bpf: iterators: Split iterators.lskel.h into little- and big- endian versions
[linux-block.git] / kernel / bpf / btf.c
CommitLineData
c561d110 1// SPDX-License-Identifier: GPL-2.0
69b693f0
MKL
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
c0c852dd 22#include <linux/bpf_lsm.h>
91cc1a99
AS
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
eae2e83e 25#include <linux/bsearch.h>
36e68442
AN
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
91cc1a99 28#include <net/sock.h>
1e89106d 29#include "../tools/lib/bpf/relo_core.h"
69b693f0
MKL
30
31/* BTF (BPF Type Format) is the meta data format which describes
32 * the data types of BPF program/map. Hence, it basically focus
33 * on the C programming language which the modern BPF is primary
34 * using.
35 *
36 * ELF Section:
37 * ~~~~~~~~~~~
38 * The BTF data is stored under the ".BTF" ELF section
39 *
40 * struct btf_type:
41 * ~~~~~~~~~~~~~~~
42 * Each 'struct btf_type' object describes a C data type.
43 * Depending on the type it is describing, a 'struct btf_type'
44 * object may be followed by more data. F.e.
45 * To describe an array, 'struct btf_type' is followed by
46 * 'struct btf_array'.
47 *
48 * 'struct btf_type' and any extra data following it are
49 * 4 bytes aligned.
50 *
51 * Type section:
52 * ~~~~~~~~~~~~~
53 * The BTF type section contains a list of 'struct btf_type' objects.
54 * Each one describes a C type. Recall from the above section
55 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 56 * data in order to describe some particular C types.
69b693f0
MKL
57 *
58 * type_id:
59 * ~~~~~~~
60 * Each btf_type object is identified by a type_id. The type_id
61 * is implicitly implied by the location of the btf_type object in
62 * the BTF type section. The first one has type_id 1. The second
63 * one has type_id 2...etc. Hence, an earlier btf_type has
64 * a smaller type_id.
65 *
66 * A btf_type object may refer to another btf_type object by using
67 * type_id (i.e. the "type" in the "struct btf_type").
68 *
69 * NOTE that we cannot assume any reference-order.
70 * A btf_type object can refer to an earlier btf_type object
71 * but it can also refer to a later btf_type object.
72 *
73 * For example, to describe "const void *". A btf_type
74 * object describing "const" may refer to another btf_type
75 * object describing "void *". This type-reference is done
76 * by specifying type_id:
77 *
78 * [1] CONST (anon) type_id=2
79 * [2] PTR (anon) type_id=0
80 *
81 * The above is the btf_verifier debug log:
82 * - Each line started with "[?]" is a btf_type object
83 * - [?] is the type_id of the btf_type object.
84 * - CONST/PTR is the BTF_KIND_XXX
85 * - "(anon)" is the name of the type. It just
86 * happens that CONST and PTR has no name.
87 * - type_id=XXX is the 'u32 type' in btf_type
88 *
89 * NOTE: "void" has type_id 0
90 *
91 * String section:
92 * ~~~~~~~~~~~~~~
93 * The BTF string section contains the names used by the type section.
94 * Each string is referred by an "offset" from the beginning of the
95 * string section.
96 *
97 * Each string is '\0' terminated.
98 *
99 * The first character in the string section must be '\0'
100 * which is used to mean 'anonymous'. Some btf_type may not
101 * have a name.
102 */
103
104/* BTF verification:
105 *
106 * To verify BTF data, two passes are needed.
107 *
108 * Pass #1
109 * ~~~~~~~
110 * The first pass is to collect all btf_type objects to
111 * an array: "btf->types".
112 *
113 * Depending on the C type that a btf_type is describing,
114 * a btf_type may be followed by extra data. We don't know
115 * how many btf_type is there, and more importantly we don't
116 * know where each btf_type is located in the type section.
117 *
118 * Without knowing the location of each type_id, most verifications
119 * cannot be done. e.g. an earlier btf_type may refer to a later
120 * btf_type (recall the "const void *" above), so we cannot
121 * check this type-reference in the first pass.
122 *
123 * In the first pass, it still does some verifications (e.g.
124 * checking the name is a valid offset to the string section).
eb3f595d
MKL
125 *
126 * Pass #2
127 * ~~~~~~~
128 * The main focus is to resolve a btf_type that is referring
129 * to another type.
130 *
131 * We have to ensure the referring type:
132 * 1) does exist in the BTF (i.e. in btf->types[])
133 * 2) does not cause a loop:
134 * struct A {
135 * struct B b;
136 * };
137 *
138 * struct B {
139 * struct A a;
140 * };
141 *
142 * btf_type_needs_resolve() decides if a btf_type needs
143 * to be resolved.
144 *
145 * The needs_resolve type implements the "resolve()" ops which
146 * essentially does a DFS and detects backedge.
147 *
148 * During resolve (or DFS), different C types have different
149 * "RESOLVED" conditions.
150 *
151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152 * members because a member is always referring to another
153 * type. A struct's member can be treated as "RESOLVED" if
154 * it is referring to a BTF_KIND_PTR. Otherwise, the
155 * following valid C struct would be rejected:
156 *
157 * struct A {
158 * int m;
159 * struct A *a;
160 * };
161 *
162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
164 * detect a pointer loop, e.g.:
165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166 * ^ |
167 * +-----------------------------------------+
168 *
69b693f0
MKL
169 */
170
b1e8818c 171#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
172#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175#define BITS_ROUNDUP_BYTES(bits) \
176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177
b1828f0b 178#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
179#define BTF_INT_MASK 0x0fffffff
180#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182
69b693f0
MKL
183/* 16MB for 64k structs and each has 16 members and
184 * a few MB spaces for the string section.
185 * The hard limit is S32_MAX.
186 */
187#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 188
eb3f595d
MKL
189#define for_each_member_from(i, from, struct_type, member) \
190 for (i = from, member = btf_type_member(struct_type) + from; \
191 i < btf_type_vlen(struct_type); \
192 i++, member++)
193
1dc92851
DB
194#define for_each_vsi_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
1b9ed84e
QM
199DEFINE_IDR(btf_idr);
200DEFINE_SPINLOCK(btf_idr_lock);
78958fca 201
dee872e1 202enum btf_kfunc_hook {
cfe14564 203 BTF_KFUNC_HOOK_COMMON,
dee872e1
KKD
204 BTF_KFUNC_HOOK_XDP,
205 BTF_KFUNC_HOOK_TC,
206 BTF_KFUNC_HOOK_STRUCT_OPS,
97949767
BT
207 BTF_KFUNC_HOOK_TRACING,
208 BTF_KFUNC_HOOK_SYSCALL,
5b481aca 209 BTF_KFUNC_HOOK_FMODRET,
dee872e1
KKD
210 BTF_KFUNC_HOOK_MAX,
211};
212
213enum {
f9b34818 214 BTF_KFUNC_SET_MAX_CNT = 256,
5ce937d6 215 BTF_DTOR_KFUNC_MAX_CNT = 256,
dee872e1
KKD
216};
217
218struct btf_kfunc_set_tab {
a4703e31 219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
dee872e1
KKD
220};
221
5ce937d6
KKD
222struct btf_id_dtor_kfunc_tab {
223 u32 cnt;
224 struct btf_id_dtor_kfunc dtors[];
225};
226
69b693f0 227struct btf {
f80442a4 228 void *data;
69b693f0 229 struct btf_type **types;
eb3f595d
MKL
230 u32 *resolved_ids;
231 u32 *resolved_sizes;
69b693f0
MKL
232 const char *strings;
233 void *nohdr_data;
f80442a4 234 struct btf_header hdr;
951bb646 235 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
236 u32 types_size;
237 u32 data_size;
f56a653c 238 refcount_t refcnt;
78958fca
MKL
239 u32 id;
240 struct rcu_head rcu;
dee872e1 241 struct btf_kfunc_set_tab *kfunc_set_tab;
5ce937d6 242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
8ffa5cc1 243 struct btf_struct_metas *struct_meta_tab;
951bb646
AN
244
245 /* split BTF support */
246 struct btf *base_btf;
247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
248 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
249 char name[MODULE_NAME_LEN];
250 bool kernel_btf;
69b693f0
MKL
251};
252
eb3f595d
MKL
253enum verifier_phase {
254 CHECK_META,
255 CHECK_TYPE,
256};
257
258struct resolve_vertex {
259 const struct btf_type *t;
260 u32 type_id;
261 u16 next_member;
262};
263
264enum visit_state {
265 NOT_VISITED,
266 VISITED,
267 RESOLVED,
268};
269
270enum resolve_mode {
271 RESOLVE_TBD, /* To Be Determined */
272 RESOLVE_PTR, /* Resolving for Pointer */
273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
274 * or array
275 */
276};
277
278#define MAX_RESOLVE_DEPTH 32
279
f80442a4
MKL
280struct btf_sec_info {
281 u32 off;
282 u32 len;
283};
284
69b693f0
MKL
285struct btf_verifier_env {
286 struct btf *btf;
eb3f595d
MKL
287 u8 *visit_states;
288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
289 struct bpf_verifier_log log;
290 u32 log_type_id;
eb3f595d
MKL
291 u32 top_stack;
292 enum verifier_phase phase;
293 enum resolve_mode resolve_mode;
69b693f0
MKL
294};
295
296static const char * const btf_kind_str[NR_BTF_KINDS] = {
297 [BTF_KIND_UNKN] = "UNKNOWN",
298 [BTF_KIND_INT] = "INT",
299 [BTF_KIND_PTR] = "PTR",
300 [BTF_KIND_ARRAY] = "ARRAY",
301 [BTF_KIND_STRUCT] = "STRUCT",
302 [BTF_KIND_UNION] = "UNION",
303 [BTF_KIND_ENUM] = "ENUM",
304 [BTF_KIND_FWD] = "FWD",
305 [BTF_KIND_TYPEDEF] = "TYPEDEF",
306 [BTF_KIND_VOLATILE] = "VOLATILE",
307 [BTF_KIND_CONST] = "CONST",
308 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
309 [BTF_KIND_FUNC] = "FUNC",
310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
311 [BTF_KIND_VAR] = "VAR",
312 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 313 [BTF_KIND_FLOAT] = "FLOAT",
223f903e 314 [BTF_KIND_DECL_TAG] = "DECL_TAG",
8c42d2fa 315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
6089fb32 316 [BTF_KIND_ENUM64] = "ENUM64",
69b693f0
MKL
317};
318
e6ac2450 319const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
320{
321 return btf_kind_str[BTF_INFO_KIND(t->info)];
322}
323
31d0bc81
AM
324/* Chunk size we use in safe copy of data to be shown. */
325#define BTF_SHOW_OBJ_SAFE_SIZE 32
326
327/*
328 * This is the maximum size of a base type value (equivalent to a
329 * 128-bit int); if we are at the end of our safe buffer and have
330 * less than 16 bytes space we can't be assured of being able
331 * to copy the next type safely, so in such cases we will initiate
332 * a new copy.
333 */
334#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
335
336/* Type name size */
337#define BTF_SHOW_NAME_SIZE 80
338
b613d335
DV
339/*
340 * The suffix of a type that indicates it cannot alias another type when
341 * comparing BTF IDs for kfunc invocations.
342 */
343#define NOCAST_ALIAS_SUFFIX "___init"
344
31d0bc81
AM
345/*
346 * Common data to all BTF show operations. Private show functions can add
347 * their own data to a structure containing a struct btf_show and consult it
348 * in the show callback. See btf_type_show() below.
349 *
350 * One challenge with showing nested data is we want to skip 0-valued
351 * data, but in order to figure out whether a nested object is all zeros
352 * we need to walk through it. As a result, we need to make two passes
353 * when handling structs, unions and arrays; the first path simply looks
354 * for nonzero data, while the second actually does the display. The first
355 * pass is signalled by show->state.depth_check being set, and if we
356 * encounter a non-zero value we set show->state.depth_to_show to
357 * the depth at which we encountered it. When we have completed the
358 * first pass, we will know if anything needs to be displayed if
359 * depth_to_show > depth. See btf_[struct,array]_show() for the
360 * implementation of this.
361 *
362 * Another problem is we want to ensure the data for display is safe to
363 * access. To support this, the anonymous "struct {} obj" tracks the data
364 * object and our safe copy of it. We copy portions of the data needed
365 * to the object "copy" buffer, but because its size is limited to
366 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
367 * traverse larger objects for display.
368 *
369 * The various data type show functions all start with a call to
370 * btf_show_start_type() which returns a pointer to the safe copy
371 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
372 * raw data itself). btf_show_obj_safe() is responsible for
373 * using copy_from_kernel_nofault() to update the safe data if necessary
374 * as we traverse the object's data. skbuff-like semantics are
375 * used:
376 *
377 * - obj.head points to the start of the toplevel object for display
378 * - obj.size is the size of the toplevel object
379 * - obj.data points to the current point in the original data at
380 * which our safe data starts. obj.data will advance as we copy
381 * portions of the data.
382 *
383 * In most cases a single copy will suffice, but larger data structures
384 * such as "struct task_struct" will require many copies. The logic in
385 * btf_show_obj_safe() handles the logic that determines if a new
386 * copy_from_kernel_nofault() is needed.
387 */
388struct btf_show {
389 u64 flags;
390 void *target; /* target of show operation (seq file, buffer) */
391 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
392 const struct btf *btf;
393 /* below are used during iteration */
394 struct {
395 u8 depth;
396 u8 depth_to_show;
397 u8 depth_check;
398 u8 array_member:1,
399 array_terminated:1;
400 u16 array_encoding;
401 u32 type_id;
402 int status; /* non-zero for error */
403 const struct btf_type *type;
404 const struct btf_member *member;
405 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
406 } state;
407 struct {
408 u32 size;
409 void *head;
410 void *data;
411 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
412 } obj;
413};
414
69b693f0
MKL
415struct btf_kind_operations {
416 s32 (*check_meta)(struct btf_verifier_env *env,
417 const struct btf_type *t,
418 u32 meta_left);
eb3f595d
MKL
419 int (*resolve)(struct btf_verifier_env *env,
420 const struct resolve_vertex *v);
179cde8c
MKL
421 int (*check_member)(struct btf_verifier_env *env,
422 const struct btf_type *struct_type,
423 const struct btf_member *member,
424 const struct btf_type *member_type);
9d5f9f70
YS
425 int (*check_kflag_member)(struct btf_verifier_env *env,
426 const struct btf_type *struct_type,
427 const struct btf_member *member,
428 const struct btf_type *member_type);
69b693f0
MKL
429 void (*log_details)(struct btf_verifier_env *env,
430 const struct btf_type *t);
31d0bc81 431 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 432 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 433 struct btf_show *show);
69b693f0
MKL
434};
435
436static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
437static struct btf_type btf_void;
438
2667a262
MKL
439static int btf_resolve(struct btf_verifier_env *env,
440 const struct btf_type *t, u32 type_id);
441
d7e7b42f
YS
442static int btf_func_check(struct btf_verifier_env *env,
443 const struct btf_type *t);
444
eb3f595d
MKL
445static bool btf_type_is_modifier(const struct btf_type *t)
446{
447 /* Some of them is not strictly a C modifier
448 * but they are grouped into the same bucket
449 * for BTF concern:
450 * A type (t) that refers to another
451 * type through t->type AND its size cannot
452 * be determined without following the t->type.
453 *
454 * ptr does not fall into this bucket
455 * because its size is always sizeof(void *).
456 */
457 switch (BTF_INFO_KIND(t->info)) {
458 case BTF_KIND_TYPEDEF:
459 case BTF_KIND_VOLATILE:
460 case BTF_KIND_CONST:
461 case BTF_KIND_RESTRICT:
8c42d2fa 462 case BTF_KIND_TYPE_TAG:
eb3f595d
MKL
463 return true;
464 }
465
466 return false;
467}
468
2824ecb7 469bool btf_type_is_void(const struct btf_type *t)
eb3f595d 470{
b47a0bd2
MKL
471 return t == &btf_void;
472}
473
474static bool btf_type_is_fwd(const struct btf_type *t)
475{
476 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
477}
478
479static bool btf_type_nosize(const struct btf_type *t)
480{
2667a262
MKL
481 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
482 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
483}
484
b47a0bd2 485static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 486{
b47a0bd2 487 return !t || btf_type_nosize(t);
eb3f595d
MKL
488}
489
1dc92851
DB
490static bool btf_type_is_datasec(const struct btf_type *t)
491{
492 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
493}
494
223f903e 495static bool btf_type_is_decl_tag(const struct btf_type *t)
b5ea834d 496{
223f903e 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
b5ea834d
YS
498}
499
223f903e 500static bool btf_type_is_decl_tag_target(const struct btf_type *t)
b5ea834d
YS
501{
502 return btf_type_is_func(t) || btf_type_is_struct(t) ||
bd16dee6 503 btf_type_is_var(t) || btf_type_is_typedef(t);
b5ea834d
YS
504}
505
541c3bad 506u32 btf_nr_types(const struct btf *btf)
951bb646
AN
507{
508 u32 total = 0;
509
510 while (btf) {
511 total += btf->nr_types;
512 btf = btf->base_btf;
513 }
514
515 return total;
516}
517
27ae7997
MKL
518s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
519{
520 const struct btf_type *t;
521 const char *tname;
951bb646 522 u32 i, total;
27ae7997 523
541c3bad 524 total = btf_nr_types(btf);
951bb646
AN
525 for (i = 1; i < total; i++) {
526 t = btf_type_by_id(btf, i);
27ae7997
MKL
527 if (BTF_INFO_KIND(t->info) != kind)
528 continue;
529
530 tname = btf_name_by_offset(btf, t->name_off);
531 if (!strcmp(tname, name))
532 return i;
533 }
534
535 return -ENOENT;
536}
537
edc3ec09
KKD
538static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
539{
540 struct btf *btf;
541 s32 ret;
542 int id;
543
544 btf = bpf_get_btf_vmlinux();
545 if (IS_ERR(btf))
546 return PTR_ERR(btf);
7ada3787
KKD
547 if (!btf)
548 return -EINVAL;
edc3ec09
KKD
549
550 ret = btf_find_by_name_kind(btf, name, kind);
551 /* ret is never zero, since btf_find_by_name_kind returns
552 * positive btf_id or negative error.
553 */
554 if (ret > 0) {
555 btf_get(btf);
556 *btf_p = btf;
557 return ret;
558 }
559
560 /* If name is not found in vmlinux's BTF then search in module's BTFs */
561 spin_lock_bh(&btf_idr_lock);
562 idr_for_each_entry(&btf_idr, btf, id) {
563 if (!btf_is_module(btf))
564 continue;
565 /* linear search could be slow hence unlock/lock
566 * the IDR to avoiding holding it for too long
567 */
568 btf_get(btf);
569 spin_unlock_bh(&btf_idr_lock);
570 ret = btf_find_by_name_kind(btf, name, kind);
571 if (ret > 0) {
572 *btf_p = btf;
573 return ret;
574 }
575 spin_lock_bh(&btf_idr_lock);
576 btf_put(btf);
577 }
578 spin_unlock_bh(&btf_idr_lock);
579 return ret;
580}
581
27ae7997
MKL
582const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
583 u32 id, u32 *res_id)
584{
585 const struct btf_type *t = btf_type_by_id(btf, id);
586
587 while (btf_type_is_modifier(t)) {
588 id = t->type;
589 t = btf_type_by_id(btf, t->type);
590 }
591
592 if (res_id)
593 *res_id = id;
594
595 return t;
596}
597
598const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
599 u32 id, u32 *res_id)
600{
601 const struct btf_type *t;
602
603 t = btf_type_skip_modifiers(btf, id, NULL);
604 if (!btf_type_is_ptr(t))
605 return NULL;
606
607 return btf_type_skip_modifiers(btf, t->type, res_id);
608}
609
610const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
611 u32 id, u32 *res_id)
612{
613 const struct btf_type *ptype;
614
615 ptype = btf_type_resolve_ptr(btf, id, res_id);
616 if (ptype && btf_type_is_func_proto(ptype))
617 return ptype;
618
619 return NULL;
620}
621
1dc92851
DB
622/* Types that act only as a source, not sink or intermediate
623 * type when resolving.
624 */
625static bool btf_type_is_resolve_source_only(const struct btf_type *t)
626{
627 return btf_type_is_var(t) ||
223f903e 628 btf_type_is_decl_tag(t) ||
1dc92851
DB
629 btf_type_is_datasec(t);
630}
631
eb3f595d
MKL
632/* What types need to be resolved?
633 *
634 * btf_type_is_modifier() is an obvious one.
635 *
636 * btf_type_is_struct() because its member refers to
637 * another type (through member->type).
1dc92851
DB
638 *
639 * btf_type_is_var() because the variable refers to
640 * another type. btf_type_is_datasec() holds multiple
641 * btf_type_is_var() types that need resolving.
642 *
eb3f595d
MKL
643 * btf_type_is_array() because its element (array->type)
644 * refers to another type. Array can be thought of a
645 * special case of struct while array just has the same
646 * member-type repeated by array->nelems of times.
647 */
648static bool btf_type_needs_resolve(const struct btf_type *t)
649{
650 return btf_type_is_modifier(t) ||
1dc92851
DB
651 btf_type_is_ptr(t) ||
652 btf_type_is_struct(t) ||
653 btf_type_is_array(t) ||
654 btf_type_is_var(t) ||
d7e7b42f 655 btf_type_is_func(t) ||
223f903e 656 btf_type_is_decl_tag(t) ||
1dc92851 657 btf_type_is_datasec(t);
eb3f595d
MKL
658}
659
660/* t->size can be used */
661static bool btf_type_has_size(const struct btf_type *t)
662{
663 switch (BTF_INFO_KIND(t->info)) {
664 case BTF_KIND_INT:
665 case BTF_KIND_STRUCT:
666 case BTF_KIND_UNION:
667 case BTF_KIND_ENUM:
1dc92851 668 case BTF_KIND_DATASEC:
b1828f0b 669 case BTF_KIND_FLOAT:
6089fb32 670 case BTF_KIND_ENUM64:
eb3f595d
MKL
671 return true;
672 }
673
674 return false;
675}
676
69b693f0
MKL
677static const char *btf_int_encoding_str(u8 encoding)
678{
679 if (encoding == 0)
680 return "(none)";
681 else if (encoding == BTF_INT_SIGNED)
682 return "SIGNED";
683 else if (encoding == BTF_INT_CHAR)
684 return "CHAR";
685 else if (encoding == BTF_INT_BOOL)
686 return "BOOL";
69b693f0
MKL
687 else
688 return "UNKN";
689}
690
69b693f0
MKL
691static u32 btf_type_int(const struct btf_type *t)
692{
693 return *(u32 *)(t + 1);
694}
695
696static const struct btf_array *btf_type_array(const struct btf_type *t)
697{
698 return (const struct btf_array *)(t + 1);
699}
700
69b693f0
MKL
701static const struct btf_enum *btf_type_enum(const struct btf_type *t)
702{
703 return (const struct btf_enum *)(t + 1);
704}
705
1dc92851
DB
706static const struct btf_var *btf_type_var(const struct btf_type *t)
707{
708 return (const struct btf_var *)(t + 1);
709}
710
223f903e 711static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
b5ea834d 712{
223f903e 713 return (const struct btf_decl_tag *)(t + 1);
b5ea834d
YS
714}
715
6089fb32
YS
716static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
717{
718 return (const struct btf_enum64 *)(t + 1);
719}
720
69b693f0
MKL
721static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
722{
723 return kind_ops[BTF_INFO_KIND(t->info)];
724}
725
583c5318 726static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 727{
951bb646
AN
728 if (!BTF_STR_OFFSET_VALID(offset))
729 return false;
730
731 while (offset < btf->start_str_off)
732 btf = btf->base_btf;
733
734 offset -= btf->start_str_off;
735 return offset < btf->hdr.str_len;
69b693f0
MKL
736}
737
1dc92851
DB
738static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
739{
740 if ((first ? !isalpha(c) :
741 !isalnum(c)) &&
742 c != '_' &&
743 ((c == '.' && !dot_ok) ||
744 c != '.'))
745 return false;
746 return true;
747}
748
951bb646
AN
749static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
750{
751 while (offset < btf->start_str_off)
752 btf = btf->base_btf;
753
754 offset -= btf->start_str_off;
755 if (offset < btf->hdr.str_len)
756 return &btf->strings[offset];
757
758 return NULL;
759}
760
1dc92851 761static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
762{
763 /* offset must be valid */
951bb646 764 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
765 const char *src_limit;
766
1dc92851 767 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
768 return false;
769
770 /* set a limit on identifier length */
771 src_limit = src + KSYM_NAME_LEN;
772 src++;
773 while (*src && src < src_limit) {
1dc92851 774 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
775 return false;
776 src++;
777 }
778
779 return !*src;
780}
781
1dc92851
DB
782/* Only C-style identifier is permitted. This can be relaxed if
783 * necessary.
784 */
785static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
786{
787 return __btf_name_valid(btf, offset, false);
788}
789
790static bool btf_name_valid_section(const struct btf *btf, u32 offset)
791{
792 return __btf_name_valid(btf, offset, true);
793}
794
23127b33 795static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 796{
951bb646
AN
797 const char *name;
798
aea2f7b8 799 if (!offset)
69b693f0 800 return "(anon)";
951bb646
AN
801
802 name = btf_str_by_offset(btf, offset);
803 return name ?: "(invalid-name-offset)";
69b693f0
MKL
804}
805
23127b33
MKL
806const char *btf_name_by_offset(const struct btf *btf, u32 offset)
807{
951bb646 808 return btf_str_by_offset(btf, offset);
23127b33
MKL
809}
810
838e9690 811const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 812{
951bb646
AN
813 while (type_id < btf->start_id)
814 btf = btf->base_btf;
eb3f595d 815
951bb646
AN
816 type_id -= btf->start_id;
817 if (type_id >= btf->nr_types)
818 return NULL;
eb3f595d
MKL
819 return btf->types[type_id];
820}
84c6ac41 821EXPORT_SYMBOL_GPL(btf_type_by_id);
eb3f595d 822
4ef5f574
MKL
823/*
824 * Regular int is not a bit field and it must be either
b1e8818c 825 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
826 */
827static bool btf_type_int_is_regular(const struct btf_type *t)
828{
36fc3c8c 829 u8 nr_bits, nr_bytes;
4ef5f574
MKL
830 u32 int_data;
831
832 int_data = btf_type_int(t);
833 nr_bits = BTF_INT_BITS(int_data);
834 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
835 if (BITS_PER_BYTE_MASKED(nr_bits) ||
836 BTF_INT_OFFSET(int_data) ||
837 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
838 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
839 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
840 return false;
841 }
842
843 return true;
844}
845
9a1126b6 846/*
ffa0c1cf
YS
847 * Check that given struct member is a regular int with expected
848 * offset and size.
9a1126b6 849 */
ffa0c1cf
YS
850bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
851 const struct btf_member *m,
852 u32 expected_offset, u32 expected_size)
9a1126b6 853{
ffa0c1cf
YS
854 const struct btf_type *t;
855 u32 id, int_data;
856 u8 nr_bits;
9a1126b6 857
ffa0c1cf
YS
858 id = m->type;
859 t = btf_type_id_size(btf, &id, NULL);
860 if (!t || !btf_type_is_int(t))
9a1126b6
RG
861 return false;
862
863 int_data = btf_type_int(t);
864 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
865 if (btf_type_kflag(s)) {
866 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
867 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
868
869 /* if kflag set, int should be a regular int and
870 * bit offset should be at byte boundary.
871 */
872 return !bitfield_size &&
873 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
874 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
875 }
876
877 if (BTF_INT_OFFSET(int_data) ||
878 BITS_PER_BYTE_MASKED(m->offset) ||
879 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
880 BITS_PER_BYTE_MASKED(nr_bits) ||
881 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
882 return false;
883
884 return true;
885}
886
31d0bc81
AM
887/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
888static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
889 u32 id)
890{
891 const struct btf_type *t = btf_type_by_id(btf, id);
892
893 while (btf_type_is_modifier(t) &&
894 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
895 t = btf_type_by_id(btf, t->type);
896 }
897
898 return t;
899}
900
901#define BTF_SHOW_MAX_ITER 10
902
903#define BTF_KIND_BIT(kind) (1ULL << kind)
904
905/*
906 * Populate show->state.name with type name information.
907 * Format of type name is
908 *
909 * [.member_name = ] (type_name)
910 */
911static const char *btf_show_name(struct btf_show *show)
912{
913 /* BTF_MAX_ITER array suffixes "[]" */
914 const char *array_suffixes = "[][][][][][][][][][]";
915 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
916 /* BTF_MAX_ITER pointer suffixes "*" */
917 const char *ptr_suffixes = "**********";
918 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
919 const char *name = NULL, *prefix = "", *parens = "";
920 const struct btf_member *m = show->state.member;
73b6eae5 921 const struct btf_type *t;
31d0bc81
AM
922 const struct btf_array *array;
923 u32 id = show->state.type_id;
924 const char *member = NULL;
925 bool show_member = false;
926 u64 kinds = 0;
927 int i;
928
929 show->state.name[0] = '\0';
930
931 /*
932 * Don't show type name if we're showing an array member;
933 * in that case we show the array type so don't need to repeat
934 * ourselves for each member.
935 */
936 if (show->state.array_member)
937 return "";
938
939 /* Retrieve member name, if any. */
940 if (m) {
941 member = btf_name_by_offset(show->btf, m->name_off);
942 show_member = strlen(member) > 0;
943 id = m->type;
944 }
945
946 /*
947 * Start with type_id, as we have resolved the struct btf_type *
948 * via btf_modifier_show() past the parent typedef to the child
949 * struct, int etc it is defined as. In such cases, the type_id
950 * still represents the starting type while the struct btf_type *
951 * in our show->state points at the resolved type of the typedef.
952 */
953 t = btf_type_by_id(show->btf, id);
954 if (!t)
955 return "";
956
957 /*
958 * The goal here is to build up the right number of pointer and
959 * array suffixes while ensuring the type name for a typedef
960 * is represented. Along the way we accumulate a list of
961 * BTF kinds we have encountered, since these will inform later
962 * display; for example, pointer types will not require an
963 * opening "{" for struct, we will just display the pointer value.
964 *
965 * We also want to accumulate the right number of pointer or array
966 * indices in the format string while iterating until we get to
967 * the typedef/pointee/array member target type.
968 *
969 * We start by pointing at the end of pointer and array suffix
970 * strings; as we accumulate pointers and arrays we move the pointer
971 * or array string backwards so it will show the expected number of
972 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
973 * and/or arrays and typedefs are supported as a precaution.
974 *
975 * We also want to get typedef name while proceeding to resolve
976 * type it points to so that we can add parentheses if it is a
977 * "typedef struct" etc.
978 */
979 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
980
981 switch (BTF_INFO_KIND(t->info)) {
982 case BTF_KIND_TYPEDEF:
983 if (!name)
984 name = btf_name_by_offset(show->btf,
985 t->name_off);
986 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
987 id = t->type;
988 break;
989 case BTF_KIND_ARRAY:
990 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
991 parens = "[";
992 if (!t)
993 return "";
994 array = btf_type_array(t);
995 if (array_suffix > array_suffixes)
996 array_suffix -= 2;
997 id = array->type;
998 break;
999 case BTF_KIND_PTR:
1000 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1001 if (ptr_suffix > ptr_suffixes)
1002 ptr_suffix -= 1;
1003 id = t->type;
1004 break;
1005 default:
1006 id = 0;
1007 break;
1008 }
1009 if (!id)
1010 break;
1011 t = btf_type_skip_qualifiers(show->btf, id);
1012 }
1013 /* We may not be able to represent this type; bail to be safe */
1014 if (i == BTF_SHOW_MAX_ITER)
1015 return "";
1016
1017 if (!name)
1018 name = btf_name_by_offset(show->btf, t->name_off);
1019
1020 switch (BTF_INFO_KIND(t->info)) {
1021 case BTF_KIND_STRUCT:
1022 case BTF_KIND_UNION:
1023 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1024 "struct" : "union";
1025 /* if it's an array of struct/union, parens is already set */
1026 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1027 parens = "{";
1028 break;
1029 case BTF_KIND_ENUM:
6089fb32 1030 case BTF_KIND_ENUM64:
31d0bc81
AM
1031 prefix = "enum";
1032 break;
1033 default:
1034 break;
1035 }
1036
1037 /* pointer does not require parens */
1038 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1039 parens = "";
1040 /* typedef does not require struct/union/enum prefix */
1041 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1042 prefix = "";
1043
1044 if (!name)
1045 name = "";
1046
1047 /* Even if we don't want type name info, we want parentheses etc */
1048 if (show->flags & BTF_SHOW_NONAME)
1049 snprintf(show->state.name, sizeof(show->state.name), "%s",
1050 parens);
1051 else
1052 snprintf(show->state.name, sizeof(show->state.name),
1053 "%s%s%s(%s%s%s%s%s%s)%s",
1054 /* first 3 strings comprise ".member = " */
1055 show_member ? "." : "",
1056 show_member ? member : "",
1057 show_member ? " = " : "",
1058 /* ...next is our prefix (struct, enum, etc) */
1059 prefix,
1060 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1061 /* ...this is the type name itself */
1062 name,
1063 /* ...suffixed by the appropriate '*', '[]' suffixes */
1064 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1065 array_suffix, parens);
1066
1067 return show->state.name;
1068}
1069
1070static const char *__btf_show_indent(struct btf_show *show)
1071{
1072 const char *indents = " ";
1073 const char *indent = &indents[strlen(indents)];
1074
1075 if ((indent - show->state.depth) >= indents)
1076 return indent - show->state.depth;
1077 return indents;
1078}
1079
1080static const char *btf_show_indent(struct btf_show *show)
1081{
1082 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1083}
1084
1085static const char *btf_show_newline(struct btf_show *show)
1086{
1087 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1088}
1089
1090static const char *btf_show_delim(struct btf_show *show)
1091{
1092 if (show->state.depth == 0)
1093 return "";
1094
1095 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1096 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1097 return "|";
1098
1099 return ",";
1100}
1101
1102__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1103{
1104 va_list args;
1105
1106 if (!show->state.depth_check) {
1107 va_start(args, fmt);
1108 show->showfn(show, fmt, args);
1109 va_end(args);
1110 }
1111}
1112
1113/* Macros are used here as btf_show_type_value[s]() prepends and appends
1114 * format specifiers to the format specifier passed in; these do the work of
1115 * adding indentation, delimiters etc while the caller simply has to specify
1116 * the type value(s) in the format specifier + value(s).
