bpf: btf: Check members of struct/union
[linux-2.6-block.git] / kernel / bpf / btf.c
CommitLineData
69b693f0
MKL
1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/types.h>
6#include <linux/compiler.h>
7#include <linux/errno.h>
8#include <linux/slab.h>
9#include <linux/uaccess.h>
10#include <linux/kernel.h>
11#include <linux/bpf_verifier.h>
12#include <linux/btf.h>
13
14/* BTF (BPF Type Format) is the meta data format which describes
15 * the data types of BPF program/map. Hence, it basically focus
16 * on the C programming language which the modern BPF is primary
17 * using.
18 *
19 * ELF Section:
20 * ~~~~~~~~~~~
21 * The BTF data is stored under the ".BTF" ELF section
22 *
23 * struct btf_type:
24 * ~~~~~~~~~~~~~~~
25 * Each 'struct btf_type' object describes a C data type.
26 * Depending on the type it is describing, a 'struct btf_type'
27 * object may be followed by more data. F.e.
28 * To describe an array, 'struct btf_type' is followed by
29 * 'struct btf_array'.
30 *
31 * 'struct btf_type' and any extra data following it are
32 * 4 bytes aligned.
33 *
34 * Type section:
35 * ~~~~~~~~~~~~~
36 * The BTF type section contains a list of 'struct btf_type' objects.
37 * Each one describes a C type. Recall from the above section
38 * that a 'struct btf_type' object could be immediately followed by extra
39 * data in order to desribe some particular C types.
40 *
41 * type_id:
42 * ~~~~~~~
43 * Each btf_type object is identified by a type_id. The type_id
44 * is implicitly implied by the location of the btf_type object in
45 * the BTF type section. The first one has type_id 1. The second
46 * one has type_id 2...etc. Hence, an earlier btf_type has
47 * a smaller type_id.
48 *
49 * A btf_type object may refer to another btf_type object by using
50 * type_id (i.e. the "type" in the "struct btf_type").
51 *
52 * NOTE that we cannot assume any reference-order.
53 * A btf_type object can refer to an earlier btf_type object
54 * but it can also refer to a later btf_type object.
55 *
56 * For example, to describe "const void *". A btf_type
57 * object describing "const" may refer to another btf_type
58 * object describing "void *". This type-reference is done
59 * by specifying type_id:
60 *
61 * [1] CONST (anon) type_id=2
62 * [2] PTR (anon) type_id=0
63 *
64 * The above is the btf_verifier debug log:
65 * - Each line started with "[?]" is a btf_type object
66 * - [?] is the type_id of the btf_type object.
67 * - CONST/PTR is the BTF_KIND_XXX
68 * - "(anon)" is the name of the type. It just
69 * happens that CONST and PTR has no name.
70 * - type_id=XXX is the 'u32 type' in btf_type
71 *
72 * NOTE: "void" has type_id 0
73 *
74 * String section:
75 * ~~~~~~~~~~~~~~
76 * The BTF string section contains the names used by the type section.
77 * Each string is referred by an "offset" from the beginning of the
78 * string section.
79 *
80 * Each string is '\0' terminated.
81 *
82 * The first character in the string section must be '\0'
83 * which is used to mean 'anonymous'. Some btf_type may not
84 * have a name.
85 */
86
87/* BTF verification:
88 *
89 * To verify BTF data, two passes are needed.
90 *
91 * Pass #1
92 * ~~~~~~~
93 * The first pass is to collect all btf_type objects to
94 * an array: "btf->types".
95 *
96 * Depending on the C type that a btf_type is describing,
97 * a btf_type may be followed by extra data. We don't know
98 * how many btf_type is there, and more importantly we don't
99 * know where each btf_type is located in the type section.
100 *
101 * Without knowing the location of each type_id, most verifications
102 * cannot be done. e.g. an earlier btf_type may refer to a later
103 * btf_type (recall the "const void *" above), so we cannot
104 * check this type-reference in the first pass.
105 *
106 * In the first pass, it still does some verifications (e.g.
107 * checking the name is a valid offset to the string section).
eb3f595d
MKL
108 *
109 * Pass #2
110 * ~~~~~~~
111 * The main focus is to resolve a btf_type that is referring
112 * to another type.
113 *
114 * We have to ensure the referring type:
115 * 1) does exist in the BTF (i.e. in btf->types[])
116 * 2) does not cause a loop:
117 * struct A {
118 * struct B b;
119 * };
120 *
121 * struct B {
122 * struct A a;
123 * };
124 *
125 * btf_type_needs_resolve() decides if a btf_type needs
126 * to be resolved.
127 *
128 * The needs_resolve type implements the "resolve()" ops which
129 * essentially does a DFS and detects backedge.
130 *
131 * During resolve (or DFS), different C types have different
132 * "RESOLVED" conditions.
133 *
134 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
135 * members because a member is always referring to another
136 * type. A struct's member can be treated as "RESOLVED" if
137 * it is referring to a BTF_KIND_PTR. Otherwise, the
138 * following valid C struct would be rejected:
139 *
140 * struct A {
141 * int m;
142 * struct A *a;
143 * };
144 *
145 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
146 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
147 * detect a pointer loop, e.g.:
148 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
149 * ^ |
150 * +-----------------------------------------+
151 *
69b693f0
MKL
152 */
153
154#define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
155#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
156#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
157#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
158#define BITS_ROUNDUP_BYTES(bits) \
159 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
160
161/* 16MB for 64k structs and each has 16 members and
162 * a few MB spaces for the string section.
163 * The hard limit is S32_MAX.
