifier_env *env,
2571 const struct resolve_vertex *v)
2572{
2573 const struct btf_type *next_type;
2574 const struct btf_type *t = v->t;
2575 u32 next_type_id = t->type;
2576 struct btf *btf = env->btf;
eb3f595d
MKL
2577
2578 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2579 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2580 btf_verifier_log_type(env, v->t, "Invalid type_id");
2581 return -EINVAL;
2582 }
2583
eb3f595d
MKL
2584 if (!env_type_is_resolve_sink(env, next_type) &&
2585 !env_type_is_resolved(env, next_type_id))
2586 return env_stack_push(env, next_type, next_type_id);
2587
2588 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2589 * the modifier may have stopped resolving when it was resolved
2590 * to a ptr (last-resolved-ptr).
2591 *
2592 * We now need to continue from the last-resolved-ptr to
2593 * ensure the last-resolved-ptr will not referring back to
c561d110 2594 * the current ptr (t).
eb3f595d
MKL
2595 */
2596 if (btf_type_is_modifier(next_type)) {
2597 const struct btf_type *resolved_type;
2598 u32 resolved_type_id;
2599
2600 resolved_type_id = next_type_id;
2601 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2602
2603 if (btf_type_is_ptr(resolved_type) &&
2604 !env_type_is_resolve_sink(env, resolved_type) &&
2605 !env_type_is_resolved(env, resolved_type_id))
2606 return env_stack_push(env, resolved_type,
2607 resolved_type_id);
2608 }
2609
2667a262
MKL
2610 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2611 if (env_type_is_resolved(env, next_type_id))
2612 next_type = btf_type_id_resolve(btf, &next_type_id);
2613
2614 if (!btf_type_is_void(next_type) &&
2615 !btf_type_is_fwd(next_type) &&
2616 !btf_type_is_func_proto(next_type)) {
2617 btf_verifier_log_type(env, v->t, "Invalid type_id");
2618 return -EINVAL;
2619 }
eb3f595d
MKL
2620 }
2621
eb3f595d
MKL
2622 env_stack_pop_resolved(env, next_type_id, 0);
2623
2624 return 0;
2625}
2626
31d0bc81
AM
2627static void btf_modifier_show(const struct btf *btf,
2628 const struct btf_type *t,
2629 u32 type_id, void *data,
2630 u8 bits_offset, struct btf_show *show)
b00b8dae 2631{
85d33df3
MKL
2632 if (btf->resolved_ids)
2633 t = btf_type_id_resolve(btf, &type_id);
2634 else
2635 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2636
31d0bc81 2637 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2638}
2639
31d0bc81
AM
2640static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2641 u32 type_id, void *data, u8 bits_offset,
2642 struct btf_show *show)
1dc92851
DB
2643{
2644 t = btf_type_id_resolve(btf, &type_id);
2645
31d0bc81 2646 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2647}
2648
31d0bc81
AM
2649static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2650 u32 type_id, void *data, u8 bits_offset,
2651 struct btf_show *show)
b00b8dae 2652{
31d0bc81
AM
2653 void *safe_data;
2654
2655 safe_data = btf_show_start_type(show, t, type_id, data);
2656 if (!safe_data)
2657 return;
2658
2659 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2660 if (show->flags & BTF_SHOW_PTR_RAW)
2661 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2662 else
2663 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2664 btf_show_end_type(show);
b00b8dae
MKL
2665}
2666
69b693f0
MKL
2667static void btf_ref_type_log(struct btf_verifier_env *env,
2668 const struct btf_type *t)
2669{
2670 btf_verifier_log(env, "type_id=%u", t->type);
2671}
2672
2673static struct btf_kind_operations modifier_ops = {
2674 .check_meta = btf_ref_type_check_meta,
eb3f595d 2675 .resolve = btf_modifier_resolve,
179cde8c 2676 .check_member = btf_modifier_check_member,
9d5f9f70 2677 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2678 .log_details = btf_ref_type_log,
31d0bc81 2679 .show = btf_modifier_show,
69b693f0
MKL
2680};
2681
2682static struct btf_kind_operations ptr_ops = {
2683 .check_meta = btf_ref_type_check_meta,
eb3f595d 2684 .resolve = btf_ptr_resolve,
179cde8c 2685 .check_member = btf_ptr_check_member,
9d5f9f70 2686 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2687 .log_details = btf_ref_type_log,
31d0bc81 2688 .show = btf_ptr_show,
69b693f0
MKL
2689};
2690
8175383f
MKL
2691static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2692 const struct btf_type *t,
2693 u32 meta_left)
2694{
2695 if (btf_type_vlen(t)) {
2696 btf_verifier_log_type(env, t, "vlen != 0");
2697 return -EINVAL;
2698 }
2699
2700 if (t->type) {
2701 btf_verifier_log_type(env, t, "type != 0");
2702 return -EINVAL;
2703 }
2704
eb04bbb6
YS
2705 /* fwd type must have a valid name */
2706 if (!t->name_off ||
2707 !btf_name_valid_identifier(env->btf, t->name_off)) {
2708 btf_verifier_log_type(env, t, "Invalid name");
2709 return -EINVAL;
2710 }
2711
8175383f
MKL
2712 btf_verifier_log_type(env, t, NULL);
2713
2714 return 0;
2715}
2716
76c43ae8
YS
2717static void btf_fwd_type_log(struct btf_verifier_env *env,
2718 const struct btf_type *t)
2719{
2720 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2721}
2722
69b693f0 2723static struct btf_kind_operations fwd_ops = {
8175383f 2724 .check_meta = btf_fwd_check_meta,
eb3f595d 2725 .resolve = btf_df_resolve,
179cde8c 2726 .check_member = btf_df_check_member,
9d5f9f70 2727 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2728 .log_details = btf_fwd_type_log,
31d0bc81 2729 .show = btf_df_show,
69b693f0
MKL
2730};
2731
179cde8c
MKL
2732static int btf_array_check_member(struct btf_verifier_env *env,
2733 const struct btf_type *struct_type,
2734 const struct btf_member *member,
2735 const struct btf_type *member_type)
2736{
2737 u32 struct_bits_off = member->offset;
2738 u32 struct_size, bytes_offset;
2739 u32 array_type_id, array_size;
2740 struct btf *btf = env->btf;
2741
2742 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2743 btf_verifier_log_member(env, struct_type, member,
2744 "Member is not byte aligned");
2745 return -EINVAL;
2746 }
2747
2748 array_type_id = member->type;
2749 btf_type_id_size(btf, &array_type_id, &array_size);
2750 struct_size = struct_type->size;
2751 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2752 if (struct_size - bytes_offset < array_size) {
2753 btf_verifier_log_member(env, struct_type, member,
2754 "Member exceeds struct_size");
2755 return -EINVAL;
2756 }
2757
2758 return 0;
2759}
2760
69b693f0
MKL
2761static s32 btf_array_check_meta(struct btf_verifier_env *env,
2762 const struct btf_type *t,
2763 u32 meta_left)
2764{
2765 const struct btf_array *array = btf_type_array(t);
2766 u32 meta_needed = sizeof(*array);
2767
2768 if (meta_left < meta_needed) {
2769 btf_verifier_log_basic(env, t,
2770 "meta_left:%u meta_needed:%u",
2771 meta_left, meta_needed);
2772 return -EINVAL;
2773 }
2774
eb04bbb6
YS
2775 /* array type should not have a name */
2776 if (t->name_off) {
2777 btf_verifier_log_type(env, t, "Invalid name");
2778 return -EINVAL;
2779 }
2780
69b693f0
MKL
2781 if (btf_type_vlen(t)) {
2782 btf_verifier_log_type(env, t, "vlen != 0");
2783 return -EINVAL;
2784 }
2785
9d5f9f70
YS
2786 if (btf_type_kflag(t)) {
2787 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2788 return -EINVAL;
2789 }
2790
b9308ae6
MKL
2791 if (t->size) {
2792 btf_verifier_log_type(env, t, "size != 0");
2793 return -EINVAL;
2794 }
2795
4ef5f574
MKL
2796 /* Array elem type and index type cannot be in type void,
2797 * so !array->type and !array->index_type are not allowed.
69b693f0 2798 */
aea2f7b8 2799 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2800 btf_verifier_log_type(env, t, "Invalid elem");
2801 return -EINVAL;
2802 }
2803
aea2f7b8 2804 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2805 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2806 return -EINVAL;
2807 }
2808
2809 btf_verifier_log_type(env, t, NULL);
2810
2811 return meta_needed;
2812}
2813
eb3f595d
MKL
2814static int btf_array_resolve(struct btf_verifier_env *env,
2815 const struct resolve_vertex *v)
2816{
2817 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2818 const struct btf_type *elem_type, *index_type;
2819 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2820 struct btf *btf = env->btf;
2821 u32 elem_size;
2822
4ef5f574
MKL
2823 /* Check array->index_type */
2824 index_type_id = array->index_type;
2825 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2826 if (btf_type_nosize_or_null(index_type) ||
2827 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2828 btf_verifier_log_type(env, v->t, "Invalid index");
2829 return -EINVAL;
2830 }
2831
2832 if (!env_type_is_resolve_sink(env, index_type) &&
2833 !env_type_is_resolved(env, index_type_id))
2834 return env_stack_push(env, index_type, index_type_id);
2835
2836 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2837 if (!index_type || !btf_type_is_int(index_type) ||
2838 !btf_type_int_is_regular(index_type)) {
2839 btf_verifier_log_type(env, v->t, "Invalid index");
2840 return -EINVAL;
2841 }
2842
2843 /* Check array->type */
2844 elem_type_id = array->type;
eb3f595d 2845 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2846 if (btf_type_nosize_or_null(elem_type) ||
2847 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2848 btf_verifier_log_type(env, v->t,
2849 "Invalid elem");
2850 return -EINVAL;
2851 }
2852
2853 if (!env_type_is_resolve_sink(env, elem_type) &&
2854 !env_type_is_resolved(env, elem_type_id))
2855 return env_stack_push(env, elem_type, elem_type_id);
2856
2857 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2858 if (!elem_type) {
2859 btf_verifier_log_type(env, v->t, "Invalid elem");
2860 return -EINVAL;
2861 }
2862
4ef5f574
MKL
2863 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2864 btf_verifier_log_type(env, v->t, "Invalid array of int");
2865 return -EINVAL;
eb3f595d
MKL
2866 }
2867
2868 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2869 btf_verifier_log_type(env, v->t,
2870 "Array size overflows U32_MAX");
2871 return -EINVAL;
2872 }
2873
2874 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2875
2876 return 0;
2877}
2878
69b693f0
MKL
2879static void btf_array_log(struct btf_verifier_env *env,
2880 const struct btf_type *t)
2881{
2882 const struct btf_array *array = btf_type_array(t);
2883
2884 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2885 array->type, array->index_type, array->nelems);
2886}
2887
31d0bc81
AM
2888static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2889 u32 type_id, void *data, u8 bits_offset,
2890 struct btf_show *show)
b00b8dae
MKL
2891{
2892 const struct btf_array *array = btf_type_array(t);
2893 const struct btf_kind_operations *elem_ops;
2894 const struct btf_type *elem_type;
31d0bc81
AM
2895 u32 i, elem_size = 0, elem_type_id;
2896 u16 encoding = 0;
b00b8dae
MKL
2897
2898 elem_type_id = array->type;
31d0bc81
AM
2899 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2900 if (elem_type && btf_type_has_size(elem_type))
2901 elem_size = elem_type->size;
2902
2903 if (elem_type && btf_type_is_int(elem_type)) {
2904 u32 int_type = btf_type_int(elem_type);
2905
2906 encoding = BTF_INT_ENCODING(int_type);
2907
2908 /*
2909 * BTF_INT_CHAR encoding never seems to be set for
2910 * char arrays, so if size is 1 and element is
2911 * printable as a char, we'll do that.
2912 */
2913 if (elem_size == 1)
2914 encoding = BTF_INT_CHAR;
2915 }
2916
2917 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2918 return;
2919
2920 if (!elem_type)
2921 goto out;
b00b8dae 2922 elem_ops = btf_type_ops(elem_type);
31d0bc81 2923
b00b8dae 2924 for (i = 0; i < array->nelems; i++) {
b00b8dae 2925
31d0bc81
AM
2926 btf_show_start_array_member(show);
2927
2928 elem_ops->show(btf, elem_type, elem_type_id, data,
2929 bits_offset, show);
b00b8dae 2930 data += elem_size;
31d0bc81
AM
2931
2932 btf_show_end_array_member(show);
2933
2934 if (show->state.array_terminated)
2935 break;
b00b8dae 2936 }
31d0bc81
AM
2937out:
2938 btf_show_end_array_type(show);
2939}
2940
2941static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2942 u32 type_id, void *data, u8 bits_offset,
2943 struct btf_show *show)
2944{
2945 const struct btf_member *m = show->state.member;
2946
2947 /*
2948 * First check if any members would be shown (are non-zero).
2949 * See comments above "struct btf_show" definition for more
2950 * details on how this works at a high-level.
2951 */
2952 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2953 if (!show->state.depth_check) {
2954 show->state.depth_check = show->state.depth + 1;
2955 show->state.depth_to_show = 0;
2956 }
2957 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2958 show->state.member = m;
2959
2960 if (show->state.depth_check != show->state.depth + 1)
2961 return;
2962 show->state.depth_check = 0;
2963
2964 if (show->state.depth_to_show <= show->state.depth)
2965 return;
2966 /*
2967 * Reaching here indicates we have recursed and found
2968 * non-zero array member(s).
2969 */
2970 }
2971 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2972}
2973
69b693f0
MKL
2974static struct btf_kind_operations array_ops = {
2975 .check_meta = btf_array_check_meta,
eb3f595d 2976 .resolve = btf_array_resolve,
179cde8c 2977 .check_member = btf_array_check_member,
9d5f9f70 2978 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2979 .log_details = btf_array_log,
31d0bc81 2980 .show = btf_array_show,
69b693f0
MKL
2981};
2982
179cde8c
MKL
2983static int btf_struct_check_member(struct btf_verifier_env *env,
2984 const struct btf_type *struct_type,
2985 const struct btf_member *member,
2986 const struct btf_type *member_type)
2987{
2988 u32 struct_bits_off = member->offset;
2989 u32 struct_size, bytes_offset;
2990
2991 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2992 btf_verifier_log_member(env, struct_type, member,
2993 "Member is not byte aligned");
2994 return -EINVAL;
2995 }
2996
2997 struct_size = struct_type->size;
2998 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2999 if (struct_size - bytes_offset < member_type->size) {
3000 btf_verifier_log_member(env, struct_type, member,
3001 "Member exceeds struct_size");
3002 return -EINVAL;
3003 }
3004
3005 return 0;
3006}
3007
69b693f0
MKL
3008static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3009 const struct btf_type *t,
3010 u32 meta_left)
3011{
3012 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3013 const struct btf_member *member;
6283fa38 3014 u32 meta_needed, last_offset;
69b693f0
MKL
3015 struct btf *btf = env->btf;
3016 u32 struct_size = t->size;
9d5f9f70 3017 u32 offset;
69b693f0
MKL
3018 u16 i;
3019
3020 meta_needed = btf_type_vlen(t) * sizeof(*member);
3021 if (meta_left < meta_needed) {
3022 btf_verifier_log_basic(env, t,
3023 "meta_left:%u meta_needed:%u",
3024 meta_left, meta_needed);
3025 return -EINVAL;
3026 }
3027
eb04bbb6
YS
3028 /* struct type either no name or a valid one */
3029 if (t->name_off &&
3030 !btf_name_valid_identifier(env->btf, t->name_off)) {
3031 btf_verifier_log_type(env, t, "Invalid name");
3032 return -EINVAL;
3033 }
3034
69b693f0
MKL
3035 btf_verifier_log_type(env, t, NULL);
3036
6283fa38 3037 last_offset = 0;
69b693f0 3038 for_each_member(i, t, member) {
fbcf93eb 3039 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
3040 btf_verifier_log_member(env, t, member,
3041 "Invalid member name_offset:%u",
fbcf93eb 3042 member->name_off);
69b693f0
MKL
3043 return -EINVAL;
3044 }
3045
eb04bbb6
YS
3046 /* struct member either no name or a valid one */
3047 if (member->name_off &&
3048 !btf_name_valid_identifier(btf, member->name_off)) {
3049 btf_verifier_log_member(env, t, member, "Invalid name");
3050 return -EINVAL;
3051 }
69b693f0 3052 /* A member cannot be in type void */
aea2f7b8 3053 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
3054 btf_verifier_log_member(env, t, member,
3055 "Invalid type_id");
3056 return -EINVAL;
3057 }
3058
8293eb99 3059 offset = __btf_member_bit_offset(t, member);
9d5f9f70 3060 if (is_union && offset) {
69b693f0
MKL
3061 btf_verifier_log_member(env, t, member,
3062 "Invalid member bits_offset");
3063 return -EINVAL;
3064 }
3065
6283fa38
MKL
3066 /*
3067 * ">" instead of ">=" because the last member could be
3068 * "char a[0];"
3069 */
9d5f9f70 3070 if (last_offset > offset) {
6283fa38
MKL
3071 btf_verifier_log_member(env, t, member,
3072 "Invalid member bits_offset");
3073 return -EINVAL;
3074 }
3075
9d5f9f70 3076 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 3077 btf_verifier_log_member(env, t, member,
311fe1a8 3078 "Member bits_offset exceeds its struct size");
69b693f0
MKL
3079 return -EINVAL;
3080 }
3081
3082 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 3083 last_offset = offset;
69b693f0
MKL
3084 }
3085
3086 return meta_needed;
3087}
3088
eb3f595d
MKL
3089static int btf_struct_resolve(struct btf_verifier_env *env,
3090 const struct resolve_vertex *v)
3091{
3092 const struct btf_member *member;
179cde8c 3093 int err;
eb3f595d
MKL
3094 u16 i;
3095
3096 /* Before continue resolving the next_member,
3097 * ensure the last member is indeed resolved to a
3098 * type with size info.