1117 */
1118#define btf_show_type_value(show, fmt, value) \
1119 do { \
a2a5580f
BD
1120 if ((value) != (__typeof__(value))0 || \
1121 (show->flags & BTF_SHOW_ZERO) || \
31d0bc81
AM
1122 show->state.depth == 0) { \
1123 btf_show(show, "%s%s" fmt "%s%s", \
1124 btf_show_indent(show), \
1125 btf_show_name(show), \
1126 value, btf_show_delim(show), \
1127 btf_show_newline(show)); \
1128 if (show->state.depth > show->state.depth_to_show) \
1129 show->state.depth_to_show = show->state.depth; \
1130 } \
1131 } while (0)
1132
1133#define btf_show_type_values(show, fmt, ...) \
1134 do { \
1135 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1136 btf_show_name(show), \
1137 __VA_ARGS__, btf_show_delim(show), \
1138 btf_show_newline(show)); \
1139 if (show->state.depth > show->state.depth_to_show) \
1140 show->state.depth_to_show = show->state.depth; \
1141 } while (0)
1142
1143/* How much is left to copy to safe buffer after @data? */
1144static int btf_show_obj_size_left(struct btf_show *show, void *data)
1145{
1146 return show->obj.head + show->obj.size - data;
1147}
1148
1149/* Is object pointed to by @data of @size already copied to our safe buffer? */
1150static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1151{
1152 return data >= show->obj.data &&
1153 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1154}
1155
1156/*
1157 * If object pointed to by @data of @size falls within our safe buffer, return
1158 * the equivalent pointer to the same safe data. Assumes
1159 * copy_from_kernel_nofault() has already happened and our safe buffer is
1160 * populated.
1161 */
1162static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1163{
1164 if (btf_show_obj_is_safe(show, data, size))
1165 return show->obj.safe + (data - show->obj.data);
1166 return NULL;
1167}
1168
1169/*
1170 * Return a safe-to-access version of data pointed to by @data.
1171 * We do this by copying the relevant amount of information
1172 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1173 *
1174 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1175 * safe copy is needed.
1176 *
1177 * Otherwise we need to determine if we have the required amount
1178 * of data (determined by the @data pointer and the size of the
1179 * largest base type we can encounter (represented by
1180 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1181 * that we will be able to print some of the current object,
1182 * and if more is needed a copy will be triggered.
1183 * Some objects such as structs will not fit into the buffer;
1184 * in such cases additional copies when we iterate over their
1185 * members may be needed.
1186 *
1187 * btf_show_obj_safe() is used to return a safe buffer for
1188 * btf_show_start_type(); this ensures that as we recurse into
1189 * nested types we always have safe data for the given type.
1190 * This approach is somewhat wasteful; it's possible for example
1191 * that when iterating over a large union we'll end up copying the
1192 * same data repeatedly, but the goal is safety not performance.
1193 * We use stack data as opposed to per-CPU buffers because the
1194 * iteration over a type can take some time, and preemption handling
1195 * would greatly complicate use of the safe buffer.
1196 */
1197static void *btf_show_obj_safe(struct btf_show *show,
1198 const struct btf_type *t,
1199 void *data)
1200{
1201 const struct btf_type *rt;
1202 int size_left, size;
1203 void *safe = NULL;
1204
1205 if (show->flags & BTF_SHOW_UNSAFE)
1206 return data;
1207
1208 rt = btf_resolve_size(show->btf, t, &size);
1209 if (IS_ERR(rt)) {
1210 show->state.status = PTR_ERR(rt);
1211 return NULL;
1212 }
1213
1214 /*
1215 * Is this toplevel object? If so, set total object size and
1216 * initialize pointers. Otherwise check if we still fall within
1217 * our safe object data.
1218 */
1219 if (show->state.depth == 0) {
1220 show->obj.size = size;
1221 show->obj.head = data;
1222 } else {
1223 /*
1224 * If the size of the current object is > our remaining
1225 * safe buffer we _may_ need to do a new copy. However
1226 * consider the case of a nested struct; it's size pushes
1227 * us over the safe buffer limit, but showing any individual
1228 * struct members does not. In such cases, we don't need
1229 * to initiate a fresh copy yet; however we definitely need
1230 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1231 * in our buffer, regardless of the current object size.
1232 * The logic here is that as we resolve types we will
1233 * hit a base type at some point, and we need to be sure
1234 * the next chunk of data is safely available to display
1235 * that type info safely. We cannot rely on the size of
1236 * the current object here because it may be much larger
1237 * than our current buffer (e.g. task_struct is 8k).
1238 * All we want to do here is ensure that we can print the
1239 * next basic type, which we can if either
1240 * - the current type size is within the safe buffer; or
1241 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1242 * the safe buffer.
1243 */
1244 safe = __btf_show_obj_safe(show, data,
1245 min(size,
1246 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1247 }
1248
1249 /*
1250 * We need a new copy to our safe object, either because we haven't
8fb33b60 1251 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1252 * we want falls outside the boundaries of the safe object.
1253 */
1254 if (!safe) {
1255 size_left = btf_show_obj_size_left(show, data);
1256 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1257 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1258 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1259 data, size_left);
1260 if (!show->state.status) {
1261 show->obj.data = data;
1262 safe = show->obj.safe;
1263 }
1264 }
1265
1266 return safe;
1267}
1268
1269/*
1270 * Set the type we are starting to show and return a safe data pointer
1271 * to be used for showing the associated data.
1272 */
1273static void *btf_show_start_type(struct btf_show *show,
1274 const struct btf_type *t,
1275 u32 type_id, void *data)
1276{
1277 show->state.type = t;
1278 show->state.type_id = type_id;
1279 show->state.name[0] = '\0';
1280
1281 return btf_show_obj_safe(show, t, data);
1282}
1283
1284static void btf_show_end_type(struct btf_show *show)
1285{
1286 show->state.type = NULL;
1287 show->state.type_id = 0;
1288 show->state.name[0] = '\0';
1289}
1290
1291static void *btf_show_start_aggr_type(struct btf_show *show,
1292 const struct btf_type *t,
1293 u32 type_id, void *data)
1294{
1295 void *safe_data = btf_show_start_type(show, t, type_id, data);
1296
1297 if (!safe_data)
1298 return safe_data;
1299
1300 btf_show(show, "%s%s%s", btf_show_indent(show),
1301 btf_show_name(show),
1302 btf_show_newline(show));
1303 show->state.depth++;
1304 return safe_data;
1305}
1306
1307static void btf_show_end_aggr_type(struct btf_show *show,
1308 const char *suffix)
1309{
1310 show->state.depth--;
1311 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1312 btf_show_delim(show), btf_show_newline(show));
1313 btf_show_end_type(show);
1314}
1315
1316static void btf_show_start_member(struct btf_show *show,
1317 const struct btf_member *m)
1318{
1319 show->state.member = m;
1320}
1321
1322static void btf_show_start_array_member(struct btf_show *show)
1323{
1324 show->state.array_member = 1;
1325 btf_show_start_member(show, NULL);
1326}
1327
1328static void btf_show_end_member(struct btf_show *show)
1329{
1330 show->state.member = NULL;
1331}
1332
1333static void btf_show_end_array_member(struct btf_show *show)
1334{
1335 show->state.array_member = 0;
1336 btf_show_end_member(show);
1337}
1338
1339static void *btf_show_start_array_type(struct btf_show *show,
1340 const struct btf_type *t,
1341 u32 type_id,
1342 u16 array_encoding,
1343 void *data)
1344{
1345 show->state.array_encoding = array_encoding;
1346 show->state.array_terminated = 0;
1347 return btf_show_start_aggr_type(show, t, type_id, data);
1348}
1349
1350static void btf_show_end_array_type(struct btf_show *show)
1351{
1352 show->state.array_encoding = 0;
1353 show->state.array_terminated = 0;
1354 btf_show_end_aggr_type(show, "]");
1355}
1356
1357static void *btf_show_start_struct_type(struct btf_show *show,
1358 const struct btf_type *t,
1359 u32 type_id,
1360 void *data)
1361{
1362 return btf_show_start_aggr_type(show, t, type_id, data);
1363}
1364
1365static void btf_show_end_struct_type(struct btf_show *show)
1366{
1367 btf_show_end_aggr_type(show, "}");
1368}
1369
69b693f0
MKL
1370__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1371 const char *fmt, ...)
1372{
1373 va_list args;
1374
1375 va_start(args, fmt);
1376 bpf_verifier_vlog(log, fmt, args);
1377 va_end(args);
1378}
1379
1380__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1381 const char *fmt, ...)
1382{
1383 struct bpf_verifier_log *log = &env->log;
1384 va_list args;
1385
1386 if (!bpf_verifier_log_needed(log))
1387 return;
1388
1389 va_start(args, fmt);
1390 bpf_verifier_vlog(log, fmt, args);
1391 va_end(args);
1392}
1393
1394__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1395 const struct btf_type *t,
1396 bool log_details,
1397 const char *fmt, ...)
1398{
1399 struct bpf_verifier_log *log = &env->log;
69b693f0
MKL
1400 struct btf *btf = env->btf;
1401 va_list args;
1402
1403 if (!bpf_verifier_log_needed(log))
1404 return;
1405
9cb61e50
CB
1406 if (log->level == BPF_LOG_KERNEL) {
1407 /* btf verifier prints all types it is processing via
1408 * btf_verifier_log_type(..., fmt = NULL).
1409 * Skip those prints for in-kernel BTF verification.
1410 */
1411 if (!fmt)
1412 return;
1413
1414 /* Skip logging when loading module BTF with mismatches permitted */
1415 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1416 return;
1417 }
8580ac94 1418
69b693f0
MKL
1419 __btf_verifier_log(log, "[%u] %s %s%s",
1420 env->log_type_id,
571f9738 1421 btf_type_str(t),
23127b33 1422 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1423 log_details ? " " : "");
1424
1425 if (log_details)
1426 btf_type_ops(t)->log_details(env, t);
1427
1428 if (fmt && *fmt) {
1429 __btf_verifier_log(log, " ");
1430 va_start(args, fmt);
1431 bpf_verifier_vlog(log, fmt, args);
1432 va_end(args);
1433 }
1434
1435 __btf_verifier_log(log, "\n");
1436}
1437
1438#define btf_verifier_log_type(env, t, ...) \
1439 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1440#define btf_verifier_log_basic(env, t, ...) \
1441 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1442
1443__printf(4, 5)
1444static void btf_verifier_log_member(struct btf_verifier_env *env,
1445 const struct btf_type *struct_type,
1446 const struct btf_member *member,
1447 const char *fmt, ...)
1448{
1449 struct bpf_verifier_log *log = &env->log;
1450 struct btf *btf = env->btf;
1451 va_list args;
1452
1453 if (!bpf_verifier_log_needed(log))
1454 return;
1455
9cb61e50
CB
1456 if (log->level == BPF_LOG_KERNEL) {
1457 if (!fmt)
1458 return;
1459
1460 /* Skip logging when loading module BTF with mismatches permitted */
1461 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1462 return;
1463 }
1464
eb3f595d
MKL
1465 /* The CHECK_META phase already did a btf dump.
1466 *
1467 * If member is logged again, it must hit an error in
1468 * parsing this member. It is useful to print out which
1469 * struct this member belongs to.
1470 */
1471 if (env->phase != CHECK_META)
1472 btf_verifier_log_type(env, struct_type, NULL);
1473
9d5f9f70
YS
1474 if (btf_type_kflag(struct_type))
1475 __btf_verifier_log(log,
1476 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1477 __btf_name_by_offset(btf, member->name_off),
1478 member->type,
1479 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1480 BTF_MEMBER_BIT_OFFSET(member->offset));
1481 else
1482 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1483 __btf_name_by_offset(btf, member->name_off),
1484 member->type, member->offset);
69b693f0
MKL
1485
1486 if (fmt && *fmt) {
1487 __btf_verifier_log(log, " ");
1488 va_start(args, fmt);
1489 bpf_verifier_vlog(log, fmt, args);
1490 va_end(args);
1491 }
1492
1493 __btf_verifier_log(log, "\n");
1494}
1495
1dc92851
DB
1496__printf(4, 5)
1497static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1498 const struct btf_type *datasec_type,
1499 const struct btf_var_secinfo *vsi,
1500 const char *fmt, ...)
1501{
1502 struct bpf_verifier_log *log = &env->log;
1503 va_list args;
1504
1505 if (!bpf_verifier_log_needed(log))
1506 return;
8580ac94
AS
1507 if (log->level == BPF_LOG_KERNEL && !fmt)
1508 return;
1dc92851
DB
1509 if (env->phase != CHECK_META)
1510 btf_verifier_log_type(env, datasec_type, NULL);
1511
1512 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1513 vsi->type, vsi->offset, vsi->size);
1514 if (fmt && *fmt) {
1515 __btf_verifier_log(log, " ");
1516 va_start(args, fmt);
1517 bpf_verifier_vlog(log, fmt, args);
1518 va_end(args);
1519 }
1520
1521 __btf_verifier_log(log, "\n");
1522}
1523
f80442a4
MKL
1524static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1525 u32 btf_data_size)
69b693f0
MKL
1526{
1527 struct bpf_verifier_log *log = &env->log;
1528 const struct btf *btf = env->btf;
1529 const struct btf_header *hdr;
1530
1531 if (!bpf_verifier_log_needed(log))
1532 return;
1533
8580ac94
AS
1534 if (log->level == BPF_LOG_KERNEL)
1535 return;
f80442a4 1536 hdr = &btf->hdr;
69b693f0
MKL
1537 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1538 __btf_verifier_log(log, "version: %u\n", hdr->version);
1539 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1540 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1541 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1542 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1543 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1544 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1545 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1546}
1547
1548static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1549{
1550 struct btf *btf = env->btf;
1551
951bb646 1552 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1553 /* Expand 'types' array */
1554
1555 struct btf_type **new_types;
1556 u32 expand_by, new_size;
1557
951bb646 1558 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1559 btf_verifier_log(env, "Exceeded max num of types");
1560 return -E2BIG;
1561 }
1562
1563 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1564 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1565 btf->types_size + expand_by);
1566
778e1cdd 1567 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1568 GFP_KERNEL | __GFP_NOWARN);
1569 if (!new_types)
1570 return -ENOMEM;
1571
951bb646
AN
1572 if (btf->nr_types == 0) {
1573 if (!btf->base_btf) {
1574 /* lazily init VOID type */
1575 new_types[0] = &btf_void;
1576 btf->nr_types++;
1577 }
1578 } else {
69b693f0 1579 memcpy(new_types, btf->types,
951bb646
AN
1580 sizeof(*btf->types) * btf->nr_types);
1581 }
69b693f0
MKL
1582
1583 kvfree(btf->types);
1584 btf->types = new_types;
1585 btf->types_size = new_size;
1586 }
1587
951bb646 1588 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1589
1590 return 0;
1591}
1592
78958fca
MKL
1593static int btf_alloc_id(struct btf *btf)
1594{
1595 int id;
1596
1597 idr_preload(GFP_KERNEL);
1598 spin_lock_bh(&btf_idr_lock);
1599 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1600 if (id > 0)
1601 btf->id = id;
1602 spin_unlock_bh(&btf_idr_lock);
1603 idr_preload_end();
1604
1605 if (WARN_ON_ONCE(!id))
1606 return -ENOSPC;
1607
1608 return id > 0 ? 0 : id;
1609}
1610
1611static void btf_free_id(struct btf *btf)
1612{
1613 unsigned long flags;
1614
1615 /*
1616 * In map-in-map, calling map_delete_elem() on outer
1617 * map will call bpf_map_put on the inner map.
1618 * It will then eventually call btf_free_id()
1619 * on the inner map. Some of the map_delete_elem()
1620 * implementation may have irq disabled, so
1621 * we need to use the _irqsave() version instead
1622 * of the _bh() version.
1623 */
1624 spin_lock_irqsave(&btf_idr_lock, flags);
1625 idr_remove(&btf_idr, btf->id);
1626 spin_unlock_irqrestore(&btf_idr_lock, flags);
1627}
1628
dee872e1
KKD
1629static void btf_free_kfunc_set_tab(struct btf *btf)
1630{
1631 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
a4703e31 1632 int hook;
dee872e1
KKD
1633
1634 if (!tab)
1635 return;
1636 /* For module BTF, we directly assign the sets being registered, so
1637 * there is nothing to free except kfunc_set_tab.
1638 */
1639 if (btf_is_module(btf))
1640 goto free_tab;
a4703e31
KKD
1641 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1642 kfree(tab->sets[hook]);
dee872e1
KKD
1643free_tab:
1644 kfree(tab);
1645 btf->kfunc_set_tab = NULL;
1646}
1647
5ce937d6
KKD
1648static void btf_free_dtor_kfunc_tab(struct btf *btf)
1649{
1650 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1651
1652 if (!tab)
1653 return;
1654 kfree(tab);
1655 btf->dtor_kfunc_tab = NULL;
1656}
1657
8ffa5cc1
KKD
1658static void btf_struct_metas_free(struct btf_struct_metas *tab)
1659{
1660 int i;
1661
1662 if (!tab)
1663 return;
1664 for (i = 0; i < tab->cnt; i++) {
1665 btf_record_free(tab->types[i].record);
1666 kfree(tab->types[i].field_offs);
1667 }
1668 kfree(tab);
1669}
1670
1671static void btf_free_struct_meta_tab(struct btf *btf)
1672{
1673 struct btf_struct_metas *tab = btf->struct_meta_tab;
1674
1675 btf_struct_metas_free(tab);
1676 btf->struct_meta_tab = NULL;
1677}
1678
69b693f0
MKL
1679static void btf_free(struct btf *btf)
1680{
8ffa5cc1 1681 btf_free_struct_meta_tab(btf);
5ce937d6 1682 btf_free_dtor_kfunc_tab(btf);
dee872e1 1683 btf_free_kfunc_set_tab(btf);
69b693f0 1684 kvfree(btf->types);
eb3f595d
MKL
1685 kvfree(btf->resolved_sizes);
1686 kvfree(btf->resolved_ids);
69b693f0
MKL
1687 kvfree(btf->data);
1688 kfree(btf);
1689}
1690
78958fca 1691static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1692{
78958fca
MKL
1693 struct btf *btf = container_of(rcu, struct btf, rcu);
1694
1695 btf_free(btf);
f56a653c
MKL
1696}
1697
22dc4a0f
AN
1698void btf_get(struct btf *btf)
1699{
1700 refcount_inc(&btf->refcnt);
1701}
1702
f56a653c
MKL
1703void btf_put(struct btf *btf)
1704{
78958fca
MKL
1705 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1706 btf_free_id(btf);
1707 call_rcu(&btf->rcu, btf_free_rcu);
1708 }
f56a653c
MKL
1709}
1710
eb3f595d
MKL
1711static int env_resolve_init(struct btf_verifier_env *env)
1712{
1713 struct btf *btf = env->btf;
1714 u32 nr_types = btf->nr_types;
1715 u32 *resolved_sizes = NULL;
1716 u32 *resolved_ids = NULL;
1717 u8 *visit_states = NULL;
1718
951bb646 1719 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1720 GFP_KERNEL | __GFP_NOWARN);
1721 if (!resolved_sizes)
1722 goto nomem;
1723
951bb646 1724 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1725 GFP_KERNEL | __GFP_NOWARN);
1726 if (!resolved_ids)
1727 goto nomem;
1728
951bb646 1729 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1730 GFP_KERNEL | __GFP_NOWARN);
1731 if (!visit_states)
1732 goto nomem;
1733
1734 btf->resolved_sizes = resolved_sizes;
1735 btf->resolved_ids = resolved_ids;
1736 env->visit_states = visit_states;
1737
1738 return 0;
1739
1740nomem:
1741 kvfree(resolved_sizes);
1742 kvfree(resolved_ids);
1743 kvfree(visit_states);
1744 return -ENOMEM;
1745}
1746
69b693f0
MKL
1747static void btf_verifier_env_free(struct btf_verifier_env *env)
1748{
eb3f595d 1749 kvfree(env->visit_states);
69b693f0
MKL
1750 kfree(env);
1751}
1752
eb3f595d
MKL
1753static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1754 const struct btf_type *next_type)
1755{
1756 switch (env->resolve_mode) {
1757 case RESOLVE_TBD:
1758 /* int, enum or void is a sink */
1759 return !btf_type_needs_resolve(next_type);
1760 case RESOLVE_PTR:
2667a262
MKL
1761 /* int, enum, void, struct, array, func or func_proto is a sink
1762 * for ptr
1763 */
eb3f595d
MKL
1764 return !btf_type_is_modifier(next_type) &&
1765 !btf_type_is_ptr(next_type);
1766 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1767 /* int, enum, void, ptr, func or func_proto is a sink
1768 * for struct and array
1769 */
eb3f595d
MKL
1770 return !btf_type_is_modifier(next_type) &&
1771 !btf_type_is_array(next_type) &&
1772 !btf_type_is_struct(next_type);
1773 default:
53c8036c 1774 BUG();
eb3f595d
MKL
1775 }
1776}
1777
1778static bool env_type_is_resolved(const struct btf_verifier_env *env,
1779 u32 type_id)
1780{
951bb646
AN
1781 /* base BTF types should be resolved by now */
1782 if (type_id < env->btf->start_id)
1783 return true;
1784
1785 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1786}
1787
1788static int env_stack_push(struct btf_verifier_env *env,
1789 const struct btf_type *t, u32 type_id)
1790{
951bb646 1791 const struct btf *btf = env->btf;
eb3f595d
MKL
1792 struct resolve_vertex *v;
1793
1794 if (env->top_stack == MAX_RESOLVE_DEPTH)
1795 return -E2BIG;
1796
951bb646
AN
1797 if (type_id < btf->start_id
1798 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1799 return -EEXIST;
1800
951bb646 1801 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1802
1803 v = &env->stack[env->top_stack++];
1804 v->t = t;
1805 v->type_id = type_id;
1806 v->next_member = 0;
1807
1808 if (env->resolve_mode == RESOLVE_TBD) {
1809 if (btf_type_is_ptr(t))
1810 env->resolve_mode = RESOLVE_PTR;
1811 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1812 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1813 }
1814
1815 return 0;
1816}
1817
1818static void env_stack_set_next_member(struct btf_verifier_env *env,
1819 u16 next_member)
1820{
1821 env->stack[env->top_stack - 1].next_member = next_member;
1822}
1823
1824static void env_stack_pop_resolved(struct btf_verifier_env *env,
1825 u32 resolved_type_id,
1826 u32 resolved_size)
1827{
1828 u32 type_id = env->stack[--(env->top_stack)].type_id;
1829 struct btf *btf = env->btf;
1830
951bb646 1831 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1832 btf->resolved_sizes[type_id] = resolved_size;
1833 btf->resolved_ids[type_id] = resolved_type_id;
1834 env->visit_states[type_id] = RESOLVED;
1835}
1836
1837static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1838{
1839 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1840}
1841
7e3617a7
MKL
1842/* Resolve the size of a passed-in "type"
1843 *
1844 * type: is an array (e.g. u32 array[x][y])
1845 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1846 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1847 * corresponds to the return type.
1848 * *elem_type: u32
69ff3047 1849 * *elem_id: id of u32
7e3617a7
MKL
1850 * *total_nelems: (x * y). Hence, individual elem size is
1851 * (*type_size / *total_nelems)
887c31a3 1852 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1853 *
1854 * type: is not an array (e.g. const struct X)
1855 * return type: type "struct X"
1856 * *type_size: sizeof(struct X)
1857 * *elem_type: same as return type ("struct X")
69ff3047 1858 * *elem_id: 0
7e3617a7 1859 * *total_nelems: 1
887c31a3 1860 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1861 */
6298399b
JO
1862static const struct btf_type *
1863__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1864 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1865 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1866{
1867 const struct btf_type *array_type = NULL;
69ff3047 1868 const struct btf_array *array = NULL;
887c31a3 1869 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1870
1871 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1872 switch (BTF_INFO_KIND(type->info)) {
1873 /* type->size can be used */
1874 case BTF_KIND_INT:
1875 case BTF_KIND_STRUCT:
1876 case BTF_KIND_UNION:
1877 case BTF_KIND_ENUM:
b1828f0b 1878 case BTF_KIND_FLOAT:
6089fb32 1879 case BTF_KIND_ENUM64:
7e3617a7
MKL
1880 size = type->size;
1881 goto resolved;
1882
1883 case BTF_KIND_PTR:
1884 size = sizeof(void *);
1885 goto resolved;
1886
1887 /* Modifiers */
1888 case BTF_KIND_TYPEDEF:
1889 case BTF_KIND_VOLATILE:
1890 case BTF_KIND_CONST:
1891 case BTF_KIND_RESTRICT:
8c42d2fa 1892 case BTF_KIND_TYPE_TAG:
887c31a3 1893 id = type->type;
7e3617a7
MKL
1894 type = btf_type_by_id(btf, type->type);
1895 break;
1896
1897 case BTF_KIND_ARRAY:
1898 if (!array_type)
1899 array_type = type;
1900 array = btf_type_array(type);
1901 if (nelems && array->nelems > U32_MAX / nelems)
1902 return ERR_PTR(-EINVAL);
1903 nelems *= array->nelems;
1904 type = btf_type_by_id(btf, array->type);
1905 break;
1906
1907 /* type without size */
1908 default:
1909 return ERR_PTR(-EINVAL);
1910 }
1911 }
1912
1913 return ERR_PTR(-EINVAL);
1914
1915resolved:
1916 if (nelems && size > U32_MAX / nelems)
1917 return ERR_PTR(-EINVAL);
1918
1919 *type_size = nelems * size;
85d33df3
MKL
1920 if (total_nelems)
1921 *total_nelems = nelems;
1922 if (elem_type)
1923 *elem_type = type;
69ff3047
JO
1924 if (elem_id)
1925 *elem_id = array ? array->type : 0;
887c31a3
JO
1926 if (type_id && id)
1927 *type_id = id;
7e3617a7
MKL
1928
1929 return array_type ? : type;
1930}
1931
6298399b
JO
1932const struct btf_type *
1933btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1934 u32 *type_size)
1935{
887c31a3 1936 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1937}
1938
951bb646
AN
1939static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1940{
1941 while (type_id < btf->start_id)
1942 btf = btf->base_btf;
1943
1944 return btf->resolved_ids[type_id - btf->start_id];
1945}
1946
eb3f595d
MKL
1947/* The input param "type_id" must point to a needs_resolve type */
1948static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1949 u32 *type_id)
1950{
951bb646 1951 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1952 return btf_type_by_id(btf, *type_id);
1953}
1954
951bb646
AN
1955static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1956{
1957 while (type_id < btf->start_id)
1958 btf = btf->base_btf;
1959
1960 return btf->resolved_sizes[type_id - btf->start_id];
1961}
1962
eb3f595d
MKL
1963const struct btf_type *btf_type_id_size(const struct btf *btf,
1964 u32 *type_id, u32 *ret_size)
1965{
1966 const struct btf_type *size_type;
1967 u32 size_type_id = *type_id;
1968 u32 size = 0;
1969
1970 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1971 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1972 return NULL;
1973
1974 if (btf_type_has_size(size_type)) {
1975 size = size_type->size;
1976 } else if (btf_type_is_array(size_type)) {
951bb646 1977 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1978 } else if (btf_type_is_ptr(size_type)) {
1979 size = sizeof(void *);
1980 } else {
1dc92851
DB
1981 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1982 !btf_type_is_var(size_type)))
eb3f595d
MKL
1983 return NULL;
1984
951bb646 1985 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1986 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1987 if (btf_type_nosize_or_null(size_type))
eb3f595d 1988 return NULL;
1acc5d5c
AN
1989 else if (btf_type_has_size(size_type))
1990 size = size_type->size;
1991 else if (btf_type_is_array(size_type))
951bb646 1992 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1993 else if (btf_type_is_ptr(size_type))
1994 size = sizeof(void *);
1995 else
1996 return NULL;
eb3f595d
MKL
1997 }
1998
1999 *type_id = size_type_id;
2000 if (ret_size)
2001 *ret_size = size;
2002
2003 return size_type;
2004}
2005
179cde8c
MKL
2006static int btf_df_check_member(struct btf_verifier_env *env,
2007 const struct btf_type *struct_type,
2008 const struct btf_member *member,
2009 const struct btf_type *member_type)
2010{
2011 btf_verifier_log_basic(env, struct_type,
2012 "Unsupported check_member");
2013 return -EINVAL;
2014}
2015
9d5f9f70
YS
2016static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2017 const struct btf_type *struct_type,
2018 const struct btf_member *member,
2019 const struct btf_type *member_type)
2020{
2021 btf_verifier_log_basic(env, struct_type,
2022 "Unsupported check_kflag_member");
2023 return -EINVAL;
2024}
2025
b1828f0b 2026/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
2027 * int, enum and modifier types have their specific callback functions.
2028 */
2029static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2030 const struct btf_type *struct_type,
2031 const struct btf_member *member,
2032 const struct btf_type *member_type)
2033{
2034 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2035 btf_verifier_log_member(env, struct_type, member,
2036 "Invalid member bitfield_size");
2037 return -EINVAL;
2038 }
2039
2040 /* bitfield size is 0, so member->offset represents bit offset only.
2041 * It is safe to call non kflag check_member variants.
2042 */
2043 return btf_type_ops(member_type)->check_member(env, struct_type,
2044 member,
2045 member_type);
2046}
2047
eb3f595d
MKL
2048static int btf_df_resolve(struct btf_verifier_env *env,
2049 const struct resolve_vertex *v)
2050{
2051 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2052 return -EINVAL;
2053}
2054
31d0bc81
AM
2055static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2056 u32 type_id, void *data, u8 bits_offsets,
2057 struct btf_show *show)
b00b8dae 2058{
31d0bc81 2059 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
2060}
2061
179cde8c
MKL
2062static int btf_int_check_member(struct btf_verifier_env *env,
2063 const struct btf_type *struct_type,
2064 const struct btf_member *member,
2065 const struct btf_type *member_type)
2066{
2067 u32 int_data = btf_type_int(member_type);
2068 u32 struct_bits_off = member->offset;
2069 u32 struct_size = struct_type->size;
2070 u32 nr_copy_bits;
2071 u32 bytes_offset;
2072
2073 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2074 btf_verifier_log_member(env, struct_type, member,
2075 "bits_offset exceeds U32_MAX");
2076 return -EINVAL;
2077 }
2078
2079 struct_bits_off += BTF_INT_OFFSET(int_data);
2080 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2081 nr_copy_bits = BTF_INT_BITS(int_data) +
2082 BITS_PER_BYTE_MASKED(struct_bits_off);
2083
b1e8818c 2084 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 2085 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2086 "nr_copy_bits exceeds 128");
179cde8c
MKL
2087 return -EINVAL;
2088 }
2089
2090 if (struct_size < bytes_offset ||
2091 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2092 btf_verifier_log_member(env, struct_type, member,
2093 "Member exceeds struct_size");
2094 return -EINVAL;
2095 }
2096
2097 return 0;
2098}
2099
9d5f9f70
YS
2100static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2101 const struct btf_type *struct_type,
2102 const struct btf_member *member,
2103 const struct btf_type *member_type)
2104{
2105 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2106 u32 int_data = btf_type_int(member_type);
2107 u32 struct_size = struct_type->size;
2108 u32 nr_copy_bits;
2109
2110 /* a regular int type is required for the kflag int member */
2111 if (!btf_type_int_is_regular(member_type)) {
2112 btf_verifier_log_member(env, struct_type, member,
2113 "Invalid member base type");
2114 return -EINVAL;
2115 }
2116
2117 /* check sanity of bitfield size */
2118 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2119 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2120 nr_int_data_bits = BTF_INT_BITS(int_data);
2121 if (!nr_bits) {
2122 /* Not a bitfield member, member offset must be at byte
2123 * boundary.
2124 */
2125 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2126 btf_verifier_log_member(env, struct_type, member,
2127 "Invalid member offset");
2128 return -EINVAL;
2129 }
2130
2131 nr_bits = nr_int_data_bits;
2132 } else if (nr_bits > nr_int_data_bits) {
2133 btf_verifier_log_member(env, struct_type, member,
2134 "Invalid member bitfield_size");
2135 return -EINVAL;
2136 }
2137
2138 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2139 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 2140 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 2141 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2142 "nr_copy_bits exceeds 128");
9d5f9f70
YS
2143 return -EINVAL;
2144 }
2145
2146 if (struct_size < bytes_offset ||
2147 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2148 btf_verifier_log_member(env, struct_type, member,
2149 "Member exceeds struct_size");
2150 return -EINVAL;
2151 }
2152
2153 return 0;
2154}
2155
69b693f0
MKL
2156static s32 btf_int_check_meta(struct btf_verifier_env *env,
2157 const struct btf_type *t,
2158 u32 meta_left)
2159{
2160 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2161 u16 encoding;
2162
2163 if (meta_left < meta_needed) {
2164 btf_verifier_log_basic(env, t,
2165 "meta_left:%u meta_needed:%u",
2166 meta_left, meta_needed);
2167 return -EINVAL;
2168 }
2169
2170 if (btf_type_vlen(t)) {
2171 btf_verifier_log_type(env, t, "vlen != 0");
2172 return -EINVAL;
2173 }
2174
9d5f9f70
YS
2175 if (btf_type_kflag(t)) {
2176 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2177 return -EINVAL;
2178 }
2179
69b693f0 2180 int_data = btf_type_int(t);
aea2f7b8
MKL
2181 if (int_data & ~BTF_INT_MASK) {
2182 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2183 int_data);
2184 return -EINVAL;
2185 }
2186
69b693f0
MKL
2187 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2188
b1e8818c 2189 if (nr_bits > BITS_PER_U128) {
69b693f0 2190 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2191 BITS_PER_U128);
69b693f0
MKL
2192 return -EINVAL;
2193 }
2194
2195 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2196 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2197 return -EINVAL;
2198 }
2199
aea2f7b8
MKL
2200 /*
2201 * Only one of the encoding bits is allowed and it
2202 * should be sufficient for the pretty print purpose (i.e. decoding).