164 */
165#define BTF_MAX_SIZE (16 * 1024 * 1024)
166/* 64k. We can raise it later. The hard limit is S32_MAX. */
167#define BTF_MAX_NR_TYPES 65535
168
169#define for_each_member(i, struct_type, member) \
170 for (i = 0, member = btf_type_member(struct_type); \
171 i < btf_type_vlen(struct_type); \
172 i++, member++)
173
eb3f595d
MKL
174#define for_each_member_from(i, from, struct_type, member) \
175 for (i = from, member = btf_type_member(struct_type) + from; \
176 i < btf_type_vlen(struct_type); \
177 i++, member++)
178
69b693f0
MKL
179struct btf {
180 union {
181 struct btf_header *hdr;
182 void *data;
183 };
184 struct btf_type **types;
eb3f595d
MKL
185 u32 *resolved_ids;
186 u32 *resolved_sizes;
69b693f0
MKL
187 const char *strings;
188 void *nohdr_data;
189 u32 nr_types;
190 u32 types_size;
191 u32 data_size;
192};
193
eb3f595d
MKL
194enum verifier_phase {
195 CHECK_META,
196 CHECK_TYPE,
197};
198
199struct resolve_vertex {
200 const struct btf_type *t;
201 u32 type_id;
202 u16 next_member;
203};
204
205enum visit_state {
206 NOT_VISITED,
207 VISITED,
208 RESOLVED,
209};
210
211enum resolve_mode {
212 RESOLVE_TBD, /* To Be Determined */
213 RESOLVE_PTR, /* Resolving for Pointer */
214 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
215 * or array
216 */
217};
218
219#define MAX_RESOLVE_DEPTH 32
220
69b693f0
MKL
221struct btf_verifier_env {
222 struct btf *btf;
eb3f595d
MKL
223 u8 *visit_states;
224 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
225 struct bpf_verifier_log log;
226 u32 log_type_id;
eb3f595d
MKL
227 u32 top_stack;
228 enum verifier_phase phase;
229 enum resolve_mode resolve_mode;
69b693f0
MKL
230};
231
232static const char * const btf_kind_str[NR_BTF_KINDS] = {
233 [BTF_KIND_UNKN] = "UNKNOWN",
234 [BTF_KIND_INT] = "INT",
235 [BTF_KIND_PTR] = "PTR",
236 [BTF_KIND_ARRAY] = "ARRAY",
237 [BTF_KIND_STRUCT] = "STRUCT",
238 [BTF_KIND_UNION] = "UNION",
239 [BTF_KIND_ENUM] = "ENUM",
240 [BTF_KIND_FWD] = "FWD",
241 [BTF_KIND_TYPEDEF] = "TYPEDEF",
242 [BTF_KIND_VOLATILE] = "VOLATILE",
243 [BTF_KIND_CONST] = "CONST",
244 [BTF_KIND_RESTRICT] = "RESTRICT",
245};
246
247struct btf_kind_operations {
248 s32 (*check_meta)(struct btf_verifier_env *env,
249 const struct btf_type *t,
250 u32 meta_left);
eb3f595d
MKL
251 int (*resolve)(struct btf_verifier_env *env,
252 const struct resolve_vertex *v);
179cde8c
MKL
253 int (*check_member)(struct btf_verifier_env *env,
254 const struct btf_type *struct_type,
255 const struct btf_member *member,
256 const struct btf_type *member_type);
69b693f0
MKL
257 void (*log_details)(struct btf_verifier_env *env,
258 const struct btf_type *t);
259};
260
261static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
262static struct btf_type btf_void;
263
eb3f595d
MKL
264static bool btf_type_is_modifier(const struct btf_type *t)
265{
266 /* Some of them is not strictly a C modifier
267 * but they are grouped into the same bucket
268 * for BTF concern:
269 * A type (t) that refers to another
270 * type through t->type AND its size cannot
271 * be determined without following the t->type.
272 *
273 * ptr does not fall into this bucket
274 * because its size is always sizeof(void *).
275 */
276 switch (BTF_INFO_KIND(t->info)) {
277 case BTF_KIND_TYPEDEF:
278 case BTF_KIND_VOLATILE:
279 case BTF_KIND_CONST:
280 case BTF_KIND_RESTRICT:
281 return true;
282 }
283
284 return false;
285}
286
287static bool btf_type_is_void(const struct btf_type *t)
288{
289 /* void => no type and size info.
290 * Hence, FWD is also treated as void.
291 */
292 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
293}
294
295static bool btf_type_is_void_or_null(const struct btf_type *t)
296{
297 return !t || btf_type_is_void(t);
298}
299
300/* union is only a special case of struct:
301 * all its offsetof(member) == 0
302 */
303static bool btf_type_is_struct(const struct btf_type *t)
304{
305 u8 kind = BTF_INFO_KIND(t->info);
306
307 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
308}
309
310static bool btf_type_is_array(const struct btf_type *t)
311{
312 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
313}
314
315static bool btf_type_is_ptr(const struct btf_type *t)
316{
317 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
318}
319
320static bool btf_type_is_int(const struct btf_type *t)
321{
322 return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
323}
324
325/* What types need to be resolved?
326 *
327 * btf_type_is_modifier() is an obvious one.
328 *
329 * btf_type_is_struct() because its member refers to
330 * another type (through member->type).
331
332 * btf_type_is_array() because its element (array->type)
333 * refers to another type. Array can be thought of a
334 * special case of struct while array just has the same
335 * member-type repeated by array->nelems of times.
336 */
337static bool btf_type_needs_resolve(const struct btf_type *t)
338{
339 return btf_type_is_modifier(t) ||
340 btf_type_is_ptr(t) ||
341 btf_type_is_struct(t) ||
342 btf_type_is_array(t);
343}
344
345/* t->size can be used */
346static bool btf_type_has_size(const struct btf_type *t)
347{
348 switch (BTF_INFO_KIND(t->info)) {
349 case BTF_KIND_INT:
350 case BTF_KIND_STRUCT:
351 case BTF_KIND_UNION:
352 case BTF_KIND_ENUM:
353 return true;
354 }
355
356 return false;
357}
358
69b693f0
MKL
359static const char *btf_int_encoding_str(u8 encoding)
360{
361 if (encoding == 0)
362 return "(none)";
363 else if (encoding == BTF_INT_SIGNED)
364 return "SIGNED";
365 else if (encoding == BTF_INT_CHAR)
366 return "CHAR";
367 else if (encoding == BTF_INT_BOOL)
368 return "BOOL";
369 else if (encoding == BTF_INT_VARARGS)
370 return "VARARGS";
371 else
372 return "UNKN";
373}
374
375static u16 btf_type_vlen(const struct btf_type *t)
376{
377 return BTF_INFO_VLEN(t->info);
378}
379
380static u32 btf_type_int(const struct btf_type *t)
381{
382 return *(u32 *)(t + 1);
383}
384
385static const struct btf_array *btf_type_array(const struct btf_type *t)
386{
387 return (const struct btf_array *)(t + 1);
388}
389
390static const struct btf_member *btf_type_member(const struct btf_type *t)
391{
392 return (const struct btf_member *)(t + 1);
393}
394
395static const struct btf_enum *btf_type_enum(const struct btf_type *t)
396{
397 return (const struct btf_enum *)(t + 1);
398}
399
400static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
401{
402 return kind_ops[BTF_INFO_KIND(t->info)];
403}
404
405static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
406{
407 return !BTF_STR_TBL_ELF_ID(offset) &&
408 BTF_STR_OFFSET(offset) < btf->hdr->str_len;
409}
410
411static const char *btf_name_by_offset(const struct btf *btf, u32 offset)
412{
413 if (!BTF_STR_OFFSET(offset))
414 return "(anon)";
415 else if (BTF_STR_OFFSET(offset) < btf->hdr->str_len)
416 return &btf->strings[BTF_STR_OFFSET(offset)];
417 else
418 return "(invalid-name-offset)";
419}
420
eb3f595d
MKL
421static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
422{
423 if (type_id > btf->nr_types)
424 return NULL;
425
426 return btf->types[type_id];
427}
428
69b693f0
MKL
429__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
430 const char *fmt, ...)
431{
432 va_list args;
433
434 va_start(args, fmt);
435 bpf_verifier_vlog(log, fmt, args);
436 va_end(args);
437}
438
439__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
440 const char *fmt, ...)
441{
442 struct bpf_verifier_log *log = &env->log;
443 va_list args;
444
445 if (!bpf_verifier_log_needed(log))
446 return;
447
448 va_start(args, fmt);
449 bpf_verifier_vlog(log, fmt, args);
450 va_end(args);
451}
452
453__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
454 const struct btf_type *t,
455 bool log_details,
456 const char *fmt, ...)