3099 */
3100 if (v->next_member) {
179cde8c 3101 const struct btf_type *last_member_type;
eb3f595d
MKL
3102 const struct btf_member *last_member;
3103 u16 last_member_type_id;
3104
3105 last_member = btf_type_member(v->t) + v->next_member - 1;
3106 last_member_type_id = last_member->type;
3107 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3108 last_member_type_id)))
3109 return -EINVAL;
179cde8c
MKL
3110
3111 last_member_type = btf_type_by_id(env->btf,
3112 last_member_type_id);
9d5f9f70
YS
3113 if (btf_type_kflag(v->t))
3114 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3115 last_member,
3116 last_member_type);
3117 else
3118 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3119 last_member,
3120 last_member_type);
179cde8c
MKL
3121 if (err)
3122 return err;
eb3f595d
MKL
3123 }
3124
3125 for_each_member_from(i, v->next_member, v->t, member) {
3126 u32 member_type_id = member->type;
3127 const struct btf_type *member_type = btf_type_by_id(env->btf,
3128 member_type_id);
3129
e4f07120
SF
3130 if (btf_type_nosize_or_null(member_type) ||
3131 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3132 btf_verifier_log_member(env, v->t, member,
3133 "Invalid member");
3134 return -EINVAL;
3135 }
3136
3137 if (!env_type_is_resolve_sink(env, member_type) &&
3138 !env_type_is_resolved(env, member_type_id)) {
3139 env_stack_set_next_member(env, i + 1);
3140 return env_stack_push(env, member_type, member_type_id);
3141 }
179cde8c 3142
9d5f9f70
YS
3143 if (btf_type_kflag(v->t))
3144 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3145 member,
3146 member_type);
3147 else
3148 err = btf_type_ops(member_type)->check_member(env, v->t,
3149 member,
3150 member_type);
179cde8c
MKL
3151 if (err)
3152 return err;
eb3f595d
MKL
3153 }
3154
3155 env_stack_pop_resolved(env, 0, 0);
3156
3157 return 0;
3158}
3159
69b693f0
MKL
3160static void btf_struct_log(struct btf_verifier_env *env,
3161 const struct btf_type *t)
3162{
3163 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3164}
3165
68134668
AS
3166static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3167 const char *name, int sz, int align)
d83525ca
AS
3168{
3169 const struct btf_member *member;
3170 u32 i, off = -ENOENT;
3171
d83525ca
AS
3172 for_each_member(i, t, member) {
3173 const struct btf_type *member_type = btf_type_by_id(btf,
3174 member->type);
3175 if (!__btf_type_is_struct(member_type))
3176 continue;
68134668 3177 if (member_type->size != sz)
d83525ca 3178 continue;
68134668 3179 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
d83525ca
AS
3180 continue;
3181 if (off != -ENOENT)
68134668 3182 /* only one such field is allowed */
d83525ca 3183 return -E2BIG;
8293eb99 3184 off = __btf_member_bit_offset(t, member);
d83525ca
AS
3185 if (off % 8)
3186 /* valid C code cannot generate such BTF */
3187 return -EINVAL;
3188 off /= 8;
68134668
AS
3189 if (off % align)
3190 return -EINVAL;
3191 }
3192 return off;
3193}
3194
3195static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3196 const char *name, int sz, int align)
3197{
3198 const struct btf_var_secinfo *vsi;
3199 u32 i, off = -ENOENT;
3200
3201 for_each_vsi(i, t, vsi) {
3202 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3203 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3204
3205 if (!__btf_type_is_struct(var_type))
3206 continue;
3207 if (var_type->size != sz)
3208 continue;
3209 if (vsi->size != sz)
3210 continue;
3211 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3212 continue;
3213 if (off != -ENOENT)
3214 /* only one such field is allowed */
3215 return -E2BIG;
3216 off = vsi->offset;
3217 if (off % align)
d83525ca
AS
3218 return -EINVAL;
3219 }
3220 return off;
3221}
3222
68134668
AS
3223static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3224 const char *name, int sz, int align)
3225{
3226
3227 if (__btf_type_is_struct(t))
3228 return btf_find_struct_field(btf, t, name, sz, align);
3229 else if (btf_type_is_datasec(t))
3230 return btf_find_datasec_var(btf, t, name, sz, align);
3231 return -EINVAL;
3232}
3233
3234/* find 'struct bpf_spin_lock' in map value.
3235 * return >= 0 offset if found
3236 * and < 0 in case of error
3237 */
3238int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3239{
3240 return btf_find_field(btf, t, "bpf_spin_lock",
3241 sizeof(struct bpf_spin_lock),
3242 __alignof__(struct bpf_spin_lock));
3243}
3244
3245int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3246{
3247 return btf_find_field(btf, t, "bpf_timer",
3248 sizeof(struct bpf_timer),
3249 __alignof__(struct bpf_timer));
3250}
3251
31d0bc81
AM
3252static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3253 u32 type_id, void *data, u8 bits_offset,
3254 struct btf_show *show)
b00b8dae 3255{
b00b8dae 3256 const struct btf_member *member;
31d0bc81 3257 void *safe_data;
b00b8dae
MKL
3258 u32 i;
3259
31d0bc81
AM
3260 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3261 if (!safe_data)
3262 return;
3263
b00b8dae
MKL
3264 for_each_member(i, t, member) {
3265 const struct btf_type *member_type = btf_type_by_id(btf,
3266 member->type);
b00b8dae 3267 const struct btf_kind_operations *ops;
9d5f9f70
YS
3268 u32 member_offset, bitfield_size;
3269 u32 bytes_offset;
3270 u8 bits8_offset;
b00b8dae 3271
31d0bc81 3272 btf_show_start_member(show, member);
b00b8dae 3273
8293eb99
AS
3274 member_offset = __btf_member_bit_offset(t, member);
3275 bitfield_size = __btf_member_bitfield_size(t, member);
17e3ac81
YS
3276 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3277 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3278 if (bitfield_size) {
31d0bc81
AM
3279 safe_data = btf_show_start_type(show, member_type,
3280 member->type,
3281 data + bytes_offset);
3282 if (safe_data)
3283 btf_bitfield_show(safe_data,
3284 bits8_offset,
3285 bitfield_size, show);
3286 btf_show_end_type(show);
9d5f9f70 3287 } else {
9d5f9f70 3288 ops = btf_type_ops(member_type);
31d0bc81
AM
3289 ops->show(btf, member_type, member->type,
3290 data + bytes_offset, bits8_offset, show);
9d5f9f70 3291 }
31d0bc81
AM
3292
3293 btf_show_end_member(show);
b00b8dae 3294 }
31d0bc81
AM
3295
3296 btf_show_end_struct_type(show);
3297}
3298
3299static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3300 u32 type_id, void *data, u8 bits_offset,
3301 struct btf_show *show)
3302{
3303 const struct btf_member *m = show->state.member;
3304
3305 /*
3306 * First check if any members would be shown (are non-zero).
3307 * See comments above "struct btf_show" definition for more
3308 * details on how this works at a high-level.
3309 */
3310 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3311 if (!show->state.depth_check) {
3312 show->state.depth_check = show->state.depth + 1;
3313 show->state.depth_to_show = 0;
3314 }
3315 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3316 /* Restore saved member data here */
3317 show->state.member = m;
3318 if (show->state.depth_check != show->state.depth + 1)
3319 return;
3320 show->state.depth_check = 0;
3321
3322 if (show->state.depth_to_show <= show->state.depth)
3323 return;
3324 /*
3325 * Reaching here indicates we have recursed and found
3326 * non-zero child values.
3327 */
3328 }
3329
3330 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3331}
3332
69b693f0
MKL
3333static struct btf_kind_operations struct_ops = {
3334 .check_meta = btf_struct_check_meta,
eb3f595d 3335 .resolve = btf_struct_resolve,
179cde8c 3336 .check_member = btf_struct_check_member,
9d5f9f70 3337 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3338 .log_details = btf_struct_log,
31d0bc81 3339 .show = btf_struct_show,
69b693f0
MKL
3340};
3341
179cde8c
MKL
3342static int btf_enum_check_member(struct btf_verifier_env *env,
3343 const struct btf_type *struct_type,
3344 const struct btf_member *member,
3345 const struct btf_type *member_type)
3346{
3347 u32 struct_bits_off = member->offset;
3348 u32 struct_size, bytes_offset;
3349
3350 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3351 btf_verifier_log_member(env, struct_type, member,
3352 "Member is not byte aligned");
3353 return -EINVAL;
3354 }
3355
3356 struct_size = struct_type->size;
3357 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3358 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3359 btf_verifier_log_member(env, struct_type, member,
3360 "Member exceeds struct_size");
3361 return -EINVAL;
3362 }
3363
3364 return 0;
3365}
3366
9d5f9f70
YS
3367static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3368 const struct btf_type *struct_type,
3369 const struct btf_member *member,
3370 const struct btf_type *member_type)
3371{
3372 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3373 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3374
3375 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3376 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3377 if (!nr_bits) {
3378 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3379 btf_verifier_log_member(env, struct_type, member,
3380 "Member is not byte aligned");
e3439af4 3381 return -EINVAL;
9d5f9f70
YS
3382 }
3383
3384 nr_bits = int_bitsize;
3385 } else if (nr_bits > int_bitsize) {
3386 btf_verifier_log_member(env, struct_type, member,
3387 "Invalid member bitfield_size");
3388 return -EINVAL;
3389 }
3390
3391 struct_size = struct_type->size;
3392 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3393 if (struct_size < bytes_end) {
3394 btf_verifier_log_member(env, struct_type, member,
3395 "Member exceeds struct_size");
3396 return -EINVAL;
3397 }
3398
3399 return 0;
3400}
3401
69b693f0
MKL
3402static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3403 const struct btf_type *t,
3404 u32 meta_left)
3405{
3406 const struct btf_enum *enums = btf_type_enum(t);
3407 struct btf *btf = env->btf;
3408 u16 i, nr_enums;
3409 u32 meta_needed;
3410
3411 nr_enums = btf_type_vlen(t);
3412 meta_needed = nr_enums * sizeof(*enums);
3413
3414 if (meta_left < meta_needed) {
3415 btf_verifier_log_basic(env, t,
3416 "meta_left:%u meta_needed:%u",
3417 meta_left, meta_needed);
3418 return -EINVAL;
3419 }
3420
9d5f9f70
YS
3421 if (btf_type_kflag(t)) {
3422 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3423 return -EINVAL;
3424 }
3425
9eea9849
AS
3426 if (t->size > 8 || !is_power_of_2(t->size)) {
3427 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
3428 return -EINVAL;
3429 }
3430
eb04bbb6
YS
3431 /* enum type either no name or a valid one */
3432 if (t->name_off &&
3433 !btf_name_valid_identifier(env->btf, t->name_off)) {
3434 btf_verifier_log_type(env, t, "Invalid name");
3435 return -EINVAL;
3436 }
3437
69b693f0
MKL
3438 btf_verifier_log_type(env, t, NULL);
3439
3440 for (i = 0; i < nr_enums; i++) {
fbcf93eb 3441 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 3442 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 3443 enums[i].name_off);
69b693f0
MKL
3444 return -EINVAL;
3445 }
3446
eb04bbb6
YS
3447 /* enum member must have a valid name */
3448 if (!enums[i].name_off ||
3449 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3450 btf_verifier_log_type(env, t, "Invalid name");
3451 return -EINVAL;
3452 }
3453
8580ac94
AS
3454 if (env->log.level == BPF_LOG_KERNEL)
3455 continue;
69b693f0 3456 btf_verifier_log(env, "\t%s val=%d\n",
23127b33 3457 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
3458 enums[i].val);
3459 }
3460
3461 return meta_needed;
3462}
3463
3464static void btf_enum_log(struct btf_verifier_env *env,
3465 const struct btf_type *t)
3466{
3467 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3468}
3469
31d0bc81
AM
3470static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3471 u32 type_id, void *data, u8 bits_offset,
3472 struct btf_show *show)
b00b8dae
MKL
3473{
3474 const struct btf_enum *enums = btf_type_enum(t);
3475 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
3476 void *safe_data;
3477 int v;
3478
3479 safe_data = btf_show_start_type(show, t, type_id, data);
3480 if (!safe_data)
3481 return;
3482
3483 v = *(int *)safe_data;
b00b8dae
MKL
3484
3485 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
3486 if (v != enums[i].val)
3487 continue;
3488
3489 btf_show_type_value(show, "%s",
3490 __btf_name_by_offset(btf,
3491 enums[i].name_off));
3492
3493 btf_show_end_type(show);
3494 return;
b00b8dae
MKL
3495 }
3496
31d0bc81
AM
3497 btf_show_type_value(show, "%d", v);
3498 btf_show_end_type(show);
b00b8dae
MKL
3499}
3500
69b693f0
MKL
3501static struct btf_kind_operations enum_ops = {
3502 .check_meta = btf_enum_check_meta,
eb3f595d 3503 .resolve = btf_df_resolve,
179cde8c 3504 .check_member = btf_enum_check_member,
9d5f9f70 3505 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 3506 .log_details = btf_enum_log,
31d0bc81 3507 .show = btf_enum_show,
69b693f0
MKL
3508};
3509
2667a262
MKL
3510static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3511 const struct btf_type *t,
3512 u32 meta_left)
3513{
3514 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3515
3516 if (meta_left < meta_needed) {
3517 btf_verifier_log_basic(env, t,
3518 "meta_left:%u meta_needed:%u",
3519 meta_left, meta_needed);
3520 return -EINVAL;
3521 }
3522
3523 if (t->name_off) {
3524 btf_verifier_log_type(env, t, "Invalid name");
3525 return -EINVAL;
3526 }
3527
9d5f9f70
YS
3528 if (btf_type_kflag(t)) {
3529 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3530 return -EINVAL;
3531 }
3532
2667a262
MKL
3533 btf_verifier_log_type(env, t, NULL);
3534
3535 return meta_needed;
3536}
3537
3538static void btf_func_proto_log(struct btf_verifier_env *env,
3539 const struct btf_type *t)
3540{
3541 const struct btf_param *args = (const struct btf_param *)(t + 1);
3542 u16 nr_args = btf_type_vlen(t), i;
3543
3544 btf_verifier_log(env, "return=%u args=(", t->type);
3545 if (!nr_args) {
3546 btf_verifier_log(env, "void");
3547 goto done;
3548 }
3549
3550 if (nr_args == 1 && !args[0].type) {
3551 /* Only one vararg */
3552 btf_verifier_log(env, "vararg");
3553 goto done;
3554 }
3555
3556 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
3557 __btf_name_by_offset(env->btf,
3558 args[0].name_off));
2667a262
MKL
3559 for (i = 1; i < nr_args - 1; i++)
3560 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
3561 __btf_name_by_offset(env->btf,
3562 args[i].name_off));
2667a262
MKL
3563
3564 if (nr_args > 1) {
3565 const struct btf_param *last_arg = &args[nr_args - 1];
3566
3567 if (last_arg->type)
3568 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
3569 __btf_name_by_offset(env->btf,
3570 last_arg->name_off));
2667a262
MKL
3571 else
3572 btf_verifier_log(env, ", vararg");
3573 }
3574
3575done:
3576 btf_verifier_log(env, ")");
3577}
3578
3579static struct btf_kind_operations func_proto_ops = {
3580 .check_meta = btf_func_proto_check_meta,
3581 .resolve = btf_df_resolve,
3582 /*
3583 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3584 * a struct's member.
3585 *
8fb33b60 3586 * It should be a function pointer instead.
2667a262
MKL
3587 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3588 *
3589 * Hence, there is no btf_func_check_member().
3590 */
3591 .check_member = btf_df_check_member,
9d5f9f70 3592 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3593 .log_details = btf_func_proto_log,
31d0bc81 3594 .show = btf_df_show,
2667a262
MKL
3595};
3596
3597static s32 btf_func_check_meta(struct btf_verifier_env *env,
3598 const struct btf_type *t,
3599 u32 meta_left)
3600{
3601 if (!t->name_off ||
3602 !btf_name_valid_identifier(env->btf, t->name_off)) {
3603 btf_verifier_log_type(env, t, "Invalid name");
3604 return -EINVAL;
3605 }
3606
51c39bb1
AS
3607 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3608 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
3609 return -EINVAL;
3610 }
3611
9d5f9f70
YS
3612 if (btf_type_kflag(t)) {
3613 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3614 return -EINVAL;
3615 }
3616
2667a262
MKL
3617 btf_verifier_log_type(env, t, NULL);
3618
3619 return 0;
3620}
3621
d7e7b42f
YS
3622static int btf_func_resolve(struct btf_verifier_env *env,
3623 const struct resolve_vertex *v)
3624{
3625 const struct btf_type *t = v->t;
3626 u32 next_type_id = t->type;
3627 int err;
3628
3629 err = btf_func_check(env, t);
3630 if (err)
3631 return err;
3632
3633 env_stack_pop_resolved(env, next_type_id, 0);
3634 return 0;
3635}
3636
2667a262
MKL
3637static struct btf_kind_operations func_ops = {
3638 .check_meta = btf_func_check_meta,
d7e7b42f 3639 .resolve = btf_func_resolve,
2667a262 3640 .check_member = btf_df_check_member,
9d5f9f70 3641 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3642 .log_details = btf_ref_type_log,
31d0bc81 3643 .show = btf_df_show,
2667a262
MKL
3644};
3645
1dc92851
DB
3646static s32 btf_var_check_meta(struct btf_verifier_env *env,
3647 const struct btf_type *t,
3648 u32 meta_left)
3649{
3650 const struct btf_var *var;
3651 u32 meta_needed = sizeof(*var);
3652
3653 if (meta_left < meta_needed) {
3654 btf_verifier_log_basic(env, t,
3655 "meta_left:%u meta_needed:%u",
3656 meta_left, meta_needed);
3657 return -EINVAL;
3658 }
3659
3660 if (btf_type_vlen(t)) {
3661 btf_verifier_log_type(env, t, "vlen != 0");
3662 return -EINVAL;
3663 }
3664
3665 if (btf_type_kflag(t)) {
3666 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3667 return -EINVAL;
3668 }
3669
3670 if (!t->name_off ||
3671 !__btf_name_valid(env->btf, t->name_off, true)) {
3672 btf_verifier_log_type(env, t, "Invalid name");
3673 return -EINVAL;
3674 }
3675
3676 /* A var cannot be in type void */
3677 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3678 btf_verifier_log_type(env, t, "Invalid type_id");
3679 return -EINVAL;
3680 }
3681
3682 var = btf_type_var(t);
3683 if (var->linkage != BTF_VAR_STATIC &&
3684 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3685 btf_verifier_log_type(env, t, "Linkage not supported");
3686 return -EINVAL;
3687 }
3688
3689 btf_verifier_log_type(env, t, NULL);
3690
3691 return meta_needed;
3692}
3693
3694static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3695{
3696 const struct btf_var *var = btf_type_var(t);
3697
3698 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3699}
3700
3701static const struct btf_kind_operations var_ops = {
3702 .check_meta = btf_var_check_meta,
3703 .resolve = btf_var_resolve,
3704 .check_member = btf_df_check_member,
3705 .check_kflag_member = btf_df_check_kflag_member,
3706 .log_details = btf_var_log,
31d0bc81 3707 .show = btf_var_show,
1dc92851
DB
3708};
3709
3710static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3711 const struct btf_type *t,
3712 u32 meta_left)
3713{
3714 const struct btf_var_secinfo *vsi;
3715 u64 last_vsi_end_off = 0, sum = 0;
3716 u32 i, meta_needed;
3717
3718 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3719 if (meta_left < meta_needed) {
3720 btf_verifier_log_basic(env, t,
3721 "meta_left:%u meta_needed:%u",
3722 meta_left, meta_needed);
3723 return -EINVAL;
3724 }
3725
1dc92851
DB
3726 if (!t->size) {
3727 btf_verifier_log_type(env, t, "size == 0");
3728 return -EINVAL;
3729 }
3730
3731 if (btf_type_kflag(t)) {
3732 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3733 return -EINVAL;
3734 }
3735
3736 if (!t->name_off ||
3737 !btf_name_valid_section(env->btf, t->name_off)) {
3738 btf_verifier_log_type(env, t, "Invalid name");
3739 return -EINVAL;
3740 }
3741
3742 btf_verifier_log_type(env, t, NULL);
3743
3744 for_each_vsi(i, t, vsi) {
3745 /* A var cannot be in type void */
3746 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3747 btf_verifier_log_vsi(env, t, vsi,
3748 "Invalid type_id");
3749 return -EINVAL;
3750 }
3751
3752 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3753 btf_verifier_log_vsi(env, t, vsi,
3754 "Invalid offset");
3755 return -EINVAL;
3756 }
3757
3758 if (!vsi->size || vsi->size > t->size) {
3759 btf_verifier_log_vsi(env, t, vsi,
3760 "Invalid size");
3761 return -EINVAL;
3762 }
3763
3764 last_vsi_end_off = vsi->offset + vsi->size;
3765 if (last_vsi_end_off > t->size) {
3766 btf_verifier_log_vsi(env, t, vsi,
3767 "Invalid offset+size");
3768 return -EINVAL;
3769 }
3770
3771 btf_verifier_log_vsi(env, t, vsi, NULL);
3772 sum += vsi->size;
3773 }
3774
3775 if (t->size < sum) {
3776 btf_verifier_log_type(env, t, "Invalid btf_info size");
3777 return -EINVAL;
3778 }
3779
3780 return meta_needed;
3781}
3782
3783static int btf_datasec_resolve(struct btf_verifier_env *env,
3784 const struct resolve_vertex *v)
3785{
3786 const struct btf_var_secinfo *vsi;
3787 struct btf *btf = env->btf;
3788 u16 i;
3789
3790 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3791 u32 var_type_id = vsi->type, type_id, type_size = 0;
3792 const struct btf_type *var_type = btf_type_by_id(env->btf,
3793 var_type_id);
3794 if (!var_type || !btf_type_is_var(var_type)) {
3795 btf_verifier_log_vsi(env, v->t, vsi,
3796 "Not a VAR kind member");
3797 return -EINVAL;
3798 }
3799
3800 if (!env_type_is_resolve_sink(env, var_type) &&
3801 !env_type_is_resolved(env, var_type_id)) {
3802 env_stack_set_next_member(env, i + 1);
3803 return env_stack_push(env, var_type, var_type_id);
3804 }
3805
3806 type_id = var_type->type;
3807 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3808 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3809 return -EINVAL;
3810 }
3811
3812 if (vsi->size < type_size) {
3813 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3814 return -EINVAL;
3815 }
3816 }
3817
3818 env_stack_pop_resolved(env, 0, 0);
3819 return 0;
3820}
3821
3822static void btf_datasec_log(struct btf_verifier_env *env,
3823 const struct btf_type *t)
3824{
3825 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3826}
3827
31d0bc81
AM
3828static void btf_datasec_show(const struct btf *btf,
3829 const struct btf_type *t, u32 type_id,
3830 void *data, u8 bits_offset,
3831 struct btf_show *show)
1dc92851
DB
3832{
3833 const struct btf_var_secinfo *vsi;
3834 const struct btf_type *var;
3835 u32 i;
3836
31d0bc81
AM
3837 if (!btf_show_start_type(show, t, type_id, data))
3838 return;
3839
3840 btf_show_type_value(show, "section (\"%s\") = {",
3841 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
3842 for_each_vsi(i, t, vsi) {
3843 var = btf_type_by_id(btf, vsi->type);
3844 if (i)
31d0bc81
AM
3845 btf_show(show, ",");
3846 btf_type_ops(var)->show(btf, var, vsi->type,
3847 data + vsi->offset, bits_offset, show);
1dc92851 3848 }
31d0bc81 3849 btf_show_end_type(show);
1dc92851
DB
3850}
3851
3852static const struct btf_kind_operations datasec_ops = {
3853 .check_meta = btf_datasec_check_meta,
3854 .resolve = btf_datasec_resolve,
3855 .check_member = btf_df_check_member,
3856 .check_kflag_member = btf_df_check_kflag_member,
3857 .log_details = btf_datasec_log,
31d0bc81 3858 .show = btf_datasec_show,
1dc92851
DB
3859};
3860
b1828f0b
IL
3861static s32 btf_float_check_meta(struct btf_verifier_env *env,
3862 const struct btf_type *t,
3863 u32 meta_left)
3864{
3865 if (btf_type_vlen(t)) {
3866 btf_verifier_log_type(env, t, "vlen != 0");
3867 return -EINVAL;
3868 }
3869
3870 if (btf_type_kflag(t)) {
3871 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3872 return -EINVAL;
3873 }
3874
3875 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3876 t->size != 16) {
3877 btf_verifier_log_type(env, t, "Invalid type_size");
3878 return -EINVAL;
3879 }
3880
3881 btf_verifier_log_type(env, t, NULL);
3882
3883 return 0;
3884}
3885
3886static int btf_float_check_member(struct btf_verifier_env *env,
3887 const struct btf_type *struct_type,
3888 const struct btf_member *member,
3889 const struct btf_type *member_type)
3890{
3891 u64 start_offset_bytes;
3892 u64 end_offset_bytes;
3893 u64 misalign_bits;
3894 u64 align_bytes;
3895 u64 align_bits;
3896
3897 /* Different architectures have different alignment requirements, so
3898 * here we check only for the reasonable minimum. This way we ensure
3899 * that types after CO-RE can pass the kernel BTF verifier.
