libbpf: fix errno is overwritten after being closed.
[linux-2.6-block.git] / kernel / bpf / btf.c
CommitLineData
c561d110 1// SPDX-License-Identifier: GPL-2.0
69b693f0
MKL
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
c0c852dd 22#include <linux/bpf_lsm.h>
91cc1a99
AS
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
eae2e83e 25#include <linux/bsearch.h>
36e68442
AN
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
91cc1a99 28#include <net/sock.h>
1e89106d 29#include "../tools/lib/bpf/relo_core.h"
69b693f0
MKL
30
31/* BTF (BPF Type Format) is the meta data format which describes
32 * the data types of BPF program/map. Hence, it basically focus
33 * on the C programming language which the modern BPF is primary
34 * using.
35 *
36 * ELF Section:
37 * ~~~~~~~~~~~
38 * The BTF data is stored under the ".BTF" ELF section
39 *
40 * struct btf_type:
41 * ~~~~~~~~~~~~~~~
42 * Each 'struct btf_type' object describes a C data type.
43 * Depending on the type it is describing, a 'struct btf_type'
44 * object may be followed by more data. F.e.
45 * To describe an array, 'struct btf_type' is followed by
46 * 'struct btf_array'.
47 *
48 * 'struct btf_type' and any extra data following it are
49 * 4 bytes aligned.
50 *
51 * Type section:
52 * ~~~~~~~~~~~~~
53 * The BTF type section contains a list of 'struct btf_type' objects.
54 * Each one describes a C type. Recall from the above section
55 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 56 * data in order to describe some particular C types.
69b693f0
MKL
57 *
58 * type_id:
59 * ~~~~~~~
60 * Each btf_type object is identified by a type_id. The type_id
61 * is implicitly implied by the location of the btf_type object in
62 * the BTF type section. The first one has type_id 1. The second
63 * one has type_id 2...etc. Hence, an earlier btf_type has
64 * a smaller type_id.
65 *
66 * A btf_type object may refer to another btf_type object by using
67 * type_id (i.e. the "type" in the "struct btf_type").
68 *
69 * NOTE that we cannot assume any reference-order.
70 * A btf_type object can refer to an earlier btf_type object
71 * but it can also refer to a later btf_type object.
72 *
73 * For example, to describe "const void *". A btf_type
74 * object describing "const" may refer to another btf_type
75 * object describing "void *". This type-reference is done
76 * by specifying type_id:
77 *
78 * [1] CONST (anon) type_id=2
79 * [2] PTR (anon) type_id=0
80 *
81 * The above is the btf_verifier debug log:
82 * - Each line started with "[?]" is a btf_type object
83 * - [?] is the type_id of the btf_type object.
84 * - CONST/PTR is the BTF_KIND_XXX
85 * - "(anon)" is the name of the type. It just
86 * happens that CONST and PTR has no name.
87 * - type_id=XXX is the 'u32 type' in btf_type
88 *
89 * NOTE: "void" has type_id 0
90 *
91 * String section:
92 * ~~~~~~~~~~~~~~
93 * The BTF string section contains the names used by the type section.
94 * Each string is referred by an "offset" from the beginning of the
95 * string section.
96 *
97 * Each string is '\0' terminated.
98 *
99 * The first character in the string section must be '\0'
100 * which is used to mean 'anonymous'. Some btf_type may not
101 * have a name.
102 */
103
104/* BTF verification:
105 *
106 * To verify BTF data, two passes are needed.
107 *
108 * Pass #1
109 * ~~~~~~~
110 * The first pass is to collect all btf_type objects to
111 * an array: "btf->types".
112 *
113 * Depending on the C type that a btf_type is describing,
114 * a btf_type may be followed by extra data. We don't know
115 * how many btf_type is there, and more importantly we don't
116 * know where each btf_type is located in the type section.
117 *
118 * Without knowing the location of each type_id, most verifications
119 * cannot be done. e.g. an earlier btf_type may refer to a later
120 * btf_type (recall the "const void *" above), so we cannot
121 * check this type-reference in the first pass.
122 *
123 * In the first pass, it still does some verifications (e.g.
124 * checking the name is a valid offset to the string section).
eb3f595d
MKL
125 *
126 * Pass #2
127 * ~~~~~~~
128 * The main focus is to resolve a btf_type that is referring
129 * to another type.
130 *
131 * We have to ensure the referring type:
132 * 1) does exist in the BTF (i.e. in btf->types[])
133 * 2) does not cause a loop:
134 * struct A {
135 * struct B b;
136 * };
137 *
138 * struct B {
139 * struct A a;
140 * };
141 *
142 * btf_type_needs_resolve() decides if a btf_type needs
143 * to be resolved.
144 *
145 * The needs_resolve type implements the "resolve()" ops which
146 * essentially does a DFS and detects backedge.
147 *
148 * During resolve (or DFS), different C types have different
149 * "RESOLVED" conditions.
150 *
151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152 * members because a member is always referring to another
153 * type. A struct's member can be treated as "RESOLVED" if
154 * it is referring to a BTF_KIND_PTR. Otherwise, the
155 * following valid C struct would be rejected:
156 *
157 * struct A {
158 * int m;
159 * struct A *a;
160 * };
161 *
162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
164 * detect a pointer loop, e.g.:
165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166 * ^ |
167 * +-----------------------------------------+
168 *
69b693f0
MKL
169 */
170
b1e8818c 171#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
172#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175#define BITS_ROUNDUP_BYTES(bits) \
176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177
b1828f0b 178#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
179#define BTF_INT_MASK 0x0fffffff
180#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182
69b693f0
MKL
183/* 16MB for 64k structs and each has 16 members and
184 * a few MB spaces for the string section.
185 * The hard limit is S32_MAX.
186 */
187#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 188
eb3f595d
MKL
189#define for_each_member_from(i, from, struct_type, member) \
190 for (i = from, member = btf_type_member(struct_type) + from; \
191 i < btf_type_vlen(struct_type); \
192 i++, member++)
193
1dc92851
DB
194#define for_each_vsi_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
1b9ed84e
QM
199DEFINE_IDR(btf_idr);
200DEFINE_SPINLOCK(btf_idr_lock);
78958fca 201
dee872e1 202enum btf_kfunc_hook {
cfe14564 203 BTF_KFUNC_HOOK_COMMON,
dee872e1
KKD
204 BTF_KFUNC_HOOK_XDP,
205 BTF_KFUNC_HOOK_TC,
206 BTF_KFUNC_HOOK_STRUCT_OPS,
97949767
BT
207 BTF_KFUNC_HOOK_TRACING,
208 BTF_KFUNC_HOOK_SYSCALL,
5b481aca 209 BTF_KFUNC_HOOK_FMODRET,
dee872e1
KKD
210 BTF_KFUNC_HOOK_MAX,
211};
212
213enum {
f9b34818 214 BTF_KFUNC_SET_MAX_CNT = 256,
5ce937d6 215 BTF_DTOR_KFUNC_MAX_CNT = 256,
dee872e1
KKD
216};
217
218struct btf_kfunc_set_tab {
a4703e31 219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
dee872e1
KKD
220};
221
5ce937d6
KKD
222struct btf_id_dtor_kfunc_tab {
223 u32 cnt;
224 struct btf_id_dtor_kfunc dtors[];
225};
226
69b693f0 227struct btf {
f80442a4 228 void *data;
69b693f0 229 struct btf_type **types;
eb3f595d
MKL
230 u32 *resolved_ids;
231 u32 *resolved_sizes;
69b693f0
MKL
232 const char *strings;
233 void *nohdr_data;
f80442a4 234 struct btf_header hdr;
951bb646 235 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
236 u32 types_size;
237 u32 data_size;
f56a653c 238 refcount_t refcnt;
78958fca
MKL
239 u32 id;
240 struct rcu_head rcu;
dee872e1 241 struct btf_kfunc_set_tab *kfunc_set_tab;
5ce937d6 242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
8ffa5cc1 243 struct btf_struct_metas *struct_meta_tab;
951bb646
AN
244
245 /* split BTF support */
246 struct btf *base_btf;
247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
248 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
249 char name[MODULE_NAME_LEN];
250 bool kernel_btf;
69b693f0
MKL
251};
252
eb3f595d
MKL
253enum verifier_phase {
254 CHECK_META,
255 CHECK_TYPE,
256};
257
258struct resolve_vertex {
259 const struct btf_type *t;
260 u32 type_id;
261 u16 next_member;
262};
263
264enum visit_state {
265 NOT_VISITED,
266 VISITED,
267 RESOLVED,
268};
269
270enum resolve_mode {
271 RESOLVE_TBD, /* To Be Determined */
272 RESOLVE_PTR, /* Resolving for Pointer */
273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
274 * or array
275 */
276};
277
278#define MAX_RESOLVE_DEPTH 32
279
f80442a4
MKL
280struct btf_sec_info {
281 u32 off;
282 u32 len;
283};
284
69b693f0
MKL
285struct btf_verifier_env {
286 struct btf *btf;
eb3f595d
MKL
287 u8 *visit_states;
288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
289 struct bpf_verifier_log log;
290 u32 log_type_id;
eb3f595d
MKL
291 u32 top_stack;
292 enum verifier_phase phase;
293 enum resolve_mode resolve_mode;
69b693f0
MKL
294};
295
296static const char * const btf_kind_str[NR_BTF_KINDS] = {
297 [BTF_KIND_UNKN] = "UNKNOWN",
298 [BTF_KIND_INT] = "INT",
299 [BTF_KIND_PTR] = "PTR",
300 [BTF_KIND_ARRAY] = "ARRAY",
301 [BTF_KIND_STRUCT] = "STRUCT",
302 [BTF_KIND_UNION] = "UNION",
303 [BTF_KIND_ENUM] = "ENUM",
304 [BTF_KIND_FWD] = "FWD",
305 [BTF_KIND_TYPEDEF] = "TYPEDEF",
306 [BTF_KIND_VOLATILE] = "VOLATILE",
307 [BTF_KIND_CONST] = "CONST",
308 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
309 [BTF_KIND_FUNC] = "FUNC",
310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
311 [BTF_KIND_VAR] = "VAR",
312 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 313 [BTF_KIND_FLOAT] = "FLOAT",
223f903e 314 [BTF_KIND_DECL_TAG] = "DECL_TAG",
8c42d2fa 315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
6089fb32 316 [BTF_KIND_ENUM64] = "ENUM64",
69b693f0
MKL
317};
318
e6ac2450 319const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
320{
321 return btf_kind_str[BTF_INFO_KIND(t->info)];
322}
323
31d0bc81
AM
324/* Chunk size we use in safe copy of data to be shown. */
325#define BTF_SHOW_OBJ_SAFE_SIZE 32
326
327/*
328 * This is the maximum size of a base type value (equivalent to a
329 * 128-bit int); if we are at the end of our safe buffer and have
330 * less than 16 bytes space we can't be assured of being able
331 * to copy the next type safely, so in such cases we will initiate
332 * a new copy.
333 */
334#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
335
336/* Type name size */
337#define BTF_SHOW_NAME_SIZE 80
338
339/*
340 * Common data to all BTF show operations. Private show functions can add
341 * their own data to a structure containing a struct btf_show and consult it
342 * in the show callback. See btf_type_show() below.
343 *
344 * One challenge with showing nested data is we want to skip 0-valued
345 * data, but in order to figure out whether a nested object is all zeros
346 * we need to walk through it. As a result, we need to make two passes
347 * when handling structs, unions and arrays; the first path simply looks
348 * for nonzero data, while the second actually does the display. The first
349 * pass is signalled by show->state.depth_check being set, and if we
350 * encounter a non-zero value we set show->state.depth_to_show to
351 * the depth at which we encountered it. When we have completed the
352 * first pass, we will know if anything needs to be displayed if
353 * depth_to_show > depth. See btf_[struct,array]_show() for the
354 * implementation of this.
355 *
356 * Another problem is we want to ensure the data for display is safe to
357 * access. To support this, the anonymous "struct {} obj" tracks the data
358 * object and our safe copy of it. We copy portions of the data needed
359 * to the object "copy" buffer, but because its size is limited to
360 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
361 * traverse larger objects for display.
362 *
363 * The various data type show functions all start with a call to
364 * btf_show_start_type() which returns a pointer to the safe copy
365 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
366 * raw data itself). btf_show_obj_safe() is responsible for
367 * using copy_from_kernel_nofault() to update the safe data if necessary
368 * as we traverse the object's data. skbuff-like semantics are
369 * used:
370 *
371 * - obj.head points to the start of the toplevel object for display
372 * - obj.size is the size of the toplevel object
373 * - obj.data points to the current point in the original data at
374 * which our safe data starts. obj.data will advance as we copy
375 * portions of the data.
376 *
377 * In most cases a single copy will suffice, but larger data structures
378 * such as "struct task_struct" will require many copies. The logic in
379 * btf_show_obj_safe() handles the logic that determines if a new
380 * copy_from_kernel_nofault() is needed.
381 */
382struct btf_show {
383 u64 flags;
384 void *target; /* target of show operation (seq file, buffer) */
385 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
386 const struct btf *btf;
387 /* below are used during iteration */
388 struct {
389 u8 depth;
390 u8 depth_to_show;
391 u8 depth_check;
392 u8 array_member:1,
393 array_terminated:1;
394 u16 array_encoding;
395 u32 type_id;
396 int status; /* non-zero for error */
397 const struct btf_type *type;
398 const struct btf_member *member;
399 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
400 } state;
401 struct {
402 u32 size;
403 void *head;
404 void *data;
405 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
406 } obj;
407};
408
69b693f0
MKL
409struct btf_kind_operations {
410 s32 (*check_meta)(struct btf_verifier_env *env,
411 const struct btf_type *t,
412 u32 meta_left);
eb3f595d
MKL
413 int (*resolve)(struct btf_verifier_env *env,
414 const struct resolve_vertex *v);
179cde8c
MKL
415 int (*check_member)(struct btf_verifier_env *env,
416 const struct btf_type *struct_type,
417 const struct btf_member *member,
418 const struct btf_type *member_type);
9d5f9f70
YS
419 int (*check_kflag_member)(struct btf_verifier_env *env,
420 const struct btf_type *struct_type,
421 const struct btf_member *member,
422 const struct btf_type *member_type);
69b693f0
MKL
423 void (*log_details)(struct btf_verifier_env *env,
424 const struct btf_type *t);
31d0bc81 425 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 426 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 427 struct btf_show *show);
69b693f0
MKL
428};
429
430static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
431static struct btf_type btf_void;
432
2667a262
MKL
433static int btf_resolve(struct btf_verifier_env *env,
434 const struct btf_type *t, u32 type_id);
435
d7e7b42f
YS
436static int btf_func_check(struct btf_verifier_env *env,
437 const struct btf_type *t);
438
eb3f595d
MKL
439static bool btf_type_is_modifier(const struct btf_type *t)
440{
441 /* Some of them is not strictly a C modifier
442 * but they are grouped into the same bucket
443 * for BTF concern:
444 * A type (t) that refers to another
445 * type through t->type AND its size cannot
446 * be determined without following the t->type.
447 *
448 * ptr does not fall into this bucket
449 * because its size is always sizeof(void *).
450 */
451 switch (BTF_INFO_KIND(t->info)) {
452 case BTF_KIND_TYPEDEF:
453 case BTF_KIND_VOLATILE:
454 case BTF_KIND_CONST:
455 case BTF_KIND_RESTRICT:
8c42d2fa 456 case BTF_KIND_TYPE_TAG:
eb3f595d
MKL
457 return true;
458 }
459
460 return false;
461}
462
2824ecb7 463bool btf_type_is_void(const struct btf_type *t)
eb3f595d 464{
b47a0bd2
MKL
465 return t == &btf_void;
466}
467
468static bool btf_type_is_fwd(const struct btf_type *t)
469{
470 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
471}
472
473static bool btf_type_nosize(const struct btf_type *t)
474{
2667a262
MKL
475 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
476 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
477}
478
b47a0bd2 479static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 480{
b47a0bd2 481 return !t || btf_type_nosize(t);
eb3f595d
MKL
482}
483
1dc92851
DB
484static bool btf_type_is_datasec(const struct btf_type *t)
485{
486 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
487}
488
223f903e 489static bool btf_type_is_decl_tag(const struct btf_type *t)
b5ea834d 490{
223f903e 491 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
b5ea834d
YS
492}
493
223f903e 494static bool btf_type_is_decl_tag_target(const struct btf_type *t)
b5ea834d
YS
495{
496 return btf_type_is_func(t) || btf_type_is_struct(t) ||
bd16dee6 497 btf_type_is_var(t) || btf_type_is_typedef(t);
b5ea834d
YS
498}
499
541c3bad 500u32 btf_nr_types(const struct btf *btf)
951bb646
AN
501{
502 u32 total = 0;
503
504 while (btf) {
505 total += btf->nr_types;
506 btf = btf->base_btf;
507 }
508
509 return total;
510}
511
27ae7997
MKL
512s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
513{
514 const struct btf_type *t;
515 const char *tname;
951bb646 516 u32 i, total;
27ae7997 517
541c3bad 518 total = btf_nr_types(btf);
951bb646
AN
519 for (i = 1; i < total; i++) {
520 t = btf_type_by_id(btf, i);
27ae7997
MKL
521 if (BTF_INFO_KIND(t->info) != kind)
522 continue;
523
524 tname = btf_name_by_offset(btf, t->name_off);
525 if (!strcmp(tname, name))
526 return i;
527 }
528
529 return -ENOENT;
530}
531
edc3ec09
KKD
532static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
533{
534 struct btf *btf;
535 s32 ret;
536 int id;
537
538 btf = bpf_get_btf_vmlinux();
539 if (IS_ERR(btf))
540 return PTR_ERR(btf);
7ada3787
KKD
541 if (!btf)
542 return -EINVAL;
edc3ec09
KKD
543
544 ret = btf_find_by_name_kind(btf, name, kind);
545 /* ret is never zero, since btf_find_by_name_kind returns
546 * positive btf_id or negative error.
547 */
548 if (ret > 0) {
549 btf_get(btf);
550 *btf_p = btf;
551 return ret;
552 }
553
554 /* If name is not found in vmlinux's BTF then search in module's BTFs */
555 spin_lock_bh(&btf_idr_lock);
556 idr_for_each_entry(&btf_idr, btf, id) {
557 if (!btf_is_module(btf))
558 continue;
559 /* linear search could be slow hence unlock/lock
560 * the IDR to avoiding holding it for too long
561 */
562 btf_get(btf);
563 spin_unlock_bh(&btf_idr_lock);
564 ret = btf_find_by_name_kind(btf, name, kind);
565 if (ret > 0) {
566 *btf_p = btf;
567 return ret;
568 }
569 spin_lock_bh(&btf_idr_lock);
570 btf_put(btf);
571 }
572 spin_unlock_bh(&btf_idr_lock);
573 return ret;
574}
575
27ae7997
MKL
576const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
577 u32 id, u32 *res_id)
578{
579 const struct btf_type *t = btf_type_by_id(btf, id);
580
581 while (btf_type_is_modifier(t)) {
582 id = t->type;
583 t = btf_type_by_id(btf, t->type);
584 }
585
586 if (res_id)
587 *res_id = id;
588
589 return t;
590}
591
592const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
593 u32 id, u32 *res_id)
594{
595 const struct btf_type *t;
596
597 t = btf_type_skip_modifiers(btf, id, NULL);
598 if (!btf_type_is_ptr(t))
599 return NULL;
600
601 return btf_type_skip_modifiers(btf, t->type, res_id);
602}
603
604const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
605 u32 id, u32 *res_id)
606{
607 const struct btf_type *ptype;
608
609 ptype = btf_type_resolve_ptr(btf, id, res_id);
610 if (ptype && btf_type_is_func_proto(ptype))
611 return ptype;
612
613 return NULL;
614}
615
1dc92851
DB
616/* Types that act only as a source, not sink or intermediate
617 * type when resolving.
618 */
619static bool btf_type_is_resolve_source_only(const struct btf_type *t)
620{
621 return btf_type_is_var(t) ||
223f903e 622 btf_type_is_decl_tag(t) ||
1dc92851
DB
623 btf_type_is_datasec(t);
624}
625
eb3f595d
MKL
626/* What types need to be resolved?
627 *
628 * btf_type_is_modifier() is an obvious one.
629 *
630 * btf_type_is_struct() because its member refers to
631 * another type (through member->type).
1dc92851
DB
632 *
633 * btf_type_is_var() because the variable refers to
634 * another type. btf_type_is_datasec() holds multiple
635 * btf_type_is_var() types that need resolving.
636 *
eb3f595d
MKL
637 * btf_type_is_array() because its element (array->type)
638 * refers to another type. Array can be thought of a
639 * special case of struct while array just has the same
640 * member-type repeated by array->nelems of times.
641 */
642static bool btf_type_needs_resolve(const struct btf_type *t)
643{
644 return btf_type_is_modifier(t) ||
1dc92851
DB
645 btf_type_is_ptr(t) ||
646 btf_type_is_struct(t) ||
647 btf_type_is_array(t) ||
648 btf_type_is_var(t) ||
d7e7b42f 649 btf_type_is_func(t) ||
223f903e 650 btf_type_is_decl_tag(t) ||
1dc92851 651 btf_type_is_datasec(t);
eb3f595d
MKL
652}
653
654/* t->size can be used */
655static bool btf_type_has_size(const struct btf_type *t)
656{
657 switch (BTF_INFO_KIND(t->info)) {
658 case BTF_KIND_INT:
659 case BTF_KIND_STRUCT:
660 case BTF_KIND_UNION:
661 case BTF_KIND_ENUM:
1dc92851 662 case BTF_KIND_DATASEC:
b1828f0b 663 case BTF_KIND_FLOAT:
6089fb32 664 case BTF_KIND_ENUM64:
eb3f595d
MKL
665 return true;
666 }
667
668 return false;
669}
670
69b693f0
MKL
671static const char *btf_int_encoding_str(u8 encoding)
672{
673 if (encoding == 0)
674 return "(none)";
675 else if (encoding == BTF_INT_SIGNED)
676 return "SIGNED";
677 else if (encoding == BTF_INT_CHAR)
678 return "CHAR";
679 else if (encoding == BTF_INT_BOOL)
680 return "BOOL";
69b693f0
MKL
681 else
682 return "UNKN";
683}
684
69b693f0
MKL
685static u32 btf_type_int(const struct btf_type *t)
686{
687 return *(u32 *)(t + 1);
688}
689
690static const struct btf_array *btf_type_array(const struct btf_type *t)
691{
692 return (const struct btf_array *)(t + 1);
693}
694
69b693f0
MKL
695static const struct btf_enum *btf_type_enum(const struct btf_type *t)
696{
697 return (const struct btf_enum *)(t + 1);
698}
699
1dc92851
DB
700static const struct btf_var *btf_type_var(const struct btf_type *t)
701{
702 return (const struct btf_var *)(t + 1);
703}
704
223f903e 705static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
b5ea834d 706{
223f903e 707 return (const struct btf_decl_tag *)(t + 1);
b5ea834d
YS
708}
709
6089fb32
YS
710static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
711{
712 return (const struct btf_enum64 *)(t + 1);
713}
714
69b693f0
MKL
715static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
716{
717 return kind_ops[BTF_INFO_KIND(t->info)];
718}
719
583c5318 720static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 721{
951bb646
AN
722 if (!BTF_STR_OFFSET_VALID(offset))
723 return false;
724
725 while (offset < btf->start_str_off)
726 btf = btf->base_btf;
727
728 offset -= btf->start_str_off;
729 return offset < btf->hdr.str_len;
69b693f0
MKL
730}
731
1dc92851
DB
732static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
733{
734 if ((first ? !isalpha(c) :
735 !isalnum(c)) &&
736 c != '_' &&
737 ((c == '.' && !dot_ok) ||
738 c != '.'))
739 return false;
740 return true;
741}
742
951bb646
AN
743static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
744{
745 while (offset < btf->start_str_off)
746 btf = btf->base_btf;
747
748 offset -= btf->start_str_off;
749 if (offset < btf->hdr.str_len)
750 return &btf->strings[offset];
751
752 return NULL;
753}
754
1dc92851 755static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
756{
757 /* offset must be valid */
951bb646 758 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
759 const char *src_limit;
760
1dc92851 761 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
762 return false;
763
764 /* set a limit on identifier length */
765 src_limit = src + KSYM_NAME_LEN;
766 src++;
767 while (*src && src < src_limit) {
1dc92851 768 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
769 return false;
770 src++;
771 }
772
773 return !*src;
774}
775
1dc92851
DB
776/* Only C-style identifier is permitted. This can be relaxed if
777 * necessary.
778 */
779static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
780{
781 return __btf_name_valid(btf, offset, false);
782}
783
784static bool btf_name_valid_section(const struct btf *btf, u32 offset)
785{
786 return __btf_name_valid(btf, offset, true);
787}
788
23127b33 789static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 790{
951bb646
AN
791 const char *name;
792
aea2f7b8 793 if (!offset)
69b693f0 794 return "(anon)";
951bb646
AN
795
796 name = btf_str_by_offset(btf, offset);
797 return name ?: "(invalid-name-offset)";
69b693f0
MKL
798}
799
23127b33
MKL
800const char *btf_name_by_offset(const struct btf *btf, u32 offset)
801{
951bb646 802 return btf_str_by_offset(btf, offset);
23127b33
MKL
803}
804
838e9690 805const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 806{
951bb646
AN
807 while (type_id < btf->start_id)
808 btf = btf->base_btf;
eb3f595d 809
951bb646
AN
810 type_id -= btf->start_id;
811 if (type_id >= btf->nr_types)
812 return NULL;
eb3f595d
MKL
813 return btf->types[type_id];
814}
84c6ac41 815EXPORT_SYMBOL_GPL(btf_type_by_id);
eb3f595d 816
4ef5f574
MKL
817/*
818 * Regular int is not a bit field and it must be either
b1e8818c 819 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
820 */
821static bool btf_type_int_is_regular(const struct btf_type *t)
822{
36fc3c8c 823 u8 nr_bits, nr_bytes;
4ef5f574
MKL
824 u32 int_data;
825
826 int_data = btf_type_int(t);
827 nr_bits = BTF_INT_BITS(int_data);
828 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
829 if (BITS_PER_BYTE_MASKED(nr_bits) ||
830 BTF_INT_OFFSET(int_data) ||
831 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
832 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
833 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
834 return false;
835 }
836
837 return true;
838}
839
9a1126b6 840/*
ffa0c1cf
YS
841 * Check that given struct member is a regular int with expected
842 * offset and size.
9a1126b6 843 */
ffa0c1cf
YS
844bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
845 const struct btf_member *m,
846 u32 expected_offset, u32 expected_size)
9a1126b6 847{
ffa0c1cf
YS
848 const struct btf_type *t;
849 u32 id, int_data;
850 u8 nr_bits;
9a1126b6 851
ffa0c1cf
YS
852 id = m->type;
853 t = btf_type_id_size(btf, &id, NULL);
854 if (!t || !btf_type_is_int(t))
9a1126b6
RG
855 return false;
856
857 int_data = btf_type_int(t);
858 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
859 if (btf_type_kflag(s)) {
860 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
861 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
862
863 /* if kflag set, int should be a regular int and
864 * bit offset should be at byte boundary.
865 */
866 return !bitfield_size &&
867 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
868 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
869 }
870
871 if (BTF_INT_OFFSET(int_data) ||
872 BITS_PER_BYTE_MASKED(m->offset) ||
873 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
874 BITS_PER_BYTE_MASKED(nr_bits) ||
875 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
876 return false;
877
878 return true;
879}
880
31d0bc81
AM
881/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
882static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
883 u32 id)
884{
885 const struct btf_type *t = btf_type_by_id(btf, id);
886
887 while (btf_type_is_modifier(t) &&
888 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
889 t = btf_type_by_id(btf, t->type);
890 }
891
892 return t;
893}
894
895#define BTF_SHOW_MAX_ITER 10
896
897#define BTF_KIND_BIT(kind) (1ULL << kind)
898
899/*
900 * Populate show->state.name with type name information.
901 * Format of type name is
902 *
903 * [.member_name = ] (type_name)
904 */
905static const char *btf_show_name(struct btf_show *show)
906{
907 /* BTF_MAX_ITER array suffixes "[]" */
908 const char *array_suffixes = "[][][][][][][][][][]";
909 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
910 /* BTF_MAX_ITER pointer suffixes "*" */
911 const char *ptr_suffixes = "**********";
912 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
913 const char *name = NULL, *prefix = "", *parens = "";
914 const struct btf_member *m = show->state.member;
73b6eae5 915 const struct btf_type *t;
31d0bc81
AM
916 const struct btf_array *array;
917 u32 id = show->state.type_id;
918 const char *member = NULL;
919 bool show_member = false;
920 u64 kinds = 0;
921 int i;
922
923 show->state.name[0] = '\0';
924
925 /*
926 * Don't show type name if we're showing an array member;
927 * in that case we show the array type so don't need to repeat
928 * ourselves for each member.
929 */
930 if (show->state.array_member)
931 return "";
932
933 /* Retrieve member name, if any. */
934 if (m) {
935 member = btf_name_by_offset(show->btf, m->name_off);
936 show_member = strlen(member) > 0;
937 id = m->type;
938 }
939
940 /*
941 * Start with type_id, as we have resolved the struct btf_type *
942 * via btf_modifier_show() past the parent typedef to the child
943 * struct, int etc it is defined as. In such cases, the type_id
944 * still represents the starting type while the struct btf_type *
945 * in our show->state points at the resolved type of the typedef.