457{
458 struct bpf_verifier_log *log = &env->log;
459 u8 kind = BTF_INFO_KIND(t->info);
460 struct btf *btf = env->btf;
461 va_list args;
462
463 if (!bpf_verifier_log_needed(log))
464 return;
465
466 __btf_verifier_log(log, "[%u] %s %s%s",
467 env->log_type_id,
468 btf_kind_str[kind],
469 btf_name_by_offset(btf, t->name),
470 log_details ? " " : "");
471
472 if (log_details)
473 btf_type_ops(t)->log_details(env, t);
474
475 if (fmt && *fmt) {
476 __btf_verifier_log(log, " ");
477 va_start(args, fmt);
478 bpf_verifier_vlog(log, fmt, args);
479 va_end(args);
480 }
481
482 __btf_verifier_log(log, "\n");
483}
484
485#define btf_verifier_log_type(env, t, ...) \
486 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
487#define btf_verifier_log_basic(env, t, ...) \
488 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
489
490__printf(4, 5)
491static void btf_verifier_log_member(struct btf_verifier_env *env,
492 const struct btf_type *struct_type,
493 const struct btf_member *member,
494 const char *fmt, ...)
495{
496 struct bpf_verifier_log *log = &env->log;
497 struct btf *btf = env->btf;
498 va_list args;
499
500 if (!bpf_verifier_log_needed(log))
501 return;
502
eb3f595d
MKL
503 /* The CHECK_META phase already did a btf dump.
504 *
505 * If member is logged again, it must hit an error in
506 * parsing this member. It is useful to print out which
507 * struct this member belongs to.
508 */
509 if (env->phase != CHECK_META)
510 btf_verifier_log_type(env, struct_type, NULL);
511
69b693f0
MKL
512 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
513 btf_name_by_offset(btf, member->name),
514 member->type, member->offset);
515
516 if (fmt && *fmt) {
517 __btf_verifier_log(log, " ");
518 va_start(args, fmt);
519 bpf_verifier_vlog(log, fmt, args);
520 va_end(args);
521 }
522
523 __btf_verifier_log(log, "\n");
524}
525
526static void btf_verifier_log_hdr(struct btf_verifier_env *env)
527{
528 struct bpf_verifier_log *log = &env->log;
529 const struct btf *btf = env->btf;
530 const struct btf_header *hdr;
531
532 if (!bpf_verifier_log_needed(log))
533 return;
534
535 hdr = btf->hdr;
536 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
537 __btf_verifier_log(log, "version: %u\n", hdr->version);
538 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
539 __btf_verifier_log(log, "parent_label: %u\n", hdr->parent_label);
540 __btf_verifier_log(log, "parent_name: %u\n", hdr->parent_name);
541 __btf_verifier_log(log, "label_off: %u\n", hdr->label_off);
542 __btf_verifier_log(log, "object_off: %u\n", hdr->object_off);
543 __btf_verifier_log(log, "func_off: %u\n", hdr->func_off);
544 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
545 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
546 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
547 __btf_verifier_log(log, "btf_total_size: %u\n", btf->data_size);
548}
549
550static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
551{
552 struct btf *btf = env->btf;
553
554 /* < 2 because +1 for btf_void which is always in btf->types[0].
555 * btf_void is not accounted in btf->nr_types because btf_void
556 * does not come from the BTF file.
557 */
558 if (btf->types_size - btf->nr_types < 2) {
559 /* Expand 'types' array */
560
561 struct btf_type **new_types;
562 u32 expand_by, new_size;
563
564 if (btf->types_size == BTF_MAX_NR_TYPES) {
565 btf_verifier_log(env, "Exceeded max num of types");
566 return -E2BIG;
567 }
568
569 expand_by = max_t(u32, btf->types_size >> 2, 16);
570 new_size = min_t(u32, BTF_MAX_NR_TYPES,
571 btf->types_size + expand_by);
572
573 new_types = kvzalloc(new_size * sizeof(*new_types),
574 GFP_KERNEL | __GFP_NOWARN);
575 if (!new_types)
576 return -ENOMEM;
577
578 if (btf->nr_types == 0)
579 new_types[0] = &btf_void;
580 else
581 memcpy(new_types, btf->types,
582 sizeof(*btf->types) * (btf->nr_types + 1));
583
584 kvfree(btf->types);
585 btf->types = new_types;
586 btf->types_size = new_size;
587 }
588
589 btf->types[++(btf->nr_types)] = t;
590
591 return 0;
592}
593
594static void btf_free(struct btf *btf)
595{
596 kvfree(btf->types);
eb3f595d
MKL
597 kvfree(btf->resolved_sizes);
598 kvfree(btf->resolved_ids);
69b693f0
MKL
599 kvfree(btf->data);
600 kfree(btf);
601}
602
eb3f595d
MKL
603static int env_resolve_init(struct btf_verifier_env *env)
604{
605 struct btf *btf = env->btf;
606 u32 nr_types = btf->nr_types;
607 u32 *resolved_sizes = NULL;
608 u32 *resolved_ids = NULL;
609 u8 *visit_states = NULL;
610
611 /* +1 for btf_void */
612 resolved_sizes = kvzalloc((nr_types + 1) * sizeof(*resolved_sizes),
613 GFP_KERNEL | __GFP_NOWARN);
614 if (!resolved_sizes)
615 goto nomem;
616
617 resolved_ids = kvzalloc((nr_types + 1) * sizeof(*resolved_ids),
618 GFP_KERNEL | __GFP_NOWARN);
619 if (!resolved_ids)
620 goto nomem;
621
622 visit_states = kvzalloc((nr_types + 1) * sizeof(*visit_states),
623 GFP_KERNEL | __GFP_NOWARN);
624 if (!visit_states)
625 goto nomem;
626
627 btf->resolved_sizes = resolved_sizes;
628 btf->resolved_ids = resolved_ids;
629 env->visit_states = visit_states;
630
631 return 0;
632
633nomem:
634 kvfree(resolved_sizes);
635 kvfree(resolved_ids);
636 kvfree(visit_states);
637 return -ENOMEM;
638}
639
69b693f0
MKL
640static void btf_verifier_env_free(struct btf_verifier_env *env)
641{
eb3f595d 642 kvfree(env->visit_states);
69b693f0
MKL
643 kfree(env);
644}
645
eb3f595d
MKL
646static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
647 const struct btf_type *next_type)
648{
649 switch (env->resolve_mode) {
650 case RESOLVE_TBD:
651 /* int, enum or void is a sink */
652 return !btf_type_needs_resolve(next_type);
653 case RESOLVE_PTR:
654 /* int, enum, void, struct or array is a sink for ptr */
655 return !btf_type_is_modifier(next_type) &&
656 !btf_type_is_ptr(next_type);
657 case RESOLVE_STRUCT_OR_ARRAY:
658 /* int, enum, void or ptr is a sink for struct and array */
659 return !btf_type_is_modifier(next_type) &&
660 !btf_type_is_array(next_type) &&
661 !btf_type_is_struct(next_type);
662 default:
663 BUG_ON(1);
664 }
665}
666
667static bool env_type_is_resolved(const struct btf_verifier_env *env,
668 u32 type_id)
669{
670 return env->visit_states[type_id] == RESOLVED;
671}
672
673static int env_stack_push(struct btf_verifier_env *env,
674 const struct btf_type *t, u32 type_id)
675{
676 struct resolve_vertex *v;
677
678 if (env->top_stack == MAX_RESOLVE_DEPTH)
679 return -E2BIG;
680
681 if (env->visit_states[type_id] != NOT_VISITED)
682 return -EEXIST;
683
684 env->visit_states[type_id] = VISITED;
685
686 v = &env->stack[env->top_stack++];
687 v->t = t;