2203 * Multiple bits can be allowed later if it is found
2204 * to be insufficient.
2205 */
69b693f0
MKL
2206 encoding = BTF_INT_ENCODING(int_data);
2207 if (encoding &&
2208 encoding != BTF_INT_SIGNED &&
2209 encoding != BTF_INT_CHAR &&
aea2f7b8 2210 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2211 btf_verifier_log_type(env, t, "Unsupported encoding");
2212 return -ENOTSUPP;
2213 }
2214
2215 btf_verifier_log_type(env, t, NULL);
2216
2217 return meta_needed;
2218}
2219
2220static void btf_int_log(struct btf_verifier_env *env,
2221 const struct btf_type *t)
2222{
2223 int int_data = btf_type_int(t);
2224
2225 btf_verifier_log(env,
2226 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2227 t->size, BTF_INT_OFFSET(int_data),
2228 BTF_INT_BITS(int_data),
2229 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2230}
2231
31d0bc81 2232static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2233{
2234 /* data points to a __int128 number.
2235 * Suppose
2236 * int128_num = *(__int128 *)data;
2237 * The below formulas shows what upper_num and lower_num represents:
2238 * upper_num = int128_num >> 64;
2239 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2240 */
2241 u64 upper_num, lower_num;
2242
2243#ifdef __BIG_ENDIAN_BITFIELD
2244 upper_num = *(u64 *)data;
2245 lower_num = *(u64 *)(data + 8);
2246#else
2247 upper_num = *(u64 *)(data + 8);
2248 lower_num = *(u64 *)data;
2249#endif
2250 if (upper_num == 0)
31d0bc81 2251 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2252 else
31d0bc81
AM
2253 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2254 lower_num);
b1e8818c
YS
2255}
2256
2257static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2258 u16 right_shift_bits)
2259{
2260 u64 upper_num, lower_num;
2261
2262#ifdef __BIG_ENDIAN_BITFIELD
2263 upper_num = print_num[0];
2264 lower_num = print_num[1];
2265#else
2266 upper_num = print_num[1];
2267 lower_num = print_num[0];
2268#endif
2269
2270 /* shake out un-needed bits by shift/or operations */
2271 if (left_shift_bits >= 64) {
2272 upper_num = lower_num << (left_shift_bits - 64);
2273 lower_num = 0;
2274 } else {
2275 upper_num = (upper_num << left_shift_bits) |
2276 (lower_num >> (64 - left_shift_bits));
2277 lower_num = lower_num << left_shift_bits;
2278 }
2279
2280 if (right_shift_bits >= 64) {
2281 lower_num = upper_num >> (right_shift_bits - 64);
2282 upper_num = 0;
2283 } else {
2284 lower_num = (lower_num >> right_shift_bits) |
2285 (upper_num << (64 - right_shift_bits));
2286 upper_num = upper_num >> right_shift_bits;
2287 }
2288
2289#ifdef __BIG_ENDIAN_BITFIELD
2290 print_num[0] = upper_num;
2291 print_num[1] = lower_num;
2292#else
2293 print_num[0] = lower_num;
2294 print_num[1] = upper_num;
2295#endif
2296}
2297
31d0bc81
AM
2298static void btf_bitfield_show(void *data, u8 bits_offset,
2299 u8 nr_bits, struct btf_show *show)
b00b8dae 2300{
b65f370d 2301 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2302 u8 nr_copy_bytes;
2303 u8 nr_copy_bits;
b1e8818c 2304 u64 print_num[2] = {};
b00b8dae 2305
b00b8dae
MKL
2306 nr_copy_bits = nr_bits + bits_offset;
2307 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2308
b1e8818c 2309 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2310
b65f370d
OK
2311#ifdef __BIG_ENDIAN_BITFIELD
2312 left_shift_bits = bits_offset;
2313#else
b1e8818c 2314 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2315#endif
b1e8818c 2316 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2317
b1e8818c 2318 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2319 btf_int128_print(show, print_num);
b00b8dae
MKL
2320}
2321
9d5f9f70 2322
31d0bc81
AM
2323static void btf_int_bits_show(const struct btf *btf,
2324 const struct btf_type *t,
2325 void *data, u8 bits_offset,
2326 struct btf_show *show)
f97be3ab
YS
2327{
2328 u32 int_data = btf_type_int(t);
2329 u8 nr_bits = BTF_INT_BITS(int_data);
2330 u8 total_bits_offset;
2331
2332 /*
2333 * bits_offset is at most 7.
b1e8818c 2334 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2335 */
2336 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2337 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2338 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2339 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2340}
2341
31d0bc81
AM
2342static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2343 u32 type_id, void *data, u8 bits_offset,
2344 struct btf_show *show)
b00b8dae
MKL
2345{
2346 u32 int_data = btf_type_int(t);
2347 u8 encoding = BTF_INT_ENCODING(int_data);
2348 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2349 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2350 void *safe_data;
2351
2352 safe_data = btf_show_start_type(show, t, type_id, data);
2353 if (!safe_data)
2354 return;
b00b8dae
MKL
2355
2356 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2357 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2358 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2359 goto out;
b00b8dae
MKL
2360 }
2361
2362 switch (nr_bits) {
b1e8818c 2363 case 128:
31d0bc81 2364 btf_int128_print(show, safe_data);
b1e8818c 2365 break;
b00b8dae
MKL
2366 case 64:
2367 if (sign)
31d0bc81 2368 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2369 else
31d0bc81 2370 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2371 break;
2372 case 32:
2373 if (sign)
31d0bc81 2374 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2375 else
31d0bc81 2376 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2377 break;
2378 case 16:
2379 if (sign)
31d0bc81 2380 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2381 else
31d0bc81 2382 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2383 break;
2384 case 8:
31d0bc81
AM
2385 if (show->state.array_encoding == BTF_INT_CHAR) {
2386 /* check for null terminator */
2387 if (show->state.array_terminated)
2388 break;
2389 if (*(char *)data == '\0') {
2390 show->state.array_terminated = 1;
2391 break;
2392 }
2393 if (isprint(*(char *)data)) {
2394 btf_show_type_value(show, "'%c'",
2395 *(char *)safe_data);
2396 break;
2397 }
2398 }
b00b8dae 2399 if (sign)
31d0bc81 2400 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2401 else
31d0bc81 2402 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2403 break;
2404 default:
31d0bc81
AM
2405 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2406 break;
b00b8dae 2407 }
31d0bc81
AM
2408out:
2409 btf_show_end_type(show);
b00b8dae
MKL
2410}
2411
69b693f0
MKL
2412static const struct btf_kind_operations int_ops = {
2413 .check_meta = btf_int_check_meta,
eb3f595d 2414 .resolve = btf_df_resolve,
179cde8c 2415 .check_member = btf_int_check_member,
9d5f9f70 2416 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2417 .log_details = btf_int_log,
31d0bc81 2418 .show = btf_int_show,
69b693f0
MKL
2419};
2420
179cde8c
MKL
2421static int btf_modifier_check_member(struct btf_verifier_env *env,
2422 const struct btf_type *struct_type,
2423 const struct btf_member *member,
2424 const struct btf_type *member_type)
2425{
2426 const struct btf_type *resolved_type;
2427 u32 resolved_type_id = member->type;
2428 struct btf_member resolved_member;
2429 struct btf *btf = env->btf;
2430
2431 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2432 if (!resolved_type) {
2433 btf_verifier_log_member(env, struct_type, member,
2434 "Invalid member");
2435 return -EINVAL;
2436 }
2437
2438 resolved_member = *member;
2439 resolved_member.type = resolved_type_id;
2440
2441 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2442 &resolved_member,
2443 resolved_type);
2444}
2445
9d5f9f70
YS
2446static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2447 const struct btf_type *struct_type,
2448 const struct btf_member *member,
2449 const struct btf_type *member_type)
2450{
2451 const struct btf_type *resolved_type;
2452 u32 resolved_type_id = member->type;
2453 struct btf_member resolved_member;
2454 struct btf *btf = env->btf;
2455
2456 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2457 if (!resolved_type) {
2458 btf_verifier_log_member(env, struct_type, member,
2459 "Invalid member");
2460 return -EINVAL;
2461 }
2462
2463 resolved_member = *member;
2464 resolved_member.type = resolved_type_id;
2465
2466 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2467 &resolved_member,
2468 resolved_type);
2469}
2470
179cde8c
MKL
2471static int btf_ptr_check_member(struct btf_verifier_env *env,
2472 const struct btf_type *struct_type,
2473 const struct btf_member *member,
2474 const struct btf_type *member_type)
2475{
2476 u32 struct_size, struct_bits_off, bytes_offset;
2477
2478 struct_size = struct_type->size;
2479 struct_bits_off = member->offset;
2480 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2481
2482 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2483 btf_verifier_log_member(env, struct_type, member,
2484 "Member is not byte aligned");
2485 return -EINVAL;
2486 }
2487
2488 if (struct_size - bytes_offset < sizeof(void *)) {
2489 btf_verifier_log_member(env, struct_type, member,
2490 "Member exceeds struct_size");
2491 return -EINVAL;
2492 }
2493
2494 return 0;
2495}
2496
69b693f0
MKL
2497static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2498 const struct btf_type *t,
2499 u32 meta_left)
2500{
8c42d2fa
YS
2501 const char *value;
2502
69b693f0
MKL
2503 if (btf_type_vlen(t)) {
2504 btf_verifier_log_type(env, t, "vlen != 0");
2505 return -EINVAL;
2506 }
2507
9d5f9f70
YS
2508 if (btf_type_kflag(t)) {
2509 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2510 return -EINVAL;
2511 }
2512
aea2f7b8 2513 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2514 btf_verifier_log_type(env, t, "Invalid type_id");
2515 return -EINVAL;
2516 }
2517
8c42d2fa 2518 /* typedef/type_tag type must have a valid name, and other ref types,
eb04bbb6
YS
2519 * volatile, const, restrict, should have a null name.
2520 */
2521 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2522 if (!t->name_off ||
2523 !btf_name_valid_identifier(env->btf, t->name_off)) {
2524 btf_verifier_log_type(env, t, "Invalid name");
2525 return -EINVAL;
2526 }
8c42d2fa
YS
2527 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2528 value = btf_name_by_offset(env->btf, t->name_off);
2529 if (!value || !value[0]) {
2530 btf_verifier_log_type(env, t, "Invalid name");
2531 return -EINVAL;
2532 }
eb04bbb6
YS
2533 } else {
2534 if (t->name_off) {
2535 btf_verifier_log_type(env, t, "Invalid name");
2536 return -EINVAL;
2537 }
2538 }
2539
69b693f0
MKL
2540 btf_verifier_log_type(env, t, NULL);
2541
2542 return 0;
2543}
2544
eb3f595d
MKL
2545static int btf_modifier_resolve(struct btf_verifier_env *env,
2546 const struct resolve_vertex *v)
2547{
2548 const struct btf_type *t = v->t;
2549 const struct btf_type *next_type;
2550 u32 next_type_id = t->type;
2551 struct btf *btf = env->btf;
eb3f595d
MKL
2552
2553 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2554 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2555 btf_verifier_log_type(env, v->t, "Invalid type_id");
2556 return -EINVAL;
2557 }
2558
eb3f595d
MKL
2559 if (!env_type_is_resolve_sink(env, next_type) &&
2560 !env_type_is_resolved(env, next_type_id))
2561 return env_stack_push(env, next_type, next_type_id);
2562
2563 /* Figure out the resolved next_type_id with size.
2564 * They will be stored in the current modifier's
2565 * resolved_ids and resolved_sizes such that it can
2566 * save us a few type-following when we use it later (e.g. in
2567 * pretty print).
2568 */
1acc5d5c 2569 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2570 if (env_type_is_resolved(env, next_type_id))
2571 next_type = btf_type_id_resolve(btf, &next_type_id);
2572
2573 /* "typedef void new_void", "const void"...etc */
2574 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2575 !btf_type_is_fwd(next_type) &&
2576 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2577 btf_verifier_log_type(env, v->t, "Invalid type_id");
2578 return -EINVAL;
2579 }
eb3f595d
MKL
2580 }
2581
1acc5d5c 2582 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2583
2584 return 0;
2585}
2586
1dc92851
DB
2587static int btf_var_resolve(struct btf_verifier_env *env,
2588 const struct resolve_vertex *v)
2589{
2590 const struct btf_type *next_type;
2591 const struct btf_type *t = v->t;
2592 u32 next_type_id = t->type;
2593 struct btf *btf = env->btf;
1dc92851
DB
2594
2595 next_type = btf_type_by_id(btf, next_type_id);
2596 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2597 btf_verifier_log_type(env, v->t, "Invalid type_id");
2598 return -EINVAL;
2599 }
2600
2601 if (!env_type_is_resolve_sink(env, next_type) &&
2602 !env_type_is_resolved(env, next_type_id))
2603 return env_stack_push(env, next_type, next_type_id);
2604
2605 if (btf_type_is_modifier(next_type)) {
2606 const struct btf_type *resolved_type;
2607 u32 resolved_type_id;
2608
2609 resolved_type_id = next_type_id;
2610 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2611
2612 if (btf_type_is_ptr(resolved_type) &&
2613 !env_type_is_resolve_sink(env, resolved_type) &&
2614 !env_type_is_resolved(env, resolved_type_id))
2615 return env_stack_push(env, resolved_type,
2616 resolved_type_id);
2617 }
2618
2619 /* We must resolve to something concrete at this point, no
2620 * forward types or similar that would resolve to size of
2621 * zero is allowed.
2622 */
1acc5d5c 2623 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2624 btf_verifier_log_type(env, v->t, "Invalid type_id");
2625 return -EINVAL;
2626 }
2627
1acc5d5c 2628 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2629
2630 return 0;
2631}
2632
eb3f595d
MKL
2633static int btf_ptr_resolve(struct btf_verifier_env *env,
2634 const struct resolve_vertex *v)
2635{
2636 const struct btf_type *next_type;
2637 const struct btf_type *t = v->t;
2638 u32 next_type_id = t->type;
2639 struct btf *btf = env->btf;
eb3f595d
MKL
2640
2641 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2642 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2643 btf_verifier_log_type(env, v->t, "Invalid type_id");
2644 return -EINVAL;
2645 }
2646
eb3f595d
MKL
2647 if (!env_type_is_resolve_sink(env, next_type) &&
2648 !env_type_is_resolved(env, next_type_id))
2649 return env_stack_push(env, next_type, next_type_id);
2650
2651 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2652 * the modifier may have stopped resolving when it was resolved
2653 * to a ptr (last-resolved-ptr).
2654 *
2655 * We now need to continue from the last-resolved-ptr to
2656 * ensure the last-resolved-ptr will not referring back to
c561d110 2657 * the current ptr (t).
eb3f595d
MKL
2658 */
2659 if (btf_type_is_modifier(next_type)) {
2660 const struct btf_type *resolved_type;
2661 u32 resolved_type_id;
2662
2663 resolved_type_id = next_type_id;
2664 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2665
2666 if (btf_type_is_ptr(resolved_type) &&
2667 !env_type_is_resolve_sink(env, resolved_type) &&
2668 !env_type_is_resolved(env, resolved_type_id))
2669 return env_stack_push(env, resolved_type,
2670 resolved_type_id);
2671 }
2672
2667a262
MKL
2673 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2674 if (env_type_is_resolved(env, next_type_id))
2675 next_type = btf_type_id_resolve(btf, &next_type_id);
2676
2677 if (!btf_type_is_void(next_type) &&
2678 !btf_type_is_fwd(next_type) &&
2679 !btf_type_is_func_proto(next_type)) {
2680 btf_verifier_log_type(env, v->t, "Invalid type_id");
2681 return -EINVAL;
2682 }
eb3f595d
MKL
2683 }
2684
eb3f595d
MKL
2685 env_stack_pop_resolved(env, next_type_id, 0);
2686
2687 return 0;
2688}
2689
31d0bc81
AM
2690static void btf_modifier_show(const struct btf *btf,
2691 const struct btf_type *t,
2692 u32 type_id, void *data,
2693 u8 bits_offset, struct btf_show *show)
b00b8dae 2694{
85d33df3
MKL
2695 if (btf->resolved_ids)
2696 t = btf_type_id_resolve(btf, &type_id);
2697 else
2698 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2699
31d0bc81 2700 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2701}
2702
31d0bc81
AM
2703static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2704 u32 type_id, void *data, u8 bits_offset,
2705 struct btf_show *show)
1dc92851
DB
2706{
2707 t = btf_type_id_resolve(btf, &type_id);
2708
31d0bc81 2709 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2710}
2711
31d0bc81
AM
2712static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2713 u32 type_id, void *data, u8 bits_offset,
2714 struct btf_show *show)
b00b8dae 2715{
31d0bc81
AM
2716 void *safe_data;
2717
2718 safe_data = btf_show_start_type(show, t, type_id, data);
2719 if (!safe_data)
2720 return;
2721
2722 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2723 if (show->flags & BTF_SHOW_PTR_RAW)
2724 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2725 else
2726 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2727 btf_show_end_type(show);
b00b8dae
MKL
2728}
2729
69b693f0
MKL
2730static void btf_ref_type_log(struct btf_verifier_env *env,
2731 const struct btf_type *t)
2732{
2733 btf_verifier_log(env, "type_id=%u", t->type);
2734}
2735
2736static struct btf_kind_operations modifier_ops = {
2737 .check_meta = btf_ref_type_check_meta,
eb3f595d 2738 .resolve = btf_modifier_resolve,
179cde8c 2739 .check_member = btf_modifier_check_member,
9d5f9f70 2740 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2741 .log_details = btf_ref_type_log,
31d0bc81 2742 .show = btf_modifier_show,
69b693f0
MKL
2743};
2744
2745static struct btf_kind_operations ptr_ops = {
2746 .check_meta = btf_ref_type_check_meta,
eb3f595d 2747 .resolve = btf_ptr_resolve,
179cde8c 2748 .check_member = btf_ptr_check_member,
9d5f9f70 2749 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2750 .log_details = btf_ref_type_log,
31d0bc81 2751 .show = btf_ptr_show,
69b693f0
MKL
2752};
2753
8175383f
MKL
2754static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2755 const struct btf_type *t,
2756 u32 meta_left)
2757{
2758 if (btf_type_vlen(t)) {
2759 btf_verifier_log_type(env, t, "vlen != 0");
2760 return -EINVAL;
2761 }
2762
2763 if (t->type) {
2764 btf_verifier_log_type(env, t, "type != 0");
2765 return -EINVAL;
2766 }
2767
eb04bbb6
YS
2768 /* fwd type must have a valid name */
2769 if (!t->name_off ||
2770 !btf_name_valid_identifier(env->btf, t->name_off)) {
2771 btf_verifier_log_type(env, t, "Invalid name");
2772 return -EINVAL;
2773 }
2774
8175383f
MKL
2775 btf_verifier_log_type(env, t, NULL);
2776
2777 return 0;
2778}
2779
76c43ae8
YS
2780static void btf_fwd_type_log(struct btf_verifier_env *env,
2781 const struct btf_type *t)
2782{
2783 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2784}
2785
69b693f0 2786static struct btf_kind_operations fwd_ops = {
8175383f 2787 .check_meta = btf_fwd_check_meta,
eb3f595d 2788 .resolve = btf_df_resolve,
179cde8c 2789 .check_member = btf_df_check_member,
9d5f9f70 2790 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2791 .log_details = btf_fwd_type_log,
31d0bc81 2792 .show = btf_df_show,
69b693f0
MKL
2793};
2794
179cde8c
MKL
2795static int btf_array_check_member(struct btf_verifier_env *env,
2796 const struct btf_type *struct_type,
2797 const struct btf_member *member,
2798 const struct btf_type *member_type)
2799{
2800 u32 struct_bits_off = member->offset;
2801 u32 struct_size, bytes_offset;
2802 u32 array_type_id, array_size;
2803 struct btf *btf = env->btf;
2804
2805 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2806 btf_verifier_log_member(env, struct_type, member,
2807 "Member is not byte aligned");
2808 return -EINVAL;
2809 }
2810
2811 array_type_id = member->type;
2812 btf_type_id_size(btf, &array_type_id, &array_size);
2813 struct_size = struct_type->size;
2814 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2815 if (struct_size - bytes_offset < array_size) {
2816 btf_verifier_log_member(env, struct_type, member,
2817 "Member exceeds struct_size");
2818 return -EINVAL;
2819 }
2820
2821 return 0;
2822}
2823
69b693f0
MKL
2824static s32 btf_array_check_meta(struct btf_verifier_env *env,
2825 const struct btf_type *t,
2826 u32 meta_left)
2827{
2828 const struct btf_array *array = btf_type_array(t);
2829 u32 meta_needed = sizeof(*array);
2830
2831 if (meta_left < meta_needed) {
2832 btf_verifier_log_basic(env, t,
2833 "meta_left:%u meta_needed:%u",
2834 meta_left, meta_needed);
2835 return -EINVAL;
2836 }
2837
eb04bbb6
YS
2838 /* array type should not have a name */
2839 if (t->name_off) {
2840 btf_verifier_log_type(env, t, "Invalid name");
2841 return -EINVAL;
2842 }
2843
69b693f0
MKL
2844 if (btf_type_vlen(t)) {
2845 btf_verifier_log_type(env, t, "vlen != 0");
2846 return -EINVAL;
2847 }
2848
9d5f9f70
YS
2849 if (btf_type_kflag(t)) {
2850 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2851 return -EINVAL;
2852 }
2853
b9308ae6
MKL
2854 if (t->size) {
2855 btf_verifier_log_type(env, t, "size != 0");
2856 return -EINVAL;
2857 }
2858
4ef5f574
MKL
2859 /* Array elem type and index type cannot be in type void,
2860 * so !array->type and !array->index_type are not allowed.
69b693f0 2861 */
aea2f7b8 2862 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2863 btf_verifier_log_type(env, t, "Invalid elem");
2864 return -EINVAL;
2865 }
2866
aea2f7b8 2867 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2868 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2869 return -EINVAL;
2870 }
2871
2872 btf_verifier_log_type(env, t, NULL);
2873
2874 return meta_needed;
2875}
2876
eb3f595d
MKL
2877static int btf_array_resolve(struct btf_verifier_env *env,
2878 const struct resolve_vertex *v)
2879{
2880 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2881 const struct btf_type *elem_type, *index_type;
2882 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2883 struct btf *btf = env->btf;
2884 u32 elem_size;
2885
4ef5f574
MKL
2886 /* Check array->index_type */
2887 index_type_id = array->index_type;
2888 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2889 if (btf_type_nosize_or_null(index_type) ||
2890 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2891 btf_verifier_log_type(env, v->t, "Invalid index");
2892 return -EINVAL;
2893 }
2894
2895 if (!env_type_is_resolve_sink(env, index_type) &&
2896 !env_type_is_resolved(env, index_type_id))
2897 return env_stack_push(env, index_type, index_type_id);
2898
2899 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2900 if (!index_type || !btf_type_is_int(index_type) ||
2901 !btf_type_int_is_regular(index_type)) {
2902 btf_verifier_log_type(env, v->t, "Invalid index");
2903 return -EINVAL;
2904 }
2905
2906 /* Check array->type */
2907 elem_type_id = array->type;
eb3f595d 2908 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2909 if (btf_type_nosize_or_null(elem_type) ||
2910 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2911 btf_verifier_log_type(env, v->t,
2912 "Invalid elem");
2913 return -EINVAL;
2914 }
2915
2916 if (!env_type_is_resolve_sink(env, elem_type) &&
2917 !env_type_is_resolved(env, elem_type_id))
2918 return env_stack_push(env, elem_type, elem_type_id);
2919
2920 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2921 if (!elem_type) {
2922 btf_verifier_log_type(env, v->t, "Invalid elem");
2923 return -EINVAL;
2924 }
2925
4ef5f574
MKL
2926 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2927 btf_verifier_log_type(env, v->t, "Invalid array of int");
2928 return -EINVAL;
eb3f595d
MKL
2929 }
2930
2931 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2932 btf_verifier_log_type(env, v->t,
2933 "Array size overflows U32_MAX");
2934 return -EINVAL;
2935 }
2936
2937 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2938
2939 return 0;
2940}
2941
69b693f0
MKL
2942static void btf_array_log(struct btf_verifier_env *env,
2943 const struct btf_type *t)
2944{
2945 const struct btf_array *array = btf_type_array(t);
2946
2947 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2948 array->type, array->index_type, array->nelems);
2949}
2950
31d0bc81
AM
2951static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2952 u32 type_id, void *data, u8 bits_offset,
2953 struct btf_show *show)
b00b8dae
MKL
2954{
2955 const struct btf_array *array = btf_type_array(t);
2956 const struct btf_kind_operations *elem_ops;
2957 const struct btf_type *elem_type;
31d0bc81
AM
2958 u32 i, elem_size = 0, elem_type_id;
2959 u16 encoding = 0;
b00b8dae
MKL
2960
2961 elem_type_id = array->type;
31d0bc81
AM
2962 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2963 if (elem_type && btf_type_has_size(elem_type))
2964 elem_size = elem_type->size;
2965
2966 if (elem_type && btf_type_is_int(elem_type)) {
2967 u32 int_type = btf_type_int(elem_type);
2968
2969 encoding = BTF_INT_ENCODING(int_type);
2970
2971 /*
2972 * BTF_INT_CHAR encoding never seems to be set for
2973 * char arrays, so if size is 1 and element is
2974 * printable as a char, we'll do that.
2975 */
2976 if (elem_size == 1)
2977 encoding = BTF_INT_CHAR;
2978 }
2979
2980 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2981 return;
2982
2983 if (!elem_type)
2984 goto out;
b00b8dae 2985 elem_ops = btf_type_ops(elem_type);
31d0bc81 2986
b00b8dae 2987 for (i = 0; i < array->nelems; i++) {
b00b8dae 2988
31d0bc81
AM
2989 btf_show_start_array_member(show);
2990
2991 elem_ops->show(btf, elem_type, elem_type_id, data,
2992 bits_offset, show);
b00b8dae 2993 data += elem_size;
31d0bc81
AM
2994
2995 btf_show_end_array_member(show);
2996
2997 if (show->state.array_terminated)
2998 break;
b00b8dae 2999 }
31d0bc81
AM
3000out:
3001 btf_show_end_array_type(show);
3002}
3003
3004static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3005 u32 type_id, void *data, u8 bits_offset,
3006 struct btf_show *show)
3007{
3008 const struct btf_member *m = show->state.member;
3009
3010 /*
3011 * First check if any members would be shown (are non-zero).
3012 * See comments above "struct btf_show" definition for more
3013 * details on how this works at a high-level.
3014 */
3015 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3016 if (!show->state.depth_check) {
3017 show->state.depth_check = show->state.depth + 1;
3018 show->state.depth_to_show = 0;
3019 }
3020 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3021 show->state.member = m;
3022
3023 if (show->state.depth_check != show->state.depth + 1)
3024 return;
3025 show->state.depth_check = 0;
3026
3027 if (show->state.depth_to_show <= show->state.depth)
3028 return;
3029 /*
3030 * Reaching here indicates we have recursed and found
3031 * non-zero array member(s).
3032 */
3033 }
3034 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3035}
3036
69b693f0
MKL
3037static struct btf_kind_operations array_ops = {
3038 .check_meta = btf_array_check_meta,
eb3f595d 3039 .resolve = btf_array_resolve,
179cde8c 3040 .check_member = btf_array_check_member,
9d5f9f70 3041 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3042 .log_details = btf_array_log,
31d0bc81 3043 .show = btf_array_show,
69b693f0
MKL
3044};
3045
179cde8c
MKL
3046static int btf_struct_check_member(struct btf_verifier_env *env,
3047 const struct btf_type *struct_type,
3048 const struct btf_member *member,
3049 const struct btf_type *member_type)
3050{
3051 u32 struct_bits_off = member->offset;
3052 u32 struct_size, bytes_offset;
3053
3054 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3055 btf_verifier_log_member(env, struct_type, member,
3056 "Member is not byte aligned");
3057 return -EINVAL;
3058 }
3059
3060 struct_size = struct_type->size;
3061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3062 if (struct_size - bytes_offset < member_type->size) {
3063 btf_verifier_log_member(env, struct_type, member,
3064 "Member exceeds struct_size");
3065 return -EINVAL;
3066 }
3067
3068 return 0;
3069}
3070
69b693f0
MKL
3071static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3072 const struct btf_type *t,
3073 u32 meta_left)
3074{
3075 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3076 const struct btf_member *member;
6283fa38 3077 u32 meta_needed, last_offset;
69b693f0
MKL
3078 struct btf *btf = env->btf;
3079 u32 struct_size = t->size;
9d5f9f70 3080 u32 offset;
69b693f0
MKL
3081 u16 i;
3082
3083 meta_needed = btf_type_vlen(t) * sizeof(*member);
3084 if (meta_left < meta_needed) {
3085 btf_verifier_log_basic(env, t,
3086 "meta_left:%u meta_needed:%u",
3087 meta_left, meta_needed);
3088 return -EINVAL;
3089 }
3090
eb04bbb6
YS
3091 /* struct type either no name or a valid one */
3092 if (t->name_off &&
3093 !btf_name_valid_identifier(env->btf, t->name_off)) {
3094 btf_verifier_log_type(env, t, "Invalid name");
3095 return -EINVAL;
3096 }
3097
69b693f0
MKL
3098 btf_verifier_log_type(env, t, NULL);
3099
6283fa38 3100 last_offset = 0;
69b693f0 3101 for_each_member(i, t, member) {
fbcf93eb 3102 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
3103 btf_verifier_log_member(env, t, member,
3104 "Invalid member name_offset:%u",
fbcf93eb 3105 member->name_off);
69b693f0
MKL
3106 return -EINVAL;
3107 }
3108
eb04bbb6
YS
3109 /* struct member either no name or a valid one */
3110 if (member->name_off &&
3111 !btf_name_valid_identifier(btf, member->name_off)) {
3112 btf_verifier_log_member(env, t, member, "Invalid name");
3113 return -EINVAL;
3114 }
69b693f0 3115 /* A member cannot be in type void */
aea2f7b8 3116 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
3117 btf_verifier_log_member(env, t, member,
3118 "Invalid type_id");
3119 return -EINVAL;
3120 }
3121
8293eb99 3122 offset = __btf_member_bit_offset(t, member);
9d5f9f70 3123 if (is_union && offset) {
69b693f0
MKL
3124 btf_verifier_log_member(env, t, member,
3125 "Invalid member bits_offset");
3126 return -EINVAL;
3127 }
3128
6283fa38
MKL
3129 /*
3130 * ">" instead of ">=" because the last member could be
3131 * "char a[0];"
3132 */
9d5f9f70 3133 if (last_offset > offset) {
6283fa38
MKL
3134 btf_verifier_log_member(env, t, member,
3135 "Invalid member bits_offset");
3136 return -EINVAL;
3137 }
3138
9d5f9f70 3139 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 3140 btf_verifier_log_member(env, t, member,
311fe1a8 3141 "Member bits_offset exceeds its struct size");
69b693f0
MKL
3142 return -EINVAL;
3143 }
3144
3145 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 3146 last_offset = offset;
69b693f0
MKL
3147 }
3148
3149 return meta_needed;
3150}
3151
eb3f595d
MKL
3152static int btf_struct_resolve(struct btf_verifier_env *env,
3153 const struct resolve_vertex *v)
3154{
3155 const struct btf_member *member;
179cde8c 3156 int err;
eb3f595d
MKL
3157 u16 i;
3158
3159 /* Before continue resolving the next_member,
3160 * ensure the last member is indeed resolved to a
3161 * type with size info.
