kbuild: Build kernel module BTFs if BTF is enabled and pahole supports it
[linux-2.6-block.git] / kernel / bpf / btf.c
CommitLineData
69b693f0
MKL
1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
91cc1a99
AS
22#include <linux/skmsg.h>
23#include <linux/perf_event.h>
eae2e83e 24#include <linux/bsearch.h>
91cc1a99 25#include <net/sock.h>
69b693f0
MKL
26
27/* BTF (BPF Type Format) is the meta data format which describes
28 * the data types of BPF program/map. Hence, it basically focus
29 * on the C programming language which the modern BPF is primary
30 * using.
31 *
32 * ELF Section:
33 * ~~~~~~~~~~~
34 * The BTF data is stored under the ".BTF" ELF section
35 *
36 * struct btf_type:
37 * ~~~~~~~~~~~~~~~
38 * Each 'struct btf_type' object describes a C data type.
39 * Depending on the type it is describing, a 'struct btf_type'
40 * object may be followed by more data. F.e.
41 * To describe an array, 'struct btf_type' is followed by
42 * 'struct btf_array'.
43 *
44 * 'struct btf_type' and any extra data following it are
45 * 4 bytes aligned.
46 *
47 * Type section:
48 * ~~~~~~~~~~~~~
49 * The BTF type section contains a list of 'struct btf_type' objects.
50 * Each one describes a C type. Recall from the above section
51 * that a 'struct btf_type' object could be immediately followed by extra
52 * data in order to desribe some particular C types.
53 *
54 * type_id:
55 * ~~~~~~~
56 * Each btf_type object is identified by a type_id. The type_id
57 * is implicitly implied by the location of the btf_type object in
58 * the BTF type section. The first one has type_id 1. The second
59 * one has type_id 2...etc. Hence, an earlier btf_type has
60 * a smaller type_id.
61 *
62 * A btf_type object may refer to another btf_type object by using
63 * type_id (i.e. the "type" in the "struct btf_type").
64 *
65 * NOTE that we cannot assume any reference-order.
66 * A btf_type object can refer to an earlier btf_type object
67 * but it can also refer to a later btf_type object.
68 *
69 * For example, to describe "const void *". A btf_type
70 * object describing "const" may refer to another btf_type
71 * object describing "void *". This type-reference is done
72 * by specifying type_id:
73 *
74 * [1] CONST (anon) type_id=2
75 * [2] PTR (anon) type_id=0
76 *
77 * The above is the btf_verifier debug log:
78 * - Each line started with "[?]" is a btf_type object
79 * - [?] is the type_id of the btf_type object.
80 * - CONST/PTR is the BTF_KIND_XXX
81 * - "(anon)" is the name of the type. It just
82 * happens that CONST and PTR has no name.
83 * - type_id=XXX is the 'u32 type' in btf_type
84 *
85 * NOTE: "void" has type_id 0
86 *
87 * String section:
88 * ~~~~~~~~~~~~~~
89 * The BTF string section contains the names used by the type section.
90 * Each string is referred by an "offset" from the beginning of the
91 * string section.
92 *
93 * Each string is '\0' terminated.
94 *
95 * The first character in the string section must be '\0'
96 * which is used to mean 'anonymous'. Some btf_type may not
97 * have a name.
98 */
99
100/* BTF verification:
101 *
102 * To verify BTF data, two passes are needed.
103 *
104 * Pass #1
105 * ~~~~~~~
106 * The first pass is to collect all btf_type objects to
107 * an array: "btf->types".
108 *
109 * Depending on the C type that a btf_type is describing,
110 * a btf_type may be followed by extra data. We don't know
111 * how many btf_type is there, and more importantly we don't
112 * know where each btf_type is located in the type section.
113 *
114 * Without knowing the location of each type_id, most verifications
115 * cannot be done. e.g. an earlier btf_type may refer to a later
116 * btf_type (recall the "const void *" above), so we cannot
117 * check this type-reference in the first pass.
118 *
119 * In the first pass, it still does some verifications (e.g.
120 * checking the name is a valid offset to the string section).
eb3f595d
MKL
121 *
122 * Pass #2
123 * ~~~~~~~
124 * The main focus is to resolve a btf_type that is referring
125 * to another type.
126 *
127 * We have to ensure the referring type:
128 * 1) does exist in the BTF (i.e. in btf->types[])
129 * 2) does not cause a loop:
130 * struct A {
131 * struct B b;
132 * };
133 *
134 * struct B {
135 * struct A a;
136 * };
137 *
138 * btf_type_needs_resolve() decides if a btf_type needs
139 * to be resolved.
140 *
141 * The needs_resolve type implements the "resolve()" ops which
142 * essentially does a DFS and detects backedge.
143 *
144 * During resolve (or DFS), different C types have different
145 * "RESOLVED" conditions.
146 *
147 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
148 * members because a member is always referring to another
149 * type. A struct's member can be treated as "RESOLVED" if
150 * it is referring to a BTF_KIND_PTR. Otherwise, the
151 * following valid C struct would be rejected:
152 *
153 * struct A {
154 * int m;
155 * struct A *a;
156 * };
157 *
158 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
159 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
160 * detect a pointer loop, e.g.:
161 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
162 * ^ |
163 * +-----------------------------------------+
164 *
69b693f0
MKL
165 */
166
b1e8818c 167#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
168#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
169#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
170#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
171#define BITS_ROUNDUP_BYTES(bits) \
172 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
173
9d5f9f70 174#define BTF_INFO_MASK 0x8f00ffff
aea2f7b8
MKL
175#define BTF_INT_MASK 0x0fffffff
176#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
177#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
178
69b693f0
MKL
179/* 16MB for 64k structs and each has 16 members and
180 * a few MB spaces for the string section.
181 * The hard limit is S32_MAX.
182 */
183#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 184
eb3f595d
MKL
185#define for_each_member_from(i, from, struct_type, member) \
186 for (i = from, member = btf_type_member(struct_type) + from; \
187 i < btf_type_vlen(struct_type); \
188 i++, member++)
189
1dc92851
DB
190#define for_each_vsi_from(i, from, struct_type, member) \
191 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
192 i < btf_type_vlen(struct_type); \
193 i++, member++)
194
1b9ed84e
QM
195DEFINE_IDR(btf_idr);
196DEFINE_SPINLOCK(btf_idr_lock);
78958fca 197
69b693f0 198struct btf {
f80442a4 199 void *data;
69b693f0 200 struct btf_type **types;
eb3f595d
MKL
201 u32 *resolved_ids;
202 u32 *resolved_sizes;
69b693f0
MKL
203 const char *strings;
204 void *nohdr_data;
f80442a4 205 struct btf_header hdr;
951bb646 206 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
207 u32 types_size;
208 u32 data_size;
f56a653c 209 refcount_t refcnt;
78958fca
MKL
210 u32 id;
211 struct rcu_head rcu;
951bb646
AN
212
213 /* split BTF support */
214 struct btf *base_btf;
215 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
216 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
217 char name[MODULE_NAME_LEN];
218 bool kernel_btf;
69b693f0
MKL
219};
220
eb3f595d
MKL
221enum verifier_phase {
222 CHECK_META,
223 CHECK_TYPE,
224};
225
226struct resolve_vertex {
227 const struct btf_type *t;
228 u32 type_id;
229 u16 next_member;
230};
231
232enum visit_state {
233 NOT_VISITED,
234 VISITED,
235 RESOLVED,
236};
237
238enum resolve_mode {
239 RESOLVE_TBD, /* To Be Determined */
240 RESOLVE_PTR, /* Resolving for Pointer */
241 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
242 * or array
243 */
244};
245
246#define MAX_RESOLVE_DEPTH 32
247
f80442a4
MKL
248struct btf_sec_info {
249 u32 off;
250 u32 len;
251};
252
69b693f0
MKL
253struct btf_verifier_env {
254 struct btf *btf;
eb3f595d
MKL
255 u8 *visit_states;
256 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
257 struct bpf_verifier_log log;
258 u32 log_type_id;
eb3f595d
MKL
259 u32 top_stack;
260 enum verifier_phase phase;
261 enum resolve_mode resolve_mode;
69b693f0
MKL
262};
263
264static const char * const btf_kind_str[NR_BTF_KINDS] = {
265 [BTF_KIND_UNKN] = "UNKNOWN",
266 [BTF_KIND_INT] = "INT",
267 [BTF_KIND_PTR] = "PTR",
268 [BTF_KIND_ARRAY] = "ARRAY",
269 [BTF_KIND_STRUCT] = "STRUCT",
270 [BTF_KIND_UNION] = "UNION",
271 [BTF_KIND_ENUM] = "ENUM",
272 [BTF_KIND_FWD] = "FWD",
273 [BTF_KIND_TYPEDEF] = "TYPEDEF",
274 [BTF_KIND_VOLATILE] = "VOLATILE",
275 [BTF_KIND_CONST] = "CONST",
276 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
277 [BTF_KIND_FUNC] = "FUNC",
278 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
279 [BTF_KIND_VAR] = "VAR",
280 [BTF_KIND_DATASEC] = "DATASEC",
69b693f0
MKL
281};
282
be8704ff
AS
283static const char *btf_type_str(const struct btf_type *t)
284{
285 return btf_kind_str[BTF_INFO_KIND(t->info)];
286}
287
31d0bc81
AM
288/* Chunk size we use in safe copy of data to be shown. */
289#define BTF_SHOW_OBJ_SAFE_SIZE 32
290
291/*
292 * This is the maximum size of a base type value (equivalent to a
293 * 128-bit int); if we are at the end of our safe buffer and have
294 * less than 16 bytes space we can't be assured of being able
295 * to copy the next type safely, so in such cases we will initiate
296 * a new copy.
297 */
298#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
299
300/* Type name size */
301#define BTF_SHOW_NAME_SIZE 80
302
303/*
304 * Common data to all BTF show operations. Private show functions can add
305 * their own data to a structure containing a struct btf_show and consult it
306 * in the show callback. See btf_type_show() below.
307 *
308 * One challenge with showing nested data is we want to skip 0-valued
309 * data, but in order to figure out whether a nested object is all zeros
310 * we need to walk through it. As a result, we need to make two passes
311 * when handling structs, unions and arrays; the first path simply looks
312 * for nonzero data, while the second actually does the display. The first
313 * pass is signalled by show->state.depth_check being set, and if we
314 * encounter a non-zero value we set show->state.depth_to_show to
315 * the depth at which we encountered it. When we have completed the
316 * first pass, we will know if anything needs to be displayed if
317 * depth_to_show > depth. See btf_[struct,array]_show() for the
318 * implementation of this.
319 *
320 * Another problem is we want to ensure the data for display is safe to
321 * access. To support this, the anonymous "struct {} obj" tracks the data
322 * object and our safe copy of it. We copy portions of the data needed
323 * to the object "copy" buffer, but because its size is limited to
324 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
325 * traverse larger objects for display.
326 *
327 * The various data type show functions all start with a call to
328 * btf_show_start_type() which returns a pointer to the safe copy
329 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
330 * raw data itself). btf_show_obj_safe() is responsible for
331 * using copy_from_kernel_nofault() to update the safe data if necessary
332 * as we traverse the object's data. skbuff-like semantics are
333 * used:
334 *
335 * - obj.head points to the start of the toplevel object for display
336 * - obj.size is the size of the toplevel object
337 * - obj.data points to the current point in the original data at
338 * which our safe data starts. obj.data will advance as we copy
339 * portions of the data.
340 *
341 * In most cases a single copy will suffice, but larger data structures
342 * such as "struct task_struct" will require many copies. The logic in
343 * btf_show_obj_safe() handles the logic that determines if a new
344 * copy_from_kernel_nofault() is needed.
345 */
346struct btf_show {
347 u64 flags;
348 void *target; /* target of show operation (seq file, buffer) */
349 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
350 const struct btf *btf;
351 /* below are used during iteration */
352 struct {
353 u8 depth;
354 u8 depth_to_show;
355 u8 depth_check;
356 u8 array_member:1,
357 array_terminated:1;
358 u16 array_encoding;
359 u32 type_id;
360 int status; /* non-zero for error */
361 const struct btf_type *type;
362 const struct btf_member *member;
363 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
364 } state;
365 struct {
366 u32 size;
367 void *head;
368 void *data;
369 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
370 } obj;
371};
372
69b693f0
MKL
373struct btf_kind_operations {
374 s32 (*check_meta)(struct btf_verifier_env *env,
375 const struct btf_type *t,
376 u32 meta_left);
eb3f595d
MKL
377 int (*resolve)(struct btf_verifier_env *env,
378 const struct resolve_vertex *v);
179cde8c
MKL
379 int (*check_member)(struct btf_verifier_env *env,
380 const struct btf_type *struct_type,
381 const struct btf_member *member,
382 const struct btf_type *member_type);
9d5f9f70
YS
383 int (*check_kflag_member)(struct btf_verifier_env *env,
384 const struct btf_type *struct_type,
385 const struct btf_member *member,
386 const struct btf_type *member_type);
69b693f0
MKL
387 void (*log_details)(struct btf_verifier_env *env,
388 const struct btf_type *t);
31d0bc81 389 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 390 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 391 struct btf_show *show);
69b693f0
MKL
392};
393
394static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
395static struct btf_type btf_void;
396
2667a262
MKL
397static int btf_resolve(struct btf_verifier_env *env,
398 const struct btf_type *t, u32 type_id);
399
eb3f595d
MKL
400static bool btf_type_is_modifier(const struct btf_type *t)
401{
402 /* Some of them is not strictly a C modifier
403 * but they are grouped into the same bucket
404 * for BTF concern:
405 * A type (t) that refers to another
406 * type through t->type AND its size cannot
407 * be determined without following the t->type.
408 *
409 * ptr does not fall into this bucket
410 * because its size is always sizeof(void *).
411 */
412 switch (BTF_INFO_KIND(t->info)) {
413 case BTF_KIND_TYPEDEF:
414 case BTF_KIND_VOLATILE:
415 case BTF_KIND_CONST:
416 case BTF_KIND_RESTRICT:
417 return true;
418 }
419
420 return false;
421}
422
2824ecb7 423bool btf_type_is_void(const struct btf_type *t)
eb3f595d 424{
b47a0bd2
MKL
425 return t == &btf_void;
426}
427
428static bool btf_type_is_fwd(const struct btf_type *t)
429{
430 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
431}
432
433static bool btf_type_nosize(const struct btf_type *t)
434{
2667a262
MKL
435 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
436 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
437}
438
b47a0bd2 439static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 440{
b47a0bd2 441 return !t || btf_type_nosize(t);
eb3f595d
MKL
442}
443
d83525ca
AS
444static bool __btf_type_is_struct(const struct btf_type *t)
445{
446 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
447}
448
eb3f595d
MKL
449static bool btf_type_is_array(const struct btf_type *t)
450{
451 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
452}
453
1dc92851
DB
454static bool btf_type_is_datasec(const struct btf_type *t)
455{
456 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
457}
458
951bb646
AN
459static u32 btf_nr_types_total(const struct btf *btf)
460{
461 u32 total = 0;
462
463 while (btf) {
464 total += btf->nr_types;
465 btf = btf->base_btf;
466 }
467
468 return total;
469}
470
27ae7997
MKL
471s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
472{
473 const struct btf_type *t;
474 const char *tname;
951bb646 475 u32 i, total;
27ae7997 476
951bb646
AN
477 total = btf_nr_types_total(btf);
478 for (i = 1; i < total; i++) {
479 t = btf_type_by_id(btf, i);
27ae7997
MKL
480 if (BTF_INFO_KIND(t->info) != kind)
481 continue;
482
483 tname = btf_name_by_offset(btf, t->name_off);
484 if (!strcmp(tname, name))
485 return i;
486 }
487
488 return -ENOENT;
489}
490
491const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
492 u32 id, u32 *res_id)
493{
494 const struct btf_type *t = btf_type_by_id(btf, id);
495
496 while (btf_type_is_modifier(t)) {
497 id = t->type;
498 t = btf_type_by_id(btf, t->type);
499 }
500
501 if (res_id)
502 *res_id = id;
503
504 return t;
505}
506
507const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
508 u32 id, u32 *res_id)
509{
510 const struct btf_type *t;
511
512 t = btf_type_skip_modifiers(btf, id, NULL);
513 if (!btf_type_is_ptr(t))
514 return NULL;
515
516 return btf_type_skip_modifiers(btf, t->type, res_id);
517}
518
519const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
520 u32 id, u32 *res_id)
521{
522 const struct btf_type *ptype;
523
524 ptype = btf_type_resolve_ptr(btf, id, res_id);
525 if (ptype && btf_type_is_func_proto(ptype))
526 return ptype;
527
528 return NULL;
529}
530
1dc92851
DB
531/* Types that act only as a source, not sink or intermediate
532 * type when resolving.
533 */
534static bool btf_type_is_resolve_source_only(const struct btf_type *t)
535{
536 return btf_type_is_var(t) ||
537 btf_type_is_datasec(t);
538}
539
eb3f595d
MKL
540/* What types need to be resolved?
541 *
542 * btf_type_is_modifier() is an obvious one.
543 *
544 * btf_type_is_struct() because its member refers to
545 * another type (through member->type).
1dc92851
DB
546 *
547 * btf_type_is_var() because the variable refers to
548 * another type. btf_type_is_datasec() holds multiple
549 * btf_type_is_var() types that need resolving.
550 *
eb3f595d
MKL
551 * btf_type_is_array() because its element (array->type)
552 * refers to another type. Array can be thought of a
553 * special case of struct while array just has the same
554 * member-type repeated by array->nelems of times.
555 */
556static bool btf_type_needs_resolve(const struct btf_type *t)
557{
558 return btf_type_is_modifier(t) ||
1dc92851
DB
559 btf_type_is_ptr(t) ||
560 btf_type_is_struct(t) ||
561 btf_type_is_array(t) ||
562 btf_type_is_var(t) ||
563 btf_type_is_datasec(t);
eb3f595d
MKL
564}
565
566/* t->size can be used */
567static bool btf_type_has_size(const struct btf_type *t)
568{
569 switch (BTF_INFO_KIND(t->info)) {
570 case BTF_KIND_INT:
571 case BTF_KIND_STRUCT:
572 case BTF_KIND_UNION:
573 case BTF_KIND_ENUM:
1dc92851 574 case BTF_KIND_DATASEC:
eb3f595d
MKL
575 return true;
576 }
577
578 return false;
579}
580
69b693f0
MKL
581static const char *btf_int_encoding_str(u8 encoding)
582{
583 if (encoding == 0)
584 return "(none)";
585 else if (encoding == BTF_INT_SIGNED)
586 return "SIGNED";
587 else if (encoding == BTF_INT_CHAR)
588 return "CHAR";
589 else if (encoding == BTF_INT_BOOL)
590 return "BOOL";
69b693f0
MKL
591 else
592 return "UNKN";
593}
594
69b693f0
MKL
595static u32 btf_type_int(const struct btf_type *t)
596{
597 return *(u32 *)(t + 1);
598}
599
600static const struct btf_array *btf_type_array(const struct btf_type *t)
601{
602 return (const struct btf_array *)(t + 1);
603}
604
69b693f0
MKL
605static const struct btf_enum *btf_type_enum(const struct btf_type *t)
606{
607 return (const struct btf_enum *)(t + 1);
608}
609
1dc92851
DB
610static const struct btf_var *btf_type_var(const struct btf_type *t)
611{
612 return (const struct btf_var *)(t + 1);
613}
614
69b693f0
MKL
615static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
616{
617 return kind_ops[BTF_INFO_KIND(t->info)];
618}
619
583c5318 620static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 621{
951bb646
AN
622 if (!BTF_STR_OFFSET_VALID(offset))
623 return false;
624
625 while (offset < btf->start_str_off)
626 btf = btf->base_btf;
627
628 offset -= btf->start_str_off;
629 return offset < btf->hdr.str_len;
69b693f0
MKL
630}
631
1dc92851
DB
632static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
633{
634 if ((first ? !isalpha(c) :
635 !isalnum(c)) &&
636 c != '_' &&
637 ((c == '.' && !dot_ok) ||
638 c != '.'))
639 return false;
640 return true;
641}
642
951bb646
AN
643static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
644{
645 while (offset < btf->start_str_off)
646 btf = btf->base_btf;
647
648 offset -= btf->start_str_off;
649 if (offset < btf->hdr.str_len)
650 return &btf->strings[offset];
651
652 return NULL;
653}
654
1dc92851 655static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
656{
657 /* offset must be valid */
951bb646 658 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
659 const char *src_limit;
660
1dc92851 661 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
662 return false;
663
664 /* set a limit on identifier length */
665 src_limit = src + KSYM_NAME_LEN;
666 src++;
667 while (*src && src < src_limit) {
1dc92851 668 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
669 return false;
670 src++;
671 }
672
673 return !*src;
674}
675
1dc92851
DB
676/* Only C-style identifier is permitted. This can be relaxed if
677 * necessary.
678 */
679static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
680{
681 return __btf_name_valid(btf, offset, false);
682}
683
684static bool btf_name_valid_section(const struct btf *btf, u32 offset)
685{
686 return __btf_name_valid(btf, offset, true);
687}
688
23127b33 689static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 690{
951bb646
AN
691 const char *name;
692
aea2f7b8 693 if (!offset)
69b693f0 694 return "(anon)";
951bb646
AN
695
696 name = btf_str_by_offset(btf, offset);
697 return name ?: "(invalid-name-offset)";
69b693f0
MKL
698}
699
23127b33
MKL
700const char *btf_name_by_offset(const struct btf *btf, u32 offset)
701{
951bb646 702 return btf_str_by_offset(btf, offset);
23127b33
MKL
703}
704
838e9690 705const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 706{
951bb646
AN
707 while (type_id < btf->start_id)
708 btf = btf->base_btf;
eb3f595d 709
951bb646
AN
710 type_id -= btf->start_id;
711 if (type_id >= btf->nr_types)
712 return NULL;
eb3f595d
MKL
713 return btf->types[type_id];
714}
715
4ef5f574
MKL
716/*
717 * Regular int is not a bit field and it must be either
b1e8818c 718 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
719 */
720static bool btf_type_int_is_regular(const struct btf_type *t)
721{
36fc3c8c 722 u8 nr_bits, nr_bytes;
4ef5f574
MKL
723 u32 int_data;
724
725 int_data = btf_type_int(t);
726 nr_bits = BTF_INT_BITS(int_data);
727 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
728 if (BITS_PER_BYTE_MASKED(nr_bits) ||
729 BTF_INT_OFFSET(int_data) ||
730 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
731 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
732 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
733 return false;
734 }
735
736 return true;
737}
738
9a1126b6 739/*
ffa0c1cf
YS
740 * Check that given struct member is a regular int with expected
741 * offset and size.