946 */
947 t = btf_type_by_id(show->btf, id);
948 if (!t)
949 return "";
950
951 /*
952 * The goal here is to build up the right number of pointer and
953 * array suffixes while ensuring the type name for a typedef
954 * is represented. Along the way we accumulate a list of
955 * BTF kinds we have encountered, since these will inform later
956 * display; for example, pointer types will not require an
957 * opening "{" for struct, we will just display the pointer value.
958 *
959 * We also want to accumulate the right number of pointer or array
960 * indices in the format string while iterating until we get to
961 * the typedef/pointee/array member target type.
962 *
963 * We start by pointing at the end of pointer and array suffix
964 * strings; as we accumulate pointers and arrays we move the pointer
965 * or array string backwards so it will show the expected number of
966 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
967 * and/or arrays and typedefs are supported as a precaution.
968 *
969 * We also want to get typedef name while proceeding to resolve
970 * type it points to so that we can add parentheses if it is a
971 * "typedef struct" etc.
972 */
973 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
974
975 switch (BTF_INFO_KIND(t->info)) {
976 case BTF_KIND_TYPEDEF:
977 if (!name)
978 name = btf_name_by_offset(show->btf,
979 t->name_off);
980 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
981 id = t->type;
982 break;
983 case BTF_KIND_ARRAY:
984 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
985 parens = "[";
986 if (!t)
987 return "";
988 array = btf_type_array(t);
989 if (array_suffix > array_suffixes)
990 array_suffix -= 2;
991 id = array->type;
992 break;
993 case BTF_KIND_PTR:
994 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
995 if (ptr_suffix > ptr_suffixes)
996 ptr_suffix -= 1;
997 id = t->type;
998 break;
999 default:
1000 id = 0;
1001 break;
1002 }
1003 if (!id)
1004 break;
1005 t = btf_type_skip_qualifiers(show->btf, id);
1006 }
1007 /* We may not be able to represent this type; bail to be safe */
1008 if (i == BTF_SHOW_MAX_ITER)
1009 return "";
1010
1011 if (!name)
1012 name = btf_name_by_offset(show->btf, t->name_off);
1013
1014 switch (BTF_INFO_KIND(t->info)) {
1015 case BTF_KIND_STRUCT:
1016 case BTF_KIND_UNION:
1017 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1018 "struct" : "union";
1019 /* if it's an array of struct/union, parens is already set */
1020 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1021 parens = "{";
1022 break;
1023 case BTF_KIND_ENUM:
6089fb32 1024 case BTF_KIND_ENUM64:
31d0bc81
AM
1025 prefix = "enum";
1026 break;
1027 default:
1028 break;
1029 }
1030
1031 /* pointer does not require parens */
1032 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1033 parens = "";
1034 /* typedef does not require struct/union/enum prefix */
1035 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1036 prefix = "";
1037
1038 if (!name)
1039 name = "";
1040
1041 /* Even if we don't want type name info, we want parentheses etc */
1042 if (show->flags & BTF_SHOW_NONAME)
1043 snprintf(show->state.name, sizeof(show->state.name), "%s",
1044 parens);
1045 else
1046 snprintf(show->state.name, sizeof(show->state.name),
1047 "%s%s%s(%s%s%s%s%s%s)%s",
1048 /* first 3 strings comprise ".member = " */
1049 show_member ? "." : "",
1050 show_member ? member : "",
1051 show_member ? " = " : "",
1052 /* ...next is our prefix (struct, enum, etc) */
1053 prefix,
1054 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1055 /* ...this is the type name itself */
1056 name,
1057 /* ...suffixed by the appropriate '*', '[]' suffixes */
1058 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1059 array_suffix, parens);
1060
1061 return show->state.name;
1062}
1063
1064static const char *__btf_show_indent(struct btf_show *show)
1065{
1066 const char *indents = " ";
1067 const char *indent = &indents[strlen(indents)];
1068
1069 if ((indent - show->state.depth) >= indents)
1070 return indent - show->state.depth;
1071 return indents;
1072}
1073
1074static const char *btf_show_indent(struct btf_show *show)
1075{
1076 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1077}
1078
1079static const char *btf_show_newline(struct btf_show *show)
1080{
1081 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1082}
1083
1084static const char *btf_show_delim(struct btf_show *show)
1085{
1086 if (show->state.depth == 0)
1087 return "";
1088
1089 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1090 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1091 return "|";
1092
1093 return ",";
1094}
1095
1096__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1097{
1098 va_list args;
1099
1100 if (!show->state.depth_check) {
1101 va_start(args, fmt);
1102 show->showfn(show, fmt, args);
1103 va_end(args);
1104 }
1105}
1106
1107/* Macros are used here as btf_show_type_value[s]() prepends and appends
1108 * format specifiers to the format specifier passed in; these do the work of
1109 * adding indentation, delimiters etc while the caller simply has to specify
1110 * the type value(s) in the format specifier + value(s).
1111 */
1112#define btf_show_type_value(show, fmt, value) \
1113 do { \
a2a5580f
BD
1114 if ((value) != (__typeof__(value))0 || \
1115 (show->flags & BTF_SHOW_ZERO) || \
31d0bc81
AM
1116 show->state.depth == 0) { \
1117 btf_show(show, "%s%s" fmt "%s%s", \
1118 btf_show_indent(show), \
1119 btf_show_name(show), \
1120 value, btf_show_delim(show), \
1121 btf_show_newline(show)); \
1122 if (show->state.depth > show->state.depth_to_show) \
1123 show->state.depth_to_show = show->state.depth; \
1124 } \
1125 } while (0)
1126
1127#define btf_show_type_values(show, fmt, ...) \
1128 do { \
1129 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1130 btf_show_name(show), \
1131 __VA_ARGS__, btf_show_delim(show), \
1132 btf_show_newline(show)); \
1133 if (show->state.depth > show->state.depth_to_show) \
1134 show->state.depth_to_show = show->state.depth; \
1135 } while (0)
1136
1137/* How much is left to copy to safe buffer after @data? */
1138static int btf_show_obj_size_left(struct btf_show *show, void *data)
1139{
1140 return show->obj.head + show->obj.size - data;
1141}
1142
1143/* Is object pointed to by @data of @size already copied to our safe buffer? */
1144static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1145{
1146 return data >= show->obj.data &&
1147 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1148}
1149
1150/*
1151 * If object pointed to by @data of @size falls within our safe buffer, return
1152 * the equivalent pointer to the same safe data. Assumes
1153 * copy_from_kernel_nofault() has already happened and our safe buffer is
1154 * populated.
1155 */
1156static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1157{
1158 if (btf_show_obj_is_safe(show, data, size))
1159 return show->obj.safe + (data - show->obj.data);
1160 return NULL;
1161}
1162
1163/*
1164 * Return a safe-to-access version of data pointed to by @data.
1165 * We do this by copying the relevant amount of information
1166 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1167 *
1168 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1169 * safe copy is needed.
1170 *
1171 * Otherwise we need to determine if we have the required amount
1172 * of data (determined by the @data pointer and the size of the
1173 * largest base type we can encounter (represented by
1174 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1175 * that we will be able to print some of the current object,
1176 * and if more is needed a copy will be triggered.
1177 * Some objects such as structs will not fit into the buffer;
1178 * in such cases additional copies when we iterate over their
1179 * members may be needed.
1180 *
1181 * btf_show_obj_safe() is used to return a safe buffer for
1182 * btf_show_start_type(); this ensures that as we recurse into
1183 * nested types we always have safe data for the given type.
1184 * This approach is somewhat wasteful; it's possible for example
1185 * that when iterating over a large union we'll end up copying the
1186 * same data repeatedly, but the goal is safety not performance.
1187 * We use stack data as opposed to per-CPU buffers because the
1188 * iteration over a type can take some time, and preemption handling
1189 * would greatly complicate use of the safe buffer.
1190 */
1191static void *btf_show_obj_safe(struct btf_show *show,
1192 const struct btf_type *t,
1193 void *data)
1194{
1195 const struct btf_type *rt;
1196 int size_left, size;
1197 void *safe = NULL;
1198
1199 if (show->flags & BTF_SHOW_UNSAFE)
1200 return data;
1201
1202 rt = btf_resolve_size(show->btf, t, &size);
1203 if (IS_ERR(rt)) {
1204 show->state.status = PTR_ERR(rt);
1205 return NULL;
1206 }
1207
1208 /*
1209 * Is this toplevel object? If so, set total object size and
1210 * initialize pointers. Otherwise check if we still fall within
1211 * our safe object data.
1212 */
1213 if (show->state.depth == 0) {
1214 show->obj.size = size;
1215 show->obj.head = data;
1216 } else {
1217 /*
1218 * If the size of the current object is > our remaining
1219 * safe buffer we _may_ need to do a new copy. However
1220 * consider the case of a nested struct; it's size pushes
1221 * us over the safe buffer limit, but showing any individual
1222 * struct members does not. In such cases, we don't need
1223 * to initiate a fresh copy yet; however we definitely need
1224 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1225 * in our buffer, regardless of the current object size.
1226 * The logic here is that as we resolve types we will
1227 * hit a base type at some point, and we need to be sure
1228 * the next chunk of data is safely available to display
1229 * that type info safely. We cannot rely on the size of
1230 * the current object here because it may be much larger
1231 * than our current buffer (e.g. task_struct is 8k).
1232 * All we want to do here is ensure that we can print the
1233 * next basic type, which we can if either
1234 * - the current type size is within the safe buffer; or
1235 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1236 * the safe buffer.
1237 */
1238 safe = __btf_show_obj_safe(show, data,
1239 min(size,
1240 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1241 }
1242
1243 /*
1244 * We need a new copy to our safe object, either because we haven't
8fb33b60 1245 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1246 * we want falls outside the boundaries of the safe object.
1247 */
1248 if (!safe) {
1249 size_left = btf_show_obj_size_left(show, data);
1250 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1251 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1252 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1253 data, size_left);
1254 if (!show->state.status) {
1255 show->obj.data = data;
1256 safe = show->obj.safe;
1257 }
1258 }
1259
1260 return safe;
1261}
1262
1263/*
1264 * Set the type we are starting to show and return a safe data pointer
1265 * to be used for showing the associated data.
1266 */
1267static void *btf_show_start_type(struct btf_show *show,
1268 const struct btf_type *t,
1269 u32 type_id, void *data)
1270{
1271 show->state.type = t;
1272 show->state.type_id = type_id;
1273 show->state.name[0] = '\0';
1274
1275 return btf_show_obj_safe(show, t, data);
1276}
1277
1278static void btf_show_end_type(struct btf_show *show)
1279{
1280 show->state.type = NULL;
1281 show->state.type_id = 0;
1282 show->state.name[0] = '\0';
1283}
1284
1285static void *btf_show_start_aggr_type(struct btf_show *show,
1286 const struct btf_type *t,
1287 u32 type_id, void *data)
1288{
1289 void *safe_data = btf_show_start_type(show, t, type_id, data);
1290
1291 if (!safe_data)
1292 return safe_data;
1293
1294 btf_show(show, "%s%s%s", btf_show_indent(show),
1295 btf_show_name(show),
1296 btf_show_newline(show));
1297 show->state.depth++;
1298 return safe_data;
1299}
1300
1301static void btf_show_end_aggr_type(struct btf_show *show,
1302 const char *suffix)
1303{
1304 show->state.depth--;
1305 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1306 btf_show_delim(show), btf_show_newline(show));
1307 btf_show_end_type(show);
1308}
1309
1310static void btf_show_start_member(struct btf_show *show,
1311 const struct btf_member *m)
1312{
1313 show->state.member = m;
1314}
1315
1316static void btf_show_start_array_member(struct btf_show *show)
1317{
1318 show->state.array_member = 1;
1319 btf_show_start_member(show, NULL);
1320}
1321
1322static void btf_show_end_member(struct btf_show *show)
1323{
1324 show->state.member = NULL;
1325}
1326
1327static void btf_show_end_array_member(struct btf_show *show)
1328{
1329 show->state.array_member = 0;
1330 btf_show_end_member(show);
1331}
1332
1333static void *btf_show_start_array_type(struct btf_show *show,
1334 const struct btf_type *t,
1335 u32 type_id,
1336 u16 array_encoding,
1337 void *data)
1338{
1339 show->state.array_encoding = array_encoding;
1340 show->state.array_terminated = 0;
1341 return btf_show_start_aggr_type(show, t, type_id, data);
1342}
1343
1344static void btf_show_end_array_type(struct btf_show *show)
1345{
1346 show->state.array_encoding = 0;
1347 show->state.array_terminated = 0;
1348 btf_show_end_aggr_type(show, "]");
1349}
1350
1351static void *btf_show_start_struct_type(struct btf_show *show,
1352 const struct btf_type *t,
1353 u32 type_id,
1354 void *data)
1355{
1356 return btf_show_start_aggr_type(show, t, type_id, data);
1357}
1358
1359static void btf_show_end_struct_type(struct btf_show *show)
1360{
1361 btf_show_end_aggr_type(show, "}");
1362}
1363
69b693f0
MKL
1364__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1365 const char *fmt, ...)
1366{
1367 va_list args;
1368
1369 va_start(args, fmt);
1370 bpf_verifier_vlog(log, fmt, args);
1371 va_end(args);
1372}
1373
1374__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1375 const char *fmt, ...)
1376{
1377 struct bpf_verifier_log *log = &env->log;
1378 va_list args;
1379
1380 if (!bpf_verifier_log_needed(log))
1381 return;
1382
1383 va_start(args, fmt);
1384 bpf_verifier_vlog(log, fmt, args);
1385 va_end(args);
1386}
1387
1388__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1389 const struct btf_type *t,
1390 bool log_details,
1391 const char *fmt, ...)
1392{
1393 struct bpf_verifier_log *log = &env->log;
69b693f0
MKL
1394 struct btf *btf = env->btf;
1395 va_list args;
1396
1397 if (!bpf_verifier_log_needed(log))
1398 return;
1399
8580ac94
AS
1400 /* btf verifier prints all types it is processing via
1401 * btf_verifier_log_type(..., fmt = NULL).
1402 * Skip those prints for in-kernel BTF verification.
1403 */
1404 if (log->level == BPF_LOG_KERNEL && !fmt)
1405 return;
1406
69b693f0
MKL
1407 __btf_verifier_log(log, "[%u] %s %s%s",
1408 env->log_type_id,
571f9738 1409 btf_type_str(t),
23127b33 1410 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1411 log_details ? " " : "");
1412
1413 if (log_details)
1414 btf_type_ops(t)->log_details(env, t);
1415
1416 if (fmt && *fmt) {
1417 __btf_verifier_log(log, " ");
1418 va_start(args, fmt);
1419 bpf_verifier_vlog(log, fmt, args);
1420 va_end(args);
1421 }
1422
1423 __btf_verifier_log(log, "\n");
1424}
1425
1426#define btf_verifier_log_type(env, t, ...) \
1427 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1428#define btf_verifier_log_basic(env, t, ...) \
1429 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1430
1431__printf(4, 5)
1432static void btf_verifier_log_member(struct btf_verifier_env *env,
1433 const struct btf_type *struct_type,
1434 const struct btf_member *member,
1435 const char *fmt, ...)
1436{
1437 struct bpf_verifier_log *log = &env->log;
1438 struct btf *btf = env->btf;
1439 va_list args;
1440
1441 if (!bpf_verifier_log_needed(log))
1442 return;
1443
8580ac94
AS
1444 if (log->level == BPF_LOG_KERNEL && !fmt)
1445 return;
eb3f595d
MKL
1446 /* The CHECK_META phase already did a btf dump.
1447 *
1448 * If member is logged again, it must hit an error in
1449 * parsing this member. It is useful to print out which
1450 * struct this member belongs to.
1451 */
1452 if (env->phase != CHECK_META)
1453 btf_verifier_log_type(env, struct_type, NULL);
1454
9d5f9f70
YS
1455 if (btf_type_kflag(struct_type))
1456 __btf_verifier_log(log,
1457 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1458 __btf_name_by_offset(btf, member->name_off),
1459 member->type,
1460 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1461 BTF_MEMBER_BIT_OFFSET(member->offset));
1462 else
1463 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1464 __btf_name_by_offset(btf, member->name_off),
1465 member->type, member->offset);
69b693f0
MKL
1466
1467 if (fmt && *fmt) {
1468 __btf_verifier_log(log, " ");
1469 va_start(args, fmt);
1470 bpf_verifier_vlog(log, fmt, args);
1471 va_end(args);
1472 }
1473
1474 __btf_verifier_log(log, "\n");
1475}
1476
1dc92851
DB
1477__printf(4, 5)
1478static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1479 const struct btf_type *datasec_type,
1480 const struct btf_var_secinfo *vsi,
1481 const char *fmt, ...)
1482{
1483 struct bpf_verifier_log *log = &env->log;
1484 va_list args;
1485
1486 if (!bpf_verifier_log_needed(log))
1487 return;
8580ac94
AS
1488 if (log->level == BPF_LOG_KERNEL && !fmt)
1489 return;
1dc92851
DB
1490 if (env->phase != CHECK_META)
1491 btf_verifier_log_type(env, datasec_type, NULL);
1492
1493 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1494 vsi->type, vsi->offset, vsi->size);
1495 if (fmt && *fmt) {
1496 __btf_verifier_log(log, " ");
1497 va_start(args, fmt);
1498 bpf_verifier_vlog(log, fmt, args);
1499 va_end(args);
1500 }
1501
1502 __btf_verifier_log(log, "\n");
1503}
1504
f80442a4
MKL
1505static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1506 u32 btf_data_size)
69b693f0
MKL
1507{
1508 struct bpf_verifier_log *log = &env->log;
1509 const struct btf *btf = env->btf;
1510 const struct btf_header *hdr;
1511
1512 if (!bpf_verifier_log_needed(log))
1513 return;
1514
8580ac94
AS
1515 if (log->level == BPF_LOG_KERNEL)
1516 return;
f80442a4 1517 hdr = &btf->hdr;
69b693f0
MKL
1518 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1519 __btf_verifier_log(log, "version: %u\n", hdr->version);
1520 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1521 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1522 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1523 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1524 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1525 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1526 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1527}
1528
1529static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1530{
1531 struct btf *btf = env->btf;
1532
951bb646 1533 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1534 /* Expand 'types' array */
1535
1536 struct btf_type **new_types;
1537 u32 expand_by, new_size;
1538
951bb646 1539 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1540 btf_verifier_log(env, "Exceeded max num of types");
1541 return -E2BIG;
1542 }
1543
1544 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1545 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1546 btf->types_size + expand_by);
1547
778e1cdd 1548 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1549 GFP_KERNEL | __GFP_NOWARN);
1550 if (!new_types)
1551 return -ENOMEM;
1552
951bb646
AN
1553 if (btf->nr_types == 0) {
1554 if (!btf->base_btf) {
1555 /* lazily init VOID type */
1556 new_types[0] = &btf_void;
1557 btf->nr_types++;
1558 }
1559 } else {
69b693f0 1560 memcpy(new_types, btf->types,
951bb646
AN
1561 sizeof(*btf->types) * btf->nr_types);
1562 }
69b693f0
MKL
1563
1564 kvfree(btf->types);
1565 btf->types = new_types;
1566 btf->types_size = new_size;
1567 }
1568
951bb646 1569 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1570
1571 return 0;
1572}
1573
78958fca
MKL
1574static int btf_alloc_id(struct btf *btf)
1575{
1576 int id;
1577
1578 idr_preload(GFP_KERNEL);
1579 spin_lock_bh(&btf_idr_lock);
1580 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1581 if (id > 0)
1582 btf->id = id;
1583 spin_unlock_bh(&btf_idr_lock);
1584 idr_preload_end();
1585
1586 if (WARN_ON_ONCE(!id))
1587 return -ENOSPC;
1588
1589 return id > 0 ? 0 : id;
1590}
1591
1592static void btf_free_id(struct btf *btf)
1593{
1594 unsigned long flags;
1595
1596 /*
1597 * In map-in-map, calling map_delete_elem() on outer
1598 * map will call bpf_map_put on the inner map.
1599 * It will then eventually call btf_free_id()
1600 * on the inner map. Some of the map_delete_elem()
1601 * implementation may have irq disabled, so
1602 * we need to use the _irqsave() version instead
1603 * of the _bh() version.
1604 */
1605 spin_lock_irqsave(&btf_idr_lock, flags);
1606 idr_remove(&btf_idr, btf->id);
1607 spin_unlock_irqrestore(&btf_idr_lock, flags);
1608}
1609
dee872e1
KKD
1610static void btf_free_kfunc_set_tab(struct btf *btf)
1611{
1612 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
a4703e31 1613 int hook;
dee872e1
KKD
1614
1615 if (!tab)
1616 return;
1617 /* For module BTF, we directly assign the sets being registered, so
1618 * there is nothing to free except kfunc_set_tab.
1619 */
1620 if (btf_is_module(btf))
1621 goto free_tab;
a4703e31
KKD
1622 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1623 kfree(tab->sets[hook]);
dee872e1
KKD
1624free_tab:
1625 kfree(tab);
1626 btf->kfunc_set_tab = NULL;
1627}
1628
5ce937d6
KKD
1629static void btf_free_dtor_kfunc_tab(struct btf *btf)
1630{
1631 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1632
1633 if (!tab)
1634 return;
1635 kfree(tab);
1636 btf->dtor_kfunc_tab = NULL;
1637}
1638
8ffa5cc1
KKD
1639static void btf_struct_metas_free(struct btf_struct_metas *tab)
1640{
1641 int i;
1642
1643 if (!tab)
1644 return;
1645 for (i = 0; i < tab->cnt; i++) {
1646 btf_record_free(tab->types[i].record);
1647 kfree(tab->types[i].field_offs);
1648 }
1649 kfree(tab);
1650}
1651
1652static void btf_free_struct_meta_tab(struct btf *btf)
1653{
1654 struct btf_struct_metas *tab = btf->struct_meta_tab;
1655
1656 btf_struct_metas_free(tab);
1657 btf->struct_meta_tab = NULL;
1658}
1659
69b693f0
MKL
1660static void btf_free(struct btf *btf)
1661{
8ffa5cc1 1662 btf_free_struct_meta_tab(btf);
5ce937d6 1663 btf_free_dtor_kfunc_tab(btf);
dee872e1 1664 btf_free_kfunc_set_tab(btf);
69b693f0 1665 kvfree(btf->types);
eb3f595d
MKL
1666 kvfree(btf->resolved_sizes);
1667 kvfree(btf->resolved_ids);
69b693f0
MKL
1668 kvfree(btf->data);
1669 kfree(btf);
1670}
1671
78958fca 1672static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1673{
78958fca
MKL
1674 struct btf *btf = container_of(rcu, struct btf, rcu);
1675
1676 btf_free(btf);
f56a653c
MKL
1677}
1678
22dc4a0f
AN
1679void btf_get(struct btf *btf)
1680{
1681 refcount_inc(&btf->refcnt);
1682}
1683
f56a653c
MKL
1684void btf_put(struct btf *btf)
1685{
78958fca
MKL
1686 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1687 btf_free_id(btf);
1688 call_rcu(&btf->rcu, btf_free_rcu);
1689 }
f56a653c
MKL
1690}
1691
eb3f595d
MKL
1692static int env_resolve_init(struct btf_verifier_env *env)
1693{
1694 struct btf *btf = env->btf;
1695 u32 nr_types = btf->nr_types;
1696 u32 *resolved_sizes = NULL;
1697 u32 *resolved_ids = NULL;
1698 u8 *visit_states = NULL;
1699
951bb646 1700 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1701 GFP_KERNEL | __GFP_NOWARN);
1702 if (!resolved_sizes)
1703 goto nomem;
1704
951bb646 1705 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1706 GFP_KERNEL | __GFP_NOWARN);
1707 if (!resolved_ids)
1708 goto nomem;
1709
951bb646 1710 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1711 GFP_KERNEL | __GFP_NOWARN);
1712 if (!visit_states)
1713 goto nomem;
1714
1715 btf->resolved_sizes = resolved_sizes;
1716 btf->resolved_ids = resolved_ids;
1717 env->visit_states = visit_states;
1718
1719 return 0;
1720
1721nomem:
1722 kvfree(resolved_sizes);
1723 kvfree(resolved_ids);
1724 kvfree(visit_states);
1725 return -ENOMEM;
1726}
1727
69b693f0
MKL
1728static void btf_verifier_env_free(struct btf_verifier_env *env)
1729{
eb3f595d 1730 kvfree(env->visit_states);
69b693f0
MKL
1731 kfree(env);
1732}
1733
eb3f595d
MKL
1734static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1735 const struct btf_type *next_type)
1736{
1737 switch (env->resolve_mode) {
1738 case RESOLVE_TBD:
1739 /* int, enum or void is a sink */
1740 return !btf_type_needs_resolve(next_type);
1741 case RESOLVE_PTR:
2667a262
MKL
1742 /* int, enum, void, struct, array, func or func_proto is a sink
1743 * for ptr
1744 */
eb3f595d
MKL
1745 return !btf_type_is_modifier(next_type) &&
1746 !btf_type_is_ptr(next_type);
1747 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1748 /* int, enum, void, ptr, func or func_proto is a sink
1749 * for struct and array
1750 */
eb3f595d
MKL
1751 return !btf_type_is_modifier(next_type) &&
1752 !btf_type_is_array(next_type) &&
1753 !btf_type_is_struct(next_type);
1754 default:
53c8036c 1755 BUG();
eb3f595d
MKL
1756 }
1757}
1758
1759static bool env_type_is_resolved(const struct btf_verifier_env *env,
1760 u32 type_id)
1761{
951bb646
AN
1762 /* base BTF types should be resolved by now */
1763 if (type_id < env->btf->start_id)
1764 return true;
1765
1766 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1767}
1768
1769static int env_stack_push(struct btf_verifier_env *env,
1770 const struct btf_type *t, u32 type_id)
1771{
951bb646 1772 const struct btf *btf = env->btf;
eb3f595d
MKL
1773 struct resolve_vertex *v;
1774
1775 if (env->top_stack == MAX_RESOLVE_DEPTH)
1776 return -E2BIG;
1777
951bb646
AN
1778 if (type_id < btf->start_id
1779 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1780 return -EEXIST;
1781
951bb646 1782 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1783
1784 v = &env->stack[env->top_stack++];
1785 v->t = t;
1786 v->type_id = type_id;
1787 v->next_member = 0;
1788
1789 if (env->resolve_mode == RESOLVE_TBD) {
1790 if (btf_type_is_ptr(t))
1791 env->resolve_mode = RESOLVE_PTR;
1792 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1793 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1794 }
1795
1796 return 0;
1797}
1798
1799static void env_stack_set_next_member(struct btf_verifier_env *env,
1800 u16 next_member)
1801{
1802 env->stack[env->top_stack - 1].next_member = next_member;
1803}
1804
1805static void env_stack_pop_resolved(struct btf_verifier_env *env,
1806 u32 resolved_type_id,
1807 u32 resolved_size)
1808{
1809 u32 type_id = env->stack[--(env->top_stack)].type_id;
1810 struct btf *btf = env->btf;
1811
951bb646 1812 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1813 btf->resolved_sizes[type_id] = resolved_size;
1814 btf->resolved_ids[type_id] = resolved_type_id;
1815 env->visit_states[type_id] = RESOLVED;
1816}
1817
1818static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1819{
1820 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1821}
1822
7e3617a7
MKL
1823/* Resolve the size of a passed-in "type"
1824 *
1825 * type: is an array (e.g. u32 array[x][y])
1826 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1827 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1828 * corresponds to the return type.