3162 */
3163 if (v->next_member) {
179cde8c 3164 const struct btf_type *last_member_type;
eb3f595d 3165 const struct btf_member *last_member;
a37a3258 3166 u32 last_member_type_id;
eb3f595d
MKL
3167
3168 last_member = btf_type_member(v->t) + v->next_member - 1;
3169 last_member_type_id = last_member->type;
3170 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3171 last_member_type_id)))
3172 return -EINVAL;
179cde8c
MKL
3173
3174 last_member_type = btf_type_by_id(env->btf,
3175 last_member_type_id);
9d5f9f70
YS
3176 if (btf_type_kflag(v->t))
3177 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3178 last_member,
3179 last_member_type);
3180 else
3181 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3182 last_member,
3183 last_member_type);
179cde8c
MKL
3184 if (err)
3185 return err;
eb3f595d
MKL
3186 }
3187
3188 for_each_member_from(i, v->next_member, v->t, member) {
3189 u32 member_type_id = member->type;
3190 const struct btf_type *member_type = btf_type_by_id(env->btf,
3191 member_type_id);
3192
e4f07120
SF
3193 if (btf_type_nosize_or_null(member_type) ||
3194 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3195 btf_verifier_log_member(env, v->t, member,
3196 "Invalid member");
3197 return -EINVAL;
3198 }
3199
3200 if (!env_type_is_resolve_sink(env, member_type) &&
3201 !env_type_is_resolved(env, member_type_id)) {
3202 env_stack_set_next_member(env, i + 1);
3203 return env_stack_push(env, member_type, member_type_id);
3204 }
179cde8c 3205
9d5f9f70
YS
3206 if (btf_type_kflag(v->t))
3207 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3208 member,
3209 member_type);
3210 else
3211 err = btf_type_ops(member_type)->check_member(env, v->t,
3212 member,
3213 member_type);
179cde8c
MKL
3214 if (err)
3215 return err;
eb3f595d
MKL
3216 }
3217
3218 env_stack_pop_resolved(env, 0, 0);
3219
3220 return 0;
3221}
3222
69b693f0
MKL
3223static void btf_struct_log(struct btf_verifier_env *env,
3224 const struct btf_type *t)
3225{
3226 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3227}
3228
aa3496ac 3229enum btf_field_info_type {
42ba1308
KKD
3230 BTF_FIELD_SPIN_LOCK,
3231 BTF_FIELD_TIMER,
61df10c7
KKD
3232 BTF_FIELD_KPTR,
3233};
3234
3235enum {
3236 BTF_FIELD_IGNORE = 0,
3237 BTF_FIELD_FOUND = 1,
42ba1308
KKD
3238};
3239
3240struct btf_field_info {
aa3496ac 3241 enum btf_field_type type;
42ba1308 3242 u32 off;
f0c5941f
KKD
3243 union {
3244 struct {
3245 u32 type_id;
3246 } kptr;
3247 struct {
3248 const char *node_name;
3249 u32 value_btf_id;
30465003 3250 } graph_root;
f0c5941f 3251 };
42ba1308
KKD
3252};
3253
3254static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3255 u32 off, int sz, enum btf_field_type field_type,
3256 struct btf_field_info *info)
42ba1308
KKD
3257{
3258 if (!__btf_type_is_struct(t))
61df10c7 3259 return BTF_FIELD_IGNORE;
42ba1308 3260 if (t->size != sz)
61df10c7 3261 return BTF_FIELD_IGNORE;
db559117 3262 info->type = field_type;
42ba1308 3263 info->off = off;
61df10c7
KKD
3264 return BTF_FIELD_FOUND;
3265}
3266
3267static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3268 u32 off, int sz, struct btf_field_info *info)
3269{
aa3496ac 3270 enum btf_field_type type;
61df10c7
KKD
3271 u32 res_id;
3272
23da464d
KKD
3273 /* Permit modifiers on the pointer itself */
3274 if (btf_type_is_volatile(t))
3275 t = btf_type_by_id(btf, t->type);
61df10c7
KKD
3276 /* For PTR, sz is always == 8 */
3277 if (!btf_type_is_ptr(t))
3278 return BTF_FIELD_IGNORE;
3279 t = btf_type_by_id(btf, t->type);
3280
3281 if (!btf_type_is_type_tag(t))
3282 return BTF_FIELD_IGNORE;
3283 /* Reject extra tags */
3284 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3285 return -EINVAL;
c0a5a21c
KKD
3286 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3287 type = BPF_KPTR_UNREF;
3288 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3289 type = BPF_KPTR_REF;
3290 else
61df10c7
KKD
3291 return -EINVAL;
3292
3293 /* Get the base type */
3294 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3295 /* Only pointer to struct is allowed */
3296 if (!__btf_type_is_struct(t))
3297 return -EINVAL;
3298
c0a5a21c 3299 info->type = type;
db559117
KKD
3300 info->off = off;
3301 info->kptr.type_id = res_id;
61df10c7 3302 return BTF_FIELD_FOUND;
42ba1308
KKD
3303}
3304
f0c5941f
KKD
3305static const char *btf_find_decl_tag_value(const struct btf *btf,
3306 const struct btf_type *pt,
3307 int comp_idx, const char *tag_key)
3308{
3309 int i;
3310
3311 for (i = 1; i < btf_nr_types(btf); i++) {
3312 const struct btf_type *t = btf_type_by_id(btf, i);
3313 int len = strlen(tag_key);
3314
3315 if (!btf_type_is_decl_tag(t))
3316 continue;
3317 if (pt != btf_type_by_id(btf, t->type) ||
3318 btf_type_decl_tag(t)->component_idx != comp_idx)
3319 continue;
3320 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3321 continue;
3322 return __btf_name_by_offset(btf, t->name_off) + len;
3323 }
3324 return NULL;
3325}
3326
3327static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt,
3328 const struct btf_type *t, int comp_idx,
3329 u32 off, int sz, struct btf_field_info *info)
3330{
3331 const char *value_type;
3332 const char *list_node;
3333 s32 id;
3334
3335 if (!__btf_type_is_struct(t))
3336 return BTF_FIELD_IGNORE;
3337 if (t->size != sz)
3338 return BTF_FIELD_IGNORE;
3339 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3340 if (!value_type)
3341 return -EINVAL;
3342 list_node = strstr(value_type, ":");
3343 if (!list_node)
3344 return -EINVAL;
3345 value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN);
3346 if (!value_type)
3347 return -ENOMEM;
3348 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3349 kfree(value_type);
3350 if (id < 0)
3351 return id;
3352 list_node++;
3353 if (str_is_empty(list_node))
3354 return -EINVAL;
3355 info->type = BPF_LIST_HEAD;
3356 info->off = off;
30465003
DM
3357 info->graph_root.value_btf_id = id;
3358 info->graph_root.node_name = list_node;
f0c5941f
KKD
3359 return BTF_FIELD_FOUND;
3360}
3361
db559117
KKD
3362static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3363 int *align, int *sz)
3364{
3365 int type = 0;
3366
3367 if (field_mask & BPF_SPIN_LOCK) {
3368 if (!strcmp(name, "bpf_spin_lock")) {
3369 if (*seen_mask & BPF_SPIN_LOCK)
3370 return -E2BIG;
3371 *seen_mask |= BPF_SPIN_LOCK;
3372 type = BPF_SPIN_LOCK;
3373 goto end;
3374 }
3375 }
3376 if (field_mask & BPF_TIMER) {
3377 if (!strcmp(name, "bpf_timer")) {
3378 if (*seen_mask & BPF_TIMER)
3379 return -E2BIG;
3380 *seen_mask |= BPF_TIMER;
3381 type = BPF_TIMER;
3382 goto end;
3383 }
3384 }
f0c5941f
KKD
3385 if (field_mask & BPF_LIST_HEAD) {
3386 if (!strcmp(name, "bpf_list_head")) {
3387 type = BPF_LIST_HEAD;
3388 goto end;
3389 }
3390 }
8ffa5cc1
KKD
3391 if (field_mask & BPF_LIST_NODE) {
3392 if (!strcmp(name, "bpf_list_node")) {
3393 type = BPF_LIST_NODE;
3394 goto end;
3395 }
3396 }
db559117
KKD
3397 /* Only return BPF_KPTR when all other types with matchable names fail */
3398 if (field_mask & BPF_KPTR) {
3399 type = BPF_KPTR_REF;
3400 goto end;
3401 }
3402 return 0;
3403end:
3404 *sz = btf_field_type_size(type);
3405 *align = btf_field_type_align(type);
3406 return type;
3407}
3408
3409static int btf_find_struct_field(const struct btf *btf,
3410 const struct btf_type *t, u32 field_mask,
61df10c7 3411 struct btf_field_info *info, int info_cnt)
d83525ca 3412{
db559117 3413 int ret, idx = 0, align, sz, field_type;
d83525ca 3414 const struct btf_member *member;
61df10c7 3415 struct btf_field_info tmp;
db559117 3416 u32 i, off, seen_mask = 0;
d83525ca 3417
d83525ca
AS
3418 for_each_member(i, t, member) {
3419 const struct btf_type *member_type = btf_type_by_id(btf,
3420 member->type);
42ba1308 3421
db559117
KKD
3422 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3423 field_mask, &seen_mask, &align, &sz);
3424 if (field_type == 0)
d83525ca 3425 continue;
db559117
KKD
3426 if (field_type < 0)
3427 return field_type;
42ba1308 3428
8293eb99 3429 off = __btf_member_bit_offset(t, member);
d83525ca
AS
3430 if (off % 8)
3431 /* valid C code cannot generate such BTF */
3432 return -EINVAL;
3433 off /= 8;
68134668 3434 if (off % align)
db559117 3435 continue;
42ba1308
KKD
3436
3437 switch (field_type) {
db559117
KKD
3438 case BPF_SPIN_LOCK:
3439 case BPF_TIMER:
8ffa5cc1 3440 case BPF_LIST_NODE:
db559117 3441 ret = btf_find_struct(btf, member_type, off, sz, field_type,
61df10c7
KKD
3442 idx < info_cnt ? &info[idx] : &tmp);
3443 if (ret < 0)
3444 return ret;
3445 break;
db559117
KKD
3446 case BPF_KPTR_UNREF:
3447 case BPF_KPTR_REF:
61df10c7
KKD
3448 ret = btf_find_kptr(btf, member_type, off, sz,
3449 idx < info_cnt ? &info[idx] : &tmp);
3450 if (ret < 0)
3451 return ret;
3452 break;
f0c5941f
KKD
3453 case BPF_LIST_HEAD:
3454 ret = btf_find_list_head(btf, t, member_type, i, off, sz,
3455 idx < info_cnt ? &info[idx] : &tmp);
3456 if (ret < 0)
3457 return ret;
3458 break;
42ba1308
KKD
3459 default:
3460 return -EFAULT;
3461 }
61df10c7
KKD
3462
3463 if (ret == BTF_FIELD_IGNORE)
3464 continue;
3465 if (idx >= info_cnt)
3466 return -E2BIG;
3467 ++idx;
68134668 3468 }
61df10c7 3469 return idx;
68134668
AS
3470}
3471
3472static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3473 u32 field_mask, struct btf_field_info *info,
3474 int info_cnt)
68134668 3475{
db559117 3476 int ret, idx = 0, align, sz, field_type;
68134668 3477 const struct btf_var_secinfo *vsi;
61df10c7 3478 struct btf_field_info tmp;
db559117 3479 u32 i, off, seen_mask = 0;
68134668
AS
3480
3481 for_each_vsi(i, t, vsi) {
3482 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3483 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3484
db559117
KKD
3485 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3486 field_mask, &seen_mask, &align, &sz);
3487 if (field_type == 0)
68134668 3488 continue;
db559117
KKD
3489 if (field_type < 0)
3490 return field_type;
3491
3492 off = vsi->offset;
68134668
AS
3493 if (vsi->size != sz)
3494 continue;
68134668 3495 if (off % align)
db559117 3496 continue;
42ba1308
KKD
3497
3498 switch (field_type) {
db559117
KKD
3499 case BPF_SPIN_LOCK:
3500 case BPF_TIMER:
8ffa5cc1 3501 case BPF_LIST_NODE:
db559117 3502 ret = btf_find_struct(btf, var_type, off, sz, field_type,
61df10c7
KKD
3503 idx < info_cnt ? &info[idx] : &tmp);
3504 if (ret < 0)
3505 return ret;
3506 break;
db559117
KKD
3507 case BPF_KPTR_UNREF:
3508 case BPF_KPTR_REF:
61df10c7
KKD
3509 ret = btf_find_kptr(btf, var_type, off, sz,
3510 idx < info_cnt ? &info[idx] : &tmp);
3511 if (ret < 0)
3512 return ret;
3513 break;
f0c5941f
KKD
3514 case BPF_LIST_HEAD:
3515 ret = btf_find_list_head(btf, var, var_type, -1, off, sz,
3516 idx < info_cnt ? &info[idx] : &tmp);
3517 if (ret < 0)
3518 return ret;
3519 break;
42ba1308
KKD
3520 default:
3521 return -EFAULT;
3522 }
61df10c7
KKD
3523
3524 if (ret == BTF_FIELD_IGNORE)
3525 continue;
3526 if (idx >= info_cnt)
3527 return -E2BIG;
3528 ++idx;
d83525ca 3529 }
61df10c7 3530 return idx;
d83525ca
AS
3531}
3532
68134668 3533static int btf_find_field(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3534 u32 field_mask, struct btf_field_info *info,
3535 int info_cnt)
68134668 3536{
68134668 3537 if (__btf_type_is_struct(t))
db559117 3538 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
68134668 3539 else if (btf_type_is_datasec(t))
db559117 3540 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
68134668
AS
3541 return -EINVAL;
3542}
3543
db559117
KKD
3544static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3545 struct btf_field_info *info)
68134668 3546{
db559117
KKD
3547 struct module *mod = NULL;
3548 const struct btf_type *t;
3549 struct btf *kernel_btf;
42ba1308 3550 int ret;
db559117 3551 s32 id;
42ba1308 3552
db559117
KKD
3553 /* Find type in map BTF, and use it to look up the matching type
3554 * in vmlinux or module BTFs, by name and kind.
3555 */
3556 t = btf_type_by_id(btf, info->kptr.type_id);
3557 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3558 &kernel_btf);
3559 if (id < 0)
3560 return id;
3561
3562 /* Find and stash the function pointer for the destruction function that
3563 * needs to be eventually invoked from the map free path.
3564 */
3565 if (info->type == BPF_KPTR_REF) {
3566 const struct btf_type *dtor_func;
3567 const char *dtor_func_name;
3568 unsigned long addr;
3569 s32 dtor_btf_id;
3570
3571 /* This call also serves as a whitelist of allowed objects that
3572 * can be used as a referenced pointer and be stored in a map at
3573 * the same time.
3574 */
3575 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3576 if (dtor_btf_id < 0) {
3577 ret = dtor_btf_id;
3578 goto end_btf;
3579 }
68134668 3580
db559117
KKD
3581 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3582 if (!dtor_func) {
3583 ret = -ENOENT;
3584 goto end_btf;
3585 }
42ba1308 3586
db559117
KKD
3587 if (btf_is_module(kernel_btf)) {
3588 mod = btf_try_get_module(kernel_btf);
3589 if (!mod) {
3590 ret = -ENXIO;
3591 goto end_btf;
3592 }
3593 }
3594
3595 /* We already verified dtor_func to be btf_type_is_func
3596 * in register_btf_id_dtor_kfuncs.
3597 */
3598 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3599 addr = kallsyms_lookup_name(dtor_func_name);
3600 if (!addr) {
3601 ret = -EINVAL;
3602 goto end_mod;
3603 }
3604 field->kptr.dtor = (void *)addr;
3605 }
3606
3607 field->kptr.btf_id = id;
3608 field->kptr.btf = kernel_btf;
3609 field->kptr.module = mod;
3610 return 0;
3611end_mod:
3612 module_put(mod);
3613end_btf:
3614 btf_put(kernel_btf);
3615 return ret;
68134668
AS
3616}
3617
f0c5941f
KKD
3618static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3619 struct btf_field_info *info)
3620{
3621 const struct btf_type *t, *n = NULL;
3622 const struct btf_member *member;
3623 u32 offset;
3624 int i;
3625
30465003 3626 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
f0c5941f
KKD
3627 /* We've already checked that value_btf_id is a struct type. We
3628 * just need to figure out the offset of the list_node, and
3629 * verify its type.
3630 */
3631 for_each_member(i, t, member) {
30465003
DM
3632 if (strcmp(info->graph_root.node_name,
3633 __btf_name_by_offset(btf, member->name_off)))
f0c5941f
KKD
3634 continue;
3635 /* Invalid BTF, two members with same name */
3636 if (n)
3637 return -EINVAL;
3638 n = btf_type_by_id(btf, member->type);
3639 if (!__btf_type_is_struct(n))
3640 return -EINVAL;
3641 if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off)))
3642 return -EINVAL;
3643 offset = __btf_member_bit_offset(n, member);
3644 if (offset % 8)
3645 return -EINVAL;
3646 offset /= 8;
3647 if (offset % __alignof__(struct bpf_list_node))
3648 return -EINVAL;
3649
30465003
DM
3650 field->graph_root.btf = (struct btf *)btf;
3651 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3652 field->graph_root.node_offset = offset;
f0c5941f
KKD
3653 }
3654 if (!n)
3655 return -ENOENT;
3656 return 0;
3657}
3658
db559117
KKD
3659struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3660 u32 field_mask, u32 value_size)
61df10c7 3661{
aa3496ac 3662 struct btf_field_info info_arr[BTF_FIELDS_MAX];
aa3496ac 3663 struct btf_record *rec;
f0c5941f 3664 u32 next_off = 0;
aa3496ac 3665 int ret, i, cnt;
61df10c7 3666
db559117 3667 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
61df10c7
KKD
3668 if (ret < 0)
3669 return ERR_PTR(ret);
3670 if (!ret)
3671 return NULL;
3672
aa3496ac 3673 cnt = ret;
c22dfdd2
KKD
3674 /* This needs to be kzalloc to zero out padding and unused fields, see
3675 * comment in btf_record_equal.
3676 */
aa3496ac
KKD
3677 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3678 if (!rec)
61df10c7 3679 return ERR_PTR(-ENOMEM);
61df10c7 3680
db559117
KKD
3681 rec->spin_lock_off = -EINVAL;
3682 rec->timer_off = -EINVAL;
3683 for (i = 0; i < cnt; i++) {
3684 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
3685 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3686 ret = -EFAULT;
61df10c7
KKD
3687 goto end;
3688 }
f0c5941f
KKD
3689 if (info_arr[i].off < next_off) {
3690 ret = -EEXIST;
3691 goto end;
3692 }
3693 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
61df10c7 3694
aa3496ac
KKD
3695 rec->field_mask |= info_arr[i].type;
3696 rec->fields[i].offset = info_arr[i].off;
3697 rec->fields[i].type = info_arr[i].type;
db559117
KKD
3698
3699 switch (info_arr[i].type) {
3700 case BPF_SPIN_LOCK:
3701 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3702 /* Cache offset for faster lookup at runtime */
3703 rec->spin_lock_off = rec->fields[i].offset;
3704 break;
3705 case BPF_TIMER:
3706 WARN_ON_ONCE(rec->timer_off >= 0);
3707 /* Cache offset for faster lookup at runtime */
3708 rec->timer_off = rec->fields[i].offset;
3709 break;
3710 case BPF_KPTR_UNREF:
3711 case BPF_KPTR_REF:
3712 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3713 if (ret < 0)
3714 goto end;
3715 break;
f0c5941f
KKD
3716 case BPF_LIST_HEAD:
3717 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3718 if (ret < 0)
3719 goto end;
3720 break;
8ffa5cc1
KKD
3721 case BPF_LIST_NODE:
3722 break;
db559117
KKD
3723 default:
3724 ret = -EFAULT;
3725 goto end;
3726 }
aa3496ac 3727 rec->cnt++;
61df10c7 3728 }
f0c5941f
KKD
3729
3730 /* bpf_list_head requires bpf_spin_lock */
3731 if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) {
3732 ret = -EINVAL;
3733 goto end;
3734 }
3735
aa3496ac 3736 return rec;
61df10c7 3737end:
aa3496ac 3738 btf_record_free(rec);
61df10c7
KKD
3739 return ERR_PTR(ret);
3740}
3741
865ce09a
KKD
3742int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3743{
3744 int i;
3745
3746 /* There are two owning types, kptr_ref and bpf_list_head. The former
3747 * only supports storing kernel types, which can never store references
3748 * to program allocated local types, atleast not yet. Hence we only need
3749 * to ensure that bpf_list_head ownership does not form cycles.
3750 */
3751 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD))
3752 return 0;
3753 for (i = 0; i < rec->cnt; i++) {
3754 struct btf_struct_meta *meta;
3755 u32 btf_id;
3756
3757 if (!(rec->fields[i].type & BPF_LIST_HEAD))
3758 continue;
30465003 3759 btf_id = rec->fields[i].graph_root.value_btf_id;
865ce09a
KKD
3760 meta = btf_find_struct_meta(btf, btf_id);
3761 if (!meta)
3762 return -EFAULT;
30465003 3763 rec->fields[i].graph_root.value_rec = meta->record;
865ce09a
KKD
3764
3765 if (!(rec->field_mask & BPF_LIST_NODE))
3766 continue;
3767
3768 /* We need to ensure ownership acyclicity among all types. The
3769 * proper way to do it would be to topologically sort all BTF
3770 * IDs based on the ownership edges, since there can be multiple
3771 * bpf_list_head in a type. Instead, we use the following
3772 * reasoning:
3773 *
3774 * - A type can only be owned by another type in user BTF if it
3775 * has a bpf_list_node.
3776 * - A type can only _own_ another type in user BTF if it has a
3777 * bpf_list_head.
3778 *
3779 * We ensure that if a type has both bpf_list_head and
3780 * bpf_list_node, its element types cannot be owning types.
3781 *
3782 * To ensure acyclicity:
3783 *
3784 * When A only has bpf_list_head, ownership chain can be:
3785 * A -> B -> C
3786 * Where:
3787 * - B has both bpf_list_head and bpf_list_node.
3788 * - C only has bpf_list_node.
3789 *
3790 * When A has both bpf_list_head and bpf_list_node, some other
3791 * type already owns it in the BTF domain, hence it can not own
3792 * another owning type through any of the bpf_list_head edges.
3793 * A -> B
3794 * Where:
3795 * - B only has bpf_list_node.
3796 */
3797 if (meta->record->field_mask & BPF_LIST_HEAD)
3798 return -ELOOP;
3799 }
3800 return 0;
3801}
3802
f71b2f64
KKD
3803static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3804{
3805 const u32 a = *(const u32 *)_a;
3806 const u32 b = *(const u32 *)_b;
3807
3808 if (a < b)
3809 return -1;
3810 else if (a > b)
3811 return 1;
3812 return 0;
3813}
3814
3815static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3816{
3817 struct btf_field_offs *foffs = (void *)priv;
3818 u32 *off_base = foffs->field_off;
3819 u32 *a = _a, *b = _b;
3820 u8 *sz_a, *sz_b;
3821
3822 sz_a = foffs->field_sz + (a - off_base);
3823 sz_b = foffs->field_sz + (b - off_base);
3824
3825 swap(*a, *b);
3826 swap(*sz_a, *sz_b);
3827}
3828
3829struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3830{
3831 struct btf_field_offs *foffs;
3832 u32 i, *off;
3833 u8 *sz;
3834
3835 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
2d577252 3836 if (IS_ERR_OR_NULL(rec))
f71b2f64
KKD
3837 return NULL;
3838
3839 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3840 if (!foffs)
3841 return ERR_PTR(-ENOMEM);
3842
3843 off = foffs->field_off;
3844 sz = foffs->field_sz;
3845 for (i = 0; i < rec->cnt; i++) {
3846 off[i] = rec->fields[i].offset;
3847 sz[i] = btf_field_type_size(rec->fields[i].type);
3848 }
3849 foffs->cnt = rec->cnt;
3850
3851 if (foffs->cnt == 1)
3852 return foffs;
3853 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3854 btf_field_offs_cmp, btf_field_offs_swap, foffs);
3855 return foffs;
3856}
3857
31d0bc81
AM
3858static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3859 u32 type_id, void *data, u8 bits_offset,
3860 struct btf_show *show)
b00b8dae 3861{
b00b8dae 3862 const struct btf_member *member;
31d0bc81 3863 void *safe_data;
b00b8dae
MKL
3864 u32 i;
3865
31d0bc81
AM
3866 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3867 if (!safe_data)
3868 return;
3869
b00b8dae
MKL
3870 for_each_member(i, t, member) {
3871 const struct btf_type *member_type = btf_type_by_id(btf,
3872 member->type);
b00b8dae 3873 const struct btf_kind_operations *ops;
9d5f9f70
YS
3874 u32 member_offset, bitfield_size;
3875 u32 bytes_offset;
3876 u8 bits8_offset;
b00b8dae 3877
31d0bc81 3878 btf_show_start_member(show, member);
b00b8dae 3879
8293eb99
AS
3880 member_offset = __btf_member_bit_offset(t, member);
3881 bitfield_size = __btf_member_bitfield_size(t, member);
17e3ac81
YS
3882 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3883 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3884 if (bitfield_size) {
31d0bc81
AM
3885 safe_data = btf_show_start_type(show, member_type,
3886 member->type,
3887 data + bytes_offset);
3888 if (safe_data)
3889 btf_bitfield_show(safe_data,
3890 bits8_offset,
3891 bitfield_size, show);
3892 btf_show_end_type(show);
9d5f9f70 3893 } else {
9d5f9f70 3894 ops = btf_type_ops(member_type);
31d0bc81
AM
3895 ops->show(btf, member_type, member->type,
3896 data + bytes_offset, bits8_offset, show);
9d5f9f70 3897 }
31d0bc81
AM
3898
3899 btf_show_end_member(show);
b00b8dae 3900 }
31d0bc81
AM
3901
3902 btf_show_end_struct_type(show);
3903}
3904
3905static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3906 u32 type_id, void *data, u8 bits_offset,
3907 struct btf_show *show)
3908{
3909 const struct btf_member *m = show->state.member;
3910
3911 /*
3912 * First check if any members would be shown (are non-zero).
3913 * See comments above "struct btf_show" definition for more
3914 * details on how this works at a high-level.
3915 */
3916 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3917 if (!show->state.depth_check) {
3918 show->state.depth_check = show->state.depth + 1;
3919 show->state.depth_to_show = 0;
3920 }
3921 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3922 /* Restore saved member data here */
3923 show->state.member = m;
3924 if (show->state.depth_check != show->state.depth + 1)
3925 return;
3926 show->state.depth_check = 0;
3927
3928 if (show->state.depth_to_show <= show->state.depth)
3929 return;
3930 /*
3931 * Reaching here indicates we have recursed and found
3932 * non-zero child values.
3933 */
3934 }
3935
3936 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3937}
3938
69b693f0
MKL
3939static struct btf_kind_operations struct_ops = {
3940 .check_meta = btf_struct_check_meta,
eb3f595d 3941 .resolve = btf_struct_resolve,
179cde8c 3942 .check_member = btf_struct_check_member,
9d5f9f70 3943 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3944 .log_details = btf_struct_log,
31d0bc81 3945 .show = btf_struct_show,
69b693f0
MKL
3946};
3947
179cde8c
MKL
3948static int btf_enum_check_member(struct btf_verifier_env *env,
3949 const struct btf_type *struct_type,
3950 const struct btf_member *member,
3951 const struct btf_type *member_type)
3952{
3953 u32 struct_bits_off = member->offset;
3954 u32 struct_size, bytes_offset;
3955
3956 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3957 btf_verifier_log_member(env, struct_type, member,
3958 "Member is not byte aligned");
3959 return -EINVAL;
3960 }
3961
3962 struct_size = struct_type->size;
3963 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3964 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3965 btf_verifier_log_member(env, struct_type, member,
3966 "Member exceeds struct_size");
3967 return -EINVAL;
3968 }
3969
3970 return 0;
3971}
3972
9d5f9f70
YS
3973static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3974 const struct btf_type *struct_type,
3975 const struct btf_member *member,
3976 const struct btf_type *member_type)
3977{
3978 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3979 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3980
3981 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3982 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3983 if (!nr_bits) {
3984 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3985 btf_verifier_log_member(env, struct_type, member,
3986 "Member is not byte aligned");
e3439af4 3987 return -EINVAL;
9d5f9f70
YS
3988 }
3989
3990 nr_bits = int_bitsize;
3991 } else if (nr_bits > int_bitsize) {
3992 btf_verifier_log_member(env, struct_type, member,
3993 "Invalid member bitfield_size");
3994 return -EINVAL;
3995 }
3996
3997 struct_size = struct_type->size;
3998 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3999 if (struct_size < bytes_end) {
4000 btf_verifier_log_member(env, struct_type, member,
4001 "Member exceeds struct_size");
4002 return -EINVAL;
4003 }
4004
4005 return 0;
4006}
4007
69b693f0
MKL
4008static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4009 const struct btf_type *t,
4010 u32 meta_left)
4011{
4012 const struct btf_enum *enums = btf_type_enum(t);
4013 struct btf *btf = env->btf;
6089fb32 4014 const char *fmt_str;
69b693f0
MKL
4015 u16 i, nr_enums;
4016 u32 meta_needed;
4017
4018 nr_enums = btf_type_vlen(t);
4019 meta_needed = nr_enums * sizeof(*enums);
4020
4021 if (meta_left < meta_needed) {
4022 btf_verifier_log_basic(env, t,
4023 "meta_left:%u meta_needed:%u",
4024 meta_left, meta_needed);
4025 return -EINVAL;
4026 }
4027
9eea9849
AS
4028 if (t->size > 8 || !is_power_of_2(t->size)) {
4029 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
4030 return -EINVAL;
4031 }
4032
eb04bbb6
YS
4033 /* enum type either no name or a valid one */
4034 if (t->name_off &&
4035 !btf_name_valid_identifier(env->btf, t->name_off)) {
4036 btf_verifier_log_type(env, t, "Invalid name");
4037 return -EINVAL;
4038 }
4039
69b693f0
MKL
4040 btf_verifier_log_type(env, t, NULL);
4041
4042 for (i = 0; i < nr_enums; i++) {
fbcf93eb 4043 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 4044 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 4045 enums[i].name_off);
69b693f0
MKL
4046 return -EINVAL;
4047 }
4048
eb04bbb6
YS
4049 /* enum member must have a valid name */
4050 if (!enums[i].name_off ||
4051 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4052 btf_verifier_log_type(env, t, "Invalid name");
4053 return -EINVAL;
4054 }
4055
8580ac94
AS
4056 if (env->log.level == BPF_LOG_KERNEL)
4057 continue;
6089fb32
YS
4058 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4059 btf_verifier_log(env, fmt_str,
23127b33 4060 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
4061 enums[i].val);
4062 }
4063
4064 return meta_needed;
4065}
4066
4067static void btf_enum_log(struct btf_verifier_env *env,
4068 const struct btf_type *t)
4069{
4070 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4071}
4072
31d0bc81
AM
4073static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4074 u32 type_id, void *data, u8 bits_offset,
4075 struct btf_show *show)
b00b8dae
MKL
4076{
4077 const struct btf_enum *enums = btf_type_enum(t);
4078 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
4079 void *safe_data;
4080 int v;
4081
4082 safe_data = btf_show_start_type(show, t, type_id, data);
4083 if (!safe_data)
4084 return;
4085
4086 v = *(int *)safe_data;
b00b8dae
MKL
4087
4088 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
4089 if (v != enums[i].val)
4090 continue;
4091
4092 btf_show_type_value(show, "%s",
4093 __btf_name_by_offset(btf,
4094 enums[i].name_off));
4095
4096 btf_show_end_type(show);
4097 return;
b00b8dae
MKL
4098 }
4099
6089fb32
YS
4100 if (btf_type_kflag(t))
4101 btf_show_type_value(show, "%d", v);
4102 else
4103 btf_show_type_value(show, "%u", v);
31d0bc81 4104 btf_show_end_type(show);
b00b8dae
MKL
4105}
4106
69b693f0
MKL
4107static struct btf_kind_operations enum_ops = {
4108 .check_meta = btf_enum_check_meta,
eb3f595d 4109 .resolve = btf_df_resolve,
179cde8c 4110 .check_member = btf_enum_check_member,
9d5f9f70 4111 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 4112 .log_details = btf_enum_log,
31d0bc81 4113 .show = btf_enum_show,
69b693f0
MKL
4114};
4115
6089fb32
YS
4116static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4117 const struct btf_type *t,
4118 u32 meta_left)
4119{
4120 const struct btf_enum64 *enums = btf_type_enum64(t);
4121 struct btf *btf = env->btf;
4122 const char *fmt_str;
4123 u16 i, nr_enums;
4124 u32 meta_needed;
4125
4126 nr_enums = btf_type_vlen(t);
4127 meta_needed = nr_enums * sizeof(*enums);
4128
4129 if (meta_left < meta_needed) {
4130 btf_verifier_log_basic(env, t,
4131 "meta_left:%u meta_needed:%u",
4132 meta_left, meta_needed);
4133 return -EINVAL;
4134 }
4135
4136 if (t->size > 8 || !is_power_of_2(t->size)) {
4137 btf_verifier_log_type(env, t, "Unexpected size");
4138 return -EINVAL;
4139 }
4140
4141 /* enum type either no name or a valid one */
4142 if (t->name_off &&
4143 !btf_name_valid_identifier(env->btf, t->name_off)) {
4144 btf_verifier_log_type(env, t, "Invalid name");
4145 return -EINVAL;
4146 }
4147
4148 btf_verifier_log_type(env, t, NULL);
4149
4150 for (i = 0; i < nr_enums; i++) {
4151 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4152 btf_verifier_log(env, "\tInvalid name_offset:%u",
4153 enums[i].name_off);
4154 return -EINVAL;
4155 }
4156
4157 /* enum member must have a valid name */
4158 if (!enums[i].name_off ||
4159 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4160 btf_verifier_log_type(env, t, "Invalid name");
4161 return -EINVAL;
4162 }
4163
4164 if (env->log.level == BPF_LOG_KERNEL)
4165 continue;
4166
4167 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4168 btf_verifier_log(env, fmt_str,
4169 __btf_name_by_offset(btf, enums[i].name_off),
4170 btf_enum64_value(enums + i));
4171 }
4172
4173 return meta_needed;
4174}
4175
4176static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4177 u32 type_id, void *data, u8 bits_offset,
4178 struct btf_show *show)
4179{
4180 const struct btf_enum64 *enums = btf_type_enum64(t);
4181 u32 i, nr_enums = btf_type_vlen(t);
4182 void *safe_data;
4183 s64 v;
4184
4185 safe_data = btf_show_start_type(show, t, type_id, data);
4186 if (!safe_data)
4187 return;
4188
4189 v = *(u64 *)safe_data;
4190
4191 for (i = 0; i < nr_enums; i++) {
4192 if (v != btf_enum64_value(enums + i))
4193 continue;
4194
4195 btf_show_type_value(show, "%s",
4196 __btf_name_by_offset(btf,
4197 enums[i].name_off));
4198
4199 btf_show_end_type(show);
4200 return;
4201 }
4202
4203 if (btf_type_kflag(t))
4204 btf_show_type_value(show, "%lld", v);
4205 else
4206 btf_show_type_value(show, "%llu", v);
4207 btf_show_end_type(show);
4208}
4209
4210static struct btf_kind_operations enum64_ops = {
4211 .check_meta = btf_enum64_check_meta,
4212 .resolve = btf_df_resolve,
4213 .check_member = btf_enum_check_member,
4214 .check_kflag_member = btf_enum_check_kflag_member,
4215 .log_details = btf_enum_log,
4216 .show = btf_enum64_show,
4217};
4218
2667a262
MKL
4219static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4220 const struct btf_type *t,
4221 u32 meta_left)
4222{
4223 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4224
4225 if (meta_left < meta_needed) {
4226 btf_verifier_log_basic(env, t,
4227 "meta_left:%u meta_needed:%u",
4228 meta_left, meta_needed);
4229 return -EINVAL;
4230 }
4231
4232 if (t->name_off) {
4233 btf_verifier_log_type(env, t, "Invalid name");
4234 return -EINVAL;
4235 }
4236
9d5f9f70
YS
4237 if (btf_type_kflag(t)) {
4238 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4239 return -EINVAL;
4240 }
4241
2667a262
MKL
4242 btf_verifier_log_type(env, t, NULL);
4243
4244 return meta_needed;
4245}
4246
4247static void btf_func_proto_log(struct btf_verifier_env *env,
4248 const struct btf_type *t)
4249{
4250 const struct btf_param *args = (const struct btf_param *)(t + 1);
4251 u16 nr_args = btf_type_vlen(t), i;
4252
4253 btf_verifier_log(env, "return=%u args=(", t->type);
4254 if (!nr_args) {
4255 btf_verifier_log(env, "void");
4256 goto done;
4257 }
4258
4259 if (nr_args == 1 && !args[0].type) {
4260 /* Only one vararg */
4261 btf_verifier_log(env, "vararg");
4262 goto done;
4263 }
4264
4265 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
4266 __btf_name_by_offset(env->btf,
4267 args[0].name_off));
2667a262
MKL
4268 for (i = 1; i < nr_args - 1; i++)
4269 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
4270 __btf_name_by_offset(env->btf,
4271 args[i].name_off));
2667a262
MKL
4272
4273 if (nr_args > 1) {
4274 const struct btf_param *last_arg = &args[nr_args - 1];
4275
4276 if (last_arg->type)
4277 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
4278 __btf_name_by_offset(env->btf,
4279 last_arg->name_off));
2667a262
MKL
4280 else
4281 btf_verifier_log(env, ", vararg");
4282 }
4283
4284done:
4285 btf_verifier_log(env, ")");
4286}
4287
4288static struct btf_kind_operations func_proto_ops = {
4289 .check_meta = btf_func_proto_check_meta,
4290 .resolve = btf_df_resolve,
4291 /*
4292 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4293 * a struct's member.