9a1126b6 742 */
ffa0c1cf
YS
743bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
744 const struct btf_member *m,
745 u32 expected_offset, u32 expected_size)
9a1126b6 746{
ffa0c1cf
YS
747 const struct btf_type *t;
748 u32 id, int_data;
749 u8 nr_bits;
9a1126b6 750
ffa0c1cf
YS
751 id = m->type;
752 t = btf_type_id_size(btf, &id, NULL);
753 if (!t || !btf_type_is_int(t))
9a1126b6
RG
754 return false;
755
756 int_data = btf_type_int(t);
757 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
758 if (btf_type_kflag(s)) {
759 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
760 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
761
762 /* if kflag set, int should be a regular int and
763 * bit offset should be at byte boundary.
764 */
765 return !bitfield_size &&
766 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
767 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
768 }
769
770 if (BTF_INT_OFFSET(int_data) ||
771 BITS_PER_BYTE_MASKED(m->offset) ||
772 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
773 BITS_PER_BYTE_MASKED(nr_bits) ||
774 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
775 return false;
776
777 return true;
778}
779
31d0bc81
AM
780/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
781static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
782 u32 id)
783{
784 const struct btf_type *t = btf_type_by_id(btf, id);
785
786 while (btf_type_is_modifier(t) &&
787 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
788 id = t->type;
789 t = btf_type_by_id(btf, t->type);
790 }
791
792 return t;
793}
794
795#define BTF_SHOW_MAX_ITER 10
796
797#define BTF_KIND_BIT(kind) (1ULL << kind)
798
799/*
800 * Populate show->state.name with type name information.
801 * Format of type name is
802 *
803 * [.member_name = ] (type_name)
804 */
805static const char *btf_show_name(struct btf_show *show)
806{
807 /* BTF_MAX_ITER array suffixes "[]" */
808 const char *array_suffixes = "[][][][][][][][][][]";
809 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
810 /* BTF_MAX_ITER pointer suffixes "*" */
811 const char *ptr_suffixes = "**********";
812 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
813 const char *name = NULL, *prefix = "", *parens = "";
814 const struct btf_member *m = show->state.member;
815 const struct btf_type *t = show->state.type;
816 const struct btf_array *array;
817 u32 id = show->state.type_id;
818 const char *member = NULL;
819 bool show_member = false;
820 u64 kinds = 0;
821 int i;
822
823 show->state.name[0] = '\0';
824
825 /*
826 * Don't show type name if we're showing an array member;
827 * in that case we show the array type so don't need to repeat
828 * ourselves for each member.
829 */
830 if (show->state.array_member)
831 return "";
832
833 /* Retrieve member name, if any. */
834 if (m) {
835 member = btf_name_by_offset(show->btf, m->name_off);
836 show_member = strlen(member) > 0;
837 id = m->type;
838 }
839
840 /*
841 * Start with type_id, as we have resolved the struct btf_type *
842 * via btf_modifier_show() past the parent typedef to the child
843 * struct, int etc it is defined as. In such cases, the type_id
844 * still represents the starting type while the struct btf_type *
845 * in our show->state points at the resolved type of the typedef.
846 */
847 t = btf_type_by_id(show->btf, id);
848 if (!t)
849 return "";
850
851 /*
852 * The goal here is to build up the right number of pointer and
853 * array suffixes while ensuring the type name for a typedef
854 * is represented. Along the way we accumulate a list of
855 * BTF kinds we have encountered, since these will inform later
856 * display; for example, pointer types will not require an
857 * opening "{" for struct, we will just display the pointer value.
858 *
859 * We also want to accumulate the right number of pointer or array
860 * indices in the format string while iterating until we get to
861 * the typedef/pointee/array member target type.
862 *
863 * We start by pointing at the end of pointer and array suffix
864 * strings; as we accumulate pointers and arrays we move the pointer
865 * or array string backwards so it will show the expected number of
866 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
867 * and/or arrays and typedefs are supported as a precaution.
868 *
869 * We also want to get typedef name while proceeding to resolve
870 * type it points to so that we can add parentheses if it is a
871 * "typedef struct" etc.
872 */
873 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
874
875 switch (BTF_INFO_KIND(t->info)) {
876 case BTF_KIND_TYPEDEF:
877 if (!name)
878 name = btf_name_by_offset(show->btf,
879 t->name_off);
880 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
881 id = t->type;
882 break;
883 case BTF_KIND_ARRAY:
884 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
885 parens = "[";
886 if (!t)
887 return "";
888 array = btf_type_array(t);
889 if (array_suffix > array_suffixes)
890 array_suffix -= 2;
891 id = array->type;
892 break;
893 case BTF_KIND_PTR:
894 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
895 if (ptr_suffix > ptr_suffixes)
896 ptr_suffix -= 1;
897 id = t->type;
898 break;
899 default:
900 id = 0;
901 break;
902 }
903 if (!id)
904 break;
905 t = btf_type_skip_qualifiers(show->btf, id);
906 }
907 /* We may not be able to represent this type; bail to be safe */
908 if (i == BTF_SHOW_MAX_ITER)
909 return "";
910
911 if (!name)
912 name = btf_name_by_offset(show->btf, t->name_off);
913
914 switch (BTF_INFO_KIND(t->info)) {
915 case BTF_KIND_STRUCT:
916 case BTF_KIND_UNION:
917 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
918 "struct" : "union";
919 /* if it's an array of struct/union, parens is already set */
920 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
921 parens = "{";
922 break;
923 case BTF_KIND_ENUM:
924 prefix = "enum";
925 break;
926 default:
927 break;
928 }
929
930 /* pointer does not require parens */
931 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
932 parens = "";
933 /* typedef does not require struct/union/enum prefix */
934 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
935 prefix = "";
936
937 if (!name)
938 name = "";
939
940 /* Even if we don't want type name info, we want parentheses etc */
941 if (show->flags & BTF_SHOW_NONAME)
942 snprintf(show->state.name, sizeof(show->state.name), "%s",
943 parens);
944 else
945 snprintf(show->state.name, sizeof(show->state.name),
946 "%s%s%s(%s%s%s%s%s%s)%s",
947 /* first 3 strings comprise ".member = " */
948 show_member ? "." : "",
949 show_member ? member : "",
950 show_member ? " = " : "",
951 /* ...next is our prefix (struct, enum, etc) */
952 prefix,
953 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
954 /* ...this is the type name itself */
955 name,
956 /* ...suffixed by the appropriate '*', '[]' suffixes */
957 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
958 array_suffix, parens);
959
960 return show->state.name;
961}
962
963static const char *__btf_show_indent(struct btf_show *show)
964{
965 const char *indents = " ";
966 const char *indent = &indents[strlen(indents)];
967
968 if ((indent - show->state.depth) >= indents)
969 return indent - show->state.depth;
970 return indents;
971}
972
973static const char *btf_show_indent(struct btf_show *show)
974{
975 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
976}
977
978static const char *btf_show_newline(struct btf_show *show)
979{
980 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
981}
982
983static const char *btf_show_delim(struct btf_show *show)
984{
985 if (show->state.depth == 0)
986 return "";
987
988 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
989 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
990 return "|";
991
992 return ",";
993}
994
995__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
996{
997 va_list args;
998
999 if (!show->state.depth_check) {
1000 va_start(args, fmt);
1001 show->showfn(show, fmt, args);
1002 va_end(args);
1003 }
1004}
1005
1006/* Macros are used here as btf_show_type_value[s]() prepends and appends
1007 * format specifiers to the format specifier passed in; these do the work of
1008 * adding indentation, delimiters etc while the caller simply has to specify
1009 * the type value(s) in the format specifier + value(s).
1010 */
1011#define btf_show_type_value(show, fmt, value) \
1012 do { \
1013 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1014 show->state.depth == 0) { \
1015 btf_show(show, "%s%s" fmt "%s%s", \
1016 btf_show_indent(show), \
1017 btf_show_name(show), \
1018 value, btf_show_delim(show), \
1019 btf_show_newline(show)); \
1020 if (show->state.depth > show->state.depth_to_show) \
1021 show->state.depth_to_show = show->state.depth; \
1022 } \
1023 } while (0)
1024
1025#define btf_show_type_values(show, fmt, ...) \
1026 do { \
1027 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1028 btf_show_name(show), \
1029 __VA_ARGS__, btf_show_delim(show), \
1030 btf_show_newline(show)); \
1031 if (show->state.depth > show->state.depth_to_show) \
1032 show->state.depth_to_show = show->state.depth; \
1033 } while (0)
1034
1035/* How much is left to copy to safe buffer after @data? */
1036static int btf_show_obj_size_left(struct btf_show *show, void *data)
1037{
1038 return show->obj.head + show->obj.size - data;
1039}
1040
1041/* Is object pointed to by @data of @size already copied to our safe buffer? */
1042static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1043{
1044 return data >= show->obj.data &&
1045 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1046}
1047
1048/*
1049 * If object pointed to by @data of @size falls within our safe buffer, return
1050 * the equivalent pointer to the same safe data. Assumes
1051 * copy_from_kernel_nofault() has already happened and our safe buffer is
1052 * populated.
1053 */
1054static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1055{
1056 if (btf_show_obj_is_safe(show, data, size))
1057 return show->obj.safe + (data - show->obj.data);
1058 return NULL;
1059}
1060
1061/*
1062 * Return a safe-to-access version of data pointed to by @data.
1063 * We do this by copying the relevant amount of information
1064 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1065 *
1066 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1067 * safe copy is needed.
1068 *
1069 * Otherwise we need to determine if we have the required amount
1070 * of data (determined by the @data pointer and the size of the
1071 * largest base type we can encounter (represented by
1072 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1073 * that we will be able to print some of the current object,
1074 * and if more is needed a copy will be triggered.
1075 * Some objects such as structs will not fit into the buffer;
1076 * in such cases additional copies when we iterate over their
1077 * members may be needed.
1078 *
1079 * btf_show_obj_safe() is used to return a safe buffer for
1080 * btf_show_start_type(); this ensures that as we recurse into
1081 * nested types we always have safe data for the given type.
1082 * This approach is somewhat wasteful; it's possible for example
1083 * that when iterating over a large union we'll end up copying the
1084 * same data repeatedly, but the goal is safety not performance.
1085 * We use stack data as opposed to per-CPU buffers because the
1086 * iteration over a type can take some time, and preemption handling
1087 * would greatly complicate use of the safe buffer.
1088 */
1089static void *btf_show_obj_safe(struct btf_show *show,
1090 const struct btf_type *t,
1091 void *data)
1092{
1093 const struct btf_type *rt;
1094 int size_left, size;
1095 void *safe = NULL;
1096
1097 if (show->flags & BTF_SHOW_UNSAFE)
1098 return data;
1099
1100 rt = btf_resolve_size(show->btf, t, &size);
1101 if (IS_ERR(rt)) {
1102 show->state.status = PTR_ERR(rt);
1103 return NULL;
1104 }
1105
1106 /*
1107 * Is this toplevel object? If so, set total object size and
1108 * initialize pointers. Otherwise check if we still fall within
1109 * our safe object data.
1110 */
1111 if (show->state.depth == 0) {
1112 show->obj.size = size;
1113 show->obj.head = data;
1114 } else {
1115 /*
1116 * If the size of the current object is > our remaining
1117 * safe buffer we _may_ need to do a new copy. However
1118 * consider the case of a nested struct; it's size pushes
1119 * us over the safe buffer limit, but showing any individual
1120 * struct members does not. In such cases, we don't need
1121 * to initiate a fresh copy yet; however we definitely need
1122 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1123 * in our buffer, regardless of the current object size.
1124 * The logic here is that as we resolve types we will
1125 * hit a base type at some point, and we need to be sure
1126 * the next chunk of data is safely available to display
1127 * that type info safely. We cannot rely on the size of
1128 * the current object here because it may be much larger
1129 * than our current buffer (e.g. task_struct is 8k).
1130 * All we want to do here is ensure that we can print the
1131 * next basic type, which we can if either
1132 * - the current type size is within the safe buffer; or
1133 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1134 * the safe buffer.
1135 */
1136 safe = __btf_show_obj_safe(show, data,
1137 min(size,
1138 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1139 }
1140
1141 /*
1142 * We need a new copy to our safe object, either because we haven't
1143 * yet copied and are intializing safe data, or because the data
1144 * we want falls outside the boundaries of the safe object.
1145 */
1146 if (!safe) {
1147 size_left = btf_show_obj_size_left(show, data);
1148 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1149 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1150 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1151 data, size_left);
1152 if (!show->state.status) {
1153 show->obj.data = data;
1154 safe = show->obj.safe;
1155 }
1156 }
1157
1158 return safe;
1159}
1160
1161/*
1162 * Set the type we are starting to show and return a safe data pointer
1163 * to be used for showing the associated data.
1164 */
1165static void *btf_show_start_type(struct btf_show *show,
1166 const struct btf_type *t,
1167 u32 type_id, void *data)
1168{
1169 show->state.type = t;
1170 show->state.type_id = type_id;
1171 show->state.name[0] = '\0';
1172
1173 return btf_show_obj_safe(show, t, data);
1174}
1175
1176static void btf_show_end_type(struct btf_show *show)
1177{
1178 show->state.type = NULL;
1179 show->state.type_id = 0;
1180 show->state.name[0] = '\0';
1181}
1182
1183static void *btf_show_start_aggr_type(struct btf_show *show,
1184 const struct btf_type *t,
1185 u32 type_id, void *data)
1186{
1187 void *safe_data = btf_show_start_type(show, t, type_id, data);
1188
1189 if (!safe_data)
1190 return safe_data;
1191
1192 btf_show(show, "%s%s%s", btf_show_indent(show),
1193 btf_show_name(show),
1194 btf_show_newline(show));
1195 show->state.depth++;
1196 return safe_data;
1197}
1198
1199static void btf_show_end_aggr_type(struct btf_show *show,
1200 const char *suffix)
1201{
1202 show->state.depth--;
1203 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1204 btf_show_delim(show), btf_show_newline(show));
1205 btf_show_end_type(show);
1206}
1207
1208static void btf_show_start_member(struct btf_show *show,
1209 const struct btf_member *m)
1210{
1211 show->state.member = m;
1212}
1213
1214static void btf_show_start_array_member(struct btf_show *show)
1215{
1216 show->state.array_member = 1;
1217 btf_show_start_member(show, NULL);
1218}
1219
1220static void btf_show_end_member(struct btf_show *show)
1221{
1222 show->state.member = NULL;
1223}
1224
1225static void btf_show_end_array_member(struct btf_show *show)
1226{
1227 show->state.array_member = 0;
1228 btf_show_end_member(show);
1229}
1230
1231static void *btf_show_start_array_type(struct btf_show *show,
1232 const struct btf_type *t,
1233 u32 type_id,
1234 u16 array_encoding,
1235 void *data)
1236{
1237 show->state.array_encoding = array_encoding;
1238 show->state.array_terminated = 0;
1239 return btf_show_start_aggr_type(show, t, type_id, data);
1240}
1241
1242static void btf_show_end_array_type(struct btf_show *show)
1243{
1244 show->state.array_encoding = 0;
1245 show->state.array_terminated = 0;
1246 btf_show_end_aggr_type(show, "]");
1247}
1248
1249static void *btf_show_start_struct_type(struct btf_show *show,
1250 const struct btf_type *t,
1251 u32 type_id,
1252 void *data)
1253{
1254 return btf_show_start_aggr_type(show, t, type_id, data);
1255}
1256
1257static void btf_show_end_struct_type(struct btf_show *show)
1258{
1259 btf_show_end_aggr_type(show, "}");
1260}
1261
69b693f0
MKL
1262__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1263 const char *fmt, ...)
1264{
1265 va_list args;
1266
1267 va_start(args, fmt);
1268 bpf_verifier_vlog(log, fmt, args);
1269 va_end(args);
1270}
1271
1272__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1273 const char *fmt, ...)
1274{
1275 struct bpf_verifier_log *log = &env->log;
1276 va_list args;
1277
1278 if (!bpf_verifier_log_needed(log))
1279 return;
1280
1281 va_start(args, fmt);
1282 bpf_verifier_vlog(log, fmt, args);
1283 va_end(args);
1284}
1285
1286__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1287 const struct btf_type *t,
1288 bool log_details,
1289 const char *fmt, ...)
1290{
1291 struct bpf_verifier_log *log = &env->log;
1292 u8 kind = BTF_INFO_KIND(t->info);
1293 struct btf *btf = env->btf;
1294 va_list args;
1295
1296 if (!bpf_verifier_log_needed(log))
1297 return;
1298
8580ac94
AS
1299 /* btf verifier prints all types it is processing via
1300 * btf_verifier_log_type(..., fmt = NULL).
1301 * Skip those prints for in-kernel BTF verification.
1302 */
1303 if (log->level == BPF_LOG_KERNEL && !fmt)
1304 return;
1305
69b693f0
MKL
1306 __btf_verifier_log(log, "[%u] %s %s%s",
1307 env->log_type_id,
1308 btf_kind_str[kind],
23127b33 1309 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1310 log_details ? " " : "");
1311
1312 if (log_details)
1313 btf_type_ops(t)->log_details(env, t);
1314
1315 if (fmt && *fmt) {
1316 __btf_verifier_log(log, " ");
1317 va_start(args, fmt);
1318 bpf_verifier_vlog(log, fmt, args);
1319 va_end(args);
1320 }
1321
1322 __btf_verifier_log(log, "\n");
1323}
1324
1325#define btf_verifier_log_type(env, t, ...) \
1326 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1327#define btf_verifier_log_basic(env, t, ...) \
1328 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1329
1330__printf(4, 5)
1331static void btf_verifier_log_member(struct btf_verifier_env *env,
1332 const struct btf_type *struct_type,
1333 const struct btf_member *member,
1334 const char *fmt, ...)
1335{
1336 struct bpf_verifier_log *log = &env->log;
1337 struct btf *btf = env->btf;
1338 va_list args;
1339
1340 if (!bpf_verifier_log_needed(log))
1341 return;
1342
8580ac94
AS
1343 if (log->level == BPF_LOG_KERNEL && !fmt)
1344 return;
eb3f595d
MKL
1345 /* The CHECK_META phase already did a btf dump.
1346 *
1347 * If member is logged again, it must hit an error in
1348 * parsing this member. It is useful to print out which
1349 * struct this member belongs to.
1350 */
1351 if (env->phase != CHECK_META)
1352 btf_verifier_log_type(env, struct_type, NULL);
1353
9d5f9f70
YS
1354 if (btf_type_kflag(struct_type))
1355 __btf_verifier_log(log,
1356 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1357 __btf_name_by_offset(btf, member->name_off),
1358 member->type,
1359 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1360 BTF_MEMBER_BIT_OFFSET(member->offset));
1361 else
1362 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1363 __btf_name_by_offset(btf, member->name_off),
1364 member->type, member->offset);
69b693f0
MKL
1365
1366 if (fmt && *fmt) {
1367 __btf_verifier_log(log, " ");
1368 va_start(args, fmt);
1369 bpf_verifier_vlog(log, fmt, args);
1370 va_end(args);
1371 }
1372
1373 __btf_verifier_log(log, "\n");
1374}
1375
1dc92851
DB
1376__printf(4, 5)
1377static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1378 const struct btf_type *datasec_type,
1379 const struct btf_var_secinfo *vsi,
1380 const char *fmt, ...)
1381{
1382 struct bpf_verifier_log *log = &env->log;
1383 va_list args;
1384
1385 if (!bpf_verifier_log_needed(log))
1386 return;
8580ac94
AS
1387 if (log->level == BPF_LOG_KERNEL && !fmt)
1388 return;
1dc92851
DB
1389 if (env->phase != CHECK_META)
1390 btf_verifier_log_type(env, datasec_type, NULL);
1391
1392 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1393 vsi->type, vsi->offset, vsi->size);
1394 if (fmt && *fmt) {
1395 __btf_verifier_log(log, " ");
1396 va_start(args, fmt);
1397 bpf_verifier_vlog(log, fmt, args);
1398 va_end(args);
1399 }
1400
1401 __btf_verifier_log(log, "\n");
1402}
1403
f80442a4
MKL
1404static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1405 u32 btf_data_size)
69b693f0
MKL
1406{
1407 struct bpf_verifier_log *log = &env->log;
1408 const struct btf *btf = env->btf;
1409 const struct btf_header *hdr;
1410
1411 if (!bpf_verifier_log_needed(log))
1412 return;
1413
8580ac94
AS
1414 if (log->level == BPF_LOG_KERNEL)
1415 return;
f80442a4 1416 hdr = &btf->hdr;
69b693f0
MKL
1417 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1418 __btf_verifier_log(log, "version: %u\n", hdr->version);
1419 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1420 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1421 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1422 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1423 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1424 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1425 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1426}
1427
1428static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1429{
1430 struct btf *btf = env->btf;
1431
951bb646 1432 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1433 /* Expand 'types' array */
1434
1435 struct btf_type **new_types;
1436 u32 expand_by, new_size;
1437
951bb646 1438 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1439 btf_verifier_log(env, "Exceeded max num of types");
1440 return -E2BIG;
1441 }
1442
1443 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1444 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1445 btf->types_size + expand_by);
1446
778e1cdd 1447 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1448 GFP_KERNEL | __GFP_NOWARN);
1449 if (!new_types)
1450 return -ENOMEM;
1451
951bb646
AN
1452 if (btf->nr_types == 0) {
1453 if (!btf->base_btf) {
1454 /* lazily init VOID type */
1455 new_types[0] = &btf_void;
1456 btf->nr_types++;
1457 }
1458 } else {
69b693f0 1459 memcpy(new_types, btf->types,
951bb646
AN
1460 sizeof(*btf->types) * btf->nr_types);
1461 }
69b693f0
MKL
1462
1463 kvfree(btf->types);
1464 btf->types = new_types;
1465 btf->types_size = new_size;
1466 }
1467
951bb646 1468 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1469
1470 return 0;
1471}
1472
78958fca
MKL
1473static int btf_alloc_id(struct btf *btf)
1474{
1475 int id;
1476
1477 idr_preload(GFP_KERNEL);
1478 spin_lock_bh(&btf_idr_lock);
1479 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1480 if (id > 0)
1481 btf->id = id;
1482 spin_unlock_bh(&btf_idr_lock);
1483 idr_preload_end();
1484
1485 if (WARN_ON_ONCE(!id))
1486 return -ENOSPC;
1487
1488 return id > 0 ? 0 : id;
1489}
1490
1491static void btf_free_id(struct btf *btf)
1492{
1493 unsigned long flags;
1494
1495 /*
1496 * In map-in-map, calling map_delete_elem() on outer
1497 * map will call bpf_map_put on the inner map.