688 v->type_id = type_id;
689 v->next_member = 0;
690
691 if (env->resolve_mode == RESOLVE_TBD) {
692 if (btf_type_is_ptr(t))
693 env->resolve_mode = RESOLVE_PTR;
694 else if (btf_type_is_struct(t) || btf_type_is_array(t))
695 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
696 }
697
698 return 0;
699}
700
701static void env_stack_set_next_member(struct btf_verifier_env *env,
702 u16 next_member)
703{
704 env->stack[env->top_stack - 1].next_member = next_member;
705}
706
707static void env_stack_pop_resolved(struct btf_verifier_env *env,
708 u32 resolved_type_id,
709 u32 resolved_size)
710{
711 u32 type_id = env->stack[--(env->top_stack)].type_id;
712 struct btf *btf = env->btf;
713
714 btf->resolved_sizes[type_id] = resolved_size;
715 btf->resolved_ids[type_id] = resolved_type_id;
716 env->visit_states[type_id] = RESOLVED;
717}
718
719static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
720{
721 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
722}
723
724/* The input param "type_id" must point to a needs_resolve type */
725static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
726 u32 *type_id)
727{
728 *type_id = btf->resolved_ids[*type_id];
729 return btf_type_by_id(btf, *type_id);
730}
731
732const struct btf_type *btf_type_id_size(const struct btf *btf,
733 u32 *type_id, u32 *ret_size)
734{
735 const struct btf_type *size_type;
736 u32 size_type_id = *type_id;
737 u32 size = 0;
738
739 size_type = btf_type_by_id(btf, size_type_id);
740 if (btf_type_is_void_or_null(size_type))
741 return NULL;
742
743 if (btf_type_has_size(size_type)) {
744 size = size_type->size;
745 } else if (btf_type_is_array(size_type)) {
746 size = btf->resolved_sizes[size_type_id];
747 } else if (btf_type_is_ptr(size_type)) {
748 size = sizeof(void *);
749 } else {
750 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
751 return NULL;
752
753 size = btf->resolved_sizes[size_type_id];
754 size_type_id = btf->resolved_ids[size_type_id];
755 size_type = btf_type_by_id(btf, size_type_id);
756 if (btf_type_is_void(size_type))
757 return NULL;
758 }
759
760 *type_id = size_type_id;
761 if (ret_size)
762 *ret_size = size;
763
764 return size_type;
765}
766
179cde8c
MKL
767static int btf_df_check_member(struct btf_verifier_env *env,
768 const struct btf_type *struct_type,
769 const struct btf_member *member,
770 const struct btf_type *member_type)
771{
772 btf_verifier_log_basic(env, struct_type,
773 "Unsupported check_member");
774 return -EINVAL;
775}
776
eb3f595d
MKL
777static int btf_df_resolve(struct btf_verifier_env *env,
778 const struct resolve_vertex *v)
779{
780 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
781 return -EINVAL;
782}
783
179cde8c
MKL
784static int btf_int_check_member(struct btf_verifier_env *env,
785 const struct btf_type *struct_type,
786 const struct btf_member *member,
787 const struct btf_type *member_type)
788{
789 u32 int_data = btf_type_int(member_type);
790 u32 struct_bits_off = member->offset;
791 u32 struct_size = struct_type->size;
792 u32 nr_copy_bits;
793 u32 bytes_offset;
794
795 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
796 btf_verifier_log_member(env, struct_type, member,
797 "bits_offset exceeds U32_MAX");
798 return -EINVAL;
799 }
800
801 struct_bits_off += BTF_INT_OFFSET(int_data);
802 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
803 nr_copy_bits = BTF_INT_BITS(int_data) +
804 BITS_PER_BYTE_MASKED(struct_bits_off);
805
806 if (nr_copy_bits > BITS_PER_U64) {
807 btf_verifier_log_member(env, struct_type, member,
808 "nr_copy_bits exceeds 64");
809 return -EINVAL;
810 }
811
812 if (struct_size < bytes_offset ||
813 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
814 btf_verifier_log_member(env, struct_type, member,
815 "Member exceeds struct_size");
816 return -EINVAL;
817 }
818
819 return 0;
820}
821
69b693f0
MKL
822static s32 btf_int_check_meta(struct btf_verifier_env *env,
823 const struct btf_type *t,
824 u32 meta_left)
825{
826 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
827 u16 encoding;
828
829 if (meta_left < meta_needed) {
830 btf_verifier_log_basic(env, t,
831 "meta_left:%u meta_needed:%u",
832 meta_left, meta_needed);
833 return -EINVAL;
834 }
835
836 if (btf_type_vlen(t)) {
837 btf_verifier_log_type(env, t, "vlen != 0");
838 return -EINVAL;
839 }
840
841 int_data = btf_type_int(t);
842 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
843
844 if (nr_bits > BITS_PER_U64) {
845 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
846 BITS_PER_U64);
847 return -EINVAL;
848 }
849
850 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
851 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
852 return -EINVAL;
853 }
854
855 encoding = BTF_INT_ENCODING(int_data);
856 if (encoding &&
857 encoding != BTF_INT_SIGNED &&
858 encoding != BTF_INT_CHAR &&
859 encoding != BTF_INT_BOOL &&
860 encoding != BTF_INT_VARARGS) {
861 btf_verifier_log_type(env, t, "Unsupported encoding");
862 return -ENOTSUPP;
863 }
864
865 btf_verifier_log_type(env, t, NULL);
866
867 return meta_needed;
868}
869
870static void btf_int_log(struct btf_verifier_env *env,
871 const struct btf_type *t)
872{
873 int int_data = btf_type_int(t);
874
875 btf_verifier_log(env,
876 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
877 t->size, BTF_INT_OFFSET(int_data),
878 BTF_INT_BITS(int_data),
879 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
880}
881
882static const struct btf_kind_operations int_ops = {
883 .check_meta = btf_int_check_meta,
eb3f595d 884 .resolve = btf_df_resolve,
179cde8c 885 .check_member = btf_int_check_member,
69b693f0
MKL
886 .log_details = btf_int_log,
887};
888
179cde8c
MKL
889static int btf_modifier_check_member(struct btf_verifier_env *env,
890 const struct btf_type *struct_type,
891 const struct btf_member *member,
892 const struct btf_type *member_type)
893{
894 const struct btf_type *resolved_type;
895 u32 resolved_type_id = member->type;
896 struct btf_member resolved_member;
897 struct btf *btf = env->btf;
898
899 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
900 if (!resolved_type) {
901 btf_verifier_log_member(env, struct_type, member,
902 "Invalid member");
903 return -EINVAL;
904 }
905
906 resolved_member = *member;
907 resolved_member.type = resolved_type_id;
908
909 return btf_type_ops(resolved_type)->check_member(env, struct_type,
910 &resolved_member,
911 resolved_type);
912}
913
914static int btf_ptr_check_member(struct btf_verifier_env *env,
915 const struct btf_type *struct_type,
916 const struct btf_member *member,