1829 * *elem_type: u32
69ff3047 1830 * *elem_id: id of u32
7e3617a7
MKL
1831 * *total_nelems: (x * y). Hence, individual elem size is
1832 * (*type_size / *total_nelems)
887c31a3 1833 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1834 *
1835 * type: is not an array (e.g. const struct X)
1836 * return type: type "struct X"
1837 * *type_size: sizeof(struct X)
1838 * *elem_type: same as return type ("struct X")
69ff3047 1839 * *elem_id: 0
7e3617a7 1840 * *total_nelems: 1
887c31a3 1841 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1842 */
6298399b
JO
1843static const struct btf_type *
1844__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1845 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1846 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1847{
1848 const struct btf_type *array_type = NULL;
69ff3047 1849 const struct btf_array *array = NULL;
887c31a3 1850 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1851
1852 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1853 switch (BTF_INFO_KIND(type->info)) {
1854 /* type->size can be used */
1855 case BTF_KIND_INT:
1856 case BTF_KIND_STRUCT:
1857 case BTF_KIND_UNION:
1858 case BTF_KIND_ENUM:
b1828f0b 1859 case BTF_KIND_FLOAT:
6089fb32 1860 case BTF_KIND_ENUM64:
7e3617a7
MKL
1861 size = type->size;
1862 goto resolved;
1863
1864 case BTF_KIND_PTR:
1865 size = sizeof(void *);
1866 goto resolved;
1867
1868 /* Modifiers */
1869 case BTF_KIND_TYPEDEF:
1870 case BTF_KIND_VOLATILE:
1871 case BTF_KIND_CONST:
1872 case BTF_KIND_RESTRICT:
8c42d2fa 1873 case BTF_KIND_TYPE_TAG:
887c31a3 1874 id = type->type;
7e3617a7
MKL
1875 type = btf_type_by_id(btf, type->type);
1876 break;
1877
1878 case BTF_KIND_ARRAY:
1879 if (!array_type)
1880 array_type = type;
1881 array = btf_type_array(type);
1882 if (nelems && array->nelems > U32_MAX / nelems)
1883 return ERR_PTR(-EINVAL);
1884 nelems *= array->nelems;
1885 type = btf_type_by_id(btf, array->type);
1886 break;
1887
1888 /* type without size */
1889 default:
1890 return ERR_PTR(-EINVAL);
1891 }
1892 }
1893
1894 return ERR_PTR(-EINVAL);
1895
1896resolved:
1897 if (nelems && size > U32_MAX / nelems)
1898 return ERR_PTR(-EINVAL);
1899
1900 *type_size = nelems * size;
85d33df3
MKL
1901 if (total_nelems)
1902 *total_nelems = nelems;
1903 if (elem_type)
1904 *elem_type = type;
69ff3047
JO
1905 if (elem_id)
1906 *elem_id = array ? array->type : 0;
887c31a3
JO
1907 if (type_id && id)
1908 *type_id = id;
7e3617a7
MKL
1909
1910 return array_type ? : type;
1911}
1912
6298399b
JO
1913const struct btf_type *
1914btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1915 u32 *type_size)
1916{
887c31a3 1917 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1918}
1919
951bb646
AN
1920static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1921{
1922 while (type_id < btf->start_id)
1923 btf = btf->base_btf;
1924
1925 return btf->resolved_ids[type_id - btf->start_id];
1926}
1927
eb3f595d
MKL
1928/* The input param "type_id" must point to a needs_resolve type */
1929static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1930 u32 *type_id)
1931{
951bb646 1932 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1933 return btf_type_by_id(btf, *type_id);
1934}
1935
951bb646
AN
1936static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1937{
1938 while (type_id < btf->start_id)
1939 btf = btf->base_btf;
1940
1941 return btf->resolved_sizes[type_id - btf->start_id];
1942}
1943
eb3f595d
MKL
1944const struct btf_type *btf_type_id_size(const struct btf *btf,
1945 u32 *type_id, u32 *ret_size)
1946{
1947 const struct btf_type *size_type;
1948 u32 size_type_id = *type_id;
1949 u32 size = 0;
1950
1951 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1952 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1953 return NULL;
1954
1955 if (btf_type_has_size(size_type)) {
1956 size = size_type->size;
1957 } else if (btf_type_is_array(size_type)) {
951bb646 1958 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1959 } else if (btf_type_is_ptr(size_type)) {
1960 size = sizeof(void *);
1961 } else {
1dc92851
DB
1962 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1963 !btf_type_is_var(size_type)))
eb3f595d
MKL
1964 return NULL;
1965
951bb646 1966 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1967 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1968 if (btf_type_nosize_or_null(size_type))
eb3f595d 1969 return NULL;
1acc5d5c
AN
1970 else if (btf_type_has_size(size_type))
1971 size = size_type->size;
1972 else if (btf_type_is_array(size_type))
951bb646 1973 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1974 else if (btf_type_is_ptr(size_type))
1975 size = sizeof(void *);
1976 else
1977 return NULL;
eb3f595d
MKL
1978 }
1979
1980 *type_id = size_type_id;
1981 if (ret_size)
1982 *ret_size = size;
1983
1984 return size_type;
1985}
1986
179cde8c
MKL
1987static int btf_df_check_member(struct btf_verifier_env *env,
1988 const struct btf_type *struct_type,
1989 const struct btf_member *member,
1990 const struct btf_type *member_type)
1991{
1992 btf_verifier_log_basic(env, struct_type,
1993 "Unsupported check_member");
1994 return -EINVAL;
1995}
1996
9d5f9f70
YS
1997static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1998 const struct btf_type *struct_type,
1999 const struct btf_member *member,
2000 const struct btf_type *member_type)
2001{
2002 btf_verifier_log_basic(env, struct_type,
2003 "Unsupported check_kflag_member");
2004 return -EINVAL;
2005}
2006
b1828f0b 2007/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
2008 * int, enum and modifier types have their specific callback functions.
2009 */
2010static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2011 const struct btf_type *struct_type,
2012 const struct btf_member *member,
2013 const struct btf_type *member_type)
2014{
2015 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2016 btf_verifier_log_member(env, struct_type, member,
2017 "Invalid member bitfield_size");
2018 return -EINVAL;
2019 }
2020
2021 /* bitfield size is 0, so member->offset represents bit offset only.
2022 * It is safe to call non kflag check_member variants.
2023 */
2024 return btf_type_ops(member_type)->check_member(env, struct_type,
2025 member,
2026 member_type);
2027}
2028
eb3f595d
MKL
2029static int btf_df_resolve(struct btf_verifier_env *env,
2030 const struct resolve_vertex *v)
2031{
2032 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2033 return -EINVAL;
2034}
2035
31d0bc81
AM
2036static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2037 u32 type_id, void *data, u8 bits_offsets,
2038 struct btf_show *show)
b00b8dae 2039{
31d0bc81 2040 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
2041}
2042
179cde8c
MKL
2043static int btf_int_check_member(struct btf_verifier_env *env,
2044 const struct btf_type *struct_type,
2045 const struct btf_member *member,
2046 const struct btf_type *member_type)
2047{
2048 u32 int_data = btf_type_int(member_type);
2049 u32 struct_bits_off = member->offset;
2050 u32 struct_size = struct_type->size;
2051 u32 nr_copy_bits;
2052 u32 bytes_offset;
2053
2054 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2055 btf_verifier_log_member(env, struct_type, member,
2056 "bits_offset exceeds U32_MAX");
2057 return -EINVAL;
2058 }
2059
2060 struct_bits_off += BTF_INT_OFFSET(int_data);
2061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2062 nr_copy_bits = BTF_INT_BITS(int_data) +
2063 BITS_PER_BYTE_MASKED(struct_bits_off);
2064
b1e8818c 2065 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 2066 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2067 "nr_copy_bits exceeds 128");
179cde8c
MKL
2068 return -EINVAL;
2069 }
2070
2071 if (struct_size < bytes_offset ||
2072 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2073 btf_verifier_log_member(env, struct_type, member,
2074 "Member exceeds struct_size");
2075 return -EINVAL;
2076 }
2077
2078 return 0;
2079}
2080
9d5f9f70
YS
2081static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2082 const struct btf_type *struct_type,
2083 const struct btf_member *member,
2084 const struct btf_type *member_type)
2085{
2086 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2087 u32 int_data = btf_type_int(member_type);
2088 u32 struct_size = struct_type->size;
2089 u32 nr_copy_bits;
2090
2091 /* a regular int type is required for the kflag int member */
2092 if (!btf_type_int_is_regular(member_type)) {
2093 btf_verifier_log_member(env, struct_type, member,
2094 "Invalid member base type");
2095 return -EINVAL;
2096 }
2097
2098 /* check sanity of bitfield size */
2099 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2100 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2101 nr_int_data_bits = BTF_INT_BITS(int_data);
2102 if (!nr_bits) {
2103 /* Not a bitfield member, member offset must be at byte
2104 * boundary.
2105 */
2106 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2107 btf_verifier_log_member(env, struct_type, member,
2108 "Invalid member offset");
2109 return -EINVAL;
2110 }
2111
2112 nr_bits = nr_int_data_bits;
2113 } else if (nr_bits > nr_int_data_bits) {
2114 btf_verifier_log_member(env, struct_type, member,
2115 "Invalid member bitfield_size");
2116 return -EINVAL;
2117 }
2118
2119 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2120 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 2121 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 2122 btf_verifier_log_member(env, struct_type, member,
b1e8818c 2123 "nr_copy_bits exceeds 128");
9d5f9f70
YS
2124 return -EINVAL;
2125 }
2126
2127 if (struct_size < bytes_offset ||
2128 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2129 btf_verifier_log_member(env, struct_type, member,
2130 "Member exceeds struct_size");
2131 return -EINVAL;
2132 }
2133
2134 return 0;
2135}
2136
69b693f0
MKL
2137static s32 btf_int_check_meta(struct btf_verifier_env *env,
2138 const struct btf_type *t,
2139 u32 meta_left)
2140{
2141 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2142 u16 encoding;
2143
2144 if (meta_left < meta_needed) {
2145 btf_verifier_log_basic(env, t,
2146 "meta_left:%u meta_needed:%u",
2147 meta_left, meta_needed);
2148 return -EINVAL;
2149 }
2150
2151 if (btf_type_vlen(t)) {
2152 btf_verifier_log_type(env, t, "vlen != 0");
2153 return -EINVAL;
2154 }
2155
9d5f9f70
YS
2156 if (btf_type_kflag(t)) {
2157 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2158 return -EINVAL;
2159 }
2160
69b693f0 2161 int_data = btf_type_int(t);
aea2f7b8
MKL
2162 if (int_data & ~BTF_INT_MASK) {
2163 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2164 int_data);
2165 return -EINVAL;
2166 }
2167
69b693f0
MKL
2168 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2169
b1e8818c 2170 if (nr_bits > BITS_PER_U128) {
69b693f0 2171 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2172 BITS_PER_U128);
69b693f0
MKL
2173 return -EINVAL;
2174 }
2175
2176 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2177 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2178 return -EINVAL;
2179 }
2180
aea2f7b8
MKL
2181 /*
2182 * Only one of the encoding bits is allowed and it
2183 * should be sufficient for the pretty print purpose (i.e. decoding).
2184 * Multiple bits can be allowed later if it is found
2185 * to be insufficient.
2186 */
69b693f0
MKL
2187 encoding = BTF_INT_ENCODING(int_data);
2188 if (encoding &&
2189 encoding != BTF_INT_SIGNED &&
2190 encoding != BTF_INT_CHAR &&
aea2f7b8 2191 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2192 btf_verifier_log_type(env, t, "Unsupported encoding");
2193 return -ENOTSUPP;
2194 }
2195
2196 btf_verifier_log_type(env, t, NULL);
2197
2198 return meta_needed;
2199}
2200
2201static void btf_int_log(struct btf_verifier_env *env,
2202 const struct btf_type *t)
2203{
2204 int int_data = btf_type_int(t);
2205
2206 btf_verifier_log(env,
2207 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2208 t->size, BTF_INT_OFFSET(int_data),
2209 BTF_INT_BITS(int_data),
2210 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2211}
2212
31d0bc81 2213static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2214{
2215 /* data points to a __int128 number.
2216 * Suppose
2217 * int128_num = *(__int128 *)data;
2218 * The below formulas shows what upper_num and lower_num represents:
2219 * upper_num = int128_num >> 64;
2220 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2221 */
2222 u64 upper_num, lower_num;
2223
2224#ifdef __BIG_ENDIAN_BITFIELD
2225 upper_num = *(u64 *)data;
2226 lower_num = *(u64 *)(data + 8);
2227#else
2228 upper_num = *(u64 *)(data + 8);
2229 lower_num = *(u64 *)data;
2230#endif
2231 if (upper_num == 0)
31d0bc81 2232 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2233 else
31d0bc81
AM
2234 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2235 lower_num);
b1e8818c
YS
2236}
2237
2238static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2239 u16 right_shift_bits)
2240{
2241 u64 upper_num, lower_num;
2242
2243#ifdef __BIG_ENDIAN_BITFIELD
2244 upper_num = print_num[0];
2245 lower_num = print_num[1];
2246#else
2247 upper_num = print_num[1];
2248 lower_num = print_num[0];
2249#endif
2250
2251 /* shake out un-needed bits by shift/or operations */
2252 if (left_shift_bits >= 64) {
2253 upper_num = lower_num << (left_shift_bits - 64);
2254 lower_num = 0;
2255 } else {
2256 upper_num = (upper_num << left_shift_bits) |
2257 (lower_num >> (64 - left_shift_bits));
2258 lower_num = lower_num << left_shift_bits;
2259 }
2260
2261 if (right_shift_bits >= 64) {
2262 lower_num = upper_num >> (right_shift_bits - 64);
2263 upper_num = 0;
2264 } else {
2265 lower_num = (lower_num >> right_shift_bits) |
2266 (upper_num << (64 - right_shift_bits));
2267 upper_num = upper_num >> right_shift_bits;
2268 }
2269
2270#ifdef __BIG_ENDIAN_BITFIELD
2271 print_num[0] = upper_num;
2272 print_num[1] = lower_num;
2273#else
2274 print_num[0] = lower_num;
2275 print_num[1] = upper_num;
2276#endif
2277}
2278
31d0bc81
AM
2279static void btf_bitfield_show(void *data, u8 bits_offset,
2280 u8 nr_bits, struct btf_show *show)
b00b8dae 2281{
b65f370d 2282 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2283 u8 nr_copy_bytes;
2284 u8 nr_copy_bits;
b1e8818c 2285 u64 print_num[2] = {};
b00b8dae 2286
b00b8dae
MKL
2287 nr_copy_bits = nr_bits + bits_offset;
2288 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2289
b1e8818c 2290 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2291
b65f370d
OK
2292#ifdef __BIG_ENDIAN_BITFIELD
2293 left_shift_bits = bits_offset;
2294#else
b1e8818c 2295 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2296#endif
b1e8818c 2297 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2298
b1e8818c 2299 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2300 btf_int128_print(show, print_num);
b00b8dae
MKL
2301}
2302
9d5f9f70 2303
31d0bc81
AM
2304static void btf_int_bits_show(const struct btf *btf,
2305 const struct btf_type *t,
2306 void *data, u8 bits_offset,
2307 struct btf_show *show)
f97be3ab
YS
2308{
2309 u32 int_data = btf_type_int(t);
2310 u8 nr_bits = BTF_INT_BITS(int_data);
2311 u8 total_bits_offset;
2312
2313 /*
2314 * bits_offset is at most 7.
b1e8818c 2315 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2316 */
2317 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2318 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2319 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2320 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2321}
2322
31d0bc81
AM
2323static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2324 u32 type_id, void *data, u8 bits_offset,
2325 struct btf_show *show)
b00b8dae
MKL
2326{
2327 u32 int_data = btf_type_int(t);
2328 u8 encoding = BTF_INT_ENCODING(int_data);
2329 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2330 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2331 void *safe_data;
2332
2333 safe_data = btf_show_start_type(show, t, type_id, data);
2334 if (!safe_data)
2335 return;
b00b8dae
MKL
2336
2337 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2338 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2339 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2340 goto out;
b00b8dae
MKL
2341 }
2342
2343 switch (nr_bits) {
b1e8818c 2344 case 128:
31d0bc81 2345 btf_int128_print(show, safe_data);
b1e8818c 2346 break;
b00b8dae
MKL
2347 case 64:
2348 if (sign)
31d0bc81 2349 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2350 else
31d0bc81 2351 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2352 break;
2353 case 32:
2354 if (sign)
31d0bc81 2355 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2356 else
31d0bc81 2357 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2358 break;
2359 case 16:
2360 if (sign)
31d0bc81 2361 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2362 else
31d0bc81 2363 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2364 break;
2365 case 8:
31d0bc81
AM
2366 if (show->state.array_encoding == BTF_INT_CHAR) {
2367 /* check for null terminator */
2368 if (show->state.array_terminated)
2369 break;
2370 if (*(char *)data == '\0') {
2371 show->state.array_terminated = 1;
2372 break;
2373 }
2374 if (isprint(*(char *)data)) {
2375 btf_show_type_value(show, "'%c'",
2376 *(char *)safe_data);
2377 break;
2378 }
2379 }
b00b8dae 2380 if (sign)
31d0bc81 2381 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2382 else
31d0bc81 2383 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2384 break;
2385 default:
31d0bc81
AM
2386 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2387 break;
b00b8dae 2388 }
31d0bc81
AM
2389out:
2390 btf_show_end_type(show);
b00b8dae
MKL
2391}
2392
69b693f0
MKL
2393static const struct btf_kind_operations int_ops = {
2394 .check_meta = btf_int_check_meta,
eb3f595d 2395 .resolve = btf_df_resolve,
179cde8c 2396 .check_member = btf_int_check_member,
9d5f9f70 2397 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2398 .log_details = btf_int_log,
31d0bc81 2399 .show = btf_int_show,
69b693f0
MKL
2400};
2401
179cde8c
MKL
2402static int btf_modifier_check_member(struct btf_verifier_env *env,
2403 const struct btf_type *struct_type,
2404 const struct btf_member *member,
2405 const struct btf_type *member_type)
2406{
2407 const struct btf_type *resolved_type;
2408 u32 resolved_type_id = member->type;
2409 struct btf_member resolved_member;
2410 struct btf *btf = env->btf;
2411
2412 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2413 if (!resolved_type) {
2414 btf_verifier_log_member(env, struct_type, member,
2415 "Invalid member");
2416 return -EINVAL;
2417 }
2418
2419 resolved_member = *member;
2420 resolved_member.type = resolved_type_id;
2421
2422 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2423 &resolved_member,
2424 resolved_type);
2425}
2426
9d5f9f70
YS
2427static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2428 const struct btf_type *struct_type,
2429 const struct btf_member *member,
2430 const struct btf_type *member_type)
2431{
2432 const struct btf_type *resolved_type;
2433 u32 resolved_type_id = member->type;
2434 struct btf_member resolved_member;
2435 struct btf *btf = env->btf;
2436
2437 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2438 if (!resolved_type) {
2439 btf_verifier_log_member(env, struct_type, member,
2440 "Invalid member");
2441 return -EINVAL;
2442 }
2443
2444 resolved_member = *member;
2445 resolved_member.type = resolved_type_id;
2446
2447 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2448 &resolved_member,
2449 resolved_type);
2450}
2451
179cde8c
MKL
2452static int btf_ptr_check_member(struct btf_verifier_env *env,
2453 const struct btf_type *struct_type,
2454 const struct btf_member *member,
2455 const struct btf_type *member_type)
2456{
2457 u32 struct_size, struct_bits_off, bytes_offset;
2458
2459 struct_size = struct_type->size;
2460 struct_bits_off = member->offset;
2461 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2462
2463 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2464 btf_verifier_log_member(env, struct_type, member,
2465 "Member is not byte aligned");
2466 return -EINVAL;
2467 }
2468
2469 if (struct_size - bytes_offset < sizeof(void *)) {
2470 btf_verifier_log_member(env, struct_type, member,
2471 "Member exceeds struct_size");
2472 return -EINVAL;
2473 }
2474
2475 return 0;
2476}
2477
69b693f0
MKL
2478static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2479 const struct btf_type *t,
2480 u32 meta_left)
2481{
8c42d2fa
YS
2482 const char *value;
2483
69b693f0
MKL
2484 if (btf_type_vlen(t)) {
2485 btf_verifier_log_type(env, t, "vlen != 0");
2486 return -EINVAL;
2487 }
2488
9d5f9f70
YS
2489 if (btf_type_kflag(t)) {
2490 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2491 return -EINVAL;
2492 }
2493
aea2f7b8 2494 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2495 btf_verifier_log_type(env, t, "Invalid type_id");
2496 return -EINVAL;
2497 }
2498
8c42d2fa 2499 /* typedef/type_tag type must have a valid name, and other ref types,
eb04bbb6
YS
2500 * volatile, const, restrict, should have a null name.
2501 */
2502 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2503 if (!t->name_off ||
2504 !btf_name_valid_identifier(env->btf, t->name_off)) {
2505 btf_verifier_log_type(env, t, "Invalid name");
2506 return -EINVAL;
2507 }
8c42d2fa
YS
2508 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2509 value = btf_name_by_offset(env->btf, t->name_off);
2510 if (!value || !value[0]) {
2511 btf_verifier_log_type(env, t, "Invalid name");
2512 return -EINVAL;
2513 }
eb04bbb6
YS
2514 } else {
2515 if (t->name_off) {
2516 btf_verifier_log_type(env, t, "Invalid name");
2517 return -EINVAL;
2518 }
2519 }
2520
69b693f0
MKL
2521 btf_verifier_log_type(env, t, NULL);
2522
2523 return 0;
2524}
2525
eb3f595d
MKL
2526static int btf_modifier_resolve(struct btf_verifier_env *env,
2527 const struct resolve_vertex *v)
2528{
2529 const struct btf_type *t = v->t;
2530 const struct btf_type *next_type;
2531 u32 next_type_id = t->type;
2532 struct btf *btf = env->btf;
eb3f595d
MKL
2533
2534 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2535 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2536 btf_verifier_log_type(env, v->t, "Invalid type_id");
2537 return -EINVAL;
2538 }
2539
eb3f595d
MKL
2540 if (!env_type_is_resolve_sink(env, next_type) &&
2541 !env_type_is_resolved(env, next_type_id))
2542 return env_stack_push(env, next_type, next_type_id);
2543
2544 /* Figure out the resolved next_type_id with size.
2545 * They will be stored in the current modifier's
2546 * resolved_ids and resolved_sizes such that it can
2547 * save us a few type-following when we use it later (e.g. in
2548 * pretty print).
2549 */
1acc5d5c 2550 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2551 if (env_type_is_resolved(env, next_type_id))
2552 next_type = btf_type_id_resolve(btf, &next_type_id);
2553
2554 /* "typedef void new_void", "const void"...etc */
2555 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2556 !btf_type_is_fwd(next_type) &&
2557 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2558 btf_verifier_log_type(env, v->t, "Invalid type_id");
2559 return -EINVAL;
2560 }
eb3f595d
MKL
2561 }
2562
1acc5d5c 2563 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2564
2565 return 0;
2566}
2567
1dc92851
DB
2568static int btf_var_resolve(struct btf_verifier_env *env,
2569 const struct resolve_vertex *v)
2570{
2571 const struct btf_type *next_type;
2572 const struct btf_type *t = v->t;
2573 u32 next_type_id = t->type;
2574 struct btf *btf = env->btf;
1dc92851
DB
2575
2576 next_type = btf_type_by_id(btf, next_type_id);
2577 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2578 btf_verifier_log_type(env, v->t, "Invalid type_id");
2579 return -EINVAL;
2580 }
2581
2582 if (!env_type_is_resolve_sink(env, next_type) &&
2583 !env_type_is_resolved(env, next_type_id))
2584 return env_stack_push(env, next_type, next_type_id);
2585
2586 if (btf_type_is_modifier(next_type)) {
2587 const struct btf_type *resolved_type;
2588 u32 resolved_type_id;
2589
2590 resolved_type_id = next_type_id;
2591 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2592
2593 if (btf_type_is_ptr(resolved_type) &&
2594 !env_type_is_resolve_sink(env, resolved_type) &&
2595 !env_type_is_resolved(env, resolved_type_id))
2596 return env_stack_push(env, resolved_type,
2597 resolved_type_id);
2598 }
2599
2600 /* We must resolve to something concrete at this point, no
2601 * forward types or similar that would resolve to size of
2602 * zero is allowed.
2603 */
1acc5d5c 2604 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2605 btf_verifier_log_type(env, v->t, "Invalid type_id");
2606 return -EINVAL;
2607 }
2608
1acc5d5c 2609 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2610
2611 return 0;
2612}
2613
eb3f595d
MKL
2614static int btf_ptr_resolve(struct btf_verifier_env *env,
2615 const struct resolve_vertex *v)
2616{
2617 const struct btf_type *next_type;
2618 const struct btf_type *t = v->t;
2619 u32 next_type_id = t->type;
2620 struct btf *btf = env->btf;
eb3f595d
MKL
2621
2622 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2623 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2624 btf_verifier_log_type(env, v->t, "Invalid type_id");
2625 return -EINVAL;
2626 }
2627
eb3f595d
MKL
2628 if (!env_type_is_resolve_sink(env, next_type) &&
2629 !env_type_is_resolved(env, next_type_id))
2630 return env_stack_push(env, next_type, next_type_id);
2631
2632 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2633 * the modifier may have stopped resolving when it was resolved
2634 * to a ptr (last-resolved-ptr).
2635 *
2636 * We now need to continue from the last-resolved-ptr to
2637 * ensure the last-resolved-ptr will not referring back to
c561d110 2638 * the current ptr (t).
eb3f595d
MKL
2639 */
2640 if (btf_type_is_modifier(next_type)) {
2641 const struct btf_type *resolved_type;
2642 u32 resolved_type_id;
2643
2644 resolved_type_id = next_type_id;
2645 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2646
2647 if (btf_type_is_ptr(resolved_type) &&
2648 !env_type_is_resolve_sink(env, resolved_type) &&
2649 !env_type_is_resolved(env, resolved_type_id))
2650 return env_stack_push(env, resolved_type,
2651 resolved_type_id);
2652 }
2653
2667a262
MKL
2654 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2655 if (env_type_is_resolved(env, next_type_id))
2656 next_type = btf_type_id_resolve(btf, &next_type_id);
2657
2658 if (!btf_type_is_void(next_type) &&
2659 !btf_type_is_fwd(next_type) &&
2660 !btf_type_is_func_proto(next_type)) {
2661 btf_verifier_log_type(env, v->t, "Invalid type_id");
2662 return -EINVAL;
2663 }
eb3f595d
MKL
2664 }
2665
eb3f595d
MKL
2666 env_stack_pop_resolved(env, next_type_id, 0);
2667
2668 return 0;
2669}
2670
31d0bc81
AM
2671static void btf_modifier_show(const struct btf *btf,
2672 const struct btf_type *t,
2673 u32 type_id, void *data,
2674 u8 bits_offset, struct btf_show *show)
b00b8dae 2675{
85d33df3
MKL
2676 if (btf->resolved_ids)
2677 t = btf_type_id_resolve(btf, &type_id);
2678 else
2679 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2680
31d0bc81 2681 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2682}
2683
31d0bc81
AM
2684static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2685 u32 type_id, void *data, u8 bits_offset,
2686 struct btf_show *show)
1dc92851
DB
2687{
2688 t = btf_type_id_resolve(btf, &type_id);
2689
31d0bc81 2690 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2691}
2692
31d0bc81
AM
2693static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2694 u32 type_id, void *data, u8 bits_offset,
2695 struct btf_show *show)
b00b8dae 2696{
31d0bc81
AM
2697 void *safe_data;
2698
2699 safe_data = btf_show_start_type(show, t, type_id, data);
2700 if (!safe_data)
2701 return;
2702
2703 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2704 if (show->flags & BTF_SHOW_PTR_RAW)
2705 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2706 else
2707 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2708 btf_show_end_type(show);
b00b8dae
MKL
2709}
2710
69b693f0
MKL
2711static void btf_ref_type_log(struct btf_verifier_env *env,
2712 const struct btf_type *t)
2713{
2714 btf_verifier_log(env, "type_id=%u", t->type);
2715}
2716
2717static struct btf_kind_operations modifier_ops = {
2718 .check_meta = btf_ref_type_check_meta,
eb3f595d 2719 .resolve = btf_modifier_resolve,
179cde8c 2720 .check_member = btf_modifier_check_member,
9d5f9f70 2721 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2722 .log_details = btf_ref_type_log,
31d0bc81 2723 .show = btf_modifier_show,
69b693f0
MKL
2724};
2725
2726static struct btf_kind_operations ptr_ops = {
2727 .check_meta = btf_ref_type_check_meta,
eb3f595d 2728 .resolve = btf_ptr_resolve,
179cde8c 2729 .check_member = btf_ptr_check_member,
9d5f9f70 2730 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2731 .log_details = btf_ref_type_log,
31d0bc81 2732 .show = btf_ptr_show,
69b693f0
MKL
2733};
2734
8175383f
MKL
2735static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2736 const struct btf_type *t,
2737 u32 meta_left)
2738{
2739 if (btf_type_vlen(t)) {
2740 btf_verifier_log_type(env, t, "vlen != 0");
2741 return -EINVAL;
2742 }
2743
2744 if (t->type) {
2745 btf_verifier_log_type(env, t, "type != 0");
2746 return -EINVAL;
2747 }
2748
eb04bbb6
YS
2749 /* fwd type must have a valid name */
2750 if (!t->name_off ||
2751 !btf_name_valid_identifier(env->btf, t->name_off)) {
2752 btf_verifier_log_type(env, t, "Invalid name");
2753 return -EINVAL;
2754 }
2755
8175383f
MKL
2756 btf_verifier_log_type(env, t, NULL);
2757
2758 return 0;
2759}
2760
76c43ae8
YS
2761static void btf_fwd_type_log(struct btf_verifier_env *env,
2762 const struct btf_type *t)
2763{
2764 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2765}
2766
69b693f0 2767static struct btf_kind_operations fwd_ops = {
8175383f 2768 .check_meta = btf_fwd_check_meta,
eb3f595d 2769 .resolve = btf_df_resolve,
179cde8c 2770 .check_member = btf_df_check_member,
9d5f9f70 2771 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2772 .log_details = btf_fwd_type_log,
31d0bc81 2773 .show = btf_df_show,
69b693f0
MKL
2774};
2775
179cde8c
MKL
2776static int btf_array_check_member(struct btf_verifier_env *env,
2777 const struct btf_type *struct_type,
2778 const struct btf_member *member,
2779 const struct btf_type *member_type)
2780{
2781 u32 struct_bits_off = member->offset;
2782 u32 struct_size, bytes_offset;
2783 u32 array_type_id, array_size;
2784 struct btf *btf = env->btf;
2785
2786 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2787 btf_verifier_log_member(env, struct_type, member,
2788 "Member is not byte aligned");
2789 return -EINVAL;
2790 }
2791
2792 array_type_id = member->type;
2793 btf_type_id_size(btf, &array_type_id, &array_size);
2794 struct_size = struct_type->size;
2795 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2796 if (struct_size - bytes_offset < array_size) {
2797 btf_verifier_log_member(env, struct_type, member,
2798 "Member exceeds struct_size");
2799 return -EINVAL;
2800 }
2801
2802 return 0;
2803}
2804
69b693f0
MKL
2805static s32 btf_array_check_meta(struct btf_verifier_env *env,
2806 const struct btf_type *t,
2807 u32 meta_left)
2808{
2809 const struct btf_array *array = btf_type_array(t);
2810 u32 meta_needed = sizeof(*array);
2811
2812 if (meta_left < meta_needed) {
2813 btf_verifier_log_basic(env, t,
2814 "meta_left:%u meta_needed:%u",
2815 meta_left, meta_needed);
2816 return -EINVAL;
2817 }
2818
eb04bbb6
YS
2819 /* array type should not have a name */
2820 if (t->name_off) {
2821 btf_verifier_log_type(env, t, "Invalid name");
2822 return -EINVAL;
2823 }
2824
69b693f0
MKL
2825 if (btf_type_vlen(t)) {
2826 btf_verifier_log_type(env, t, "vlen != 0");
2827 return -EINVAL;
2828 }
2829
9d5f9f70
YS
2830 if (btf_type_kflag(t)) {
2831 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2832 return -EINVAL;
2833 }
2834
b9308ae6
MKL
2835 if (t->size) {
2836 btf_verifier_log_type(env, t, "size != 0");
2837 return -EINVAL;
2838 }
2839
4ef5f574
MKL
2840 /* Array elem type and index type cannot be in type void,
2841 * so !array->type and !array->index_type are not allowed.