1498 * It will then eventually call btf_free_id()
1499 * on the inner map. Some of the map_delete_elem()
1500 * implementation may have irq disabled, so
1501 * we need to use the _irqsave() version instead
1502 * of the _bh() version.
1503 */
1504 spin_lock_irqsave(&btf_idr_lock, flags);
1505 idr_remove(&btf_idr, btf->id);
1506 spin_unlock_irqrestore(&btf_idr_lock, flags);
1507}
1508
69b693f0
MKL
1509static void btf_free(struct btf *btf)
1510{
1511 kvfree(btf->types);
eb3f595d
MKL
1512 kvfree(btf->resolved_sizes);
1513 kvfree(btf->resolved_ids);
69b693f0
MKL
1514 kvfree(btf->data);
1515 kfree(btf);
1516}
1517
78958fca 1518static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1519{
78958fca
MKL
1520 struct btf *btf = container_of(rcu, struct btf, rcu);
1521
1522 btf_free(btf);
f56a653c
MKL
1523}
1524
1525void btf_put(struct btf *btf)
1526{
78958fca
MKL
1527 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1528 btf_free_id(btf);
1529 call_rcu(&btf->rcu, btf_free_rcu);
1530 }
f56a653c
MKL
1531}
1532
eb3f595d
MKL
1533static int env_resolve_init(struct btf_verifier_env *env)
1534{
1535 struct btf *btf = env->btf;
1536 u32 nr_types = btf->nr_types;
1537 u32 *resolved_sizes = NULL;
1538 u32 *resolved_ids = NULL;
1539 u8 *visit_states = NULL;
1540
951bb646 1541 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1542 GFP_KERNEL | __GFP_NOWARN);
1543 if (!resolved_sizes)
1544 goto nomem;
1545
951bb646 1546 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1547 GFP_KERNEL | __GFP_NOWARN);
1548 if (!resolved_ids)
1549 goto nomem;
1550
951bb646 1551 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1552 GFP_KERNEL | __GFP_NOWARN);
1553 if (!visit_states)
1554 goto nomem;
1555
1556 btf->resolved_sizes = resolved_sizes;
1557 btf->resolved_ids = resolved_ids;
1558 env->visit_states = visit_states;
1559
1560 return 0;
1561
1562nomem:
1563 kvfree(resolved_sizes);
1564 kvfree(resolved_ids);
1565 kvfree(visit_states);
1566 return -ENOMEM;
1567}
1568
69b693f0
MKL
1569static void btf_verifier_env_free(struct btf_verifier_env *env)
1570{
eb3f595d 1571 kvfree(env->visit_states);
69b693f0
MKL
1572 kfree(env);
1573}
1574
eb3f595d
MKL
1575static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1576 const struct btf_type *next_type)
1577{
1578 switch (env->resolve_mode) {
1579 case RESOLVE_TBD:
1580 /* int, enum or void is a sink */
1581 return !btf_type_needs_resolve(next_type);
1582 case RESOLVE_PTR:
2667a262
MKL
1583 /* int, enum, void, struct, array, func or func_proto is a sink
1584 * for ptr
1585 */
eb3f595d
MKL
1586 return !btf_type_is_modifier(next_type) &&
1587 !btf_type_is_ptr(next_type);
1588 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1589 /* int, enum, void, ptr, func or func_proto is a sink
1590 * for struct and array
1591 */
eb3f595d
MKL
1592 return !btf_type_is_modifier(next_type) &&
1593 !btf_type_is_array(next_type) &&
1594 !btf_type_is_struct(next_type);
1595 default:
53c8036c 1596 BUG();
eb3f595d
MKL
1597 }
1598}
1599
1600static bool env_type_is_resolved(const struct btf_verifier_env *env,
1601 u32 type_id)
1602{
951bb646
AN
1603 /* base BTF types should be resolved by now */
1604 if (type_id < env->btf->start_id)
1605 return true;
1606
1607 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1608}
1609
1610static int env_stack_push(struct btf_verifier_env *env,
1611 const struct btf_type *t, u32 type_id)
1612{
951bb646 1613 const struct btf *btf = env->btf;
eb3f595d
MKL
1614 struct resolve_vertex *v;
1615
1616 if (env->top_stack == MAX_RESOLVE_DEPTH)
1617 return -E2BIG;
1618
951bb646
AN
1619 if (type_id < btf->start_id
1620 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1621 return -EEXIST;
1622
951bb646 1623 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1624
1625 v = &env->stack[env->top_stack++];
1626 v->t = t;
1627 v->type_id = type_id;
1628 v->next_member = 0;
1629
1630 if (env->resolve_mode == RESOLVE_TBD) {
1631 if (btf_type_is_ptr(t))
1632 env->resolve_mode = RESOLVE_PTR;
1633 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1634 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1635 }
1636
1637 return 0;
1638}
1639
1640static void env_stack_set_next_member(struct btf_verifier_env *env,
1641 u16 next_member)
1642{
1643 env->stack[env->top_stack - 1].next_member = next_member;
1644}
1645
1646static void env_stack_pop_resolved(struct btf_verifier_env *env,
1647 u32 resolved_type_id,
1648 u32 resolved_size)
1649{
1650 u32 type_id = env->stack[--(env->top_stack)].type_id;
1651 struct btf *btf = env->btf;
1652
951bb646 1653 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1654 btf->resolved_sizes[type_id] = resolved_size;
1655 btf->resolved_ids[type_id] = resolved_type_id;
1656 env->visit_states[type_id] = RESOLVED;
1657}
1658
1659static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1660{
1661 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1662}
1663
7e3617a7
MKL
1664/* Resolve the size of a passed-in "type"
1665 *
1666 * type: is an array (e.g. u32 array[x][y])
1667 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1668 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1669 * corresponds to the return type.
1670 * *elem_type: u32
69ff3047 1671 * *elem_id: id of u32
7e3617a7
MKL
1672 * *total_nelems: (x * y). Hence, individual elem size is
1673 * (*type_size / *total_nelems)
887c31a3 1674 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1675 *
1676 * type: is not an array (e.g. const struct X)
1677 * return type: type "struct X"
1678 * *type_size: sizeof(struct X)
1679 * *elem_type: same as return type ("struct X")
69ff3047 1680 * *elem_id: 0
7e3617a7 1681 * *total_nelems: 1
887c31a3 1682 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1683 */
6298399b
JO
1684static const struct btf_type *
1685__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1686 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1687 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1688{
1689 const struct btf_type *array_type = NULL;
69ff3047 1690 const struct btf_array *array = NULL;
887c31a3 1691 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1692
1693 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1694 switch (BTF_INFO_KIND(type->info)) {
1695 /* type->size can be used */
1696 case BTF_KIND_INT:
1697 case BTF_KIND_STRUCT:
1698 case BTF_KIND_UNION:
1699 case BTF_KIND_ENUM:
1700 size = type->size;
1701 goto resolved;
1702
1703 case BTF_KIND_PTR:
1704 size = sizeof(void *);
1705 goto resolved;
1706
1707 /* Modifiers */
1708 case BTF_KIND_TYPEDEF:
1709 case BTF_KIND_VOLATILE:
1710 case BTF_KIND_CONST:
1711 case BTF_KIND_RESTRICT:
887c31a3 1712 id = type->type;
7e3617a7
MKL
1713 type = btf_type_by_id(btf, type->type);
1714 break;
1715
1716 case BTF_KIND_ARRAY:
1717 if (!array_type)
1718 array_type = type;
1719 array = btf_type_array(type);
1720 if (nelems && array->nelems > U32_MAX / nelems)
1721 return ERR_PTR(-EINVAL);
1722 nelems *= array->nelems;
1723 type = btf_type_by_id(btf, array->type);
1724 break;
1725
1726 /* type without size */
1727 default:
1728 return ERR_PTR(-EINVAL);
1729 }
1730 }
1731
1732 return ERR_PTR(-EINVAL);
1733
1734resolved:
1735 if (nelems && size > U32_MAX / nelems)
1736 return ERR_PTR(-EINVAL);
1737
1738 *type_size = nelems * size;
85d33df3
MKL
1739 if (total_nelems)
1740 *total_nelems = nelems;
1741 if (elem_type)
1742 *elem_type = type;
69ff3047
JO
1743 if (elem_id)
1744 *elem_id = array ? array->type : 0;
887c31a3
JO
1745 if (type_id && id)
1746 *type_id = id;
7e3617a7
MKL
1747
1748 return array_type ? : type;
1749}
1750
6298399b
JO
1751const struct btf_type *
1752btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1753 u32 *type_size)
1754{
887c31a3 1755 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1756}
1757
951bb646
AN
1758static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1759{
1760 while (type_id < btf->start_id)
1761 btf = btf->base_btf;
1762
1763 return btf->resolved_ids[type_id - btf->start_id];
1764}
1765
eb3f595d
MKL
1766/* The input param "type_id" must point to a needs_resolve type */
1767static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1768 u32 *type_id)
1769{
951bb646 1770 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1771 return btf_type_by_id(btf, *type_id);
1772}
1773
951bb646
AN
1774static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1775{
1776 while (type_id < btf->start_id)
1777 btf = btf->base_btf;
1778
1779 return btf->resolved_sizes[type_id - btf->start_id];
1780}
1781
eb3f595d
MKL
1782const struct btf_type *btf_type_id_size(const struct btf *btf,
1783 u32 *type_id, u32 *ret_size)
1784{
1785 const struct btf_type *size_type;
1786 u32 size_type_id = *type_id;
1787 u32 size = 0;
1788
1789 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1790 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1791 return NULL;
1792
1793 if (btf_type_has_size(size_type)) {
1794 size = size_type->size;
1795 } else if (btf_type_is_array(size_type)) {
951bb646 1796 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1797 } else if (btf_type_is_ptr(size_type)) {
1798 size = sizeof(void *);
1799 } else {
1dc92851
DB
1800 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1801 !btf_type_is_var(size_type)))
eb3f595d
MKL
1802 return NULL;
1803
951bb646 1804 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1805 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1806 if (btf_type_nosize_or_null(size_type))
eb3f595d 1807 return NULL;
1acc5d5c
AN
1808 else if (btf_type_has_size(size_type))
1809 size = size_type->size;
1810 else if (btf_type_is_array(size_type))
951bb646 1811 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1812 else if (btf_type_is_ptr(size_type))
1813 size = sizeof(void *);
1814 else
1815 return NULL;
eb3f595d
MKL
1816 }
1817
1818 *type_id = size_type_id;
1819 if (ret_size)
1820 *ret_size = size;
1821
1822 return size_type;
1823}
1824
179cde8c
MKL
1825static int btf_df_check_member(struct btf_verifier_env *env,
1826 const struct btf_type *struct_type,
1827 const struct btf_member *member,
1828 const struct btf_type *member_type)
1829{
1830 btf_verifier_log_basic(env, struct_type,
1831 "Unsupported check_member");
1832 return -EINVAL;
1833}
1834
9d5f9f70
YS
1835static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1836 const struct btf_type *struct_type,
1837 const struct btf_member *member,
1838 const struct btf_type *member_type)
1839{
1840 btf_verifier_log_basic(env, struct_type,
1841 "Unsupported check_kflag_member");
1842 return -EINVAL;
1843}
1844
1845/* Used for ptr, array and struct/union type members.
1846 * int, enum and modifier types have their specific callback functions.
1847 */
1848static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1849 const struct btf_type *struct_type,
1850 const struct btf_member *member,
1851 const struct btf_type *member_type)
1852{
1853 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1854 btf_verifier_log_member(env, struct_type, member,
1855 "Invalid member bitfield_size");
1856 return -EINVAL;
1857 }
1858
1859 /* bitfield size is 0, so member->offset represents bit offset only.
1860 * It is safe to call non kflag check_member variants.
1861 */
1862 return btf_type_ops(member_type)->check_member(env, struct_type,
1863 member,
1864 member_type);
1865}
1866
eb3f595d
MKL
1867static int btf_df_resolve(struct btf_verifier_env *env,
1868 const struct resolve_vertex *v)
1869{
1870 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1871 return -EINVAL;
1872}
1873
31d0bc81
AM
1874static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1875 u32 type_id, void *data, u8 bits_offsets,
1876 struct btf_show *show)
b00b8dae 1877{
31d0bc81 1878 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
1879}
1880
179cde8c
MKL
1881static int btf_int_check_member(struct btf_verifier_env *env,
1882 const struct btf_type *struct_type,
1883 const struct btf_member *member,
1884 const struct btf_type *member_type)
1885{
1886 u32 int_data = btf_type_int(member_type);
1887 u32 struct_bits_off = member->offset;
1888 u32 struct_size = struct_type->size;
1889 u32 nr_copy_bits;
1890 u32 bytes_offset;
1891
1892 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1893 btf_verifier_log_member(env, struct_type, member,
1894 "bits_offset exceeds U32_MAX");
1895 return -EINVAL;
1896 }
1897
1898 struct_bits_off += BTF_INT_OFFSET(int_data);
1899 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1900 nr_copy_bits = BTF_INT_BITS(int_data) +
1901 BITS_PER_BYTE_MASKED(struct_bits_off);
1902
b1e8818c 1903 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 1904 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1905 "nr_copy_bits exceeds 128");
179cde8c
MKL
1906 return -EINVAL;
1907 }
1908
1909 if (struct_size < bytes_offset ||
1910 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1911 btf_verifier_log_member(env, struct_type, member,
1912 "Member exceeds struct_size");
1913 return -EINVAL;
1914 }
1915
1916 return 0;
1917}
1918
9d5f9f70
YS
1919static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1920 const struct btf_type *struct_type,
1921 const struct btf_member *member,
1922 const struct btf_type *member_type)
1923{
1924 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1925 u32 int_data = btf_type_int(member_type);
1926 u32 struct_size = struct_type->size;
1927 u32 nr_copy_bits;
1928
1929 /* a regular int type is required for the kflag int member */
1930 if (!btf_type_int_is_regular(member_type)) {
1931 btf_verifier_log_member(env, struct_type, member,
1932 "Invalid member base type");
1933 return -EINVAL;
1934 }
1935
1936 /* check sanity of bitfield size */
1937 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1938 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1939 nr_int_data_bits = BTF_INT_BITS(int_data);
1940 if (!nr_bits) {
1941 /* Not a bitfield member, member offset must be at byte
1942 * boundary.
1943 */
1944 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1945 btf_verifier_log_member(env, struct_type, member,
1946 "Invalid member offset");
1947 return -EINVAL;
1948 }
1949
1950 nr_bits = nr_int_data_bits;
1951 } else if (nr_bits > nr_int_data_bits) {
1952 btf_verifier_log_member(env, struct_type, member,
1953 "Invalid member bitfield_size");
1954 return -EINVAL;
1955 }
1956
1957 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1958 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 1959 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 1960 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1961 "nr_copy_bits exceeds 128");
9d5f9f70
YS
1962 return -EINVAL;
1963 }
1964
1965 if (struct_size < bytes_offset ||
1966 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1967 btf_verifier_log_member(env, struct_type, member,
1968 "Member exceeds struct_size");
1969 return -EINVAL;
1970 }
1971
1972 return 0;
1973}
1974
69b693f0
MKL
1975static s32 btf_int_check_meta(struct btf_verifier_env *env,
1976 const struct btf_type *t,
1977 u32 meta_left)
1978{
1979 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1980 u16 encoding;
1981
1982 if (meta_left < meta_needed) {
1983 btf_verifier_log_basic(env, t,
1984 "meta_left:%u meta_needed:%u",
1985 meta_left, meta_needed);
1986 return -EINVAL;
1987 }
1988
1989 if (btf_type_vlen(t)) {
1990 btf_verifier_log_type(env, t, "vlen != 0");
1991 return -EINVAL;
1992 }
1993
9d5f9f70
YS
1994 if (btf_type_kflag(t)) {
1995 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1996 return -EINVAL;
1997 }
1998
69b693f0 1999 int_data = btf_type_int(t);
aea2f7b8
MKL
2000 if (int_data & ~BTF_INT_MASK) {
2001 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2002 int_data);
2003 return -EINVAL;
2004 }
2005
69b693f0
MKL
2006 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2007
b1e8818c 2008 if (nr_bits > BITS_PER_U128) {
69b693f0 2009 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2010 BITS_PER_U128);
69b693f0
MKL
2011 return -EINVAL;
2012 }
2013
2014 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2015 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2016 return -EINVAL;
2017 }
2018
aea2f7b8
MKL
2019 /*
2020 * Only one of the encoding bits is allowed and it
2021 * should be sufficient for the pretty print purpose (i.e. decoding).
2022 * Multiple bits can be allowed later if it is found
2023 * to be insufficient.
2024 */
69b693f0
MKL
2025 encoding = BTF_INT_ENCODING(int_data);
2026 if (encoding &&
2027 encoding != BTF_INT_SIGNED &&
2028 encoding != BTF_INT_CHAR &&
aea2f7b8 2029 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2030 btf_verifier_log_type(env, t, "Unsupported encoding");
2031 return -ENOTSUPP;
2032 }
2033
2034 btf_verifier_log_type(env, t, NULL);
2035
2036 return meta_needed;
2037}
2038
2039static void btf_int_log(struct btf_verifier_env *env,
2040 const struct btf_type *t)
2041{
2042 int int_data = btf_type_int(t);
2043
2044 btf_verifier_log(env,
2045 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2046 t->size, BTF_INT_OFFSET(int_data),
2047 BTF_INT_BITS(int_data),
2048 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2049}
2050
31d0bc81 2051static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2052{
2053 /* data points to a __int128 number.
2054 * Suppose
2055 * int128_num = *(__int128 *)data;
2056 * The below formulas shows what upper_num and lower_num represents:
2057 * upper_num = int128_num >> 64;
2058 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2059 */
2060 u64 upper_num, lower_num;
2061
2062#ifdef __BIG_ENDIAN_BITFIELD
2063 upper_num = *(u64 *)data;
2064 lower_num = *(u64 *)(data + 8);
2065#else
2066 upper_num = *(u64 *)(data + 8);
2067 lower_num = *(u64 *)data;
2068#endif
2069 if (upper_num == 0)
31d0bc81 2070 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2071 else
31d0bc81
AM
2072 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2073 lower_num);
b1e8818c
YS
2074}
2075
2076static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2077 u16 right_shift_bits)
2078{
2079 u64 upper_num, lower_num;
2080
2081#ifdef __BIG_ENDIAN_BITFIELD
2082 upper_num = print_num[0];
2083 lower_num = print_num[1];
2084#else
2085 upper_num = print_num[1];
2086 lower_num = print_num[0];
2087#endif
2088
2089 /* shake out un-needed bits by shift/or operations */
2090 if (left_shift_bits >= 64) {
2091 upper_num = lower_num << (left_shift_bits - 64);
2092 lower_num = 0;
2093 } else {
2094 upper_num = (upper_num << left_shift_bits) |
2095 (lower_num >> (64 - left_shift_bits));
2096 lower_num = lower_num << left_shift_bits;
2097 }
2098
2099 if (right_shift_bits >= 64) {
2100 lower_num = upper_num >> (right_shift_bits - 64);
2101 upper_num = 0;
2102 } else {
2103 lower_num = (lower_num >> right_shift_bits) |
2104 (upper_num << (64 - right_shift_bits));
2105 upper_num = upper_num >> right_shift_bits;
2106 }
2107
2108#ifdef __BIG_ENDIAN_BITFIELD
2109 print_num[0] = upper_num;
2110 print_num[1] = lower_num;
2111#else
2112 print_num[0] = lower_num;
2113 print_num[1] = upper_num;
2114#endif
2115}
2116
31d0bc81
AM
2117static void btf_bitfield_show(void *data, u8 bits_offset,
2118 u8 nr_bits, struct btf_show *show)
b00b8dae 2119{
b65f370d 2120 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2121 u8 nr_copy_bytes;
2122 u8 nr_copy_bits;
b1e8818c 2123 u64 print_num[2] = {};
b00b8dae 2124
b00b8dae
MKL
2125 nr_copy_bits = nr_bits + bits_offset;
2126 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2127
b1e8818c 2128 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2129
b65f370d
OK
2130#ifdef __BIG_ENDIAN_BITFIELD
2131 left_shift_bits = bits_offset;
2132#else
b1e8818c 2133 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2134#endif
b1e8818c 2135 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2136
b1e8818c 2137 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2138 btf_int128_print(show, print_num);
b00b8dae
MKL
2139}
2140
9d5f9f70 2141
31d0bc81
AM
2142static void btf_int_bits_show(const struct btf *btf,
2143 const struct btf_type *t,
2144 void *data, u8 bits_offset,
2145 struct btf_show *show)
f97be3ab
YS
2146{
2147 u32 int_data = btf_type_int(t);
2148 u8 nr_bits = BTF_INT_BITS(int_data);
2149 u8 total_bits_offset;
2150
2151 /*
2152 * bits_offset is at most 7.