917 const struct btf_type *member_type)
918{
919 u32 struct_size, struct_bits_off, bytes_offset;
920
921 struct_size = struct_type->size;
922 struct_bits_off = member->offset;
923 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
924
925 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
926 btf_verifier_log_member(env, struct_type, member,
927 "Member is not byte aligned");
928 return -EINVAL;
929 }
930
931 if (struct_size - bytes_offset < sizeof(void *)) {
932 btf_verifier_log_member(env, struct_type, member,
933 "Member exceeds struct_size");
934 return -EINVAL;
935 }
936
937 return 0;
938}
939
69b693f0
MKL
940static int btf_ref_type_check_meta(struct btf_verifier_env *env,
941 const struct btf_type *t,
942 u32 meta_left)
943{
944 if (btf_type_vlen(t)) {
945 btf_verifier_log_type(env, t, "vlen != 0");
946 return -EINVAL;
947 }
948
949 if (BTF_TYPE_PARENT(t->type)) {
950 btf_verifier_log_type(env, t, "Invalid type_id");
951 return -EINVAL;
952 }
953
954 btf_verifier_log_type(env, t, NULL);
955
956 return 0;
957}
958
eb3f595d
MKL
959static int btf_modifier_resolve(struct btf_verifier_env *env,
960 const struct resolve_vertex *v)
961{
962 const struct btf_type *t = v->t;
963 const struct btf_type *next_type;
964 u32 next_type_id = t->type;
965 struct btf *btf = env->btf;
966 u32 next_type_size = 0;
967
968 next_type = btf_type_by_id(btf, next_type_id);
969 if (!next_type) {
970 btf_verifier_log_type(env, v->t, "Invalid type_id");
971 return -EINVAL;
972 }
973
974 /* "typedef void new_void", "const void"...etc */
975 if (btf_type_is_void(next_type))
976 goto resolved;
977
978 if (!env_type_is_resolve_sink(env, next_type) &&
979 !env_type_is_resolved(env, next_type_id))
980 return env_stack_push(env, next_type, next_type_id);
981
982 /* Figure out the resolved next_type_id with size.
983 * They will be stored in the current modifier's
984 * resolved_ids and resolved_sizes such that it can
985 * save us a few type-following when we use it later (e.g. in
986 * pretty print).
987 */
988 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
989 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
990 btf_verifier_log_type(env, v->t, "Invalid type_id");
991 return -EINVAL;
992 }
993
994resolved:
995 env_stack_pop_resolved(env, next_type_id, next_type_size);
996
997 return 0;
998}
999
1000static int btf_ptr_resolve(struct btf_verifier_env *env,
1001 const struct resolve_vertex *v)
1002{
1003 const struct btf_type *next_type;
1004 const struct btf_type *t = v->t;
1005 u32 next_type_id = t->type;
1006 struct btf *btf = env->btf;
1007 u32 next_type_size = 0;
1008
1009 next_type = btf_type_by_id(btf, next_type_id);
1010 if (!next_type) {
1011 btf_verifier_log_type(env, v->t, "Invalid type_id");
1012 return -EINVAL;
1013 }
1014
1015 /* "void *" */
1016 if (btf_type_is_void(next_type))
1017 goto resolved;
1018
1019 if (!env_type_is_resolve_sink(env, next_type) &&
1020 !env_type_is_resolved(env, next_type_id))
1021 return env_stack_push(env, next_type, next_type_id);
1022
1023 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1024 * the modifier may have stopped resolving when it was resolved
1025 * to a ptr (last-resolved-ptr).
1026 *
1027 * We now need to continue from the last-resolved-ptr to
1028 * ensure the last-resolved-ptr will not referring back to
1029 * the currenct ptr (t).
1030 */
1031 if (btf_type_is_modifier(next_type)) {
1032 const struct btf_type *resolved_type;
1033 u32 resolved_type_id;
1034
1035 resolved_type_id = next_type_id;
1036 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1037
1038 if (btf_type_is_ptr(resolved_type) &&
1039 !env_type_is_resolve_sink(env, resolved_type) &&
1040 !env_type_is_resolved(env, resolved_type_id))
1041 return env_stack_push(env, resolved_type,
1042 resolved_type_id);
1043 }
1044
1045 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1046 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1047 btf_verifier_log_type(env, v->t, "Invalid type_id");
1048 return -EINVAL;
1049 }
1050
1051resolved:
1052 env_stack_pop_resolved(env, next_type_id, 0);
1053
1054 return 0;
1055}
1056
69b693f0
MKL
1057static void btf_ref_type_log(struct btf_verifier_env *env,
1058 const struct btf_type *t)
1059{
1060 btf_verifier_log(env, "type_id=%u", t->type);
1061}
1062
1063static struct btf_kind_operations modifier_ops = {
1064 .check_meta = btf_ref_type_check_meta,
eb3f595d 1065 .resolve = btf_modifier_resolve,
179cde8c 1066 .check_member = btf_modifier_check_member,
69b693f0
MKL
1067 .log_details = btf_ref_type_log,
1068};
1069
1070static struct btf_kind_operations ptr_ops = {
1071 .check_meta = btf_ref_type_check_meta,
eb3f595d 1072 .resolve = btf_ptr_resolve,
179cde8c 1073 .check_member = btf_ptr_check_member,
69b693f0
MKL
1074 .log_details = btf_ref_type_log,
1075};
1076
1077static struct btf_kind_operations fwd_ops = {
1078 .check_meta = btf_ref_type_check_meta,
eb3f595d 1079 .resolve = btf_df_resolve,
179cde8c 1080 .check_member = btf_df_check_member,
69b693f0
MKL
1081 .log_details = btf_ref_type_log,
1082};
1083
179cde8c
MKL
1084static int btf_array_check_member(struct btf_verifier_env *env,
1085 const struct btf_type *struct_type,
1086 const struct btf_member *member,
1087 const struct btf_type *member_type)
1088{
1089 u32 struct_bits_off = member->offset;
1090 u32 struct_size, bytes_offset;
1091 u32 array_type_id, array_size;
1092 struct btf *btf = env->btf;
1093
1094 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1095 btf_verifier_log_member(env, struct_type, member,
1096 "Member is not byte aligned");
1097 return -EINVAL;
1098 }
1099
1100 array_type_id = member->type;
1101 btf_type_id_size(btf, &array_type_id, &array_size);
1102 struct_size = struct_type->size;
1103 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1104 if (struct_size - bytes_offset < array_size) {
1105 btf_verifier_log_member(env, struct_type, member,
1106 "Member exceeds struct_size");
1107 return -EINVAL;
1108 }
1109
1110 return 0;
1111}
1112
69b693f0
MKL
1113static s32 btf_array_check_meta(struct btf_verifier_env *env,
1114 const struct btf_type *t,
1115 u32 meta_left)
1116{
1117 const struct btf_array *array = btf_type_array(t);
1118 u32 meta_needed = sizeof(*array);
1119
1120 if (meta_left < meta_needed) {
1121 btf_verifier_log_basic(env, t,
1122 "meta_left:%u meta_needed:%u",
1123 meta_left, meta_needed);
1124 return -EINVAL;
1125 }
1126
1127 if (btf_type_vlen(t)) {
1128 btf_verifier_log_type(env, t, "vlen != 0");
1129 return -EINVAL;
1130 }
1131
1132 /* We are a little forgiving on array->index_type since
1133 * the kernel is not using it.