3900 */
3901 align_bytes = min_t(u64, sizeof(void *), member_type->size);
3902 align_bits = align_bytes * BITS_PER_BYTE;
3903 div64_u64_rem(member->offset, align_bits, &misalign_bits);
3904 if (misalign_bits) {
3905 btf_verifier_log_member(env, struct_type, member,
3906 "Member is not properly aligned");
3907 return -EINVAL;
3908 }
3909
3910 start_offset_bytes = member->offset / BITS_PER_BYTE;
3911 end_offset_bytes = start_offset_bytes + member_type->size;
3912 if (end_offset_bytes > struct_type->size) {
3913 btf_verifier_log_member(env, struct_type, member,
3914 "Member exceeds struct_size");
3915 return -EINVAL;
3916 }
3917
3918 return 0;
3919}
3920
3921static void btf_float_log(struct btf_verifier_env *env,
3922 const struct btf_type *t)
3923{
3924 btf_verifier_log(env, "size=%u", t->size);
3925}
3926
3927static const struct btf_kind_operations float_ops = {
3928 .check_meta = btf_float_check_meta,
3929 .resolve = btf_df_resolve,
3930 .check_member = btf_float_check_member,
3931 .check_kflag_member = btf_generic_check_kflag_member,
3932 .log_details = btf_float_log,
3933 .show = btf_df_show,
3934};
3935
223f903e 3936static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
b5ea834d
YS
3937 const struct btf_type *t,
3938 u32 meta_left)
3939{
223f903e 3940 const struct btf_decl_tag *tag;
b5ea834d
YS
3941 u32 meta_needed = sizeof(*tag);
3942 s32 component_idx;
3943 const char *value;
3944
3945 if (meta_left < meta_needed) {
3946 btf_verifier_log_basic(env, t,
3947 "meta_left:%u meta_needed:%u",
3948 meta_left, meta_needed);
3949 return -EINVAL;
3950 }
3951
3952 value = btf_name_by_offset(env->btf, t->name_off);
3953 if (!value || !value[0]) {
3954 btf_verifier_log_type(env, t, "Invalid value");
3955 return -EINVAL;
3956 }
3957
3958 if (btf_type_vlen(t)) {
3959 btf_verifier_log_type(env, t, "vlen != 0");
3960 return -EINVAL;
3961 }
3962
3963 if (btf_type_kflag(t)) {
3964 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3965 return -EINVAL;
3966 }
3967
223f903e 3968 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d
YS
3969 if (component_idx < -1) {
3970 btf_verifier_log_type(env, t, "Invalid component_idx");
3971 return -EINVAL;
3972 }
3973
3974 btf_verifier_log_type(env, t, NULL);
3975
3976 return meta_needed;
3977}
3978
223f903e 3979static int btf_decl_tag_resolve(struct btf_verifier_env *env,
b5ea834d
YS
3980 const struct resolve_vertex *v)
3981{
3982 const struct btf_type *next_type;
3983 const struct btf_type *t = v->t;
3984 u32 next_type_id = t->type;
3985 struct btf *btf = env->btf;
3986 s32 component_idx;
3987 u32 vlen;
3988
3989 next_type = btf_type_by_id(btf, next_type_id);
223f903e 3990 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
b5ea834d
YS
3991 btf_verifier_log_type(env, v->t, "Invalid type_id");
3992 return -EINVAL;
3993 }
3994
3995 if (!env_type_is_resolve_sink(env, next_type) &&
3996 !env_type_is_resolved(env, next_type_id))
3997 return env_stack_push(env, next_type, next_type_id);
3998
223f903e 3999 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d 4000 if (component_idx != -1) {
bd16dee6 4001 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
b5ea834d
YS
4002 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4003 return -EINVAL;
4004 }
4005
4006 if (btf_type_is_struct(next_type)) {
4007 vlen = btf_type_vlen(next_type);
4008 } else {
4009 /* next_type should be a function */
4010 next_type = btf_type_by_id(btf, next_type->type);
4011 vlen = btf_type_vlen(next_type);
4012 }
4013
4014 if ((u32)component_idx >= vlen) {
4015 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4016 return -EINVAL;
4017 }
4018 }
4019
4020 env_stack_pop_resolved(env, next_type_id, 0);
4021
4022 return 0;
4023}
4024
223f903e 4025static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
b5ea834d
YS
4026{
4027 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
223f903e 4028 btf_type_decl_tag(t)->component_idx);
b5ea834d
YS
4029}
4030
223f903e
YS
4031static const struct btf_kind_operations decl_tag_ops = {
4032 .check_meta = btf_decl_tag_check_meta,
4033 .resolve = btf_decl_tag_resolve,
b5ea834d
YS
4034 .check_member = btf_df_check_member,
4035 .check_kflag_member = btf_df_check_kflag_member,
223f903e 4036 .log_details = btf_decl_tag_log,
b5ea834d
YS
4037 .show = btf_df_show,
4038};
4039
2667a262
MKL
4040static int btf_func_proto_check(struct btf_verifier_env *env,
4041 const struct btf_type *t)
4042{
4043 const struct btf_type *ret_type;
4044 const struct btf_param *args;
4045 const struct btf *btf;
4046 u16 nr_args, i;
4047 int err;
4048
4049 btf = env->btf;
4050 args = (const struct btf_param *)(t + 1);
4051 nr_args = btf_type_vlen(t);
4052
4053 /* Check func return type which could be "void" (t->type == 0) */
4054 if (t->type) {
4055 u32 ret_type_id = t->type;
4056
4057 ret_type = btf_type_by_id(btf, ret_type_id);
4058 if (!ret_type) {
4059 btf_verifier_log_type(env, t, "Invalid return type");
4060 return -EINVAL;
4061 }
4062
4063 if (btf_type_needs_resolve(ret_type) &&
4064 !env_type_is_resolved(env, ret_type_id)) {
4065 err = btf_resolve(env, ret_type, ret_type_id);
4066 if (err)
4067 return err;
4068 }
4069
4070 /* Ensure the return type is a type that has a size */
4071 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4072 btf_verifier_log_type(env, t, "Invalid return type");
4073 return -EINVAL;
4074 }
4075 }
4076
4077 if (!nr_args)
4078 return 0;
4079
4080 /* Last func arg type_id could be 0 if it is a vararg */
4081 if (!args[nr_args - 1].type) {
4082 if (args[nr_args - 1].name_off) {
4083 btf_verifier_log_type(env, t, "Invalid arg#%u",
4084 nr_args);
4085 return -EINVAL;
4086 }
4087 nr_args--;
4088 }
4089
4090 err = 0;
4091 for (i = 0; i < nr_args; i++) {
4092 const struct btf_type *arg_type;
4093 u32 arg_type_id;
4094
4095 arg_type_id = args[i].type;
4096 arg_type = btf_type_by_id(btf, arg_type_id);
4097 if (!arg_type) {
4098 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4099 err = -EINVAL;
4100 break;
4101 }
4102
4103 if (args[i].name_off &&
4104 (!btf_name_offset_valid(btf, args[i].name_off) ||
4105 !btf_name_valid_identifier(btf, args[i].name_off))) {
4106 btf_verifier_log_type(env, t,
4107 "Invalid arg#%u", i + 1);
4108 err = -EINVAL;
4109 break;
4110 }
4111
4112 if (btf_type_needs_resolve(arg_type) &&
4113 !env_type_is_resolved(env, arg_type_id)) {
4114 err = btf_resolve(env, arg_type, arg_type_id);
4115 if (err)
4116 break;
4117 }
4118
4119 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4120 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4121 err = -EINVAL;
4122 break;
4123 }
4124 }
4125
4126 return err;
4127}
4128
4129static int btf_func_check(struct btf_verifier_env *env,
4130 const struct btf_type *t)
4131{
4132 const struct btf_type *proto_type;
4133 const struct btf_param *args;
4134 const struct btf *btf;
4135 u16 nr_args, i;
4136
4137 btf = env->btf;
4138 proto_type = btf_type_by_id(btf, t->type);
4139
4140 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4141 btf_verifier_log_type(env, t, "Invalid type_id");
4142 return -EINVAL;
4143 }
4144
4145 args = (const struct btf_param *)(proto_type + 1);
4146 nr_args = btf_type_vlen(proto_type);
4147 for (i = 0; i < nr_args; i++) {
4148 if (!args[i].name_off && args[i].type) {
4149 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4150 return -EINVAL;
4151 }
4152 }
4153
4154 return 0;
4155}
4156
69b693f0
MKL
4157static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4158 [BTF_KIND_INT] = &int_ops,
4159 [BTF_KIND_PTR] = &ptr_ops,
4160 [BTF_KIND_ARRAY] = &array_ops,
4161 [BTF_KIND_STRUCT] = &struct_ops,
4162 [BTF_KIND_UNION] = &struct_ops,
4163 [BTF_KIND_ENUM] = &enum_ops,
4164 [BTF_KIND_FWD] = &fwd_ops,
4165 [BTF_KIND_TYPEDEF] = &modifier_ops,
4166 [BTF_KIND_VOLATILE] = &modifier_ops,
4167 [BTF_KIND_CONST] = &modifier_ops,
4168 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
4169 [BTF_KIND_FUNC] = &func_ops,
4170 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
4171 [BTF_KIND_VAR] = &var_ops,
4172 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 4173 [BTF_KIND_FLOAT] = &float_ops,
223f903e 4174 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
8c42d2fa 4175 [BTF_KIND_TYPE_TAG] = &modifier_ops,
69b693f0
MKL
4176};
4177
4178static s32 btf_check_meta(struct btf_verifier_env *env,
4179 const struct btf_type *t,
4180 u32 meta_left)
4181{
4182 u32 saved_meta_left = meta_left;
4183 s32 var_meta_size;
4184
4185 if (meta_left < sizeof(*t)) {
4186 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4187 env->log_type_id, meta_left, sizeof(*t));
4188 return -EINVAL;
4189 }
4190 meta_left -= sizeof(*t);
4191
aea2f7b8
MKL
4192 if (t->info & ~BTF_INFO_MASK) {
4193 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4194 env->log_type_id, t->info);
4195 return -EINVAL;
4196 }
4197
69b693f0
MKL
4198 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4199 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4200 btf_verifier_log(env, "[%u] Invalid kind:%u",
4201 env->log_type_id, BTF_INFO_KIND(t->info));
4202 return -EINVAL;
4203 }
4204
fbcf93eb 4205 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 4206 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 4207 env->log_type_id, t->name_off);
69b693f0
MKL
4208 return -EINVAL;
4209 }
4210
4211 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4212 if (var_meta_size < 0)
4213 return var_meta_size;
4214
4215 meta_left -= var_meta_size;
4216
4217 return saved_meta_left - meta_left;
4218}
4219
4220static int btf_check_all_metas(struct btf_verifier_env *env)
4221{
4222 struct btf *btf = env->btf;
4223 struct btf_header *hdr;
4224 void *cur, *end;
4225
f80442a4 4226 hdr = &btf->hdr;
69b693f0 4227 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 4228 end = cur + hdr->type_len;
69b693f0 4229
951bb646 4230 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
4231 while (cur < end) {
4232 struct btf_type *t = cur;
4233 s32 meta_size;
4234
4235 meta_size = btf_check_meta(env, t, end - cur);
4236 if (meta_size < 0)
4237 return meta_size;
4238
4239 btf_add_type(env, t);
4240 cur += meta_size;
4241 env->log_type_id++;
4242 }
4243
4244 return 0;
4245}
4246
eb3f595d
MKL
4247static bool btf_resolve_valid(struct btf_verifier_env *env,
4248 const struct btf_type *t,
4249 u32 type_id)
4250{
4251 struct btf *btf = env->btf;
4252
4253 if (!env_type_is_resolved(env, type_id))
4254 return false;
4255
1dc92851 4256 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
4257 return !btf_resolved_type_id(btf, type_id) &&
4258 !btf_resolved_type_size(btf, type_id);
eb3f595d 4259
d7e7b42f 4260 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
b5ea834d
YS
4261 return btf_resolved_type_id(btf, type_id) &&
4262 !btf_resolved_type_size(btf, type_id);
4263
1dc92851
DB
4264 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4265 btf_type_is_var(t)) {
eb3f595d 4266 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
4267 return t &&
4268 !btf_type_is_modifier(t) &&
4269 !btf_type_is_var(t) &&
4270 !btf_type_is_datasec(t);
eb3f595d
MKL
4271 }
4272
4273 if (btf_type_is_array(t)) {
4274 const struct btf_array *array = btf_type_array(t);
4275 const struct btf_type *elem_type;
4276 u32 elem_type_id = array->type;
4277 u32 elem_size;
4278
4279 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4280 return elem_type && !btf_type_is_modifier(elem_type) &&
4281 (array->nelems * elem_size ==
951bb646 4282 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
4283 }
4284
4285 return false;
4286}
4287
2667a262
MKL
4288static int btf_resolve(struct btf_verifier_env *env,
4289 const struct btf_type *t, u32 type_id)
4290{
4291 u32 save_log_type_id = env->log_type_id;
4292 const struct resolve_vertex *v;
4293 int err = 0;
4294
4295 env->resolve_mode = RESOLVE_TBD;
4296 env_stack_push(env, t, type_id);
4297 while (!err && (v = env_stack_peak(env))) {
4298 env->log_type_id = v->type_id;
4299 err = btf_type_ops(v->t)->resolve(env, v);
4300 }
4301
4302 env->log_type_id = type_id;
4303 if (err == -E2BIG) {
4304 btf_verifier_log_type(env, t,
4305 "Exceeded max resolving depth:%u",
4306 MAX_RESOLVE_DEPTH);
4307 } else if (err == -EEXIST) {
4308 btf_verifier_log_type(env, t, "Loop detected");
4309 }
4310
4311 /* Final sanity check */
4312 if (!err && !btf_resolve_valid(env, t, type_id)) {
4313 btf_verifier_log_type(env, t, "Invalid resolve state");
4314 err = -EINVAL;
4315 }
4316
4317 env->log_type_id = save_log_type_id;
4318 return err;
4319}
4320
eb3f595d
MKL
4321static int btf_check_all_types(struct btf_verifier_env *env)
4322{
4323 struct btf *btf = env->btf;
951bb646
AN
4324 const struct btf_type *t;
4325 u32 type_id, i;
eb3f595d
MKL
4326 int err;
4327
4328 err = env_resolve_init(env);
4329 if (err)
4330 return err;
4331
4332 env->phase++;
951bb646
AN
4333 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4334 type_id = btf->start_id + i;
4335 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
4336
4337 env->log_type_id = type_id;
4338 if (btf_type_needs_resolve(t) &&
4339 !env_type_is_resolved(env, type_id)) {
4340 err = btf_resolve(env, t, type_id);
4341 if (err)
4342 return err;
4343 }
4344
2667a262
MKL
4345 if (btf_type_is_func_proto(t)) {
4346 err = btf_func_proto_check(env, t);
4347 if (err)
4348 return err;
4349 }
eb3f595d
MKL
4350 }
4351
4352 return 0;
4353}
4354
69b693f0
MKL
4355static int btf_parse_type_sec(struct btf_verifier_env *env)
4356{
f80442a4 4357 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
4358 int err;
4359
f80442a4
MKL
4360 /* Type section must align to 4 bytes */
4361 if (hdr->type_off & (sizeof(u32) - 1)) {
4362 btf_verifier_log(env, "Unaligned type_off");
4363 return -EINVAL;
4364 }
4365
951bb646 4366 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
4367 btf_verifier_log(env, "No type found");
4368 return -EINVAL;
4369 }
4370
eb3f595d
MKL
4371 err = btf_check_all_metas(env);
4372 if (err)
4373 return err;
4374
4375 return btf_check_all_types(env);
69b693f0
MKL
4376}
4377
4378static int btf_parse_str_sec(struct btf_verifier_env *env)
4379{
4380 const struct btf_header *hdr;
4381 struct btf *btf = env->btf;
4382 const char *start, *end;
4383
f80442a4 4384 hdr = &btf->hdr;
69b693f0
MKL
4385 start = btf->nohdr_data + hdr->str_off;
4386 end = start + hdr->str_len;
4387
f80442a4
MKL
4388 if (end != btf->data + btf->data_size) {
4389 btf_verifier_log(env, "String section is not at the end");
4390 return -EINVAL;
4391 }
4392
951bb646
AN
4393 btf->strings = start;
4394
4395 if (btf->base_btf && !hdr->str_len)
4396 return 0;
4397 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4398 btf_verifier_log(env, "Invalid string section");
4399 return -EINVAL;
4400 }
4401 if (!btf->base_btf && start[0]) {
69b693f0
MKL
4402 btf_verifier_log(env, "Invalid string section");
4403 return -EINVAL;
4404 }
69b693f0
MKL
4405
4406 return 0;
4407}
4408
f80442a4
MKL
4409static const size_t btf_sec_info_offset[] = {
4410 offsetof(struct btf_header, type_off),
4411 offsetof(struct btf_header, str_off),
4412};
4413
4414static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 4415{
f80442a4
MKL
4416 const struct btf_sec_info *x = a;
4417 const struct btf_sec_info *y = b;
4418
4419 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4420}
4421
4422static int btf_check_sec_info(struct btf_verifier_env *env,
4423 u32 btf_data_size)
4424{
a2889a4c 4425 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 4426 u32 total, expected_total, i;
69b693f0 4427 const struct btf_header *hdr;
f80442a4
MKL
4428 const struct btf *btf;
4429
4430 btf = env->btf;
4431 hdr = &btf->hdr;
4432
4433 /* Populate the secs from hdr */
a2889a4c 4434 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
4435 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4436 btf_sec_info_offset[i]);
4437
a2889a4c
MKL