b1e8818c 2153 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2154 */
2155 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2156 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2157 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2158 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2159}
2160
31d0bc81
AM
2161static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2162 u32 type_id, void *data, u8 bits_offset,
2163 struct btf_show *show)
b00b8dae
MKL
2164{
2165 u32 int_data = btf_type_int(t);
2166 u8 encoding = BTF_INT_ENCODING(int_data);
2167 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2168 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2169 void *safe_data;
2170
2171 safe_data = btf_show_start_type(show, t, type_id, data);
2172 if (!safe_data)
2173 return;
b00b8dae
MKL
2174
2175 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2176 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2177 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2178 goto out;
b00b8dae
MKL
2179 }
2180
2181 switch (nr_bits) {
b1e8818c 2182 case 128:
31d0bc81 2183 btf_int128_print(show, safe_data);
b1e8818c 2184 break;
b00b8dae
MKL
2185 case 64:
2186 if (sign)
31d0bc81 2187 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2188 else
31d0bc81 2189 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2190 break;
2191 case 32:
2192 if (sign)
31d0bc81 2193 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2194 else
31d0bc81 2195 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2196 break;
2197 case 16:
2198 if (sign)
31d0bc81 2199 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2200 else
31d0bc81 2201 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2202 break;
2203 case 8:
31d0bc81
AM
2204 if (show->state.array_encoding == BTF_INT_CHAR) {
2205 /* check for null terminator */
2206 if (show->state.array_terminated)
2207 break;
2208 if (*(char *)data == '\0') {
2209 show->state.array_terminated = 1;
2210 break;
2211 }
2212 if (isprint(*(char *)data)) {
2213 btf_show_type_value(show, "'%c'",
2214 *(char *)safe_data);
2215 break;
2216 }
2217 }
b00b8dae 2218 if (sign)
31d0bc81 2219 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2220 else
31d0bc81 2221 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2222 break;
2223 default:
31d0bc81
AM
2224 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2225 break;
b00b8dae 2226 }
31d0bc81
AM
2227out:
2228 btf_show_end_type(show);
b00b8dae
MKL
2229}
2230
69b693f0
MKL
2231static const struct btf_kind_operations int_ops = {
2232 .check_meta = btf_int_check_meta,
eb3f595d 2233 .resolve = btf_df_resolve,
179cde8c 2234 .check_member = btf_int_check_member,
9d5f9f70 2235 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2236 .log_details = btf_int_log,
31d0bc81 2237 .show = btf_int_show,
69b693f0
MKL
2238};
2239
179cde8c
MKL
2240static int btf_modifier_check_member(struct btf_verifier_env *env,
2241 const struct btf_type *struct_type,
2242 const struct btf_member *member,
2243 const struct btf_type *member_type)
2244{
2245 const struct btf_type *resolved_type;
2246 u32 resolved_type_id = member->type;
2247 struct btf_member resolved_member;
2248 struct btf *btf = env->btf;
2249
2250 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2251 if (!resolved_type) {
2252 btf_verifier_log_member(env, struct_type, member,
2253 "Invalid member");
2254 return -EINVAL;
2255 }
2256
2257 resolved_member = *member;
2258 resolved_member.type = resolved_type_id;
2259
2260 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2261 &resolved_member,
2262 resolved_type);
2263}
2264
9d5f9f70
YS
2265static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2266 const struct btf_type *struct_type,
2267 const struct btf_member *member,
2268 const struct btf_type *member_type)
2269{
2270 const struct btf_type *resolved_type;
2271 u32 resolved_type_id = member->type;
2272 struct btf_member resolved_member;
2273 struct btf *btf = env->btf;
2274
2275 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2276 if (!resolved_type) {
2277 btf_verifier_log_member(env, struct_type, member,
2278 "Invalid member");
2279 return -EINVAL;
2280 }
2281
2282 resolved_member = *member;
2283 resolved_member.type = resolved_type_id;
2284
2285 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2286 &resolved_member,
2287 resolved_type);
2288}
2289
179cde8c
MKL
2290static int btf_ptr_check_member(struct btf_verifier_env *env,
2291 const struct btf_type *struct_type,
2292 const struct btf_member *member,
2293 const struct btf_type *member_type)
2294{
2295 u32 struct_size, struct_bits_off, bytes_offset;
2296
2297 struct_size = struct_type->size;
2298 struct_bits_off = member->offset;
2299 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2300
2301 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2302 btf_verifier_log_member(env, struct_type, member,
2303 "Member is not byte aligned");
2304 return -EINVAL;
2305 }
2306
2307 if (struct_size - bytes_offset < sizeof(void *)) {
2308 btf_verifier_log_member(env, struct_type, member,
2309 "Member exceeds struct_size");
2310 return -EINVAL;
2311 }
2312
2313 return 0;
2314}
2315
69b693f0
MKL
2316static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2317 const struct btf_type *t,
2318 u32 meta_left)
2319{
2320 if (btf_type_vlen(t)) {
2321 btf_verifier_log_type(env, t, "vlen != 0");
2322 return -EINVAL;
2323 }
2324
9d5f9f70
YS
2325 if (btf_type_kflag(t)) {
2326 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2327 return -EINVAL;
2328 }
2329
aea2f7b8 2330 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2331 btf_verifier_log_type(env, t, "Invalid type_id");
2332 return -EINVAL;
2333 }
2334
eb04bbb6
YS
2335 /* typedef type must have a valid name, and other ref types,
2336 * volatile, const, restrict, should have a null name.
2337 */
2338 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2339 if (!t->name_off ||
2340 !btf_name_valid_identifier(env->btf, t->name_off)) {
2341 btf_verifier_log_type(env, t, "Invalid name");
2342 return -EINVAL;
2343 }
2344 } else {
2345 if (t->name_off) {
2346 btf_verifier_log_type(env, t, "Invalid name");
2347 return -EINVAL;
2348 }
2349 }
2350
69b693f0
MKL
2351 btf_verifier_log_type(env, t, NULL);
2352
2353 return 0;
2354}
2355
eb3f595d
MKL
2356static int btf_modifier_resolve(struct btf_verifier_env *env,
2357 const struct resolve_vertex *v)
2358{
2359 const struct btf_type *t = v->t;
2360 const struct btf_type *next_type;
2361 u32 next_type_id = t->type;
2362 struct btf *btf = env->btf;
eb3f595d
MKL
2363
2364 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2365 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2366 btf_verifier_log_type(env, v->t, "Invalid type_id");
2367 return -EINVAL;
2368 }
2369
eb3f595d
MKL
2370 if (!env_type_is_resolve_sink(env, next_type) &&
2371 !env_type_is_resolved(env, next_type_id))
2372 return env_stack_push(env, next_type, next_type_id);
2373
2374 /* Figure out the resolved next_type_id with size.
2375 * They will be stored in the current modifier's
2376 * resolved_ids and resolved_sizes such that it can
2377 * save us a few type-following when we use it later (e.g. in
2378 * pretty print).
2379 */
1acc5d5c 2380 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2381 if (env_type_is_resolved(env, next_type_id))
2382 next_type = btf_type_id_resolve(btf, &next_type_id);
2383
2384 /* "typedef void new_void", "const void"...etc */
2385 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2386 !btf_type_is_fwd(next_type) &&
2387 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2388 btf_verifier_log_type(env, v->t, "Invalid type_id");
2389 return -EINVAL;
2390 }
eb3f595d
MKL
2391 }
2392
1acc5d5c 2393 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2394
2395 return 0;
2396}
2397
1dc92851
DB
2398static int btf_var_resolve(struct btf_verifier_env *env,
2399 const struct resolve_vertex *v)
2400{
2401 const struct btf_type *next_type;
2402 const struct btf_type *t = v->t;
2403 u32 next_type_id = t->type;
2404 struct btf *btf = env->btf;
1dc92851
DB
2405
2406 next_type = btf_type_by_id(btf, next_type_id);
2407 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2408 btf_verifier_log_type(env, v->t, "Invalid type_id");
2409 return -EINVAL;
2410 }
2411
2412 if (!env_type_is_resolve_sink(env, next_type) &&
2413 !env_type_is_resolved(env, next_type_id))
2414 return env_stack_push(env, next_type, next_type_id);
2415
2416 if (btf_type_is_modifier(next_type)) {
2417 const struct btf_type *resolved_type;
2418 u32 resolved_type_id;
2419
2420 resolved_type_id = next_type_id;
2421 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2422
2423 if (btf_type_is_ptr(resolved_type) &&
2424 !env_type_is_resolve_sink(env, resolved_type) &&
2425 !env_type_is_resolved(env, resolved_type_id))
2426 return env_stack_push(env, resolved_type,
2427 resolved_type_id);
2428 }
2429
2430 /* We must resolve to something concrete at this point, no
2431 * forward types or similar that would resolve to size of
2432 * zero is allowed.
2433 */
1acc5d5c 2434 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2435 btf_verifier_log_type(env, v->t, "Invalid type_id");
2436 return -EINVAL;
2437 }
2438
1acc5d5c 2439 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2440
2441 return 0;
2442}
2443
eb3f595d
MKL
2444static int btf_ptr_resolve(struct btf_verifier_env *env,
2445 const struct resolve_vertex *v)
2446{
2447 const struct btf_type *next_type;
2448 const struct btf_type *t = v->t;
2449 u32 next_type_id = t->type;
2450 struct btf *btf = env->btf;
eb3f595d
MKL
2451
2452 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2453 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2454 btf_verifier_log_type(env, v->t, "Invalid type_id");
2455 return -EINVAL;
2456 }
2457
eb3f595d
MKL
2458 if (!env_type_is_resolve_sink(env, next_type) &&
2459 !env_type_is_resolved(env, next_type_id))
2460 return env_stack_push(env, next_type, next_type_id);
2461
2462 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2463 * the modifier may have stopped resolving when it was resolved
2464 * to a ptr (last-resolved-ptr).
2465 *
2466 * We now need to continue from the last-resolved-ptr to
2467 * ensure the last-resolved-ptr will not referring back to
2468 * the currenct ptr (t).
2469 */
2470 if (btf_type_is_modifier(next_type)) {
2471 const struct btf_type *resolved_type;
2472 u32 resolved_type_id;
2473
2474 resolved_type_id = next_type_id;
2475 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2476
2477 if (btf_type_is_ptr(resolved_type) &&
2478 !env_type_is_resolve_sink(env, resolved_type) &&
2479 !env_type_is_resolved(env, resolved_type_id))
2480 return env_stack_push(env, resolved_type,
2481 resolved_type_id);
2482 }
2483
2667a262
MKL
2484 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2485 if (env_type_is_resolved(env, next_type_id))
2486 next_type = btf_type_id_resolve(btf, &next_type_id);
2487
2488 if (!btf_type_is_void(next_type) &&
2489 !btf_type_is_fwd(next_type) &&
2490 !btf_type_is_func_proto(next_type)) {
2491 btf_verifier_log_type(env, v->t, "Invalid type_id");
2492 return -EINVAL;
2493 }
eb3f595d
MKL
2494 }
2495
eb3f595d
MKL
2496 env_stack_pop_resolved(env, next_type_id, 0);
2497
2498 return 0;
2499}
2500
31d0bc81
AM
2501static void btf_modifier_show(const struct btf *btf,
2502 const struct btf_type *t,
2503 u32 type_id, void *data,
2504 u8 bits_offset, struct btf_show *show)
b00b8dae 2505{
85d33df3
MKL
2506 if (btf->resolved_ids)
2507 t = btf_type_id_resolve(btf, &type_id);
2508 else
2509 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2510
31d0bc81 2511 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2512}
2513
31d0bc81
AM
2514static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2515 u32 type_id, void *data, u8 bits_offset,
2516 struct btf_show *show)
1dc92851
DB
2517{
2518 t = btf_type_id_resolve(btf, &type_id);
2519
31d0bc81 2520 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2521}
2522
31d0bc81
AM
2523static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2524 u32 type_id, void *data, u8 bits_offset,
2525 struct btf_show *show)
b00b8dae 2526{
31d0bc81
AM
2527 void *safe_data;
2528
2529 safe_data = btf_show_start_type(show, t, type_id, data);
2530 if (!safe_data)
2531 return;
2532
2533 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2534 if (show->flags & BTF_SHOW_PTR_RAW)
2535 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2536 else
2537 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2538 btf_show_end_type(show);
b00b8dae
MKL
2539}
2540
69b693f0
MKL
2541static void btf_ref_type_log(struct btf_verifier_env *env,
2542 const struct btf_type *t)
2543{
2544 btf_verifier_log(env, "type_id=%u", t->type);
2545}
2546
2547static struct btf_kind_operations modifier_ops = {
2548 .check_meta = btf_ref_type_check_meta,
eb3f595d 2549 .resolve = btf_modifier_resolve,
179cde8c 2550 .check_member = btf_modifier_check_member,
9d5f9f70 2551 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2552 .log_details = btf_ref_type_log,
31d0bc81 2553 .show = btf_modifier_show,
69b693f0
MKL
2554};
2555
2556static struct btf_kind_operations ptr_ops = {
2557 .check_meta = btf_ref_type_check_meta,
eb3f595d 2558 .resolve = btf_ptr_resolve,
179cde8c 2559 .check_member = btf_ptr_check_member,
9d5f9f70 2560 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2561 .log_details = btf_ref_type_log,
31d0bc81 2562 .show = btf_ptr_show,
69b693f0
MKL
2563};
2564
8175383f
MKL
2565static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2566 const struct btf_type *t,
2567 u32 meta_left)
2568{
2569 if (btf_type_vlen(t)) {
2570 btf_verifier_log_type(env, t, "vlen != 0");
2571 return -EINVAL;
2572 }
2573
2574 if (t->type) {
2575 btf_verifier_log_type(env, t, "type != 0");
2576 return -EINVAL;
2577 }
2578
eb04bbb6
YS
2579 /* fwd type must have a valid name */
2580 if (!t->name_off ||
2581 !btf_name_valid_identifier(env->btf, t->name_off)) {
2582 btf_verifier_log_type(env, t, "Invalid name");
2583 return -EINVAL;
2584 }
2585
8175383f
MKL
2586 btf_verifier_log_type(env, t, NULL);
2587
2588 return 0;
2589}
2590
76c43ae8
YS
2591static void btf_fwd_type_log(struct btf_verifier_env *env,
2592 const struct btf_type *t)
2593{
2594 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2595}
2596
69b693f0 2597static struct btf_kind_operations fwd_ops = {
8175383f 2598 .check_meta = btf_fwd_check_meta,
eb3f595d 2599 .resolve = btf_df_resolve,
179cde8c 2600 .check_member = btf_df_check_member,
9d5f9f70 2601 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2602 .log_details = btf_fwd_type_log,
31d0bc81 2603 .show = btf_df_show,
69b693f0
MKL
2604};
2605
179cde8c
MKL
2606static int btf_array_check_member(struct btf_verifier_env *env,
2607 const struct btf_type *struct_type,
2608 const struct btf_member *member,
2609 const struct btf_type *member_type)
2610{
2611 u32 struct_bits_off = member->offset;
2612 u32 struct_size, bytes_offset;
2613 u32 array_type_id, array_size;
2614 struct btf *btf = env->btf;
2615
2616 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2617 btf_verifier_log_member(env, struct_type, member,
2618 "Member is not byte aligned");
2619 return -EINVAL;
2620 }
2621
2622 array_type_id = member->type;
2623 btf_type_id_size(btf, &array_type_id, &array_size);
2624 struct_size = struct_type->size;
2625 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2626 if (struct_size - bytes_offset < array_size) {
2627 btf_verifier_log_member(env, struct_type, member,
2628 "Member exceeds struct_size");
2629 return -EINVAL;
2630 }
2631
2632 return 0;
2633}
2634
69b693f0
MKL
2635static s32 btf_array_check_meta(struct btf_verifier_env *env,
2636 const struct btf_type *t,
2637 u32 meta_left)
2638{
2639 const struct btf_array *array = btf_type_array(t);
2640 u32 meta_needed = sizeof(*array);
2641
2642 if (meta_left < meta_needed) {
2643 btf_verifier_log_basic(env, t,
2644 "meta_left:%u meta_needed:%u",
2645 meta_left, meta_needed);
2646 return -EINVAL;
2647 }
2648
eb04bbb6
YS
2649 /* array type should not have a name */
2650 if (t->name_off) {
2651 btf_verifier_log_type(env, t, "Invalid name");
2652 return -EINVAL;
2653 }
2654
69b693f0
MKL
2655 if (btf_type_vlen(t)) {
2656 btf_verifier_log_type(env, t, "vlen != 0");
2657 return -EINVAL;
2658 }
2659
9d5f9f70
YS
2660 if (btf_type_kflag(t)) {
2661 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2662 return -EINVAL;
2663 }
2664
b9308ae6
MKL
2665 if (t->size) {
2666 btf_verifier_log_type(env, t, "size != 0");
2667 return -EINVAL;
2668 }
2669
4ef5f574
MKL
2670 /* Array elem type and index type cannot be in type void,
2671 * so !array->type and !array->index_type are not allowed.
69b693f0 2672 */
aea2f7b8 2673 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2674 btf_verifier_log_type(env, t, "Invalid elem");
2675 return -EINVAL;
2676 }
2677
aea2f7b8 2678 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2679 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2680 return -EINVAL;
2681 }
2682
2683 btf_verifier_log_type(env, t, NULL);
2684
2685 return meta_needed;
2686}
2687
eb3f595d
MKL
2688static int btf_array_resolve(struct btf_verifier_env *env,
2689 const struct resolve_vertex *v)
2690{
2691 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2692 const struct btf_type *elem_type, *index_type;
2693 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2694 struct btf *btf = env->btf;
2695 u32 elem_size;
2696
4ef5f574
MKL
2697 /* Check array->index_type */
2698 index_type_id = array->index_type;
2699 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2700 if (btf_type_nosize_or_null(index_type) ||
2701 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2702 btf_verifier_log_type(env, v->t, "Invalid index");
2703 return -EINVAL;
2704 }
2705
2706 if (!env_type_is_resolve_sink(env, index_type) &&
2707 !env_type_is_resolved(env, index_type_id))
2708 return env_stack_push(env, index_type, index_type_id);
2709
2710 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2711 if (!index_type || !btf_type_is_int(index_type) ||
2712 !btf_type_int_is_regular(index_type)) {
2713 btf_verifier_log_type(env, v->t, "Invalid index");
2714 return -EINVAL;
2715 }
2716
2717 /* Check array->type */
2718 elem_type_id = array->type;
eb3f595d 2719 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2720 if (btf_type_nosize_or_null(elem_type) ||
2721 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2722 btf_verifier_log_type(env, v->t,
2723 "Invalid elem");
2724 return -EINVAL;
2725 }
2726
2727 if (!env_type_is_resolve_sink(env, elem_type) &&
2728 !env_type_is_resolved(env, elem_type_id))
2729 return env_stack_push(env, elem_type, elem_type_id);
2730
2731 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2732 if (!elem_type) {
2733 btf_verifier_log_type(env, v->t, "Invalid elem");
2734 return -EINVAL;
2735 }
2736
4ef5f574
MKL
2737 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2738 btf_verifier_log_type(env, v->t, "Invalid array of int");
2739 return -EINVAL;
eb3f595d
MKL
2740 }
2741
2742 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2743 btf_verifier_log_type(env, v->t,
2744 "Array size overflows U32_MAX");
2745 return -EINVAL;
2746 }
2747
2748 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2749
2750 return 0;
2751}
2752
69b693f0
MKL
2753static void btf_array_log(struct btf_verifier_env *env,
2754 const struct btf_type *t)
2755{
2756 const struct btf_array *array = btf_type_array(t);
2757
2758 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2759 array->type, array->index_type, array->nelems);
2760}
2761
31d0bc81
AM
2762static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2763 u32 type_id, void *data, u8 bits_offset,
2764 struct btf_show *show)
b00b8dae
MKL
2765{
2766 const struct btf_array *array = btf_type_array(t);
2767 const struct btf_kind_operations *elem_ops;
2768 const struct btf_type *elem_type;
31d0bc81
AM
2769 u32 i, elem_size = 0, elem_type_id;
2770 u16 encoding = 0;
b00b8dae
MKL
2771
2772 elem_type_id = array->type;
31d0bc81
AM
2773 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2774 if (elem_type && btf_type_has_size(elem_type))
2775 elem_size = elem_type->size;
2776
2777 if (elem_type && btf_type_is_int(elem_type)) {
2778 u32 int_type = btf_type_int(elem_type);
2779
2780 encoding = BTF_INT_ENCODING(int_type);
2781
2782 /*
2783 * BTF_INT_CHAR encoding never seems to be set for
2784 * char arrays, so if size is 1 and element is
2785 * printable as a char, we'll do that.
2786 */
2787 if (elem_size == 1)
2788 encoding = BTF_INT_CHAR;
2789 }
2790
2791 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2792 return;
2793
2794 if (!elem_type)
2795 goto out;
b00b8dae 2796 elem_ops = btf_type_ops(elem_type);
31d0bc81 2797
b00b8dae 2798 for (i = 0; i < array->nelems; i++) {
b00b8dae 2799
31d0bc81
AM
2800 btf_show_start_array_member(show);
2801
2802 elem_ops->show(btf, elem_type, elem_type_id, data,
2803 bits_offset, show);
b00b8dae 2804 data += elem_size;
31d0bc81
AM
2805
2806 btf_show_end_array_member(show);
2807
2808 if (show->state.array_terminated)
2809 break;
b00b8dae 2810 }
31d0bc81
AM
2811out:
2812 btf_show_end_array_type(show);
2813}
2814
2815static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2816 u32 type_id, void *data, u8 bits_offset,
2817 struct btf_show *show)
2818{
2819 const struct btf_member *m = show->state.member;
2820
2821 /*
2822 * First check if any members would be shown (are non-zero).
2823 * See comments above "struct btf_show" definition for more
2824 * details on how this works at a high-level.
2825 */
2826 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2827 if (!show->state.depth_check) {
2828 show->state.depth_check = show->state.depth + 1;
2829 show->state.depth_to_show = 0;
2830 }
2831 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2832 show->state.member = m;
2833
2834 if (show->state.depth_check != show->state.depth + 1)
2835 return;
2836 show->state.depth_check = 0;
2837
2838 if (show->state.depth_to_show <= show->state.depth)
2839 return;
2840 /*
2841 * Reaching here indicates we have recursed and found
2842 * non-zero array member(s).