1134 */
1135 /* Array elem cannot be in type void,
1136 * so !array->type is not allowed.
1137 */
1138 if (!array->type || BTF_TYPE_PARENT(array->type)) {
1139 btf_verifier_log_type(env, t, "Invalid type_id");
1140 return -EINVAL;
1141 }
1142
1143 btf_verifier_log_type(env, t, NULL);
1144
1145 return meta_needed;
1146}
1147
eb3f595d
MKL
1148static int btf_array_resolve(struct btf_verifier_env *env,
1149 const struct resolve_vertex *v)
1150{
1151 const struct btf_array *array = btf_type_array(v->t);
1152 const struct btf_type *elem_type;
1153 u32 elem_type_id = array->type;
1154 struct btf *btf = env->btf;
1155 u32 elem_size;
1156
1157 elem_type = btf_type_by_id(btf, elem_type_id);
1158 if (btf_type_is_void_or_null(elem_type)) {
1159 btf_verifier_log_type(env, v->t,
1160 "Invalid elem");
1161 return -EINVAL;
1162 }
1163
1164 if (!env_type_is_resolve_sink(env, elem_type) &&
1165 !env_type_is_resolved(env, elem_type_id))
1166 return env_stack_push(env, elem_type, elem_type_id);
1167
1168 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1169 if (!elem_type) {
1170 btf_verifier_log_type(env, v->t, "Invalid elem");
1171 return -EINVAL;
1172 }
1173
1174 if (btf_type_is_int(elem_type)) {
1175 int int_type_data = btf_type_int(elem_type);
1176 u16 nr_bits = BTF_INT_BITS(int_type_data);
1177 u16 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
1178
1179 /* Put more restriction on array of int. The int cannot
1180 * be a bit field and it must be either u8/u16/u32/u64.
1181 */
1182 if (BITS_PER_BYTE_MASKED(nr_bits) ||
1183 BTF_INT_OFFSET(int_type_data) ||
1184 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
1185 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
1186 btf_verifier_log_type(env, v->t,
1187 "Invalid array of int");
1188 return -EINVAL;
1189 }
1190 }
1191
1192 if (array->nelems && elem_size > U32_MAX / array->nelems) {
1193 btf_verifier_log_type(env, v->t,
1194 "Array size overflows U32_MAX");
1195 return -EINVAL;
1196 }
1197
1198 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1199
1200 return 0;
1201}
1202
69b693f0
MKL
1203static void btf_array_log(struct btf_verifier_env *env,
1204 const struct btf_type *t)
1205{
1206 const struct btf_array *array = btf_type_array(t);
1207
1208 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1209 array->type, array->index_type, array->nelems);
1210}
1211
1212static struct btf_kind_operations array_ops = {
1213 .check_meta = btf_array_check_meta,
eb3f595d 1214 .resolve = btf_array_resolve,
179cde8c 1215 .check_member = btf_array_check_member,
69b693f0
MKL
1216 .log_details = btf_array_log,
1217};
1218
179cde8c
MKL
1219static int btf_struct_check_member(struct btf_verifier_env *env,
1220 const struct btf_type *struct_type,
1221 const struct btf_member *member,
1222 const struct btf_type *member_type)
1223{
1224 u32 struct_bits_off = member->offset;
1225 u32 struct_size, bytes_offset;
1226
1227 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1228 btf_verifier_log_member(env, struct_type, member,
1229 "Member is not byte aligned");
1230 return -EINVAL;
1231 }
1232
1233 struct_size = struct_type->size;
1234 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1235 if (struct_size - bytes_offset < member_type->size) {
1236 btf_verifier_log_member(env, struct_type, member,
1237 "Member exceeds struct_size");
1238 return -EINVAL;
1239 }
1240
1241 return 0;
1242}
1243
69b693f0
MKL
1244static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1245 const struct btf_type *t,
1246 u32 meta_left)
1247{
1248 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1249 const struct btf_member *member;
1250 struct btf *btf = env->btf;
1251 u32 struct_size = t->size;
1252 u32 meta_needed;
1253 u16 i;
1254
1255 meta_needed = btf_type_vlen(t) * sizeof(*member);
1256 if (meta_left < meta_needed) {
1257 btf_verifier_log_basic(env, t,
1258 "meta_left:%u meta_needed:%u",
1259 meta_left, meta_needed);
1260 return -EINVAL;
1261 }
1262
1263 btf_verifier_log_type(env, t, NULL);
1264
1265 for_each_member(i, t, member) {
1266 if (!btf_name_offset_valid(btf, member->name)) {
1267 btf_verifier_log_member(env, t, member,
1268 "Invalid member name_offset:%u",
1269 member->name);
1270 return -EINVAL;
1271 }
1272
1273 /* A member cannot be in type void */
1274 if (!member->type || BTF_TYPE_PARENT(member->type)) {
1275 btf_verifier_log_member(env, t, member,
1276 "Invalid type_id");
1277 return -EINVAL;
1278 }
1279
1280 if (is_union && member->offset) {
1281 btf_verifier_log_member(env, t, member,
1282 "Invalid member bits_offset");
1283 return -EINVAL;
1284 }
1285
1286 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1287 btf_verifier_log_member(env, t, member,
1288 "Memmber bits_offset exceeds its struct size");
1289 return -EINVAL;
1290 }
1291
1292 btf_verifier_log_member(env, t, member, NULL);
1293 }
1294
1295 return meta_needed;
1296}
1297
eb3f595d
MKL
1298static int btf_struct_resolve(struct btf_verifier_env *env,
1299 const struct resolve_vertex *v)
1300{
1301 const struct btf_member *member;
179cde8c 1302 int err;
eb3f595d
MKL
1303 u16 i;
1304
1305 /* Before continue resolving the next_member,
1306 * ensure the last member is indeed resolved to a
1307 * type with size info.