4438 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4439 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
4440
4441 /* Check for gaps and overlap among sections */
4442 total = 0;
4443 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 4444 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
4445 if (expected_total < secs[i].off) {
4446 btf_verifier_log(env, "Invalid section offset");
4447 return -EINVAL;
4448 }
4449 if (total < secs[i].off) {
4450 /* gap */
4451 btf_verifier_log(env, "Unsupported section found");
4452 return -EINVAL;
4453 }
4454 if (total > secs[i].off) {
4455 btf_verifier_log(env, "Section overlap found");
4456 return -EINVAL;
4457 }
4458 if (expected_total - total < secs[i].len) {
4459 btf_verifier_log(env,
4460 "Total section length too long");
4461 return -EINVAL;
4462 }
4463 total += secs[i].len;
4464 }
4465
4466 /* There is data other than hdr and known sections */
4467 if (expected_total != total) {
4468 btf_verifier_log(env, "Unsupported section found");
4469 return -EINVAL;
4470 }
4471
4472 return 0;
4473}
4474
4a6998af 4475static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 4476{
4a6998af 4477 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 4478 const struct btf_header *hdr;
f80442a4
MKL
4479 struct btf *btf;
4480 int err;
69b693f0 4481
f80442a4 4482 btf = env->btf;
4a6998af 4483 btf_data_size = btf->data_size;
f80442a4 4484
583669ab 4485 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
f80442a4
MKL
4486 btf_verifier_log(env, "hdr_len not found");
4487 return -EINVAL;
4488 }
4489
4a6998af
ML
4490 hdr = btf->data;
4491 hdr_len = hdr->hdr_len;
f80442a4 4492 if (btf_data_size < hdr_len) {
69b693f0
MKL
4493 btf_verifier_log(env, "btf_header not found");
4494 return -EINVAL;
4495 }
4496
4a6998af
ML
4497 /* Ensure the unsupported header fields are zero */
4498 if (hdr_len > sizeof(btf->hdr)) {
4499 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4500 u8 *end = btf->data + hdr_len;
4501
4502 for (; expected_zero < end; expected_zero++) {
4503 if (*expected_zero) {
4504 btf_verifier_log(env, "Unsupported btf_header");
4505 return -E2BIG;
4506 }
4507 }
f80442a4
MKL
4508 }
4509
4510 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 4511 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
4512
4513 hdr = &btf->hdr;
4514
4515 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 4516
69b693f0
MKL
4517 if (hdr->magic != BTF_MAGIC) {
4518 btf_verifier_log(env, "Invalid magic");
4519 return -EINVAL;
4520 }
4521
4522 if (hdr->version != BTF_VERSION) {
4523 btf_verifier_log(env, "Unsupported version");
4524 return -ENOTSUPP;
4525 }
4526
4527 if (hdr->flags) {
4528 btf_verifier_log(env, "Unsupported flags");
4529 return -ENOTSUPP;
4530 }
4531
bcc5e616 4532 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
4533 btf_verifier_log(env, "No data");
4534 return -EINVAL;
4535 }
4536
f80442a4
MKL
4537 err = btf_check_sec_info(env, btf_data_size);
4538 if (err)
4539 return err;
69b693f0
MKL
4540
4541 return 0;
4542}
4543
c571bd75 4544static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
69b693f0
MKL
4545 u32 log_level, char __user *log_ubuf, u32 log_size)
4546{
4547 struct btf_verifier_env *env = NULL;
4548 struct bpf_verifier_log *log;
4549 struct btf *btf = NULL;
4550 u8 *data;
4551 int err;
4552
4553 if (btf_data_size > BTF_MAX_SIZE)
4554 return ERR_PTR(-E2BIG);
4555
4556 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4557 if (!env)
4558 return ERR_PTR(-ENOMEM);
4559
4560 log = &env->log;
4561 if (log_level || log_ubuf || log_size) {
4562 /* user requested verbose verifier output
4563 * and supplied buffer to store the verification trace
4564 */
4565 log->level = log_level;
4566 log->ubuf = log_ubuf;
4567 log->len_total = log_size;
4568
4569 /* log attributes have to be sane */
866de407 4570 if (!bpf_verifier_log_attr_valid(log)) {
69b693f0
MKL
4571 err = -EINVAL;
4572 goto errout;
4573 }
4574 }
4575
4576 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4577 if (!btf) {
4578 err = -ENOMEM;
4579 goto errout;
4580 }
f80442a4
MKL
4581 env->btf = btf;
4582
69b693f0
MKL
4583 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4584 if (!data) {
4585 err = -ENOMEM;
4586 goto errout;
4587 }
4588
4589 btf->data = data;
4590 btf->data_size = btf_data_size;
4591
c571bd75 4592 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
69b693f0
MKL
4593 err = -EFAULT;
4594 goto errout;
4595 }
4596
4a6998af
ML
4597 err = btf_parse_hdr(env);
4598 if (err)
4599 goto errout;
4600
4601 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4602
69b693f0
MKL
4603 err = btf_parse_str_sec(env);
4604 if (err)
4605 goto errout;
4606
4607 err = btf_parse_type_sec(env);
4608 if (err)
4609 goto errout;
4610
f80442a4 4611 if (log->level && bpf_verifier_log_full(log)) {
69b693f0
MKL
4612 err = -ENOSPC;
4613 goto errout;
4614 }
4615
f80442a4
MKL
4616 btf_verifier_env_free(env);
4617 refcount_set(&btf->refcnt, 1);
4618 return btf;
69b693f0
MKL
4619
4620errout:
4621 btf_verifier_env_free(env);
4622 if (btf)
4623 btf_free(btf);
4624 return ERR_PTR(err);
4625}
b00b8dae 4626
90ceddcb
FS
4627extern char __weak __start_BTF[];
4628extern char __weak __stop_BTF[];
91cc1a99
AS
4629extern struct btf *btf_vmlinux;
4630
4631#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 4632#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
4633static union {
4634 struct bpf_ctx_convert {
4635#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4636 prog_ctx_type _id##_prog; \
4637 kern_ctx_type _id##_kern;
4638#include <linux/bpf_types.h>
4639#undef BPF_PROG_TYPE
4640 } *__t;
4641 /* 't' is written once under lock. Read many times. */
4642 const struct btf_type *t;
4643} bpf_ctx_convert;
4644enum {
4645#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4646 __ctx_convert##_id,
4647#include <linux/bpf_types.h>
4648#undef BPF_PROG_TYPE
ce27709b 4649 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
4650};
4651static u8 bpf_ctx_convert_map[] = {
4652#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4653 [_id] = __ctx_convert##_id,
4654#include <linux/bpf_types.h>
4655#undef BPF_PROG_TYPE
4c80c7bc 4656 0, /* avoid empty array */
91cc1a99
AS
4657};
4658#undef BPF_MAP_TYPE
f2e10bff 4659#undef BPF_LINK_TYPE
91cc1a99
AS
4660
4661static const struct btf_member *
34747c41 4662btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
4663 const struct btf_type *t, enum bpf_prog_type prog_type,
4664 int arg)
91cc1a99
AS
4665{
4666 const struct btf_type *conv_struct;
4667 const struct btf_type *ctx_struct;
4668 const struct btf_member *ctx_type;
4669 const char *tname, *ctx_tname;
4670
4671 conv_struct = bpf_ctx_convert.t;
4672 if (!conv_struct) {
4673 bpf_log(log, "btf_vmlinux is malformed\n");
4674 return NULL;
4675 }
4676 t = btf_type_by_id(btf, t->type);
4677 while (btf_type_is_modifier(t))
4678 t = btf_type_by_id(btf, t->type);
4679 if (!btf_type_is_struct(t)) {
4680 /* Only pointer to struct is supported for now.
4681 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4682 * is not supported yet.
4683 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4684 */
91cc1a99
AS
4685 return NULL;
4686 }
4687 tname = btf_name_by_offset(btf, t->name_off);
4688 if (!tname) {
51c39bb1 4689 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
4690 return NULL;
4691 }
4692 /* prog_type is valid bpf program type. No need for bounds check. */
4693 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4694 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4695 * Like 'struct __sk_buff'
4696 */
4697 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4698 if (!ctx_struct)
4699 /* should not happen */
4700 return NULL;
4701 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4702 if (!ctx_tname) {
4703 /* should not happen */
4704 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4705 return NULL;
4706 }
4707 /* only compare that prog's ctx type name is the same as
4708 * kernel expects. No need to compare field by field.
4709 * It's ok for bpf prog to do:
4710 * struct __sk_buff {};
4711 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4712 * { // no fields of skb are ever used }
4713 */
4714 if (strcmp(ctx_tname, tname))
4715 return NULL;
4716 return ctx_type;
4717}
8580ac94 4718
41c48f3a
AI
4719static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4720#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4721#define BPF_LINK_TYPE(_id, _name)
4722#define BPF_MAP_TYPE(_id, _ops) \
4723 [_id] = &_ops,
4724#include <linux/bpf_types.h>
4725#undef BPF_PROG_TYPE
4726#undef BPF_LINK_TYPE
4727#undef BPF_MAP_TYPE
4728};
4729
4730static int btf_vmlinux_map_ids_init(const struct btf *btf,
4731 struct bpf_verifier_log *log)
4732{
4733 const struct bpf_map_ops *ops;
4734 int i, btf_id;
4735
4736 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4737 ops = btf_vmlinux_map_ops[i];
4738 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4739 continue;
4740 if (!ops->map_btf_name || !ops->map_btf_id) {
4741 bpf_log(log, "map type %d is misconfigured\n", i);
4742 return -EINVAL;
4743 }
4744 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4745 BTF_KIND_STRUCT);
4746 if (btf_id < 0)
4747 return btf_id;
4748 *ops->map_btf_id = btf_id;
4749 }
4750
4751 return 0;
4752}
4753
5b92a28a
AS
4754static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4755 struct btf *btf,
4756 const struct btf_type *t,
51c39bb1
AS
4757 enum bpf_prog_type prog_type,
4758 int arg)
5b92a28a
AS
4759{
4760 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4761
51c39bb1 4762 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
4763 if (!prog_ctx_type)
4764 return -ENOENT;
4765 kern_ctx_type = prog_ctx_type + 1;
4766 return kern_ctx_type->type;
4767}
4768
49f4e672
JO
4769BTF_ID_LIST(bpf_ctx_convert_btf_id)
4770BTF_ID(struct, bpf_ctx_convert)
4771
8580ac94
AS
4772struct btf *btf_parse_vmlinux(void)
4773{
4774 struct btf_verifier_env *env = NULL;
4775 struct bpf_verifier_log *log;
4776 struct btf *btf = NULL;
49f4e672 4777 int err;
8580ac94
AS
4778
4779 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4780 if (!env)
4781 return ERR_PTR(-ENOMEM);
4782
4783 log = &env->log;
4784 log->level = BPF_LOG_KERNEL;
4785
4786 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4787 if (!btf) {
4788 err = -ENOMEM;
4789 goto errout;
4790 }
4791 env->btf = btf;
4792
90ceddcb
FS
4793 btf->data = __start_BTF;
4794 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
4795 btf->kernel_btf = true;
4796 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
4797
4798 err = btf_parse_hdr(env);
4799 if (err)
4800 goto errout;
4801
4802 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4803
4804 err = btf_parse_str_sec(env);
4805 if (err)
4806 goto errout;
4807
4808 err = btf_check_all_metas(env);
4809 if (err)
4810 goto errout;
4811
a2d0d62f 4812 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 4813 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 4814
41c48f3a
AI
4815 /* find bpf map structs for map_ptr access checking */
4816 err = btf_vmlinux_map_ids_init(btf, log);
4817 if (err < 0)
4818 goto errout;
4819
d3e42bb0 4820 bpf_struct_ops_init(btf, log);
27ae7997 4821
8580ac94 4822 refcount_set(&btf->refcnt, 1);
53297220
AN
4823
4824 err = btf_alloc_id(btf);
4825 if (err)
4826 goto errout;
4827
4828 btf_verifier_env_free(env);
8580ac94
AS
4829 return btf;
4830
4831errout:
4832 btf_verifier_env_free(env);
4833 if (btf) {
4834 kvfree(btf->types);
4835 kfree(btf);
4836 }
4837 return ERR_PTR(err);
4838}
4839
7112d127
AN
4840#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4841
36e68442
AN
4842static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4843{
4844 struct btf_verifier_env *env = NULL;
4845 struct bpf_verifier_log *log;
4846 struct btf *btf = NULL, *base_btf;
4847 int err;
4848
4849 base_btf = bpf_get_btf_vmlinux();
4850 if (IS_ERR(base_btf))
4851 return base_btf;
4852 if (!base_btf)
4853 return ERR_PTR(-EINVAL);
4854
4855 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4856 if (!env)
4857 return ERR_PTR(-ENOMEM);
4858
4859 log = &env->log;
4860 log->level = BPF_LOG_KERNEL;
4861
4862 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4863 if (!btf) {
4864 err = -ENOMEM;
4865 goto errout;
4866 }
4867 env->btf = btf;
4868
4869 btf->base_btf = base_btf;
4870 btf->start_id = base_btf->nr_types;
4871 btf->start_str_off = base_btf->hdr.str_len;
4872 btf->kernel_btf = true;
4873 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4874
4875 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4876 if (!btf->data) {
4877 err = -ENOMEM;
4878 goto errout;
4879 }
4880 memcpy(btf->data, data, data_size);
4881 btf->data_size = data_size;
4882
4883 err = btf_parse_hdr(env);
4884 if (err)
4885 goto errout;
4886
4887 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4888
4889 err = btf_parse_str_sec(env);
4890 if (err)
4891 goto errout;
4892
4893 err = btf_check_all_metas(env);
4894 if (err)
4895 goto errout;
4896
4897 btf_verifier_env_free(env);
4898 refcount_set(&btf->refcnt, 1);
4899 return btf;
4900
4901errout:
4902 btf_verifier_env_free(env);
4903 if (btf) {
4904 kvfree(btf->data);
4905 kvfree(btf->types);
4906 kfree(btf);
4907 }
4908 return ERR_PTR(err);
4909}
4910
7112d127
AN
4911#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4912
5b92a28a
AS
4913struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4914{
3aac1ead 4915 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4916
22dc4a0f 4917 if (tgt_prog)
5b92a28a 4918 return tgt_prog->aux->btf;
22dc4a0f
AN
4919 else
4920 return prog->aux->attach_btf;
5b92a28a
AS
4921}
4922
bb6728d7 4923static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
84ad7a7a
JO
4924{
4925 /* t comes in already as a pointer */
4926 t = btf_type_by_id(btf, t->type);
4927
4928 /* allow const */
4929 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4930 t = btf_type_by_id(btf, t->type);
4931
bb6728d7 4932 return btf_type_is_int(t);
84ad7a7a
JO
4933}
4934
9e15db66
AS
4935bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4936 const struct bpf_prog *prog,
4937 struct bpf_insn_access_aux *info)
4938{
38207291 4939 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 4940 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4941 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 4942 const char *tname = prog->aux->attach_func_name;
9e15db66 4943 struct bpf_verifier_log *log = info->log;
9e15db66 4944 const struct btf_param *args;
c6f1bfe8 4945 const char *tag_value;
9e15db66 4946 u32 nr_args, arg;
3c32cc1b 4947 int i, ret;
9e15db66 4948
9e15db66 4949 if (off % 8) {
38207291 4950 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
4951 tname, off);
4952 return false;
4953 }
4954 arg = off / 8;
4955 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
4956 /* if (t == NULL) Fall back to default BPF prog with
4957 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4958 */
4959 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
4960 if (prog->aux->attach_btf_trace) {
4961 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4962 args++;
4963 nr_args--;
4964 }
fec56f58 4965
f50b49a0
KS
4966 if (arg > nr_args) {
4967 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4968 tname, arg + 1);
4969 return false;
4970 }
4971
6ba43b76 4972 if (arg == nr_args) {
f50b49a0
KS
4973 switch (prog->expected_attach_type) {
4974 case BPF_LSM_MAC:
4975 case BPF_TRACE_FEXIT:
9e4e01df
KS
4976 /* When LSM programs are attached to void LSM hooks
4977 * they use FEXIT trampolines and when attached to
4978 * int LSM hooks, they use MODIFY_RETURN trampolines.
4979 *
4980 * While the LSM programs are BPF_MODIFY_RETURN-like
4981 * the check:
4982 *
4983 * if (ret_type != 'int')
4984 * return -EINVAL;
4985 *
4986 * is _not_ done here. This is still safe as LSM hooks
4987 * have only void and int return types.