2843 */
2844 }
2845 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2846}
2847
69b693f0
MKL
2848static struct btf_kind_operations array_ops = {
2849 .check_meta = btf_array_check_meta,
eb3f595d 2850 .resolve = btf_array_resolve,
179cde8c 2851 .check_member = btf_array_check_member,
9d5f9f70 2852 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2853 .log_details = btf_array_log,
31d0bc81 2854 .show = btf_array_show,
69b693f0
MKL
2855};
2856
179cde8c
MKL
2857static int btf_struct_check_member(struct btf_verifier_env *env,
2858 const struct btf_type *struct_type,
2859 const struct btf_member *member,
2860 const struct btf_type *member_type)
2861{
2862 u32 struct_bits_off = member->offset;
2863 u32 struct_size, bytes_offset;
2864
2865 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2866 btf_verifier_log_member(env, struct_type, member,
2867 "Member is not byte aligned");
2868 return -EINVAL;
2869 }
2870
2871 struct_size = struct_type->size;
2872 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2873 if (struct_size - bytes_offset < member_type->size) {
2874 btf_verifier_log_member(env, struct_type, member,
2875 "Member exceeds struct_size");
2876 return -EINVAL;
2877 }
2878
2879 return 0;
2880}
2881
69b693f0
MKL
2882static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2883 const struct btf_type *t,
2884 u32 meta_left)
2885{
2886 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2887 const struct btf_member *member;
6283fa38 2888 u32 meta_needed, last_offset;
69b693f0
MKL
2889 struct btf *btf = env->btf;
2890 u32 struct_size = t->size;
9d5f9f70 2891 u32 offset;
69b693f0
MKL
2892 u16 i;
2893
2894 meta_needed = btf_type_vlen(t) * sizeof(*member);
2895 if (meta_left < meta_needed) {
2896 btf_verifier_log_basic(env, t,
2897 "meta_left:%u meta_needed:%u",
2898 meta_left, meta_needed);
2899 return -EINVAL;
2900 }
2901
eb04bbb6
YS
2902 /* struct type either no name or a valid one */
2903 if (t->name_off &&
2904 !btf_name_valid_identifier(env->btf, t->name_off)) {
2905 btf_verifier_log_type(env, t, "Invalid name");
2906 return -EINVAL;
2907 }
2908
69b693f0
MKL
2909 btf_verifier_log_type(env, t, NULL);
2910
6283fa38 2911 last_offset = 0;
69b693f0 2912 for_each_member(i, t, member) {
fbcf93eb 2913 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
2914 btf_verifier_log_member(env, t, member,
2915 "Invalid member name_offset:%u",
fbcf93eb 2916 member->name_off);
69b693f0
MKL
2917 return -EINVAL;
2918 }
2919
eb04bbb6
YS
2920 /* struct member either no name or a valid one */
2921 if (member->name_off &&
2922 !btf_name_valid_identifier(btf, member->name_off)) {
2923 btf_verifier_log_member(env, t, member, "Invalid name");
2924 return -EINVAL;
2925 }
69b693f0 2926 /* A member cannot be in type void */
aea2f7b8 2927 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
2928 btf_verifier_log_member(env, t, member,
2929 "Invalid type_id");
2930 return -EINVAL;
2931 }
2932
9d5f9f70
YS
2933 offset = btf_member_bit_offset(t, member);
2934 if (is_union && offset) {
69b693f0
MKL
2935 btf_verifier_log_member(env, t, member,
2936 "Invalid member bits_offset");
2937 return -EINVAL;
2938 }
2939
6283fa38
MKL
2940 /*
2941 * ">" instead of ">=" because the last member could be
2942 * "char a[0];"
2943 */
9d5f9f70 2944 if (last_offset > offset) {
6283fa38
MKL
2945 btf_verifier_log_member(env, t, member,
2946 "Invalid member bits_offset");
2947 return -EINVAL;
2948 }
2949
9d5f9f70 2950 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 2951 btf_verifier_log_member(env, t, member,
311fe1a8 2952 "Member bits_offset exceeds its struct size");
69b693f0
MKL
2953 return -EINVAL;
2954 }
2955
2956 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 2957 last_offset = offset;
69b693f0
MKL
2958 }
2959
2960 return meta_needed;
2961}
2962
eb3f595d
MKL
2963static int btf_struct_resolve(struct btf_verifier_env *env,
2964 const struct resolve_vertex *v)
2965{
2966 const struct btf_member *member;
179cde8c 2967 int err;
eb3f595d
MKL
2968 u16 i;
2969
2970 /* Before continue resolving the next_member,
2971 * ensure the last member is indeed resolved to a
2972 * type with size info.
2973 */
2974 if (v->next_member) {
179cde8c 2975 const struct btf_type *last_member_type;
eb3f595d
MKL
2976 const struct btf_member *last_member;
2977 u16 last_member_type_id;
2978
2979 last_member = btf_type_member(v->t) + v->next_member - 1;
2980 last_member_type_id = last_member->type;
2981 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2982 last_member_type_id)))
2983 return -EINVAL;
179cde8c
MKL
2984
2985 last_member_type = btf_type_by_id(env->btf,
2986 last_member_type_id);
9d5f9f70
YS
2987 if (btf_type_kflag(v->t))
2988 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2989 last_member,
2990 last_member_type);
2991 else
2992 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2993 last_member,
2994 last_member_type);
179cde8c
MKL
2995 if (err)
2996 return err;
eb3f595d
MKL
2997 }
2998
2999 for_each_member_from(i, v->next_member, v->t, member) {
3000 u32 member_type_id = member->type;
3001 const struct btf_type *member_type = btf_type_by_id(env->btf,
3002 member_type_id);
3003
e4f07120
SF
3004 if (btf_type_nosize_or_null(member_type) ||
3005 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3006 btf_verifier_log_member(env, v->t, member,
3007 "Invalid member");
3008 return -EINVAL;
3009 }
3010
3011 if (!env_type_is_resolve_sink(env, member_type) &&
3012 !env_type_is_resolved(env, member_type_id)) {
3013 env_stack_set_next_member(env, i + 1);
3014 return env_stack_push(env, member_type, member_type_id);
3015 }
179cde8c 3016
9d5f9f70
YS
3017 if (btf_type_kflag(v->t))
3018 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3019 member,
3020 member_type);
3021 else
3022 err = btf_type_ops(member_type)->check_member(env, v->t,
3023 member,
3024 member_type);
179cde8c
MKL
3025 if (err)
3026 return err;
eb3f595d
MKL
3027 }
3028
3029 env_stack_pop_resolved(env, 0, 0);
3030
3031 return 0;
3032}
3033
69b693f0
MKL
3034static void btf_struct_log(struct btf_verifier_env *env,
3035 const struct btf_type *t)
3036{
3037 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3038}
3039
d83525ca
AS
3040/* find 'struct bpf_spin_lock' in map value.
3041 * return >= 0 offset if found
3042 * and < 0 in case of error
3043 */
3044int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3045{
3046 const struct btf_member *member;
3047 u32 i, off = -ENOENT;
3048
3049 if (!__btf_type_is_struct(t))
3050 return -EINVAL;
3051
3052 for_each_member(i, t, member) {
3053 const struct btf_type *member_type = btf_type_by_id(btf,
3054 member->type);
3055 if (!__btf_type_is_struct(member_type))
3056 continue;
3057 if (member_type->size != sizeof(struct bpf_spin_lock))
3058 continue;
3059 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3060 "bpf_spin_lock"))
3061 continue;
3062 if (off != -ENOENT)
3063 /* only one 'struct bpf_spin_lock' is allowed */
3064 return -E2BIG;
3065 off = btf_member_bit_offset(t, member);
3066 if (off % 8)
3067 /* valid C code cannot generate such BTF */
3068 return -EINVAL;
3069 off /= 8;
3070 if (off % __alignof__(struct bpf_spin_lock))
3071 /* valid struct bpf_spin_lock will be 4 byte aligned */
3072 return -EINVAL;
3073 }
3074 return off;
3075}
3076
31d0bc81
AM
3077static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3078 u32 type_id, void *data, u8 bits_offset,
3079 struct btf_show *show)
b00b8dae 3080{
b00b8dae 3081 const struct btf_member *member;
31d0bc81 3082 void *safe_data;
b00b8dae
MKL
3083 u32 i;
3084
31d0bc81
AM
3085 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3086 if (!safe_data)
3087 return;
3088
b00b8dae
MKL
3089 for_each_member(i, t, member) {
3090 const struct btf_type *member_type = btf_type_by_id(btf,
3091 member->type);
b00b8dae 3092 const struct btf_kind_operations *ops;
9d5f9f70
YS
3093 u32 member_offset, bitfield_size;
3094 u32 bytes_offset;
3095 u8 bits8_offset;
b00b8dae 3096
31d0bc81 3097 btf_show_start_member(show, member);
b00b8dae 3098
9d5f9f70
YS
3099 member_offset = btf_member_bit_offset(t, member);
3100 bitfield_size = btf_member_bitfield_size(t, member);
17e3ac81
YS
3101 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3102 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3103 if (bitfield_size) {
31d0bc81
AM
3104 safe_data = btf_show_start_type(show, member_type,
3105 member->type,
3106 data + bytes_offset);
3107 if (safe_data)
3108 btf_bitfield_show(safe_data,
3109 bits8_offset,
3110 bitfield_size, show);
3111 btf_show_end_type(show);
9d5f9f70 3112 } else {
9d5f9f70 3113 ops = btf_type_ops(member_type);
31d0bc81
AM
3114 ops->show(btf, member_type, member->type,
3115 data + bytes_offset, bits8_offset, show);
9d5f9f70 3116 }
31d0bc81
AM
3117
3118 btf_show_end_member(show);
b00b8dae 3119 }
31d0bc81
AM
3120
3121 btf_show_end_struct_type(show);
3122}
3123
3124static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3125 u32 type_id, void *data, u8 bits_offset,
3126 struct btf_show *show)
3127{
3128 const struct btf_member *m = show->state.member;
3129
3130 /*
3131 * First check if any members would be shown (are non-zero).
3132 * See comments above "struct btf_show" definition for more
3133 * details on how this works at a high-level.
3134 */
3135 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3136 if (!show->state.depth_check) {
3137 show->state.depth_check = show->state.depth + 1;
3138 show->state.depth_to_show = 0;
3139 }
3140 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3141 /* Restore saved member data here */
3142 show->state.member = m;
3143 if (show->state.depth_check != show->state.depth + 1)
3144 return;
3145 show->state.depth_check = 0;
3146
3147 if (show->state.depth_to_show <= show->state.depth)
3148 return;
3149 /*
3150 * Reaching here indicates we have recursed and found
3151 * non-zero child values.
3152 */
3153 }
3154
3155 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3156}
3157
69b693f0
MKL
3158static struct btf_kind_operations struct_ops = {
3159 .check_meta = btf_struct_check_meta,
eb3f595d 3160 .resolve = btf_struct_resolve,
179cde8c 3161 .check_member = btf_struct_check_member,
9d5f9f70 3162 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3163 .log_details = btf_struct_log,
31d0bc81 3164 .show = btf_struct_show,
69b693f0
MKL
3165};
3166
179cde8c
MKL
3167static int btf_enum_check_member(struct btf_verifier_env *env,
3168 const struct btf_type *struct_type,
3169 const struct btf_member *member,
3170 const struct btf_type *member_type)
3171{
3172 u32 struct_bits_off = member->offset;
3173 u32 struct_size, bytes_offset;
3174
3175 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3176 btf_verifier_log_member(env, struct_type, member,
3177 "Member is not byte aligned");
3178 return -EINVAL;
3179 }
3180
3181 struct_size = struct_type->size;
3182 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3183 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3184 btf_verifier_log_member(env, struct_type, member,
3185 "Member exceeds struct_size");
3186 return -EINVAL;
3187 }
3188
3189 return 0;
3190}
3191
9d5f9f70
YS
3192static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3193 const struct btf_type *struct_type,
3194 const struct btf_member *member,
3195 const struct btf_type *member_type)
3196{
3197 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3198 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3199
3200 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3201 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3202 if (!nr_bits) {
3203 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3204 btf_verifier_log_member(env, struct_type, member,
3205 "Member is not byte aligned");
e3439af4 3206 return -EINVAL;
9d5f9f70
YS
3207 }
3208
3209 nr_bits = int_bitsize;
3210 } else if (nr_bits > int_bitsize) {
3211 btf_verifier_log_member(env, struct_type, member,
3212 "Invalid member bitfield_size");
3213 return -EINVAL;
3214 }
3215
3216 struct_size = struct_type->size;
3217 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3218 if (struct_size < bytes_end) {
3219 btf_verifier_log_member(env, struct_type, member,
3220 "Member exceeds struct_size");
3221 return -EINVAL;
3222 }
3223
3224 return 0;
3225}
3226
69b693f0
MKL
3227static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3228 const struct btf_type *t,
3229 u32 meta_left)
3230{
3231 const struct btf_enum *enums = btf_type_enum(t);
3232 struct btf *btf = env->btf;
3233 u16 i, nr_enums;
3234 u32 meta_needed;
3235
3236 nr_enums = btf_type_vlen(t);
3237 meta_needed = nr_enums * sizeof(*enums);
3238
3239 if (meta_left < meta_needed) {
3240 btf_verifier_log_basic(env, t,
3241 "meta_left:%u meta_needed:%u",
3242 meta_left, meta_needed);
3243 return -EINVAL;
3244 }
3245
9d5f9f70
YS
3246 if (btf_type_kflag(t)) {
3247 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3248 return -EINVAL;
3249 }
3250
9eea9849
AS
3251 if (t->size > 8 || !is_power_of_2(t->size)) {
3252 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
3253 return -EINVAL;
3254 }
3255
eb04bbb6
YS
3256 /* enum type either no name or a valid one */
3257 if (t->name_off &&
3258 !btf_name_valid_identifier(env->btf, t->name_off)) {
3259 btf_verifier_log_type(env, t, "Invalid name");
3260 return -EINVAL;
3261 }
3262
69b693f0
MKL
3263 btf_verifier_log_type(env, t, NULL);
3264
3265 for (i = 0; i < nr_enums; i++) {
fbcf93eb 3266 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 3267 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 3268 enums[i].name_off);
69b693f0
MKL
3269 return -EINVAL;
3270 }
3271
eb04bbb6
YS
3272 /* enum member must have a valid name */
3273 if (!enums[i].name_off ||
3274 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3275 btf_verifier_log_type(env, t, "Invalid name");
3276 return -EINVAL;
3277 }
3278
8580ac94
AS
3279 if (env->log.level == BPF_LOG_KERNEL)
3280 continue;
69b693f0 3281 btf_verifier_log(env, "\t%s val=%d\n",
23127b33 3282 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
3283 enums[i].val);
3284 }
3285
3286 return meta_needed;
3287}
3288
3289static void btf_enum_log(struct btf_verifier_env *env,
3290 const struct btf_type *t)
3291{
3292 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3293}
3294
31d0bc81
AM
3295static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3296 u32 type_id, void *data, u8 bits_offset,
3297 struct btf_show *show)
b00b8dae
MKL
3298{
3299 const struct btf_enum *enums = btf_type_enum(t);
3300 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
3301 void *safe_data;
3302 int v;
3303
3304 safe_data = btf_show_start_type(show, t, type_id, data);
3305 if (!safe_data)
3306 return;
3307
3308 v = *(int *)safe_data;
b00b8dae
MKL
3309
3310 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
3311 if (v != enums[i].val)
3312 continue;
3313
3314 btf_show_type_value(show, "%s",
3315 __btf_name_by_offset(btf,
3316 enums[i].name_off));
3317
3318 btf_show_end_type(show);
3319 return;
b00b8dae
MKL
3320 }
3321
31d0bc81
AM
3322 btf_show_type_value(show, "%d", v);
3323 btf_show_end_type(show);
b00b8dae
MKL
3324}
3325
69b693f0
MKL
3326static struct btf_kind_operations enum_ops = {
3327 .check_meta = btf_enum_check_meta,
eb3f595d 3328 .resolve = btf_df_resolve,
179cde8c 3329 .check_member = btf_enum_check_member,
9d5f9f70 3330 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 3331 .log_details = btf_enum_log,
31d0bc81 3332 .show = btf_enum_show,
69b693f0
MKL
3333};
3334
2667a262
MKL
3335static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3336 const struct btf_type *t,
3337 u32 meta_left)
3338{
3339 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3340
3341 if (meta_left < meta_needed) {
3342 btf_verifier_log_basic(env, t,
3343 "meta_left:%u meta_needed:%u",
3344 meta_left, meta_needed);
3345 return -EINVAL;
3346 }
3347
3348 if (t->name_off) {
3349 btf_verifier_log_type(env, t, "Invalid name");
3350 return -EINVAL;
3351 }
3352
9d5f9f70
YS
3353 if (btf_type_kflag(t)) {
3354 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3355 return -EINVAL;
3356 }
3357
2667a262
MKL
3358 btf_verifier_log_type(env, t, NULL);
3359
3360 return meta_needed;
3361}
3362
3363static void btf_func_proto_log(struct btf_verifier_env *env,
3364 const struct btf_type *t)
3365{
3366 const struct btf_param *args = (const struct btf_param *)(t + 1);
3367 u16 nr_args = btf_type_vlen(t), i;
3368
3369 btf_verifier_log(env, "return=%u args=(", t->type);
3370 if (!nr_args) {
3371 btf_verifier_log(env, "void");
3372 goto done;
3373 }
3374
3375 if (nr_args == 1 && !args[0].type) {
3376 /* Only one vararg */
3377 btf_verifier_log(env, "vararg");
3378 goto done;
3379 }
3380
3381 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
3382 __btf_name_by_offset(env->btf,
3383 args[0].name_off));
2667a262
MKL
3384 for (i = 1; i < nr_args - 1; i++)
3385 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
3386 __btf_name_by_offset(env->btf,
3387 args[i].name_off));
2667a262
MKL
3388
3389 if (nr_args > 1) {
3390 const struct btf_param *last_arg = &args[nr_args - 1];
3391
3392 if (last_arg->type)
3393 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
3394 __btf_name_by_offset(env->btf,
3395 last_arg->name_off));
2667a262
MKL
3396 else
3397 btf_verifier_log(env, ", vararg");
3398 }
3399
3400done:
3401 btf_verifier_log(env, ")");
3402}
3403
3404static struct btf_kind_operations func_proto_ops = {
3405 .check_meta = btf_func_proto_check_meta,
3406 .resolve = btf_df_resolve,
3407 /*
3408 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3409 * a struct's member.
3410 *
3411 * It should be a funciton pointer instead.
3412 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3413 *
3414 * Hence, there is no btf_func_check_member().