1308 */
1309 if (v->next_member) {
179cde8c 1310 const struct btf_type *last_member_type;
eb3f595d
MKL
1311 const struct btf_member *last_member;
1312 u16 last_member_type_id;
1313
1314 last_member = btf_type_member(v->t) + v->next_member - 1;
1315 last_member_type_id = last_member->type;
1316 if (WARN_ON_ONCE(!env_type_is_resolved(env,
1317 last_member_type_id)))
1318 return -EINVAL;
179cde8c
MKL
1319
1320 last_member_type = btf_type_by_id(env->btf,
1321 last_member_type_id);
1322 err = btf_type_ops(last_member_type)->check_member(env, v->t,
1323 last_member,
1324 last_member_type);
1325 if (err)
1326 return err;
eb3f595d
MKL
1327 }
1328
1329 for_each_member_from(i, v->next_member, v->t, member) {
1330 u32 member_type_id = member->type;
1331 const struct btf_type *member_type = btf_type_by_id(env->btf,
1332 member_type_id);
1333
1334 if (btf_type_is_void_or_null(member_type)) {
1335 btf_verifier_log_member(env, v->t, member,
1336 "Invalid member");
1337 return -EINVAL;
1338 }
1339
1340 if (!env_type_is_resolve_sink(env, member_type) &&
1341 !env_type_is_resolved(env, member_type_id)) {
1342 env_stack_set_next_member(env, i + 1);
1343 return env_stack_push(env, member_type, member_type_id);
1344 }
179cde8c
MKL
1345
1346 err = btf_type_ops(member_type)->check_member(env, v->t,
1347 member,
1348 member_type);
1349 if (err)
1350 return err;
eb3f595d
MKL
1351 }
1352
1353 env_stack_pop_resolved(env, 0, 0);
1354
1355 return 0;
1356}
1357
69b693f0
MKL
1358static void btf_struct_log(struct btf_verifier_env *env,
1359 const struct btf_type *t)
1360{
1361 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1362}
1363
1364static struct btf_kind_operations struct_ops = {
1365 .check_meta = btf_struct_check_meta,
eb3f595d 1366 .resolve = btf_struct_resolve,
179cde8c 1367 .check_member = btf_struct_check_member,
69b693f0
MKL
1368 .log_details = btf_struct_log,
1369};
1370
179cde8c
MKL
1371static int btf_enum_check_member(struct btf_verifier_env *env,
1372 const struct btf_type *struct_type,
1373 const struct btf_member *member,
1374 const struct btf_type *member_type)
1375{
1376 u32 struct_bits_off = member->offset;
1377 u32 struct_size, bytes_offset;
1378
1379 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1380 btf_verifier_log_member(env, struct_type, member,
1381 "Member is not byte aligned");
1382 return -EINVAL;
1383 }
1384
1385 struct_size = struct_type->size;
1386 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1387 if (struct_size - bytes_offset < sizeof(int)) {
1388 btf_verifier_log_member(env, struct_type, member,
1389 "Member exceeds struct_size");
1390 return -EINVAL;
1391 }
1392
1393 return 0;
1394}
1395
69b693f0
MKL
1396static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1397 const struct btf_type *t,
1398 u32 meta_left)
1399{
1400 const struct btf_enum *enums = btf_type_enum(t);
1401 struct btf *btf = env->btf;
1402 u16 i, nr_enums;
1403 u32 meta_needed;
1404
1405 nr_enums = btf_type_vlen(t);
1406 meta_needed = nr_enums * sizeof(*enums);
1407
1408 if (meta_left < meta_needed) {
1409 btf_verifier_log_basic(env, t,
1410 "meta_left:%u meta_needed:%u",
1411 meta_left, meta_needed);
1412 return -EINVAL;
1413 }
1414
1415 if (t->size != sizeof(int)) {
1416 btf_verifier_log_type(env, t, "Expected size:%zu",
1417 sizeof(int));
1418 return -EINVAL;
1419 }
1420
1421 btf_verifier_log_type(env, t, NULL);
1422
1423 for (i = 0; i < nr_enums; i++) {
1424 if (!btf_name_offset_valid(btf, enums[i].name)) {
1425 btf_verifier_log(env, "\tInvalid name_offset:%u",
1426 enums[i].name);
1427 return -EINVAL;
1428 }
1429
1430 btf_verifier_log(env, "\t%s val=%d\n",
1431 btf_name_by_offset(btf, enums[i].name),
1432 enums[i].val);
1433 }
1434
1435 return meta_needed;
1436}
1437
1438static void btf_enum_log(struct btf_verifier_env *env,
1439 const struct btf_type *t)
1440{
1441 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1442}
1443
1444static struct btf_kind_operations enum_ops = {
1445 .check_meta = btf_enum_check_meta,
eb3f595d 1446 .resolve = btf_df_resolve,
179cde8c 1447 .check_member = btf_enum_check_member,
69b693f0
MKL
1448 .log_details = btf_enum_log,
1449};
1450
1451static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
1452 [BTF_KIND_INT] = &int_ops,
1453 [BTF_KIND_PTR] = &ptr_ops,
1454 [BTF_KIND_ARRAY] = &array_ops,
1455 [BTF_KIND_STRUCT] = &struct_ops,
1456 [BTF_KIND_UNION] = &struct_ops,
1457 [BTF_KIND_ENUM] = &enum_ops,
1458 [BTF_KIND_FWD] = &fwd_ops,
1459 [BTF_KIND_TYPEDEF] = &modifier_ops,
1460 [BTF_KIND_VOLATILE] = &modifier_ops,
1461 [BTF_KIND_CONST] = &modifier_ops,
1462 [BTF_KIND_RESTRICT] = &modifier_ops,
1463};
1464
1465static s32 btf_check_meta(struct btf_verifier_env *env,
1466 const struct btf_type *t,
1467 u32 meta_left)
1468{
1469 u32 saved_meta_left = meta_left;
1470 s32 var_meta_size;
1471
1472 if (meta_left < sizeof(*t)) {
1473 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
1474 env->log_type_id, meta_left, sizeof(*t));
1475 return -EINVAL;
1476 }
1477 meta_left -= sizeof(*t);
1478
1479 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
1480 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
1481 btf_verifier_log(env, "[%u] Invalid kind:%u",
1482 env->log_type_id, BTF_INFO_KIND(t->info));
1483 return -EINVAL;
1484 }
1485
1486 if (!btf_name_offset_valid(env->btf, t->name)) {
1487 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
1488 env->log_type_id, t->name);
1489 return -EINVAL;
1490 }
1491
1492 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
1493 if (var_meta_size < 0)
1494 return var_meta_size;
1495
1496 meta_left -= var_meta_size;
1497
1498 return saved_meta_left - meta_left;
1499}
1500
1501static int btf_check_all_metas(struct btf_verifier_env *env)
1502{
1503 struct btf *btf = env->btf;
1504 struct btf_header *hdr;
1505 void *cur, *end;
1506
1507 hdr = btf->hdr;
1508 cur = btf->nohdr_data + hdr->type_off;
1509 end = btf->nohdr_data + hdr->str_off;
1510
1511 env->log_type_id = 1;
1512 while (cur < end) {
1513 struct btf_type *t = cur;
1514 s32 meta_size;
1515
1516 meta_size = btf_check_meta(env, t, end - cur);
1517 if (meta_size < 0)
1518 return meta_size;
1519
1520 btf_add_type(env, t);
1521 cur += meta_size;
1522 env->log_type_id++;
1523 }
1524
1525 return 0;
1526}
1527
eb3f595d
MKL