69b693f0 2842 */
aea2f7b8 2843 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2844 btf_verifier_log_type(env, t, "Invalid elem");
2845 return -EINVAL;
2846 }
2847
aea2f7b8 2848 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2849 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2850 return -EINVAL;
2851 }
2852
2853 btf_verifier_log_type(env, t, NULL);
2854
2855 return meta_needed;
2856}
2857
eb3f595d
MKL
2858static int btf_array_resolve(struct btf_verifier_env *env,
2859 const struct resolve_vertex *v)
2860{
2861 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2862 const struct btf_type *elem_type, *index_type;
2863 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2864 struct btf *btf = env->btf;
2865 u32 elem_size;
2866
4ef5f574
MKL
2867 /* Check array->index_type */
2868 index_type_id = array->index_type;
2869 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2870 if (btf_type_nosize_or_null(index_type) ||
2871 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2872 btf_verifier_log_type(env, v->t, "Invalid index");
2873 return -EINVAL;
2874 }
2875
2876 if (!env_type_is_resolve_sink(env, index_type) &&
2877 !env_type_is_resolved(env, index_type_id))
2878 return env_stack_push(env, index_type, index_type_id);
2879
2880 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2881 if (!index_type || !btf_type_is_int(index_type) ||
2882 !btf_type_int_is_regular(index_type)) {
2883 btf_verifier_log_type(env, v->t, "Invalid index");
2884 return -EINVAL;
2885 }
2886
2887 /* Check array->type */
2888 elem_type_id = array->type;
eb3f595d 2889 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2890 if (btf_type_nosize_or_null(elem_type) ||
2891 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2892 btf_verifier_log_type(env, v->t,
2893 "Invalid elem");
2894 return -EINVAL;
2895 }
2896
2897 if (!env_type_is_resolve_sink(env, elem_type) &&
2898 !env_type_is_resolved(env, elem_type_id))
2899 return env_stack_push(env, elem_type, elem_type_id);
2900
2901 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2902 if (!elem_type) {
2903 btf_verifier_log_type(env, v->t, "Invalid elem");
2904 return -EINVAL;
2905 }
2906
4ef5f574
MKL
2907 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2908 btf_verifier_log_type(env, v->t, "Invalid array of int");
2909 return -EINVAL;
eb3f595d
MKL
2910 }
2911
2912 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2913 btf_verifier_log_type(env, v->t,
2914 "Array size overflows U32_MAX");
2915 return -EINVAL;
2916 }
2917
2918 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2919
2920 return 0;
2921}
2922
69b693f0
MKL
2923static void btf_array_log(struct btf_verifier_env *env,
2924 const struct btf_type *t)
2925{
2926 const struct btf_array *array = btf_type_array(t);
2927
2928 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2929 array->type, array->index_type, array->nelems);
2930}
2931
31d0bc81
AM
2932static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2933 u32 type_id, void *data, u8 bits_offset,
2934 struct btf_show *show)
b00b8dae
MKL
2935{
2936 const struct btf_array *array = btf_type_array(t);
2937 const struct btf_kind_operations *elem_ops;
2938 const struct btf_type *elem_type;
31d0bc81
AM
2939 u32 i, elem_size = 0, elem_type_id;
2940 u16 encoding = 0;
b00b8dae
MKL
2941
2942 elem_type_id = array->type;
31d0bc81
AM
2943 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2944 if (elem_type && btf_type_has_size(elem_type))
2945 elem_size = elem_type->size;
2946
2947 if (elem_type && btf_type_is_int(elem_type)) {
2948 u32 int_type = btf_type_int(elem_type);
2949
2950 encoding = BTF_INT_ENCODING(int_type);
2951
2952 /*
2953 * BTF_INT_CHAR encoding never seems to be set for
2954 * char arrays, so if size is 1 and element is
2955 * printable as a char, we'll do that.
2956 */
2957 if (elem_size == 1)
2958 encoding = BTF_INT_CHAR;
2959 }
2960
2961 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2962 return;
2963
2964 if (!elem_type)
2965 goto out;
b00b8dae 2966 elem_ops = btf_type_ops(elem_type);
31d0bc81 2967
b00b8dae 2968 for (i = 0; i < array->nelems; i++) {
b00b8dae 2969
31d0bc81
AM
2970 btf_show_start_array_member(show);
2971
2972 elem_ops->show(btf, elem_type, elem_type_id, data,
2973 bits_offset, show);
b00b8dae 2974 data += elem_size;
31d0bc81
AM
2975
2976 btf_show_end_array_member(show);
2977
2978 if (show->state.array_terminated)
2979 break;
b00b8dae 2980 }
31d0bc81
AM
2981out:
2982 btf_show_end_array_type(show);
2983}
2984
2985static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2986 u32 type_id, void *data, u8 bits_offset,
2987 struct btf_show *show)
2988{
2989 const struct btf_member *m = show->state.member;
2990
2991 /*
2992 * First check if any members would be shown (are non-zero).
2993 * See comments above "struct btf_show" definition for more
2994 * details on how this works at a high-level.
2995 */
2996 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2997 if (!show->state.depth_check) {
2998 show->state.depth_check = show->state.depth + 1;
2999 show->state.depth_to_show = 0;
3000 }
3001 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3002 show->state.member = m;
3003
3004 if (show->state.depth_check != show->state.depth + 1)
3005 return;
3006 show->state.depth_check = 0;
3007
3008 if (show->state.depth_to_show <= show->state.depth)
3009 return;
3010 /*
3011 * Reaching here indicates we have recursed and found
3012 * non-zero array member(s).
3013 */
3014 }
3015 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3016}
3017
69b693f0
MKL
3018static struct btf_kind_operations array_ops = {
3019 .check_meta = btf_array_check_meta,
eb3f595d 3020 .resolve = btf_array_resolve,
179cde8c 3021 .check_member = btf_array_check_member,
9d5f9f70 3022 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3023 .log_details = btf_array_log,
31d0bc81 3024 .show = btf_array_show,
69b693f0
MKL
3025};
3026
179cde8c
MKL
3027static int btf_struct_check_member(struct btf_verifier_env *env,
3028 const struct btf_type *struct_type,
3029 const struct btf_member *member,
3030 const struct btf_type *member_type)
3031{
3032 u32 struct_bits_off = member->offset;
3033 u32 struct_size, bytes_offset;
3034
3035 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3036 btf_verifier_log_member(env, struct_type, member,
3037 "Member is not byte aligned");
3038 return -EINVAL;
3039 }
3040
3041 struct_size = struct_type->size;
3042 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3043 if (struct_size - bytes_offset < member_type->size) {
3044 btf_verifier_log_member(env, struct_type, member,
3045 "Member exceeds struct_size");
3046 return -EINVAL;
3047 }
3048
3049 return 0;
3050}
3051
69b693f0
MKL
3052static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3053 const struct btf_type *t,
3054 u32 meta_left)
3055{
3056 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3057 const struct btf_member *member;
6283fa38 3058 u32 meta_needed, last_offset;
69b693f0
MKL
3059 struct btf *btf = env->btf;
3060 u32 struct_size = t->size;
9d5f9f70 3061 u32 offset;
69b693f0
MKL
3062 u16 i;
3063
3064 meta_needed = btf_type_vlen(t) * sizeof(*member);
3065 if (meta_left < meta_needed) {
3066 btf_verifier_log_basic(env, t,
3067 "meta_left:%u meta_needed:%u",
3068 meta_left, meta_needed);
3069 return -EINVAL;
3070 }
3071
eb04bbb6
YS
3072 /* struct type either no name or a valid one */
3073 if (t->name_off &&
3074 !btf_name_valid_identifier(env->btf, t->name_off)) {
3075 btf_verifier_log_type(env, t, "Invalid name");
3076 return -EINVAL;
3077 }
3078
69b693f0
MKL
3079 btf_verifier_log_type(env, t, NULL);
3080
6283fa38 3081 last_offset = 0;
69b693f0 3082 for_each_member(i, t, member) {
fbcf93eb 3083 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
3084 btf_verifier_log_member(env, t, member,
3085 "Invalid member name_offset:%u",
fbcf93eb 3086 member->name_off);
69b693f0
MKL
3087 return -EINVAL;
3088 }
3089
eb04bbb6
YS
3090 /* struct member either no name or a valid one */
3091 if (member->name_off &&
3092 !btf_name_valid_identifier(btf, member->name_off)) {
3093 btf_verifier_log_member(env, t, member, "Invalid name");
3094 return -EINVAL;
3095 }
69b693f0 3096 /* A member cannot be in type void */
aea2f7b8 3097 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
3098 btf_verifier_log_member(env, t, member,
3099 "Invalid type_id");
3100 return -EINVAL;
3101 }
3102
8293eb99 3103 offset = __btf_member_bit_offset(t, member);
9d5f9f70 3104 if (is_union && offset) {
69b693f0
MKL
3105 btf_verifier_log_member(env, t, member,
3106 "Invalid member bits_offset");
3107 return -EINVAL;
3108 }
3109
6283fa38
MKL
3110 /*
3111 * ">" instead of ">=" because the last member could be
3112 * "char a[0];"
3113 */
9d5f9f70 3114 if (last_offset > offset) {
6283fa38
MKL
3115 btf_verifier_log_member(env, t, member,
3116 "Invalid member bits_offset");
3117 return -EINVAL;
3118 }
3119
9d5f9f70 3120 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 3121 btf_verifier_log_member(env, t, member,
311fe1a8 3122 "Member bits_offset exceeds its struct size");
69b693f0
MKL
3123 return -EINVAL;
3124 }
3125
3126 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 3127 last_offset = offset;
69b693f0
MKL
3128 }
3129
3130 return meta_needed;
3131}
3132
eb3f595d
MKL
3133static int btf_struct_resolve(struct btf_verifier_env *env,
3134 const struct resolve_vertex *v)
3135{
3136 const struct btf_member *member;
179cde8c 3137 int err;
eb3f595d
MKL
3138 u16 i;
3139
3140 /* Before continue resolving the next_member,
3141 * ensure the last member is indeed resolved to a
3142 * type with size info.
3143 */
3144 if (v->next_member) {
179cde8c 3145 const struct btf_type *last_member_type;
eb3f595d 3146 const struct btf_member *last_member;
a37a3258 3147 u32 last_member_type_id;
eb3f595d
MKL
3148
3149 last_member = btf_type_member(v->t) + v->next_member - 1;
3150 last_member_type_id = last_member->type;
3151 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3152 last_member_type_id)))
3153 return -EINVAL;
179cde8c
MKL
3154
3155 last_member_type = btf_type_by_id(env->btf,
3156 last_member_type_id);
9d5f9f70
YS
3157 if (btf_type_kflag(v->t))
3158 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3159 last_member,
3160 last_member_type);
3161 else
3162 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3163 last_member,
3164 last_member_type);
179cde8c
MKL
3165 if (err)
3166 return err;
eb3f595d
MKL
3167 }
3168
3169 for_each_member_from(i, v->next_member, v->t, member) {
3170 u32 member_type_id = member->type;
3171 const struct btf_type *member_type = btf_type_by_id(env->btf,
3172 member_type_id);
3173
e4f07120
SF
3174 if (btf_type_nosize_or_null(member_type) ||
3175 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3176 btf_verifier_log_member(env, v->t, member,
3177 "Invalid member");
3178 return -EINVAL;
3179 }
3180
3181 if (!env_type_is_resolve_sink(env, member_type) &&
3182 !env_type_is_resolved(env, member_type_id)) {
3183 env_stack_set_next_member(env, i + 1);
3184 return env_stack_push(env, member_type, member_type_id);
3185 }
179cde8c 3186
9d5f9f70
YS
3187 if (btf_type_kflag(v->t))
3188 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3189 member,
3190 member_type);
3191 else
3192 err = btf_type_ops(member_type)->check_member(env, v->t,
3193 member,
3194 member_type);
179cde8c
MKL
3195 if (err)
3196 return err;
eb3f595d
MKL
3197 }
3198
3199 env_stack_pop_resolved(env, 0, 0);
3200
3201 return 0;
3202}
3203
69b693f0
MKL
3204static void btf_struct_log(struct btf_verifier_env *env,
3205 const struct btf_type *t)
3206{
3207 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3208}
3209
aa3496ac 3210enum btf_field_info_type {
42ba1308
KKD
3211 BTF_FIELD_SPIN_LOCK,
3212 BTF_FIELD_TIMER,
61df10c7
KKD
3213 BTF_FIELD_KPTR,
3214};
3215
3216enum {
3217 BTF_FIELD_IGNORE = 0,
3218 BTF_FIELD_FOUND = 1,
42ba1308
KKD
3219};
3220
3221struct btf_field_info {
aa3496ac 3222 enum btf_field_type type;
42ba1308 3223 u32 off;
f0c5941f
KKD
3224 union {
3225 struct {
3226 u32 type_id;
3227 } kptr;
3228 struct {
3229 const char *node_name;
3230 u32 value_btf_id;
3231 } list_head;
3232 };
42ba1308
KKD
3233};
3234
3235static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3236 u32 off, int sz, enum btf_field_type field_type,
3237 struct btf_field_info *info)
42ba1308
KKD
3238{
3239 if (!__btf_type_is_struct(t))
61df10c7 3240 return BTF_FIELD_IGNORE;
42ba1308 3241 if (t->size != sz)
61df10c7 3242 return BTF_FIELD_IGNORE;
db559117 3243 info->type = field_type;
42ba1308 3244 info->off = off;
61df10c7
KKD
3245 return BTF_FIELD_FOUND;
3246}
3247
3248static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3249 u32 off, int sz, struct btf_field_info *info)
3250{
aa3496ac 3251 enum btf_field_type type;
61df10c7
KKD
3252 u32 res_id;
3253
23da464d
KKD
3254 /* Permit modifiers on the pointer itself */
3255 if (btf_type_is_volatile(t))
3256 t = btf_type_by_id(btf, t->type);
61df10c7
KKD
3257 /* For PTR, sz is always == 8 */
3258 if (!btf_type_is_ptr(t))
3259 return BTF_FIELD_IGNORE;
3260 t = btf_type_by_id(btf, t->type);
3261
3262 if (!btf_type_is_type_tag(t))
3263 return BTF_FIELD_IGNORE;
3264 /* Reject extra tags */
3265 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3266 return -EINVAL;
c0a5a21c
KKD
3267 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3268 type = BPF_KPTR_UNREF;
3269 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3270 type = BPF_KPTR_REF;
3271 else
61df10c7
KKD
3272 return -EINVAL;
3273
3274 /* Get the base type */
3275 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3276 /* Only pointer to struct is allowed */
3277 if (!__btf_type_is_struct(t))
3278 return -EINVAL;
3279
c0a5a21c 3280 info->type = type;
db559117
KKD
3281 info->off = off;
3282 info->kptr.type_id = res_id;
61df10c7 3283 return BTF_FIELD_FOUND;
42ba1308
KKD
3284}
3285
f0c5941f
KKD
3286static const char *btf_find_decl_tag_value(const struct btf *btf,
3287 const struct btf_type *pt,
3288 int comp_idx, const char *tag_key)
3289{
3290 int i;
3291
3292 for (i = 1; i < btf_nr_types(btf); i++) {
3293 const struct btf_type *t = btf_type_by_id(btf, i);
3294 int len = strlen(tag_key);
3295
3296 if (!btf_type_is_decl_tag(t))
3297 continue;
3298 if (pt != btf_type_by_id(btf, t->type) ||
3299 btf_type_decl_tag(t)->component_idx != comp_idx)
3300 continue;
3301 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3302 continue;
3303 return __btf_name_by_offset(btf, t->name_off) + len;
3304 }
3305 return NULL;
3306}
3307
3308static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt,
3309 const struct btf_type *t, int comp_idx,
3310 u32 off, int sz, struct btf_field_info *info)
3311{
3312 const char *value_type;
3313 const char *list_node;
3314 s32 id;
3315
3316 if (!__btf_type_is_struct(t))
3317 return BTF_FIELD_IGNORE;
3318 if (t->size != sz)
3319 return BTF_FIELD_IGNORE;
3320 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3321 if (!value_type)
3322 return -EINVAL;
3323 list_node = strstr(value_type, ":");
3324 if (!list_node)
3325 return -EINVAL;
3326 value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN);
3327 if (!value_type)
3328 return -ENOMEM;
3329 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3330 kfree(value_type);
3331 if (id < 0)
3332 return id;
3333 list_node++;
3334 if (str_is_empty(list_node))
3335 return -EINVAL;
3336 info->type = BPF_LIST_HEAD;
3337 info->off = off;
3338 info->list_head.value_btf_id = id;
3339 info->list_head.node_name = list_node;
3340 return BTF_FIELD_FOUND;
3341}
3342
db559117
KKD
3343static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3344 int *align, int *sz)
3345{
3346 int type = 0;
3347
3348 if (field_mask & BPF_SPIN_LOCK) {
3349 if (!strcmp(name, "bpf_spin_lock")) {
3350 if (*seen_mask & BPF_SPIN_LOCK)
3351 return -E2BIG;
3352 *seen_mask |= BPF_SPIN_LOCK;
3353 type = BPF_SPIN_LOCK;
3354 goto end;
3355 }
3356 }
3357 if (field_mask & BPF_TIMER) {
3358 if (!strcmp(name, "bpf_timer")) {
3359 if (*seen_mask & BPF_TIMER)
3360 return -E2BIG;
3361 *seen_mask |= BPF_TIMER;
3362 type = BPF_TIMER;
3363 goto end;
3364 }
3365 }
f0c5941f
KKD
3366 if (field_mask & BPF_LIST_HEAD) {
3367 if (!strcmp(name, "bpf_list_head")) {
3368 type = BPF_LIST_HEAD;
3369 goto end;
3370 }
3371 }
8ffa5cc1
KKD
3372 if (field_mask & BPF_LIST_NODE) {
3373 if (!strcmp(name, "bpf_list_node")) {
3374 type = BPF_LIST_NODE;
3375 goto end;
3376 }
3377 }
db559117
KKD
3378 /* Only return BPF_KPTR when all other types with matchable names fail */
3379 if (field_mask & BPF_KPTR) {
3380 type = BPF_KPTR_REF;
3381 goto end;
3382 }
3383 return 0;
3384end:
3385 *sz = btf_field_type_size(type);
3386 *align = btf_field_type_align(type);
3387 return type;
3388}
3389
3390static int btf_find_struct_field(const struct btf *btf,
3391 const struct btf_type *t, u32 field_mask,
61df10c7 3392 struct btf_field_info *info, int info_cnt)
d83525ca 3393{
db559117 3394 int ret, idx = 0, align, sz, field_type;
d83525ca 3395 const struct btf_member *member;
61df10c7 3396 struct btf_field_info tmp;
db559117 3397 u32 i, off, seen_mask = 0;
d83525ca 3398
d83525ca
AS
3399 for_each_member(i, t, member) {
3400 const struct btf_type *member_type = btf_type_by_id(btf,
3401 member->type);
42ba1308 3402
db559117
KKD
3403 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3404 field_mask, &seen_mask, &align, &sz);
3405 if (field_type == 0)
d83525ca 3406 continue;
db559117
KKD
3407 if (field_type < 0)
3408 return field_type;
42ba1308 3409
8293eb99 3410 off = __btf_member_bit_offset(t, member);
d83525ca
AS
3411 if (off % 8)
3412 /* valid C code cannot generate such BTF */
3413 return -EINVAL;
3414 off /= 8;
68134668 3415 if (off % align)
db559117 3416 continue;
42ba1308
KKD
3417
3418 switch (field_type) {
db559117
KKD
3419 case BPF_SPIN_LOCK:
3420 case BPF_TIMER:
8ffa5cc1 3421 case BPF_LIST_NODE:
db559117 3422 ret = btf_find_struct(btf, member_type, off, sz, field_type,
61df10c7
KKD
3423 idx < info_cnt ? &info[idx] : &tmp);
3424 if (ret < 0)
3425 return ret;
3426 break;
db559117
KKD
3427 case BPF_KPTR_UNREF:
3428 case BPF_KPTR_REF:
61df10c7
KKD
3429 ret = btf_find_kptr(btf, member_type, off, sz,
3430 idx < info_cnt ? &info[idx] : &tmp);
3431 if (ret < 0)
3432 return ret;
3433 break;
f0c5941f
KKD
3434 case BPF_LIST_HEAD:
3435 ret = btf_find_list_head(btf, t, member_type, i, off, sz,
3436 idx < info_cnt ? &info[idx] : &tmp);
3437 if (ret < 0)
3438 return ret;
3439 break;
42ba1308
KKD
3440 default:
3441 return -EFAULT;
3442 }
61df10c7
KKD
3443
3444 if (ret == BTF_FIELD_IGNORE)
3445 continue;
3446 if (idx >= info_cnt)
3447 return -E2BIG;
3448 ++idx;
68134668 3449 }
61df10c7 3450 return idx;
68134668
AS
3451}
3452
3453static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3454 u32 field_mask, struct btf_field_info *info,
3455 int info_cnt)
68134668 3456{
db559117 3457 int ret, idx = 0, align, sz, field_type;
68134668 3458 const struct btf_var_secinfo *vsi;
61df10c7 3459 struct btf_field_info tmp;
db559117 3460 u32 i, off, seen_mask = 0;
68134668
AS
3461
3462 for_each_vsi(i, t, vsi) {
3463 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3464 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3465
db559117
KKD
3466 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3467 field_mask, &seen_mask, &align, &sz);
3468 if (field_type == 0)
68134668 3469 continue;
db559117
KKD
3470 if (field_type < 0)
3471 return field_type;
3472
3473 off = vsi->offset;
68134668
AS
3474 if (vsi->size != sz)
3475 continue;
68134668 3476 if (off % align)
db559117 3477 continue;
42ba1308
KKD
3478
3479 switch (field_type) {
db559117
KKD
3480 case BPF_SPIN_LOCK:
3481 case BPF_TIMER:
8ffa5cc1 3482 case BPF_LIST_NODE:
db559117 3483 ret = btf_find_struct(btf, var_type, off, sz, field_type,
61df10c7
KKD
3484 idx < info_cnt ? &info[idx] : &tmp);
3485 if (ret < 0)
3486 return ret;
3487 break;
db559117
KKD
3488 case BPF_KPTR_UNREF:
3489 case BPF_KPTR_REF:
61df10c7
KKD
3490 ret = btf_find_kptr(btf, var_type, off, sz,
3491 idx < info_cnt ? &info[idx] : &tmp);
3492 if (ret < 0)
3493 return ret;
3494 break;
f0c5941f
KKD
3495 case BPF_LIST_HEAD:
3496 ret = btf_find_list_head(btf, var, var_type, -1, off, sz,
3497 idx < info_cnt ? &info[idx] : &tmp);
3498 if (ret < 0)
3499 return ret;
3500 break;
42ba1308
KKD
3501 default:
3502 return -EFAULT;
3503 }
61df10c7
KKD
3504
3505 if (ret == BTF_FIELD_IGNORE)
3506 continue;
3507 if (idx >= info_cnt)
3508 return -E2BIG;
3509 ++idx;
d83525ca 3510 }
61df10c7 3511 return idx;
d83525ca
AS
3512}
3513
68134668 3514static int btf_find_field(const struct btf *btf, const struct btf_type *t,
db559117
KKD
3515 u32 field_mask, struct btf_field_info *info,
3516 int info_cnt)
68134668 3517{
68134668 3518 if (__btf_type_is_struct(t))
db559117 3519 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
68134668 3520 else if (btf_type_is_datasec(t))
db559117 3521 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
68134668
AS
3522 return -EINVAL;
3523}
3524
db559117
KKD
3525static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3526 struct btf_field_info *info)
68134668 3527{
db559117
KKD
3528 struct module *mod = NULL;
3529 const struct btf_type *t;
3530 struct btf *kernel_btf;
42ba1308 3531 int ret;
db559117 3532 s32 id;
42ba1308 3533
db559117
KKD
3534 /* Find type in map BTF, and use it to look up the matching type
3535 * in vmlinux or module BTFs, by name and kind.
3536 */
3537 t = btf_type_by_id(btf, info->kptr.type_id);
3538 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3539 &kernel_btf);
3540 if (id < 0)
3541 return id;
3542
3543 /* Find and stash the function pointer for the destruction function that
3544 * needs to be eventually invoked from the map free path.
3545 */
3546 if (info->type == BPF_KPTR_REF) {
3547 const struct btf_type *dtor_func;
3548 const char *dtor_func_name;
3549 unsigned long addr;
3550 s32 dtor_btf_id;
3551
3552 /* This call also serves as a whitelist of allowed objects that
3553 * can be used as a referenced pointer and be stored in a map at
3554 * the same time.
3555 */
3556 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3557 if (dtor_btf_id < 0) {
3558 ret = dtor_btf_id;
3559 goto end_btf;
3560 }
68134668 3561
db559117
KKD
3562 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3563 if (!dtor_func) {
3564 ret = -ENOENT;
3565 goto end_btf;
3566 }
42ba1308 3567
db559117
KKD
3568 if (btf_is_module(kernel_btf)) {
3569 mod = btf_try_get_module(kernel_btf);
3570 if (!mod) {
3571 ret = -ENXIO;
3572 goto end_btf;
3573 }
3574 }
3575
3576 /* We already verified dtor_func to be btf_type_is_func
3577 * in register_btf_id_dtor_kfuncs.
3578 */
3579 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3580 addr = kallsyms_lookup_name(dtor_func_name);
3581 if (!addr) {
3582 ret = -EINVAL;
3583 goto end_mod;
3584 }
3585 field->kptr.dtor = (void *)addr;
3586 }
3587
3588 field->kptr.btf_id = id;
3589 field->kptr.btf = kernel_btf;
3590 field->kptr.module = mod;
3591 return 0;
3592end_mod:
3593 module_put(mod);
3594end_btf:
3595 btf_put(kernel_btf);
3596 return ret;
68134668
AS
3597}
3598
f0c5941f
KKD
3599static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3600 struct btf_field_info *info)
3601{
3602 const struct btf_type *t, *n = NULL;
3603 const struct btf_member *member;
3604 u32 offset;
3605 int i;
3606
3607 t = btf_type_by_id(btf, info->list_head.value_btf_id);
3608 /* We've already checked that value_btf_id is a struct type. We
3609 * just need to figure out the offset of the list_node, and
3610 * verify its type.
3611 */
3612 for_each_member(i, t, member) {
3613 if (strcmp(info->list_head.node_name, __btf_name_by_offset(btf, member->name_off)))
3614 continue;
3615 /* Invalid BTF, two members with same name */
3616 if (n)
3617 return -EINVAL;
3618 n = btf_type_by_id(btf, member->type);
3619 if (!__btf_type_is_struct(n))
3620 return -EINVAL;
3621 if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off)))
3622 return -EINVAL;
3623 offset = __btf_member_bit_offset(n, member);
3624 if (offset % 8)
3625 return -EINVAL;
3626 offset /= 8;
3627 if (offset % __alignof__(struct bpf_list_node))
3628 return -EINVAL;
3629
3630 field->list_head.btf = (struct btf *)btf;
3631 field->list_head.value_btf_id = info->list_head.value_btf_id;
3632 field->list_head.node_offset = offset;
3633 }
3634 if (!n)
3635 return -ENOENT;
3636 return 0;
3637}
3638
db559117
KKD
3639struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3640 u32 field_mask, u32 value_size)
61df10c7 3641{
aa3496ac 3642 struct btf_field_info info_arr[BTF_FIELDS_MAX];
aa3496ac 3643 struct btf_record *rec;
f0c5941f 3644 u32 next_off = 0;
aa3496ac 3645 int ret, i, cnt;
61df10c7 3646
db559117 3647 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
61df10c7
KKD
3648 if (ret < 0)
3649 return ERR_PTR(ret);
3650 if (!ret)
3651 return NULL;
3652
aa3496ac 3653 cnt = ret;
c22dfdd2
KKD
3654 /* This needs to be kzalloc to zero out padding and unused fields, see
3655 * comment in btf_record_equal.