3415 */
3416 .check_member = btf_df_check_member,
9d5f9f70 3417 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3418 .log_details = btf_func_proto_log,
31d0bc81 3419 .show = btf_df_show,
2667a262
MKL
3420};
3421
3422static s32 btf_func_check_meta(struct btf_verifier_env *env,
3423 const struct btf_type *t,
3424 u32 meta_left)
3425{
3426 if (!t->name_off ||
3427 !btf_name_valid_identifier(env->btf, t->name_off)) {
3428 btf_verifier_log_type(env, t, "Invalid name");
3429 return -EINVAL;
3430 }
3431
51c39bb1
AS
3432 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3433 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
3434 return -EINVAL;
3435 }
3436
9d5f9f70
YS
3437 if (btf_type_kflag(t)) {
3438 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3439 return -EINVAL;
3440 }
3441
2667a262
MKL
3442 btf_verifier_log_type(env, t, NULL);
3443
3444 return 0;
3445}
3446
3447static struct btf_kind_operations func_ops = {
3448 .check_meta = btf_func_check_meta,
3449 .resolve = btf_df_resolve,
3450 .check_member = btf_df_check_member,
9d5f9f70 3451 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3452 .log_details = btf_ref_type_log,
31d0bc81 3453 .show = btf_df_show,
2667a262
MKL
3454};
3455
1dc92851
DB
3456static s32 btf_var_check_meta(struct btf_verifier_env *env,
3457 const struct btf_type *t,
3458 u32 meta_left)
3459{
3460 const struct btf_var *var;
3461 u32 meta_needed = sizeof(*var);
3462
3463 if (meta_left < meta_needed) {
3464 btf_verifier_log_basic(env, t,
3465 "meta_left:%u meta_needed:%u",
3466 meta_left, meta_needed);
3467 return -EINVAL;
3468 }
3469
3470 if (btf_type_vlen(t)) {
3471 btf_verifier_log_type(env, t, "vlen != 0");
3472 return -EINVAL;
3473 }
3474
3475 if (btf_type_kflag(t)) {
3476 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3477 return -EINVAL;
3478 }
3479
3480 if (!t->name_off ||
3481 !__btf_name_valid(env->btf, t->name_off, true)) {
3482 btf_verifier_log_type(env, t, "Invalid name");
3483 return -EINVAL;
3484 }
3485
3486 /* A var cannot be in type void */
3487 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3488 btf_verifier_log_type(env, t, "Invalid type_id");
3489 return -EINVAL;
3490 }
3491
3492 var = btf_type_var(t);
3493 if (var->linkage != BTF_VAR_STATIC &&
3494 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3495 btf_verifier_log_type(env, t, "Linkage not supported");
3496 return -EINVAL;
3497 }
3498
3499 btf_verifier_log_type(env, t, NULL);
3500
3501 return meta_needed;
3502}
3503
3504static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3505{
3506 const struct btf_var *var = btf_type_var(t);
3507
3508 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3509}
3510
3511static const struct btf_kind_operations var_ops = {
3512 .check_meta = btf_var_check_meta,
3513 .resolve = btf_var_resolve,
3514 .check_member = btf_df_check_member,
3515 .check_kflag_member = btf_df_check_kflag_member,
3516 .log_details = btf_var_log,
31d0bc81 3517 .show = btf_var_show,
1dc92851
DB
3518};
3519
3520static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3521 const struct btf_type *t,
3522 u32 meta_left)
3523{
3524 const struct btf_var_secinfo *vsi;
3525 u64 last_vsi_end_off = 0, sum = 0;
3526 u32 i, meta_needed;
3527
3528 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3529 if (meta_left < meta_needed) {
3530 btf_verifier_log_basic(env, t,
3531 "meta_left:%u meta_needed:%u",
3532 meta_left, meta_needed);
3533 return -EINVAL;
3534 }
3535
3536 if (!btf_type_vlen(t)) {
3537 btf_verifier_log_type(env, t, "vlen == 0");
3538 return -EINVAL;
3539 }
3540
3541 if (!t->size) {
3542 btf_verifier_log_type(env, t, "size == 0");
3543 return -EINVAL;
3544 }
3545
3546 if (btf_type_kflag(t)) {
3547 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3548 return -EINVAL;
3549 }
3550
3551 if (!t->name_off ||
3552 !btf_name_valid_section(env->btf, t->name_off)) {
3553 btf_verifier_log_type(env, t, "Invalid name");
3554 return -EINVAL;
3555 }
3556
3557 btf_verifier_log_type(env, t, NULL);
3558
3559 for_each_vsi(i, t, vsi) {
3560 /* A var cannot be in type void */
3561 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3562 btf_verifier_log_vsi(env, t, vsi,
3563 "Invalid type_id");
3564 return -EINVAL;
3565 }
3566
3567 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3568 btf_verifier_log_vsi(env, t, vsi,
3569 "Invalid offset");
3570 return -EINVAL;
3571 }
3572
3573 if (!vsi->size || vsi->size > t->size) {
3574 btf_verifier_log_vsi(env, t, vsi,
3575 "Invalid size");
3576 return -EINVAL;
3577 }
3578
3579 last_vsi_end_off = vsi->offset + vsi->size;
3580 if (last_vsi_end_off > t->size) {
3581 btf_verifier_log_vsi(env, t, vsi,
3582 "Invalid offset+size");
3583 return -EINVAL;
3584 }
3585
3586 btf_verifier_log_vsi(env, t, vsi, NULL);
3587 sum += vsi->size;
3588 }
3589
3590 if (t->size < sum) {
3591 btf_verifier_log_type(env, t, "Invalid btf_info size");
3592 return -EINVAL;
3593 }
3594
3595 return meta_needed;
3596}
3597
3598static int btf_datasec_resolve(struct btf_verifier_env *env,
3599 const struct resolve_vertex *v)
3600{
3601 const struct btf_var_secinfo *vsi;
3602 struct btf *btf = env->btf;
3603 u16 i;
3604
3605 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3606 u32 var_type_id = vsi->type, type_id, type_size = 0;
3607 const struct btf_type *var_type = btf_type_by_id(env->btf,
3608 var_type_id);
3609 if (!var_type || !btf_type_is_var(var_type)) {
3610 btf_verifier_log_vsi(env, v->t, vsi,
3611 "Not a VAR kind member");
3612 return -EINVAL;
3613 }
3614
3615 if (!env_type_is_resolve_sink(env, var_type) &&
3616 !env_type_is_resolved(env, var_type_id)) {
3617 env_stack_set_next_member(env, i + 1);
3618 return env_stack_push(env, var_type, var_type_id);
3619 }
3620
3621 type_id = var_type->type;
3622 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3623 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3624 return -EINVAL;
3625 }
3626
3627 if (vsi->size < type_size) {
3628 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3629 return -EINVAL;
3630 }
3631 }
3632
3633 env_stack_pop_resolved(env, 0, 0);
3634 return 0;
3635}
3636
3637static void btf_datasec_log(struct btf_verifier_env *env,
3638 const struct btf_type *t)
3639{
3640 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3641}
3642
31d0bc81
AM
3643static void btf_datasec_show(const struct btf *btf,
3644 const struct btf_type *t, u32 type_id,
3645 void *data, u8 bits_offset,
3646 struct btf_show *show)
1dc92851
DB
3647{
3648 const struct btf_var_secinfo *vsi;
3649 const struct btf_type *var;
3650 u32 i;
3651
31d0bc81
AM
3652 if (!btf_show_start_type(show, t, type_id, data))
3653 return;
3654
3655 btf_show_type_value(show, "section (\"%s\") = {",
3656 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
3657 for_each_vsi(i, t, vsi) {
3658 var = btf_type_by_id(btf, vsi->type);
3659 if (i)
31d0bc81
AM
3660 btf_show(show, ",");
3661 btf_type_ops(var)->show(btf, var, vsi->type,
3662 data + vsi->offset, bits_offset, show);
1dc92851 3663 }
31d0bc81 3664 btf_show_end_type(show);
1dc92851
DB
3665}
3666
3667static const struct btf_kind_operations datasec_ops = {
3668 .check_meta = btf_datasec_check_meta,
3669 .resolve = btf_datasec_resolve,
3670 .check_member = btf_df_check_member,
3671 .check_kflag_member = btf_df_check_kflag_member,
3672 .log_details = btf_datasec_log,
31d0bc81 3673 .show = btf_datasec_show,
1dc92851
DB
3674};
3675
2667a262
MKL
3676static int btf_func_proto_check(struct btf_verifier_env *env,
3677 const struct btf_type *t)
3678{
3679 const struct btf_type *ret_type;
3680 const struct btf_param *args;
3681 const struct btf *btf;
3682 u16 nr_args, i;
3683 int err;
3684
3685 btf = env->btf;
3686 args = (const struct btf_param *)(t + 1);
3687 nr_args = btf_type_vlen(t);
3688
3689 /* Check func return type which could be "void" (t->type == 0) */
3690 if (t->type) {
3691 u32 ret_type_id = t->type;
3692
3693 ret_type = btf_type_by_id(btf, ret_type_id);
3694 if (!ret_type) {
3695 btf_verifier_log_type(env, t, "Invalid return type");
3696 return -EINVAL;
3697 }
3698
3699 if (btf_type_needs_resolve(ret_type) &&
3700 !env_type_is_resolved(env, ret_type_id)) {
3701 err = btf_resolve(env, ret_type, ret_type_id);
3702 if (err)
3703 return err;
3704 }
3705
3706 /* Ensure the return type is a type that has a size */
3707 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3708 btf_verifier_log_type(env, t, "Invalid return type");
3709 return -EINVAL;
3710 }
3711 }
3712
3713 if (!nr_args)
3714 return 0;
3715
3716 /* Last func arg type_id could be 0 if it is a vararg */
3717 if (!args[nr_args - 1].type) {
3718 if (args[nr_args - 1].name_off) {
3719 btf_verifier_log_type(env, t, "Invalid arg#%u",
3720 nr_args);
3721 return -EINVAL;
3722 }
3723 nr_args--;
3724 }
3725
3726 err = 0;
3727 for (i = 0; i < nr_args; i++) {
3728 const struct btf_type *arg_type;
3729 u32 arg_type_id;
3730
3731 arg_type_id = args[i].type;
3732 arg_type = btf_type_by_id(btf, arg_type_id);
3733 if (!arg_type) {
3734 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3735 err = -EINVAL;
3736 break;
3737 }
3738
3739 if (args[i].name_off &&
3740 (!btf_name_offset_valid(btf, args[i].name_off) ||
3741 !btf_name_valid_identifier(btf, args[i].name_off))) {
3742 btf_verifier_log_type(env, t,
3743 "Invalid arg#%u", i + 1);
3744 err = -EINVAL;
3745 break;
3746 }
3747
3748 if (btf_type_needs_resolve(arg_type) &&
3749 !env_type_is_resolved(env, arg_type_id)) {
3750 err = btf_resolve(env, arg_type, arg_type_id);
3751 if (err)
3752 break;
3753 }
3754
3755 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3756 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3757 err = -EINVAL;
3758 break;
3759 }
3760 }
3761
3762 return err;
3763}
3764
3765static int btf_func_check(struct btf_verifier_env *env,
3766 const struct btf_type *t)
3767{
3768 const struct btf_type *proto_type;
3769 const struct btf_param *args;
3770 const struct btf *btf;
3771 u16 nr_args, i;
3772
3773 btf = env->btf;
3774 proto_type = btf_type_by_id(btf, t->type);
3775
3776 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3777 btf_verifier_log_type(env, t, "Invalid type_id");
3778 return -EINVAL;
3779 }
3780
3781 args = (const struct btf_param *)(proto_type + 1);
3782 nr_args = btf_type_vlen(proto_type);
3783 for (i = 0; i < nr_args; i++) {
3784 if (!args[i].name_off && args[i].type) {
3785 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3786 return -EINVAL;
3787 }
3788 }
3789
3790 return 0;
3791}
3792
69b693f0
MKL
3793static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3794 [BTF_KIND_INT] = &int_ops,
3795 [BTF_KIND_PTR] = &ptr_ops,
3796 [BTF_KIND_ARRAY] = &array_ops,
3797 [BTF_KIND_STRUCT] = &struct_ops,
3798 [BTF_KIND_UNION] = &struct_ops,
3799 [BTF_KIND_ENUM] = &enum_ops,
3800 [BTF_KIND_FWD] = &fwd_ops,
3801 [BTF_KIND_TYPEDEF] = &modifier_ops,
3802 [BTF_KIND_VOLATILE] = &modifier_ops,
3803 [BTF_KIND_CONST] = &modifier_ops,
3804 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
3805 [BTF_KIND_FUNC] = &func_ops,
3806 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
3807 [BTF_KIND_VAR] = &var_ops,
3808 [BTF_KIND_DATASEC] = &datasec_ops,
69b693f0
MKL
3809};
3810
3811static s32 btf_check_meta(struct btf_verifier_env *env,
3812 const struct btf_type *t,
3813 u32 meta_left)
3814{
3815 u32 saved_meta_left = meta_left;
3816 s32 var_meta_size;
3817
3818 if (meta_left < sizeof(*t)) {
3819 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3820 env->log_type_id, meta_left, sizeof(*t));
3821 return -EINVAL;
3822 }
3823 meta_left -= sizeof(*t);
3824
aea2f7b8
MKL
3825 if (t->info & ~BTF_INFO_MASK) {
3826 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3827 env->log_type_id, t->info);
3828 return -EINVAL;
3829 }
3830
69b693f0
MKL
3831 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3832 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3833 btf_verifier_log(env, "[%u] Invalid kind:%u",
3834 env->log_type_id, BTF_INFO_KIND(t->info));
3835 return -EINVAL;
3836 }
3837
fbcf93eb 3838 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 3839 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 3840 env->log_type_id, t->name_off);
69b693f0
MKL
3841 return -EINVAL;
3842 }
3843
3844 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3845 if (var_meta_size < 0)
3846 return var_meta_size;
3847
3848 meta_left -= var_meta_size;
3849
3850 return saved_meta_left - meta_left;
3851}
3852
3853static int btf_check_all_metas(struct btf_verifier_env *env)
3854{
3855 struct btf *btf = env->btf;
3856 struct btf_header *hdr;
3857 void *cur, *end;
3858
f80442a4 3859 hdr = &btf->hdr;
69b693f0 3860 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 3861 end = cur + hdr->type_len;
69b693f0 3862
951bb646 3863 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
3864 while (cur < end) {
3865 struct btf_type *t = cur;
3866 s32 meta_size;
3867
3868 meta_size = btf_check_meta(env, t, end - cur);
3869 if (meta_size < 0)
3870 return meta_size;
3871
3872 btf_add_type(env, t);
3873 cur += meta_size;
3874 env->log_type_id++;
3875 }
3876
3877 return 0;
3878}
3879
eb3f595d
MKL
3880static bool btf_resolve_valid(struct btf_verifier_env *env,
3881 const struct btf_type *t,
3882 u32 type_id)
3883{
3884 struct btf *btf = env->btf;
3885
3886 if (!env_type_is_resolved(env, type_id))
3887 return false;
3888
1dc92851 3889 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
3890 return !btf_resolved_type_id(btf, type_id) &&
3891 !btf_resolved_type_size(btf, type_id);
eb3f595d 3892
1dc92851
DB
3893 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3894 btf_type_is_var(t)) {
eb3f595d 3895 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
3896 return t &&
3897 !btf_type_is_modifier(t) &&
3898 !btf_type_is_var(t) &&
3899 !btf_type_is_datasec(t);
eb3f595d
MKL
3900 }
3901
3902 if (btf_type_is_array(t)) {
3903 const struct btf_array *array = btf_type_array(t);
3904 const struct btf_type *elem_type;
3905 u32 elem_type_id = array->type;
3906 u32 elem_size;
3907
3908 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3909 return elem_type && !btf_type_is_modifier(elem_type) &&
3910 (array->nelems * elem_size ==
951bb646 3911 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
3912 }
3913
3914 return false;
3915}
3916
2667a262
MKL
3917static int btf_resolve(struct btf_verifier_env *env,
3918 const struct btf_type *t, u32 type_id)
3919{
3920 u32 save_log_type_id = env->log_type_id;
3921 const struct resolve_vertex *v;
3922 int err = 0;
3923
3924 env->resolve_mode = RESOLVE_TBD;
3925 env_stack_push(env, t, type_id);
3926 while (!err && (v = env_stack_peak(env))) {
3927 env->log_type_id = v->type_id;
3928 err = btf_type_ops(v->t)->resolve(env, v);
3929 }
3930
3931 env->log_type_id = type_id;
3932 if (err == -E2BIG) {
3933 btf_verifier_log_type(env, t,
3934 "Exceeded max resolving depth:%u",
3935 MAX_RESOLVE_DEPTH);
3936 } else if (err == -EEXIST) {
3937 btf_verifier_log_type(env, t, "Loop detected");
3938 }
3939
3940 /* Final sanity check */
3941 if (!err && !btf_resolve_valid(env, t, type_id)) {
3942 btf_verifier_log_type(env, t, "Invalid resolve state");
3943 err = -EINVAL;
3944 }
3945
3946 env->log_type_id = save_log_type_id;
3947 return err;
3948}
3949
eb3f595d
MKL
3950static int btf_check_all_types(struct btf_verifier_env *env)
3951{
3952 struct btf *btf = env->btf;
951bb646
AN
3953 const struct btf_type *t;
3954 u32 type_id, i;
eb3f595d
MKL
3955 int err;
3956
3957 err = env_resolve_init(env);
3958 if (err)
3959 return err;
3960
3961 env->phase++;
951bb646
AN
3962 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
3963 type_id = btf->start_id + i;
3964 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
3965
3966 env->log_type_id = type_id;
3967 if (btf_type_needs_resolve(t) &&
3968 !env_type_is_resolved(env, type_id)) {
3969 err = btf_resolve(env, t, type_id);
3970 if (err)
3971 return err;
3972 }
3973
2667a262
MKL
3974 if (btf_type_is_func_proto(t)) {
3975 err = btf_func_proto_check(env, t);
3976 if (err)
3977 return err;
3978 }
3979
3980 if (btf_type_is_func(t)) {
3981 err = btf_func_check(env, t);
3982 if (err)
3983 return err;
eb3f595d
MKL
3984 }
3985 }
3986
3987 return 0;
3988}
3989
69b693f0
MKL
3990static int btf_parse_type_sec(struct btf_verifier_env *env)
3991{
f80442a4 3992 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
3993 int err;
3994
f80442a4
MKL
3995 /* Type section must align to 4 bytes */
3996 if (hdr->type_off & (sizeof(u32) - 1)) {
3997 btf_verifier_log(env, "Unaligned type_off");
3998 return -EINVAL;
3999 }
4000
951bb646 4001 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
4002 btf_verifier_log(env, "No type found");
4003 return -EINVAL;
4004 }
4005
eb3f595d
MKL
4006 err = btf_check_all_metas(env);
4007 if (err)
4008 return err;
4009
4010 return btf_check_all_types(env);
69b693f0
MKL
4011}
4012
4013static int btf_parse_str_sec(struct btf_verifier_env *env)
4014{
4015 const struct btf_header *hdr;
4016 struct btf *btf = env->btf;
4017 const char *start, *end;
4018
f80442a4 4019 hdr = &btf->hdr;
69b693f0
MKL
4020 start = btf->nohdr_data + hdr->str_off;
4021 end = start + hdr->str_len;
4022
f80442a4
MKL
4023 if (end != btf->data + btf->data_size) {
4024 btf_verifier_log(env, "String section is not at the end");
4025 return -EINVAL;
4026 }
4027
951bb646
AN
4028 btf->strings = start;
4029
4030 if (btf->base_btf && !hdr->str_len)
4031 return 0;
4032 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4033 btf_verifier_log(env, "Invalid string section");
4034 return -EINVAL;
4035 }
4036 if (!btf->base_btf && start[0]) {
69b693f0
MKL
4037 btf_verifier_log(env, "Invalid string section");
4038 return -EINVAL;
4039 }
69b693f0
MKL
4040
4041 return 0;
4042}
4043
f80442a4
MKL
4044static const size_t btf_sec_info_offset[] = {
4045 offsetof(struct btf_header, type_off),
4046 offsetof(struct btf_header, str_off),
4047};
4048
4049static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 4050{
f80442a4
MKL
4051 const struct btf_sec_info *x = a;
4052 const struct btf_sec_info *y = b;
4053
4054 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4055}
4056
4057static int btf_check_sec_info(struct btf_verifier_env *env,
4058 u32 btf_data_size)
4059{
a2889a4c 4060 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 4061 u32 total, expected_total, i;
69b693f0 4062 const struct btf_header *hdr;
f80442a4
MKL
4063 const struct btf *btf;
4064
4065 btf = env->btf;
4066 hdr = &btf->hdr;
4067
4068 /* Populate the secs from hdr */
a2889a4c 4069 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
4070 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4071 btf_sec_info_offset[i]);
4072
a2889a4c
MKL
4073 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4074 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
4075
4076 /* Check for gaps and overlap among sections */
4077 total = 0;
4078 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 4079 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
4080 if (expected_total < secs[i].off) {
4081 btf_verifier_log(env, "Invalid section offset");
4082 return -EINVAL;
4083 }
4084 if (total < secs[i].off) {
4085 /* gap */
4086 btf_verifier_log(env, "Unsupported section found");
4087 return -EINVAL;
4088 }
4089 if (total > secs[i].off) {
4090 btf_verifier_log(env, "Section overlap found");
4091 return -EINVAL;
4092 }
4093 if (expected_total - total < secs[i].len) {
4094 btf_verifier_log(env,
4095 "Total section length too long");
4096 return -EINVAL;
4097 }
4098 total += secs[i].len;
4099 }
4100
4101 /* There is data other than hdr and known sections */
4102 if (expected_total != total) {
4103 btf_verifier_log(env, "Unsupported section found");
4104 return -EINVAL;
4105 }
4106
4107 return 0;
4108}
4109
4a6998af 4110static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 4111{
4a6998af 4112 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 4113 const struct btf_header *hdr;
f80442a4
MKL
4114 struct btf *btf;
4115 int err;
69b693f0 4116
f80442a4 4117 btf = env->btf;
4a6998af 4118 btf_data_size = btf->data_size;
f80442a4 4119
4a6998af
ML
4120 if (btf_data_size <
4121 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
f80442a4
MKL
4122 btf_verifier_log(env, "hdr_len not found");
4123 return -EINVAL;
4124 }
4125
4a6998af
ML
4126 hdr = btf->data;
4127 hdr_len = hdr->hdr_len;
f80442a4 4128 if (btf_data_size < hdr_len) {
69b693f0
MKL
4129 btf_verifier_log(env, "btf_header not found");
4130 return -EINVAL;
4131 }
4132
4a6998af
ML
4133 /* Ensure the unsupported header fields are zero */
4134 if (hdr_len > sizeof(btf->hdr)) {
4135 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4136 u8 *end = btf->data + hdr_len;
4137
4138 for (; expected_zero < end; expected_zero++) {
4139 if (*expected_zero) {
4140 btf_verifier_log(env, "Unsupported btf_header");
4141 return -E2BIG;
4142 }
4143 }
f80442a4
MKL
4144 }
4145
4146 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 4147 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
4148
4149 hdr = &btf->hdr;
4150
4151 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 4152
69b693f0
MKL
4153 if (hdr->magic != BTF_MAGIC) {
4154 btf_verifier_log(env, "Invalid magic");
4155 return -EINVAL;
4156 }
4157
4158 if (hdr->version != BTF_VERSION) {
4159 btf_verifier_log(env, "Unsupported version");
4160 return -ENOTSUPP;
4161 }
4162
4163 if (hdr->flags) {
4164 btf_verifier_log(env, "Unsupported flags");
4165 return -ENOTSUPP;
4166 }
4167
f80442a4 4168 if (btf_data_size == hdr->hdr_len) {
69b693f0
MKL
4169 btf_verifier_log(env, "No data");
4170 return -EINVAL;
4171 }
4172
f80442a4
MKL
4173 err = btf_check_sec_info(env, btf_data_size);
4174 if (err)
4175 return err;
69b693f0
MKL
4176
4177 return 0;
4178}
4179
4180static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4181 u32 log_level, char __user *log_ubuf, u32 log_size)
4182{
4183 struct btf_verifier_env *env = NULL;
4184 struct bpf_verifier_log *log;
4185 struct btf *btf = NULL;
4186 u8 *data;
4187 int err;
4188
4189 if (btf_data_size > BTF_MAX_SIZE)
4190 return ERR_PTR(-E2BIG);
4191
4192 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4193 if (!env)
4194 return ERR_PTR(-ENOMEM);
4195
4196 log = &env->log;
4197 if (log_level || log_ubuf || log_size) {
4198 /* user requested verbose verifier output
4199 * and supplied buffer to store the verification trace
4200 */
4201 log->level = log_level;
4202 log->ubuf = log_ubuf;
4203 log->len_total = log_size;
4204
4205 /* log attributes have to be sane */
4206 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4207 !log->level || !log->ubuf) {
4208 err = -EINVAL;
4209 goto errout;
4210 }
4211 }
4212
4213 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4214 if (!btf) {
4215 err = -ENOMEM;
4216 goto errout;
4217 }
f80442a4
MKL
4218 env->btf = btf;
4219
69b693f0
MKL
4220 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4221 if (!data) {
4222 err = -ENOMEM;
4223 goto errout;
4224 }
4225
4226 btf->data = data;
4227 btf->data_size = btf_data_size;
4228
4229 if (copy_from_user(data, btf_data, btf_data_size)) {
4230 err = -EFAULT;
4231 goto errout;
4232 }
4233
4a6998af
ML
4234 err = btf_parse_hdr(env);
4235 if (err)
4236 goto errout;
4237
4238 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4239
69b693f0
MKL
4240 err = btf_parse_str_sec(env);
4241 if (err)
4242 goto errout;
4243
4244 err = btf_parse_type_sec(env);
4245 if (err)
4246 goto errout;
4247
f80442a4 4248 if (log->level && bpf_verifier_log_full(log)) {
69b693f0
MKL
4249 err = -ENOSPC;
4250 goto errout;
4251 }
4252
f80442a4
MKL
4253 btf_verifier_env_free(env);
4254 refcount_set(&btf->refcnt, 1);
4255 return btf;
69b693f0
MKL
4256
4257errout:
4258 btf_verifier_env_free(env);
4259 if (btf)
4260 btf_free(btf);
4261 return ERR_PTR(err);
4262}
b00b8dae 4263
90ceddcb
FS
4264extern char __weak __start_BTF[];
4265extern char __weak __stop_BTF[];
91cc1a99
AS
4266extern struct btf *btf_vmlinux;
4267
4268#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 4269#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
4270static union {
4271 struct bpf_ctx_convert {
4272#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4273 prog_ctx_type _id##_prog; \
4274 kern_ctx_type _id##_kern;
4275#include <linux/bpf_types.h>
4276#undef BPF_PROG_TYPE
4277 } *__t;
4278 /* 't' is written once under lock. Read many times. */
4279 const struct btf_type *t;
4280} bpf_ctx_convert;
4281enum {
4282#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4283 __ctx_convert##_id,
4284#include <linux/bpf_types.h>
4285#undef BPF_PROG_TYPE
ce27709b 4286 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
4287};
4288static u8 bpf_ctx_convert_map[] = {
4289#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4290 [_id] = __ctx_convert##_id,
4291#include <linux/bpf_types.h>
4292#undef BPF_PROG_TYPE
4c80c7bc 4293 0, /* avoid empty array */
91cc1a99
AS
4294};
4295#undef BPF_MAP_TYPE
f2e10bff 4296#undef BPF_LINK_TYPE
91cc1a99
AS
4297
4298static const struct btf_member *
4299btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
51c39bb1
AS
4300 const struct btf_type *t, enum bpf_prog_type prog_type,
4301 int arg)
91cc1a99
AS
4302{
4303 const struct btf_type *conv_struct;
4304 const struct btf_type *ctx_struct;
4305 const struct btf_member *ctx_type;
4306 const char *tname, *ctx_tname;
4307
4308 conv_struct = bpf_ctx_convert.t;
4309 if (!conv_struct) {
4310 bpf_log(log, "btf_vmlinux is malformed\n");
4311 return NULL;
4312 }
4313 t = btf_type_by_id(btf, t->type);
4314 while (btf_type_is_modifier(t))
4315 t = btf_type_by_id(btf, t->type);
4316 if (!btf_type_is_struct(t)) {
4317 /* Only pointer to struct is supported for now.