4294 *
8fb33b60 4295 * It should be a function pointer instead.
2667a262
MKL
4296 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4297 *
4298 * Hence, there is no btf_func_check_member().
4299 */
4300 .check_member = btf_df_check_member,
9d5f9f70 4301 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4302 .log_details = btf_func_proto_log,
31d0bc81 4303 .show = btf_df_show,
2667a262
MKL
4304};
4305
4306static s32 btf_func_check_meta(struct btf_verifier_env *env,
4307 const struct btf_type *t,
4308 u32 meta_left)
4309{
4310 if (!t->name_off ||
4311 !btf_name_valid_identifier(env->btf, t->name_off)) {
4312 btf_verifier_log_type(env, t, "Invalid name");
4313 return -EINVAL;
4314 }
4315
51c39bb1
AS
4316 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4317 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
4318 return -EINVAL;
4319 }
4320
9d5f9f70
YS
4321 if (btf_type_kflag(t)) {
4322 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4323 return -EINVAL;
4324 }
4325
2667a262
MKL
4326 btf_verifier_log_type(env, t, NULL);
4327
4328 return 0;
4329}
4330
d7e7b42f
YS
4331static int btf_func_resolve(struct btf_verifier_env *env,
4332 const struct resolve_vertex *v)
4333{
4334 const struct btf_type *t = v->t;
4335 u32 next_type_id = t->type;
4336 int err;
4337
4338 err = btf_func_check(env, t);
4339 if (err)
4340 return err;
4341
4342 env_stack_pop_resolved(env, next_type_id, 0);
4343 return 0;
4344}
4345
2667a262
MKL
4346static struct btf_kind_operations func_ops = {
4347 .check_meta = btf_func_check_meta,
d7e7b42f 4348 .resolve = btf_func_resolve,
2667a262 4349 .check_member = btf_df_check_member,
9d5f9f70 4350 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4351 .log_details = btf_ref_type_log,
31d0bc81 4352 .show = btf_df_show,
2667a262
MKL
4353};
4354
1dc92851
DB
4355static s32 btf_var_check_meta(struct btf_verifier_env *env,
4356 const struct btf_type *t,
4357 u32 meta_left)
4358{
4359 const struct btf_var *var;
4360 u32 meta_needed = sizeof(*var);
4361
4362 if (meta_left < meta_needed) {
4363 btf_verifier_log_basic(env, t,
4364 "meta_left:%u meta_needed:%u",
4365 meta_left, meta_needed);
4366 return -EINVAL;
4367 }
4368
4369 if (btf_type_vlen(t)) {
4370 btf_verifier_log_type(env, t, "vlen != 0");
4371 return -EINVAL;
4372 }
4373
4374 if (btf_type_kflag(t)) {
4375 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4376 return -EINVAL;
4377 }
4378
4379 if (!t->name_off ||
4380 !__btf_name_valid(env->btf, t->name_off, true)) {
4381 btf_verifier_log_type(env, t, "Invalid name");
4382 return -EINVAL;
4383 }
4384
4385 /* A var cannot be in type void */
4386 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4387 btf_verifier_log_type(env, t, "Invalid type_id");
4388 return -EINVAL;
4389 }
4390
4391 var = btf_type_var(t);
4392 if (var->linkage != BTF_VAR_STATIC &&
4393 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4394 btf_verifier_log_type(env, t, "Linkage not supported");
4395 return -EINVAL;
4396 }
4397
4398 btf_verifier_log_type(env, t, NULL);
4399
4400 return meta_needed;
4401}
4402
4403static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4404{
4405 const struct btf_var *var = btf_type_var(t);
4406
4407 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4408}
4409
4410static const struct btf_kind_operations var_ops = {
4411 .check_meta = btf_var_check_meta,
4412 .resolve = btf_var_resolve,
4413 .check_member = btf_df_check_member,
4414 .check_kflag_member = btf_df_check_kflag_member,
4415 .log_details = btf_var_log,
31d0bc81 4416 .show = btf_var_show,
1dc92851
DB
4417};
4418
4419static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4420 const struct btf_type *t,
4421 u32 meta_left)
4422{
4423 const struct btf_var_secinfo *vsi;
4424 u64 last_vsi_end_off = 0, sum = 0;
4425 u32 i, meta_needed;
4426
4427 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4428 if (meta_left < meta_needed) {
4429 btf_verifier_log_basic(env, t,
4430 "meta_left:%u meta_needed:%u",
4431 meta_left, meta_needed);
4432 return -EINVAL;
4433 }
4434
1dc92851
DB
4435 if (!t->size) {
4436 btf_verifier_log_type(env, t, "size == 0");
4437 return -EINVAL;
4438 }
4439
4440 if (btf_type_kflag(t)) {
4441 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4442 return -EINVAL;
4443 }
4444
4445 if (!t->name_off ||
4446 !btf_name_valid_section(env->btf, t->name_off)) {
4447 btf_verifier_log_type(env, t, "Invalid name");
4448 return -EINVAL;
4449 }
4450
4451 btf_verifier_log_type(env, t, NULL);
4452
4453 for_each_vsi(i, t, vsi) {
4454 /* A var cannot be in type void */
4455 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4456 btf_verifier_log_vsi(env, t, vsi,
4457 "Invalid type_id");
4458 return -EINVAL;
4459 }
4460
4461 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4462 btf_verifier_log_vsi(env, t, vsi,
4463 "Invalid offset");
4464 return -EINVAL;
4465 }
4466
4467 if (!vsi->size || vsi->size > t->size) {
4468 btf_verifier_log_vsi(env, t, vsi,
4469 "Invalid size");
4470 return -EINVAL;
4471 }
4472
4473 last_vsi_end_off = vsi->offset + vsi->size;
4474 if (last_vsi_end_off > t->size) {
4475 btf_verifier_log_vsi(env, t, vsi,
4476 "Invalid offset+size");
4477 return -EINVAL;
4478 }
4479
4480 btf_verifier_log_vsi(env, t, vsi, NULL);
4481 sum += vsi->size;
4482 }
4483
4484 if (t->size < sum) {
4485 btf_verifier_log_type(env, t, "Invalid btf_info size");
4486 return -EINVAL;
4487 }
4488
4489 return meta_needed;
4490}
4491
4492static int btf_datasec_resolve(struct btf_verifier_env *env,
4493 const struct resolve_vertex *v)
4494{
4495 const struct btf_var_secinfo *vsi;
4496 struct btf *btf = env->btf;
4497 u16 i;
4498
4499 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4500 u32 var_type_id = vsi->type, type_id, type_size = 0;
4501 const struct btf_type *var_type = btf_type_by_id(env->btf,
4502 var_type_id);
4503 if (!var_type || !btf_type_is_var(var_type)) {
4504 btf_verifier_log_vsi(env, v->t, vsi,
4505 "Not a VAR kind member");
4506 return -EINVAL;
4507 }
4508
4509 if (!env_type_is_resolve_sink(env, var_type) &&
4510 !env_type_is_resolved(env, var_type_id)) {
4511 env_stack_set_next_member(env, i + 1);
4512 return env_stack_push(env, var_type, var_type_id);
4513 }
4514
4515 type_id = var_type->type;
4516 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4517 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4518 return -EINVAL;
4519 }
4520
4521 if (vsi->size < type_size) {
4522 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4523 return -EINVAL;
4524 }
4525 }
4526
4527 env_stack_pop_resolved(env, 0, 0);
4528 return 0;
4529}
4530
4531static void btf_datasec_log(struct btf_verifier_env *env,
4532 const struct btf_type *t)
4533{
4534 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4535}
4536
31d0bc81
AM
4537static void btf_datasec_show(const struct btf *btf,
4538 const struct btf_type *t, u32 type_id,
4539 void *data, u8 bits_offset,
4540 struct btf_show *show)
1dc92851
DB
4541{
4542 const struct btf_var_secinfo *vsi;
4543 const struct btf_type *var;
4544 u32 i;
4545
31d0bc81
AM
4546 if (!btf_show_start_type(show, t, type_id, data))
4547 return;
4548
4549 btf_show_type_value(show, "section (\"%s\") = {",
4550 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
4551 for_each_vsi(i, t, vsi) {
4552 var = btf_type_by_id(btf, vsi->type);
4553 if (i)
31d0bc81
AM
4554 btf_show(show, ",");
4555 btf_type_ops(var)->show(btf, var, vsi->type,
4556 data + vsi->offset, bits_offset, show);
1dc92851 4557 }
31d0bc81 4558 btf_show_end_type(show);
1dc92851
DB
4559}
4560
4561static const struct btf_kind_operations datasec_ops = {
4562 .check_meta = btf_datasec_check_meta,
4563 .resolve = btf_datasec_resolve,
4564 .check_member = btf_df_check_member,
4565 .check_kflag_member = btf_df_check_kflag_member,
4566 .log_details = btf_datasec_log,
31d0bc81 4567 .show = btf_datasec_show,
1dc92851
DB
4568};
4569
b1828f0b
IL
4570static s32 btf_float_check_meta(struct btf_verifier_env *env,
4571 const struct btf_type *t,
4572 u32 meta_left)
4573{
4574 if (btf_type_vlen(t)) {
4575 btf_verifier_log_type(env, t, "vlen != 0");
4576 return -EINVAL;
4577 }
4578
4579 if (btf_type_kflag(t)) {
4580 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4581 return -EINVAL;
4582 }
4583
4584 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4585 t->size != 16) {
4586 btf_verifier_log_type(env, t, "Invalid type_size");
4587 return -EINVAL;
4588 }
4589
4590 btf_verifier_log_type(env, t, NULL);
4591
4592 return 0;
4593}
4594
4595static int btf_float_check_member(struct btf_verifier_env *env,
4596 const struct btf_type *struct_type,
4597 const struct btf_member *member,
4598 const struct btf_type *member_type)
4599{
4600 u64 start_offset_bytes;
4601 u64 end_offset_bytes;
4602 u64 misalign_bits;
4603 u64 align_bytes;
4604 u64 align_bits;
4605
4606 /* Different architectures have different alignment requirements, so
4607 * here we check only for the reasonable minimum. This way we ensure
4608 * that types after CO-RE can pass the kernel BTF verifier.
4609 */
4610 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4611 align_bits = align_bytes * BITS_PER_BYTE;
4612 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4613 if (misalign_bits) {
4614 btf_verifier_log_member(env, struct_type, member,
4615 "Member is not properly aligned");
4616 return -EINVAL;
4617 }
4618
4619 start_offset_bytes = member->offset / BITS_PER_BYTE;
4620 end_offset_bytes = start_offset_bytes + member_type->size;
4621 if (end_offset_bytes > struct_type->size) {
4622 btf_verifier_log_member(env, struct_type, member,
4623 "Member exceeds struct_size");
4624 return -EINVAL;
4625 }
4626
4627 return 0;
4628}
4629
4630static void btf_float_log(struct btf_verifier_env *env,
4631 const struct btf_type *t)
4632{
4633 btf_verifier_log(env, "size=%u", t->size);
4634}
4635
4636static const struct btf_kind_operations float_ops = {
4637 .check_meta = btf_float_check_meta,
4638 .resolve = btf_df_resolve,
4639 .check_member = btf_float_check_member,
4640 .check_kflag_member = btf_generic_check_kflag_member,
4641 .log_details = btf_float_log,
4642 .show = btf_df_show,
4643};
4644
223f903e 4645static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
b5ea834d
YS
4646 const struct btf_type *t,
4647 u32 meta_left)
4648{
223f903e 4649 const struct btf_decl_tag *tag;
b5ea834d
YS
4650 u32 meta_needed = sizeof(*tag);
4651 s32 component_idx;
4652 const char *value;
4653
4654 if (meta_left < meta_needed) {
4655 btf_verifier_log_basic(env, t,
4656 "meta_left:%u meta_needed:%u",
4657 meta_left, meta_needed);
4658 return -EINVAL;
4659 }
4660
4661 value = btf_name_by_offset(env->btf, t->name_off);
4662 if (!value || !value[0]) {
4663 btf_verifier_log_type(env, t, "Invalid value");
4664 return -EINVAL;
4665 }
4666
4667 if (btf_type_vlen(t)) {
4668 btf_verifier_log_type(env, t, "vlen != 0");
4669 return -EINVAL;
4670 }
4671
4672 if (btf_type_kflag(t)) {
4673 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4674 return -EINVAL;
4675 }
4676
223f903e 4677 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d
YS
4678 if (component_idx < -1) {
4679 btf_verifier_log_type(env, t, "Invalid component_idx");
4680 return -EINVAL;
4681 }
4682
4683 btf_verifier_log_type(env, t, NULL);
4684
4685 return meta_needed;
4686}
4687
223f903e 4688static int btf_decl_tag_resolve(struct btf_verifier_env *env,
b5ea834d
YS
4689 const struct resolve_vertex *v)
4690{
4691 const struct btf_type *next_type;
4692 const struct btf_type *t = v->t;
4693 u32 next_type_id = t->type;
4694 struct btf *btf = env->btf;
4695 s32 component_idx;
4696 u32 vlen;
4697
4698 next_type = btf_type_by_id(btf, next_type_id);
223f903e 4699 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
b5ea834d
YS
4700 btf_verifier_log_type(env, v->t, "Invalid type_id");
4701 return -EINVAL;
4702 }
4703
4704 if (!env_type_is_resolve_sink(env, next_type) &&
4705 !env_type_is_resolved(env, next_type_id))
4706 return env_stack_push(env, next_type, next_type_id);
4707
223f903e 4708 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d 4709 if (component_idx != -1) {
bd16dee6 4710 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
b5ea834d
YS
4711 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4712 return -EINVAL;
4713 }
4714
4715 if (btf_type_is_struct(next_type)) {
4716 vlen = btf_type_vlen(next_type);
4717 } else {
4718 /* next_type should be a function */
4719 next_type = btf_type_by_id(btf, next_type->type);
4720 vlen = btf_type_vlen(next_type);
4721 }
4722
4723 if ((u32)component_idx >= vlen) {
4724 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4725 return -EINVAL;
4726 }
4727 }
4728
4729 env_stack_pop_resolved(env, next_type_id, 0);
4730
4731 return 0;
4732}
4733
223f903e 4734static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
b5ea834d
YS
4735{
4736 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
223f903e 4737 btf_type_decl_tag(t)->component_idx);
b5ea834d
YS
4738}
4739
223f903e
YS
4740static const struct btf_kind_operations decl_tag_ops = {
4741 .check_meta = btf_decl_tag_check_meta,
4742 .resolve = btf_decl_tag_resolve,
b5ea834d
YS
4743 .check_member = btf_df_check_member,
4744 .check_kflag_member = btf_df_check_kflag_member,
223f903e 4745 .log_details = btf_decl_tag_log,
b5ea834d
YS
4746 .show = btf_df_show,
4747};
4748
2667a262
MKL
4749static int btf_func_proto_check(struct btf_verifier_env *env,
4750 const struct btf_type *t)
4751{
4752 const struct btf_type *ret_type;
4753 const struct btf_param *args;
4754 const struct btf *btf;
4755 u16 nr_args, i;
4756 int err;
4757
4758 btf = env->btf;
4759 args = (const struct btf_param *)(t + 1);
4760 nr_args = btf_type_vlen(t);
4761
4762 /* Check func return type which could be "void" (t->type == 0) */
4763 if (t->type) {
4764 u32 ret_type_id = t->type;
4765
4766 ret_type = btf_type_by_id(btf, ret_type_id);
4767 if (!ret_type) {
4768 btf_verifier_log_type(env, t, "Invalid return type");
4769 return -EINVAL;
4770 }
4771
ea68376c
SF
4772 if (btf_type_is_resolve_source_only(ret_type)) {
4773 btf_verifier_log_type(env, t, "Invalid return type");
4774 return -EINVAL;
4775 }
4776
2667a262
MKL
4777 if (btf_type_needs_resolve(ret_type) &&
4778 !env_type_is_resolved(env, ret_type_id)) {
4779 err = btf_resolve(env, ret_type, ret_type_id);
4780 if (err)
4781 return err;
4782 }
4783
4784 /* Ensure the return type is a type that has a size */
4785 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4786 btf_verifier_log_type(env, t, "Invalid return type");
4787 return -EINVAL;
4788 }
4789 }
4790
4791 if (!nr_args)
4792 return 0;
4793
4794 /* Last func arg type_id could be 0 if it is a vararg */
4795 if (!args[nr_args - 1].type) {
4796 if (args[nr_args - 1].name_off) {
4797 btf_verifier_log_type(env, t, "Invalid arg#%u",
4798 nr_args);
4799 return -EINVAL;
4800 }
4801 nr_args--;
4802 }
4803
2667a262
MKL
4804 for (i = 0; i < nr_args; i++) {
4805 const struct btf_type *arg_type;
4806 u32 arg_type_id;
4807
4808 arg_type_id = args[i].type;
4809 arg_type = btf_type_by_id(btf, arg_type_id);
4810 if (!arg_type) {
4811 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4812 return -EINVAL;
2667a262
MKL
4813 }
4814
f17472d4
SF
4815 if (btf_type_is_resolve_source_only(arg_type)) {
4816 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4817 return -EINVAL;
4818 }
4819
2667a262
MKL
4820 if (args[i].name_off &&
4821 (!btf_name_offset_valid(btf, args[i].name_off) ||
4822 !btf_name_valid_identifier(btf, args[i].name_off))) {
4823 btf_verifier_log_type(env, t,
4824 "Invalid arg#%u", i + 1);
5bad3587 4825 return -EINVAL;
2667a262
MKL
4826 }
4827
4828 if (btf_type_needs_resolve(arg_type) &&
4829 !env_type_is_resolved(env, arg_type_id)) {
4830 err = btf_resolve(env, arg_type, arg_type_id);
4831 if (err)
5bad3587 4832 return err;
2667a262
MKL
4833 }
4834
4835 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4836 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4837 return -EINVAL;
2667a262
MKL
4838 }
4839 }
4840
5bad3587 4841 return 0;
2667a262
MKL
4842}
4843
4844static int btf_func_check(struct btf_verifier_env *env,
4845 const struct btf_type *t)
4846{
4847 const struct btf_type *proto_type;
4848 const struct btf_param *args;
4849 const struct btf *btf;
4850 u16 nr_args, i;
4851
4852 btf = env->btf;
4853 proto_type = btf_type_by_id(btf, t->type);
4854
4855 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4856 btf_verifier_log_type(env, t, "Invalid type_id");
4857 return -EINVAL;
4858 }
4859
4860 args = (const struct btf_param *)(proto_type + 1);
4861 nr_args = btf_type_vlen(proto_type);
4862 for (i = 0; i < nr_args; i++) {
4863 if (!args[i].name_off && args[i].type) {
4864 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4865 return -EINVAL;
4866 }
4867 }
4868
4869 return 0;
4870}
4871
69b693f0
MKL
4872static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4873 [BTF_KIND_INT] = &int_ops,
4874 [BTF_KIND_PTR] = &ptr_ops,
4875 [BTF_KIND_ARRAY] = &array_ops,
4876 [BTF_KIND_STRUCT] = &struct_ops,
4877 [BTF_KIND_UNION] = &struct_ops,
4878 [BTF_KIND_ENUM] = &enum_ops,
4879 [BTF_KIND_FWD] = &fwd_ops,
4880 [BTF_KIND_TYPEDEF] = &modifier_ops,
4881 [BTF_KIND_VOLATILE] = &modifier_ops,
4882 [BTF_KIND_CONST] = &modifier_ops,
4883 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
4884 [BTF_KIND_FUNC] = &func_ops,
4885 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
4886 [BTF_KIND_VAR] = &var_ops,
4887 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 4888 [BTF_KIND_FLOAT] = &float_ops,
223f903e 4889 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
8c42d2fa 4890 [BTF_KIND_TYPE_TAG] = &modifier_ops,
6089fb32 4891 [BTF_KIND_ENUM64] = &enum64_ops,
69b693f0
MKL
4892};
4893
4894static s32 btf_check_meta(struct btf_verifier_env *env,
4895 const struct btf_type *t,
4896 u32 meta_left)
4897{
4898 u32 saved_meta_left = meta_left;
4899 s32 var_meta_size;
4900
4901 if (meta_left < sizeof(*t)) {
4902 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4903 env->log_type_id, meta_left, sizeof(*t));
4904 return -EINVAL;
4905 }
4906 meta_left -= sizeof(*t);
4907
aea2f7b8
MKL
4908 if (t->info & ~BTF_INFO_MASK) {
4909 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4910 env->log_type_id, t->info);
4911 return -EINVAL;
4912 }
4913
69b693f0
MKL
4914 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4915 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4916 btf_verifier_log(env, "[%u] Invalid kind:%u",
4917 env->log_type_id, BTF_INFO_KIND(t->info));
4918 return -EINVAL;
4919 }
4920
fbcf93eb 4921 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 4922 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 4923 env->log_type_id, t->name_off);
69b693f0
MKL
4924 return -EINVAL;
4925 }
4926
4927 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4928 if (var_meta_size < 0)
4929 return var_meta_size;
4930
4931 meta_left -= var_meta_size;
4932
4933 return saved_meta_left - meta_left;
4934}
4935
4936static int btf_check_all_metas(struct btf_verifier_env *env)
4937{
4938 struct btf *btf = env->btf;
4939 struct btf_header *hdr;
4940 void *cur, *end;
4941
f80442a4 4942 hdr = &btf->hdr;
69b693f0 4943 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 4944 end = cur + hdr->type_len;
69b693f0 4945
951bb646 4946 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
4947 while (cur < end) {
4948 struct btf_type *t = cur;
4949 s32 meta_size;
4950
4951 meta_size = btf_check_meta(env, t, end - cur);
4952 if (meta_size < 0)
4953 return meta_size;
4954
4955 btf_add_type(env, t);
4956 cur += meta_size;
4957 env->log_type_id++;
4958 }
4959
4960 return 0;
4961}
4962
eb3f595d
MKL
4963static bool btf_resolve_valid(struct btf_verifier_env *env,
4964 const struct btf_type *t,
4965 u32 type_id)
4966{
4967 struct btf *btf = env->btf;
4968
4969 if (!env_type_is_resolved(env, type_id))
4970 return false;
4971
1dc92851 4972 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
4973 return !btf_resolved_type_id(btf, type_id) &&
4974 !btf_resolved_type_size(btf, type_id);
eb3f595d 4975
d7e7b42f 4976 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
b5ea834d
YS
4977 return btf_resolved_type_id(btf, type_id) &&
4978 !btf_resolved_type_size(btf, type_id);
4979
1dc92851
DB
4980 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4981 btf_type_is_var(t)) {
eb3f595d 4982 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
4983 return t &&
4984 !btf_type_is_modifier(t) &&
4985 !btf_type_is_var(t) &&
4986 !btf_type_is_datasec(t);
eb3f595d
MKL
4987 }
4988
4989 if (btf_type_is_array(t)) {
4990 const struct btf_array *array = btf_type_array(t);
4991 const struct btf_type *elem_type;
4992 u32 elem_type_id = array->type;
4993 u32 elem_size;
4994
4995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4996 return elem_type && !btf_type_is_modifier(elem_type) &&
4997 (array->nelems * elem_size ==
951bb646 4998 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
4999 }
5000
5001 return false;
5002}
5003
2667a262
MKL
5004static int btf_resolve(struct btf_verifier_env *env,
5005 const struct btf_type *t, u32 type_id)
5006{
5007 u32 save_log_type_id = env->log_type_id;
5008 const struct resolve_vertex *v;
5009 int err = 0;
5010
5011 env->resolve_mode = RESOLVE_TBD;
5012 env_stack_push(env, t, type_id);
5013 while (!err && (v = env_stack_peak(env))) {
5014 env->log_type_id = v->type_id;
5015 err = btf_type_ops(v->t)->resolve(env, v);
5016 }
5017
5018 env->log_type_id = type_id;
5019 if (err == -E2BIG) {
5020 btf_verifier_log_type(env, t,
5021 "Exceeded max resolving depth:%u",
5022 MAX_RESOLVE_DEPTH);
5023 } else if (err == -EEXIST) {
5024 btf_verifier_log_type(env, t, "Loop detected");
5025 }
5026
5027 /* Final sanity check */
5028 if (!err && !btf_resolve_valid(env, t, type_id)) {
5029 btf_verifier_log_type(env, t, "Invalid resolve state");
5030 err = -EINVAL;
5031 }
5032
5033 env->log_type_id = save_log_type_id;
5034 return err;
5035}
5036
eb3f595d
MKL
5037static int btf_check_all_types(struct btf_verifier_env *env)
5038{
5039 struct btf *btf = env->btf;
951bb646
AN
5040 const struct btf_type *t;
5041 u32 type_id, i;
eb3f595d
MKL
5042 int err;
5043
5044 err = env_resolve_init(env);
5045 if (err)
5046 return err;
5047
5048 env->phase++;
951bb646
AN
5049 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5050 type_id = btf->start_id + i;
5051 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
5052
5053 env->log_type_id = type_id;
5054 if (btf_type_needs_resolve(t) &&
5055 !env_type_is_resolved(env, type_id)) {
5056 err = btf_resolve(env, t, type_id);
5057 if (err)
5058 return err;
5059 }
5060
2667a262
MKL
5061 if (btf_type_is_func_proto(t)) {
5062 err = btf_func_proto_check(env, t);
5063 if (err)
5064 return err;
5065 }
eb3f595d
MKL
5066 }
5067
5068 return 0;
5069}
5070
69b693f0
MKL
5071static int btf_parse_type_sec(struct btf_verifier_env *env)
5072{
f80442a4 5073 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
5074 int err;
5075
f80442a4
MKL
5076 /* Type section must align to 4 bytes */
5077 if (hdr->type_off & (sizeof(u32) - 1)) {
5078 btf_verifier_log(env, "Unaligned type_off");
5079 return -EINVAL;
5080 }
5081
951bb646 5082 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
5083 btf_verifier_log(env, "No type found");
5084 return -EINVAL;
5085 }
5086
eb3f595d
MKL
5087 err = btf_check_all_metas(env);
5088 if (err)
5089 return err;
5090
5091 return btf_check_all_types(env);
69b693f0
MKL
5092}
5093
5094static int btf_parse_str_sec(struct btf_verifier_env *env)
5095{
5096 const struct btf_header *hdr;
5097 struct btf *btf = env->btf;
5098 const char *start, *end;
5099
f80442a4 5100 hdr = &btf->hdr;
69b693f0
MKL
5101 start = btf->nohdr_data + hdr->str_off;
5102 end = start + hdr->str_len;
5103
f80442a4
MKL
5104 if (end != btf->data + btf->data_size) {
5105 btf_verifier_log(env, "String section is not at the end");
5106 return -EINVAL;
5107 }
5108
951bb646
AN
5109 btf->strings = start;
5110
5111 if (btf->base_btf && !hdr->str_len)
5112 return 0;
5113 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5114 btf_verifier_log(env, "Invalid string section");
5115 return -EINVAL;
5116 }
5117 if (!btf->base_btf && start[0]) {
69b693f0
MKL
5118 btf_verifier_log(env, "Invalid string section");
5119 return -EINVAL;
5120 }
69b693f0
MKL
5121
5122 return 0;
5123}
5124
f80442a4
MKL
5125static const size_t btf_sec_info_offset[] = {
5126 offsetof(struct btf_header, type_off),
5127 offsetof(struct btf_header, str_off),
5128};
5129
5130static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 5131{
f80442a4
MKL
5132 const struct btf_sec_info *x = a;
5133 const struct btf_sec_info *y = b;
5134
5135 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5136}
5137
5138static int btf_check_sec_info(struct btf_verifier_env *env,
5139 u32 btf_data_size)
5140{
a2889a4c 5141 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 5142 u32 total, expected_total, i;
69b693f0 5143 const struct btf_header *hdr;
f80442a4
MKL
5144 const struct btf *btf;
5145
5146 btf = env->btf;
5147 hdr = &btf->hdr;
5148
5149 /* Populate the secs from hdr */
a2889a4c 5150 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
5151 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5152 btf_sec_info_offset[i]);
5153
a2889a4c
MKL
5154 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5155 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
5156
5157 /* Check for gaps and overlap among sections */
5158 total = 0;
5159 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 5160 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
5161 if (expected_total < secs[i].off) {
5162 btf_verifier_log(env, "Invalid section offset");
5163 return -EINVAL;
5164 }
5165 if (total < secs[i].off) {
5166 /* gap */
5167 btf_verifier_log(env, "Unsupported section found");
5168 return -EINVAL;
5169 }
5170 if (total > secs[i].off) {
5171 btf_verifier_log(env, "Section overlap found");
5172 return -EINVAL;
5173 }
5174 if (expected_total - total < secs[i].len) {
5175 btf_verifier_log(env,
5176 "Total section length too long");
5177 return -EINVAL;
5178 }
5179 total += secs[i].len;
5180 }
5181
5182 /* There is data other than hdr and known sections */
5183 if (expected_total != total) {
5184 btf_verifier_log(env, "Unsupported section found");
5185 return -EINVAL;
5186 }
5187
5188 return 0;
5189}
5190
4a6998af 5191static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 5192{
4a6998af 5193 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 5194 const struct btf_header *hdr;
f80442a4 5195 struct btf *btf;
69b693f0 5196
f80442a4 5197 btf = env->btf;
4a6998af 5198 btf_data_size = btf->data_size;
f80442a4 5199
583669ab 5200 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
f80442a4
MKL
5201 btf_verifier_log(env, "hdr_len not found");
5202 return -EINVAL;
5203 }
5204
4a6998af
ML
5205 hdr = btf->data;
5206 hdr_len = hdr->hdr_len;
f80442a4 5207 if (btf_data_size < hdr_len) {
69b693f0
MKL
5208 btf_verifier_log(env, "btf_header not found");
5209 return -EINVAL;
5210 }
5211
4a6998af
ML
5212 /* Ensure the unsupported header fields are zero */
5213 if (hdr_len > sizeof(btf->hdr)) {
5214 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5215 u8 *end = btf->data + hdr_len;
5216
5217 for (; expected_zero < end; expected_zero++) {
5218 if (*expected_zero) {
5219 btf_verifier_log(env, "Unsupported btf_header");
5220 return -E2BIG;
5221 }
5222 }
f80442a4
MKL
5223 }
5224
5225 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 5226 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
5227
5228 hdr = &btf->hdr;
5229
5230 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 5231
69b693f0
MKL
5232 if (hdr->magic != BTF_MAGIC) {
5233 btf_verifier_log(env, "Invalid magic");
5234 return -EINVAL;
5235 }
5236
5237 if (hdr->version != BTF_VERSION) {
5238 btf_verifier_log(env, "Unsupported version");
5239 return -ENOTSUPP;
5240 }
5241
5242 if (hdr->flags) {
5243 btf_verifier_log(env, "Unsupported flags");
5244 return -ENOTSUPP;
5245 }
5246
bcc5e616 5247 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
5248 btf_verifier_log(env, "No data");
5249 return -EINVAL;
5250 }
5251
3a74904c 5252 return btf_check_sec_info(env, btf_data_size);
69b693f0
MKL
5253}
5254
8ffa5cc1
KKD
5255static const char *alloc_obj_fields[] = {
5256 "bpf_spin_lock",
5257 "bpf_list_head",
5258 "bpf_list_node",
5259};
5260
5261static struct btf_struct_metas *
5262btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5263{
5264 union {
5265 struct btf_id_set set;
5266 struct {
5267 u32 _cnt;
5268 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5269 } _arr;
5270 } aof;
5271 struct btf_struct_metas *tab = NULL;
5272 int i, n, id, ret;
5273
5274 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5275 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5276
5277 memset(&aof, 0, sizeof(aof));
5278 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5279 /* Try to find whether this special type exists in user BTF, and
5280 * if so remember its ID so we can easily find it among members
5281 * of structs that we iterate in the next loop.