4988 */
6ba43b76
KS
4989 if (!t)
4990 return true;
4991 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
4992 break;
4993 case BPF_MODIFY_RETURN:
6ba43b76
KS
4994 /* For now the BPF_MODIFY_RETURN can only be attached to
4995 * functions that return an int.
4996 */
4997 if (!t)
4998 return false;
4999
5000 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 5001 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
5002 bpf_log(log,
5003 "ret type %s not allowed for fmod_ret\n",
5004 btf_kind_str[BTF_INFO_KIND(t->info)]);
5005 return false;
5006 }
f50b49a0
KS
5007 break;
5008 default:
5009 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5010 tname, arg + 1);
5011 return false;
6ba43b76 5012 }
fec56f58 5013 } else {
5b92a28a 5014 if (!t)
523a4cf4 5015 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
5016 return true;
5017 t = btf_type_by_id(btf, args[arg].type);
9e15db66 5018 }
f50b49a0 5019
9e15db66
AS
5020 /* skip modifiers */
5021 while (btf_type_is_modifier(t))
5b92a28a 5022 t = btf_type_by_id(btf, t->type);
a9b59159 5023 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
9e15db66
AS
5024 /* accessing a scalar */
5025 return true;
5026 if (!btf_type_is_ptr(t)) {
5027 bpf_log(log,
38207291 5028 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 5029 tname, arg,
5b92a28a 5030 __btf_name_by_offset(btf, t->name_off),
9e15db66
AS
5031 btf_kind_str[BTF_INFO_KIND(t->info)]);
5032 return false;
5033 }
afbf21dc
YS
5034
5035 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5036 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5037 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
c25b2ae1 5038 u32 type, flag;
afbf21dc 5039
c25b2ae1
HL
5040 type = base_type(ctx_arg_info->reg_type);
5041 flag = type_flag(ctx_arg_info->reg_type);
20b2aff4 5042 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
c25b2ae1 5043 (flag & PTR_MAYBE_NULL)) {
afbf21dc
YS
5044 info->reg_type = ctx_arg_info->reg_type;
5045 return true;
5046 }
5047 }
5048
9e15db66
AS
5049 if (t->type == 0)
5050 /* This is a pointer to void.
5051 * It is the same as scalar from the verifier safety pov.
5052 * No further pointer walking is allowed.
5053 */
5054 return true;
5055
bb6728d7 5056 if (is_int_ptr(btf, t))
84ad7a7a
JO
5057 return true;
5058
9e15db66 5059 /* this is a pointer to another type */
3c32cc1b
YS
5060 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5061 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5062
5063 if (ctx_arg_info->offset == off) {
d3621642
YS
5064 if (!ctx_arg_info->btf_id) {
5065 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5066 return false;
5067 }
5068
3c32cc1b 5069 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 5070 info->btf = btf_vmlinux;
951cf368
YS
5071 info->btf_id = ctx_arg_info->btf_id;
5072 return true;
3c32cc1b
YS
5073 }
5074 }
9e15db66 5075
951cf368 5076 info->reg_type = PTR_TO_BTF_ID;
5b92a28a 5077 if (tgt_prog) {
43bc2874
THJ
5078 enum bpf_prog_type tgt_type;
5079
5080 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5081 tgt_type = tgt_prog->aux->saved_dst_prog_type;
5082 else
5083 tgt_type = tgt_prog->type;
5084
5085 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 5086 if (ret > 0) {
22dc4a0f 5087 info->btf = btf_vmlinux;
5b92a28a
AS
5088 info->btf_id = ret;
5089 return true;
5090 } else {
5091 return false;
5092 }
5093 }
275517ff 5094
22dc4a0f 5095 info->btf = btf;
275517ff 5096 info->btf_id = t->type;
5b92a28a 5097 t = btf_type_by_id(btf, t->type);
c6f1bfe8
YS
5098
5099 if (btf_type_is_type_tag(t)) {
5100 tag_value = __btf_name_by_offset(btf, t->name_off);
5101 if (strcmp(tag_value, "user") == 0)
5102 info->reg_type |= MEM_USER;
5844101a
HL
5103 if (strcmp(tag_value, "percpu") == 0)
5104 info->reg_type |= MEM_PERCPU;
c6f1bfe8
YS
5105 }
5106
9e15db66 5107 /* skip modifiers */
275517ff
MKL
5108 while (btf_type_is_modifier(t)) {
5109 info->btf_id = t->type;
5b92a28a 5110 t = btf_type_by_id(btf, t->type);
275517ff 5111 }
9e15db66
AS
5112 if (!btf_type_is_struct(t)) {
5113 bpf_log(log,
38207291 5114 "func '%s' arg%d type %s is not a struct\n",
9e15db66
AS
5115 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5116 return false;
5117 }
38207291 5118 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
9e15db66 5119 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5b92a28a 5120 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
5121 return true;
5122}
5123
1c6d28a6
JO
5124enum bpf_struct_walk_result {
5125 /* < 0 error */
5126 WALK_SCALAR = 0,
5127 WALK_PTR,
5128 WALK_STRUCT,
5129};
5130
22dc4a0f 5131static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6 5132 const struct btf_type *t, int off, int size,
c6f1bfe8 5133 u32 *next_btf_id, enum bpf_type_flag *flag)
9e15db66 5134{
7e3617a7
MKL
5135 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5136 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 5137 const struct btf_member *member;
c6f1bfe8 5138 const char *tname, *mname, *tag_value;
1c6d28a6 5139 u32 vlen, elem_id, mid;
9e15db66
AS
5140
5141again:
22dc4a0f 5142 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 5143 if (!btf_type_is_struct(t)) {
275517ff 5144 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
5145 return -EINVAL;
5146 }
5147
9c5f8a10 5148 vlen = btf_type_vlen(t);
976aba00 5149 if (off + size > t->size) {
9c5f8a10
YS
5150 /* If the last element is a variable size array, we may
5151 * need to relax the rule.
5152 */
5153 struct btf_array *array_elem;
5154
5155 if (vlen == 0)
5156 goto error;
5157
5158 member = btf_type_member(t) + vlen - 1;
22dc4a0f 5159 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
5160 NULL);
5161 if (!btf_type_is_array(mtype))
5162 goto error;
5163
5164 array_elem = (struct btf_array *)(mtype + 1);
5165 if (array_elem->nelems != 0)
5166 goto error;
5167
8293eb99 5168 moff = __btf_member_bit_offset(t, member) / 8;
9c5f8a10
YS
5169 if (off < moff)
5170 goto error;
5171
5172 /* Only allow structure for now, can be relaxed for
5173 * other types later.
5174 */
22dc4a0f 5175 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
5176 NULL);
5177 if (!btf_type_is_struct(t))
9c5f8a10
YS
5178 goto error;
5179
dafe58fc
JO
5180 off = (off - moff) % t->size;
5181 goto again;
9c5f8a10
YS
5182
5183error:
976aba00
MKL
5184 bpf_log(log, "access beyond struct %s at off %u size %u\n",
5185 tname, off, size);
5186 return -EACCES;
5187 }
9e15db66 5188
976aba00 5189 for_each_member(i, t, member) {
7e3617a7 5190 /* offset of the field in bytes */
8293eb99 5191 moff = __btf_member_bit_offset(t, member) / 8;
7e3617a7 5192 if (off + size <= moff)
9e15db66
AS
5193 /* won't find anything, field is already too far */
5194 break;
976aba00 5195
8293eb99
AS
5196 if (__btf_member_bitfield_size(t, member)) {
5197 u32 end_bit = __btf_member_bit_offset(t, member) +
5198 __btf_member_bitfield_size(t, member);
976aba00
MKL
5199
5200 /* off <= moff instead of off == moff because clang
5201 * does not generate a BTF member for anonymous
5202 * bitfield like the ":16" here:
5203 * struct {
5204 * int :16;
5205 * int x:8;
5206 * };
5207 */
5208 if (off <= moff &&
5209 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 5210 return WALK_SCALAR;
976aba00
MKL
5211
5212 /* off may be accessing a following member
5213 *
5214 * or
5215 *
5216 * Doing partial access at either end of this
5217 * bitfield. Continue on this case also to
5218 * treat it as not accessing this bitfield
5219 * and eventually error out as field not
5220 * found to keep it simple.
5221 * It could be relaxed if there was a legit
5222 * partial access case later.
5223 */
5224 continue;
5225 }
5226
7e3617a7
MKL
5227 /* In case of "off" is pointing to holes of a struct */
5228 if (off < moff)
976aba00 5229 break;
9e15db66
AS
5230
5231 /* type of the field */
1c6d28a6 5232 mid = member->type;
22dc4a0f
AN
5233 mtype = btf_type_by_id(btf, member->type);
5234 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 5235
22dc4a0f 5236 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
5237 &elem_type, &elem_id, &total_nelems,
5238 &mid);
7e3617a7 5239 if (IS_ERR(mtype)) {
9e15db66
AS
5240 bpf_log(log, "field %s doesn't have size\n", mname);
5241 return -EFAULT;
5242 }
7e3617a7
MKL
5243
5244 mtrue_end = moff + msize;
5245 if (off >= mtrue_end)
9e15db66
AS
5246 /* no overlap with member, keep iterating */
5247 continue;
7e3617a7
MKL
5248
5249 if (btf_type_is_array(mtype)) {
5250 u32 elem_idx;
5251
6298399b 5252 /* __btf_resolve_size() above helps to
7e3617a7
MKL
5253 * linearize a multi-dimensional array.
5254 *
5255 * The logic here is treating an array
5256 * in a struct as the following way:
5257 *
5258 * struct outer {
5259 * struct inner array[2][2];
5260 * };
5261 *
5262 * looks like:
5263 *
5264 * struct outer {
5265 * struct inner array_elem0;
5266 * struct inner array_elem1;
5267 * struct inner array_elem2;
5268 * struct inner array_elem3;
5269 * };
5270 *
5271 * When accessing outer->array[1][0], it moves
5272 * moff to "array_elem2", set mtype to
5273 * "struct inner", and msize also becomes
5274 * sizeof(struct inner). Then most of the
5275 * remaining logic will fall through without
5276 * caring the current member is an array or
5277 * not.
5278 *
5279 * Unlike mtype/msize/moff, mtrue_end does not
5280 * change. The naming difference ("_true") tells
5281 * that it is not always corresponding to
5282 * the current mtype/msize/moff.
5283 * It is the true end of the current
5284 * member (i.e. array in this case). That
5285 * will allow an int array to be accessed like
5286 * a scratch space,
5287 * i.e. allow access beyond the size of
5288 * the array's element as long as it is
5289 * within the mtrue_end boundary.
5290 */
5291
5292 /* skip empty array */
5293 if (moff == mtrue_end)
5294 continue;
5295
5296 msize /= total_nelems;
5297 elem_idx = (off - moff) / msize;
5298 moff += elem_idx * msize;
5299 mtype = elem_type;
1c6d28a6 5300 mid = elem_id;
7e3617a7
MKL
5301 }
5302
9e15db66
AS
5303 /* the 'off' we're looking for is either equal to start
5304 * of this field or inside of this struct
5305 */
5306 if (btf_type_is_struct(mtype)) {
5307 /* our field must be inside that union or struct */
5308 t = mtype;
5309
1c6d28a6
JO
5310 /* return if the offset matches the member offset */
5311 if (off == moff) {
5312 *next_btf_id = mid;
5313 return WALK_STRUCT;
5314 }
5315
9e15db66 5316 /* adjust offset we're looking for */
7e3617a7 5317 off -= moff;
9e15db66
AS
5318 goto again;
5319 }
9e15db66
AS
5320
5321 if (btf_type_is_ptr(mtype)) {
c6f1bfe8
YS
5322 const struct btf_type *stype, *t;
5323 enum bpf_type_flag tmp_flag = 0;
257af63d 5324 u32 id;
9e15db66 5325
7e3617a7
MKL
5326 if (msize != size || off != moff) {
5327 bpf_log(log,
5328 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5329 mname, moff, tname, off, size);
5330 return -EACCES;
5331 }
c6f1bfe8 5332
5844101a 5333 /* check type tag */
c6f1bfe8
YS
5334 t = btf_type_by_id(btf, mtype->type);
5335 if (btf_type_is_type_tag(t)) {
5336 tag_value = __btf_name_by_offset(btf, t->name_off);
5844101a 5337 /* check __user tag */
c6f1bfe8
YS
5338 if (strcmp(tag_value, "user") == 0)
5339 tmp_flag = MEM_USER;
5844101a
HL
5340 /* check __percpu tag */
5341 if (strcmp(tag_value, "percpu") == 0)
5342 tmp_flag = MEM_PERCPU;
c6f1bfe8
YS
5343 }
5344
22dc4a0f 5345 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 5346 if (btf_type_is_struct(stype)) {
257af63d 5347 *next_btf_id = id;
c6f1bfe8 5348 *flag = tmp_flag;
1c6d28a6 5349 return WALK_PTR;
9e15db66
AS
5350 }
5351 }
7e3617a7
MKL
5352
5353 /* Allow more flexible access within an int as long as
5354 * it is within mtrue_end.
5355 * Since mtrue_end could be the end of an array,
5356 * that also allows using an array of int as a scratch
5357 * space. e.g. skb->cb[].
5358 */
5359 if (off + size > mtrue_end) {
5360 bpf_log(log,
5361 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5362 mname, mtrue_end, tname, off, size);
5363 return -EACCES;
5364 }
5365
1c6d28a6 5366 return WALK_SCALAR;
9e15db66
AS
5367 }
5368 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5369 return -EINVAL;
5370}
5371
22dc4a0f 5372int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
5373 const struct btf_type *t, int off, int size,
5374 enum bpf_access_type atype __maybe_unused,
c6f1bfe8 5375 u32 *next_btf_id, enum bpf_type_flag *flag)
1c6d28a6 5376{
c6f1bfe8 5377 enum bpf_type_flag tmp_flag = 0;
1c6d28a6
JO
5378 int err;
5379 u32 id;
5380
5381 do {
c6f1bfe8 5382 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
1c6d28a6
JO
5383
5384 switch (err) {
5385 case WALK_PTR:
5386 /* If we found the pointer or scalar on t+off,
5387 * we're done.
5388 */
5389 *next_btf_id = id;
c6f1bfe8 5390 *flag = tmp_flag;
1c6d28a6
JO
5391 return PTR_TO_BTF_ID;
5392 case WALK_SCALAR:
5393 return SCALAR_VALUE;
5394 case WALK_STRUCT:
5395 /* We found nested struct, so continue the search
5396 * by diving in it. At this point the offset is
5397 * aligned with the new type, so set it to 0.
5398 */
22dc4a0f 5399 t = btf_type_by_id(btf, id);
1c6d28a6
JO
5400 off = 0;
5401 break;
5402 default:
5403 /* It's either error or unknown return value..
5404 * scream and leave.
5405 */
5406 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5407 return -EINVAL;
5408 return err;
5409 }
5410 } while (t);
5411
5412 return -EINVAL;
5413}
5414
22dc4a0f
AN
5415/* Check that two BTF types, each specified as an BTF object + id, are exactly
5416 * the same. Trivial ID check is not enough due to module BTFs, because we can
5417 * end up with two different module BTFs, but IDs point to the common type in
5418 * vmlinux BTF.
5419 */
5420static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5421 const struct btf *btf2, u32 id2)
5422{
5423 if (id1 != id2)
5424 return false;
5425 if (btf1 == btf2)
5426 return true;
5427 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5428}
5429
faaf4a79 5430bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f
AN
5431 const struct btf *btf, u32 id, int off,
5432 const struct btf *need_btf, u32 need_type_id)
faaf4a79
JO
5433{
5434 const struct btf_type *type;
c6f1bfe8 5435 enum bpf_type_flag flag;
faaf4a79
JO
5436 int err;
5437
5438 /* Are we already done? */
22dc4a0f 5439 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79
JO
5440 return true;
5441
5442again:
22dc4a0f 5443 type = btf_type_by_id(btf, id);
faaf4a79
JO
5444 if (!type)
5445 return false;
c6f1bfe8 5446 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
faaf4a79
JO
5447 if (err != WALK_STRUCT)
5448 return false;
5449
5450 /* We found nested struct object. If it matches
5451 * the requested ID, we're done. Otherwise let's
5452 * continue the search with offset 0 in the new
5453 * type.
5454 */
22dc4a0f 5455 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
5456 off = 0;
5457 goto again;
5458 }
5459
5460 return true;
5461}
5462
fec56f58
AS
5463static int __get_type_size(struct btf *btf, u32 btf_id,
5464 const struct btf_type **bad_type)
5465{
5466 const struct btf_type *t;
5467
5468 if (!btf_id)
5469 /* void */
5470 return 0;
5471 t = btf_type_by_id(btf, btf_id);
5472 while (t && btf_type_is_modifier(t))
5473 t = btf_type_by_id(btf, t->type);
d0f01043 5474 if (!t) {
951bb646 5475 *bad_type = btf_type_by_id(btf, 0);
fec56f58 5476 return -EINVAL;
d0f01043 5477 }
fec56f58
AS
5478 if (btf_type_is_ptr(t))
5479 /* kernel size of pointer. Not BPF's size of pointer*/
5480 return sizeof(void *);
5481 if (btf_type_is_int(t) || btf_type_is_enum(t))
5482 return t->size;
5483 *bad_type = t;
5484 return -EINVAL;
5485}
5486
5487int btf_distill_func_proto(struct bpf_verifier_log *log,
5488 struct btf *btf,
5489 const struct btf_type *func,
5490 const char *tname,
5491 struct btf_func_model *m)
5492{
5493 const struct btf_param *args;
5494 const struct btf_type *t;
5495 u32 i, nargs;
5496 int ret;
5497
5b92a28a
AS
5498 if (!func) {
5499 /* BTF function prototype doesn't match the verifier types.
523a4cf4 5500 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 5501 */
523a4cf4 5502 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5b92a28a
AS
5503 m->arg_size[i] = 8;
5504 m->ret_size = 8;
523a4cf4 5505 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
5506 return 0;
5507 }
fec56f58
AS
5508 args = (const struct btf_param *)(func + 1);
5509 nargs = btf_type_vlen(func);
5510 if (nargs >= MAX_BPF_FUNC_ARGS) {
5511 bpf_log(log,
5512 "The function %s has %d arguments. Too many.\n",
5513 tname, nargs);
5514 return -EINVAL;
5515 }
5516 ret = __get_type_size(btf, func->type, &t);
5517 if (ret < 0) {
5518 bpf_log(log,
5519 "The function %s return type %s is unsupported.\n",
5520 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5521 return -EINVAL;
5522 }
5523 m->ret_size = ret;
5524
5525 for (i = 0; i < nargs; i++) {
31379397
JO
5526 if (i == nargs - 1 && args[i].type == 0) {
5527 bpf_log(log,
5528 "The function %s with variable args is unsupported.\n",
5529 tname);
5530 return -EINVAL;
5531 }
fec56f58
AS
5532 ret = __get_type_size(btf, args[i].type, &t);
5533 if (ret < 0) {
5534 bpf_log(log,
5535 "The function %s arg%d type %s is unsupported.\n",
5536 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5537 return -EINVAL;
5538 }
31379397
JO
5539 if (ret == 0) {
5540 bpf_log(log,
5541 "The function %s has malformed void argument.\n",
5542 tname);
5543 return -EINVAL;
5544 }
fec56f58
AS
5545 m->arg_size[i] = ret;
5546 }
5547 m->nr_args = nargs;
5548 return 0;
5549}
5550
be8704ff
AS
5551/* Compare BTFs of two functions assuming only scalars and pointers to context.