4318 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4319 * is not supported yet.
4320 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4321 */
51c39bb1
AS
4322 if (log->level & BPF_LOG_LEVEL)
4323 bpf_log(log, "arg#%d type is not a struct\n", arg);
91cc1a99
AS
4324 return NULL;
4325 }
4326 tname = btf_name_by_offset(btf, t->name_off);
4327 if (!tname) {
51c39bb1 4328 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
4329 return NULL;
4330 }
4331 /* prog_type is valid bpf program type. No need for bounds check. */
4332 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4333 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4334 * Like 'struct __sk_buff'
4335 */
4336 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4337 if (!ctx_struct)
4338 /* should not happen */
4339 return NULL;
4340 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4341 if (!ctx_tname) {
4342 /* should not happen */
4343 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4344 return NULL;
4345 }
4346 /* only compare that prog's ctx type name is the same as
4347 * kernel expects. No need to compare field by field.
4348 * It's ok for bpf prog to do:
4349 * struct __sk_buff {};
4350 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4351 * { // no fields of skb are ever used }
4352 */
4353 if (strcmp(ctx_tname, tname))
4354 return NULL;
4355 return ctx_type;
4356}
8580ac94 4357
41c48f3a
AI
4358static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4359#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4360#define BPF_LINK_TYPE(_id, _name)
4361#define BPF_MAP_TYPE(_id, _ops) \
4362 [_id] = &_ops,
4363#include <linux/bpf_types.h>
4364#undef BPF_PROG_TYPE
4365#undef BPF_LINK_TYPE
4366#undef BPF_MAP_TYPE
4367};
4368
4369static int btf_vmlinux_map_ids_init(const struct btf *btf,
4370 struct bpf_verifier_log *log)
4371{
4372 const struct bpf_map_ops *ops;
4373 int i, btf_id;
4374
4375 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4376 ops = btf_vmlinux_map_ops[i];
4377 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4378 continue;
4379 if (!ops->map_btf_name || !ops->map_btf_id) {
4380 bpf_log(log, "map type %d is misconfigured\n", i);
4381 return -EINVAL;
4382 }
4383 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4384 BTF_KIND_STRUCT);
4385 if (btf_id < 0)
4386 return btf_id;
4387 *ops->map_btf_id = btf_id;
4388 }
4389
4390 return 0;
4391}
4392
5b92a28a
AS
4393static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4394 struct btf *btf,
4395 const struct btf_type *t,
51c39bb1
AS
4396 enum bpf_prog_type prog_type,
4397 int arg)
5b92a28a
AS
4398{
4399 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4400
51c39bb1 4401 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
4402 if (!prog_ctx_type)
4403 return -ENOENT;
4404 kern_ctx_type = prog_ctx_type + 1;
4405 return kern_ctx_type->type;
4406}
4407
49f4e672
JO
4408BTF_ID_LIST(bpf_ctx_convert_btf_id)
4409BTF_ID(struct, bpf_ctx_convert)
4410
8580ac94
AS
4411struct btf *btf_parse_vmlinux(void)
4412{
4413 struct btf_verifier_env *env = NULL;
4414 struct bpf_verifier_log *log;
4415 struct btf *btf = NULL;
49f4e672 4416 int err;
8580ac94
AS
4417
4418 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4419 if (!env)
4420 return ERR_PTR(-ENOMEM);
4421
4422 log = &env->log;
4423 log->level = BPF_LOG_KERNEL;
4424
4425 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4426 if (!btf) {
4427 err = -ENOMEM;
4428 goto errout;
4429 }
4430 env->btf = btf;
4431
90ceddcb
FS
4432 btf->data = __start_BTF;
4433 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
4434 btf->kernel_btf = true;
4435 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
4436
4437 err = btf_parse_hdr(env);
4438 if (err)
4439 goto errout;
4440
4441 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4442
4443 err = btf_parse_str_sec(env);
4444 if (err)
4445 goto errout;
4446
4447 err = btf_check_all_metas(env);
4448 if (err)
4449 goto errout;
4450
a2d0d62f 4451 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 4452 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 4453
41c48f3a
AI
4454 /* find bpf map structs for map_ptr access checking */
4455 err = btf_vmlinux_map_ids_init(btf, log);
4456 if (err < 0)
4457 goto errout;
4458
d3e42bb0 4459 bpf_struct_ops_init(btf, log);
27ae7997 4460
8580ac94 4461 refcount_set(&btf->refcnt, 1);
53297220
AN
4462
4463 err = btf_alloc_id(btf);
4464 if (err)
4465 goto errout;
4466
4467 btf_verifier_env_free(env);
8580ac94
AS
4468 return btf;
4469
4470errout:
4471 btf_verifier_env_free(env);
4472 if (btf) {
4473 kvfree(btf->types);
4474 kfree(btf);
4475 }
4476 return ERR_PTR(err);
4477}
4478
5b92a28a
AS
4479struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4480{
3aac1ead 4481 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a
AS
4482
4483 if (tgt_prog) {
4484 return tgt_prog->aux->btf;
4485 } else {
4486 return btf_vmlinux;
4487 }
4488}
4489
84ad7a7a
JO
4490static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4491{
4492 /* t comes in already as a pointer */
4493 t = btf_type_by_id(btf, t->type);
4494
4495 /* allow const */
4496 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4497 t = btf_type_by_id(btf, t->type);
4498
4499 /* char, signed char, unsigned char */
4500 return btf_type_is_int(t) && t->size == 1;
4501}
4502
9e15db66
AS
4503bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4504 const struct bpf_prog *prog,
4505 struct bpf_insn_access_aux *info)
4506{
38207291 4507 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 4508 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4509 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 4510 const char *tname = prog->aux->attach_func_name;
9e15db66 4511 struct bpf_verifier_log *log = info->log;
9e15db66 4512 const struct btf_param *args;
9e15db66 4513 u32 nr_args, arg;
3c32cc1b 4514 int i, ret;
9e15db66 4515
9e15db66 4516 if (off % 8) {
38207291 4517 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
4518 tname, off);
4519 return false;
4520 }
4521 arg = off / 8;
4522 args = (const struct btf_param *)(t + 1);
5b92a28a
AS
4523 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4524 nr_args = t ? btf_type_vlen(t) : 5;
38207291
MKL
4525 if (prog->aux->attach_btf_trace) {
4526 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4527 args++;
4528 nr_args--;
4529 }
fec56f58 4530
f50b49a0
KS
4531 if (arg > nr_args) {
4532 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4533 tname, arg + 1);
4534 return false;
4535 }
4536
6ba43b76 4537 if (arg == nr_args) {
f50b49a0
KS
4538 switch (prog->expected_attach_type) {
4539 case BPF_LSM_MAC:
4540 case BPF_TRACE_FEXIT:
9e4e01df
KS
4541 /* When LSM programs are attached to void LSM hooks
4542 * they use FEXIT trampolines and when attached to
4543 * int LSM hooks, they use MODIFY_RETURN trampolines.
4544 *
4545 * While the LSM programs are BPF_MODIFY_RETURN-like
4546 * the check:
4547 *
4548 * if (ret_type != 'int')
4549 * return -EINVAL;
4550 *
4551 * is _not_ done here. This is still safe as LSM hooks
4552 * have only void and int return types.
4553 */
6ba43b76
KS
4554 if (!t)
4555 return true;
4556 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
4557 break;
4558 case BPF_MODIFY_RETURN:
6ba43b76
KS
4559 /* For now the BPF_MODIFY_RETURN can only be attached to
4560 * functions that return an int.
4561 */
4562 if (!t)
4563 return false;
4564
4565 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 4566 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
4567 bpf_log(log,
4568 "ret type %s not allowed for fmod_ret\n",
4569 btf_kind_str[BTF_INFO_KIND(t->info)]);
4570 return false;
4571 }
f50b49a0
KS
4572 break;
4573 default:
4574 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4575 tname, arg + 1);
4576 return false;
6ba43b76 4577 }
fec56f58 4578 } else {
5b92a28a
AS
4579 if (!t)
4580 /* Default prog with 5 args */
4581 return true;
4582 t = btf_type_by_id(btf, args[arg].type);
9e15db66 4583 }
f50b49a0 4584
9e15db66
AS
4585 /* skip modifiers */
4586 while (btf_type_is_modifier(t))
5b92a28a 4587 t = btf_type_by_id(btf, t->type);
a9b59159 4588 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
9e15db66
AS
4589 /* accessing a scalar */
4590 return true;
4591 if (!btf_type_is_ptr(t)) {
4592 bpf_log(log,
38207291 4593 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 4594 tname, arg,
5b92a28a 4595 __btf_name_by_offset(btf, t->name_off),
9e15db66
AS
4596 btf_kind_str[BTF_INFO_KIND(t->info)]);
4597 return false;
4598 }
afbf21dc
YS
4599
4600 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4601 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4602 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4603
4604 if (ctx_arg_info->offset == off &&
4605 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4606 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4607 info->reg_type = ctx_arg_info->reg_type;
4608 return true;
4609 }
4610 }
4611
9e15db66
AS
4612 if (t->type == 0)
4613 /* This is a pointer to void.
4614 * It is the same as scalar from the verifier safety pov.
4615 * No further pointer walking is allowed.
4616 */
4617 return true;
4618
84ad7a7a
JO
4619 if (is_string_ptr(btf, t))
4620 return true;
4621
9e15db66 4622 /* this is a pointer to another type */
3c32cc1b
YS
4623 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4624 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4625
4626 if (ctx_arg_info->offset == off) {
4627 info->reg_type = ctx_arg_info->reg_type;
951cf368
YS
4628 info->btf_id = ctx_arg_info->btf_id;
4629 return true;
3c32cc1b
YS
4630 }
4631 }
9e15db66 4632
951cf368 4633 info->reg_type = PTR_TO_BTF_ID;
5b92a28a 4634 if (tgt_prog) {
43bc2874
THJ
4635 enum bpf_prog_type tgt_type;
4636
4637 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4638 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4639 else
4640 tgt_type = tgt_prog->type;
4641
4642 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a
AS
4643 if (ret > 0) {
4644 info->btf_id = ret;
4645 return true;
4646 } else {
4647 return false;
4648 }
4649 }
275517ff
MKL
4650
4651 info->btf_id = t->type;
5b92a28a 4652 t = btf_type_by_id(btf, t->type);
9e15db66 4653 /* skip modifiers */
275517ff
MKL
4654 while (btf_type_is_modifier(t)) {
4655 info->btf_id = t->type;
5b92a28a 4656 t = btf_type_by_id(btf, t->type);
275517ff 4657 }
9e15db66
AS
4658 if (!btf_type_is_struct(t)) {
4659 bpf_log(log,
38207291 4660 "func '%s' arg%d type %s is not a struct\n",
9e15db66
AS
4661 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4662 return false;
4663 }
38207291 4664 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
9e15db66 4665 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5b92a28a 4666 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
4667 return true;
4668}
4669
1c6d28a6
JO
4670enum bpf_struct_walk_result {
4671 /* < 0 error */
4672 WALK_SCALAR = 0,
4673 WALK_PTR,
4674 WALK_STRUCT,
4675};
4676
4677static int btf_struct_walk(struct bpf_verifier_log *log,
4678 const struct btf_type *t, int off, int size,
4679 u32 *next_btf_id)
9e15db66 4680{
7e3617a7
MKL
4681 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4682 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 4683 const struct btf_member *member;
9e15db66 4684 const char *tname, *mname;
1c6d28a6 4685 u32 vlen, elem_id, mid;
9e15db66
AS
4686
4687again:
4688 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4689 if (!btf_type_is_struct(t)) {
275517ff 4690 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
4691 return -EINVAL;
4692 }
4693
9c5f8a10 4694 vlen = btf_type_vlen(t);
976aba00 4695 if (off + size > t->size) {
9c5f8a10
YS
4696 /* If the last element is a variable size array, we may
4697 * need to relax the rule.
4698 */
4699 struct btf_array *array_elem;
4700
4701 if (vlen == 0)
4702 goto error;
4703
4704 member = btf_type_member(t) + vlen - 1;
4705 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
4706 NULL);
4707 if (!btf_type_is_array(mtype))
4708 goto error;
4709
4710 array_elem = (struct btf_array *)(mtype + 1);
4711 if (array_elem->nelems != 0)
4712 goto error;
4713
4714 moff = btf_member_bit_offset(t, member) / 8;
4715 if (off < moff)
4716 goto error;
4717
4718 /* Only allow structure for now, can be relaxed for
4719 * other types later.
4720 */
dafe58fc
JO
4721 t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
4722 NULL);
4723 if (!btf_type_is_struct(t))
9c5f8a10
YS
4724 goto error;
4725
dafe58fc
JO
4726 off = (off - moff) % t->size;
4727 goto again;
9c5f8a10
YS
4728
4729error:
976aba00
MKL
4730 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4731 tname, off, size);
4732 return -EACCES;
4733 }
9e15db66 4734
976aba00 4735 for_each_member(i, t, member) {
7e3617a7
MKL
4736 /* offset of the field in bytes */
4737 moff = btf_member_bit_offset(t, member) / 8;
4738 if (off + size <= moff)
9e15db66
AS
4739 /* won't find anything, field is already too far */
4740 break;
976aba00
MKL
4741
4742 if (btf_member_bitfield_size(t, member)) {
4743 u32 end_bit = btf_member_bit_offset(t, member) +
4744 btf_member_bitfield_size(t, member);
4745
4746 /* off <= moff instead of off == moff because clang
4747 * does not generate a BTF member for anonymous
4748 * bitfield like the ":16" here:
4749 * struct {
4750 * int :16;
4751 * int x:8;
4752 * };
4753 */
4754 if (off <= moff &&
4755 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 4756 return WALK_SCALAR;
976aba00
MKL
4757
4758 /* off may be accessing a following member
4759 *
4760 * or
4761 *
4762 * Doing partial access at either end of this
4763 * bitfield. Continue on this case also to
4764 * treat it as not accessing this bitfield
4765 * and eventually error out as field not
4766 * found to keep it simple.
4767 * It could be relaxed if there was a legit
4768 * partial access case later.
4769 */
4770 continue;
4771 }
4772
7e3617a7
MKL
4773 /* In case of "off" is pointing to holes of a struct */
4774 if (off < moff)
976aba00 4775 break;
9e15db66
AS
4776
4777 /* type of the field */
1c6d28a6 4778 mid = member->type;
9e15db66
AS
4779 mtype = btf_type_by_id(btf_vmlinux, member->type);
4780 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
4781
6298399b 4782 mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
1c6d28a6
JO
4783 &elem_type, &elem_id, &total_nelems,
4784 &mid);
7e3617a7 4785 if (IS_ERR(mtype)) {
9e15db66
AS
4786 bpf_log(log, "field %s doesn't have size\n", mname);
4787 return -EFAULT;
4788 }
7e3617a7
MKL
4789
4790 mtrue_end = moff + msize;
4791 if (off >= mtrue_end)
9e15db66
AS
4792 /* no overlap with member, keep iterating */
4793 continue;
7e3617a7
MKL
4794
4795 if (btf_type_is_array(mtype)) {
4796 u32 elem_idx;
4797
6298399b 4798 /* __btf_resolve_size() above helps to
7e3617a7
MKL
4799 * linearize a multi-dimensional array.
4800 *
4801 * The logic here is treating an array
4802 * in a struct as the following way:
4803 *
4804 * struct outer {
4805 * struct inner array[2][2];
4806 * };
4807 *
4808 * looks like:
4809 *
4810 * struct outer {
4811 * struct inner array_elem0;
4812 * struct inner array_elem1;
4813 * struct inner array_elem2;
4814 * struct inner array_elem3;
4815 * };
4816 *
4817 * When accessing outer->array[1][0], it moves
4818 * moff to "array_elem2", set mtype to
4819 * "struct inner", and msize also becomes
4820 * sizeof(struct inner). Then most of the
4821 * remaining logic will fall through without
4822 * caring the current member is an array or
4823 * not.
4824 *
4825 * Unlike mtype/msize/moff, mtrue_end does not
4826 * change. The naming difference ("_true") tells
4827 * that it is not always corresponding to
4828 * the current mtype/msize/moff.
4829 * It is the true end of the current
4830 * member (i.e. array in this case). That
4831 * will allow an int array to be accessed like
4832 * a scratch space,
4833 * i.e. allow access beyond the size of
4834 * the array's element as long as it is
4835 * within the mtrue_end boundary.
4836 */
4837
4838 /* skip empty array */
4839 if (moff == mtrue_end)
4840 continue;
4841
4842 msize /= total_nelems;
4843 elem_idx = (off - moff) / msize;
4844 moff += elem_idx * msize;
4845 mtype = elem_type;
1c6d28a6 4846 mid = elem_id;
7e3617a7
MKL
4847 }
4848
9e15db66
AS
4849 /* the 'off' we're looking for is either equal to start
4850 * of this field or inside of this struct
4851 */
4852 if (btf_type_is_struct(mtype)) {
4853 /* our field must be inside that union or struct */
4854 t = mtype;
4855
1c6d28a6
JO
4856 /* return if the offset matches the member offset */
4857 if (off == moff) {
4858 *next_btf_id = mid;
4859 return WALK_STRUCT;
4860 }
4861
9e15db66 4862 /* adjust offset we're looking for */
7e3617a7 4863 off -= moff;
9e15db66
AS
4864 goto again;
4865 }
9e15db66
AS
4866
4867 if (btf_type_is_ptr(mtype)) {
4868 const struct btf_type *stype;
257af63d 4869 u32 id;
9e15db66 4870
7e3617a7
MKL
4871 if (msize != size || off != moff) {
4872 bpf_log(log,
4873 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4874 mname, moff, tname, off, size);
4875 return -EACCES;
4876 }
257af63d 4877 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
9e15db66 4878 if (btf_type_is_struct(stype)) {
257af63d 4879 *next_btf_id = id;
1c6d28a6 4880 return WALK_PTR;
9e15db66
AS
4881 }
4882 }
7e3617a7
MKL
4883
4884 /* Allow more flexible access within an int as long as
4885 * it is within mtrue_end.
4886 * Since mtrue_end could be the end of an array,
4887 * that also allows using an array of int as a scratch
4888 * space. e.g. skb->cb[].
4889 */
4890 if (off + size > mtrue_end) {
4891 bpf_log(log,
4892 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4893 mname, mtrue_end, tname, off, size);
4894 return -EACCES;
4895 }
4896
1c6d28a6 4897 return WALK_SCALAR;
9e15db66
AS
4898 }
4899 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4900 return -EINVAL;
4901}
4902
1c6d28a6
JO
4903int btf_struct_access(struct bpf_verifier_log *log,
4904 const struct btf_type *t, int off, int size,
4905 enum bpf_access_type atype __maybe_unused,
4906 u32 *next_btf_id)
4907{
4908 int err;
4909 u32 id;
4910
4911 do {
4912 err = btf_struct_walk(log, t, off, size, &id);
4913
4914 switch (err) {
4915 case WALK_PTR:
4916 /* If we found the pointer or scalar on t+off,
4917 * we're done.
4918 */
4919 *next_btf_id = id;
4920 return PTR_TO_BTF_ID;
4921 case WALK_SCALAR:
4922 return SCALAR_VALUE;
4923 case WALK_STRUCT:
4924 /* We found nested struct, so continue the search
4925 * by diving in it. At this point the offset is
4926 * aligned with the new type, so set it to 0.
4927 */
4928 t = btf_type_by_id(btf_vmlinux, id);
4929 off = 0;
4930 break;
4931 default:
4932 /* It's either error or unknown return value..
4933 * scream and leave.
4934 */
4935 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
4936 return -EINVAL;
4937 return err;
4938 }
4939 } while (t);
4940
4941 return -EINVAL;
4942}
4943
faaf4a79
JO
4944bool btf_struct_ids_match(struct bpf_verifier_log *log,
4945 int off, u32 id, u32 need_type_id)
4946{
4947 const struct btf_type *type;
4948 int err;
4949
4950 /* Are we already done? */
4951 if (need_type_id == id && off == 0)
4952 return true;
4953
4954again:
4955 type = btf_type_by_id(btf_vmlinux, id);
4956 if (!type)
4957 return false;
4958 err = btf_struct_walk(log, type, off, 1, &id);
4959 if (err != WALK_STRUCT)
4960 return false;
4961
4962 /* We found nested struct object. If it matches
4963 * the requested ID, we're done. Otherwise let's
4964 * continue the search with offset 0 in the new
4965 * type.