5282 */
5283 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5284 if (id < 0)
5285 continue;
5286 aof.set.ids[aof.set.cnt++] = id;
5287 }
5288
5289 if (!aof.set.cnt)
5290 return NULL;
5291 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5292
5293 n = btf_nr_types(btf);
5294 for (i = 1; i < n; i++) {
5295 struct btf_struct_metas *new_tab;
5296 const struct btf_member *member;
5297 struct btf_field_offs *foffs;
5298 struct btf_struct_meta *type;
5299 struct btf_record *record;
5300 const struct btf_type *t;
5301 int j, tab_cnt;
5302
5303 t = btf_type_by_id(btf, i);
5304 if (!t) {
5305 ret = -EINVAL;
5306 goto free;
5307 }
5308 if (!__btf_type_is_struct(t))
5309 continue;
5310
5311 cond_resched();
5312
5313 for_each_member(j, t, member) {
5314 if (btf_id_set_contains(&aof.set, member->type))
5315 goto parse;
5316 }
5317 continue;
5318 parse:
5319 tab_cnt = tab ? tab->cnt : 0;
5320 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5321 GFP_KERNEL | __GFP_NOWARN);
5322 if (!new_tab) {
5323 ret = -ENOMEM;
5324 goto free;
5325 }
5326 if (!tab)
5327 new_tab->cnt = 0;
5328 tab = new_tab;
5329
5330 type = &tab->types[tab->cnt];
5331 type->btf_id = i;
5332 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size);
5333 /* The record cannot be unset, treat it as an error if so */
5334 if (IS_ERR_OR_NULL(record)) {
5335 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5336 goto free;
5337 }
5338 foffs = btf_parse_field_offs(record);
5339 /* We need the field_offs to be valid for a valid record,
5340 * either both should be set or both should be unset.
5341 */
5342 if (IS_ERR_OR_NULL(foffs)) {
5343 btf_record_free(record);
5344 ret = -EFAULT;
5345 goto free;
5346 }
5347 type->record = record;
5348 type->field_offs = foffs;
5349 tab->cnt++;
5350 }
5351 return tab;
5352free:
5353 btf_struct_metas_free(tab);
5354 return ERR_PTR(ret);
5355}
5356
5357struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5358{
5359 struct btf_struct_metas *tab;
5360
5361 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5362 tab = btf->struct_meta_tab;
5363 if (!tab)
5364 return NULL;
5365 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5366}
5367
eb596b09
KKD
5368static int btf_check_type_tags(struct btf_verifier_env *env,
5369 struct btf *btf, int start_id)
5370{
5371 int i, n, good_id = start_id - 1;
5372 bool in_tags;
5373
5374 n = btf_nr_types(btf);
5375 for (i = start_id; i < n; i++) {
5376 const struct btf_type *t;
d1a374a1 5377 int chain_limit = 32;
eb596b09
KKD
5378 u32 cur_id = i;
5379
5380 t = btf_type_by_id(btf, i);
5381 if (!t)
5382 return -EINVAL;
5383 if (!btf_type_is_modifier(t))
5384 continue;
5385
5386 cond_resched();
5387
5388 in_tags = btf_type_is_type_tag(t);
5389 while (btf_type_is_modifier(t)) {
d1a374a1
KKD
5390 if (!chain_limit--) {
5391 btf_verifier_log(env, "Max chain length or cycle detected");
5392 return -ELOOP;
5393 }
eb596b09
KKD
5394 if (btf_type_is_type_tag(t)) {
5395 if (!in_tags) {
5396 btf_verifier_log(env, "Type tags don't precede modifiers");
5397 return -EINVAL;
5398 }
5399 } else if (in_tags) {
5400 in_tags = false;
5401 }
5402 if (cur_id <= good_id)
5403 break;
5404 /* Move to next type */
5405 cur_id = t->type;
5406 t = btf_type_by_id(btf, cur_id);
5407 if (!t)
5408 return -EINVAL;
5409 }
5410 good_id = i;
5411 }
5412 return 0;
5413}
5414
c571bd75 5415static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
69b693f0
MKL
5416 u32 log_level, char __user *log_ubuf, u32 log_size)
5417{
8ffa5cc1 5418 struct btf_struct_metas *struct_meta_tab;
69b693f0
MKL
5419 struct btf_verifier_env *env = NULL;
5420 struct bpf_verifier_log *log;
5421 struct btf *btf = NULL;
5422 u8 *data;
5423 int err;
5424
5425 if (btf_data_size > BTF_MAX_SIZE)
5426 return ERR_PTR(-E2BIG);
5427
5428 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5429 if (!env)
5430 return ERR_PTR(-ENOMEM);
5431
5432 log = &env->log;
5433 if (log_level || log_ubuf || log_size) {
5434 /* user requested verbose verifier output
5435 * and supplied buffer to store the verification trace
5436 */
5437 log->level = log_level;
5438 log->ubuf = log_ubuf;
5439 log->len_total = log_size;
5440
5441 /* log attributes have to be sane */
866de407 5442 if (!bpf_verifier_log_attr_valid(log)) {
69b693f0
MKL
5443 err = -EINVAL;
5444 goto errout;
5445 }
5446 }
5447
5448 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5449 if (!btf) {
5450 err = -ENOMEM;
5451 goto errout;
5452 }
f80442a4
MKL
5453 env->btf = btf;
5454
69b693f0
MKL
5455 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5456 if (!data) {
5457 err = -ENOMEM;
5458 goto errout;
5459 }
5460
5461 btf->data = data;
5462 btf->data_size = btf_data_size;
5463
c571bd75 5464 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
69b693f0
MKL
5465 err = -EFAULT;
5466 goto errout;
5467 }
5468
4a6998af
ML
5469 err = btf_parse_hdr(env);
5470 if (err)
5471 goto errout;
5472
5473 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5474
69b693f0
MKL
5475 err = btf_parse_str_sec(env);
5476 if (err)
5477 goto errout;
5478
5479 err = btf_parse_type_sec(env);
5480 if (err)
5481 goto errout;
5482
eb596b09
KKD
5483 err = btf_check_type_tags(env, btf, 1);
5484 if (err)
5485 goto errout;
5486
8ffa5cc1
KKD
5487 struct_meta_tab = btf_parse_struct_metas(log, btf);
5488 if (IS_ERR(struct_meta_tab)) {
5489 err = PTR_ERR(struct_meta_tab);
5490 goto errout;
5491 }
5492 btf->struct_meta_tab = struct_meta_tab;
5493
865ce09a
KKD
5494 if (struct_meta_tab) {
5495 int i;
5496
5497 for (i = 0; i < struct_meta_tab->cnt; i++) {
5498 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5499 if (err < 0)
5500 goto errout_meta;
5501 }
5502 }
5503
f80442a4 5504 if (log->level && bpf_verifier_log_full(log)) {
69b693f0 5505 err = -ENOSPC;
8ffa5cc1 5506 goto errout_meta;
69b693f0
MKL
5507 }
5508
f80442a4
MKL
5509 btf_verifier_env_free(env);
5510 refcount_set(&btf->refcnt, 1);
5511 return btf;
69b693f0 5512
8ffa5cc1
KKD
5513errout_meta:
5514 btf_free_struct_meta_tab(btf);
69b693f0
MKL
5515errout:
5516 btf_verifier_env_free(env);
5517 if (btf)
5518 btf_free(btf);
5519 return ERR_PTR(err);
5520}
b00b8dae 5521
90ceddcb
FS
5522extern char __weak __start_BTF[];
5523extern char __weak __stop_BTF[];
91cc1a99
AS
5524extern struct btf *btf_vmlinux;
5525
5526#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 5527#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
5528static union {
5529 struct bpf_ctx_convert {
5530#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5531 prog_ctx_type _id##_prog; \
5532 kern_ctx_type _id##_kern;
5533#include <linux/bpf_types.h>
5534#undef BPF_PROG_TYPE
5535 } *__t;
5536 /* 't' is written once under lock. Read many times. */
5537 const struct btf_type *t;
5538} bpf_ctx_convert;
5539enum {
5540#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5541 __ctx_convert##_id,
5542#include <linux/bpf_types.h>
5543#undef BPF_PROG_TYPE
ce27709b 5544 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
5545};
5546static u8 bpf_ctx_convert_map[] = {
5547#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5548 [_id] = __ctx_convert##_id,
5549#include <linux/bpf_types.h>
5550#undef BPF_PROG_TYPE
4c80c7bc 5551 0, /* avoid empty array */
91cc1a99
AS
5552};
5553#undef BPF_MAP_TYPE
f2e10bff 5554#undef BPF_LINK_TYPE
91cc1a99 5555
00b85860 5556const struct btf_member *
34747c41 5557btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
5558 const struct btf_type *t, enum bpf_prog_type prog_type,
5559 int arg)
91cc1a99
AS
5560{
5561 const struct btf_type *conv_struct;
5562 const struct btf_type *ctx_struct;
5563 const struct btf_member *ctx_type;
5564 const char *tname, *ctx_tname;
5565
5566 conv_struct = bpf_ctx_convert.t;
5567 if (!conv_struct) {
5568 bpf_log(log, "btf_vmlinux is malformed\n");
5569 return NULL;
5570 }
5571 t = btf_type_by_id(btf, t->type);
5572 while (btf_type_is_modifier(t))
5573 t = btf_type_by_id(btf, t->type);
5574 if (!btf_type_is_struct(t)) {
5575 /* Only pointer to struct is supported for now.
5576 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5577 * is not supported yet.
5578 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5579 */
91cc1a99
AS
5580 return NULL;
5581 }
5582 tname = btf_name_by_offset(btf, t->name_off);
5583 if (!tname) {
51c39bb1 5584 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
5585 return NULL;
5586 }
5587 /* prog_type is valid bpf program type. No need for bounds check. */
5588 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5589 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5590 * Like 'struct __sk_buff'
5591 */
5592 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5593 if (!ctx_struct)
5594 /* should not happen */
5595 return NULL;
5596 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5597 if (!ctx_tname) {
5598 /* should not happen */
5599 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5600 return NULL;
5601 }
5602 /* only compare that prog's ctx type name is the same as
5603 * kernel expects. No need to compare field by field.
5604 * It's ok for bpf prog to do:
5605 * struct __sk_buff {};
5606 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5607 * { // no fields of skb are ever used }
5608 */
5609 if (strcmp(ctx_tname, tname))
5610 return NULL;
5611 return ctx_type;
5612}
8580ac94 5613
5b92a28a
AS
5614static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5615 struct btf *btf,
5616 const struct btf_type *t,
51c39bb1
AS
5617 enum bpf_prog_type prog_type,
5618 int arg)
5b92a28a
AS
5619{
5620 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5621
51c39bb1 5622 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
5623 if (!prog_ctx_type)
5624 return -ENOENT;
5625 kern_ctx_type = prog_ctx_type + 1;
5626 return kern_ctx_type->type;
5627}
5628
fd264ca0
YS
5629int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5630{
5631 const struct btf_member *kctx_member;
5632 const struct btf_type *conv_struct;
5633 const struct btf_type *kctx_type;
5634 u32 kctx_type_id;
5635
5636 conv_struct = bpf_ctx_convert.t;
5637 /* get member for kernel ctx type */
5638 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5639 kctx_type_id = kctx_member->type;
5640 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5641 if (!btf_type_is_struct(kctx_type)) {
5642 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5643 return -EINVAL;
5644 }
5645
5646 return kctx_type_id;
5647}
5648
49f4e672
JO
5649BTF_ID_LIST(bpf_ctx_convert_btf_id)
5650BTF_ID(struct, bpf_ctx_convert)
5651
8580ac94
AS
5652struct btf *btf_parse_vmlinux(void)
5653{
5654 struct btf_verifier_env *env = NULL;
5655 struct bpf_verifier_log *log;
5656 struct btf *btf = NULL;
49f4e672 5657 int err;
8580ac94
AS
5658
5659 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5660 if (!env)
5661 return ERR_PTR(-ENOMEM);
5662
5663 log = &env->log;
5664 log->level = BPF_LOG_KERNEL;
5665
5666 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5667 if (!btf) {
5668 err = -ENOMEM;
5669 goto errout;
5670 }
5671 env->btf = btf;
5672
90ceddcb
FS
5673 btf->data = __start_BTF;
5674 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
5675 btf->kernel_btf = true;
5676 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
5677
5678 err = btf_parse_hdr(env);
5679 if (err)
5680 goto errout;
5681
5682 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5683
5684 err = btf_parse_str_sec(env);
5685 if (err)
5686 goto errout;
5687
5688 err = btf_check_all_metas(env);
5689 if (err)
5690 goto errout;
5691
eb596b09
KKD
5692 err = btf_check_type_tags(env, btf, 1);
5693 if (err)
5694 goto errout;
5695
a2d0d62f 5696 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 5697 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 5698
d3e42bb0 5699 bpf_struct_ops_init(btf, log);
27ae7997 5700
8580ac94 5701 refcount_set(&btf->refcnt, 1);
53297220
AN
5702
5703 err = btf_alloc_id(btf);
5704 if (err)
5705 goto errout;
5706
5707 btf_verifier_env_free(env);
8580ac94
AS
5708 return btf;
5709
5710errout:
5711 btf_verifier_env_free(env);
5712 if (btf) {
5713 kvfree(btf->types);
5714 kfree(btf);
5715 }
5716 return ERR_PTR(err);
5717}
5718
7112d127
AN
5719#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5720
36e68442
AN
5721static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5722{
5723 struct btf_verifier_env *env = NULL;
5724 struct bpf_verifier_log *log;
5725 struct btf *btf = NULL, *base_btf;
5726 int err;
5727
5728 base_btf = bpf_get_btf_vmlinux();
5729 if (IS_ERR(base_btf))
5730 return base_btf;
5731 if (!base_btf)
5732 return ERR_PTR(-EINVAL);
5733
5734 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5735 if (!env)
5736 return ERR_PTR(-ENOMEM);
5737
5738 log = &env->log;
5739 log->level = BPF_LOG_KERNEL;
5740
5741 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5742 if (!btf) {
5743 err = -ENOMEM;
5744 goto errout;
5745 }
5746 env->btf = btf;
5747
5748 btf->base_btf = base_btf;
5749 btf->start_id = base_btf->nr_types;
5750 btf->start_str_off = base_btf->hdr.str_len;
5751 btf->kernel_btf = true;
5752 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5753
5754 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5755 if (!btf->data) {
5756 err = -ENOMEM;
5757 goto errout;
5758 }
5759 memcpy(btf->data, data, data_size);
5760 btf->data_size = data_size;
5761
5762 err = btf_parse_hdr(env);
5763 if (err)
5764 goto errout;
5765
5766 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5767
5768 err = btf_parse_str_sec(env);
5769 if (err)
5770 goto errout;
5771
5772 err = btf_check_all_metas(env);
5773 if (err)
5774 goto errout;
5775
eb596b09
KKD
5776 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5777 if (err)
5778 goto errout;
5779
36e68442
AN
5780 btf_verifier_env_free(env);
5781 refcount_set(&btf->refcnt, 1);
5782 return btf;
5783
5784errout:
5785 btf_verifier_env_free(env);
5786 if (btf) {
5787 kvfree(btf->data);
5788 kvfree(btf->types);
5789 kfree(btf);
5790 }
5791 return ERR_PTR(err);
5792}
5793
7112d127
AN
5794#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5795
5b92a28a
AS
5796struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5797{
3aac1ead 5798 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5799
22dc4a0f 5800 if (tgt_prog)
5b92a28a 5801 return tgt_prog->aux->btf;
22dc4a0f
AN
5802 else
5803 return prog->aux->attach_btf;
5b92a28a
AS
5804}
5805
bb6728d7 5806static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
84ad7a7a
JO
5807{
5808 /* t comes in already as a pointer */
5809 t = btf_type_by_id(btf, t->type);
5810
5811 /* allow const */
5812 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5813 t = btf_type_by_id(btf, t->type);
5814
bb6728d7 5815 return btf_type_is_int(t);
84ad7a7a
JO
5816}
5817
720e6a43
YS
5818static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5819 int off)
5820{
5821 const struct btf_param *args;
5822 const struct btf_type *t;
5823 u32 offset = 0, nr_args;
5824 int i;
5825
5826 if (!func_proto)
5827 return off / 8;
5828
5829 nr_args = btf_type_vlen(func_proto);
5830 args = (const struct btf_param *)(func_proto + 1);
5831 for (i = 0; i < nr_args; i++) {
5832 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5833 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5834 if (off < offset)
5835 return i;
5836 }
5837
5838 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5839 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5840 if (off < offset)
5841 return nr_args;
5842
5843 return nr_args + 1;
5844}
5845
c6b0337f 5846static bool prog_args_trusted(const struct bpf_prog *prog)
3f00c523 5847{
c6b0337f
AS
5848 enum bpf_attach_type atype = prog->expected_attach_type;
5849
5850 switch (prog->type) {
5851 case BPF_PROG_TYPE_TRACING:
5852 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5853 case BPF_PROG_TYPE_LSM:
c0c852dd 5854 return bpf_lsm_is_trusted(prog);
c6b0337f
AS
5855 case BPF_PROG_TYPE_STRUCT_OPS:
5856 return true;
5857 default:
5858 return false;
5859 }
3f00c523
DV
5860}
5861
9e15db66
AS
5862bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5863 const struct bpf_prog *prog,
5864 struct bpf_insn_access_aux *info)
5865{
38207291 5866 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 5867 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5868 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 5869 const char *tname = prog->aux->attach_func_name;
9e15db66 5870 struct bpf_verifier_log *log = info->log;
9e15db66 5871 const struct btf_param *args;
c6f1bfe8 5872 const char *tag_value;
9e15db66 5873 u32 nr_args, arg;
3c32cc1b 5874 int i, ret;
9e15db66 5875
9e15db66 5876 if (off % 8) {
38207291 5877 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
5878 tname, off);
5879 return false;
5880 }
720e6a43 5881 arg = get_ctx_arg_idx(btf, t, off);
9e15db66 5882 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
5883 /* if (t == NULL) Fall back to default BPF prog with
5884 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5885 */
5886 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
5887 if (prog->aux->attach_btf_trace) {
5888 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5889 args++;
5890 nr_args--;
5891 }
fec56f58 5892
f50b49a0
KS
5893 if (arg > nr_args) {
5894 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5895 tname, arg + 1);
5896 return false;
5897 }
5898
6ba43b76 5899 if (arg == nr_args) {
f50b49a0 5900 switch (prog->expected_attach_type) {
69fd337a 5901 case BPF_LSM_CGROUP:
f50b49a0
KS
5902 case BPF_LSM_MAC:
5903 case BPF_TRACE_FEXIT:
9e4e01df
KS
5904 /* When LSM programs are attached to void LSM hooks
5905 * they use FEXIT trampolines and when attached to
5906 * int LSM hooks, they use MODIFY_RETURN trampolines.
5907 *
5908 * While the LSM programs are BPF_MODIFY_RETURN-like
5909 * the check:
5910 *
5911 * if (ret_type != 'int')
5912 * return -EINVAL;
5913 *
5914 * is _not_ done here. This is still safe as LSM hooks
5915 * have only void and int return types.
5916 */
6ba43b76
KS
5917 if (!t)
5918 return true;
5919 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
5920 break;
5921 case BPF_MODIFY_RETURN:
6ba43b76
KS
5922 /* For now the BPF_MODIFY_RETURN can only be attached to
5923 * functions that return an int.
5924 */
5925 if (!t)
5926 return false;
5927
5928 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 5929 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
5930 bpf_log(log,
5931 "ret type %s not allowed for fmod_ret\n",
571f9738 5932 btf_type_str(t));
6ba43b76
KS
5933 return false;
5934 }
f50b49a0
KS
5935 break;
5936 default:
5937 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5938 tname, arg + 1);
5939 return false;
6ba43b76 5940 }
fec56f58 5941 } else {
5b92a28a 5942 if (!t)
523a4cf4 5943 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
5944 return true;
5945 t = btf_type_by_id(btf, args[arg].type);
9e15db66 5946 }
f50b49a0 5947
9e15db66
AS
5948 /* skip modifiers */
5949 while (btf_type_is_modifier(t))
5b92a28a 5950 t = btf_type_by_id(btf, t->type);
720e6a43 5951 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
9e15db66
AS
5952 /* accessing a scalar */
5953 return true;
5954 if (!btf_type_is_ptr(t)) {
5955 bpf_log(log,
38207291 5956 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 5957 tname, arg,
5b92a28a 5958 __btf_name_by_offset(btf, t->name_off),
571f9738 5959 btf_type_str(t));
9e15db66
AS
5960 return false;
5961 }
afbf21dc
YS
5962
5963 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5964 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5965 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
c25b2ae1 5966 u32 type, flag;
afbf21dc 5967
c25b2ae1
HL
5968 type = base_type(ctx_arg_info->reg_type);
5969 flag = type_flag(ctx_arg_info->reg_type);
20b2aff4 5970 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
c25b2ae1 5971 (flag & PTR_MAYBE_NULL)) {
afbf21dc
YS
5972 info->reg_type = ctx_arg_info->reg_type;
5973 return true;
5974 }
5975 }
5976
9e15db66
AS
5977 if (t->type == 0)
5978 /* This is a pointer to void.
5979 * It is the same as scalar from the verifier safety pov.
5980 * No further pointer walking is allowed.
5981 */
5982 return true;
5983
bb6728d7 5984 if (is_int_ptr(btf, t))
84ad7a7a
JO
5985 return true;
5986
9e15db66 5987 /* this is a pointer to another type */
3c32cc1b
YS
5988 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5989 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5990
5991 if (ctx_arg_info->offset == off) {
d3621642
YS
5992 if (!ctx_arg_info->btf_id) {
5993 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5994 return false;
5995 }
5996
3c32cc1b 5997 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 5998 info->btf = btf_vmlinux;
951cf368
YS
5999 info->btf_id = ctx_arg_info->btf_id;
6000 return true;
3c32cc1b
YS
6001 }
6002 }
9e15db66 6003
951cf368 6004 info->reg_type = PTR_TO_BTF_ID;
c6b0337f 6005 if (prog_args_trusted(prog))
3f00c523
DV
6006 info->reg_type |= PTR_TRUSTED;
6007
5b92a28a 6008 if (tgt_prog) {
43bc2874
THJ
6009 enum bpf_prog_type tgt_type;
6010
6011 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6012 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6013 else
6014 tgt_type = tgt_prog->type;
6015
6016 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 6017 if (ret > 0) {
22dc4a0f 6018 info->btf = btf_vmlinux;
5b92a28a
AS
6019 info->btf_id = ret;
6020 return true;
6021 } else {
6022 return false;
6023 }
6024 }
275517ff 6025
22dc4a0f 6026 info->btf = btf;
275517ff 6027 info->btf_id = t->type;
5b92a28a 6028 t = btf_type_by_id(btf, t->type);
c6f1bfe8
YS
6029
6030 if (btf_type_is_type_tag(t)) {
6031 tag_value = __btf_name_by_offset(btf, t->name_off);
6032 if (strcmp(tag_value, "user") == 0)
6033 info->reg_type |= MEM_USER;
5844101a
HL
6034 if (strcmp(tag_value, "percpu") == 0)
6035 info->reg_type |= MEM_PERCPU;
c6f1bfe8
YS
6036 }
6037
9e15db66 6038 /* skip modifiers */
275517ff
MKL
6039 while (btf_type_is_modifier(t)) {
6040 info->btf_id = t->type;
5b92a28a 6041 t = btf_type_by_id(btf, t->type);
275517ff 6042 }
9e15db66
AS
6043 if (!btf_type_is_struct(t)) {
6044 bpf_log(log,
38207291 6045 "func '%s' arg%d type %s is not a struct\n",
571f9738 6046 tname, arg, btf_type_str(t));
9e15db66
AS
6047 return false;
6048 }
38207291 6049 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
571f9738 6050 tname, arg, info->btf_id, btf_type_str(t),
5b92a28a 6051 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
6052 return true;
6053}
6054
1c6d28a6
JO
6055enum bpf_struct_walk_result {
6056 /* < 0 error */
6057 WALK_SCALAR = 0,
6058 WALK_PTR,
6059 WALK_STRUCT,
6060};
6061
22dc4a0f 6062static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6 6063 const struct btf_type *t, int off, int size,
c6f1bfe8 6064 u32 *next_btf_id, enum bpf_type_flag *flag)
9e15db66 6065{
7e3617a7
MKL
6066 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6067 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 6068 const struct btf_member *member;
c6f1bfe8 6069 const char *tname, *mname, *tag_value;
1c6d28a6 6070 u32 vlen, elem_id, mid;
9e15db66
AS
6071
6072again:
22dc4a0f 6073 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 6074 if (!btf_type_is_struct(t)) {
275517ff 6075 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
6076 return -EINVAL;
6077 }
6078
9c5f8a10 6079 vlen = btf_type_vlen(t);
976aba00 6080 if (off + size > t->size) {
9c5f8a10
YS
6081 /* If the last element is a variable size array, we may
6082 * need to relax the rule.
6083 */
6084 struct btf_array *array_elem;
6085
6086 if (vlen == 0)
6087 goto error;
6088
6089 member = btf_type_member(t) + vlen - 1;
22dc4a0f 6090 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
6091 NULL);
6092 if (!btf_type_is_array(mtype))
6093 goto error;
6094
6095 array_elem = (struct btf_array *)(mtype + 1);
6096 if (array_elem->nelems != 0)
6097 goto error;
6098
8293eb99 6099 moff = __btf_member_bit_offset(t, member) / 8;
9c5f8a10
YS
6100 if (off < moff)
6101 goto error;
6102
6103 /* Only allow structure for now, can be relaxed for
6104 * other types later.
6105 */
22dc4a0f 6106 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
6107 NULL);
6108 if (!btf_type_is_struct(t))
9c5f8a10
YS
6109 goto error;
6110
dafe58fc
JO
6111 off = (off - moff) % t->size;
6112 goto again;
9c5f8a10
YS
6113
6114error:
976aba00
MKL
6115 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6116 tname, off, size);
6117 return -EACCES;
6118 }
9e15db66 6119
976aba00 6120 for_each_member(i, t, member) {
7e3617a7 6121 /* offset of the field in bytes */
8293eb99 6122 moff = __btf_member_bit_offset(t, member) / 8;
7e3617a7 6123 if (off + size <= moff)
9e15db66
AS
6124 /* won't find anything, field is already too far */
6125 break;
976aba00 6126
8293eb99
AS
6127 if (__btf_member_bitfield_size(t, member)) {
6128 u32 end_bit = __btf_member_bit_offset(t, member) +
6129 __btf_member_bitfield_size(t, member);
976aba00
MKL
6130
6131 /* off <= moff instead of off == moff because clang
6132 * does not generate a BTF member for anonymous
6133 * bitfield like the ":16" here:
6134 * struct {
6135 * int :16;
6136 * int x:8;
6137 * };
6138 */
6139 if (off <= moff &&
6140 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 6141 return WALK_SCALAR;
976aba00
MKL
6142
6143 /* off may be accessing a following member
6144 *
6145 * or
6146 *
6147 * Doing partial access at either end of this
6148 * bitfield. Continue on this case also to
6149 * treat it as not accessing this bitfield
6150 * and eventually error out as field not
6151 * found to keep it simple.
6152 * It could be relaxed if there was a legit
6153 * partial access case later.
6154 */
6155 continue;
6156 }
6157
7e3617a7
MKL
6158 /* In case of "off" is pointing to holes of a struct */
6159 if (off < moff)
976aba00 6160 break;
9e15db66
AS
6161
6162 /* type of the field */
1c6d28a6 6163 mid = member->type;
22dc4a0f
AN
6164 mtype = btf_type_by_id(btf, member->type);
6165 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 6166
22dc4a0f 6167 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
6168 &elem_type, &elem_id, &total_nelems,
6169 &mid);
7e3617a7 6170 if (IS_ERR(mtype)) {
9e15db66
AS
6171 bpf_log(log, "field %s doesn't have size\n", mname);
6172 return -EFAULT;
6173 }
7e3617a7
MKL
6174
6175 mtrue_end = moff + msize;
6176 if (off >= mtrue_end)
9e15db66
AS
6177 /* no overlap with member, keep iterating */
6178 continue;
7e3617a7
MKL
6179
6180 if (btf_type_is_array(mtype)) {
6181 u32 elem_idx;
6182
6298399b 6183 /* __btf_resolve_size() above helps to
7e3617a7
MKL
6184 * linearize a multi-dimensional array.
6185 *
6186 * The logic here is treating an array
6187 * in a struct as the following way:
6188 *
6189 * struct outer {
6190 * struct inner array[2][2];
6191 * };
6192 *
6193 * looks like:
6194 *
6195 * struct outer {
6196 * struct inner array_elem0;
6197 * struct inner array_elem1;
6198 * struct inner array_elem2;
6199 * struct inner array_elem3;
6200 * };
6201 *
6202 * When accessing outer->array[1][0], it moves
6203 * moff to "array_elem2", set mtype to
6204 * "struct inner", and msize also becomes
6205 * sizeof(struct inner). Then most of the
6206 * remaining logic will fall through without
6207 * caring the current member is an array or
6208 * not.
6209 *
6210 * Unlike mtype/msize/moff, mtrue_end does not
6211 * change. The naming difference ("_true") tells
6212 * that it is not always corresponding to
6213 * the current mtype/msize/moff.
6214 * It is the true end of the current
6215 * member (i.e. array in this case). That
6216 * will allow an int array to be accessed like
6217 * a scratch space,
6218 * i.e. allow access beyond the size of
6219 * the array's element as long as it is
6220 * within the mtrue_end boundary.
6221 */
6222
6223 /* skip empty array */
6224 if (moff == mtrue_end)
6225 continue;
6226
6227 msize /= total_nelems;
6228 elem_idx = (off - moff) / msize;
6229 moff += elem_idx * msize;
6230 mtype = elem_type;
1c6d28a6 6231 mid = elem_id;
7e3617a7
MKL
6232 }
6233
9e15db66
AS
6234 /* the 'off' we're looking for is either equal to start
6235 * of this field or inside of this struct
6236 */
6237 if (btf_type_is_struct(mtype)) {
6238 /* our field must be inside that union or struct */
6239 t = mtype;
6240
1c6d28a6
JO
6241 /* return if the offset matches the member offset */
6242 if (off == moff) {
6243 *next_btf_id = mid;
6244 return WALK_STRUCT;
6245 }
6246
9e15db66 6247 /* adjust offset we're looking for */
7e3617a7 6248 off -= moff;
9e15db66
AS
6249 goto again;
6250 }
9e15db66
AS
6251
6252 if (btf_type_is_ptr(mtype)) {
c6f1bfe8
YS
6253 const struct btf_type *stype, *t;
6254 enum bpf_type_flag tmp_flag = 0;
257af63d 6255 u32 id;
9e15db66 6256
7e3617a7
MKL
6257 if (msize != size || off != moff) {
6258 bpf_log(log,
6259 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6260 mname, moff, tname, off, size);
6261 return -EACCES;
6262 }
c6f1bfe8 6263
5844101a 6264 /* check type tag */
c6f1bfe8
YS
6265 t = btf_type_by_id(btf, mtype->type);
6266 if (btf_type_is_type_tag(t)) {
6267 tag_value = __btf_name_by_offset(btf, t->name_off);
5844101a 6268 /* check __user tag */
c6f1bfe8
YS
6269 if (strcmp(tag_value, "user") == 0)
6270 tmp_flag = MEM_USER;
5844101a
HL
6271 /* check __percpu tag */
6272 if (strcmp(tag_value, "percpu") == 0)
6273 tmp_flag = MEM_PERCPU;
9bb00b28
YS
6274 /* check __rcu tag */
6275 if (strcmp(tag_value, "rcu") == 0)
6276 tmp_flag = MEM_RCU;
c6f1bfe8
YS
6277 }
6278
22dc4a0f 6279 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 6280 if (btf_type_is_struct(stype)) {
257af63d 6281 *next_btf_id = id;
c6f1bfe8 6282 *flag = tmp_flag;
1c6d28a6 6283 return WALK_PTR;
9e15db66
AS
6284 }
6285 }
7e3617a7
MKL
6286
6287 /* Allow more flexible access within an int as long as
6288 * it is within mtrue_end.
6289 * Since mtrue_end could be the end of an array,
6290 * that also allows using an array of int as a scratch
6291 * space. e.g. skb->cb[].