3656 */
aa3496ac
KKD
3657 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3658 if (!rec)
61df10c7 3659 return ERR_PTR(-ENOMEM);
61df10c7 3660
db559117
KKD
3661 rec->spin_lock_off = -EINVAL;
3662 rec->timer_off = -EINVAL;
3663 for (i = 0; i < cnt; i++) {
3664 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
3665 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3666 ret = -EFAULT;
61df10c7
KKD
3667 goto end;
3668 }
f0c5941f
KKD
3669 if (info_arr[i].off < next_off) {
3670 ret = -EEXIST;
3671 goto end;
3672 }
3673 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
61df10c7 3674
aa3496ac
KKD
3675 rec->field_mask |= info_arr[i].type;
3676 rec->fields[i].offset = info_arr[i].off;
3677 rec->fields[i].type = info_arr[i].type;
db559117
KKD
3678
3679 switch (info_arr[i].type) {
3680 case BPF_SPIN_LOCK:
3681 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3682 /* Cache offset for faster lookup at runtime */
3683 rec->spin_lock_off = rec->fields[i].offset;
3684 break;
3685 case BPF_TIMER:
3686 WARN_ON_ONCE(rec->timer_off >= 0);
3687 /* Cache offset for faster lookup at runtime */
3688 rec->timer_off = rec->fields[i].offset;
3689 break;
3690 case BPF_KPTR_UNREF:
3691 case BPF_KPTR_REF:
3692 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3693 if (ret < 0)
3694 goto end;
3695 break;
f0c5941f
KKD
3696 case BPF_LIST_HEAD:
3697 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3698 if (ret < 0)
3699 goto end;
3700 break;
8ffa5cc1
KKD
3701 case BPF_LIST_NODE:
3702 break;
db559117
KKD
3703 default:
3704 ret = -EFAULT;
3705 goto end;
3706 }
aa3496ac 3707 rec->cnt++;
61df10c7 3708 }
f0c5941f
KKD
3709
3710 /* bpf_list_head requires bpf_spin_lock */
3711 if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) {
3712 ret = -EINVAL;
3713 goto end;
3714 }
3715
aa3496ac 3716 return rec;
61df10c7 3717end:
aa3496ac 3718 btf_record_free(rec);
61df10c7
KKD
3719 return ERR_PTR(ret);
3720}
3721
865ce09a
KKD
3722int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3723{
3724 int i;
3725
3726 /* There are two owning types, kptr_ref and bpf_list_head. The former
3727 * only supports storing kernel types, which can never store references
3728 * to program allocated local types, atleast not yet. Hence we only need
3729 * to ensure that bpf_list_head ownership does not form cycles.
3730 */
3731 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD))
3732 return 0;
3733 for (i = 0; i < rec->cnt; i++) {
3734 struct btf_struct_meta *meta;
3735 u32 btf_id;
3736
3737 if (!(rec->fields[i].type & BPF_LIST_HEAD))
3738 continue;
3739 btf_id = rec->fields[i].list_head.value_btf_id;
3740 meta = btf_find_struct_meta(btf, btf_id);
3741 if (!meta)
3742 return -EFAULT;
3743 rec->fields[i].list_head.value_rec = meta->record;
3744
3745 if (!(rec->field_mask & BPF_LIST_NODE))
3746 continue;
3747
3748 /* We need to ensure ownership acyclicity among all types. The
3749 * proper way to do it would be to topologically sort all BTF
3750 * IDs based on the ownership edges, since there can be multiple
3751 * bpf_list_head in a type. Instead, we use the following
3752 * reasoning:
3753 *
3754 * - A type can only be owned by another type in user BTF if it
3755 * has a bpf_list_node.
3756 * - A type can only _own_ another type in user BTF if it has a
3757 * bpf_list_head.
3758 *
3759 * We ensure that if a type has both bpf_list_head and
3760 * bpf_list_node, its element types cannot be owning types.
3761 *
3762 * To ensure acyclicity:
3763 *
3764 * When A only has bpf_list_head, ownership chain can be:
3765 * A -> B -> C
3766 * Where:
3767 * - B has both bpf_list_head and bpf_list_node.
3768 * - C only has bpf_list_node.
3769 *
3770 * When A has both bpf_list_head and bpf_list_node, some other
3771 * type already owns it in the BTF domain, hence it can not own
3772 * another owning type through any of the bpf_list_head edges.
3773 * A -> B
3774 * Where:
3775 * - B only has bpf_list_node.
3776 */
3777 if (meta->record->field_mask & BPF_LIST_HEAD)
3778 return -ELOOP;
3779 }
3780 return 0;
3781}
3782
f71b2f64
KKD
3783static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3784{
3785 const u32 a = *(const u32 *)_a;
3786 const u32 b = *(const u32 *)_b;
3787
3788 if (a < b)
3789 return -1;
3790 else if (a > b)
3791 return 1;
3792 return 0;
3793}
3794
3795static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3796{
3797 struct btf_field_offs *foffs = (void *)priv;
3798 u32 *off_base = foffs->field_off;
3799 u32 *a = _a, *b = _b;
3800 u8 *sz_a, *sz_b;
3801
3802 sz_a = foffs->field_sz + (a - off_base);
3803 sz_b = foffs->field_sz + (b - off_base);
3804
3805 swap(*a, *b);
3806 swap(*sz_a, *sz_b);
3807}
3808
3809struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3810{
3811 struct btf_field_offs *foffs;
3812 u32 i, *off;
3813 u8 *sz;
3814
3815 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
2d577252 3816 if (IS_ERR_OR_NULL(rec))
f71b2f64
KKD
3817 return NULL;
3818
3819 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3820 if (!foffs)
3821 return ERR_PTR(-ENOMEM);
3822
3823 off = foffs->field_off;
3824 sz = foffs->field_sz;
3825 for (i = 0; i < rec->cnt; i++) {
3826 off[i] = rec->fields[i].offset;
3827 sz[i] = btf_field_type_size(rec->fields[i].type);
3828 }
3829 foffs->cnt = rec->cnt;
3830
3831 if (foffs->cnt == 1)
3832 return foffs;
3833 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3834 btf_field_offs_cmp, btf_field_offs_swap, foffs);
3835 return foffs;
3836}
3837
31d0bc81
AM
3838static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3839 u32 type_id, void *data, u8 bits_offset,
3840 struct btf_show *show)
b00b8dae 3841{
b00b8dae 3842 const struct btf_member *member;
31d0bc81 3843 void *safe_data;
b00b8dae
MKL
3844 u32 i;
3845
31d0bc81
AM
3846 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3847 if (!safe_data)
3848 return;
3849
b00b8dae
MKL
3850 for_each_member(i, t, member) {
3851 const struct btf_type *member_type = btf_type_by_id(btf,
3852 member->type);
b00b8dae 3853 const struct btf_kind_operations *ops;
9d5f9f70
YS
3854 u32 member_offset, bitfield_size;
3855 u32 bytes_offset;
3856 u8 bits8_offset;
b00b8dae 3857
31d0bc81 3858 btf_show_start_member(show, member);
b00b8dae 3859
8293eb99
AS
3860 member_offset = __btf_member_bit_offset(t, member);
3861 bitfield_size = __btf_member_bitfield_size(t, member);
17e3ac81
YS
3862 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3863 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3864 if (bitfield_size) {
31d0bc81
AM
3865 safe_data = btf_show_start_type(show, member_type,
3866 member->type,
3867 data + bytes_offset);
3868 if (safe_data)
3869 btf_bitfield_show(safe_data,
3870 bits8_offset,
3871 bitfield_size, show);
3872 btf_show_end_type(show);
9d5f9f70 3873 } else {
9d5f9f70 3874 ops = btf_type_ops(member_type);
31d0bc81
AM
3875 ops->show(btf, member_type, member->type,
3876 data + bytes_offset, bits8_offset, show);
9d5f9f70 3877 }
31d0bc81
AM
3878
3879 btf_show_end_member(show);
b00b8dae 3880 }
31d0bc81
AM
3881
3882 btf_show_end_struct_type(show);
3883}
3884
3885static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3886 u32 type_id, void *data, u8 bits_offset,
3887 struct btf_show *show)
3888{
3889 const struct btf_member *m = show->state.member;
3890
3891 /*
3892 * First check if any members would be shown (are non-zero).
3893 * See comments above "struct btf_show" definition for more
3894 * details on how this works at a high-level.
3895 */
3896 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3897 if (!show->state.depth_check) {
3898 show->state.depth_check = show->state.depth + 1;
3899 show->state.depth_to_show = 0;
3900 }
3901 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3902 /* Restore saved member data here */
3903 show->state.member = m;
3904 if (show->state.depth_check != show->state.depth + 1)
3905 return;
3906 show->state.depth_check = 0;
3907
3908 if (show->state.depth_to_show <= show->state.depth)
3909 return;
3910 /*
3911 * Reaching here indicates we have recursed and found
3912 * non-zero child values.
3913 */
3914 }
3915
3916 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3917}
3918
69b693f0
MKL
3919static struct btf_kind_operations struct_ops = {
3920 .check_meta = btf_struct_check_meta,
eb3f595d 3921 .resolve = btf_struct_resolve,
179cde8c 3922 .check_member = btf_struct_check_member,
9d5f9f70 3923 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3924 .log_details = btf_struct_log,
31d0bc81 3925 .show = btf_struct_show,
69b693f0
MKL
3926};
3927
179cde8c
MKL
3928static int btf_enum_check_member(struct btf_verifier_env *env,
3929 const struct btf_type *struct_type,
3930 const struct btf_member *member,
3931 const struct btf_type *member_type)
3932{
3933 u32 struct_bits_off = member->offset;
3934 u32 struct_size, bytes_offset;
3935
3936 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3937 btf_verifier_log_member(env, struct_type, member,
3938 "Member is not byte aligned");
3939 return -EINVAL;
3940 }
3941
3942 struct_size = struct_type->size;
3943 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3944 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3945 btf_verifier_log_member(env, struct_type, member,
3946 "Member exceeds struct_size");
3947 return -EINVAL;
3948 }
3949
3950 return 0;
3951}
3952
9d5f9f70
YS
3953static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3954 const struct btf_type *struct_type,
3955 const struct btf_member *member,
3956 const struct btf_type *member_type)
3957{
3958 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3959 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3960
3961 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3962 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3963 if (!nr_bits) {
3964 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3965 btf_verifier_log_member(env, struct_type, member,
3966 "Member is not byte aligned");
e3439af4 3967 return -EINVAL;
9d5f9f70
YS
3968 }
3969
3970 nr_bits = int_bitsize;
3971 } else if (nr_bits > int_bitsize) {
3972 btf_verifier_log_member(env, struct_type, member,
3973 "Invalid member bitfield_size");
3974 return -EINVAL;
3975 }
3976
3977 struct_size = struct_type->size;
3978 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3979 if (struct_size < bytes_end) {
3980 btf_verifier_log_member(env, struct_type, member,
3981 "Member exceeds struct_size");
3982 return -EINVAL;
3983 }
3984
3985 return 0;
3986}
3987
69b693f0
MKL
3988static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3989 const struct btf_type *t,
3990 u32 meta_left)
3991{
3992 const struct btf_enum *enums = btf_type_enum(t);
3993 struct btf *btf = env->btf;
6089fb32 3994 const char *fmt_str;
69b693f0
MKL
3995 u16 i, nr_enums;
3996 u32 meta_needed;
3997
3998 nr_enums = btf_type_vlen(t);
3999 meta_needed = nr_enums * sizeof(*enums);
4000
4001 if (meta_left < meta_needed) {
4002 btf_verifier_log_basic(env, t,
4003 "meta_left:%u meta_needed:%u",
4004 meta_left, meta_needed);
4005 return -EINVAL;
4006 }
4007
9eea9849
AS
4008 if (t->size > 8 || !is_power_of_2(t->size)) {
4009 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
4010 return -EINVAL;
4011 }
4012
eb04bbb6
YS
4013 /* enum type either no name or a valid one */
4014 if (t->name_off &&
4015 !btf_name_valid_identifier(env->btf, t->name_off)) {
4016 btf_verifier_log_type(env, t, "Invalid name");
4017 return -EINVAL;
4018 }
4019
69b693f0
MKL
4020 btf_verifier_log_type(env, t, NULL);
4021
4022 for (i = 0; i < nr_enums; i++) {
fbcf93eb 4023 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 4024 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 4025 enums[i].name_off);
69b693f0
MKL
4026 return -EINVAL;
4027 }
4028
eb04bbb6
YS
4029 /* enum member must have a valid name */
4030 if (!enums[i].name_off ||
4031 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4032 btf_verifier_log_type(env, t, "Invalid name");
4033 return -EINVAL;
4034 }
4035
8580ac94
AS
4036 if (env->log.level == BPF_LOG_KERNEL)
4037 continue;
6089fb32
YS
4038 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4039 btf_verifier_log(env, fmt_str,
23127b33 4040 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
4041 enums[i].val);
4042 }
4043
4044 return meta_needed;
4045}
4046
4047static void btf_enum_log(struct btf_verifier_env *env,
4048 const struct btf_type *t)
4049{
4050 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4051}
4052
31d0bc81
AM
4053static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4054 u32 type_id, void *data, u8 bits_offset,
4055 struct btf_show *show)
b00b8dae
MKL
4056{
4057 const struct btf_enum *enums = btf_type_enum(t);
4058 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
4059 void *safe_data;
4060 int v;
4061
4062 safe_data = btf_show_start_type(show, t, type_id, data);
4063 if (!safe_data)
4064 return;
4065
4066 v = *(int *)safe_data;
b00b8dae
MKL
4067
4068 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
4069 if (v != enums[i].val)
4070 continue;
4071
4072 btf_show_type_value(show, "%s",
4073 __btf_name_by_offset(btf,
4074 enums[i].name_off));
4075
4076 btf_show_end_type(show);
4077 return;
b00b8dae
MKL
4078 }
4079
6089fb32
YS
4080 if (btf_type_kflag(t))
4081 btf_show_type_value(show, "%d", v);
4082 else
4083 btf_show_type_value(show, "%u", v);
31d0bc81 4084 btf_show_end_type(show);
b00b8dae
MKL
4085}
4086
69b693f0
MKL
4087static struct btf_kind_operations enum_ops = {
4088 .check_meta = btf_enum_check_meta,
eb3f595d 4089 .resolve = btf_df_resolve,
179cde8c 4090 .check_member = btf_enum_check_member,
9d5f9f70 4091 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 4092 .log_details = btf_enum_log,
31d0bc81 4093 .show = btf_enum_show,
69b693f0
MKL
4094};
4095
6089fb32
YS
4096static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4097 const struct btf_type *t,
4098 u32 meta_left)
4099{
4100 const struct btf_enum64 *enums = btf_type_enum64(t);
4101 struct btf *btf = env->btf;
4102 const char *fmt_str;
4103 u16 i, nr_enums;
4104 u32 meta_needed;
4105
4106 nr_enums = btf_type_vlen(t);
4107 meta_needed = nr_enums * sizeof(*enums);
4108
4109 if (meta_left < meta_needed) {
4110 btf_verifier_log_basic(env, t,
4111 "meta_left:%u meta_needed:%u",
4112 meta_left, meta_needed);
4113 return -EINVAL;
4114 }
4115
4116 if (t->size > 8 || !is_power_of_2(t->size)) {
4117 btf_verifier_log_type(env, t, "Unexpected size");
4118 return -EINVAL;
4119 }
4120
4121 /* enum type either no name or a valid one */
4122 if (t->name_off &&
4123 !btf_name_valid_identifier(env->btf, t->name_off)) {
4124 btf_verifier_log_type(env, t, "Invalid name");
4125 return -EINVAL;
4126 }
4127
4128 btf_verifier_log_type(env, t, NULL);
4129
4130 for (i = 0; i < nr_enums; i++) {
4131 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4132 btf_verifier_log(env, "\tInvalid name_offset:%u",
4133 enums[i].name_off);
4134 return -EINVAL;
4135 }
4136
4137 /* enum member must have a valid name */
4138 if (!enums[i].name_off ||
4139 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4140 btf_verifier_log_type(env, t, "Invalid name");
4141 return -EINVAL;
4142 }
4143
4144 if (env->log.level == BPF_LOG_KERNEL)
4145 continue;
4146
4147 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4148 btf_verifier_log(env, fmt_str,
4149 __btf_name_by_offset(btf, enums[i].name_off),
4150 btf_enum64_value(enums + i));
4151 }
4152
4153 return meta_needed;
4154}
4155
4156static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4157 u32 type_id, void *data, u8 bits_offset,
4158 struct btf_show *show)
4159{
4160 const struct btf_enum64 *enums = btf_type_enum64(t);
4161 u32 i, nr_enums = btf_type_vlen(t);
4162 void *safe_data;
4163 s64 v;
4164
4165 safe_data = btf_show_start_type(show, t, type_id, data);
4166 if (!safe_data)
4167 return;
4168
4169 v = *(u64 *)safe_data;
4170
4171 for (i = 0; i < nr_enums; i++) {
4172 if (v != btf_enum64_value(enums + i))
4173 continue;
4174
4175 btf_show_type_value(show, "%s",
4176 __btf_name_by_offset(btf,
4177 enums[i].name_off));
4178
4179 btf_show_end_type(show);
4180 return;
4181 }
4182
4183 if (btf_type_kflag(t))
4184 btf_show_type_value(show, "%lld", v);
4185 else
4186 btf_show_type_value(show, "%llu", v);
4187 btf_show_end_type(show);
4188}
4189
4190static struct btf_kind_operations enum64_ops = {
4191 .check_meta = btf_enum64_check_meta,
4192 .resolve = btf_df_resolve,
4193 .check_member = btf_enum_check_member,
4194 .check_kflag_member = btf_enum_check_kflag_member,
4195 .log_details = btf_enum_log,
4196 .show = btf_enum64_show,
4197};
4198
2667a262
MKL
4199static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4200 const struct btf_type *t,
4201 u32 meta_left)
4202{
4203 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4204
4205 if (meta_left < meta_needed) {
4206 btf_verifier_log_basic(env, t,
4207 "meta_left:%u meta_needed:%u",
4208 meta_left, meta_needed);
4209 return -EINVAL;
4210 }
4211
4212 if (t->name_off) {
4213 btf_verifier_log_type(env, t, "Invalid name");
4214 return -EINVAL;
4215 }
4216
9d5f9f70
YS
4217 if (btf_type_kflag(t)) {
4218 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4219 return -EINVAL;
4220 }
4221
2667a262
MKL
4222 btf_verifier_log_type(env, t, NULL);
4223
4224 return meta_needed;
4225}
4226
4227static void btf_func_proto_log(struct btf_verifier_env *env,
4228 const struct btf_type *t)
4229{
4230 const struct btf_param *args = (const struct btf_param *)(t + 1);
4231 u16 nr_args = btf_type_vlen(t), i;
4232
4233 btf_verifier_log(env, "return=%u args=(", t->type);
4234 if (!nr_args) {
4235 btf_verifier_log(env, "void");
4236 goto done;
4237 }
4238
4239 if (nr_args == 1 && !args[0].type) {
4240 /* Only one vararg */
4241 btf_verifier_log(env, "vararg");
4242 goto done;
4243 }
4244
4245 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
4246 __btf_name_by_offset(env->btf,
4247 args[0].name_off));
2667a262
MKL
4248 for (i = 1; i < nr_args - 1; i++)
4249 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
4250 __btf_name_by_offset(env->btf,
4251 args[i].name_off));
2667a262
MKL
4252
4253 if (nr_args > 1) {
4254 const struct btf_param *last_arg = &args[nr_args - 1];
4255
4256 if (last_arg->type)
4257 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
4258 __btf_name_by_offset(env->btf,
4259 last_arg->name_off));
2667a262
MKL
4260 else
4261 btf_verifier_log(env, ", vararg");
4262 }
4263
4264done:
4265 btf_verifier_log(env, ")");
4266}
4267
4268static struct btf_kind_operations func_proto_ops = {
4269 .check_meta = btf_func_proto_check_meta,
4270 .resolve = btf_df_resolve,
4271 /*
4272 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4273 * a struct's member.
4274 *
8fb33b60 4275 * It should be a function pointer instead.
2667a262
MKL
4276 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4277 *
4278 * Hence, there is no btf_func_check_member().
4279 */
4280 .check_member = btf_df_check_member,
9d5f9f70 4281 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4282 .log_details = btf_func_proto_log,
31d0bc81 4283 .show = btf_df_show,
2667a262
MKL
4284};
4285
4286static s32 btf_func_check_meta(struct btf_verifier_env *env,
4287 const struct btf_type *t,
4288 u32 meta_left)
4289{
4290 if (!t->name_off ||
4291 !btf_name_valid_identifier(env->btf, t->name_off)) {
4292 btf_verifier_log_type(env, t, "Invalid name");
4293 return -EINVAL;
4294 }
4295
51c39bb1
AS
4296 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4297 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
4298 return -EINVAL;
4299 }
4300
9d5f9f70
YS
4301 if (btf_type_kflag(t)) {
4302 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4303 return -EINVAL;
4304 }
4305
2667a262
MKL
4306 btf_verifier_log_type(env, t, NULL);
4307
4308 return 0;
4309}
4310
d7e7b42f
YS
4311static int btf_func_resolve(struct btf_verifier_env *env,
4312 const struct resolve_vertex *v)
4313{
4314 const struct btf_type *t = v->t;
4315 u32 next_type_id = t->type;
4316 int err;
4317
4318 err = btf_func_check(env, t);
4319 if (err)
4320 return err;
4321
4322 env_stack_pop_resolved(env, next_type_id, 0);
4323 return 0;
4324}
4325
2667a262
MKL
4326static struct btf_kind_operations func_ops = {
4327 .check_meta = btf_func_check_meta,
d7e7b42f 4328 .resolve = btf_func_resolve,
2667a262 4329 .check_member = btf_df_check_member,
9d5f9f70 4330 .check_kflag_member = btf_df_check_kflag_member,
2667a262 4331 .log_details = btf_ref_type_log,
31d0bc81 4332 .show = btf_df_show,
2667a262
MKL
4333};
4334
1dc92851
DB
4335static s32 btf_var_check_meta(struct btf_verifier_env *env,
4336 const struct btf_type *t,
4337 u32 meta_left)
4338{
4339 const struct btf_var *var;
4340 u32 meta_needed = sizeof(*var);
4341
4342 if (meta_left < meta_needed) {
4343 btf_verifier_log_basic(env, t,
4344 "meta_left:%u meta_needed:%u",
4345 meta_left, meta_needed);
4346 return -EINVAL;
4347 }
4348
4349 if (btf_type_vlen(t)) {
4350 btf_verifier_log_type(env, t, "vlen != 0");
4351 return -EINVAL;
4352 }
4353
4354 if (btf_type_kflag(t)) {
4355 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4356 return -EINVAL;
4357 }
4358
4359 if (!t->name_off ||
4360 !__btf_name_valid(env->btf, t->name_off, true)) {
4361 btf_verifier_log_type(env, t, "Invalid name");
4362 return -EINVAL;
4363 }
4364
4365 /* A var cannot be in type void */
4366 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4367 btf_verifier_log_type(env, t, "Invalid type_id");
4368 return -EINVAL;
4369 }
4370
4371 var = btf_type_var(t);
4372 if (var->linkage != BTF_VAR_STATIC &&
4373 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4374 btf_verifier_log_type(env, t, "Linkage not supported");
4375 return -EINVAL;
4376 }
4377
4378 btf_verifier_log_type(env, t, NULL);
4379
4380 return meta_needed;
4381}
4382
4383static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4384{
4385 const struct btf_var *var = btf_type_var(t);
4386
4387 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4388}
4389
4390static const struct btf_kind_operations var_ops = {
4391 .check_meta = btf_var_check_meta,
4392 .resolve = btf_var_resolve,
4393 .check_member = btf_df_check_member,
4394 .check_kflag_member = btf_df_check_kflag_member,
4395 .log_details = btf_var_log,
31d0bc81 4396 .show = btf_var_show,
1dc92851
DB
4397};
4398
4399static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4400 const struct btf_type *t,
4401 u32 meta_left)
4402{
4403 const struct btf_var_secinfo *vsi;
4404 u64 last_vsi_end_off = 0, sum = 0;
4405 u32 i, meta_needed;
4406
4407 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4408 if (meta_left < meta_needed) {
4409 btf_verifier_log_basic(env, t,
4410 "meta_left:%u meta_needed:%u",
4411 meta_left, meta_needed);
4412 return -EINVAL;
4413 }
4414
1dc92851
DB
4415 if (!t->size) {
4416 btf_verifier_log_type(env, t, "size == 0");
4417 return -EINVAL;
4418 }
4419
4420 if (btf_type_kflag(t)) {
4421 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4422 return -EINVAL;
4423 }
4424
4425 if (!t->name_off ||
4426 !btf_name_valid_section(env->btf, t->name_off)) {
4427 btf_verifier_log_type(env, t, "Invalid name");
4428 return -EINVAL;
4429 }
4430
4431 btf_verifier_log_type(env, t, NULL);
4432
4433 for_each_vsi(i, t, vsi) {
4434 /* A var cannot be in type void */
4435 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4436 btf_verifier_log_vsi(env, t, vsi,
4437 "Invalid type_id");
4438 return -EINVAL;
4439 }
4440
4441 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4442 btf_verifier_log_vsi(env, t, vsi,
4443 "Invalid offset");
4444 return -EINVAL;
4445 }
4446
4447 if (!vsi->size || vsi->size > t->size) {
4448 btf_verifier_log_vsi(env, t, vsi,
4449 "Invalid size");
4450 return -EINVAL;
4451 }
4452
4453 last_vsi_end_off = vsi->offset + vsi->size;
4454 if (last_vsi_end_off > t->size) {
4455 btf_verifier_log_vsi(env, t, vsi,
4456 "Invalid offset+size");
4457 return -EINVAL;
4458 }
4459
4460 btf_verifier_log_vsi(env, t, vsi, NULL);
4461 sum += vsi->size;
4462 }
4463
4464 if (t->size < sum) {
4465 btf_verifier_log_type(env, t, "Invalid btf_info size");
4466 return -EINVAL;
4467 }
4468
4469 return meta_needed;
4470}
4471
4472static int btf_datasec_resolve(struct btf_verifier_env *env,
4473 const struct resolve_vertex *v)
4474{
4475 const struct btf_var_secinfo *vsi;
4476 struct btf *btf = env->btf;
4477 u16 i;
4478
4479 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4480 u32 var_type_id = vsi->type, type_id, type_size = 0;
4481 const struct btf_type *var_type = btf_type_by_id(env->btf,
4482 var_type_id);
4483 if (!var_type || !btf_type_is_var(var_type)) {
4484 btf_verifier_log_vsi(env, v->t, vsi,
4485 "Not a VAR kind member");
4486 return -EINVAL;
4487 }
4488
4489 if (!env_type_is_resolve_sink(env, var_type) &&
4490 !env_type_is_resolved(env, var_type_id)) {
4491 env_stack_set_next_member(env, i + 1);
4492 return env_stack_push(env, var_type, var_type_id);
4493 }
4494
4495 type_id = var_type->type;
4496 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4497 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4498 return -EINVAL;
4499 }
4500
4501 if (vsi->size < type_size) {
4502 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4503 return -EINVAL;
4504 }
4505 }
4506
4507 env_stack_pop_resolved(env, 0, 0);
4508 return 0;
4509}
4510
4511static void btf_datasec_log(struct btf_verifier_env *env,
4512 const struct btf_type *t)
4513{
4514 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4515}
4516
31d0bc81
AM
4517static void btf_datasec_show(const struct btf *btf,
4518 const struct btf_type *t, u32 type_id,
4519 void *data, u8 bits_offset,
4520 struct btf_show *show)
1dc92851
DB
4521{
4522 const struct btf_var_secinfo *vsi;
4523 const struct btf_type *var;
4524 u32 i;
4525
31d0bc81
AM
4526 if (!btf_show_start_type(show, t, type_id, data))
4527 return;
4528
4529 btf_show_type_value(show, "section (\"%s\") = {",
4530 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
4531 for_each_vsi(i, t, vsi) {
4532 var = btf_type_by_id(btf, vsi->type);
4533 if (i)
31d0bc81
AM
4534 btf_show(show, ",");
4535 btf_type_ops(var)->show(btf, var, vsi->type,
4536 data + vsi->offset, bits_offset, show);
1dc92851 4537 }
31d0bc81 4538 btf_show_end_type(show);
1dc92851
DB
4539}
4540
4541static const struct btf_kind_operations datasec_ops = {
4542 .check_meta = btf_datasec_check_meta,
4543 .resolve = btf_datasec_resolve,
4544 .check_member = btf_df_check_member,
4545 .check_kflag_member = btf_df_check_kflag_member,
4546 .log_details = btf_datasec_log,
31d0bc81 4547 .show = btf_datasec_show,
1dc92851
DB
4548};
4549
b1828f0b
IL
4550static s32 btf_float_check_meta(struct btf_verifier_env *env,
4551 const struct btf_type *t,
4552 u32 meta_left)
4553{
4554 if (btf_type_vlen(t)) {
4555 btf_verifier_log_type(env, t, "vlen != 0");
4556 return -EINVAL;
4557 }
4558
4559 if (btf_type_kflag(t)) {
4560 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4561 return -EINVAL;
4562 }
4563
4564 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4565 t->size != 16) {
4566 btf_verifier_log_type(env, t, "Invalid type_size");
4567 return -EINVAL;
4568 }
4569
4570 btf_verifier_log_type(env, t, NULL);
4571
4572 return 0;
4573}
4574
4575static int btf_float_check_member(struct btf_verifier_env *env,
4576 const struct btf_type *struct_type,
4577 const struct btf_member *member,
4578 const struct btf_type *member_type)
4579{
4580 u64 start_offset_bytes;
4581 u64 end_offset_bytes;
4582 u64 misalign_bits;
4583 u64 align_bytes;
4584 u64 align_bits;
4585
4586 /* Different architectures have different alignment requirements, so
4587 * here we check only for the reasonable minimum. This way we ensure
4588 * that types after CO-RE can pass the kernel BTF verifier.