5552 * t1 points to BTF_KIND_FUNC in btf1
5553 * t2 points to BTF_KIND_FUNC in btf2
5554 * Returns:
5555 * EINVAL - function prototype mismatch
5556 * EFAULT - verifier bug
5557 * 0 - 99% match. The last 1% is validated by the verifier.
5558 */
2bf0eb9b
HY
5559static int btf_check_func_type_match(struct bpf_verifier_log *log,
5560 struct btf *btf1, const struct btf_type *t1,
5561 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
5562{
5563 const struct btf_param *args1, *args2;
5564 const char *fn1, *fn2, *s1, *s2;
5565 u32 nargs1, nargs2, i;
5566
5567 fn1 = btf_name_by_offset(btf1, t1->name_off);
5568 fn2 = btf_name_by_offset(btf2, t2->name_off);
5569
5570 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5571 bpf_log(log, "%s() is not a global function\n", fn1);
5572 return -EINVAL;
5573 }
5574 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5575 bpf_log(log, "%s() is not a global function\n", fn2);
5576 return -EINVAL;
5577 }
5578
5579 t1 = btf_type_by_id(btf1, t1->type);
5580 if (!t1 || !btf_type_is_func_proto(t1))
5581 return -EFAULT;
5582 t2 = btf_type_by_id(btf2, t2->type);
5583 if (!t2 || !btf_type_is_func_proto(t2))
5584 return -EFAULT;
5585
5586 args1 = (const struct btf_param *)(t1 + 1);
5587 nargs1 = btf_type_vlen(t1);
5588 args2 = (const struct btf_param *)(t2 + 1);
5589 nargs2 = btf_type_vlen(t2);
5590
5591 if (nargs1 != nargs2) {
5592 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5593 fn1, nargs1, fn2, nargs2);
5594 return -EINVAL;
5595 }
5596
5597 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5598 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5599 if (t1->info != t2->info) {
5600 bpf_log(log,
5601 "Return type %s of %s() doesn't match type %s of %s()\n",
5602 btf_type_str(t1), fn1,
5603 btf_type_str(t2), fn2);
5604 return -EINVAL;
5605 }
5606
5607 for (i = 0; i < nargs1; i++) {
5608 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5609 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5610
5611 if (t1->info != t2->info) {
5612 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5613 i, fn1, btf_type_str(t1),
5614 fn2, btf_type_str(t2));
5615 return -EINVAL;
5616 }
5617 if (btf_type_has_size(t1) && t1->size != t2->size) {
5618 bpf_log(log,
5619 "arg%d in %s() has size %d while %s() has %d\n",
5620 i, fn1, t1->size,
5621 fn2, t2->size);
5622 return -EINVAL;
5623 }
5624
5625 /* global functions are validated with scalars and pointers
5626 * to context only. And only global functions can be replaced.
5627 * Hence type check only those types.
5628 */
5629 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5630 continue;
5631 if (!btf_type_is_ptr(t1)) {
5632 bpf_log(log,
5633 "arg%d in %s() has unrecognized type\n",
5634 i, fn1);
5635 return -EINVAL;
5636 }
5637 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5638 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5639 if (!btf_type_is_struct(t1)) {
5640 bpf_log(log,
5641 "arg%d in %s() is not a pointer to context\n",
5642 i, fn1);
5643 return -EINVAL;
5644 }
5645 if (!btf_type_is_struct(t2)) {
5646 bpf_log(log,
5647 "arg%d in %s() is not a pointer to context\n",
5648 i, fn2);
5649 return -EINVAL;
5650 }
5651 /* This is an optional check to make program writing easier.
5652 * Compare names of structs and report an error to the user.
5653 * btf_prepare_func_args() already checked that t2 struct
5654 * is a context type. btf_prepare_func_args() will check
5655 * later that t1 struct is a context type as well.
5656 */
5657 s1 = btf_name_by_offset(btf1, t1->name_off);
5658 s2 = btf_name_by_offset(btf2, t2->name_off);
5659 if (strcmp(s1, s2)) {
5660 bpf_log(log,
5661 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5662 i, fn1, s1, fn2, s2);
5663 return -EINVAL;
5664 }
5665 }
5666 return 0;
5667}
5668
5669/* Compare BTFs of given program with BTF of target program */
efc68158 5670int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
5671 struct btf *btf2, const struct btf_type *t2)
5672{
5673 struct btf *btf1 = prog->aux->btf;
5674 const struct btf_type *t1;
5675 u32 btf_id = 0;
5676
5677 if (!prog->aux->func_info) {
efc68158 5678 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
5679 return -EINVAL;
5680 }
5681
5682 btf_id = prog->aux->func_info[0].type_id;
5683 if (!btf_id)
5684 return -EFAULT;
5685
5686 t1 = btf_type_by_id(btf1, btf_id);
5687 if (!t1 || !btf_type_is_func(t1))
5688 return -EFAULT;
5689
efc68158 5690 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
5691}
5692
e6ac2450
MKL
5693static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5694#ifdef CONFIG_NET
5695 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5696 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5697 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5698#endif
5699};
5700
3363bd0c
KKD
5701/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
5702static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
5703 const struct btf *btf,
5704 const struct btf_type *t, int rec)
5705{
5706 const struct btf_type *member_type;
5707 const struct btf_member *member;
5708 u32 i;
5709
5710 if (!btf_type_is_struct(t))
5711 return false;
5712
5713 for_each_member(i, t, member) {
5714 const struct btf_array *array;
5715
5716 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
5717 if (btf_type_is_struct(member_type)) {
5718 if (rec >= 3) {
5719 bpf_log(log, "max struct nesting depth exceeded\n");
5720 return false;
5721 }
5722 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
5723 return false;
5724 continue;
5725 }
5726 if (btf_type_is_array(member_type)) {
5727 array = btf_type_array(member_type);
5728 if (!array->nelems)
5729 return false;
5730 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
5731 if (!btf_type_is_scalar(member_type))
5732 return false;
5733 continue;
5734 }
5735 if (!btf_type_is_scalar(member_type))
5736 return false;
5737 }
5738 return true;
5739}
5740
d583691c
KKD
5741static bool is_kfunc_arg_mem_size(const struct btf *btf,
5742 const struct btf_param *arg,
5743 const struct bpf_reg_state *reg)
5744{
5745 int len, sfx_len = sizeof("__sz") - 1;
5746 const struct btf_type *t;
5747 const char *param_name;
5748
5749 t = btf_type_skip_modifiers(btf, arg->type, NULL);
5750 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
5751 return false;
5752
5753 /* In the future, this can be ported to use BTF tagging */
5754 param_name = btf_name_by_offset(btf, arg->name_off);
5755 if (str_is_empty(param_name))
5756 return false;
5757 len = strlen(param_name);
5758 if (len < sfx_len)
5759 return false;
5760 param_name += len - sfx_len;
5761 if (strncmp(param_name, "__sz", sfx_len))
5762 return false;
5763
5764 return true;
5765}
5766
34747c41
MKL
5767static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5768 const struct btf *btf, u32 func_id,
5769 struct bpf_reg_state *regs,
5770 bool ptr_to_mem_ok)
8c1b6e69 5771{
8c1b6e69 5772 struct bpf_verifier_log *log = &env->log;
5c073f26 5773 u32 i, nargs, ref_id, ref_obj_id = 0;
3363bd0c 5774 bool is_kfunc = btf_is_kernel(btf);
34747c41 5775 const char *func_name, *ref_tname;
e5069b9c 5776 const struct btf_type *t, *ref_t;
34747c41 5777 const struct btf_param *args;
655efe50 5778 int ref_regno = 0, ret;
5c073f26 5779 bool rel = false;
8c1b6e69 5780
34747c41 5781 t = btf_type_by_id(btf, func_id);
8c1b6e69 5782 if (!t || !btf_type_is_func(t)) {
51c39bb1 5783 /* These checks were already done by the verifier while loading
e6ac2450 5784 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 5785 */
34747c41
MKL
5786 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5787 func_id);
51c39bb1 5788 return -EFAULT;
8c1b6e69 5789 }
34747c41 5790 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
5791
5792 t = btf_type_by_id(btf, t->type);
5793 if (!t || !btf_type_is_func_proto(t)) {
34747c41 5794 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 5795 return -EFAULT;
8c1b6e69
AS
5796 }
5797 args = (const struct btf_param *)(t + 1);
5798 nargs = btf_type_vlen(t);
523a4cf4 5799 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 5800 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 5801 MAX_BPF_FUNC_REG_ARGS);
34747c41 5802 return -EINVAL;
8c1b6e69 5803 }
e5069b9c 5804
24d5bb80
KKD
5805 /* Only kfunc can be release func */
5806 if (is_kfunc)
5807 rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
5808 BTF_KFUNC_TYPE_RELEASE, func_id);
8c1b6e69
AS
5809 /* check that BTF function arguments match actual types that the
5810 * verifier sees.
5811 */
5812 for (i = 0; i < nargs; i++) {
34747c41
MKL
5813 u32 regno = i + 1;
5814 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 5815
34747c41
MKL
5816 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5817 if (btf_type_is_scalar(t)) {
feb4adfa 5818 if (reg->type == SCALAR_VALUE)
8c1b6e69 5819 continue;
34747c41
MKL
5820 bpf_log(log, "R%d is not a scalar\n", regno);
5821 return -EINVAL;
8c1b6e69 5822 }
34747c41
MKL
5823
5824 if (!btf_type_is_ptr(t)) {
5825 bpf_log(log, "Unrecognized arg#%d type %s\n",
5826 i, btf_type_str(t));
5827 return -EINVAL;
5828 }
5829
e6ac2450 5830 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 5831 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
655efe50 5832
24d5bb80 5833 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE, rel);
655efe50
KKD
5834 if (ret < 0)
5835 return ret;
5836
3363bd0c
KKD
5837 if (btf_get_prog_ctx_type(log, btf, t,
5838 env->prog->type, i)) {
5839 /* If function expects ctx type in BTF check that caller
5840 * is passing PTR_TO_CTX.
5841 */
5842 if (reg->type != PTR_TO_CTX) {
5843 bpf_log(log,
5844 "arg#%d expected pointer to ctx, but got %s\n",
5845 i, btf_type_str(t));
5846 return -EINVAL;
5847 }
45ce4b4f
KKD
5848 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
5849 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
e6ac2450
MKL
5850 const struct btf_type *reg_ref_t;
5851 const struct btf *reg_btf;
5852 const char *reg_ref_tname;
5853 u32 reg_ref_id;
5854
5855 if (!btf_type_is_struct(ref_t)) {
5856 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5857 func_name, i, btf_type_str(ref_t),
5858 ref_tname);
5859 return -EINVAL;
5860 }
5861
5862 if (reg->type == PTR_TO_BTF_ID) {
5863 reg_btf = reg->btf;
5864 reg_ref_id = reg->btf_id;
24d5bb80
KKD
5865 /* Ensure only one argument is referenced
5866 * PTR_TO_BTF_ID, check_func_arg_reg_off relies
5867 * on only one referenced register being allowed
5868 * for kfuncs.
5869 */
5c073f26
KKD
5870 if (reg->ref_obj_id) {
5871 if (ref_obj_id) {
5872 bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5873 regno, reg->ref_obj_id, ref_obj_id);
5874 return -EFAULT;
5875 }
5876 ref_regno = regno;
5877 ref_obj_id = reg->ref_obj_id;
5878 }
3363bd0c 5879 } else {
e6ac2450 5880 reg_btf = btf_vmlinux;
45ce4b4f 5881 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
e6ac2450
MKL
5882 }
5883
5884 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5885 &reg_ref_id);
5886 reg_ref_tname = btf_name_by_offset(reg_btf,
5887 reg_ref_t->name_off);
5888 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5889 reg->off, btf, ref_id)) {
5890 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5891 func_name, i,
5892 btf_type_str(ref_t), ref_tname,
5893 regno, btf_type_str(reg_ref_t),
5894 reg_ref_tname);
5895 return -EINVAL;
5896 }
34747c41
MKL
5897 } else if (ptr_to_mem_ok) {
5898 const struct btf_type *resolve_ret;
5899 u32 type_size;
e5069b9c 5900
3363bd0c 5901 if (is_kfunc) {
d583691c
KKD
5902 bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
5903
3363bd0c
KKD
5904 /* Permit pointer to mem, but only when argument
5905 * type is pointer to scalar, or struct composed
5906 * (recursively) of scalars.
d583691c
KKD
5907 * When arg_mem_size is true, the pointer can be
5908 * void *.
3363bd0c
KKD
5909 */
5910 if (!btf_type_is_scalar(ref_t) &&
d583691c
KKD
5911 !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
5912 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
3363bd0c 5913 bpf_log(log,
d583691c
KKD
5914 "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
5915 i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
3363bd0c
KKD
5916 return -EINVAL;
5917 }
d583691c
KKD
5918
5919 /* Check for mem, len pair */
5920 if (arg_mem_size) {
5921 if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
5922 bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
5923 i, i + 1);
5924 return -EINVAL;
5925 }
5926 i++;
5927 continue;
5928 }
3363bd0c
KKD
5929 }
5930
34747c41
MKL
5931 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5932 if (IS_ERR(resolve_ret)) {
e5069b9c 5933 bpf_log(log,
34747c41
MKL
5934 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5935 i, btf_type_str(ref_t), ref_tname,
5936 PTR_ERR(resolve_ret));
5937 return -EINVAL;
e5069b9c
DB
5938 }
5939
34747c41
MKL
5940 if (check_mem_reg(env, reg, regno, type_size))
5941 return -EINVAL;
5942 } else {
3363bd0c
KKD
5943 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
5944 is_kfunc ? "kernel " : "", func_name, func_id);
34747c41 5945 return -EINVAL;
8c1b6e69 5946 }
8c1b6e69 5947 }
34747c41 5948
5c073f26
KKD
5949 /* Either both are set, or neither */
5950 WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
24d5bb80
KKD
5951 /* We already made sure ref_obj_id is set only for one argument. We do
5952 * allow (!rel && ref_obj_id), so that passing such referenced
5953 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
5954 * is_kfunc is true.
5955 */
5956 if (rel && !ref_obj_id) {
5957 bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
5958 func_name);
5959 return -EINVAL;
5c073f26
KKD
5960 }
5961 /* returns argument register number > 0 in case of reference release kfunc */
5962 return rel ? ref_regno : 0;
34747c41
MKL
5963}
5964
5965/* Compare BTF of a function with given bpf_reg_state.
5966 * Returns:
5967 * EFAULT - there is a verifier bug. Abort verification.
5968 * EINVAL - there is a type mismatch or BTF is not available.
5969 * 0 - BTF matches with what bpf_reg_state expects.
5970 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5971 */
5972int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5973 struct bpf_reg_state *regs)
5974{
5975 struct bpf_prog *prog = env->prog;
5976 struct btf *btf = prog->aux->btf;
5977 bool is_global;
5978 u32 btf_id;
5979 int err;
5980
5981 if (!prog->aux->func_info)
5982 return -EINVAL;
5983
5984 btf_id = prog->aux->func_info[subprog].type_id;
5985 if (!btf_id)
5986 return -EFAULT;
5987
5988 if (prog->aux->func_info_aux[subprog].unreliable)
5989 return -EINVAL;
5990
5991 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5992 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5993
51c39bb1
AS
5994 /* Compiler optimizations can remove arguments from static functions
5995 * or mismatched type can be passed into a global function.
5996 * In such cases mark the function as unreliable from BTF point of view.
5997 */
34747c41
MKL
5998 if (err)
5999 prog->aux->func_info_aux[subprog].unreliable = true;
6000 return err;
51c39bb1
AS
6001}
6002
e6ac2450
MKL
6003int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6004 const struct btf *btf, u32 func_id,
6005 struct bpf_reg_state *regs)
6006{
3363bd0c 6007 return btf_check_func_arg_match(env, btf, func_id, regs, true);
e6ac2450
MKL
6008}
6009
51c39bb1
AS
6010/* Convert BTF of a function into bpf_reg_state if possible
6011 * Returns:
6012 * EFAULT - there is a verifier bug. Abort verification.
6013 * EINVAL - cannot convert BTF.
6014 * 0 - Successfully converted BTF into bpf_reg_state
6015 * (either PTR_TO_CTX or SCALAR_VALUE).
6016 */
6017int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 6018 struct bpf_reg_state *regs)
51c39bb1
AS
6019{
6020 struct bpf_verifier_log *log = &env->log;
6021 struct bpf_prog *prog = env->prog;
be8704ff 6022 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
6023 struct btf *btf = prog->aux->btf;
6024 const struct btf_param *args;
e5069b9c 6025 const struct btf_type *t, *ref_t;
51c39bb1
AS
6026 u32 i, nargs, btf_id;
6027 const char *tname;
6028
6029 if (!prog->aux->func_info ||
6030 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6031 bpf_log(log, "Verifier bug\n");
6032 return -EFAULT;
6033 }
6034
6035 btf_id = prog->aux->func_info[subprog].type_id;
6036 if (!btf_id) {
6037 bpf_log(log, "Global functions need valid BTF\n");
6038 return -EFAULT;
6039 }
6040
6041 t = btf_type_by_id(btf, btf_id);
6042 if (!t || !btf_type_is_func(t)) {
6043 /* These checks were already done by the verifier while loading
6044 * struct bpf_func_info
6045 */
6046 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6047 subprog);
6048 return -EFAULT;
6049 }
6050 tname = btf_name_by_offset(btf, t->name_off);
6051
6052 if (log->level & BPF_LOG_LEVEL)
6053 bpf_log(log, "Validating %s() func#%d...\n",
6054 tname, subprog);
6055
6056 if (prog->aux->func_info_aux[subprog].unreliable) {
6057 bpf_log(log, "Verifier bug in function %s()\n", tname);
6058 return -EFAULT;
6059 }
be8704ff 6060 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 6061 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
6062
6063 t = btf_type_by_id(btf, t->type);
6064 if (!t || !btf_type_is_func_proto(t)) {
6065 bpf_log(log, "Invalid type of function %s()\n", tname);
6066 return -EFAULT;
6067 }
6068 args = (const struct btf_param *)(t + 1);
6069 nargs = btf_type_vlen(t);
523a4cf4
DB
6070 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6071 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6072 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
6073 return -EINVAL;
6074 }
6075 /* check that function returns int */
6076 t = btf_type_by_id(btf, t->type);
6077 while (btf_type_is_modifier(t))
6078 t = btf_type_by_id(btf, t->type);
6079 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
6080 bpf_log(log,
6081 "Global function %s() doesn't return scalar. Only those are supported.\n",
6082 tname);
6083 return -EINVAL;
6084 }
6085 /* Convert BTF function arguments into verifier types.
6086 * Only PTR_TO_CTX and SCALAR are supported atm.