6292 */
6293 if (off + size > mtrue_end) {
6294 bpf_log(log,
6295 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6296 mname, mtrue_end, tname, off, size);
6297 return -EACCES;
6298 }
6299
1c6d28a6 6300 return WALK_SCALAR;
9e15db66
AS
6301 }
6302 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6303 return -EINVAL;
6304}
6305
6728aea7
KKD
6306int btf_struct_access(struct bpf_verifier_log *log,
6307 const struct bpf_reg_state *reg,
6308 int off, int size, enum bpf_access_type atype __maybe_unused,
c6f1bfe8 6309 u32 *next_btf_id, enum bpf_type_flag *flag)
1c6d28a6 6310{
6728aea7 6311 const struct btf *btf = reg->btf;
c6f1bfe8 6312 enum bpf_type_flag tmp_flag = 0;
6728aea7
KKD
6313 const struct btf_type *t;
6314 u32 id = reg->btf_id;
1c6d28a6 6315 int err;
1c6d28a6 6316
8ffa5cc1
KKD
6317 while (type_is_alloc(reg->type)) {
6318 struct btf_struct_meta *meta;
6319 struct btf_record *rec;
6320 int i;
6321
6322 meta = btf_find_struct_meta(btf, id);
6323 if (!meta)
6324 break;
6325 rec = meta->record;
6326 for (i = 0; i < rec->cnt; i++) {
6327 struct btf_field *field = &rec->fields[i];
6328 u32 offset = field->offset;
6329 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6330 bpf_log(log,
6331 "direct access to %s is disallowed\n",
6332 btf_field_type_name(field->type));
6333 return -EACCES;
6334 }
6335 }
6336 break;
6337 }
6338
6728aea7 6339 t = btf_type_by_id(btf, id);
1c6d28a6 6340 do {
c6f1bfe8 6341 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
1c6d28a6
JO
6342
6343 switch (err) {
6344 case WALK_PTR:
282de143
KKD
6345 /* For local types, the destination register cannot
6346 * become a pointer again.
6347 */
6348 if (type_is_alloc(reg->type))
6349 return SCALAR_VALUE;
1c6d28a6
JO
6350 /* If we found the pointer or scalar on t+off,
6351 * we're done.
6352 */
6353 *next_btf_id = id;
c6f1bfe8 6354 *flag = tmp_flag;
1c6d28a6
JO
6355 return PTR_TO_BTF_ID;
6356 case WALK_SCALAR:
6357 return SCALAR_VALUE;
6358 case WALK_STRUCT:
6359 /* We found nested struct, so continue the search
6360 * by diving in it. At this point the offset is
6361 * aligned with the new type, so set it to 0.
6362 */
22dc4a0f 6363 t = btf_type_by_id(btf, id);
1c6d28a6
JO
6364 off = 0;
6365 break;
6366 default:
6367 /* It's either error or unknown return value..
6368 * scream and leave.
6369 */
6370 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6371 return -EINVAL;
6372 return err;
6373 }
6374 } while (t);
6375
6376 return -EINVAL;
6377}
6378
22dc4a0f
AN
6379/* Check that two BTF types, each specified as an BTF object + id, are exactly
6380 * the same. Trivial ID check is not enough due to module BTFs, because we can
6381 * end up with two different module BTFs, but IDs point to the common type in
6382 * vmlinux BTF.
6383 */
00b85860
KKD
6384bool btf_types_are_same(const struct btf *btf1, u32 id1,
6385 const struct btf *btf2, u32 id2)
22dc4a0f
AN
6386{
6387 if (id1 != id2)
6388 return false;
6389 if (btf1 == btf2)
6390 return true;
6391 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6392}
6393
faaf4a79 6394bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f 6395 const struct btf *btf, u32 id, int off,
2ab3b380
KKD
6396 const struct btf *need_btf, u32 need_type_id,
6397 bool strict)
faaf4a79
JO
6398{
6399 const struct btf_type *type;
c6f1bfe8 6400 enum bpf_type_flag flag;
faaf4a79
JO
6401 int err;
6402
6403 /* Are we already done? */
22dc4a0f 6404 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79 6405 return true;
2ab3b380
KKD
6406 /* In case of strict type match, we do not walk struct, the top level
6407 * type match must succeed. When strict is true, off should have already
6408 * been 0.
6409 */
6410 if (strict)
6411 return false;
faaf4a79 6412again:
22dc4a0f 6413 type = btf_type_by_id(btf, id);
faaf4a79
JO
6414 if (!type)
6415 return false;
c6f1bfe8 6416 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
faaf4a79
JO
6417 if (err != WALK_STRUCT)
6418 return false;
6419
6420 /* We found nested struct object. If it matches
6421 * the requested ID, we're done. Otherwise let's
6422 * continue the search with offset 0 in the new
6423 * type.
6424 */
22dc4a0f 6425 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
6426 off = 0;
6427 goto again;
6428 }
6429
6430 return true;
6431}
6432
fec56f58 6433static int __get_type_size(struct btf *btf, u32 btf_id,
a00ed843 6434 const struct btf_type **ret_type)
fec56f58
AS
6435{
6436 const struct btf_type *t;
6437
a00ed843 6438 *ret_type = btf_type_by_id(btf, 0);
fec56f58
AS
6439 if (!btf_id)
6440 /* void */
6441 return 0;
6442 t = btf_type_by_id(btf, btf_id);
6443 while (t && btf_type_is_modifier(t))
6444 t = btf_type_by_id(btf, t->type);
a00ed843 6445 if (!t)
fec56f58 6446 return -EINVAL;
a00ed843 6447 *ret_type = t;
fec56f58
AS
6448 if (btf_type_is_ptr(t))
6449 /* kernel size of pointer. Not BPF's size of pointer*/
6450 return sizeof(void *);
720e6a43 6451 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
fec56f58 6452 return t->size;
fec56f58
AS
6453 return -EINVAL;
6454}
6455
6456int btf_distill_func_proto(struct bpf_verifier_log *log,
6457 struct btf *btf,
6458 const struct btf_type *func,
6459 const char *tname,
6460 struct btf_func_model *m)
6461{
6462 const struct btf_param *args;
6463 const struct btf_type *t;
6464 u32 i, nargs;
6465 int ret;
6466
5b92a28a
AS
6467 if (!func) {
6468 /* BTF function prototype doesn't match the verifier types.
523a4cf4 6469 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 6470 */
720e6a43 6471 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5b92a28a 6472 m->arg_size[i] = 8;
720e6a43
YS
6473 m->arg_flags[i] = 0;
6474 }
5b92a28a 6475 m->ret_size = 8;
523a4cf4 6476 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
6477 return 0;
6478 }
fec56f58
AS
6479 args = (const struct btf_param *)(func + 1);
6480 nargs = btf_type_vlen(func);
c29a4920 6481 if (nargs > MAX_BPF_FUNC_ARGS) {
fec56f58
AS
6482 bpf_log(log,
6483 "The function %s has %d arguments. Too many.\n",
6484 tname, nargs);
6485 return -EINVAL;
6486 }
6487 ret = __get_type_size(btf, func->type, &t);
720e6a43 6488 if (ret < 0 || __btf_type_is_struct(t)) {
fec56f58
AS
6489 bpf_log(log,
6490 "The function %s return type %s is unsupported.\n",
571f9738 6491 tname, btf_type_str(t));
fec56f58
AS
6492 return -EINVAL;
6493 }
6494 m->ret_size = ret;
6495
6496 for (i = 0; i < nargs; i++) {
31379397
JO
6497 if (i == nargs - 1 && args[i].type == 0) {
6498 bpf_log(log,
6499 "The function %s with variable args is unsupported.\n",
6500 tname);
6501 return -EINVAL;
6502 }
fec56f58 6503 ret = __get_type_size(btf, args[i].type, &t);
720e6a43
YS
6504
6505 /* No support of struct argument size greater than 16 bytes */
6506 if (ret < 0 || ret > 16) {
fec56f58
AS
6507 bpf_log(log,
6508 "The function %s arg%d type %s is unsupported.\n",
571f9738 6509 tname, i, btf_type_str(t));
fec56f58
AS
6510 return -EINVAL;
6511 }
31379397
JO
6512 if (ret == 0) {
6513 bpf_log(log,
6514 "The function %s has malformed void argument.\n",
6515 tname);
6516 return -EINVAL;
6517 }
fec56f58 6518 m->arg_size[i] = ret;
720e6a43 6519 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
fec56f58
AS
6520 }
6521 m->nr_args = nargs;
6522 return 0;
6523}
6524
be8704ff
AS
6525/* Compare BTFs of two functions assuming only scalars and pointers to context.
6526 * t1 points to BTF_KIND_FUNC in btf1
6527 * t2 points to BTF_KIND_FUNC in btf2
6528 * Returns:
6529 * EINVAL - function prototype mismatch
6530 * EFAULT - verifier bug
6531 * 0 - 99% match. The last 1% is validated by the verifier.
6532 */
2bf0eb9b
HY
6533static int btf_check_func_type_match(struct bpf_verifier_log *log,
6534 struct btf *btf1, const struct btf_type *t1,
6535 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
6536{
6537 const struct btf_param *args1, *args2;
6538 const char *fn1, *fn2, *s1, *s2;
6539 u32 nargs1, nargs2, i;
6540
6541 fn1 = btf_name_by_offset(btf1, t1->name_off);
6542 fn2 = btf_name_by_offset(btf2, t2->name_off);
6543
6544 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6545 bpf_log(log, "%s() is not a global function\n", fn1);
6546 return -EINVAL;
6547 }
6548 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6549 bpf_log(log, "%s() is not a global function\n", fn2);
6550 return -EINVAL;
6551 }
6552
6553 t1 = btf_type_by_id(btf1, t1->type);
6554 if (!t1 || !btf_type_is_func_proto(t1))
6555 return -EFAULT;
6556 t2 = btf_type_by_id(btf2, t2->type);
6557 if (!t2 || !btf_type_is_func_proto(t2))
6558 return -EFAULT;
6559
6560 args1 = (const struct btf_param *)(t1 + 1);
6561 nargs1 = btf_type_vlen(t1);
6562 args2 = (const struct btf_param *)(t2 + 1);
6563 nargs2 = btf_type_vlen(t2);
6564
6565 if (nargs1 != nargs2) {
6566 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6567 fn1, nargs1, fn2, nargs2);
6568 return -EINVAL;
6569 }
6570
6571 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6572 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6573 if (t1->info != t2->info) {
6574 bpf_log(log,
6575 "Return type %s of %s() doesn't match type %s of %s()\n",
6576 btf_type_str(t1), fn1,
6577 btf_type_str(t2), fn2);
6578 return -EINVAL;
6579 }
6580
6581 for (i = 0; i < nargs1; i++) {
6582 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6583 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6584
6585 if (t1->info != t2->info) {
6586 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6587 i, fn1, btf_type_str(t1),
6588 fn2, btf_type_str(t2));
6589 return -EINVAL;
6590 }
6591 if (btf_type_has_size(t1) && t1->size != t2->size) {
6592 bpf_log(log,
6593 "arg%d in %s() has size %d while %s() has %d\n",
6594 i, fn1, t1->size,
6595 fn2, t2->size);
6596 return -EINVAL;
6597 }
6598
6599 /* global functions are validated with scalars and pointers
6600 * to context only. And only global functions can be replaced.
6601 * Hence type check only those types.
6602 */
6089fb32 6603 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
be8704ff
AS
6604 continue;
6605 if (!btf_type_is_ptr(t1)) {
6606 bpf_log(log,
6607 "arg%d in %s() has unrecognized type\n",
6608 i, fn1);
6609 return -EINVAL;
6610 }
6611 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6612 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6613 if (!btf_type_is_struct(t1)) {
6614 bpf_log(log,
6615 "arg%d in %s() is not a pointer to context\n",
6616 i, fn1);
6617 return -EINVAL;
6618 }
6619 if (!btf_type_is_struct(t2)) {
6620 bpf_log(log,
6621 "arg%d in %s() is not a pointer to context\n",
6622 i, fn2);
6623 return -EINVAL;
6624 }
6625 /* This is an optional check to make program writing easier.
6626 * Compare names of structs and report an error to the user.
6627 * btf_prepare_func_args() already checked that t2 struct
6628 * is a context type. btf_prepare_func_args() will check
6629 * later that t1 struct is a context type as well.
6630 */
6631 s1 = btf_name_by_offset(btf1, t1->name_off);
6632 s2 = btf_name_by_offset(btf2, t2->name_off);
6633 if (strcmp(s1, s2)) {
6634 bpf_log(log,
6635 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6636 i, fn1, s1, fn2, s2);
6637 return -EINVAL;
6638 }
6639 }
6640 return 0;
6641}
6642
6643/* Compare BTFs of given program with BTF of target program */
efc68158 6644int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
6645 struct btf *btf2, const struct btf_type *t2)
6646{
6647 struct btf *btf1 = prog->aux->btf;
6648 const struct btf_type *t1;
6649 u32 btf_id = 0;
6650
6651 if (!prog->aux->func_info) {
efc68158 6652 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
6653 return -EINVAL;
6654 }
6655
6656 btf_id = prog->aux->func_info[0].type_id;
6657 if (!btf_id)
6658 return -EFAULT;
6659
6660 t1 = btf_type_by_id(btf1, btf_id);
6661 if (!t1 || !btf_type_is_func(t1))
6662 return -EFAULT;
6663
efc68158 6664 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
6665}
6666
34747c41
MKL
6667static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6668 const struct btf *btf, u32 func_id,
6669 struct bpf_reg_state *regs,
a4703e31 6670 bool ptr_to_mem_ok,
95f2f26f 6671 bool processing_call)
8c1b6e69 6672{
f858c2b2 6673 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8c1b6e69 6674 struct bpf_verifier_log *log = &env->log;
34747c41 6675 const char *func_name, *ref_tname;
e5069b9c 6676 const struct btf_type *t, *ref_t;
34747c41 6677 const struct btf_param *args;
00b85860
KKD
6678 u32 i, nargs, ref_id;
6679 int ret;
8c1b6e69 6680
34747c41 6681 t = btf_type_by_id(btf, func_id);
8c1b6e69 6682 if (!t || !btf_type_is_func(t)) {
51c39bb1 6683 /* These checks were already done by the verifier while loading
e6ac2450 6684 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 6685 */
34747c41
MKL
6686 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6687 func_id);
51c39bb1 6688 return -EFAULT;
8c1b6e69 6689 }
34747c41 6690 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
6691
6692 t = btf_type_by_id(btf, t->type);
6693 if (!t || !btf_type_is_func_proto(t)) {
34747c41 6694 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 6695 return -EFAULT;
8c1b6e69
AS
6696 }
6697 args = (const struct btf_param *)(t + 1);
6698 nargs = btf_type_vlen(t);
523a4cf4 6699 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 6700 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 6701 MAX_BPF_FUNC_REG_ARGS);
34747c41 6702 return -EINVAL;
8c1b6e69 6703 }
e5069b9c 6704
8c1b6e69
AS
6705 /* check that BTF function arguments match actual types that the
6706 * verifier sees.
6707 */
6708 for (i = 0; i < nargs; i++) {
8f14852e 6709 enum bpf_arg_type arg_type = ARG_DONTCARE;
34747c41
MKL
6710 u32 regno = i + 1;
6711 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 6712
34747c41
MKL
6713 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6714 if (btf_type_is_scalar(t)) {
feb4adfa 6715 if (reg->type == SCALAR_VALUE)
8c1b6e69 6716 continue;
34747c41
MKL
6717 bpf_log(log, "R%d is not a scalar\n", regno);
6718 return -EINVAL;
8c1b6e69 6719 }
34747c41
MKL
6720
6721 if (!btf_type_is_ptr(t)) {
6722 bpf_log(log, "Unrecognized arg#%d type %s\n",
6723 i, btf_type_str(t));
6724 return -EINVAL;
6725 }
6726
e6ac2450 6727 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 6728 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
655efe50 6729
8f14852e 6730 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
655efe50
KKD
6731 if (ret < 0)
6732 return ret;
6733
00b85860 6734 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
3363bd0c
KKD
6735 /* If function expects ctx type in BTF check that caller
6736 * is passing PTR_TO_CTX.
6737 */
6738 if (reg->type != PTR_TO_CTX) {
6739 bpf_log(log,
6740 "arg#%d expected pointer to ctx, but got %s\n",
6741 i, btf_type_str(t));
6742 return -EINVAL;
6743 }
95f2f26f 6744 } else if (ptr_to_mem_ok && processing_call) {
34747c41
MKL
6745 const struct btf_type *resolve_ret;
6746 u32 type_size;
e5069b9c 6747
34747c41
MKL
6748 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6749 if (IS_ERR(resolve_ret)) {
e5069b9c 6750 bpf_log(log,
34747c41
MKL
6751 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6752 i, btf_type_str(ref_t), ref_tname,
6753 PTR_ERR(resolve_ret));
6754 return -EINVAL;
e5069b9c
DB
6755 }
6756
34747c41
MKL
6757 if (check_mem_reg(env, reg, regno, type_size))
6758 return -EINVAL;
6759 } else {
00b85860
KKD
6760 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6761 func_name, func_id);
34747c41 6762 return -EINVAL;
8c1b6e69 6763 }
8c1b6e69 6764 }
34747c41 6765
00b85860 6766 return 0;
34747c41
MKL
6767}
6768
95f2f26f 6769/* Compare BTF of a function declaration with given bpf_reg_state.
34747c41
MKL
6770 * Returns:
6771 * EFAULT - there is a verifier bug. Abort verification.
6772 * EINVAL - there is a type mismatch or BTF is not available.
6773 * 0 - BTF matches with what bpf_reg_state expects.
6774 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6775 */
6776int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6777 struct bpf_reg_state *regs)
6778{
6779 struct bpf_prog *prog = env->prog;
6780 struct btf *btf = prog->aux->btf;
6781 bool is_global;
6782 u32 btf_id;
6783 int err;
6784
6785 if (!prog->aux->func_info)
6786 return -EINVAL;
6787
6788 btf_id = prog->aux->func_info[subprog].type_id;
6789 if (!btf_id)
6790 return -EFAULT;
6791
6792 if (prog->aux->func_info_aux[subprog].unreliable)
6793 return -EINVAL;
6794
6795 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6796 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
95f2f26f
BT
6797
6798 /* Compiler optimizations can remove arguments from static functions
6799 * or mismatched type can be passed into a global function.
6800 * In such cases mark the function as unreliable from BTF point of view.
6801 */
6802 if (err)
6803 prog->aux->func_info_aux[subprog].unreliable = true;
6804 return err;
6805}
6806
6807/* Compare BTF of a function call with given bpf_reg_state.
6808 * Returns:
6809 * EFAULT - there is a verifier bug. Abort verification.
6810 * EINVAL - there is a type mismatch or BTF is not available.
6811 * 0 - BTF matches with what bpf_reg_state expects.
6812 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6813 *
6814 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6815 * because btf_check_func_arg_match() is still doing both. Once that
6816 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6817 * first, and then treat the calling part in a new code path.
6818 */
6819int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6820 struct bpf_reg_state *regs)
6821{
6822 struct bpf_prog *prog = env->prog;
6823 struct btf *btf = prog->aux->btf;
6824 bool is_global;
6825 u32 btf_id;
6826 int err;
6827
6828 if (!prog->aux->func_info)
6829 return -EINVAL;
6830
6831 btf_id = prog->aux->func_info[subprog].type_id;
6832 if (!btf_id)
6833 return -EFAULT;
6834
6835 if (prog->aux->func_info_aux[subprog].unreliable)
6836 return -EINVAL;
6837
6838 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6839 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
34747c41 6840
51c39bb1
AS
6841 /* Compiler optimizations can remove arguments from static functions
6842 * or mismatched type can be passed into a global function.
6843 * In such cases mark the function as unreliable from BTF point of view.
6844 */
34747c41
MKL
6845 if (err)
6846 prog->aux->func_info_aux[subprog].unreliable = true;
6847 return err;
51c39bb1
AS
6848}
6849
6850/* Convert BTF of a function into bpf_reg_state if possible
6851 * Returns:
6852 * EFAULT - there is a verifier bug. Abort verification.
6853 * EINVAL - cannot convert BTF.
6854 * 0 - Successfully converted BTF into bpf_reg_state
6855 * (either PTR_TO_CTX or SCALAR_VALUE).
6856 */
6857int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 6858 struct bpf_reg_state *regs)
51c39bb1
AS
6859{
6860 struct bpf_verifier_log *log = &env->log;
6861 struct bpf_prog *prog = env->prog;
be8704ff 6862 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
6863 struct btf *btf = prog->aux->btf;
6864 const struct btf_param *args;
e5069b9c 6865 const struct btf_type *t, *ref_t;
51c39bb1
AS
6866 u32 i, nargs, btf_id;
6867 const char *tname;
6868
6869 if (!prog->aux->func_info ||
6870 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6871 bpf_log(log, "Verifier bug\n");
6872 return -EFAULT;
6873 }
6874
6875 btf_id = prog->aux->func_info[subprog].type_id;
6876 if (!btf_id) {
6877 bpf_log(log, "Global functions need valid BTF\n");
6878 return -EFAULT;
6879 }
6880
6881 t = btf_type_by_id(btf, btf_id);
6882 if (!t || !btf_type_is_func(t)) {
6883 /* These checks were already done by the verifier while loading
6884 * struct bpf_func_info
6885 */
6886 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6887 subprog);
6888 return -EFAULT;
6889 }
6890 tname = btf_name_by_offset(btf, t->name_off);
6891
6892 if (log->level & BPF_LOG_LEVEL)
6893 bpf_log(log, "Validating %s() func#%d...\n",
6894 tname, subprog);
6895
6896 if (prog->aux->func_info_aux[subprog].unreliable) {
6897 bpf_log(log, "Verifier bug in function %s()\n", tname);
6898 return -EFAULT;
6899 }
be8704ff 6900 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 6901 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
6902
6903 t = btf_type_by_id(btf, t->type);
6904 if (!t || !btf_type_is_func_proto(t)) {
6905 bpf_log(log, "Invalid type of function %s()\n", tname);
6906 return -EFAULT;
6907 }
6908 args = (const struct btf_param *)(t + 1);
6909 nargs = btf_type_vlen(t);
523a4cf4
DB
6910 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6911 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6912 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
6913 return -EINVAL;
6914 }
6915 /* check that function returns int */
6916 t = btf_type_by_id(btf, t->type);
6917 while (btf_type_is_modifier(t))
6918 t = btf_type_by_id(btf, t->type);
6089fb32 6919 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
51c39bb1
AS
6920 bpf_log(log,
6921 "Global function %s() doesn't return scalar. Only those are supported.\n",
6922 tname);
6923 return -EINVAL;
6924 }
6925 /* Convert BTF function arguments into verifier types.
6926 * Only PTR_TO_CTX and SCALAR are supported atm.
6927 */
6928 for (i = 0; i < nargs; i++) {
feb4adfa
DB
6929 struct bpf_reg_state *reg = &regs[i + 1];
6930
51c39bb1
AS
6931 t = btf_type_by_id(btf, args[i].type);
6932 while (btf_type_is_modifier(t))
6933 t = btf_type_by_id(btf, t->type);
6089fb32 6934 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
feb4adfa 6935 reg->type = SCALAR_VALUE;
51c39bb1
AS
6936 continue;
6937 }
e5069b9c
DB
6938 if (btf_type_is_ptr(t)) {
6939 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6940 reg->type = PTR_TO_CTX;
6941 continue;
6942 }
6943
6944 t = btf_type_skip_modifiers(btf, t->type, NULL);
6945
6946 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6947 if (IS_ERR(ref_t)) {
6948 bpf_log(log,
6949 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6950 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6951 PTR_ERR(ref_t));
6952 return -EINVAL;
6953 }
6954
cf9f2f8d 6955 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
e5069b9c
DB
6956 reg->id = ++env->id_gen;
6957
51c39bb1
AS
6958 continue;
6959 }
6960 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
571f9738 6961 i, btf_type_str(t), tname);
51c39bb1
AS
6962 return -EINVAL;
6963 }
8c1b6e69
AS
6964 return 0;
6965}
6966
31d0bc81
AM
6967static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6968 struct btf_show *show)
6969{
6970 const struct btf_type *t = btf_type_by_id(btf, type_id);
6971
6972 show->btf = btf;
6973 memset(&show->state, 0, sizeof(show->state));
6974 memset(&show->obj, 0, sizeof(show->obj));
6975
6976 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6977}
6978
6979static void btf_seq_show(struct btf_show *show, const char *fmt,
6980 va_list args)
6981{
6982 seq_vprintf((struct seq_file *)show->target, fmt, args);
6983}
6984
eb411377
AM
6985int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6986 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
6987{
6988 struct btf_show sseq;
6989
6990 sseq.target = m;
6991 sseq.showfn = btf_seq_show;
6992 sseq.flags = flags;
6993
6994 btf_type_show(btf, type_id, obj, &sseq);
6995
6996 return sseq.state.status;
6997}
6998
b00b8dae
MKL
6999void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7000 struct seq_file *m)
7001{
31d0bc81
AM
7002 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7003 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7004 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7005}
7006
7007struct btf_show_snprintf {
7008 struct btf_show show;
7009 int len_left; /* space left in string */
7010 int len; /* length we would have written */
7011};
7012
7013static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7014 va_list args)
7015{
7016 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7017 int len;
7018
7019 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7020
7021 if (len < 0) {
7022 ssnprintf->len_left = 0;
7023 ssnprintf->len = len;
58250ae3 7024 } else if (len >= ssnprintf->len_left) {
31d0bc81
AM
7025 /* no space, drive on to get length we would have written */
7026 ssnprintf->len_left = 0;
7027 ssnprintf->len += len;
7028 } else {
7029 ssnprintf->len_left -= len;
7030 ssnprintf->len += len;
7031 show->target += len;
7032 }
7033}
7034
7035int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7036 char *buf, int len, u64 flags)
7037{
7038 struct btf_show_snprintf ssnprintf;
7039
7040 ssnprintf.show.target = buf;
7041 ssnprintf.show.flags = flags;
7042 ssnprintf.show.showfn = btf_snprintf_show;
7043 ssnprintf.len_left = len;
7044 ssnprintf.len = 0;
7045
7046 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7047
c561d110 7048 /* If we encountered an error, return it. */
31d0bc81
AM
7049 if (ssnprintf.show.state.status)
7050 return ssnprintf.show.state.status;
b00b8dae 7051
31d0bc81
AM
7052 /* Otherwise return length we would have written */
7053 return ssnprintf.len;
b00b8dae 7054}
f56a653c 7055
3481e64b
QM
7056#ifdef CONFIG_PROC_FS
7057static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7058{
7059 const struct btf *btf = filp->private_data;
7060
7061 seq_printf(m, "btf_id:\t%u\n", btf->id);
7062}
7063#endif
7064
f56a653c
MKL
7065static int btf_release(struct inode *inode, struct file *filp)
7066{
7067 btf_put(filp->private_data);
7068 return 0;
7069}
7070
60197cfb 7071const struct file_operations btf_fops = {
3481e64b
QM
7072#ifdef CONFIG_PROC_FS
7073 .show_fdinfo = bpf_btf_show_fdinfo,
7074#endif
f56a653c
MKL
7075 .release = btf_release,
7076};
7077
78958fca
MKL
7078static int __btf_new_fd(struct btf *btf)
7079{
7080 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7081}
7082
c571bd75 7083int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
f56a653c
MKL
7084{
7085 struct btf *btf;
78958fca 7086 int ret;
f56a653c 7087
c571bd75 7088 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
f56a653c
MKL
7089 attr->btf_size, attr->btf_log_level,
7090 u64_to_user_ptr(attr->btf_log_buf),
7091 attr->btf_log_size);
7092 if (IS_ERR(btf))
7093 return PTR_ERR(btf);
7094
78958fca
MKL
7095 ret = btf_alloc_id(btf);
7096 if (ret) {
7097 btf_free(btf);
7098 return ret;
7099 }
7100
7101 /*
7102 * The BTF ID is published to the userspace.
7103 * All BTF free must go through call_rcu() from
7104 * now on (i.e. free by calling btf_put()).
7105 */
7106
7107 ret = __btf_new_fd(btf);
7108 if (ret < 0)
f56a653c
MKL
7109 btf_put(btf);
7110
78958fca 7111 return ret;
f56a653c
MKL
7112}
7113
7114struct btf *btf_get_by_fd(int fd)
7115{
7116 struct btf *btf;
7117 struct fd f;
7118
7119 f = fdget(fd);
7120
7121 if (!f.file)
7122 return ERR_PTR(-EBADF);
7123
7124 if (f.file->f_op != &btf_fops) {
7125 fdput(f);
7126 return ERR_PTR(-EINVAL);
7127 }
7128
7129 btf = f.file->private_data;
78958fca 7130 refcount_inc(&btf->refcnt);
f56a653c
MKL
7131 fdput(f);
7132
7133 return btf;
7134}
60197cfb
MKL
7135
7136int btf_get_info_by_fd(const struct btf *btf,
7137 const union bpf_attr *attr,
7138 union bpf_attr __user *uattr)
7139{
62dab84c 7140 struct bpf_btf_info __user *uinfo;
5c6f2588 7141 struct bpf_btf_info info;
62dab84c
MKL
7142 u32 info_copy, btf_copy;
7143 void __user *ubtf;
53297220
AN
7144 char __user *uname;
7145 u32 uinfo_len, uname_len, name_len;
7146 int ret = 0;
60197cfb 7147
62dab84c
MKL
7148 uinfo = u64_to_user_ptr(attr->info.info);
7149 uinfo_len = attr->info.info_len;
7150
7151 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 7152 memset(&info, 0, sizeof(info));
62dab84c
MKL
7153 if (copy_from_user(&info, uinfo, info_copy))
7154 return -EFAULT;
7155
7156 info.id = btf->id;
7157 ubtf = u64_to_user_ptr(info.btf);
7158 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7159 if (copy_to_user(ubtf, btf->data, btf_copy))
7160 return -EFAULT;
7161 info.btf_size = btf->data_size;
7162
53297220
AN
7163 info.kernel_btf = btf->kernel_btf;
7164
7165 uname = u64_to_user_ptr(info.name);
7166 uname_len = info.name_len;
7167 if (!uname ^ !uname_len)
7168 return -EINVAL;
7169
7170 name_len = strlen(btf->name);
7171 info.name_len = name_len;
7172
7173 if (uname) {
7174 if (uname_len >= name_len + 1) {
7175 if (copy_to_user(uname, btf->name, name_len + 1))
7176 return -EFAULT;
7177 } else {
7178 char zero = '\0';
7179
7180 if (copy_to_user(uname, btf->name, uname_len - 1))
7181 return -EFAULT;
7182 if (put_user(zero, uname + uname_len - 1))
7183 return -EFAULT;
7184 /* let user-space know about too short buffer */
7185 ret = -ENOSPC;
7186 }
7187 }
7188
62dab84c
MKL
7189 if (copy_to_user(uinfo, &info, info_copy) ||
7190 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
7191 return -EFAULT;
7192
53297220 7193 return ret;
60197cfb 7194}
78958fca
MKL
7195
7196int btf_get_fd_by_id(u32 id)
7197{
7198 struct btf *btf;
7199 int fd;
7200
7201 rcu_read_lock();
7202 btf = idr_find(&btf_idr, id);
7203 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7204 btf = ERR_PTR(-ENOENT);
7205 rcu_read_unlock();
7206
7207 if (IS_ERR(btf))
7208 return PTR_ERR(btf);
7209
7210 fd = __btf_new_fd(btf);
7211 if (fd < 0)
7212 btf_put(btf);
7213
7214 return fd;
7215}
7216
22dc4a0f 7217u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
7218{
7219 return btf->id;
7220}
eae2e83e 7221
290248a5
AN
7222bool btf_is_kernel(const struct btf *btf)
7223{
7224 return btf->kernel_btf;
7225}
7226
541c3bad
AN
7227bool btf_is_module(const struct btf *btf)
7228{
7229 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7230}
7231
18688de2
KKD
7232enum {
7233 BTF_MODULE_F_LIVE = (1 << 0),
7234};
7235
36e68442
AN
7236#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7237struct btf_module {
7238 struct list_head list;
7239 struct module *module;
7240 struct btf *btf;
7241 struct bin_attribute *sysfs_attr;
18688de2 7242 int flags;
36e68442
AN
7243};
7244
7245static LIST_HEAD(btf_modules);
7246static DEFINE_MUTEX(btf_module_mutex);
7247
7248static ssize_t
7249btf_module_read(struct file *file, struct kobject *kobj,
7250 struct bin_attribute *bin_attr,
7251 char *buf, loff_t off, size_t len)
7252{
7253 const struct btf *btf = bin_attr->private;
7254
7255 memcpy(buf, btf->data + off, len);
7256 return len;
7257}
7258
1e89106d
AS
7259static void purge_cand_cache(struct btf *btf);
7260
36e68442
AN
7261static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7262 void *module)
7263{
7264 struct btf_module *btf_mod, *tmp;
7265 struct module *mod = module;
7266 struct btf *btf;
7267 int err = 0;
7268
7269 if (mod->btf_data_size == 0 ||
18688de2
KKD
7270 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7271 op != MODULE_STATE_GOING))
36e68442
AN
7272 goto out;
7273
7274 switch (op) {
7275 case MODULE_STATE_COMING:
7276 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7277 if (!btf_mod) {
7278 err = -ENOMEM;
7279 goto out;
7280 }
7281 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7282 if (IS_ERR(btf)) {
36e68442 7283 kfree(btf_mod);
9cb61e50
CB
7284 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7285 pr_warn("failed to validate module [%s] BTF: %ld\n",
7286 mod->name, PTR_ERR(btf));
5e214f2e 7287 err = PTR_ERR(btf);
9cb61e50
CB
7288 } else {
7289 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7290 }
36e68442
AN
7291 goto out;
7292 }
7293 err = btf_alloc_id(btf);
7294 if (err) {
7295 btf_free(btf);
7296 kfree(btf_mod);
7297 goto out;
7298 }
7299
1e89106d 7300 purge_cand_cache(NULL);
36e68442
AN
7301 mutex_lock(&btf_module_mutex);
7302 btf_mod->module = module;
7303 btf_mod->btf = btf;
7304 list_add(&btf_mod->list, &btf_modules);
7305 mutex_unlock(&btf_module_mutex);
7306
7307 if (IS_ENABLED(CONFIG_SYSFS)) {
7308 struct bin_attribute *attr;
7309
7310 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7311 if (!attr)
7312 goto out;
7313
7314 sysfs_bin_attr_init(attr);
7315 attr->attr.name = btf->name;
7316 attr->attr.mode = 0444;
7317 attr->size = btf->data_size;
7318 attr->private = btf;
7319 attr->read = btf_module_read;
7320
7321 err = sysfs_create_bin_file(btf_kobj, attr);
7322 if (err) {
7323 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7324 mod->name, err);
7325 kfree(attr);
7326 err = 0;
7327 goto out;
7328 }
7329
7330 btf_mod->sysfs_attr = attr;
7331 }
7332
18688de2
KKD
7333 break;
7334 case MODULE_STATE_LIVE:
7335 mutex_lock(&btf_module_mutex);
7336 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7337 if (btf_mod->module != module)
7338 continue;
7339
7340 btf_mod->flags |= BTF_MODULE_F_LIVE;
7341 break;
7342 }
7343 mutex_unlock(&btf_module_mutex);
36e68442
AN
7344 break;
7345 case MODULE_STATE_GOING:
7346 mutex_lock(&btf_module_mutex);
7347 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7348 if (btf_mod->module != module)
7349 continue;
7350
7351 list_del(&btf_mod->list);
7352 if (btf_mod->sysfs_attr)
7353 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
1e89106d 7354 purge_cand_cache(btf_mod->btf);
36e68442
AN
7355 btf_put(btf_mod->btf);
7356 kfree(btf_mod->sysfs_attr);
7357 kfree(btf_mod);
7358 break;
7359 }
7360 mutex_unlock(&btf_module_mutex);
7361 break;
7362 }
7363out:
7364 return notifier_from_errno(err);
7365}
7366
7367static struct notifier_block btf_module_nb = {
7368 .notifier_call = btf_module_notify,
7369};
7370
7371static int __init btf_module_init(void)
7372{
7373 register_module_notifier(&btf_module_nb);
7374 return 0;
7375}
7376
7377fs_initcall(btf_module_init);
7378#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
7379
7380struct module *btf_try_get_module(const struct btf *btf)
7381{
7382 struct module *res = NULL;
7383#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7384 struct btf_module *btf_mod, *tmp;
7385
7386 mutex_lock(&btf_module_mutex);
7387 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7388 if (btf_mod->btf != btf)
7389 continue;
7390
18688de2
KKD
7391 /* We must only consider module whose __init routine has
7392 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7393 * which is set from the notifier callback for
7394 * MODULE_STATE_LIVE.