4589 */
4590 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4591 align_bits = align_bytes * BITS_PER_BYTE;
4592 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4593 if (misalign_bits) {
4594 btf_verifier_log_member(env, struct_type, member,
4595 "Member is not properly aligned");
4596 return -EINVAL;
4597 }
4598
4599 start_offset_bytes = member->offset / BITS_PER_BYTE;
4600 end_offset_bytes = start_offset_bytes + member_type->size;
4601 if (end_offset_bytes > struct_type->size) {
4602 btf_verifier_log_member(env, struct_type, member,
4603 "Member exceeds struct_size");
4604 return -EINVAL;
4605 }
4606
4607 return 0;
4608}
4609
4610static void btf_float_log(struct btf_verifier_env *env,
4611 const struct btf_type *t)
4612{
4613 btf_verifier_log(env, "size=%u", t->size);
4614}
4615
4616static const struct btf_kind_operations float_ops = {
4617 .check_meta = btf_float_check_meta,
4618 .resolve = btf_df_resolve,
4619 .check_member = btf_float_check_member,
4620 .check_kflag_member = btf_generic_check_kflag_member,
4621 .log_details = btf_float_log,
4622 .show = btf_df_show,
4623};
4624
223f903e 4625static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
b5ea834d
YS
4626 const struct btf_type *t,
4627 u32 meta_left)
4628{
223f903e 4629 const struct btf_decl_tag *tag;
b5ea834d
YS
4630 u32 meta_needed = sizeof(*tag);
4631 s32 component_idx;
4632 const char *value;
4633
4634 if (meta_left < meta_needed) {
4635 btf_verifier_log_basic(env, t,
4636 "meta_left:%u meta_needed:%u",
4637 meta_left, meta_needed);
4638 return -EINVAL;
4639 }
4640
4641 value = btf_name_by_offset(env->btf, t->name_off);
4642 if (!value || !value[0]) {
4643 btf_verifier_log_type(env, t, "Invalid value");
4644 return -EINVAL;
4645 }
4646
4647 if (btf_type_vlen(t)) {
4648 btf_verifier_log_type(env, t, "vlen != 0");
4649 return -EINVAL;
4650 }
4651
4652 if (btf_type_kflag(t)) {
4653 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4654 return -EINVAL;
4655 }
4656
223f903e 4657 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d
YS
4658 if (component_idx < -1) {
4659 btf_verifier_log_type(env, t, "Invalid component_idx");
4660 return -EINVAL;
4661 }
4662
4663 btf_verifier_log_type(env, t, NULL);
4664
4665 return meta_needed;
4666}
4667
223f903e 4668static int btf_decl_tag_resolve(struct btf_verifier_env *env,
b5ea834d
YS
4669 const struct resolve_vertex *v)
4670{
4671 const struct btf_type *next_type;
4672 const struct btf_type *t = v->t;
4673 u32 next_type_id = t->type;
4674 struct btf *btf = env->btf;
4675 s32 component_idx;
4676 u32 vlen;
4677
4678 next_type = btf_type_by_id(btf, next_type_id);
223f903e 4679 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
b5ea834d
YS
4680 btf_verifier_log_type(env, v->t, "Invalid type_id");
4681 return -EINVAL;
4682 }
4683
4684 if (!env_type_is_resolve_sink(env, next_type) &&
4685 !env_type_is_resolved(env, next_type_id))
4686 return env_stack_push(env, next_type, next_type_id);
4687
223f903e 4688 component_idx = btf_type_decl_tag(t)->component_idx;
b5ea834d 4689 if (component_idx != -1) {
bd16dee6 4690 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
b5ea834d
YS
4691 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4692 return -EINVAL;
4693 }
4694
4695 if (btf_type_is_struct(next_type)) {
4696 vlen = btf_type_vlen(next_type);
4697 } else {
4698 /* next_type should be a function */
4699 next_type = btf_type_by_id(btf, next_type->type);
4700 vlen = btf_type_vlen(next_type);
4701 }
4702
4703 if ((u32)component_idx >= vlen) {
4704 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4705 return -EINVAL;
4706 }
4707 }
4708
4709 env_stack_pop_resolved(env, next_type_id, 0);
4710
4711 return 0;
4712}
4713
223f903e 4714static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
b5ea834d
YS
4715{
4716 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
223f903e 4717 btf_type_decl_tag(t)->component_idx);
b5ea834d
YS
4718}
4719
223f903e
YS
4720static const struct btf_kind_operations decl_tag_ops = {
4721 .check_meta = btf_decl_tag_check_meta,
4722 .resolve = btf_decl_tag_resolve,
b5ea834d
YS
4723 .check_member = btf_df_check_member,
4724 .check_kflag_member = btf_df_check_kflag_member,
223f903e 4725 .log_details = btf_decl_tag_log,
b5ea834d
YS
4726 .show = btf_df_show,
4727};
4728
2667a262
MKL
4729static int btf_func_proto_check(struct btf_verifier_env *env,
4730 const struct btf_type *t)
4731{
4732 const struct btf_type *ret_type;
4733 const struct btf_param *args;
4734 const struct btf *btf;
4735 u16 nr_args, i;
4736 int err;
4737
4738 btf = env->btf;
4739 args = (const struct btf_param *)(t + 1);
4740 nr_args = btf_type_vlen(t);
4741
4742 /* Check func return type which could be "void" (t->type == 0) */
4743 if (t->type) {
4744 u32 ret_type_id = t->type;
4745
4746 ret_type = btf_type_by_id(btf, ret_type_id);
4747 if (!ret_type) {
4748 btf_verifier_log_type(env, t, "Invalid return type");
4749 return -EINVAL;
4750 }
4751
ea68376c
SF
4752 if (btf_type_is_resolve_source_only(ret_type)) {
4753 btf_verifier_log_type(env, t, "Invalid return type");
4754 return -EINVAL;
4755 }
4756
2667a262
MKL
4757 if (btf_type_needs_resolve(ret_type) &&
4758 !env_type_is_resolved(env, ret_type_id)) {
4759 err = btf_resolve(env, ret_type, ret_type_id);
4760 if (err)
4761 return err;
4762 }
4763
4764 /* Ensure the return type is a type that has a size */
4765 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4766 btf_verifier_log_type(env, t, "Invalid return type");
4767 return -EINVAL;
4768 }
4769 }
4770
4771 if (!nr_args)
4772 return 0;
4773
4774 /* Last func arg type_id could be 0 if it is a vararg */
4775 if (!args[nr_args - 1].type) {
4776 if (args[nr_args - 1].name_off) {
4777 btf_verifier_log_type(env, t, "Invalid arg#%u",
4778 nr_args);
4779 return -EINVAL;
4780 }
4781 nr_args--;
4782 }
4783
2667a262
MKL
4784 for (i = 0; i < nr_args; i++) {
4785 const struct btf_type *arg_type;
4786 u32 arg_type_id;
4787
4788 arg_type_id = args[i].type;
4789 arg_type = btf_type_by_id(btf, arg_type_id);
4790 if (!arg_type) {
4791 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4792 return -EINVAL;
2667a262
MKL
4793 }
4794
f17472d4
SF
4795 if (btf_type_is_resolve_source_only(arg_type)) {
4796 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4797 return -EINVAL;
4798 }
4799
2667a262
MKL
4800 if (args[i].name_off &&
4801 (!btf_name_offset_valid(btf, args[i].name_off) ||
4802 !btf_name_valid_identifier(btf, args[i].name_off))) {
4803 btf_verifier_log_type(env, t,
4804 "Invalid arg#%u", i + 1);
5bad3587 4805 return -EINVAL;
2667a262
MKL
4806 }
4807
4808 if (btf_type_needs_resolve(arg_type) &&
4809 !env_type_is_resolved(env, arg_type_id)) {
4810 err = btf_resolve(env, arg_type, arg_type_id);
4811 if (err)
5bad3587 4812 return err;
2667a262
MKL
4813 }
4814
4815 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4816 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
5bad3587 4817 return -EINVAL;
2667a262
MKL
4818 }
4819 }
4820
5bad3587 4821 return 0;
2667a262
MKL
4822}
4823
4824static int btf_func_check(struct btf_verifier_env *env,
4825 const struct btf_type *t)
4826{
4827 const struct btf_type *proto_type;
4828 const struct btf_param *args;
4829 const struct btf *btf;
4830 u16 nr_args, i;
4831
4832 btf = env->btf;
4833 proto_type = btf_type_by_id(btf, t->type);
4834
4835 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4836 btf_verifier_log_type(env, t, "Invalid type_id");
4837 return -EINVAL;
4838 }
4839
4840 args = (const struct btf_param *)(proto_type + 1);
4841 nr_args = btf_type_vlen(proto_type);
4842 for (i = 0; i < nr_args; i++) {
4843 if (!args[i].name_off && args[i].type) {
4844 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4845 return -EINVAL;
4846 }
4847 }
4848
4849 return 0;
4850}
4851
69b693f0
MKL
4852static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4853 [BTF_KIND_INT] = &int_ops,
4854 [BTF_KIND_PTR] = &ptr_ops,
4855 [BTF_KIND_ARRAY] = &array_ops,
4856 [BTF_KIND_STRUCT] = &struct_ops,
4857 [BTF_KIND_UNION] = &struct_ops,
4858 [BTF_KIND_ENUM] = &enum_ops,
4859 [BTF_KIND_FWD] = &fwd_ops,
4860 [BTF_KIND_TYPEDEF] = &modifier_ops,
4861 [BTF_KIND_VOLATILE] = &modifier_ops,
4862 [BTF_KIND_CONST] = &modifier_ops,
4863 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
4864 [BTF_KIND_FUNC] = &func_ops,
4865 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
4866 [BTF_KIND_VAR] = &var_ops,
4867 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 4868 [BTF_KIND_FLOAT] = &float_ops,
223f903e 4869 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
8c42d2fa 4870 [BTF_KIND_TYPE_TAG] = &modifier_ops,
6089fb32 4871 [BTF_KIND_ENUM64] = &enum64_ops,
69b693f0
MKL
4872};
4873
4874static s32 btf_check_meta(struct btf_verifier_env *env,
4875 const struct btf_type *t,
4876 u32 meta_left)
4877{
4878 u32 saved_meta_left = meta_left;
4879 s32 var_meta_size;
4880
4881 if (meta_left < sizeof(*t)) {
4882 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4883 env->log_type_id, meta_left, sizeof(*t));
4884 return -EINVAL;
4885 }
4886 meta_left -= sizeof(*t);
4887
aea2f7b8
MKL
4888 if (t->info & ~BTF_INFO_MASK) {
4889 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4890 env->log_type_id, t->info);
4891 return -EINVAL;
4892 }
4893
69b693f0
MKL
4894 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4895 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4896 btf_verifier_log(env, "[%u] Invalid kind:%u",
4897 env->log_type_id, BTF_INFO_KIND(t->info));
4898 return -EINVAL;
4899 }
4900
fbcf93eb 4901 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 4902 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 4903 env->log_type_id, t->name_off);
69b693f0
MKL
4904 return -EINVAL;
4905 }
4906
4907 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4908 if (var_meta_size < 0)
4909 return var_meta_size;
4910
4911 meta_left -= var_meta_size;
4912
4913 return saved_meta_left - meta_left;
4914}
4915
4916static int btf_check_all_metas(struct btf_verifier_env *env)
4917{
4918 struct btf *btf = env->btf;
4919 struct btf_header *hdr;
4920 void *cur, *end;
4921
f80442a4 4922 hdr = &btf->hdr;
69b693f0 4923 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 4924 end = cur + hdr->type_len;
69b693f0 4925
951bb646 4926 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
4927 while (cur < end) {
4928 struct btf_type *t = cur;
4929 s32 meta_size;
4930
4931 meta_size = btf_check_meta(env, t, end - cur);
4932 if (meta_size < 0)
4933 return meta_size;
4934
4935 btf_add_type(env, t);
4936 cur += meta_size;
4937 env->log_type_id++;
4938 }
4939
4940 return 0;
4941}
4942
eb3f595d
MKL
4943static bool btf_resolve_valid(struct btf_verifier_env *env,
4944 const struct btf_type *t,
4945 u32 type_id)
4946{
4947 struct btf *btf = env->btf;
4948
4949 if (!env_type_is_resolved(env, type_id))
4950 return false;
4951
1dc92851 4952 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
4953 return !btf_resolved_type_id(btf, type_id) &&
4954 !btf_resolved_type_size(btf, type_id);
eb3f595d 4955
d7e7b42f 4956 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
b5ea834d
YS
4957 return btf_resolved_type_id(btf, type_id) &&
4958 !btf_resolved_type_size(btf, type_id);
4959
1dc92851
DB
4960 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4961 btf_type_is_var(t)) {
eb3f595d 4962 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
4963 return t &&
4964 !btf_type_is_modifier(t) &&
4965 !btf_type_is_var(t) &&
4966 !btf_type_is_datasec(t);
eb3f595d
MKL
4967 }
4968
4969 if (btf_type_is_array(t)) {
4970 const struct btf_array *array = btf_type_array(t);
4971 const struct btf_type *elem_type;
4972 u32 elem_type_id = array->type;
4973 u32 elem_size;
4974
4975 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4976 return elem_type && !btf_type_is_modifier(elem_type) &&
4977 (array->nelems * elem_size ==
951bb646 4978 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
4979 }
4980
4981 return false;
4982}
4983
2667a262
MKL
4984static int btf_resolve(struct btf_verifier_env *env,
4985 const struct btf_type *t, u32 type_id)
4986{
4987 u32 save_log_type_id = env->log_type_id;
4988 const struct resolve_vertex *v;
4989 int err = 0;
4990
4991 env->resolve_mode = RESOLVE_TBD;
4992 env_stack_push(env, t, type_id);
4993 while (!err && (v = env_stack_peak(env))) {
4994 env->log_type_id = v->type_id;
4995 err = btf_type_ops(v->t)->resolve(env, v);
4996 }
4997
4998 env->log_type_id = type_id;
4999 if (err == -E2BIG) {
5000 btf_verifier_log_type(env, t,
5001 "Exceeded max resolving depth:%u",
5002 MAX_RESOLVE_DEPTH);
5003 } else if (err == -EEXIST) {
5004 btf_verifier_log_type(env, t, "Loop detected");
5005 }
5006
5007 /* Final sanity check */
5008 if (!err && !btf_resolve_valid(env, t, type_id)) {
5009 btf_verifier_log_type(env, t, "Invalid resolve state");
5010 err = -EINVAL;
5011 }
5012
5013 env->log_type_id = save_log_type_id;
5014 return err;
5015}
5016
eb3f595d
MKL
5017static int btf_check_all_types(struct btf_verifier_env *env)
5018{
5019 struct btf *btf = env->btf;
951bb646
AN
5020 const struct btf_type *t;
5021 u32 type_id, i;
eb3f595d
MKL
5022 int err;
5023
5024 err = env_resolve_init(env);
5025 if (err)
5026 return err;
5027
5028 env->phase++;
951bb646
AN
5029 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5030 type_id = btf->start_id + i;
5031 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
5032
5033 env->log_type_id = type_id;
5034 if (btf_type_needs_resolve(t) &&
5035 !env_type_is_resolved(env, type_id)) {
5036 err = btf_resolve(env, t, type_id);
5037 if (err)
5038 return err;
5039 }
5040
2667a262
MKL
5041 if (btf_type_is_func_proto(t)) {
5042 err = btf_func_proto_check(env, t);
5043 if (err)
5044 return err;
5045 }
eb3f595d
MKL
5046 }
5047
5048 return 0;
5049}
5050
69b693f0
MKL
5051static int btf_parse_type_sec(struct btf_verifier_env *env)
5052{
f80442a4 5053 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
5054 int err;
5055
f80442a4
MKL
5056 /* Type section must align to 4 bytes */
5057 if (hdr->type_off & (sizeof(u32) - 1)) {
5058 btf_verifier_log(env, "Unaligned type_off");
5059 return -EINVAL;
5060 }
5061
951bb646 5062 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
5063 btf_verifier_log(env, "No type found");
5064 return -EINVAL;
5065 }
5066
eb3f595d
MKL
5067 err = btf_check_all_metas(env);
5068 if (err)
5069 return err;
5070
5071 return btf_check_all_types(env);
69b693f0
MKL
5072}
5073
5074static int btf_parse_str_sec(struct btf_verifier_env *env)
5075{
5076 const struct btf_header *hdr;
5077 struct btf *btf = env->btf;
5078 const char *start, *end;
5079
f80442a4 5080 hdr = &btf->hdr;
69b693f0
MKL
5081 start = btf->nohdr_data + hdr->str_off;
5082 end = start + hdr->str_len;
5083
f80442a4
MKL
5084 if (end != btf->data + btf->data_size) {
5085 btf_verifier_log(env, "String section is not at the end");
5086 return -EINVAL;
5087 }
5088
951bb646
AN
5089 btf->strings = start;
5090
5091 if (btf->base_btf && !hdr->str_len)
5092 return 0;
5093 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5094 btf_verifier_log(env, "Invalid string section");
5095 return -EINVAL;
5096 }
5097 if (!btf->base_btf && start[0]) {
69b693f0
MKL
5098 btf_verifier_log(env, "Invalid string section");
5099 return -EINVAL;
5100 }
69b693f0
MKL
5101
5102 return 0;
5103}
5104
f80442a4
MKL
5105static const size_t btf_sec_info_offset[] = {
5106 offsetof(struct btf_header, type_off),
5107 offsetof(struct btf_header, str_off),
5108};
5109
5110static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 5111{
f80442a4
MKL
5112 const struct btf_sec_info *x = a;
5113 const struct btf_sec_info *y = b;
5114
5115 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5116}
5117
5118static int btf_check_sec_info(struct btf_verifier_env *env,
5119 u32 btf_data_size)
5120{
a2889a4c 5121 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 5122 u32 total, expected_total, i;
69b693f0 5123 const struct btf_header *hdr;
f80442a4
MKL
5124 const struct btf *btf;
5125
5126 btf = env->btf;
5127 hdr = &btf->hdr;
5128
5129 /* Populate the secs from hdr */
a2889a4c 5130 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
5131 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5132 btf_sec_info_offset[i]);
5133
a2889a4c
MKL
5134 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5135 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
5136
5137 /* Check for gaps and overlap among sections */
5138 total = 0;
5139 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 5140 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
5141 if (expected_total < secs[i].off) {
5142 btf_verifier_log(env, "Invalid section offset");
5143 return -EINVAL;
5144 }
5145 if (total < secs[i].off) {
5146 /* gap */
5147 btf_verifier_log(env, "Unsupported section found");
5148 return -EINVAL;
5149 }
5150 if (total > secs[i].off) {
5151 btf_verifier_log(env, "Section overlap found");
5152 return -EINVAL;
5153 }
5154 if (expected_total - total < secs[i].len) {
5155 btf_verifier_log(env,
5156 "Total section length too long");
5157 return -EINVAL;
5158 }
5159 total += secs[i].len;
5160 }
5161
5162 /* There is data other than hdr and known sections */
5163 if (expected_total != total) {
5164 btf_verifier_log(env, "Unsupported section found");
5165 return -EINVAL;
5166 }
5167
5168 return 0;
5169}
5170
4a6998af 5171static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 5172{
4a6998af 5173 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 5174 const struct btf_header *hdr;
f80442a4 5175 struct btf *btf;
69b693f0 5176
f80442a4 5177 btf = env->btf;
4a6998af 5178 btf_data_size = btf->data_size;
f80442a4 5179
583669ab 5180 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
f80442a4
MKL
5181 btf_verifier_log(env, "hdr_len not found");
5182 return -EINVAL;
5183 }
5184
4a6998af
ML
5185 hdr = btf->data;
5186 hdr_len = hdr->hdr_len;
f80442a4 5187 if (btf_data_size < hdr_len) {
69b693f0
MKL
5188 btf_verifier_log(env, "btf_header not found");
5189 return -EINVAL;
5190 }
5191
4a6998af
ML
5192 /* Ensure the unsupported header fields are zero */
5193 if (hdr_len > sizeof(btf->hdr)) {
5194 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5195 u8 *end = btf->data + hdr_len;
5196
5197 for (; expected_zero < end; expected_zero++) {
5198 if (*expected_zero) {
5199 btf_verifier_log(env, "Unsupported btf_header");
5200 return -E2BIG;
5201 }
5202 }
f80442a4
MKL
5203 }
5204
5205 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 5206 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
5207
5208 hdr = &btf->hdr;
5209
5210 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 5211
69b693f0
MKL
5212 if (hdr->magic != BTF_MAGIC) {
5213 btf_verifier_log(env, "Invalid magic");
5214 return -EINVAL;
5215 }
5216
5217 if (hdr->version != BTF_VERSION) {
5218 btf_verifier_log(env, "Unsupported version");
5219 return -ENOTSUPP;
5220 }
5221
5222 if (hdr->flags) {
5223 btf_verifier_log(env, "Unsupported flags");
5224 return -ENOTSUPP;
5225 }
5226
bcc5e616 5227 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
5228 btf_verifier_log(env, "No data");
5229 return -EINVAL;
5230 }
5231
3a74904c 5232 return btf_check_sec_info(env, btf_data_size);
69b693f0
MKL
5233}
5234
8ffa5cc1
KKD
5235static const char *alloc_obj_fields[] = {
5236 "bpf_spin_lock",
5237 "bpf_list_head",
5238 "bpf_list_node",
5239};
5240
5241static struct btf_struct_metas *
5242btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5243{
5244 union {
5245 struct btf_id_set set;
5246 struct {
5247 u32 _cnt;
5248 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5249 } _arr;
5250 } aof;
5251 struct btf_struct_metas *tab = NULL;
5252 int i, n, id, ret;
5253
5254 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5255 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5256
5257 memset(&aof, 0, sizeof(aof));
5258 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5259 /* Try to find whether this special type exists in user BTF, and
5260 * if so remember its ID so we can easily find it among members
5261 * of structs that we iterate in the next loop.
5262 */
5263 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5264 if (id < 0)
5265 continue;
5266 aof.set.ids[aof.set.cnt++] = id;
5267 }
5268
5269 if (!aof.set.cnt)
5270 return NULL;
5271 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5272
5273 n = btf_nr_types(btf);
5274 for (i = 1; i < n; i++) {
5275 struct btf_struct_metas *new_tab;
5276 const struct btf_member *member;
5277 struct btf_field_offs *foffs;
5278 struct btf_struct_meta *type;
5279 struct btf_record *record;
5280 const struct btf_type *t;
5281 int j, tab_cnt;
5282
5283 t = btf_type_by_id(btf, i);
5284 if (!t) {
5285 ret = -EINVAL;
5286 goto free;
5287 }
5288 if (!__btf_type_is_struct(t))
5289 continue;
5290
5291 cond_resched();
5292
5293 for_each_member(j, t, member) {
5294 if (btf_id_set_contains(&aof.set, member->type))
5295 goto parse;
5296 }
5297 continue;
5298 parse:
5299 tab_cnt = tab ? tab->cnt : 0;
5300 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5301 GFP_KERNEL | __GFP_NOWARN);
5302 if (!new_tab) {
5303 ret = -ENOMEM;
5304 goto free;
5305 }
5306 if (!tab)
5307 new_tab->cnt = 0;
5308 tab = new_tab;
5309
5310 type = &tab->types[tab->cnt];
5311 type->btf_id = i;
5312 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size);
5313 /* The record cannot be unset, treat it as an error if so */
5314 if (IS_ERR_OR_NULL(record)) {
5315 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5316 goto free;
5317 }
5318 foffs = btf_parse_field_offs(record);
5319 /* We need the field_offs to be valid for a valid record,
5320 * either both should be set or both should be unset.
5321 */
5322 if (IS_ERR_OR_NULL(foffs)) {
5323 btf_record_free(record);
5324 ret = -EFAULT;
5325 goto free;
5326 }
5327 type->record = record;
5328 type->field_offs = foffs;
5329 tab->cnt++;
5330 }
5331 return tab;
5332free:
5333 btf_struct_metas_free(tab);
5334 return ERR_PTR(ret);
5335}
5336
5337struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5338{
5339 struct btf_struct_metas *tab;
5340
5341 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5342 tab = btf->struct_meta_tab;
5343 if (!tab)
5344 return NULL;
5345 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5346}
5347
eb596b09
KKD
5348static int btf_check_type_tags(struct btf_verifier_env *env,
5349 struct btf *btf, int start_id)
5350{
5351 int i, n, good_id = start_id - 1;
5352 bool in_tags;
5353
5354 n = btf_nr_types(btf);
5355 for (i = start_id; i < n; i++) {
5356 const struct btf_type *t;
d1a374a1 5357 int chain_limit = 32;
eb596b09
KKD
5358 u32 cur_id = i;
5359
5360 t = btf_type_by_id(btf, i);
5361 if (!t)
5362 return -EINVAL;
5363 if (!btf_type_is_modifier(t))
5364 continue;
5365
5366 cond_resched();
5367
5368 in_tags = btf_type_is_type_tag(t);
5369 while (btf_type_is_modifier(t)) {
d1a374a1
KKD
5370 if (!chain_limit--) {
5371 btf_verifier_log(env, "Max chain length or cycle detected");
5372 return -ELOOP;
5373 }
eb596b09
KKD
5374 if (btf_type_is_type_tag(t)) {
5375 if (!in_tags) {
5376 btf_verifier_log(env, "Type tags don't precede modifiers");
5377 return -EINVAL;
5378 }
5379 } else if (in_tags) {
5380 in_tags = false;
5381 }
5382 if (cur_id <= good_id)
5383 break;
5384 /* Move to next type */
5385 cur_id = t->type;
5386 t = btf_type_by_id(btf, cur_id);
5387 if (!t)
5388 return -EINVAL;
5389 }
5390 good_id = i;
5391 }
5392 return 0;
5393}
5394
c571bd75 5395static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
69b693f0
MKL
5396 u32 log_level, char __user *log_ubuf, u32 log_size)
5397{
8ffa5cc1 5398 struct btf_struct_metas *struct_meta_tab;
69b693f0
MKL
5399 struct btf_verifier_env *env = NULL;
5400 struct bpf_verifier_log *log;
5401 struct btf *btf = NULL;
5402 u8 *data;
5403 int err;
5404
5405 if (btf_data_size > BTF_MAX_SIZE)
5406 return ERR_PTR(-E2BIG);
5407
5408 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5409 if (!env)
5410 return ERR_PTR(-ENOMEM);
5411
5412 log = &env->log;
5413 if (log_level || log_ubuf || log_size) {
5414 /* user requested verbose verifier output
5415 * and supplied buffer to store the verification trace
5416 */
5417 log->level = log_level;
5418 log->ubuf = log_ubuf;
5419 log->len_total = log_size;
5420
5421 /* log attributes have to be sane */
866de407 5422 if (!bpf_verifier_log_attr_valid(log)) {
69b693f0
MKL
5423 err = -EINVAL;
5424 goto errout;
5425 }
5426 }
5427
5428 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5429 if (!btf) {
5430 err = -ENOMEM;
5431 goto errout;
5432 }
f80442a4
MKL
5433 env->btf = btf;
5434
69b693f0
MKL
5435 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5436 if (!data) {
5437 err = -ENOMEM;
5438 goto errout;
5439 }
5440
5441 btf->data = data;
5442 btf->data_size = btf_data_size;
5443
c571bd75 5444 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
69b693f0
MKL
5445 err = -EFAULT;
5446 goto errout;
5447 }
5448
4a6998af
ML
5449 err = btf_parse_hdr(env);
5450 if (err)
5451 goto errout;
5452
5453 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5454
69b693f0
MKL
5455 err = btf_parse_str_sec(env);
5456 if (err)
5457 goto errout;
5458
5459 err = btf_parse_type_sec(env);
5460 if (err)
5461 goto errout;
5462
eb596b09
KKD
5463 err = btf_check_type_tags(env, btf, 1);
5464 if (err)
5465 goto errout;
5466
8ffa5cc1
KKD
5467 struct_meta_tab = btf_parse_struct_metas(log, btf);
5468 if (IS_ERR(struct_meta_tab)) {
5469 err = PTR_ERR(struct_meta_tab);
5470 goto errout;
5471 }
5472 btf->struct_meta_tab = struct_meta_tab;
5473
865ce09a
KKD
5474 if (struct_meta_tab) {
5475 int i;
5476
5477 for (i = 0; i < struct_meta_tab->cnt; i++) {
5478 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5479 if (err < 0)
5480 goto errout_meta;
5481 }
5482 }
5483
f80442a4 5484 if (log->level && bpf_verifier_log_full(log)) {
69b693f0 5485 err = -ENOSPC;
8ffa5cc1 5486 goto errout_meta;
69b693f0
MKL
5487 }
5488
f80442a4
MKL
5489 btf_verifier_env_free(env);
5490 refcount_set(&btf->refcnt, 1);
5491 return btf;
69b693f0 5492
8ffa5cc1
KKD
5493errout_meta:
5494 btf_free_struct_meta_tab(btf);
69b693f0
MKL
5495errout:
5496 btf_verifier_env_free(env);
5497 if (btf)
5498 btf_free(btf);
5499 return ERR_PTR(err);
5500}
b00b8dae 5501
90ceddcb
FS
5502extern char __weak __start_BTF[];
5503extern char __weak __stop_BTF[];
91cc1a99
AS
5504extern struct btf *btf_vmlinux;
5505
5506#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 5507#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
5508static union {
5509 struct bpf_ctx_convert {
5510#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5511 prog_ctx_type _id##_prog; \
5512 kern_ctx_type _id##_kern;
5513#include <linux/bpf_types.h>
5514#undef BPF_PROG_TYPE
5515 } *__t;
5516 /* 't' is written once under lock. Read many times. */
5517 const struct btf_type *t;
5518} bpf_ctx_convert;
5519enum {
5520#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5521 __ctx_convert##_id,
5522#include <linux/bpf_types.h>
5523#undef BPF_PROG_TYPE
ce27709b 5524 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
5525};
5526static u8 bpf_ctx_convert_map[] = {
5527#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5528 [_id] = __ctx_convert##_id,
5529#include <linux/bpf_types.h>
5530#undef BPF_PROG_TYPE
4c80c7bc 5531 0, /* avoid empty array */
91cc1a99
AS
5532};
5533#undef BPF_MAP_TYPE
f2e10bff 5534#undef BPF_LINK_TYPE
91cc1a99 5535
00b85860 5536const struct btf_member *
34747c41 5537btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
5538 const struct btf_type *t, enum bpf_prog_type prog_type,
5539 int arg)
91cc1a99
AS
5540{
5541 const struct btf_type *conv_struct;
5542 const struct btf_type *ctx_struct;
5543 const struct btf_member *ctx_type;
5544 const char *tname, *ctx_tname;
5545
5546 conv_struct = bpf_ctx_convert.t;
5547 if (!conv_struct) {
5548 bpf_log(log, "btf_vmlinux is malformed\n");
5549 return NULL;
5550 }
5551 t = btf_type_by_id(btf, t->type);
5552 while (btf_type_is_modifier(t))
5553 t = btf_type_by_id(btf, t->type);
5554 if (!btf_type_is_struct(t)) {
5555 /* Only pointer to struct is supported for now.