6087 */
6088 for (i = 0; i < nargs; i++) {
feb4adfa
DB
6089 struct bpf_reg_state *reg = &regs[i + 1];
6090
51c39bb1
AS
6091 t = btf_type_by_id(btf, args[i].type);
6092 while (btf_type_is_modifier(t))
6093 t = btf_type_by_id(btf, t->type);
6094 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
feb4adfa 6095 reg->type = SCALAR_VALUE;
51c39bb1
AS
6096 continue;
6097 }
e5069b9c
DB
6098 if (btf_type_is_ptr(t)) {
6099 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6100 reg->type = PTR_TO_CTX;
6101 continue;
6102 }
6103
6104 t = btf_type_skip_modifiers(btf, t->type, NULL);
6105
6106 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6107 if (IS_ERR(ref_t)) {
6108 bpf_log(log,
6109 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6110 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6111 PTR_ERR(ref_t));
6112 return -EINVAL;
6113 }
6114
cf9f2f8d 6115 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
e5069b9c
DB
6116 reg->id = ++env->id_gen;
6117
51c39bb1
AS
6118 continue;
6119 }
6120 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6121 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
6122 return -EINVAL;
6123 }
8c1b6e69
AS
6124 return 0;
6125}
6126
31d0bc81
AM
6127static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6128 struct btf_show *show)
6129{
6130 const struct btf_type *t = btf_type_by_id(btf, type_id);
6131
6132 show->btf = btf;
6133 memset(&show->state, 0, sizeof(show->state));
6134 memset(&show->obj, 0, sizeof(show->obj));
6135
6136 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6137}
6138
6139static void btf_seq_show(struct btf_show *show, const char *fmt,
6140 va_list args)
6141{
6142 seq_vprintf((struct seq_file *)show->target, fmt, args);
6143}
6144
eb411377
AM
6145int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6146 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
6147{
6148 struct btf_show sseq;
6149
6150 sseq.target = m;
6151 sseq.showfn = btf_seq_show;
6152 sseq.flags = flags;
6153
6154 btf_type_show(btf, type_id, obj, &sseq);
6155
6156 return sseq.state.status;
6157}
6158
b00b8dae
MKL
6159void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6160 struct seq_file *m)
6161{
31d0bc81
AM
6162 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
6163 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6164 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6165}
6166
6167struct btf_show_snprintf {
6168 struct btf_show show;
6169 int len_left; /* space left in string */
6170 int len; /* length we would have written */
6171};
6172
6173static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6174 va_list args)
6175{
6176 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6177 int len;
6178
6179 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6180
6181 if (len < 0) {
6182 ssnprintf->len_left = 0;
6183 ssnprintf->len = len;
6184 } else if (len > ssnprintf->len_left) {
6185 /* no space, drive on to get length we would have written */
6186 ssnprintf->len_left = 0;
6187 ssnprintf->len += len;
6188 } else {
6189 ssnprintf->len_left -= len;
6190 ssnprintf->len += len;
6191 show->target += len;
6192 }
6193}
6194
6195int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6196 char *buf, int len, u64 flags)
6197{
6198 struct btf_show_snprintf ssnprintf;
6199
6200 ssnprintf.show.target = buf;
6201 ssnprintf.show.flags = flags;
6202 ssnprintf.show.showfn = btf_snprintf_show;
6203 ssnprintf.len_left = len;
6204 ssnprintf.len = 0;
6205
6206 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6207
c561d110 6208 /* If we encountered an error, return it. */
31d0bc81
AM
6209 if (ssnprintf.show.state.status)
6210 return ssnprintf.show.state.status;
b00b8dae 6211
31d0bc81
AM
6212 /* Otherwise return length we would have written */
6213 return ssnprintf.len;
b00b8dae 6214}
f56a653c 6215
3481e64b
QM
6216#ifdef CONFIG_PROC_FS
6217static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6218{
6219 const struct btf *btf = filp->private_data;
6220
6221 seq_printf(m, "btf_id:\t%u\n", btf->id);
6222}
6223#endif
6224
f56a653c
MKL
6225static int btf_release(struct inode *inode, struct file *filp)
6226{
6227 btf_put(filp->private_data);
6228 return 0;
6229}
6230
60197cfb 6231const struct file_operations btf_fops = {
3481e64b
QM
6232#ifdef CONFIG_PROC_FS
6233 .show_fdinfo = bpf_btf_show_fdinfo,
6234#endif
f56a653c
MKL
6235 .release = btf_release,
6236};
6237
78958fca
MKL
6238static int __btf_new_fd(struct btf *btf)
6239{
6240 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6241}
6242
c571bd75 6243int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
f56a653c
MKL
6244{
6245 struct btf *btf;
78958fca 6246 int ret;
f56a653c 6247
c571bd75 6248 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
f56a653c
MKL
6249 attr->btf_size, attr->btf_log_level,
6250 u64_to_user_ptr(attr->btf_log_buf),
6251 attr->btf_log_size);
6252 if (IS_ERR(btf))
6253 return PTR_ERR(btf);
6254
78958fca
MKL
6255 ret = btf_alloc_id(btf);
6256 if (ret) {
6257 btf_free(btf);
6258 return ret;
6259 }
6260
6261 /*
6262 * The BTF ID is published to the userspace.
6263 * All BTF free must go through call_rcu() from
6264 * now on (i.e. free by calling btf_put()).
6265 */
6266
6267 ret = __btf_new_fd(btf);
6268 if (ret < 0)
f56a653c
MKL
6269 btf_put(btf);
6270
78958fca 6271 return ret;
f56a653c
MKL
6272}
6273
6274struct btf *btf_get_by_fd(int fd)
6275{
6276 struct btf *btf;
6277 struct fd f;
6278
6279 f = fdget(fd);
6280
6281 if (!f.file)
6282 return ERR_PTR(-EBADF);
6283
6284 if (f.file->f_op != &btf_fops) {
6285 fdput(f);
6286 return ERR_PTR(-EINVAL);
6287 }
6288
6289 btf = f.file->private_data;
78958fca 6290 refcount_inc(&btf->refcnt);
f56a653c
MKL
6291 fdput(f);
6292
6293 return btf;
6294}
60197cfb
MKL
6295
6296int btf_get_info_by_fd(const struct btf *btf,
6297 const union bpf_attr *attr,
6298 union bpf_attr __user *uattr)
6299{
62dab84c 6300 struct bpf_btf_info __user *uinfo;
5c6f2588 6301 struct bpf_btf_info info;
62dab84c
MKL
6302 u32 info_copy, btf_copy;
6303 void __user *ubtf;
53297220
AN
6304 char __user *uname;
6305 u32 uinfo_len, uname_len, name_len;
6306 int ret = 0;
60197cfb 6307
62dab84c
MKL
6308 uinfo = u64_to_user_ptr(attr->info.info);
6309 uinfo_len = attr->info.info_len;
6310
6311 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 6312 memset(&info, 0, sizeof(info));
62dab84c
MKL
6313 if (copy_from_user(&info, uinfo, info_copy))
6314 return -EFAULT;
6315
6316 info.id = btf->id;
6317 ubtf = u64_to_user_ptr(info.btf);
6318 btf_copy = min_t(u32, btf->data_size, info.btf_size);
6319 if (copy_to_user(ubtf, btf->data, btf_copy))
6320 return -EFAULT;
6321 info.btf_size = btf->data_size;
6322
53297220
AN
6323 info.kernel_btf = btf->kernel_btf;
6324
6325 uname = u64_to_user_ptr(info.name);
6326 uname_len = info.name_len;
6327 if (!uname ^ !uname_len)
6328 return -EINVAL;
6329
6330 name_len = strlen(btf->name);
6331 info.name_len = name_len;
6332
6333 if (uname) {
6334 if (uname_len >= name_len + 1) {
6335 if (copy_to_user(uname, btf->name, name_len + 1))
6336 return -EFAULT;
6337 } else {
6338 char zero = '\0';
6339
6340 if (copy_to_user(uname, btf->name, uname_len - 1))
6341 return -EFAULT;
6342 if (put_user(zero, uname + uname_len - 1))
6343 return -EFAULT;
6344 /* let user-space know about too short buffer */
6345 ret = -ENOSPC;
6346 }
6347 }
6348
62dab84c
MKL
6349 if (copy_to_user(uinfo, &info, info_copy) ||
6350 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
6351 return -EFAULT;
6352
53297220 6353 return ret;
60197cfb 6354}
78958fca
MKL
6355
6356int btf_get_fd_by_id(u32 id)
6357{
6358 struct btf *btf;
6359 int fd;
6360
6361 rcu_read_lock();
6362 btf = idr_find(&btf_idr, id);
6363 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6364 btf = ERR_PTR(-ENOENT);
6365 rcu_read_unlock();
6366
6367 if (IS_ERR(btf))
6368 return PTR_ERR(btf);
6369
6370 fd = __btf_new_fd(btf);
6371 if (fd < 0)
6372 btf_put(btf);
6373
6374 return fd;
6375}
6376
22dc4a0f 6377u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
6378{
6379 return btf->id;
6380}
eae2e83e 6381
290248a5
AN
6382bool btf_is_kernel(const struct btf *btf)
6383{
6384 return btf->kernel_btf;
6385}
6386
541c3bad
AN
6387bool btf_is_module(const struct btf *btf)
6388{
6389 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6390}
6391
eae2e83e
JO
6392static int btf_id_cmp_func(const void *a, const void *b)
6393{
6394 const int *pa = a, *pb = b;
6395
6396 return *pa - *pb;
6397}
6398
2af30f11 6399bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
eae2e83e
JO
6400{
6401 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6402}
36e68442 6403
18688de2
KKD
6404enum {
6405 BTF_MODULE_F_LIVE = (1 << 0),
6406};
6407
36e68442
AN
6408#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6409struct btf_module {
6410 struct list_head list;
6411 struct module *module;
6412 struct btf *btf;
6413 struct bin_attribute *sysfs_attr;
18688de2 6414 int flags;
36e68442
AN
6415};
6416
6417static LIST_HEAD(btf_modules);
6418static DEFINE_MUTEX(btf_module_mutex);
6419
6420static ssize_t
6421btf_module_read(struct file *file, struct kobject *kobj,
6422 struct bin_attribute *bin_attr,
6423 char *buf, loff_t off, size_t len)
6424{
6425 const struct btf *btf = bin_attr->private;
6426
6427 memcpy(buf, btf->data + off, len);
6428 return len;
6429}
6430
1e89106d
AS
6431static void purge_cand_cache(struct btf *btf);
6432
36e68442
AN
6433static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6434 void *module)
6435{
6436 struct btf_module *btf_mod, *tmp;
6437 struct module *mod = module;
6438 struct btf *btf;
6439 int err = 0;
6440
6441 if (mod->btf_data_size == 0 ||
18688de2
KKD
6442 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
6443 op != MODULE_STATE_GOING))
36e68442
AN
6444 goto out;
6445
6446 switch (op) {
6447 case MODULE_STATE_COMING:
6448 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6449 if (!btf_mod) {
6450 err = -ENOMEM;
6451 goto out;
6452 }
6453 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6454 if (IS_ERR(btf)) {
6455 pr_warn("failed to validate module [%s] BTF: %ld\n",
6456 mod->name, PTR_ERR(btf));
6457 kfree(btf_mod);
5e214f2e
CB
6458 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
6459 err = PTR_ERR(btf);
36e68442
AN
6460 goto out;
6461 }
6462 err = btf_alloc_id(btf);
6463 if (err) {
6464 btf_free(btf);
6465 kfree(btf_mod);
6466 goto out;
6467 }
6468
1e89106d 6469 purge_cand_cache(NULL);
36e68442
AN
6470 mutex_lock(&btf_module_mutex);
6471 btf_mod->module = module;
6472 btf_mod->btf = btf;
6473 list_add(&btf_mod->list, &btf_modules);
6474 mutex_unlock(&btf_module_mutex);
6475
6476 if (IS_ENABLED(CONFIG_SYSFS)) {
6477 struct bin_attribute *attr;
6478
6479 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6480 if (!attr)
6481 goto out;
6482
6483 sysfs_bin_attr_init(attr);
6484 attr->attr.name = btf->name;
6485 attr->attr.mode = 0444;
6486 attr->size = btf->data_size;
6487 attr->private = btf;
6488 attr->read = btf_module_read;
6489
6490 err = sysfs_create_bin_file(btf_kobj, attr);
6491 if (err) {
6492 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6493 mod->name, err);
6494 kfree(attr);
6495 err = 0;
6496 goto out;
6497 }
6498
6499 btf_mod->sysfs_attr = attr;
6500 }
6501
18688de2
KKD
6502 break;
6503 case MODULE_STATE_LIVE:
6504 mutex_lock(&btf_module_mutex);
6505 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6506 if (btf_mod->module != module)
6507 continue;
6508
6509 btf_mod->flags |= BTF_MODULE_F_LIVE;
6510 break;
6511 }
6512 mutex_unlock(&btf_module_mutex);
36e68442
AN
6513 break;
6514 case MODULE_STATE_GOING:
6515 mutex_lock(&btf_module_mutex);
6516 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6517 if (btf_mod->module != module)
6518 continue;
6519
6520 list_del(&btf_mod->list);
6521 if (btf_mod->sysfs_attr)
6522 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
1e89106d 6523 purge_cand_cache(btf_mod->btf);
36e68442
AN
6524 btf_put(btf_mod->btf);
6525 kfree(btf_mod->sysfs_attr);
6526 kfree(btf_mod);
6527 break;
6528 }
6529 mutex_unlock(&btf_module_mutex);
6530 break;
6531 }
6532out:
6533 return notifier_from_errno(err);
6534}
6535
6536static struct notifier_block btf_module_nb = {
6537 .notifier_call = btf_module_notify,
6538};
6539
6540static int __init btf_module_init(void)
6541{
6542 register_module_notifier(&btf_module_nb);
6543 return 0;
6544}
6545
6546fs_initcall(btf_module_init);
6547#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
6548
6549struct module *btf_try_get_module(const struct btf *btf)
6550{
6551 struct module *res = NULL;
6552#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6553 struct btf_module *btf_mod, *tmp;
6554
6555 mutex_lock(&btf_module_mutex);
6556 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6557 if (btf_mod->btf != btf)
6558 continue;
6559
18688de2
KKD
6560 /* We must only consider module whose __init routine has
6561 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
6562 * which is set from the notifier callback for
6563 * MODULE_STATE_LIVE.
6564 */
6565 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
541c3bad
AN
6566 res = btf_mod->module;
6567
6568 break;
6569 }
6570 mutex_unlock(&btf_module_mutex);
6571#endif
6572
6573 return res;
6574}
3d78417b 6575
9492450f
KKD
6576/* Returns struct btf corresponding to the struct module.
6577 * This function can return NULL or ERR_PTR.
dee872e1
KKD
6578 */
6579static struct btf *btf_get_module_btf(const struct module *module)
6580{
dee872e1
KKD
6581#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6582 struct btf_module *btf_mod, *tmp;
6583#endif
9492450f
KKD
6584 struct btf *btf = NULL;
6585
6586 if (!module) {
6587 btf = bpf_get_btf_vmlinux();
7ada3787 6588 if (!IS_ERR_OR_NULL(btf))
9492450f
KKD
6589 btf_get(btf);
6590 return btf;
6591 }
dee872e1 6592
dee872e1
KKD
6593#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6594 mutex_lock(&btf_module_mutex);
6595 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6596 if (btf_mod->module != module)
6597 continue;
6598
6599 btf_get(btf_mod->btf);
6600 btf = btf_mod->btf;
6601 break;
6602 }
6603 mutex_unlock(&btf_module_mutex);
6604#endif
6605
6606 return btf;
6607}
6608
3d78417b
AS
6609BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6610{
edc3ec09
KKD
6611 struct btf *btf = NULL;
6612 int btf_obj_fd = 0;
3d78417b
AS
6613 long ret;
6614
6615 if (flags)
6616 return -EINVAL;
6617
6618 if (name_sz <= 1 || name[name_sz - 1])
6619 return -EINVAL;
6620
edc3ec09
KKD
6621 ret = bpf_find_btf_id(name, kind, &btf);
6622 if (ret > 0 && btf_is_module(btf)) {
6623 btf_obj_fd = __btf_new_fd(btf);
6624 if (btf_obj_fd < 0) {
6625 btf_put(btf);
6626 return btf_obj_fd;
3d78417b 6627 }
edc3ec09 6628 return ret | (((u64)btf_obj_fd) << 32);
3d78417b 6629 }
edc3ec09
KKD
6630 if (ret > 0)
6631 btf_put(btf);
3d78417b
AS
6632 return ret;
6633}
6634
6635const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6636 .func = bpf_btf_find_by_name_kind,
6637 .gpl_only = false,
6638 .ret_type = RET_INTEGER,
216e3cd2 6639 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
3d78417b
AS
6640 .arg2_type = ARG_CONST_SIZE,
6641 .arg3_type = ARG_ANYTHING,
6642 .arg4_type = ARG_ANYTHING,
6643};
eb529c5b 6644
d19ddb47
SL
6645BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
6646#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
6647BTF_TRACING_TYPE_xxx
6648#undef BTF_TRACING_TYPE
14f267d9 6649
dee872e1 6650/* Kernel Function (kfunc) BTF ID set registration API */
14f267d9 6651
dee872e1
KKD
6652static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6653 enum btf_kfunc_type type,
6654 struct btf_id_set *add_set, bool vmlinux_set)
14f267d9 6655{
dee872e1
KKD
6656 struct btf_kfunc_set_tab *tab;
6657 struct btf_id_set *set;
6658 u32 set_cnt;
6659 int ret;
6660
6661 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) {
6662 ret = -EINVAL;
6663 goto end;
6664 }
6665
6666 if (!add_set->cnt)
6667 return 0;
6668
6669 tab = btf->kfunc_set_tab;
6670 if (!tab) {
6671 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
6672 if (!tab)
6673 return -ENOMEM;
6674 btf->kfunc_set_tab = tab;
6675 }
6676
6677 set = tab->sets[hook][type];
6678 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
6679 * for module sets.
6680 */
6681 if (WARN_ON_ONCE(set && !vmlinux_set)) {
6682 ret = -EINVAL;
6683 goto end;
6684 }
6685
6686 /* We don't need to allocate, concatenate, and sort module sets, because
6687 * only one is allowed per hook. Hence, we can directly assign the
6688 * pointer and return.
6689 */
6690 if (!vmlinux_set) {
6691 tab->sets[hook][type] = add_set;
6692 return 0;
6693 }
6694
6695 /* In case of vmlinux sets, there may be more than one set being
6696 * registered per hook. To create a unified set, we allocate a new set
6697 * and concatenate all individual sets being registered. While each set
6698 * is individually sorted, they may become unsorted when concatenated,
6699 * hence re-sorting the final set again is required to make binary
6700 * searching the set using btf_id_set_contains function work.