7395 */
7396 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
541c3bad
AN
7397 res = btf_mod->module;
7398
7399 break;
7400 }
7401 mutex_unlock(&btf_module_mutex);
7402#endif
7403
7404 return res;
7405}
3d78417b 7406
9492450f
KKD
7407/* Returns struct btf corresponding to the struct module.
7408 * This function can return NULL or ERR_PTR.
dee872e1
KKD
7409 */
7410static struct btf *btf_get_module_btf(const struct module *module)
7411{
dee872e1
KKD
7412#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7413 struct btf_module *btf_mod, *tmp;
7414#endif
9492450f
KKD
7415 struct btf *btf = NULL;
7416
7417 if (!module) {
7418 btf = bpf_get_btf_vmlinux();
7ada3787 7419 if (!IS_ERR_OR_NULL(btf))
9492450f
KKD
7420 btf_get(btf);
7421 return btf;
7422 }
dee872e1 7423
dee872e1
KKD
7424#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7425 mutex_lock(&btf_module_mutex);
7426 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7427 if (btf_mod->module != module)
7428 continue;
7429
7430 btf_get(btf_mod->btf);
7431 btf = btf_mod->btf;
7432 break;
7433 }
7434 mutex_unlock(&btf_module_mutex);
7435#endif
7436
7437 return btf;
7438}
7439
3d78417b
AS
7440BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7441{
edc3ec09
KKD
7442 struct btf *btf = NULL;
7443 int btf_obj_fd = 0;
3d78417b
AS
7444 long ret;
7445
7446 if (flags)
7447 return -EINVAL;
7448
7449 if (name_sz <= 1 || name[name_sz - 1])
7450 return -EINVAL;
7451
edc3ec09
KKD
7452 ret = bpf_find_btf_id(name, kind, &btf);
7453 if (ret > 0 && btf_is_module(btf)) {
7454 btf_obj_fd = __btf_new_fd(btf);
7455 if (btf_obj_fd < 0) {
7456 btf_put(btf);
7457 return btf_obj_fd;
3d78417b 7458 }
edc3ec09 7459 return ret | (((u64)btf_obj_fd) << 32);
3d78417b 7460 }
edc3ec09
KKD
7461 if (ret > 0)
7462 btf_put(btf);
3d78417b
AS
7463 return ret;
7464}
7465
7466const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7467 .func = bpf_btf_find_by_name_kind,
7468 .gpl_only = false,
7469 .ret_type = RET_INTEGER,
216e3cd2 7470 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
3d78417b
AS
7471 .arg2_type = ARG_CONST_SIZE,
7472 .arg3_type = ARG_ANYTHING,
7473 .arg4_type = ARG_ANYTHING,
7474};
eb529c5b 7475
d19ddb47
SL
7476BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7477#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7478BTF_TRACING_TYPE_xxx
7479#undef BTF_TRACING_TYPE
14f267d9 7480
dee872e1 7481/* Kernel Function (kfunc) BTF ID set registration API */
14f267d9 7482
a4703e31
KKD
7483static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7484 struct btf_id_set8 *add_set)
14f267d9 7485{
a4703e31 7486 bool vmlinux_set = !btf_is_module(btf);
dee872e1 7487 struct btf_kfunc_set_tab *tab;
a4703e31 7488 struct btf_id_set8 *set;
dee872e1
KKD
7489 u32 set_cnt;
7490 int ret;
7491
a4703e31 7492 if (hook >= BTF_KFUNC_HOOK_MAX) {
dee872e1
KKD
7493 ret = -EINVAL;
7494 goto end;
7495 }
7496
7497 if (!add_set->cnt)
7498 return 0;
7499
7500 tab = btf->kfunc_set_tab;
7501 if (!tab) {
7502 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7503 if (!tab)
7504 return -ENOMEM;
7505 btf->kfunc_set_tab = tab;
7506 }
7507
a4703e31 7508 set = tab->sets[hook];
dee872e1
KKD
7509 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7510 * for module sets.
7511 */
7512 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7513 ret = -EINVAL;
7514 goto end;
7515 }
7516
7517 /* We don't need to allocate, concatenate, and sort module sets, because
7518 * only one is allowed per hook. Hence, we can directly assign the
7519 * pointer and return.
7520 */
7521 if (!vmlinux_set) {
a4703e31 7522 tab->sets[hook] = add_set;
dee872e1
KKD
7523 return 0;
7524 }
7525
7526 /* In case of vmlinux sets, there may be more than one set being
7527 * registered per hook. To create a unified set, we allocate a new set
7528 * and concatenate all individual sets being registered. While each set
7529 * is individually sorted, they may become unsorted when concatenated,
7530 * hence re-sorting the final set again is required to make binary
a4703e31 7531 * searching the set using btf_id_set8_contains function work.
dee872e1
KKD
7532 */
7533 set_cnt = set ? set->cnt : 0;
7534
7535 if (set_cnt > U32_MAX - add_set->cnt) {
7536 ret = -EOVERFLOW;
7537 goto end;
7538 }
7539
7540 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7541 ret = -E2BIG;
7542 goto end;
7543 }
7544
7545 /* Grow set */
a4703e31
KKD
7546 set = krealloc(tab->sets[hook],
7547 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
dee872e1
KKD
7548 GFP_KERNEL | __GFP_NOWARN);
7549 if (!set) {
7550 ret = -ENOMEM;
7551 goto end;
7552 }
7553
7554 /* For newly allocated set, initialize set->cnt to 0 */
a4703e31 7555 if (!tab->sets[hook])
dee872e1 7556 set->cnt = 0;
a4703e31 7557 tab->sets[hook] = set;
dee872e1
KKD
7558
7559 /* Concatenate the two sets */
a4703e31 7560 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
dee872e1
KKD
7561 set->cnt += add_set->cnt;
7562
a4703e31 7563 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
dee872e1
KKD
7564
7565 return 0;
7566end:
7567 btf_free_kfunc_set_tab(btf);
7568 return ret;
14f267d9 7569}
14f267d9 7570
a4703e31 7571static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7572 enum btf_kfunc_hook hook,
dee872e1 7573 u32 kfunc_btf_id)
14f267d9 7574{
a4703e31
KKD
7575 struct btf_id_set8 *set;
7576 u32 *id;
14f267d9 7577
a4703e31
KKD
7578 if (hook >= BTF_KFUNC_HOOK_MAX)
7579 return NULL;
dee872e1 7580 if (!btf->kfunc_set_tab)
a4703e31
KKD
7581 return NULL;
7582 set = btf->kfunc_set_tab->sets[hook];
dee872e1 7583 if (!set)
a4703e31
KKD
7584 return NULL;
7585 id = btf_id_set8_contains(set, kfunc_btf_id);
7586 if (!id)
7587 return NULL;
7588 /* The flags for BTF ID are located next to it */
7589 return id + 1;
dee872e1
KKD
7590}
7591
7592static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7593{
7594 switch (prog_type) {
cfe14564
YS
7595 case BPF_PROG_TYPE_UNSPEC:
7596 return BTF_KFUNC_HOOK_COMMON;
dee872e1
KKD
7597 case BPF_PROG_TYPE_XDP:
7598 return BTF_KFUNC_HOOK_XDP;
7599 case BPF_PROG_TYPE_SCHED_CLS:
7600 return BTF_KFUNC_HOOK_TC;
7601 case BPF_PROG_TYPE_STRUCT_OPS:
7602 return BTF_KFUNC_HOOK_STRUCT_OPS;
97949767 7603 case BPF_PROG_TYPE_TRACING:
d15bf150 7604 case BPF_PROG_TYPE_LSM:
97949767
BT
7605 return BTF_KFUNC_HOOK_TRACING;
7606 case BPF_PROG_TYPE_SYSCALL:
7607 return BTF_KFUNC_HOOK_SYSCALL;
dee872e1
KKD
7608 default:
7609 return BTF_KFUNC_HOOK_MAX;
14f267d9 7610 }
14f267d9
KKD
7611}
7612
dee872e1
KKD
7613/* Caution:
7614 * Reference to the module (obtained using btf_try_get_module) corresponding to
7615 * the struct btf *MUST* be held when calling this function from verifier
7616 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7617 * keeping the reference for the duration of the call provides the necessary
7618 * protection for looking up a well-formed btf->kfunc_set_tab.
7619 */
a4703e31 7620u32 *btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7621 enum bpf_prog_type prog_type,
a4703e31 7622 u32 kfunc_btf_id)
dee872e1
KKD
7623{
7624 enum btf_kfunc_hook hook;
cfe14564
YS
7625 u32 *kfunc_flags;
7626
7627 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7628 if (kfunc_flags)
7629 return kfunc_flags;
0e32dfc8 7630
dee872e1 7631 hook = bpf_prog_type_to_kfunc_hook(prog_type);
a4703e31 7632 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
dee872e1 7633}
d9847eb8 7634
5b481aca
BT
7635u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7636{
7637 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7638}
7639
7640static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7641 const struct btf_kfunc_id_set *kset)
dee872e1 7642{
dee872e1
KKD
7643 struct btf *btf;
7644 int ret;
7645
7646 btf = btf_get_module_btf(kset->owner);
c446fdac
SF
7647 if (!btf) {
7648 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7649 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7650 return -ENOENT;
7651 }
7652 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7653 pr_err("missing module BTF, cannot register kfuncs\n");
7654 return -ENOENT;
7655 }
7656 return 0;
7657 }
7658 if (IS_ERR(btf))
7659 return PTR_ERR(btf);
dee872e1 7660
a4703e31 7661 ret = btf_populate_kfunc_set(btf, hook, kset->set);
9492450f 7662 btf_put(btf);
dee872e1
KKD
7663 return ret;
7664}
5b481aca
BT
7665
7666/* This function must be invoked only from initcalls/module init functions */
7667int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7668 const struct btf_kfunc_id_set *kset)
7669{
7670 enum btf_kfunc_hook hook;
7671
7672 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7673 return __register_btf_kfunc_id_set(hook, kset);
7674}
dee872e1 7675EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
be315829 7676
5b481aca
BT
7677/* This function must be invoked only from initcalls/module init functions */
7678int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7679{
7680 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7681}
7682EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7683
5ce937d6
KKD
7684s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7685{
7686 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7687 struct btf_id_dtor_kfunc *dtor;
7688
7689 if (!tab)
7690 return -ENOENT;
7691 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7692 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7693 */
7694 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7695 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7696 if (!dtor)
7697 return -ENOENT;
7698 return dtor->kfunc_btf_id;
7699}
7700
14a324f6
KKD
7701static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7702{
7703 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7704 const struct btf_param *args;
7705 s32 dtor_btf_id;
7706 u32 nr_args, i;
7707
7708 for (i = 0; i < cnt; i++) {
7709 dtor_btf_id = dtors[i].kfunc_btf_id;
7710
7711 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7712 if (!dtor_func || !btf_type_is_func(dtor_func))
7713 return -EINVAL;
7714
7715 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7716 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7717 return -EINVAL;
7718
7719 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7720 t = btf_type_by_id(btf, dtor_func_proto->type);
7721 if (!t || !btf_type_is_void(t))
7722 return -EINVAL;
7723
7724 nr_args = btf_type_vlen(dtor_func_proto);
7725 if (nr_args != 1)
7726 return -EINVAL;
7727 args = btf_params(dtor_func_proto);
7728 t = btf_type_by_id(btf, args[0].type);
7729 /* Allow any pointer type, as width on targets Linux supports
7730 * will be same for all pointer types (i.e. sizeof(void *))
7731 */
7732 if (!t || !btf_type_is_ptr(t))
7733 return -EINVAL;
7734 }
7735 return 0;
7736}
7737
5ce937d6
KKD
7738/* This function must be invoked only from initcalls/module init functions */
7739int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7740 struct module *owner)
7741{
7742 struct btf_id_dtor_kfunc_tab *tab;
7743 struct btf *btf;
7744 u32 tab_cnt;
7745 int ret;
7746
7747 btf = btf_get_module_btf(owner);
7748 if (!btf) {
7749 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7750 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7751 return -ENOENT;
7752 }
7753 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7754 pr_err("missing module BTF, cannot register dtor kfuncs\n");
7755 return -ENOENT;
7756 }
7757 return 0;
7758 }
7759 if (IS_ERR(btf))
7760 return PTR_ERR(btf);
7761
7762 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7763 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7764 ret = -E2BIG;
7765 goto end;
7766 }
7767
14a324f6
KKD
7768 /* Ensure that the prototype of dtor kfuncs being registered is sane */
7769 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7770 if (ret < 0)
7771 goto end;
7772
5ce937d6
KKD
7773 tab = btf->dtor_kfunc_tab;
7774 /* Only one call allowed for modules */
7775 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7776 ret = -EINVAL;
7777 goto end;
7778 }
7779
7780 tab_cnt = tab ? tab->cnt : 0;
7781 if (tab_cnt > U32_MAX - add_cnt) {
7782 ret = -EOVERFLOW;
7783 goto end;
7784 }
7785 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7786 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7787 ret = -E2BIG;
7788 goto end;
7789 }
7790
7791 tab = krealloc(btf->dtor_kfunc_tab,
7792 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7793 GFP_KERNEL | __GFP_NOWARN);
7794 if (!tab) {
7795 ret = -ENOMEM;
7796 goto end;
7797 }
7798
7799 if (!btf->dtor_kfunc_tab)
7800 tab->cnt = 0;
7801 btf->dtor_kfunc_tab = tab;
7802
7803 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7804 tab->cnt += add_cnt;
7805
7806 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7807
7808 return 0;
7809end:
7810 btf_free_dtor_kfunc_tab(btf);
7811 btf_put(btf);
7812 return ret;
7813}
7814EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7815
e70e13e7
MC
7816#define MAX_TYPES_ARE_COMPAT_DEPTH 2
7817
e70e13e7
MC
7818/* Check local and target types for compatibility. This check is used for
7819 * type-based CO-RE relocations and follow slightly different rules than
7820 * field-based relocations. This function assumes that root types were already
7821 * checked for name match. Beyond that initial root-level name check, names
7822 * are completely ignored. Compatibility rules are as follows:
6089fb32 7823 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
e70e13e7
MC
7824 * kind should match for local and target types (i.e., STRUCT is not
7825 * compatible with UNION);
6089fb32 7826 * - for ENUMs/ENUM64s, the size is ignored;
e70e13e7
MC
7827 * - for INT, size and signedness are ignored;
7828 * - for ARRAY, dimensionality is ignored, element types are checked for
7829 * compatibility recursively;
7830 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
7831 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7832 * - FUNC_PROTOs are compatible if they have compatible signature: same
7833 * number of input args and compatible return and argument types.
7834 * These rules are not set in stone and probably will be adjusted as we get
7835 * more experience with using BPF CO-RE relocations.
7836 */
29db4bea
AS
7837int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7838 const struct btf *targ_btf, __u32 targ_id)
7839{
fd75733d 7840 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
e70e13e7 7841 MAX_TYPES_ARE_COMPAT_DEPTH);
29db4bea
AS
7842}
7843
ec6209c8
DM
7844#define MAX_TYPES_MATCH_DEPTH 2
7845
7846int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7847 const struct btf *targ_btf, u32 targ_id)
7848{
7849 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7850 MAX_TYPES_MATCH_DEPTH);
7851}
7852
29db4bea
AS
7853static bool bpf_core_is_flavor_sep(const char *s)
7854{
7855 /* check X___Y name pattern, where X and Y are not underscores */
7856 return s[0] != '_' && /* X */
7857 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
7858 s[4] != '_'; /* Y */
7859}
7860
7861size_t bpf_core_essential_name_len(const char *name)
7862{
7863 size_t n = strlen(name);
7864 int i;
7865
7866 for (i = n - 5; i >= 0; i--) {
7867 if (bpf_core_is_flavor_sep(name + i))
7868 return i + 1;
7869 }
7870 return n;
7871}
fbd94c7a 7872
1e89106d
AS
7873struct bpf_cand_cache {
7874 const char *name;
7875 u32 name_len;
7876 u16 kind;
7877 u16 cnt;
7878 struct {
7879 const struct btf *btf;
7880 u32 id;
7881 } cands[];
7882};
7883
7884static void bpf_free_cands(struct bpf_cand_cache *cands)
7885{
7886 if (!cands->cnt)
7887 /* empty candidate array was allocated on stack */
7888 return;
7889 kfree(cands);
7890}
7891
7892static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7893{
7894 kfree(cands->name);
7895 kfree(cands);
7896}
7897
7898#define VMLINUX_CAND_CACHE_SIZE 31
7899static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7900
7901#define MODULE_CAND_CACHE_SIZE 31
7902static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7903
7904static DEFINE_MUTEX(cand_cache_mutex);
7905
7906static void __print_cand_cache(struct bpf_verifier_log *log,
7907 struct bpf_cand_cache **cache,
7908 int cache_size)
7909{
7910 struct bpf_cand_cache *cc;
7911 int i, j;
7912
7913 for (i = 0; i < cache_size; i++) {
7914 cc = cache[i];
7915 if (!cc)
7916 continue;
7917 bpf_log(log, "[%d]%s(", i, cc->name);
7918 for (j = 0; j < cc->cnt; j++) {
7919 bpf_log(log, "%d", cc->cands[j].id);
7920 if (j < cc->cnt - 1)
7921 bpf_log(log, " ");
7922 }
7923 bpf_log(log, "), ");
7924 }
7925}
7926
7927static void print_cand_cache(struct bpf_verifier_log *log)
7928{
7929 mutex_lock(&cand_cache_mutex);
7930 bpf_log(log, "vmlinux_cand_cache:");
7931 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7932 bpf_log(log, "\nmodule_cand_cache:");
7933 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7934 bpf_log(log, "\n");
7935 mutex_unlock(&cand_cache_mutex);
7936}
7937
7938static u32 hash_cands(struct bpf_cand_cache *cands)
7939{
7940 return jhash(cands->name, cands->name_len, 0);
7941}
7942
7943static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7944 struct bpf_cand_cache **cache,
7945 int cache_size)
7946{
7947 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7948
7949 if (cc && cc->name_len == cands->name_len &&
7950 !strncmp(cc->name, cands->name, cands->name_len))
7951 return cc;
7952 return NULL;
7953}
7954
7955static size_t sizeof_cands(int cnt)
7956{
7957 return offsetof(struct bpf_cand_cache, cands[cnt]);
7958}
7959
7960static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7961 struct bpf_cand_cache **cache,
7962 int cache_size)
7963{
7964 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7965
7966 if (*cc) {
7967 bpf_free_cands_from_cache(*cc);
7968 *cc = NULL;
7969 }
4674f210 7970 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
1e89106d
AS
7971 if (!new_cands) {
7972 bpf_free_cands(cands);
7973 return ERR_PTR(-ENOMEM);
7974 }
1e89106d
AS
7975 /* strdup the name, since it will stay in cache.
7976 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7977 */
7978 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7979 bpf_free_cands(cands);
7980 if (!new_cands->name) {
7981 kfree(new_cands);
7982 return ERR_PTR(-ENOMEM);
7983 }
7984 *cc = new_cands;
7985 return new_cands;
7986}
7987
29f2e5bd 7988#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
1e89106d
AS
7989static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7990 int cache_size)
7991{
7992 struct bpf_cand_cache *cc;
7993 int i, j;
7994
7995 for (i = 0; i < cache_size; i++) {
7996 cc = cache[i];
7997 if (!cc)
7998 continue;
7999 if (!btf) {
8000 /* when new module is loaded purge all of module_cand_cache,
8001 * since new module might have candidates with the name
8002 * that matches cached cands.
8003 */
8004 bpf_free_cands_from_cache(cc);
8005 cache[i] = NULL;
8006 continue;
8007 }
8008 /* when module is unloaded purge cache entries
8009 * that match module's btf
8010 */
8011 for (j = 0; j < cc->cnt; j++)
8012 if (cc->cands[j].btf == btf) {
8013 bpf_free_cands_from_cache(cc);
8014 cache[i] = NULL;
8015 break;
8016 }
8017 }
8018
8019}
8020
8021static void purge_cand_cache(struct btf *btf)
8022{
8023 mutex_lock(&cand_cache_mutex);
8024 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8025 mutex_unlock(&cand_cache_mutex);
8026}
29f2e5bd 8027#endif
1e89106d
AS
8028
8029static struct bpf_cand_cache *
8030bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8031 int targ_start_id)
8032{
8033 struct bpf_cand_cache *new_cands;
8034 const struct btf_type *t;
8035 const char *targ_name;
8036 size_t targ_essent_len;
8037 int n, i;
8038
8039 n = btf_nr_types(targ_btf);
8040 for (i = targ_start_id; i < n; i++) {
8041 t = btf_type_by_id(targ_btf, i);
8042 if (btf_kind(t) != cands->kind)
8043 continue;
8044
8045 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8046 if (!targ_name)
8047 continue;
8048
8049 /* the resched point is before strncmp to make sure that search
8050 * for non-existing name will have a chance to schedule().
8051 */
8052 cond_resched();
8053
8054 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8055 continue;
8056
8057 targ_essent_len = bpf_core_essential_name_len(targ_name);
8058 if (targ_essent_len != cands->name_len)
8059 continue;
8060
8061 /* most of the time there is only one candidate for a given kind+name pair */
8062 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8063 if (!new_cands) {
8064 bpf_free_cands(cands);
8065 return ERR_PTR(-ENOMEM);
8066 }
8067
8068 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8069 bpf_free_cands(cands);
8070 cands = new_cands;
8071 cands->cands[cands->cnt].btf = targ_btf;
8072 cands->cands[cands->cnt].id = i;
8073 cands->cnt++;
8074 }
8075 return cands;
8076}
8077
8078static struct bpf_cand_cache *
8079bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8080{
8081 struct bpf_cand_cache *cands, *cc, local_cand = {};
8082 const struct btf *local_btf = ctx->btf;
8083 const struct btf_type *local_type;
8084 const struct btf *main_btf;
8085 size_t local_essent_len;
8086 struct btf *mod_btf;
8087 const char *name;
8088 int id;
8089
8090 main_btf = bpf_get_btf_vmlinux();
8091 if (IS_ERR(main_btf))
f18a4997 8092 return ERR_CAST(main_btf);
7ada3787
KKD
8093 if (!main_btf)
8094 return ERR_PTR(-EINVAL);
1e89106d
AS
8095
8096 local_type = btf_type_by_id(local_btf, local_type_id);
8097 if (!local_type)
8098 return ERR_PTR(-EINVAL);
8099
8100 name = btf_name_by_offset(local_btf, local_type->name_off);
8101 if (str_is_empty(name))
8102 return ERR_PTR(-EINVAL);
8103 local_essent_len = bpf_core_essential_name_len(name);
8104
8105 cands = &local_cand;
8106 cands->name = name;
8107 cands->kind = btf_kind(local_type);
8108 cands->name_len = local_essent_len;
8109
8110 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8111 /* cands is a pointer to stack here */
8112 if (cc) {
8113 if (cc->cnt)
8114 return cc;
8115 goto check_modules;
8116 }
8117
8118 /* Attempt to find target candidates in vmlinux BTF first */
8119 cands = bpf_core_add_cands(cands, main_btf, 1);
8120 if (IS_ERR(cands))
f18a4997 8121 return ERR_CAST(cands);
1e89106d
AS
8122
8123 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8124
8125 /* populate cache even when cands->cnt == 0 */
8126 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8127 if (IS_ERR(cc))
f18a4997 8128 return ERR_CAST(cc);
1e89106d
AS
8129
8130 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8131 if (cc->cnt)
8132 return cc;
8133
8134check_modules:
8135 /* cands is a pointer to stack here and cands->cnt == 0 */
8136 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8137 if (cc)
8138 /* if cache has it return it even if cc->cnt == 0 */
8139 return cc;
8140
8141 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8142 spin_lock_bh(&btf_idr_lock);
8143 idr_for_each_entry(&btf_idr, mod_btf, id) {
8144 if (!btf_is_module(mod_btf))
8145 continue;
8146 /* linear search could be slow hence unlock/lock
8147 * the IDR to avoiding holding it for too long
8148 */
8149 btf_get(mod_btf);
8150 spin_unlock_bh(&btf_idr_lock);
8151 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8152 if (IS_ERR(cands)) {
8153 btf_put(mod_btf);
f18a4997 8154 return ERR_CAST(cands);
1e89106d
AS
8155 }
8156 spin_lock_bh(&btf_idr_lock);
8157 btf_put(mod_btf);
8158 }
8159 spin_unlock_bh(&btf_idr_lock);
8160 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8161 * or pointer to stack if cands->cnd == 0.
8162 * Copy it into the cache even when cands->cnt == 0 and
8163 * return the result.
8164 */
8165 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8166}
8167
fbd94c7a
AS
8168int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8169 int relo_idx, void *insn)
8170{
1e89106d
AS
8171 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8172 struct bpf_core_cand_list cands = {};
adb8fa19 8173 struct bpf_core_relo_res targ_res;
78c1f8d0 8174 struct bpf_core_spec *specs;
1e89106d
AS
8175 int err;
8176
78c1f8d0
AS
8177 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8178 * into arrays of btf_ids of struct fields and array indices.
8179 */
8180 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8181 if (!specs)
8182 return -ENOMEM;
8183
1e89106d
AS
8184 if (need_cands) {
8185 struct bpf_cand_cache *cc;
8186 int i;
8187
8188 mutex_lock(&cand_cache_mutex);
8189 cc = bpf_core_find_cands(ctx, relo->type_id);
8190 if (IS_ERR(cc)) {
8191 bpf_log(ctx->log, "target candidate search failed for %d\n",
8192 relo->type_id);
8193 err = PTR_ERR(cc);
8194 goto out;
8195 }
8196 if (cc->cnt) {
8197 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8198 if (!cands.cands) {
8199 err = -ENOMEM;
8200 goto out;
8201 }
8202 }
8203 for (i = 0; i < cc->cnt; i++) {
8204 bpf_log(ctx->log,
8205 "CO-RE relocating %s %s: found target candidate [%d]\n",
8206 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8207 cands.cands[i].btf = cc->cands[i].btf;
8208 cands.cands[i].id = cc->cands[i].id;
8209 }
8210 cands.len = cc->cnt;
8211 /* cand_cache_mutex needs to span the cache lookup and
8212 * copy of btf pointer into bpf_core_cand_list,
adb8fa19 8213 * since module can be unloaded while bpf_core_calc_relo_insn
1e89106d
AS
8214 * is working with module's btf.
8215 */
8216 }
8217
adb8fa19
MV
8218 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8219 &targ_res);
8220 if (err)
8221 goto out;
8222
8223 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8224 &targ_res);
8225
1e89106d 8226out:
78c1f8d0 8227 kfree(specs);
1e89106d
AS
8228 if (need_cands) {
8229 kfree(cands.cands);
8230 mutex_unlock(&cand_cache_mutex);
8231 if (ctx->log->level & BPF_LOG_LEVEL2)
8232 print_cand_cache(ctx->log);
8233 }
8234 return err;
fbd94c7a 8235}
57539b1c
DV
8236
8237bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8238 const struct bpf_reg_state *reg,
8239 int off)
8240{
8241 struct btf *btf = reg->btf;
8242 const struct btf_type *walk_type, *safe_type;
8243 const char *tname;
8244 char safe_tname[64];
8245 long ret, safe_id;
8246 const struct btf_member *member, *m_walk = NULL;
8247 u32 i;
8248 const char *walk_name;
8249
8250 walk_type = btf_type_by_id(btf, reg->btf_id);
8251 if (!walk_type)
8252 return false;
8253
8254 tname = btf_name_by_offset(btf, walk_type->name_off);
8255
8256 ret = snprintf(safe_tname, sizeof(safe_tname), "%s__safe_fields", tname);
8257 if (ret < 0)
8258 return false;
8259
8260 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8261 if (safe_id < 0)
8262 return false;
8263
8264 safe_type = btf_type_by_id(btf, safe_id);
8265 if (!safe_type)
8266 return false;
8267
8268 for_each_member(i, walk_type, member) {
8269 u32 moff;
8270
8271 /* We're looking for the PTR_TO_BTF_ID member in the struct
8272 * type we're walking which matches the specified offset.
8273 * Below, we'll iterate over the fields in the safe variant of
8274 * the struct and see if any of them has a matching type /
8275 * name.
8276 */
8277 moff = __btf_member_bit_offset(walk_type, member) / 8;
8278 if (off == moff) {
8279 m_walk = member;
8280 break;
8281 }
8282 }
8283 if (m_walk == NULL)
8284 return false;
8285
8286 walk_name = __btf_name_by_offset(btf, m_walk->name_off);
8287 for_each_member(i, safe_type, member) {
8288 const char *m_name = __btf_name_by_offset(btf, member->name_off);
8289
8290 /* If we match on both type and name, the field is considered trusted. */
8291 if (m_walk->type == member->type && !strcmp(walk_name, m_name))
8292 return true;
8293 }
8294
8295 return false;
8296}
b613d335
DV
8297
8298bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8299 const struct btf *reg_btf, u32 reg_id,
8300 const struct btf *arg_btf, u32 arg_id)
8301{
8302 const char *reg_name, *arg_name, *search_needle;
8303 const struct btf_type *reg_type, *arg_type;
8304 int reg_len, arg_len, cmp_len;
8305 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8306
8307 reg_type = btf_type_by_id(reg_btf, reg_id);
8308 if (!reg_type)
8309 return false;
8310
8311 arg_type = btf_type_by_id(arg_btf, arg_id);
8312 if (!arg_type)
8313 return false;
8314
8315 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8316 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8317
8318 reg_len = strlen(reg_name);
8319 arg_len = strlen(arg_name);
8320
8321 /* Exactly one of the two type names may be suffixed with ___init, so
8322 * if the strings are the same size, they can't possibly be no-cast
8323 * aliases of one another. If you have two of the same type names, e.g.
8324 * they're both nf_conn___init, it would be improper to return true
8325 * because they are _not_ no-cast aliases, they are the same type.
8326 */
8327 if (reg_len == arg_len)
8328 return false;
8329
8330 /* Either of the two names must be the other name, suffixed with ___init. */
8331 if ((reg_len != arg_len + pattern_len) &&
8332 (arg_len != reg_len + pattern_len))
8333 return false;
8334
8335 if (reg_len < arg_len) {
8336 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8337 cmp_len = reg_len;
8338 } else {
8339 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8340 cmp_len = arg_len;
8341 }
8342
8343 if (!search_needle)
8344 return false;
8345
8346 /* ___init suffix must come at the end of the name */
8347 if (*(search_needle + pattern_len) != '\0')
8348 return false;
8349
8350 return !strncmp(reg_name, arg_name, cmp_len);
8351}