5556 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5557 * is not supported yet.
5558 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5559 */
91cc1a99
AS
5560 return NULL;
5561 }
5562 tname = btf_name_by_offset(btf, t->name_off);
5563 if (!tname) {
51c39bb1 5564 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
5565 return NULL;
5566 }
5567 /* prog_type is valid bpf program type. No need for bounds check. */
5568 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5569 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5570 * Like 'struct __sk_buff'
5571 */
5572 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5573 if (!ctx_struct)
5574 /* should not happen */
5575 return NULL;
5576 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5577 if (!ctx_tname) {
5578 /* should not happen */
5579 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5580 return NULL;
5581 }
5582 /* only compare that prog's ctx type name is the same as
5583 * kernel expects. No need to compare field by field.
5584 * It's ok for bpf prog to do:
5585 * struct __sk_buff {};
5586 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5587 * { // no fields of skb are ever used }
5588 */
5589 if (strcmp(ctx_tname, tname))
5590 return NULL;
5591 return ctx_type;
5592}
8580ac94 5593
5b92a28a
AS
5594static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5595 struct btf *btf,
5596 const struct btf_type *t,
51c39bb1
AS
5597 enum bpf_prog_type prog_type,
5598 int arg)
5b92a28a
AS
5599{
5600 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5601
51c39bb1 5602 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
5603 if (!prog_ctx_type)
5604 return -ENOENT;
5605 kern_ctx_type = prog_ctx_type + 1;
5606 return kern_ctx_type->type;
5607}
5608
fd264ca0
YS
5609int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5610{
5611 const struct btf_member *kctx_member;
5612 const struct btf_type *conv_struct;
5613 const struct btf_type *kctx_type;
5614 u32 kctx_type_id;
5615
5616 conv_struct = bpf_ctx_convert.t;
5617 /* get member for kernel ctx type */
5618 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5619 kctx_type_id = kctx_member->type;
5620 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5621 if (!btf_type_is_struct(kctx_type)) {
5622 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5623 return -EINVAL;
5624 }
5625
5626 return kctx_type_id;
5627}
5628
49f4e672
JO
5629BTF_ID_LIST(bpf_ctx_convert_btf_id)
5630BTF_ID(struct, bpf_ctx_convert)
5631
8580ac94
AS
5632struct btf *btf_parse_vmlinux(void)
5633{
5634 struct btf_verifier_env *env = NULL;
5635 struct bpf_verifier_log *log;
5636 struct btf *btf = NULL;
49f4e672 5637 int err;
8580ac94
AS
5638
5639 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5640 if (!env)
5641 return ERR_PTR(-ENOMEM);
5642
5643 log = &env->log;
5644 log->level = BPF_LOG_KERNEL;
5645
5646 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5647 if (!btf) {
5648 err = -ENOMEM;
5649 goto errout;
5650 }
5651 env->btf = btf;
5652
90ceddcb
FS
5653 btf->data = __start_BTF;
5654 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
5655 btf->kernel_btf = true;
5656 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
5657
5658 err = btf_parse_hdr(env);
5659 if (err)
5660 goto errout;
5661
5662 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5663
5664 err = btf_parse_str_sec(env);
5665 if (err)
5666 goto errout;
5667
5668 err = btf_check_all_metas(env);
5669 if (err)
5670 goto errout;
5671
eb596b09
KKD
5672 err = btf_check_type_tags(env, btf, 1);
5673 if (err)
5674 goto errout;
5675
a2d0d62f 5676 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 5677 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 5678
d3e42bb0 5679 bpf_struct_ops_init(btf, log);
27ae7997 5680
8580ac94 5681 refcount_set(&btf->refcnt, 1);
53297220
AN
5682
5683 err = btf_alloc_id(btf);
5684 if (err)
5685 goto errout;
5686
5687 btf_verifier_env_free(env);
8580ac94
AS
5688 return btf;
5689
5690errout:
5691 btf_verifier_env_free(env);
5692 if (btf) {
5693 kvfree(btf->types);
5694 kfree(btf);
5695 }
5696 return ERR_PTR(err);
5697}
5698
7112d127
AN
5699#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5700
36e68442
AN
5701static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5702{
5703 struct btf_verifier_env *env = NULL;
5704 struct bpf_verifier_log *log;
5705 struct btf *btf = NULL, *base_btf;
5706 int err;
5707
5708 base_btf = bpf_get_btf_vmlinux();
5709 if (IS_ERR(base_btf))
5710 return base_btf;
5711 if (!base_btf)
5712 return ERR_PTR(-EINVAL);
5713
5714 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5715 if (!env)
5716 return ERR_PTR(-ENOMEM);
5717
5718 log = &env->log;
5719 log->level = BPF_LOG_KERNEL;
5720
5721 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5722 if (!btf) {
5723 err = -ENOMEM;
5724 goto errout;
5725 }
5726 env->btf = btf;
5727
5728 btf->base_btf = base_btf;
5729 btf->start_id = base_btf->nr_types;
5730 btf->start_str_off = base_btf->hdr.str_len;
5731 btf->kernel_btf = true;
5732 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5733
5734 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5735 if (!btf->data) {
5736 err = -ENOMEM;
5737 goto errout;
5738 }
5739 memcpy(btf->data, data, data_size);
5740 btf->data_size = data_size;
5741
5742 err = btf_parse_hdr(env);
5743 if (err)
5744 goto errout;
5745
5746 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5747
5748 err = btf_parse_str_sec(env);
5749 if (err)
5750 goto errout;
5751
5752 err = btf_check_all_metas(env);
5753 if (err)
5754 goto errout;
5755
eb596b09
KKD
5756 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5757 if (err)
5758 goto errout;
5759
36e68442
AN
5760 btf_verifier_env_free(env);
5761 refcount_set(&btf->refcnt, 1);
5762 return btf;
5763
5764errout:
5765 btf_verifier_env_free(env);
5766 if (btf) {
5767 kvfree(btf->data);
5768 kvfree(btf->types);
5769 kfree(btf);
5770 }
5771 return ERR_PTR(err);
5772}
5773
7112d127
AN
5774#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5775
5b92a28a
AS
5776struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5777{
3aac1ead 5778 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5779
22dc4a0f 5780 if (tgt_prog)
5b92a28a 5781 return tgt_prog->aux->btf;
22dc4a0f
AN
5782 else
5783 return prog->aux->attach_btf;
5b92a28a
AS
5784}
5785
bb6728d7 5786static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
84ad7a7a
JO
5787{
5788 /* t comes in already as a pointer */
5789 t = btf_type_by_id(btf, t->type);
5790
5791 /* allow const */
5792 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5793 t = btf_type_by_id(btf, t->type);
5794
bb6728d7 5795 return btf_type_is_int(t);
84ad7a7a
JO
5796}
5797
720e6a43
YS
5798static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5799 int off)
5800{
5801 const struct btf_param *args;
5802 const struct btf_type *t;
5803 u32 offset = 0, nr_args;
5804 int i;
5805
5806 if (!func_proto)
5807 return off / 8;
5808
5809 nr_args = btf_type_vlen(func_proto);
5810 args = (const struct btf_param *)(func_proto + 1);
5811 for (i = 0; i < nr_args; i++) {
5812 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5813 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5814 if (off < offset)
5815 return i;
5816 }
5817
5818 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5819 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5820 if (off < offset)
5821 return nr_args;
5822
5823 return nr_args + 1;
5824}
5825
c6b0337f 5826static bool prog_args_trusted(const struct bpf_prog *prog)
3f00c523 5827{
c6b0337f
AS
5828 enum bpf_attach_type atype = prog->expected_attach_type;
5829
5830 switch (prog->type) {
5831 case BPF_PROG_TYPE_TRACING:
5832 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5833 case BPF_PROG_TYPE_LSM:
c0c852dd 5834 return bpf_lsm_is_trusted(prog);
c6b0337f
AS
5835 case BPF_PROG_TYPE_STRUCT_OPS:
5836 return true;
5837 default:
5838 return false;
5839 }
3f00c523
DV
5840}
5841
9e15db66
AS
5842bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5843 const struct bpf_prog *prog,
5844 struct bpf_insn_access_aux *info)
5845{
38207291 5846 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 5847 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 5848 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 5849 const char *tname = prog->aux->attach_func_name;
9e15db66 5850 struct bpf_verifier_log *log = info->log;
9e15db66 5851 const struct btf_param *args;
c6f1bfe8 5852 const char *tag_value;
9e15db66 5853 u32 nr_args, arg;
3c32cc1b 5854 int i, ret;
9e15db66 5855
9e15db66 5856 if (off % 8) {
38207291 5857 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
5858 tname, off);
5859 return false;
5860 }
720e6a43 5861 arg = get_ctx_arg_idx(btf, t, off);
9e15db66 5862 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
5863 /* if (t == NULL) Fall back to default BPF prog with
5864 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5865 */
5866 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
5867 if (prog->aux->attach_btf_trace) {
5868 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5869 args++;
5870 nr_args--;
5871 }
fec56f58 5872
f50b49a0
KS
5873 if (arg > nr_args) {
5874 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5875 tname, arg + 1);
5876 return false;
5877 }
5878
6ba43b76 5879 if (arg == nr_args) {
f50b49a0 5880 switch (prog->expected_attach_type) {
69fd337a 5881 case BPF_LSM_CGROUP:
f50b49a0
KS
5882 case BPF_LSM_MAC:
5883 case BPF_TRACE_FEXIT:
9e4e01df
KS
5884 /* When LSM programs are attached to void LSM hooks
5885 * they use FEXIT trampolines and when attached to
5886 * int LSM hooks, they use MODIFY_RETURN trampolines.
5887 *
5888 * While the LSM programs are BPF_MODIFY_RETURN-like
5889 * the check:
5890 *
5891 * if (ret_type != 'int')
5892 * return -EINVAL;
5893 *
5894 * is _not_ done here. This is still safe as LSM hooks
5895 * have only void and int return types.
5896 */
6ba43b76
KS
5897 if (!t)
5898 return true;
5899 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
5900 break;
5901 case BPF_MODIFY_RETURN:
6ba43b76
KS
5902 /* For now the BPF_MODIFY_RETURN can only be attached to
5903 * functions that return an int.
5904 */
5905 if (!t)
5906 return false;
5907
5908 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 5909 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
5910 bpf_log(log,
5911 "ret type %s not allowed for fmod_ret\n",
571f9738 5912 btf_type_str(t));
6ba43b76
KS
5913 return false;
5914 }
f50b49a0
KS
5915 break;
5916 default:
5917 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5918 tname, arg + 1);
5919 return false;
6ba43b76 5920 }
fec56f58 5921 } else {
5b92a28a 5922 if (!t)
523a4cf4 5923 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
5924 return true;
5925 t = btf_type_by_id(btf, args[arg].type);
9e15db66 5926 }
f50b49a0 5927
9e15db66
AS
5928 /* skip modifiers */
5929 while (btf_type_is_modifier(t))
5b92a28a 5930 t = btf_type_by_id(btf, t->type);
720e6a43 5931 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
9e15db66
AS
5932 /* accessing a scalar */
5933 return true;
5934 if (!btf_type_is_ptr(t)) {
5935 bpf_log(log,
38207291 5936 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 5937 tname, arg,
5b92a28a 5938 __btf_name_by_offset(btf, t->name_off),
571f9738 5939 btf_type_str(t));
9e15db66
AS
5940 return false;
5941 }
afbf21dc
YS
5942
5943 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5944 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5945 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
c25b2ae1 5946 u32 type, flag;
afbf21dc 5947
c25b2ae1
HL
5948 type = base_type(ctx_arg_info->reg_type);
5949 flag = type_flag(ctx_arg_info->reg_type);
20b2aff4 5950 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
c25b2ae1 5951 (flag & PTR_MAYBE_NULL)) {
afbf21dc
YS
5952 info->reg_type = ctx_arg_info->reg_type;
5953 return true;
5954 }
5955 }
5956
9e15db66
AS
5957 if (t->type == 0)
5958 /* This is a pointer to void.
5959 * It is the same as scalar from the verifier safety pov.
5960 * No further pointer walking is allowed.
5961 */
5962 return true;
5963
bb6728d7 5964 if (is_int_ptr(btf, t))
84ad7a7a
JO
5965 return true;
5966
9e15db66 5967 /* this is a pointer to another type */
3c32cc1b
YS
5968 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5969 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5970
5971 if (ctx_arg_info->offset == off) {
d3621642
YS
5972 if (!ctx_arg_info->btf_id) {
5973 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5974 return false;
5975 }
5976
3c32cc1b 5977 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 5978 info->btf = btf_vmlinux;
951cf368
YS
5979 info->btf_id = ctx_arg_info->btf_id;
5980 return true;
3c32cc1b
YS
5981 }
5982 }
9e15db66 5983
951cf368 5984 info->reg_type = PTR_TO_BTF_ID;
c6b0337f 5985 if (prog_args_trusted(prog))
3f00c523
DV
5986 info->reg_type |= PTR_TRUSTED;
5987
5b92a28a 5988 if (tgt_prog) {
43bc2874
THJ
5989 enum bpf_prog_type tgt_type;
5990
5991 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5992 tgt_type = tgt_prog->aux->saved_dst_prog_type;
5993 else
5994 tgt_type = tgt_prog->type;
5995
5996 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 5997 if (ret > 0) {
22dc4a0f 5998 info->btf = btf_vmlinux;
5b92a28a
AS
5999 info->btf_id = ret;
6000 return true;
6001 } else {
6002 return false;
6003 }
6004 }
275517ff 6005
22dc4a0f 6006 info->btf = btf;
275517ff 6007 info->btf_id = t->type;
5b92a28a 6008 t = btf_type_by_id(btf, t->type);
c6f1bfe8
YS
6009
6010 if (btf_type_is_type_tag(t)) {
6011 tag_value = __btf_name_by_offset(btf, t->name_off);
6012 if (strcmp(tag_value, "user") == 0)
6013 info->reg_type |= MEM_USER;
5844101a
HL
6014 if (strcmp(tag_value, "percpu") == 0)
6015 info->reg_type |= MEM_PERCPU;
c6f1bfe8
YS
6016 }
6017
9e15db66 6018 /* skip modifiers */
275517ff
MKL
6019 while (btf_type_is_modifier(t)) {
6020 info->btf_id = t->type;
5b92a28a 6021 t = btf_type_by_id(btf, t->type);
275517ff 6022 }
9e15db66
AS
6023 if (!btf_type_is_struct(t)) {
6024 bpf_log(log,
38207291 6025 "func '%s' arg%d type %s is not a struct\n",
571f9738 6026 tname, arg, btf_type_str(t));
9e15db66
AS
6027 return false;
6028 }
38207291 6029 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
571f9738 6030 tname, arg, info->btf_id, btf_type_str(t),
5b92a28a 6031 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
6032 return true;
6033}
6034
1c6d28a6
JO
6035enum bpf_struct_walk_result {
6036 /* < 0 error */
6037 WALK_SCALAR = 0,
6038 WALK_PTR,
6039 WALK_STRUCT,
6040};
6041
22dc4a0f 6042static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6 6043 const struct btf_type *t, int off, int size,
c6f1bfe8 6044 u32 *next_btf_id, enum bpf_type_flag *flag)
9e15db66 6045{
7e3617a7
MKL
6046 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6047 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 6048 const struct btf_member *member;
c6f1bfe8 6049 const char *tname, *mname, *tag_value;
1c6d28a6 6050 u32 vlen, elem_id, mid;
9e15db66
AS
6051
6052again:
22dc4a0f 6053 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 6054 if (!btf_type_is_struct(t)) {
275517ff 6055 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
6056 return -EINVAL;
6057 }
6058
9c5f8a10 6059 vlen = btf_type_vlen(t);
976aba00 6060 if (off + size > t->size) {
9c5f8a10
YS
6061 /* If the last element is a variable size array, we may
6062 * need to relax the rule.
6063 */
6064 struct btf_array *array_elem;
6065
6066 if (vlen == 0)
6067 goto error;
6068
6069 member = btf_type_member(t) + vlen - 1;
22dc4a0f 6070 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
6071 NULL);
6072 if (!btf_type_is_array(mtype))
6073 goto error;
6074
6075 array_elem = (struct btf_array *)(mtype + 1);
6076 if (array_elem->nelems != 0)
6077 goto error;
6078
8293eb99 6079 moff = __btf_member_bit_offset(t, member) / 8;
9c5f8a10
YS
6080 if (off < moff)
6081 goto error;
6082
6083 /* Only allow structure for now, can be relaxed for
6084 * other types later.
6085 */
22dc4a0f 6086 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
6087 NULL);
6088 if (!btf_type_is_struct(t))
9c5f8a10
YS
6089 goto error;
6090
dafe58fc
JO
6091 off = (off - moff) % t->size;
6092 goto again;
9c5f8a10
YS
6093
6094error:
976aba00
MKL
6095 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6096 tname, off, size);
6097 return -EACCES;
6098 }
9e15db66 6099
976aba00 6100 for_each_member(i, t, member) {
7e3617a7 6101 /* offset of the field in bytes */
8293eb99 6102 moff = __btf_member_bit_offset(t, member) / 8;
7e3617a7 6103 if (off + size <= moff)
9e15db66
AS
6104 /* won't find anything, field is already too far */
6105 break;
976aba00 6106
8293eb99
AS
6107 if (__btf_member_bitfield_size(t, member)) {
6108 u32 end_bit = __btf_member_bit_offset(t, member) +
6109 __btf_member_bitfield_size(t, member);
976aba00
MKL
6110
6111 /* off <= moff instead of off == moff because clang
6112 * does not generate a BTF member for anonymous
6113 * bitfield like the ":16" here:
6114 * struct {
6115 * int :16;
6116 * int x:8;
6117 * };
6118 */
6119 if (off <= moff &&
6120 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 6121 return WALK_SCALAR;
976aba00
MKL
6122
6123 /* off may be accessing a following member
6124 *
6125 * or
6126 *
6127 * Doing partial access at either end of this
6128 * bitfield. Continue on this case also to
6129 * treat it as not accessing this bitfield
6130 * and eventually error out as field not
6131 * found to keep it simple.
6132 * It could be relaxed if there was a legit
6133 * partial access case later.
6134 */
6135 continue;
6136 }
6137
7e3617a7
MKL
6138 /* In case of "off" is pointing to holes of a struct */
6139 if (off < moff)
976aba00 6140 break;
9e15db66
AS
6141
6142 /* type of the field */
1c6d28a6 6143 mid = member->type;
22dc4a0f
AN
6144 mtype = btf_type_by_id(btf, member->type);
6145 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 6146
22dc4a0f 6147 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
6148 &elem_type, &elem_id, &total_nelems,
6149 &mid);
7e3617a7 6150 if (IS_ERR(mtype)) {
9e15db66
AS
6151 bpf_log(log, "field %s doesn't have size\n", mname);
6152 return -EFAULT;
6153 }
7e3617a7
MKL
6154
6155 mtrue_end = moff + msize;
6156 if (off >= mtrue_end)
9e15db66
AS
6157 /* no overlap with member, keep iterating */
6158 continue;
7e3617a7
MKL
6159
6160 if (btf_type_is_array(mtype)) {
6161 u32 elem_idx;
6162
6298399b 6163 /* __btf_resolve_size() above helps to
7e3617a7
MKL
6164 * linearize a multi-dimensional array.
6165 *
6166 * The logic here is treating an array
6167 * in a struct as the following way:
6168 *
6169 * struct outer {
6170 * struct inner array[2][2];
6171 * };
6172 *
6173 * looks like:
6174 *
6175 * struct outer {
6176 * struct inner array_elem0;
6177 * struct inner array_elem1;
6178 * struct inner array_elem2;
6179 * struct inner array_elem3;
6180 * };
6181 *
6182 * When accessing outer->array[1][0], it moves
6183 * moff to "array_elem2", set mtype to
6184 * "struct inner", and msize also becomes
6185 * sizeof(struct inner). Then most of the
6186 * remaining logic will fall through without
6187 * caring the current member is an array or
6188 * not.
6189 *
6190 * Unlike mtype/msize/moff, mtrue_end does not
6191 * change. The naming difference ("_true") tells
6192 * that it is not always corresponding to
6193 * the current mtype/msize/moff.
6194 * It is the true end of the current
6195 * member (i.e. array in this case). That
6196 * will allow an int array to be accessed like
6197 * a scratch space,
6198 * i.e. allow access beyond the size of
6199 * the array's element as long as it is
6200 * within the mtrue_end boundary.
6201 */
6202
6203 /* skip empty array */
6204 if (moff == mtrue_end)
6205 continue;
6206
6207 msize /= total_nelems;
6208 elem_idx = (off - moff) / msize;
6209 moff += elem_idx * msize;
6210 mtype = elem_type;
1c6d28a6 6211 mid = elem_id;
7e3617a7
MKL
6212 }
6213
9e15db66
AS
6214 /* the 'off' we're looking for is either equal to start
6215 * of this field or inside of this struct
6216 */
6217 if (btf_type_is_struct(mtype)) {
6218 /* our field must be inside that union or struct */
6219 t = mtype;
6220
1c6d28a6
JO
6221 /* return if the offset matches the member offset */
6222 if (off == moff) {
6223 *next_btf_id = mid;
6224 return WALK_STRUCT;
6225 }
6226
9e15db66 6227 /* adjust offset we're looking for */
7e3617a7 6228 off -= moff;
9e15db66
AS
6229 goto again;
6230 }
9e15db66
AS
6231
6232 if (btf_type_is_ptr(mtype)) {
c6f1bfe8
YS
6233 const struct btf_type *stype, *t;
6234 enum bpf_type_flag tmp_flag = 0;
257af63d 6235 u32 id;
9e15db66 6236
7e3617a7
MKL
6237 if (msize != size || off != moff) {
6238 bpf_log(log,
6239 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6240 mname, moff, tname, off, size);
6241 return -EACCES;
6242 }
c6f1bfe8 6243
5844101a 6244 /* check type tag */
c6f1bfe8
YS
6245 t = btf_type_by_id(btf, mtype->type);
6246 if (btf_type_is_type_tag(t)) {
6247 tag_value = __btf_name_by_offset(btf, t->name_off);
5844101a 6248 /* check __user tag */
c6f1bfe8
YS
6249 if (strcmp(tag_value, "user") == 0)
6250 tmp_flag = MEM_USER;
5844101a
HL
6251 /* check __percpu tag */
6252 if (strcmp(tag_value, "percpu") == 0)
6253 tmp_flag = MEM_PERCPU;
9bb00b28
YS
6254 /* check __rcu tag */
6255 if (strcmp(tag_value, "rcu") == 0)
6256 tmp_flag = MEM_RCU;
c6f1bfe8
YS
6257 }
6258
22dc4a0f 6259 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 6260 if (btf_type_is_struct(stype)) {
257af63d 6261 *next_btf_id = id;
c6f1bfe8 6262 *flag = tmp_flag;
1c6d28a6 6263 return WALK_PTR;
9e15db66
AS
6264 }
6265 }
7e3617a7
MKL
6266
6267 /* Allow more flexible access within an int as long as
6268 * it is within mtrue_end.
6269 * Since mtrue_end could be the end of an array,
6270 * that also allows using an array of int as a scratch
6271 * space. e.g. skb->cb[].
6272 */
6273 if (off + size > mtrue_end) {
6274 bpf_log(log,
6275 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6276 mname, mtrue_end, tname, off, size);
6277 return -EACCES;
6278 }
6279
1c6d28a6 6280 return WALK_SCALAR;
9e15db66
AS
6281 }
6282 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6283 return -EINVAL;
6284}
6285
6728aea7
KKD
6286int btf_struct_access(struct bpf_verifier_log *log,
6287 const struct bpf_reg_state *reg,
6288 int off, int size, enum bpf_access_type atype __maybe_unused,
c6f1bfe8 6289 u32 *next_btf_id, enum bpf_type_flag *flag)
1c6d28a6 6290{
6728aea7 6291 const struct btf *btf = reg->btf;
c6f1bfe8 6292 enum bpf_type_flag tmp_flag = 0;
6728aea7
KKD
6293 const struct btf_type *t;
6294 u32 id = reg->btf_id;
1c6d28a6 6295 int err;
1c6d28a6 6296
8ffa5cc1
KKD
6297 while (type_is_alloc(reg->type)) {
6298 struct btf_struct_meta *meta;
6299 struct btf_record *rec;
6300 int i;
6301
6302 meta = btf_find_struct_meta(btf, id);
6303 if (!meta)
6304 break;
6305 rec = meta->record;
6306 for (i = 0; i < rec->cnt; i++) {
6307 struct btf_field *field = &rec->fields[i];
6308 u32 offset = field->offset;
6309 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6310 bpf_log(log,
6311 "direct access to %s is disallowed\n",
6312 btf_field_type_name(field->type));
6313 return -EACCES;
6314 }
6315 }
6316 break;
6317 }
6318
6728aea7 6319 t = btf_type_by_id(btf, id);
1c6d28a6 6320 do {
c6f1bfe8 6321 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
1c6d28a6
JO
6322
6323 switch (err) {
6324 case WALK_PTR:
282de143
KKD
6325 /* For local types, the destination register cannot
6326 * become a pointer again.
6327 */
6328 if (type_is_alloc(reg->type))
6329 return SCALAR_VALUE;
1c6d28a6
JO
6330 /* If we found the pointer or scalar on t+off,
6331 * we're done.
6332 */
6333 *next_btf_id = id;
c6f1bfe8 6334 *flag = tmp_flag;
1c6d28a6
JO
6335 return PTR_TO_BTF_ID;
6336 case WALK_SCALAR:
6337 return SCALAR_VALUE;
6338 case WALK_STRUCT:
6339 /* We found nested struct, so continue the search
6340 * by diving in it. At this point the offset is
6341 * aligned with the new type, so set it to 0.
6342 */
22dc4a0f 6343 t = btf_type_by_id(btf, id);
1c6d28a6
JO
6344 off = 0;
6345 break;
6346 default:
6347 /* It's either error or unknown return value..
6348 * scream and leave.
6349 */
6350 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6351 return -EINVAL;
6352 return err;
6353 }
6354 } while (t);
6355
6356 return -EINVAL;
6357}
6358
22dc4a0f
AN
6359/* Check that two BTF types, each specified as an BTF object + id, are exactly
6360 * the same. Trivial ID check is not enough due to module BTFs, because we can
6361 * end up with two different module BTFs, but IDs point to the common type in
6362 * vmlinux BTF.
6363 */
00b85860
KKD
6364bool btf_types_are_same(const struct btf *btf1, u32 id1,
6365 const struct btf *btf2, u32 id2)
22dc4a0f
AN
6366{
6367 if (id1 != id2)
6368 return false;
6369 if (btf1 == btf2)
6370 return true;
6371 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6372}
6373
faaf4a79 6374bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f 6375 const struct btf *btf, u32 id, int off,
2ab3b380
KKD
6376 const struct btf *need_btf, u32 need_type_id,
6377 bool strict)
faaf4a79
JO
6378{
6379 const struct btf_type *type;
c6f1bfe8 6380 enum bpf_type_flag flag;
faaf4a79
JO
6381 int err;
6382
6383 /* Are we already done? */
22dc4a0f 6384 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79 6385 return true;
2ab3b380
KKD
6386 /* In case of strict type match, we do not walk struct, the top level
6387 * type match must succeed. When strict is true, off should have already
6388 * been 0.