6701 */
6702 set_cnt = set ? set->cnt : 0;
6703
6704 if (set_cnt > U32_MAX - add_set->cnt) {
6705 ret = -EOVERFLOW;
6706 goto end;
6707 }
6708
6709 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
6710 ret = -E2BIG;
6711 goto end;
6712 }
6713
6714 /* Grow set */
6715 set = krealloc(tab->sets[hook][type],
6716 offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]),
6717 GFP_KERNEL | __GFP_NOWARN);
6718 if (!set) {
6719 ret = -ENOMEM;
6720 goto end;
6721 }
6722
6723 /* For newly allocated set, initialize set->cnt to 0 */
6724 if (!tab->sets[hook][type])
6725 set->cnt = 0;
6726 tab->sets[hook][type] = set;
6727
6728 /* Concatenate the two sets */
6729 memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0]));
6730 set->cnt += add_set->cnt;
6731
6732 sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL);
6733
6734 return 0;
6735end:
6736 btf_free_kfunc_set_tab(btf);
6737 return ret;
14f267d9 6738}
14f267d9 6739
dee872e1
KKD
6740static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6741 const struct btf_kfunc_id_set *kset)
14f267d9 6742{
dee872e1 6743 bool vmlinux_set = !btf_is_module(btf);
d0b38229 6744 int type, ret = 0;
dee872e1
KKD
6745
6746 for (type = 0; type < ARRAY_SIZE(kset->sets); type++) {
6747 if (!kset->sets[type])
6748 continue;
6749
6750 ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set);
6751 if (ret)
6752 break;
6753 }
6754 return ret;
14f267d9 6755}
14f267d9 6756
dee872e1
KKD
6757static bool __btf_kfunc_id_set_contains(const struct btf *btf,
6758 enum btf_kfunc_hook hook,
6759 enum btf_kfunc_type type,
6760 u32 kfunc_btf_id)
14f267d9 6761{
dee872e1 6762 struct btf_id_set *set;
14f267d9 6763
dee872e1
KKD
6764 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX)
6765 return false;
6766 if (!btf->kfunc_set_tab)
6767 return false;
6768 set = btf->kfunc_set_tab->sets[hook][type];
6769 if (!set)
6770 return false;
6771 return btf_id_set_contains(set, kfunc_btf_id);
6772}
6773
6774static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
6775{
6776 switch (prog_type) {
6777 case BPF_PROG_TYPE_XDP:
6778 return BTF_KFUNC_HOOK_XDP;
6779 case BPF_PROG_TYPE_SCHED_CLS:
6780 return BTF_KFUNC_HOOK_TC;
6781 case BPF_PROG_TYPE_STRUCT_OPS:
6782 return BTF_KFUNC_HOOK_STRUCT_OPS;
6783 default:
6784 return BTF_KFUNC_HOOK_MAX;
14f267d9 6785 }
14f267d9
KKD
6786}
6787
dee872e1
KKD
6788/* Caution:
6789 * Reference to the module (obtained using btf_try_get_module) corresponding to
6790 * the struct btf *MUST* be held when calling this function from verifier
6791 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
6792 * keeping the reference for the duration of the call provides the necessary
6793 * protection for looking up a well-formed btf->kfunc_set_tab.
6794 */
6795bool btf_kfunc_id_set_contains(const struct btf *btf,
6796 enum bpf_prog_type prog_type,
6797 enum btf_kfunc_type type, u32 kfunc_btf_id)
6798{
6799 enum btf_kfunc_hook hook;
0e32dfc8 6800
dee872e1
KKD
6801 hook = bpf_prog_type_to_kfunc_hook(prog_type);
6802 return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id);
6803}
d9847eb8 6804
dee872e1
KKD
6805/* This function must be invoked only from initcalls/module init functions */
6806int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
6807 const struct btf_kfunc_id_set *kset)
6808{
6809 enum btf_kfunc_hook hook;
6810 struct btf *btf;
6811 int ret;
6812
6813 btf = btf_get_module_btf(kset->owner);
c446fdac
SF
6814 if (!btf) {
6815 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
6816 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
6817 return -ENOENT;
6818 }
6819 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
6820 pr_err("missing module BTF, cannot register kfuncs\n");
6821 return -ENOENT;
6822 }
6823 return 0;
6824 }
6825 if (IS_ERR(btf))
6826 return PTR_ERR(btf);
dee872e1
KKD
6827
6828 hook = bpf_prog_type_to_kfunc_hook(prog_type);
6829 ret = btf_populate_kfunc_set(btf, hook, kset);
9492450f 6830 btf_put(btf);
dee872e1
KKD
6831 return ret;
6832}
6833EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
be315829 6834
e70e13e7
MC
6835#define MAX_TYPES_ARE_COMPAT_DEPTH 2
6836
6837static
6838int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6839 const struct btf *targ_btf, __u32 targ_id,
6840 int level)
6841{
6842 const struct btf_type *local_type, *targ_type;
6843 int depth = 32; /* max recursion depth */
6844
6845 /* caller made sure that names match (ignoring flavor suffix) */
6846 local_type = btf_type_by_id(local_btf, local_id);
6847 targ_type = btf_type_by_id(targ_btf, targ_id);
6848 if (btf_kind(local_type) != btf_kind(targ_type))
6849 return 0;
6850
6851recur:
6852 depth--;
6853 if (depth < 0)
6854 return -EINVAL;
6855
6856 local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id);
6857 targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id);
6858 if (!local_type || !targ_type)
6859 return -EINVAL;
6860
6861 if (btf_kind(local_type) != btf_kind(targ_type))
6862 return 0;
6863
6864 switch (btf_kind(local_type)) {
6865 case BTF_KIND_UNKN:
6866 case BTF_KIND_STRUCT:
6867 case BTF_KIND_UNION:
6868 case BTF_KIND_ENUM:
6869 case BTF_KIND_FWD:
6870 return 1;
6871 case BTF_KIND_INT:
6872 /* just reject deprecated bitfield-like integers; all other
6873 * integers are by default compatible between each other
6874 */
6875 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
6876 case BTF_KIND_PTR:
6877 local_id = local_type->type;
6878 targ_id = targ_type->type;
6879 goto recur;
6880 case BTF_KIND_ARRAY:
6881 local_id = btf_array(local_type)->type;
6882 targ_id = btf_array(targ_type)->type;
6883 goto recur;
6884 case BTF_KIND_FUNC_PROTO: {
6885 struct btf_param *local_p = btf_params(local_type);
6886 struct btf_param *targ_p = btf_params(targ_type);
6887 __u16 local_vlen = btf_vlen(local_type);
6888 __u16 targ_vlen = btf_vlen(targ_type);
6889 int i, err;
6890
6891 if (local_vlen != targ_vlen)
6892 return 0;
6893
6894 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
6895 if (level <= 0)
6896 return -EINVAL;
6897
6898 btf_type_skip_modifiers(local_btf, local_p->type, &local_id);
6899 btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id);
6900 err = __bpf_core_types_are_compat(local_btf, local_id,
6901 targ_btf, targ_id,
6902 level - 1);
6903 if (err <= 0)
6904 return err;
6905 }
6906
6907 /* tail recurse for return type check */
6908 btf_type_skip_modifiers(local_btf, local_type->type, &local_id);
6909 btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id);
6910 goto recur;
6911 }
6912 default:
6913 return 0;
6914 }
6915}
6916
6917/* Check local and target types for compatibility. This check is used for
6918 * type-based CO-RE relocations and follow slightly different rules than
6919 * field-based relocations. This function assumes that root types were already
6920 * checked for name match. Beyond that initial root-level name check, names
6921 * are completely ignored. Compatibility rules are as follows:
6922 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
6923 * kind should match for local and target types (i.e., STRUCT is not
6924 * compatible with UNION);
6925 * - for ENUMs, the size is ignored;
6926 * - for INT, size and signedness are ignored;
6927 * - for ARRAY, dimensionality is ignored, element types are checked for
6928 * compatibility recursively;
6929 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
6930 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
6931 * - FUNC_PROTOs are compatible if they have compatible signature: same
6932 * number of input args and compatible return and argument types.
6933 * These rules are not set in stone and probably will be adjusted as we get
6934 * more experience with using BPF CO-RE relocations.
6935 */
29db4bea
AS
6936int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6937 const struct btf *targ_btf, __u32 targ_id)
6938{
e70e13e7
MC
6939 return __bpf_core_types_are_compat(local_btf, local_id,
6940 targ_btf, targ_id,
6941 MAX_TYPES_ARE_COMPAT_DEPTH);
29db4bea
AS
6942}
6943
6944static bool bpf_core_is_flavor_sep(const char *s)
6945{
6946 /* check X___Y name pattern, where X and Y are not underscores */
6947 return s[0] != '_' && /* X */
6948 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
6949 s[4] != '_'; /* Y */
6950}
6951
6952size_t bpf_core_essential_name_len(const char *name)
6953{
6954 size_t n = strlen(name);
6955 int i;
6956
6957 for (i = n - 5; i >= 0; i--) {
6958 if (bpf_core_is_flavor_sep(name + i))
6959 return i + 1;
6960 }
6961 return n;
6962}
fbd94c7a 6963
1e89106d
AS
6964struct bpf_cand_cache {
6965 const char *name;
6966 u32 name_len;
6967 u16 kind;
6968 u16 cnt;
6969 struct {
6970 const struct btf *btf;
6971 u32 id;
6972 } cands[];
6973};
6974
6975static void bpf_free_cands(struct bpf_cand_cache *cands)
6976{
6977 if (!cands->cnt)
6978 /* empty candidate array was allocated on stack */
6979 return;
6980 kfree(cands);
6981}
6982
6983static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
6984{
6985 kfree(cands->name);
6986 kfree(cands);
6987}
6988
6989#define VMLINUX_CAND_CACHE_SIZE 31
6990static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
6991
6992#define MODULE_CAND_CACHE_SIZE 31
6993static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
6994
6995static DEFINE_MUTEX(cand_cache_mutex);
6996
6997static void __print_cand_cache(struct bpf_verifier_log *log,
6998 struct bpf_cand_cache **cache,
6999 int cache_size)
7000{
7001 struct bpf_cand_cache *cc;
7002 int i, j;
7003
7004 for (i = 0; i < cache_size; i++) {
7005 cc = cache[i];
7006 if (!cc)
7007 continue;
7008 bpf_log(log, "[%d]%s(", i, cc->name);
7009 for (j = 0; j < cc->cnt; j++) {
7010 bpf_log(log, "%d", cc->cands[j].id);
7011 if (j < cc->cnt - 1)
7012 bpf_log(log, " ");
7013 }
7014 bpf_log(log, "), ");
7015 }
7016}
7017
7018static void print_cand_cache(struct bpf_verifier_log *log)
7019{
7020 mutex_lock(&cand_cache_mutex);
7021 bpf_log(log, "vmlinux_cand_cache:");
7022 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7023 bpf_log(log, "\nmodule_cand_cache:");
7024 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7025 bpf_log(log, "\n");
7026 mutex_unlock(&cand_cache_mutex);
7027}
7028
7029static u32 hash_cands(struct bpf_cand_cache *cands)
7030{
7031 return jhash(cands->name, cands->name_len, 0);
7032}
7033
7034static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7035 struct bpf_cand_cache **cache,
7036 int cache_size)
7037{
7038 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7039
7040 if (cc && cc->name_len == cands->name_len &&
7041 !strncmp(cc->name, cands->name, cands->name_len))
7042 return cc;
7043 return NULL;
7044}
7045
7046static size_t sizeof_cands(int cnt)
7047{
7048 return offsetof(struct bpf_cand_cache, cands[cnt]);
7049}
7050
7051static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7052 struct bpf_cand_cache **cache,
7053 int cache_size)
7054{
7055 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7056
7057 if (*cc) {
7058 bpf_free_cands_from_cache(*cc);
7059 *cc = NULL;
7060 }
4674f210 7061 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
1e89106d
AS
7062 if (!new_cands) {
7063 bpf_free_cands(cands);
7064 return ERR_PTR(-ENOMEM);
7065 }
1e89106d
AS
7066 /* strdup the name, since it will stay in cache.
7067 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7068 */
7069 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7070 bpf_free_cands(cands);
7071 if (!new_cands->name) {
7072 kfree(new_cands);
7073 return ERR_PTR(-ENOMEM);
7074 }
7075 *cc = new_cands;
7076 return new_cands;
7077}
7078
29f2e5bd 7079#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
1e89106d
AS
7080static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7081 int cache_size)
7082{
7083 struct bpf_cand_cache *cc;
7084 int i, j;
7085
7086 for (i = 0; i < cache_size; i++) {
7087 cc = cache[i];
7088 if (!cc)
7089 continue;
7090 if (!btf) {
7091 /* when new module is loaded purge all of module_cand_cache,
7092 * since new module might have candidates with the name
7093 * that matches cached cands.
7094 */
7095 bpf_free_cands_from_cache(cc);
7096 cache[i] = NULL;
7097 continue;
7098 }
7099 /* when module is unloaded purge cache entries
7100 * that match module's btf
7101 */
7102 for (j = 0; j < cc->cnt; j++)
7103 if (cc->cands[j].btf == btf) {
7104 bpf_free_cands_from_cache(cc);
7105 cache[i] = NULL;
7106 break;
7107 }
7108 }
7109
7110}
7111
7112static void purge_cand_cache(struct btf *btf)
7113{
7114 mutex_lock(&cand_cache_mutex);
7115 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7116 mutex_unlock(&cand_cache_mutex);
7117}
29f2e5bd 7118#endif
1e89106d
AS
7119
7120static struct bpf_cand_cache *
7121bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7122 int targ_start_id)
7123{
7124 struct bpf_cand_cache *new_cands;
7125 const struct btf_type *t;
7126 const char *targ_name;
7127 size_t targ_essent_len;
7128 int n, i;
7129
7130 n = btf_nr_types(targ_btf);
7131 for (i = targ_start_id; i < n; i++) {
7132 t = btf_type_by_id(targ_btf, i);
7133 if (btf_kind(t) != cands->kind)
7134 continue;
7135
7136 targ_name = btf_name_by_offset(targ_btf, t->name_off);
7137 if (!targ_name)
7138 continue;
7139
7140 /* the resched point is before strncmp to make sure that search
7141 * for non-existing name will have a chance to schedule().
7142 */
7143 cond_resched();
7144
7145 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7146 continue;
7147
7148 targ_essent_len = bpf_core_essential_name_len(targ_name);
7149 if (targ_essent_len != cands->name_len)
7150 continue;
7151
7152 /* most of the time there is only one candidate for a given kind+name pair */
7153 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7154 if (!new_cands) {
7155 bpf_free_cands(cands);
7156 return ERR_PTR(-ENOMEM);
7157 }
7158
7159 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7160 bpf_free_cands(cands);
7161 cands = new_cands;
7162 cands->cands[cands->cnt].btf = targ_btf;
7163 cands->cands[cands->cnt].id = i;
7164 cands->cnt++;
7165 }
7166 return cands;
7167}
7168
7169static struct bpf_cand_cache *
7170bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7171{
7172 struct bpf_cand_cache *cands, *cc, local_cand = {};
7173 const struct btf *local_btf = ctx->btf;
7174 const struct btf_type *local_type;
7175 const struct btf *main_btf;
7176 size_t local_essent_len;
7177 struct btf *mod_btf;
7178 const char *name;
7179 int id;
7180
7181 main_btf = bpf_get_btf_vmlinux();
7182 if (IS_ERR(main_btf))
f18a4997 7183 return ERR_CAST(main_btf);
7ada3787
KKD
7184 if (!main_btf)
7185 return ERR_PTR(-EINVAL);
1e89106d
AS
7186
7187 local_type = btf_type_by_id(local_btf, local_type_id);
7188 if (!local_type)
7189 return ERR_PTR(-EINVAL);
7190
7191 name = btf_name_by_offset(local_btf, local_type->name_off);
7192 if (str_is_empty(name))
7193 return ERR_PTR(-EINVAL);
7194 local_essent_len = bpf_core_essential_name_len(name);
7195
7196 cands = &local_cand;
7197 cands->name = name;
7198 cands->kind = btf_kind(local_type);
7199 cands->name_len = local_essent_len;
7200
7201 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7202 /* cands is a pointer to stack here */
7203 if (cc) {
7204 if (cc->cnt)
7205 return cc;
7206 goto check_modules;
7207 }
7208
7209 /* Attempt to find target candidates in vmlinux BTF first */
7210 cands = bpf_core_add_cands(cands, main_btf, 1);
7211 if (IS_ERR(cands))
f18a4997 7212 return ERR_CAST(cands);
1e89106d
AS
7213
7214 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7215
7216 /* populate cache even when cands->cnt == 0 */
7217 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7218 if (IS_ERR(cc))
f18a4997 7219 return ERR_CAST(cc);
1e89106d
AS
7220
7221 /* if vmlinux BTF has any candidate, don't go for module BTFs */
7222 if (cc->cnt)
7223 return cc;
7224
7225check_modules:
7226 /* cands is a pointer to stack here and cands->cnt == 0 */
7227 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7228 if (cc)
7229 /* if cache has it return it even if cc->cnt == 0 */
7230 return cc;
7231
7232 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7233 spin_lock_bh(&btf_idr_lock);
7234 idr_for_each_entry(&btf_idr, mod_btf, id) {
7235 if (!btf_is_module(mod_btf))
7236 continue;
7237 /* linear search could be slow hence unlock/lock
7238 * the IDR to avoiding holding it for too long
7239 */
7240 btf_get(mod_btf);
7241 spin_unlock_bh(&btf_idr_lock);
7242 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7243 if (IS_ERR(cands)) {
7244 btf_put(mod_btf);
f18a4997 7245 return ERR_CAST(cands);
1e89106d
AS
7246 }
7247 spin_lock_bh(&btf_idr_lock);
7248 btf_put(mod_btf);
7249 }
7250 spin_unlock_bh(&btf_idr_lock);
7251 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
7252 * or pointer to stack if cands->cnd == 0.
7253 * Copy it into the cache even when cands->cnt == 0 and
7254 * return the result.
7255 */
7256 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7257}
7258
fbd94c7a
AS
7259int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7260 int relo_idx, void *insn)
7261{
1e89106d
AS
7262 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7263 struct bpf_core_cand_list cands = {};
adb8fa19 7264 struct bpf_core_relo_res targ_res;
78c1f8d0 7265 struct bpf_core_spec *specs;
1e89106d
AS
7266 int err;
7267
78c1f8d0
AS
7268 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7269 * into arrays of btf_ids of struct fields and array indices.
7270 */
7271 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7272 if (!specs)
7273 return -ENOMEM;
7274
1e89106d
AS
7275 if (need_cands) {
7276 struct bpf_cand_cache *cc;
7277 int i;
7278
7279 mutex_lock(&cand_cache_mutex);
7280 cc = bpf_core_find_cands(ctx, relo->type_id);
7281 if (IS_ERR(cc)) {
7282 bpf_log(ctx->log, "target candidate search failed for %d\n",
7283 relo->type_id);
7284 err = PTR_ERR(cc);
7285 goto out;
7286 }
7287 if (cc->cnt) {
7288 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7289 if (!cands.cands) {
7290 err = -ENOMEM;
7291 goto out;
7292 }
7293 }
7294 for (i = 0; i < cc->cnt; i++) {
7295 bpf_log(ctx->log,
7296 "CO-RE relocating %s %s: found target candidate [%d]\n",
7297 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
7298 cands.cands[i].btf = cc->cands[i].btf;
7299 cands.cands[i].id = cc->cands[i].id;
7300 }
7301 cands.len = cc->cnt;
7302 /* cand_cache_mutex needs to span the cache lookup and
7303 * copy of btf pointer into bpf_core_cand_list,
adb8fa19 7304 * since module can be unloaded while bpf_core_calc_relo_insn
1e89106d
AS
7305 * is working with module's btf.
7306 */
7307 }
7308
adb8fa19
MV
7309 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
7310 &targ_res);
7311 if (err)
7312 goto out;
7313
7314 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
7315 &targ_res);
7316
1e89106d 7317out:
78c1f8d0 7318 kfree(specs);
1e89106d
AS
7319 if (need_cands) {
7320 kfree(cands.cands);
7321 mutex_unlock(&cand_cache_mutex);
7322 if (ctx->log->level & BPF_LOG_LEVEL2)
7323 print_cand_cache(ctx->log);
7324 }
7325 return err;
fbd94c7a 7326}