1528static int btf_resolve(struct btf_verifier_env *env,
1529 const struct btf_type *t, u32 type_id)
1530{
1531 const struct resolve_vertex *v;
1532 int err = 0;
1533
1534 env->resolve_mode = RESOLVE_TBD;
1535 env_stack_push(env, t, type_id);
1536 while (!err && (v = env_stack_peak(env))) {
1537 env->log_type_id = v->type_id;
1538 err = btf_type_ops(v->t)->resolve(env, v);
1539 }
1540
1541 env->log_type_id = type_id;
1542 if (err == -E2BIG)
1543 btf_verifier_log_type(env, t,
1544 "Exceeded max resolving depth:%u",
1545 MAX_RESOLVE_DEPTH);
1546 else if (err == -EEXIST)
1547 btf_verifier_log_type(env, t, "Loop detected");
1548
1549 return err;
1550}
1551
1552static bool btf_resolve_valid(struct btf_verifier_env *env,
1553 const struct btf_type *t,
1554 u32 type_id)
1555{
1556 struct btf *btf = env->btf;
1557
1558 if (!env_type_is_resolved(env, type_id))
1559 return false;
1560
1561 if (btf_type_is_struct(t))
1562 return !btf->resolved_ids[type_id] &&
1563 !btf->resolved_sizes[type_id];
1564
1565 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
1566 t = btf_type_id_resolve(btf, &type_id);
1567 return t && !btf_type_is_modifier(t);
1568 }
1569
1570 if (btf_type_is_array(t)) {
1571 const struct btf_array *array = btf_type_array(t);
1572 const struct btf_type *elem_type;
1573 u32 elem_type_id = array->type;
1574 u32 elem_size;
1575
1576 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1577 return elem_type && !btf_type_is_modifier(elem_type) &&
1578 (array->nelems * elem_size ==
1579 btf->resolved_sizes[type_id]);
1580 }
1581
1582 return false;
1583}
1584
1585static int btf_check_all_types(struct btf_verifier_env *env)
1586{
1587 struct btf *btf = env->btf;
1588 u32 type_id;
1589 int err;
1590
1591 err = env_resolve_init(env);
1592 if (err)
1593 return err;
1594
1595 env->phase++;
1596 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
1597 const struct btf_type *t = btf_type_by_id(btf, type_id);
1598
1599 env->log_type_id = type_id;
1600 if (btf_type_needs_resolve(t) &&
1601 !env_type_is_resolved(env, type_id)) {
1602 err = btf_resolve(env, t, type_id);
1603 if (err)
1604 return err;
1605 }
1606
1607 if (btf_type_needs_resolve(t) &&
1608 !btf_resolve_valid(env, t, type_id)) {
1609 btf_verifier_log_type(env, t, "Invalid resolve state");
1610 return -EINVAL;
1611 }
1612 }
1613
1614 return 0;
1615}
1616
69b693f0
MKL
1617static int btf_parse_type_sec(struct btf_verifier_env *env)
1618{
eb3f595d
MKL
1619 int err;
1620
1621 err = btf_check_all_metas(env);
1622 if (err)
1623 return err;
1624
1625 return btf_check_all_types(env);
69b693f0
MKL
1626}
1627
1628static int btf_parse_str_sec(struct btf_verifier_env *env)
1629{
1630 const struct btf_header *hdr;
1631 struct btf *btf = env->btf;
1632 const char *start, *end;
1633
1634 hdr = btf->hdr;
1635 start = btf->nohdr_data + hdr->str_off;
1636 end = start + hdr->str_len;
1637
1638 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
1639 start[0] || end[-1]) {
1640 btf_verifier_log(env, "Invalid string section");
1641 return -EINVAL;
1642 }
1643
1644 btf->strings = start;
1645
1646 return 0;
1647}
1648
1649static int btf_parse_hdr(struct btf_verifier_env *env)
1650{
1651 const struct btf_header *hdr;
1652 struct btf *btf = env->btf;
1653 u32 meta_left;
1654
1655 if (btf->data_size < sizeof(*hdr)) {
1656 btf_verifier_log(env, "btf_header not found");
1657 return -EINVAL;
1658 }
1659
1660 btf_verifier_log_hdr(env);
1661
1662 hdr = btf->hdr;
1663 if (hdr->magic != BTF_MAGIC) {
1664 btf_verifier_log(env, "Invalid magic");
1665 return -EINVAL;
1666 }
1667
1668 if (hdr->version != BTF_VERSION) {
1669 btf_verifier_log(env, "Unsupported version");
1670 return -ENOTSUPP;
1671 }
1672
1673 if (hdr->flags) {
1674 btf_verifier_log(env, "Unsupported flags");
1675 return -ENOTSUPP;
1676 }
1677
1678 meta_left = btf->data_size - sizeof(*hdr);
1679 if (!meta_left) {
1680 btf_verifier_log(env, "No data");
1681 return -EINVAL;
1682 }
1683
1684 if (meta_left < hdr->type_off || hdr->str_off <= hdr->type_off ||
1685 /* Type section must align to 4 bytes */
1686 hdr->type_off & (sizeof(u32) - 1)) {
1687 btf_verifier_log(env, "Invalid type_off");
1688 return -EINVAL;
1689 }
1690
1691 if (meta_left < hdr->str_off ||
1692 meta_left - hdr->str_off < hdr->str_len) {
1693 btf_verifier_log(env, "Invalid str_off or str_len");
1694 return -EINVAL;
1695 }
1696
1697 btf->nohdr_data = btf->hdr + 1;
1698
1699 return 0;
1700}
1701
1702static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
1703 u32 log_level, char __user *log_ubuf, u32 log_size)
1704{
1705 struct btf_verifier_env *env = NULL;
1706 struct bpf_verifier_log *log;
1707 struct btf *btf = NULL;
1708 u8 *data;
1709 int err;
1710
1711 if (btf_data_size > BTF_MAX_SIZE)
1712 return ERR_PTR(-E2BIG);
1713
1714 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
1715 if (!env)
1716 return ERR_PTR(-ENOMEM);
1717
1718 log = &env->log;
1719 if (log_level || log_ubuf || log_size) {
1720 /* user requested verbose verifier output
1721 * and supplied buffer to store the verification trace
1722 */
1723 log->level = log_level;
1724 log->ubuf = log_ubuf;
1725 log->len_total = log_size;
1726
1727 /* log attributes have to be sane */
1728 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
1729 !log->level || !log->ubuf) {
1730 err = -EINVAL;
1731 goto errout;
1732 }
1733 }
1734
1735 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
1736 if (!btf) {
1737 err = -ENOMEM;
1738 goto errout;
1739 }
1740
1741 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
1742 if (!data) {
1743 err = -ENOMEM;
1744 goto errout;
1745 }
1746
1747 btf->data = data;
1748 btf->data_size = btf_data_size;
1749
1750 if (copy_from_user(data, btf_data, btf_data_size)) {
1751 err = -EFAULT;
1752 goto errout;
1753 }
1754
1755 env->btf = btf;
1756
1757 err = btf_parse_hdr(env);
1758 if (err)
1759 goto errout;
1760
1761 err = btf_parse_str_sec(env);
1762 if (err)
1763 goto errout;
1764
1765 err = btf_parse_type_sec(env);
1766 if (err)
1767 goto errout;
1768
1769 if (!err && log->level && bpf_verifier_log_full(log)) {
1770 err = -ENOSPC;
1771 goto errout;
1772 }
1773
1774 if (!err) {
1775 btf_verifier_env_free(env);
1776 return btf;
1777 }
1778
1779errout:
1780 btf_verifier_env_free(env);
1781 if (btf)
1782 btf_free(btf);
1783 return ERR_PTR(err);
1784}