4966 */
4967 if (need_type_id != id) {
4968 off = 0;
4969 goto again;
4970 }
4971
4972 return true;
4973}
4974
fec56f58
AS
4975static int __get_type_size(struct btf *btf, u32 btf_id,
4976 const struct btf_type **bad_type)
4977{
4978 const struct btf_type *t;
4979
4980 if (!btf_id)
4981 /* void */
4982 return 0;
4983 t = btf_type_by_id(btf, btf_id);
4984 while (t && btf_type_is_modifier(t))
4985 t = btf_type_by_id(btf, t->type);
d0f01043 4986 if (!t) {
951bb646 4987 *bad_type = btf_type_by_id(btf, 0);
fec56f58 4988 return -EINVAL;
d0f01043 4989 }
fec56f58
AS
4990 if (btf_type_is_ptr(t))
4991 /* kernel size of pointer. Not BPF's size of pointer*/
4992 return sizeof(void *);
4993 if (btf_type_is_int(t) || btf_type_is_enum(t))
4994 return t->size;
4995 *bad_type = t;
4996 return -EINVAL;
4997}
4998
4999int btf_distill_func_proto(struct bpf_verifier_log *log,
5000 struct btf *btf,
5001 const struct btf_type *func,
5002 const char *tname,
5003 struct btf_func_model *m)
5004{
5005 const struct btf_param *args;
5006 const struct btf_type *t;
5007 u32 i, nargs;
5008 int ret;
5009
5b92a28a
AS
5010 if (!func) {
5011 /* BTF function prototype doesn't match the verifier types.
5012 * Fall back to 5 u64 args.
5013 */
5014 for (i = 0; i < 5; i++)
5015 m->arg_size[i] = 8;
5016 m->ret_size = 8;
5017 m->nr_args = 5;
5018 return 0;
5019 }
fec56f58
AS
5020 args = (const struct btf_param *)(func + 1);
5021 nargs = btf_type_vlen(func);
5022 if (nargs >= MAX_BPF_FUNC_ARGS) {
5023 bpf_log(log,
5024 "The function %s has %d arguments. Too many.\n",
5025 tname, nargs);
5026 return -EINVAL;
5027 }
5028 ret = __get_type_size(btf, func->type, &t);
5029 if (ret < 0) {
5030 bpf_log(log,
5031 "The function %s return type %s is unsupported.\n",
5032 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5033 return -EINVAL;
5034 }
5035 m->ret_size = ret;
5036
5037 for (i = 0; i < nargs; i++) {
5038 ret = __get_type_size(btf, args[i].type, &t);
5039 if (ret < 0) {
5040 bpf_log(log,
5041 "The function %s arg%d type %s is unsupported.\n",
5042 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5043 return -EINVAL;
5044 }
5045 m->arg_size[i] = ret;
5046 }
5047 m->nr_args = nargs;
5048 return 0;
5049}
5050
be8704ff
AS
5051/* Compare BTFs of two functions assuming only scalars and pointers to context.
5052 * t1 points to BTF_KIND_FUNC in btf1
5053 * t2 points to BTF_KIND_FUNC in btf2
5054 * Returns:
5055 * EINVAL - function prototype mismatch
5056 * EFAULT - verifier bug
5057 * 0 - 99% match. The last 1% is validated by the verifier.
5058 */
2bf0eb9b
HY
5059static int btf_check_func_type_match(struct bpf_verifier_log *log,
5060 struct btf *btf1, const struct btf_type *t1,
5061 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
5062{
5063 const struct btf_param *args1, *args2;
5064 const char *fn1, *fn2, *s1, *s2;
5065 u32 nargs1, nargs2, i;
5066
5067 fn1 = btf_name_by_offset(btf1, t1->name_off);
5068 fn2 = btf_name_by_offset(btf2, t2->name_off);
5069
5070 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5071 bpf_log(log, "%s() is not a global function\n", fn1);
5072 return -EINVAL;
5073 }
5074 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5075 bpf_log(log, "%s() is not a global function\n", fn2);
5076 return -EINVAL;
5077 }
5078
5079 t1 = btf_type_by_id(btf1, t1->type);
5080 if (!t1 || !btf_type_is_func_proto(t1))
5081 return -EFAULT;
5082 t2 = btf_type_by_id(btf2, t2->type);
5083 if (!t2 || !btf_type_is_func_proto(t2))
5084 return -EFAULT;
5085
5086 args1 = (const struct btf_param *)(t1 + 1);
5087 nargs1 = btf_type_vlen(t1);
5088 args2 = (const struct btf_param *)(t2 + 1);
5089 nargs2 = btf_type_vlen(t2);
5090
5091 if (nargs1 != nargs2) {
5092 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5093 fn1, nargs1, fn2, nargs2);
5094 return -EINVAL;
5095 }
5096
5097 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5098 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5099 if (t1->info != t2->info) {
5100 bpf_log(log,
5101 "Return type %s of %s() doesn't match type %s of %s()\n",
5102 btf_type_str(t1), fn1,
5103 btf_type_str(t2), fn2);
5104 return -EINVAL;
5105 }
5106
5107 for (i = 0; i < nargs1; i++) {
5108 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5109 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5110
5111 if (t1->info != t2->info) {
5112 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5113 i, fn1, btf_type_str(t1),
5114 fn2, btf_type_str(t2));
5115 return -EINVAL;
5116 }
5117 if (btf_type_has_size(t1) && t1->size != t2->size) {
5118 bpf_log(log,
5119 "arg%d in %s() has size %d while %s() has %d\n",
5120 i, fn1, t1->size,
5121 fn2, t2->size);
5122 return -EINVAL;
5123 }
5124
5125 /* global functions are validated with scalars and pointers
5126 * to context only. And only global functions can be replaced.
5127 * Hence type check only those types.
5128 */
5129 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5130 continue;
5131 if (!btf_type_is_ptr(t1)) {
5132 bpf_log(log,
5133 "arg%d in %s() has unrecognized type\n",
5134 i, fn1);
5135 return -EINVAL;
5136 }
5137 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5138 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5139 if (!btf_type_is_struct(t1)) {
5140 bpf_log(log,
5141 "arg%d in %s() is not a pointer to context\n",
5142 i, fn1);
5143 return -EINVAL;
5144 }
5145 if (!btf_type_is_struct(t2)) {
5146 bpf_log(log,
5147 "arg%d in %s() is not a pointer to context\n",
5148 i, fn2);
5149 return -EINVAL;
5150 }
5151 /* This is an optional check to make program writing easier.
5152 * Compare names of structs and report an error to the user.
5153 * btf_prepare_func_args() already checked that t2 struct
5154 * is a context type. btf_prepare_func_args() will check
5155 * later that t1 struct is a context type as well.
5156 */
5157 s1 = btf_name_by_offset(btf1, t1->name_off);
5158 s2 = btf_name_by_offset(btf2, t2->name_off);
5159 if (strcmp(s1, s2)) {
5160 bpf_log(log,
5161 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5162 i, fn1, s1, fn2, s2);
5163 return -EINVAL;
5164 }
5165 }
5166 return 0;
5167}
5168
5169/* Compare BTFs of given program with BTF of target program */
efc68158 5170int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
5171 struct btf *btf2, const struct btf_type *t2)
5172{
5173 struct btf *btf1 = prog->aux->btf;
5174 const struct btf_type *t1;
5175 u32 btf_id = 0;
5176
5177 if (!prog->aux->func_info) {
efc68158 5178 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
5179 return -EINVAL;
5180 }
5181
5182 btf_id = prog->aux->func_info[0].type_id;
5183 if (!btf_id)
5184 return -EFAULT;
5185
5186 t1 = btf_type_by_id(btf1, btf_id);
5187 if (!t1 || !btf_type_is_func(t1))
5188 return -EFAULT;
5189
efc68158 5190 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
5191}
5192
51c39bb1
AS
5193/* Compare BTF of a function with given bpf_reg_state.
5194 * Returns:
5195 * EFAULT - there is a verifier bug. Abort verification.
5196 * EINVAL - there is a type mismatch or BTF is not available.
5197 * 0 - BTF matches with what bpf_reg_state expects.
5198 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5199 */
5200int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5201 struct bpf_reg_state *reg)
8c1b6e69 5202{
8c1b6e69
AS
5203 struct bpf_verifier_log *log = &env->log;
5204 struct bpf_prog *prog = env->prog;
5205 struct btf *btf = prog->aux->btf;
5206 const struct btf_param *args;
5207 const struct btf_type *t;
5208 u32 i, nargs, btf_id;
5209 const char *tname;
5210
5211 if (!prog->aux->func_info)
51c39bb1 5212 return -EINVAL;
8c1b6e69
AS
5213
5214 btf_id = prog->aux->func_info[subprog].type_id;
5215 if (!btf_id)
51c39bb1 5216 return -EFAULT;
8c1b6e69
AS
5217
5218 if (prog->aux->func_info_aux[subprog].unreliable)
51c39bb1 5219 return -EINVAL;
8c1b6e69
AS
5220
5221 t = btf_type_by_id(btf, btf_id);
5222 if (!t || !btf_type_is_func(t)) {
51c39bb1
AS
5223 /* These checks were already done by the verifier while loading
5224 * struct bpf_func_info
5225 */
5226 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
8c1b6e69 5227 subprog);
51c39bb1 5228 return -EFAULT;
8c1b6e69
AS
5229 }
5230 tname = btf_name_by_offset(btf, t->name_off);
5231
5232 t = btf_type_by_id(btf, t->type);
5233 if (!t || !btf_type_is_func_proto(t)) {
51c39bb1
AS
5234 bpf_log(log, "Invalid BTF of func %s\n", tname);
5235 return -EFAULT;
8c1b6e69
AS
5236 }
5237 args = (const struct btf_param *)(t + 1);
5238 nargs = btf_type_vlen(t);
5239 if (nargs > 5) {
5240 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5241 goto out;
5242 }
5243 /* check that BTF function arguments match actual types that the
5244 * verifier sees.
5245 */
5246 for (i = 0; i < nargs; i++) {
5247 t = btf_type_by_id(btf, args[i].type);
5248 while (btf_type_is_modifier(t))
5249 t = btf_type_by_id(btf, t->type);
5250 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5251 if (reg[i + 1].type == SCALAR_VALUE)
5252 continue;
5253 bpf_log(log, "R%d is not a scalar\n", i + 1);
5254 goto out;
5255 }
5256 if (btf_type_is_ptr(t)) {
5257 if (reg[i + 1].type == SCALAR_VALUE) {
5258 bpf_log(log, "R%d is not a pointer\n", i + 1);
5259 goto out;
5260 }
51c39bb1
AS
5261 /* If function expects ctx type in BTF check that caller
5262 * is passing PTR_TO_CTX.
8c1b6e69 5263 */
51c39bb1
AS
5264 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5265 if (reg[i + 1].type != PTR_TO_CTX) {
5266 bpf_log(log,
5267 "arg#%d expected pointer to ctx, but got %s\n",
5268 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5269 goto out;
5270 }
5271 if (check_ctx_reg(env, &reg[i + 1], i + 1))
5272 goto out;
5273 continue;
5274 }
8c1b6e69 5275 }
51c39bb1
AS
5276 bpf_log(log, "Unrecognized arg#%d type %s\n",
5277 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
8c1b6e69
AS
5278 goto out;
5279 }
5280 return 0;
5281out:
51c39bb1
AS
5282 /* Compiler optimizations can remove arguments from static functions
5283 * or mismatched type can be passed into a global function.
5284 * In such cases mark the function as unreliable from BTF point of view.
5285 */
8c1b6e69 5286 prog->aux->func_info_aux[subprog].unreliable = true;
51c39bb1
AS
5287 return -EINVAL;
5288}
5289
5290/* Convert BTF of a function into bpf_reg_state if possible
5291 * Returns:
5292 * EFAULT - there is a verifier bug. Abort verification.
5293 * EINVAL - cannot convert BTF.
5294 * 0 - Successfully converted BTF into bpf_reg_state
5295 * (either PTR_TO_CTX or SCALAR_VALUE).
5296 */
5297int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5298 struct bpf_reg_state *reg)
5299{
5300 struct bpf_verifier_log *log = &env->log;
5301 struct bpf_prog *prog = env->prog;
be8704ff 5302 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
5303 struct btf *btf = prog->aux->btf;
5304 const struct btf_param *args;
5305 const struct btf_type *t;
5306 u32 i, nargs, btf_id;
5307 const char *tname;
5308
5309 if (!prog->aux->func_info ||
5310 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5311 bpf_log(log, "Verifier bug\n");
5312 return -EFAULT;
5313 }
5314
5315 btf_id = prog->aux->func_info[subprog].type_id;
5316 if (!btf_id) {
5317 bpf_log(log, "Global functions need valid BTF\n");
5318 return -EFAULT;
5319 }
5320
5321 t = btf_type_by_id(btf, btf_id);
5322 if (!t || !btf_type_is_func(t)) {
5323 /* These checks were already done by the verifier while loading
5324 * struct bpf_func_info
5325 */
5326 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5327 subprog);
5328 return -EFAULT;
5329 }
5330 tname = btf_name_by_offset(btf, t->name_off);
5331
5332 if (log->level & BPF_LOG_LEVEL)
5333 bpf_log(log, "Validating %s() func#%d...\n",
5334 tname, subprog);
5335
5336 if (prog->aux->func_info_aux[subprog].unreliable) {
5337 bpf_log(log, "Verifier bug in function %s()\n", tname);
5338 return -EFAULT;
5339 }
be8704ff 5340 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 5341 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
5342
5343 t = btf_type_by_id(btf, t->type);
5344 if (!t || !btf_type_is_func_proto(t)) {
5345 bpf_log(log, "Invalid type of function %s()\n", tname);
5346 return -EFAULT;
5347 }
5348 args = (const struct btf_param *)(t + 1);
5349 nargs = btf_type_vlen(t);
5350 if (nargs > 5) {
5351 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5352 tname, nargs);
5353 return -EINVAL;
5354 }
5355 /* check that function returns int */
5356 t = btf_type_by_id(btf, t->type);
5357 while (btf_type_is_modifier(t))
5358 t = btf_type_by_id(btf, t->type);
5359 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5360 bpf_log(log,
5361 "Global function %s() doesn't return scalar. Only those are supported.\n",
5362 tname);
5363 return -EINVAL;
5364 }
5365 /* Convert BTF function arguments into verifier types.
5366 * Only PTR_TO_CTX and SCALAR are supported atm.
5367 */
5368 for (i = 0; i < nargs; i++) {
5369 t = btf_type_by_id(btf, args[i].type);
5370 while (btf_type_is_modifier(t))
5371 t = btf_type_by_id(btf, t->type);
5372 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5373 reg[i + 1].type = SCALAR_VALUE;
5374 continue;
5375 }
5376 if (btf_type_is_ptr(t) &&
be8704ff 5377 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
51c39bb1
AS
5378 reg[i + 1].type = PTR_TO_CTX;
5379 continue;
5380 }
5381 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5382 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5383 return -EINVAL;
5384 }
8c1b6e69
AS
5385 return 0;
5386}
5387
31d0bc81
AM
5388static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5389 struct btf_show *show)
5390{
5391 const struct btf_type *t = btf_type_by_id(btf, type_id);
5392
5393 show->btf = btf;
5394 memset(&show->state, 0, sizeof(show->state));
5395 memset(&show->obj, 0, sizeof(show->obj));
5396
5397 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5398}
5399
5400static void btf_seq_show(struct btf_show *show, const char *fmt,
5401 va_list args)
5402{
5403 seq_vprintf((struct seq_file *)show->target, fmt, args);
5404}
5405
eb411377
AM
5406int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5407 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
5408{
5409 struct btf_show sseq;
5410
5411 sseq.target = m;
5412 sseq.showfn = btf_seq_show;
5413 sseq.flags = flags;
5414
5415 btf_type_show(btf, type_id, obj, &sseq);
5416
5417 return sseq.state.status;
5418}
5419
b00b8dae
MKL
5420void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5421 struct seq_file *m)
5422{
31d0bc81
AM
5423 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5424 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5425 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5426}
5427
5428struct btf_show_snprintf {
5429 struct btf_show show;
5430 int len_left; /* space left in string */
5431 int len; /* length we would have written */
5432};
5433
5434static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5435 va_list args)
5436{
5437 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5438 int len;
5439
5440 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5441
5442 if (len < 0) {
5443 ssnprintf->len_left = 0;
5444 ssnprintf->len = len;
5445 } else if (len > ssnprintf->len_left) {
5446 /* no space, drive on to get length we would have written */
5447 ssnprintf->len_left = 0;
5448 ssnprintf->len += len;
5449 } else {
5450 ssnprintf->len_left -= len;
5451 ssnprintf->len += len;
5452 show->target += len;
5453 }
5454}
5455
5456int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5457 char *buf, int len, u64 flags)
5458{
5459 struct btf_show_snprintf ssnprintf;
5460
5461 ssnprintf.show.target = buf;
5462 ssnprintf.show.flags = flags;
5463 ssnprintf.show.showfn = btf_snprintf_show;
5464 ssnprintf.len_left = len;
5465 ssnprintf.len = 0;
5466
5467 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5468
5469 /* If we encontered an error, return it. */
5470 if (ssnprintf.show.state.status)
5471 return ssnprintf.show.state.status;
b00b8dae 5472
31d0bc81
AM
5473 /* Otherwise return length we would have written */
5474 return ssnprintf.len;
b00b8dae 5475}
f56a653c 5476
3481e64b
QM
5477#ifdef CONFIG_PROC_FS
5478static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5479{
5480 const struct btf *btf = filp->private_data;
5481
5482 seq_printf(m, "btf_id:\t%u\n", btf->id);
5483}
5484#endif
5485
f56a653c
MKL
5486static int btf_release(struct inode *inode, struct file *filp)
5487{
5488 btf_put(filp->private_data);
5489 return 0;
5490}
5491
60197cfb 5492const struct file_operations btf_fops = {
3481e64b
QM
5493#ifdef CONFIG_PROC_FS
5494 .show_fdinfo = bpf_btf_show_fdinfo,
5495#endif
f56a653c
MKL
5496 .release = btf_release,
5497};
5498
78958fca
MKL
5499static int __btf_new_fd(struct btf *btf)
5500{
5501 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5502}
5503
f56a653c
MKL
5504int btf_new_fd(const union bpf_attr *attr)
5505{
5506 struct btf *btf;
78958fca 5507 int ret;
f56a653c
MKL
5508
5509 btf = btf_parse(u64_to_user_ptr(attr->btf),
5510 attr->btf_size, attr->btf_log_level,
5511 u64_to_user_ptr(attr->btf_log_buf),
5512 attr->btf_log_size);
5513 if (IS_ERR(btf))
5514 return PTR_ERR(btf);
5515
78958fca
MKL
5516 ret = btf_alloc_id(btf);
5517 if (ret) {
5518 btf_free(btf);
5519 return ret;
5520 }
5521
5522 /*
5523 * The BTF ID is published to the userspace.
5524 * All BTF free must go through call_rcu() from
5525 * now on (i.e. free by calling btf_put()).
5526 */
5527
5528 ret = __btf_new_fd(btf);
5529 if (ret < 0)
f56a653c
MKL
5530 btf_put(btf);
5531
78958fca 5532 return ret;
f56a653c
MKL
5533}
5534
5535struct btf *btf_get_by_fd(int fd)
5536{
5537 struct btf *btf;
5538 struct fd f;
5539
5540 f = fdget(fd);
5541
5542 if (!f.file)
5543 return ERR_PTR(-EBADF);
5544
5545 if (f.file->f_op != &btf_fops) {
5546 fdput(f);
5547 return ERR_PTR(-EINVAL);
5548 }
5549
5550 btf = f.file->private_data;
78958fca 5551 refcount_inc(&btf->refcnt);
f56a653c
MKL
5552 fdput(f);
5553
5554 return btf;
5555}
60197cfb
MKL
5556
5557int btf_get_info_by_fd(const struct btf *btf,
5558 const union bpf_attr *attr,
5559 union bpf_attr __user *uattr)
5560{
62dab84c 5561 struct bpf_btf_info __user *uinfo;
5c6f2588 5562 struct bpf_btf_info info;
62dab84c
MKL
5563 u32 info_copy, btf_copy;
5564 void __user *ubtf;
53297220
AN
5565 char __user *uname;
5566 u32 uinfo_len, uname_len, name_len;
5567 int ret = 0;
60197cfb 5568
62dab84c
MKL
5569 uinfo = u64_to_user_ptr(attr->info.info);
5570 uinfo_len = attr->info.info_len;
5571
5572 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 5573 memset(&info, 0, sizeof(info));
62dab84c
MKL
5574 if (copy_from_user(&info, uinfo, info_copy))
5575 return -EFAULT;
5576
5577 info.id = btf->id;
5578 ubtf = u64_to_user_ptr(info.btf);
5579 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5580 if (copy_to_user(ubtf, btf->data, btf_copy))
5581 return -EFAULT;
5582 info.btf_size = btf->data_size;
5583
53297220
AN
5584 info.kernel_btf = btf->kernel_btf;
5585
5586 uname = u64_to_user_ptr(info.name);
5587 uname_len = info.name_len;
5588 if (!uname ^ !uname_len)
5589 return -EINVAL;
5590
5591 name_len = strlen(btf->name);
5592 info.name_len = name_len;
5593
5594 if (uname) {
5595 if (uname_len >= name_len + 1) {
5596 if (copy_to_user(uname, btf->name, name_len + 1))
5597 return -EFAULT;
5598 } else {
5599 char zero = '\0';
5600
5601 if (copy_to_user(uname, btf->name, uname_len - 1))
5602 return -EFAULT;
5603 if (put_user(zero, uname + uname_len - 1))
5604 return -EFAULT;
5605 /* let user-space know about too short buffer */
5606 ret = -ENOSPC;
5607 }
5608 }
5609
62dab84c
MKL
5610 if (copy_to_user(uinfo, &info, info_copy) ||
5611 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
5612 return -EFAULT;
5613
53297220 5614 return ret;
60197cfb 5615}
78958fca
MKL
5616
5617int btf_get_fd_by_id(u32 id)
5618{
5619 struct btf *btf;
5620 int fd;
5621
5622 rcu_read_lock();
5623 btf = idr_find(&btf_idr, id);
5624 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5625 btf = ERR_PTR(-ENOENT);
5626 rcu_read_unlock();
5627
5628 if (IS_ERR(btf))
5629 return PTR_ERR(btf);
5630
5631 fd = __btf_new_fd(btf);
5632 if (fd < 0)
5633 btf_put(btf);
5634
5635 return fd;
5636}
5637
5638u32 btf_id(const struct btf *btf)
5639{
5640 return btf->id;
5641}
eae2e83e
JO
5642
5643static int btf_id_cmp_func(const void *a, const void *b)
5644{
5645 const int *pa = a, *pb = b;
5646
5647 return *pa - *pb;
5648}
5649
2af30f11 5650bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
eae2e83e
JO
5651{
5652 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5653}