6389 */
6390 if (strict)
6391 return false;
faaf4a79 6392again:
22dc4a0f 6393 type = btf_type_by_id(btf, id);
faaf4a79
JO
6394 if (!type)
6395 return false;
c6f1bfe8 6396 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
faaf4a79
JO
6397 if (err != WALK_STRUCT)
6398 return false;
6399
6400 /* We found nested struct object. If it matches
6401 * the requested ID, we're done. Otherwise let's
6402 * continue the search with offset 0 in the new
6403 * type.
6404 */
22dc4a0f 6405 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
6406 off = 0;
6407 goto again;
6408 }
6409
6410 return true;
6411}
6412
fec56f58 6413static int __get_type_size(struct btf *btf, u32 btf_id,
a00ed843 6414 const struct btf_type **ret_type)
fec56f58
AS
6415{
6416 const struct btf_type *t;
6417
a00ed843 6418 *ret_type = btf_type_by_id(btf, 0);
fec56f58
AS
6419 if (!btf_id)
6420 /* void */
6421 return 0;
6422 t = btf_type_by_id(btf, btf_id);
6423 while (t && btf_type_is_modifier(t))
6424 t = btf_type_by_id(btf, t->type);
a00ed843 6425 if (!t)
fec56f58 6426 return -EINVAL;
a00ed843 6427 *ret_type = t;
fec56f58
AS
6428 if (btf_type_is_ptr(t))
6429 /* kernel size of pointer. Not BPF's size of pointer*/
6430 return sizeof(void *);
720e6a43 6431 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
fec56f58 6432 return t->size;
fec56f58
AS
6433 return -EINVAL;
6434}
6435
6436int btf_distill_func_proto(struct bpf_verifier_log *log,
6437 struct btf *btf,
6438 const struct btf_type *func,
6439 const char *tname,
6440 struct btf_func_model *m)
6441{
6442 const struct btf_param *args;
6443 const struct btf_type *t;
6444 u32 i, nargs;
6445 int ret;
6446
5b92a28a
AS
6447 if (!func) {
6448 /* BTF function prototype doesn't match the verifier types.
523a4cf4 6449 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 6450 */
720e6a43 6451 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5b92a28a 6452 m->arg_size[i] = 8;
720e6a43
YS
6453 m->arg_flags[i] = 0;
6454 }
5b92a28a 6455 m->ret_size = 8;
523a4cf4 6456 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
6457 return 0;
6458 }
fec56f58
AS
6459 args = (const struct btf_param *)(func + 1);
6460 nargs = btf_type_vlen(func);
c29a4920 6461 if (nargs > MAX_BPF_FUNC_ARGS) {
fec56f58
AS
6462 bpf_log(log,
6463 "The function %s has %d arguments. Too many.\n",
6464 tname, nargs);
6465 return -EINVAL;
6466 }
6467 ret = __get_type_size(btf, func->type, &t);
720e6a43 6468 if (ret < 0 || __btf_type_is_struct(t)) {
fec56f58
AS
6469 bpf_log(log,
6470 "The function %s return type %s is unsupported.\n",
571f9738 6471 tname, btf_type_str(t));
fec56f58
AS
6472 return -EINVAL;
6473 }
6474 m->ret_size = ret;
6475
6476 for (i = 0; i < nargs; i++) {
31379397
JO
6477 if (i == nargs - 1 && args[i].type == 0) {
6478 bpf_log(log,
6479 "The function %s with variable args is unsupported.\n",
6480 tname);
6481 return -EINVAL;
6482 }
fec56f58 6483 ret = __get_type_size(btf, args[i].type, &t);
720e6a43
YS
6484
6485 /* No support of struct argument size greater than 16 bytes */
6486 if (ret < 0 || ret > 16) {
fec56f58
AS
6487 bpf_log(log,
6488 "The function %s arg%d type %s is unsupported.\n",
571f9738 6489 tname, i, btf_type_str(t));
fec56f58
AS
6490 return -EINVAL;
6491 }
31379397
JO
6492 if (ret == 0) {
6493 bpf_log(log,
6494 "The function %s has malformed void argument.\n",
6495 tname);
6496 return -EINVAL;
6497 }
fec56f58 6498 m->arg_size[i] = ret;
720e6a43 6499 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
fec56f58
AS
6500 }
6501 m->nr_args = nargs;
6502 return 0;
6503}
6504
be8704ff
AS
6505/* Compare BTFs of two functions assuming only scalars and pointers to context.
6506 * t1 points to BTF_KIND_FUNC in btf1
6507 * t2 points to BTF_KIND_FUNC in btf2
6508 * Returns:
6509 * EINVAL - function prototype mismatch
6510 * EFAULT - verifier bug
6511 * 0 - 99% match. The last 1% is validated by the verifier.
6512 */
2bf0eb9b
HY
6513static int btf_check_func_type_match(struct bpf_verifier_log *log,
6514 struct btf *btf1, const struct btf_type *t1,
6515 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
6516{
6517 const struct btf_param *args1, *args2;
6518 const char *fn1, *fn2, *s1, *s2;
6519 u32 nargs1, nargs2, i;
6520
6521 fn1 = btf_name_by_offset(btf1, t1->name_off);
6522 fn2 = btf_name_by_offset(btf2, t2->name_off);
6523
6524 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6525 bpf_log(log, "%s() is not a global function\n", fn1);
6526 return -EINVAL;
6527 }
6528 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6529 bpf_log(log, "%s() is not a global function\n", fn2);
6530 return -EINVAL;
6531 }
6532
6533 t1 = btf_type_by_id(btf1, t1->type);
6534 if (!t1 || !btf_type_is_func_proto(t1))
6535 return -EFAULT;
6536 t2 = btf_type_by_id(btf2, t2->type);
6537 if (!t2 || !btf_type_is_func_proto(t2))
6538 return -EFAULT;
6539
6540 args1 = (const struct btf_param *)(t1 + 1);
6541 nargs1 = btf_type_vlen(t1);
6542 args2 = (const struct btf_param *)(t2 + 1);
6543 nargs2 = btf_type_vlen(t2);
6544
6545 if (nargs1 != nargs2) {
6546 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6547 fn1, nargs1, fn2, nargs2);
6548 return -EINVAL;
6549 }
6550
6551 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6552 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6553 if (t1->info != t2->info) {
6554 bpf_log(log,
6555 "Return type %s of %s() doesn't match type %s of %s()\n",
6556 btf_type_str(t1), fn1,
6557 btf_type_str(t2), fn2);
6558 return -EINVAL;
6559 }
6560
6561 for (i = 0; i < nargs1; i++) {
6562 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6563 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6564
6565 if (t1->info != t2->info) {
6566 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6567 i, fn1, btf_type_str(t1),
6568 fn2, btf_type_str(t2));
6569 return -EINVAL;
6570 }
6571 if (btf_type_has_size(t1) && t1->size != t2->size) {
6572 bpf_log(log,
6573 "arg%d in %s() has size %d while %s() has %d\n",
6574 i, fn1, t1->size,
6575 fn2, t2->size);
6576 return -EINVAL;
6577 }
6578
6579 /* global functions are validated with scalars and pointers
6580 * to context only. And only global functions can be replaced.
6581 * Hence type check only those types.
6582 */
6089fb32 6583 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
be8704ff
AS
6584 continue;
6585 if (!btf_type_is_ptr(t1)) {
6586 bpf_log(log,
6587 "arg%d in %s() has unrecognized type\n",
6588 i, fn1);
6589 return -EINVAL;
6590 }
6591 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6592 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6593 if (!btf_type_is_struct(t1)) {
6594 bpf_log(log,
6595 "arg%d in %s() is not a pointer to context\n",
6596 i, fn1);
6597 return -EINVAL;
6598 }
6599 if (!btf_type_is_struct(t2)) {
6600 bpf_log(log,
6601 "arg%d in %s() is not a pointer to context\n",
6602 i, fn2);
6603 return -EINVAL;
6604 }
6605 /* This is an optional check to make program writing easier.
6606 * Compare names of structs and report an error to the user.
6607 * btf_prepare_func_args() already checked that t2 struct
6608 * is a context type. btf_prepare_func_args() will check
6609 * later that t1 struct is a context type as well.
6610 */
6611 s1 = btf_name_by_offset(btf1, t1->name_off);
6612 s2 = btf_name_by_offset(btf2, t2->name_off);
6613 if (strcmp(s1, s2)) {
6614 bpf_log(log,
6615 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6616 i, fn1, s1, fn2, s2);
6617 return -EINVAL;
6618 }
6619 }
6620 return 0;
6621}
6622
6623/* Compare BTFs of given program with BTF of target program */
efc68158 6624int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
6625 struct btf *btf2, const struct btf_type *t2)
6626{
6627 struct btf *btf1 = prog->aux->btf;
6628 const struct btf_type *t1;
6629 u32 btf_id = 0;
6630
6631 if (!prog->aux->func_info) {
efc68158 6632 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
6633 return -EINVAL;
6634 }
6635
6636 btf_id = prog->aux->func_info[0].type_id;
6637 if (!btf_id)
6638 return -EFAULT;
6639
6640 t1 = btf_type_by_id(btf1, btf_id);
6641 if (!t1 || !btf_type_is_func(t1))
6642 return -EFAULT;
6643
efc68158 6644 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
6645}
6646
34747c41
MKL
6647static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6648 const struct btf *btf, u32 func_id,
6649 struct bpf_reg_state *regs,
a4703e31 6650 bool ptr_to_mem_ok,
95f2f26f 6651 bool processing_call)
8c1b6e69 6652{
f858c2b2 6653 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8c1b6e69 6654 struct bpf_verifier_log *log = &env->log;
34747c41 6655 const char *func_name, *ref_tname;
e5069b9c 6656 const struct btf_type *t, *ref_t;
34747c41 6657 const struct btf_param *args;
00b85860
KKD
6658 u32 i, nargs, ref_id;
6659 int ret;
8c1b6e69 6660
34747c41 6661 t = btf_type_by_id(btf, func_id);
8c1b6e69 6662 if (!t || !btf_type_is_func(t)) {
51c39bb1 6663 /* These checks were already done by the verifier while loading
e6ac2450 6664 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 6665 */
34747c41
MKL
6666 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6667 func_id);
51c39bb1 6668 return -EFAULT;
8c1b6e69 6669 }
34747c41 6670 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
6671
6672 t = btf_type_by_id(btf, t->type);
6673 if (!t || !btf_type_is_func_proto(t)) {
34747c41 6674 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 6675 return -EFAULT;
8c1b6e69
AS
6676 }
6677 args = (const struct btf_param *)(t + 1);
6678 nargs = btf_type_vlen(t);
523a4cf4 6679 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 6680 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 6681 MAX_BPF_FUNC_REG_ARGS);
34747c41 6682 return -EINVAL;
8c1b6e69 6683 }
e5069b9c 6684
8c1b6e69
AS
6685 /* check that BTF function arguments match actual types that the
6686 * verifier sees.
6687 */
6688 for (i = 0; i < nargs; i++) {
8f14852e 6689 enum bpf_arg_type arg_type = ARG_DONTCARE;
34747c41
MKL
6690 u32 regno = i + 1;
6691 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 6692
34747c41
MKL
6693 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6694 if (btf_type_is_scalar(t)) {
feb4adfa 6695 if (reg->type == SCALAR_VALUE)
8c1b6e69 6696 continue;
34747c41
MKL
6697 bpf_log(log, "R%d is not a scalar\n", regno);
6698 return -EINVAL;
8c1b6e69 6699 }
34747c41
MKL
6700
6701 if (!btf_type_is_ptr(t)) {
6702 bpf_log(log, "Unrecognized arg#%d type %s\n",
6703 i, btf_type_str(t));
6704 return -EINVAL;
6705 }
6706
e6ac2450 6707 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 6708 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
655efe50 6709
8f14852e 6710 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
655efe50
KKD
6711 if (ret < 0)
6712 return ret;
6713
00b85860 6714 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
3363bd0c
KKD
6715 /* If function expects ctx type in BTF check that caller
6716 * is passing PTR_TO_CTX.
6717 */
6718 if (reg->type != PTR_TO_CTX) {
6719 bpf_log(log,
6720 "arg#%d expected pointer to ctx, but got %s\n",
6721 i, btf_type_str(t));
6722 return -EINVAL;
6723 }
95f2f26f 6724 } else if (ptr_to_mem_ok && processing_call) {
34747c41
MKL
6725 const struct btf_type *resolve_ret;
6726 u32 type_size;
e5069b9c 6727
34747c41
MKL
6728 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6729 if (IS_ERR(resolve_ret)) {
e5069b9c 6730 bpf_log(log,
34747c41
MKL
6731 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6732 i, btf_type_str(ref_t), ref_tname,
6733 PTR_ERR(resolve_ret));
6734 return -EINVAL;
e5069b9c
DB
6735 }
6736
34747c41
MKL
6737 if (check_mem_reg(env, reg, regno, type_size))
6738 return -EINVAL;
6739 } else {
00b85860
KKD
6740 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6741 func_name, func_id);
34747c41 6742 return -EINVAL;
8c1b6e69 6743 }
8c1b6e69 6744 }
34747c41 6745
00b85860 6746 return 0;
34747c41
MKL
6747}
6748
95f2f26f 6749/* Compare BTF of a function declaration with given bpf_reg_state.
34747c41
MKL
6750 * Returns:
6751 * EFAULT - there is a verifier bug. Abort verification.
6752 * EINVAL - there is a type mismatch or BTF is not available.
6753 * 0 - BTF matches with what bpf_reg_state expects.
6754 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6755 */
6756int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6757 struct bpf_reg_state *regs)
6758{
6759 struct bpf_prog *prog = env->prog;
6760 struct btf *btf = prog->aux->btf;
6761 bool is_global;
6762 u32 btf_id;
6763 int err;
6764
6765 if (!prog->aux->func_info)
6766 return -EINVAL;
6767
6768 btf_id = prog->aux->func_info[subprog].type_id;
6769 if (!btf_id)
6770 return -EFAULT;
6771
6772 if (prog->aux->func_info_aux[subprog].unreliable)
6773 return -EINVAL;
6774
6775 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6776 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
95f2f26f
BT
6777
6778 /* Compiler optimizations can remove arguments from static functions
6779 * or mismatched type can be passed into a global function.
6780 * In such cases mark the function as unreliable from BTF point of view.
6781 */
6782 if (err)
6783 prog->aux->func_info_aux[subprog].unreliable = true;
6784 return err;
6785}
6786
6787/* Compare BTF of a function call with given bpf_reg_state.
6788 * Returns:
6789 * EFAULT - there is a verifier bug. Abort verification.
6790 * EINVAL - there is a type mismatch or BTF is not available.
6791 * 0 - BTF matches with what bpf_reg_state expects.
6792 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6793 *
6794 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6795 * because btf_check_func_arg_match() is still doing both. Once that
6796 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6797 * first, and then treat the calling part in a new code path.
6798 */
6799int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6800 struct bpf_reg_state *regs)
6801{
6802 struct bpf_prog *prog = env->prog;
6803 struct btf *btf = prog->aux->btf;
6804 bool is_global;
6805 u32 btf_id;
6806 int err;
6807
6808 if (!prog->aux->func_info)
6809 return -EINVAL;
6810
6811 btf_id = prog->aux->func_info[subprog].type_id;
6812 if (!btf_id)
6813 return -EFAULT;
6814
6815 if (prog->aux->func_info_aux[subprog].unreliable)
6816 return -EINVAL;
6817
6818 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
00b85860 6819 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
34747c41 6820
51c39bb1
AS
6821 /* Compiler optimizations can remove arguments from static functions
6822 * or mismatched type can be passed into a global function.
6823 * In such cases mark the function as unreliable from BTF point of view.
6824 */
34747c41
MKL
6825 if (err)
6826 prog->aux->func_info_aux[subprog].unreliable = true;
6827 return err;
51c39bb1
AS
6828}
6829
6830/* Convert BTF of a function into bpf_reg_state if possible
6831 * Returns:
6832 * EFAULT - there is a verifier bug. Abort verification.
6833 * EINVAL - cannot convert BTF.
6834 * 0 - Successfully converted BTF into bpf_reg_state
6835 * (either PTR_TO_CTX or SCALAR_VALUE).
6836 */
6837int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 6838 struct bpf_reg_state *regs)
51c39bb1
AS
6839{
6840 struct bpf_verifier_log *log = &env->log;
6841 struct bpf_prog *prog = env->prog;
be8704ff 6842 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
6843 struct btf *btf = prog->aux->btf;
6844 const struct btf_param *args;
e5069b9c 6845 const struct btf_type *t, *ref_t;
51c39bb1
AS
6846 u32 i, nargs, btf_id;
6847 const char *tname;
6848
6849 if (!prog->aux->func_info ||
6850 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6851 bpf_log(log, "Verifier bug\n");
6852 return -EFAULT;
6853 }
6854
6855 btf_id = prog->aux->func_info[subprog].type_id;
6856 if (!btf_id) {
6857 bpf_log(log, "Global functions need valid BTF\n");
6858 return -EFAULT;
6859 }
6860
6861 t = btf_type_by_id(btf, btf_id);
6862 if (!t || !btf_type_is_func(t)) {
6863 /* These checks were already done by the verifier while loading
6864 * struct bpf_func_info
6865 */
6866 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6867 subprog);
6868 return -EFAULT;
6869 }
6870 tname = btf_name_by_offset(btf, t->name_off);
6871
6872 if (log->level & BPF_LOG_LEVEL)
6873 bpf_log(log, "Validating %s() func#%d...\n",
6874 tname, subprog);
6875
6876 if (prog->aux->func_info_aux[subprog].unreliable) {
6877 bpf_log(log, "Verifier bug in function %s()\n", tname);
6878 return -EFAULT;
6879 }
be8704ff 6880 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 6881 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
6882
6883 t = btf_type_by_id(btf, t->type);
6884 if (!t || !btf_type_is_func_proto(t)) {
6885 bpf_log(log, "Invalid type of function %s()\n", tname);
6886 return -EFAULT;
6887 }
6888 args = (const struct btf_param *)(t + 1);
6889 nargs = btf_type_vlen(t);
523a4cf4
DB
6890 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6891 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6892 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
6893 return -EINVAL;
6894 }
6895 /* check that function returns int */
6896 t = btf_type_by_id(btf, t->type);
6897 while (btf_type_is_modifier(t))
6898 t = btf_type_by_id(btf, t->type);
6089fb32 6899 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
51c39bb1
AS
6900 bpf_log(log,
6901 "Global function %s() doesn't return scalar. Only those are supported.\n",
6902 tname);
6903 return -EINVAL;
6904 }
6905 /* Convert BTF function arguments into verifier types.
6906 * Only PTR_TO_CTX and SCALAR are supported atm.
6907 */
6908 for (i = 0; i < nargs; i++) {
feb4adfa
DB
6909 struct bpf_reg_state *reg = &regs[i + 1];
6910
51c39bb1
AS
6911 t = btf_type_by_id(btf, args[i].type);
6912 while (btf_type_is_modifier(t))
6913 t = btf_type_by_id(btf, t->type);
6089fb32 6914 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
feb4adfa 6915 reg->type = SCALAR_VALUE;
51c39bb1
AS
6916 continue;
6917 }
e5069b9c
DB
6918 if (btf_type_is_ptr(t)) {
6919 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6920 reg->type = PTR_TO_CTX;
6921 continue;
6922 }
6923
6924 t = btf_type_skip_modifiers(btf, t->type, NULL);
6925
6926 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6927 if (IS_ERR(ref_t)) {
6928 bpf_log(log,
6929 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6930 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6931 PTR_ERR(ref_t));
6932 return -EINVAL;
6933 }
6934
cf9f2f8d 6935 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
e5069b9c
DB
6936 reg->id = ++env->id_gen;
6937
51c39bb1
AS
6938 continue;
6939 }
6940 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
571f9738 6941 i, btf_type_str(t), tname);
51c39bb1
AS
6942 return -EINVAL;
6943 }
8c1b6e69
AS
6944 return 0;
6945}
6946
31d0bc81
AM
6947static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6948 struct btf_show *show)
6949{
6950 const struct btf_type *t = btf_type_by_id(btf, type_id);
6951
6952 show->btf = btf;
6953 memset(&show->state, 0, sizeof(show->state));
6954 memset(&show->obj, 0, sizeof(show->obj));
6955
6956 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6957}
6958
6959static void btf_seq_show(struct btf_show *show, const char *fmt,
6960 va_list args)
6961{
6962 seq_vprintf((struct seq_file *)show->target, fmt, args);
6963}
6964
eb411377
AM
6965int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6966 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
6967{
6968 struct btf_show sseq;
6969
6970 sseq.target = m;
6971 sseq.showfn = btf_seq_show;
6972 sseq.flags = flags;
6973
6974 btf_type_show(btf, type_id, obj, &sseq);
6975
6976 return sseq.state.status;
6977}
6978
b00b8dae
MKL
6979void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6980 struct seq_file *m)
6981{
31d0bc81
AM
6982 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
6983 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6984 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6985}
6986
6987struct btf_show_snprintf {
6988 struct btf_show show;
6989 int len_left; /* space left in string */
6990 int len; /* length we would have written */
6991};
6992
6993static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6994 va_list args)
6995{
6996 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6997 int len;
6998
6999 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7000
7001 if (len < 0) {
7002 ssnprintf->len_left = 0;
7003 ssnprintf->len = len;
58250ae3 7004 } else if (len >= ssnprintf->len_left) {
31d0bc81
AM
7005 /* no space, drive on to get length we would have written */
7006 ssnprintf->len_left = 0;
7007 ssnprintf->len += len;
7008 } else {
7009 ssnprintf->len_left -= len;
7010 ssnprintf->len += len;
7011 show->target += len;
7012 }
7013}
7014
7015int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7016 char *buf, int len, u64 flags)
7017{
7018 struct btf_show_snprintf ssnprintf;
7019
7020 ssnprintf.show.target = buf;
7021 ssnprintf.show.flags = flags;
7022 ssnprintf.show.showfn = btf_snprintf_show;
7023 ssnprintf.len_left = len;
7024 ssnprintf.len = 0;
7025
7026 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7027
c561d110 7028 /* If we encountered an error, return it. */
31d0bc81
AM
7029 if (ssnprintf.show.state.status)
7030 return ssnprintf.show.state.status;
b00b8dae 7031
31d0bc81
AM
7032 /* Otherwise return length we would have written */
7033 return ssnprintf.len;
b00b8dae 7034}
f56a653c 7035
3481e64b
QM
7036#ifdef CONFIG_PROC_FS
7037static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7038{
7039 const struct btf *btf = filp->private_data;
7040
7041 seq_printf(m, "btf_id:\t%u\n", btf->id);
7042}
7043#endif
7044
f56a653c
MKL
7045static int btf_release(struct inode *inode, struct file *filp)
7046{
7047 btf_put(filp->private_data);
7048 return 0;
7049}
7050
60197cfb 7051const struct file_operations btf_fops = {
3481e64b
QM
7052#ifdef CONFIG_PROC_FS
7053 .show_fdinfo = bpf_btf_show_fdinfo,
7054#endif
f56a653c
MKL
7055 .release = btf_release,
7056};
7057
78958fca
MKL
7058static int __btf_new_fd(struct btf *btf)
7059{
7060 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7061}
7062
c571bd75 7063int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
f56a653c
MKL
7064{
7065 struct btf *btf;
78958fca 7066 int ret;
f56a653c 7067
c571bd75 7068 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
f56a653c
MKL
7069 attr->btf_size, attr->btf_log_level,
7070 u64_to_user_ptr(attr->btf_log_buf),
7071 attr->btf_log_size);
7072 if (IS_ERR(btf))
7073 return PTR_ERR(btf);
7074
78958fca
MKL
7075 ret = btf_alloc_id(btf);
7076 if (ret) {
7077 btf_free(btf);
7078 return ret;
7079 }
7080
7081 /*
7082 * The BTF ID is published to the userspace.
7083 * All BTF free must go through call_rcu() from
7084 * now on (i.e. free by calling btf_put()).
7085 */
7086
7087 ret = __btf_new_fd(btf);
7088 if (ret < 0)
f56a653c
MKL
7089 btf_put(btf);
7090
78958fca 7091 return ret;
f56a653c
MKL
7092}
7093
7094struct btf *btf_get_by_fd(int fd)
7095{
7096 struct btf *btf;
7097 struct fd f;
7098
7099 f = fdget(fd);
7100
7101 if (!f.file)
7102 return ERR_PTR(-EBADF);
7103
7104 if (f.file->f_op != &btf_fops) {
7105 fdput(f);
7106 return ERR_PTR(-EINVAL);
7107 }
7108
7109 btf = f.file->private_data;
78958fca 7110 refcount_inc(&btf->refcnt);
f56a653c
MKL
7111 fdput(f);
7112
7113 return btf;
7114}
60197cfb
MKL
7115
7116int btf_get_info_by_fd(const struct btf *btf,
7117 const union bpf_attr *attr,
7118 union bpf_attr __user *uattr)
7119{
62dab84c 7120 struct bpf_btf_info __user *uinfo;
5c6f2588 7121 struct bpf_btf_info info;
62dab84c
MKL
7122 u32 info_copy, btf_copy;
7123 void __user *ubtf;
53297220
AN
7124 char __user *uname;
7125 u32 uinfo_len, uname_len, name_len;
7126 int ret = 0;
60197cfb 7127
62dab84c
MKL
7128 uinfo = u64_to_user_ptr(attr->info.info);
7129 uinfo_len = attr->info.info_len;
7130
7131 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 7132 memset(&info, 0, sizeof(info));
62dab84c
MKL
7133 if (copy_from_user(&info, uinfo, info_copy))
7134 return -EFAULT;
7135
7136 info.id = btf->id;
7137 ubtf = u64_to_user_ptr(info.btf);
7138 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7139 if (copy_to_user(ubtf, btf->data, btf_copy))
7140 return -EFAULT;
7141 info.btf_size = btf->data_size;
7142
53297220
AN
7143 info.kernel_btf = btf->kernel_btf;
7144
7145 uname = u64_to_user_ptr(info.name);
7146 uname_len = info.name_len;
7147 if (!uname ^ !uname_len)
7148 return -EINVAL;
7149
7150 name_len = strlen(btf->name);
7151 info.name_len = name_len;
7152
7153 if (uname) {
7154 if (uname_len >= name_len + 1) {
7155 if (copy_to_user(uname, btf->name, name_len + 1))
7156 return -EFAULT;
7157 } else {
7158 char zero = '\0';
7159
7160 if (copy_to_user(uname, btf->name, uname_len - 1))
7161 return -EFAULT;
7162 if (put_user(zero, uname + uname_len - 1))
7163 return -EFAULT;
7164 /* let user-space know about too short buffer */
7165 ret = -ENOSPC;
7166 }
7167 }
7168
62dab84c
MKL
7169 if (copy_to_user(uinfo, &info, info_copy) ||
7170 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
7171 return -EFAULT;
7172
53297220 7173 return ret;
60197cfb 7174}
78958fca
MKL
7175
7176int btf_get_fd_by_id(u32 id)
7177{
7178 struct btf *btf;
7179 int fd;
7180
7181 rcu_read_lock();
7182 btf = idr_find(&btf_idr, id);
7183 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7184 btf = ERR_PTR(-ENOENT);
7185 rcu_read_unlock();
7186
7187 if (IS_ERR(btf))
7188 return PTR_ERR(btf);
7189
7190 fd = __btf_new_fd(btf);
7191 if (fd < 0)
7192 btf_put(btf);
7193
7194 return fd;
7195}
7196
22dc4a0f 7197u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
7198{
7199 return btf->id;
7200}
eae2e83e 7201
290248a5
AN
7202bool btf_is_kernel(const struct btf *btf)
7203{
7204 return btf->kernel_btf;
7205}
7206
541c3bad
AN
7207bool btf_is_module(const struct btf *btf)
7208{
7209 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7210}
7211
18688de2
KKD
7212enum {
7213 BTF_MODULE_F_LIVE = (1 << 0),
7214};
7215
36e68442
AN
7216#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7217struct btf_module {
7218 struct list_head list;
7219 struct module *module;
7220 struct btf *btf;
7221 struct bin_attribute *sysfs_attr;
18688de2 7222 int flags;
36e68442
AN
7223};
7224
7225static LIST_HEAD(btf_modules);
7226static DEFINE_MUTEX(btf_module_mutex);
7227
7228static ssize_t
7229btf_module_read(struct file *file, struct kobject *kobj,
7230 struct bin_attribute *bin_attr,
7231 char *buf, loff_t off, size_t len)
7232{
7233 const struct btf *btf = bin_attr->private;
7234
7235 memcpy(buf, btf->data + off, len);
7236 return len;
7237}
7238
1e89106d
AS
7239static void purge_cand_cache(struct btf *btf);
7240
36e68442
AN
7241static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7242 void *module)
7243{
7244 struct btf_module *btf_mod, *tmp;
7245 struct module *mod = module;
7246 struct btf *btf;
7247 int err = 0;
7248
7249 if (mod->btf_data_size == 0 ||
18688de2
KKD
7250 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7251 op != MODULE_STATE_GOING))
36e68442
AN
7252 goto out;
7253
7254 switch (op) {
7255 case MODULE_STATE_COMING:
7256 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7257 if (!btf_mod) {
7258 err = -ENOMEM;
7259 goto out;
7260 }
7261 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7262 if (IS_ERR(btf)) {
7263 pr_warn("failed to validate module [%s] BTF: %ld\n",
7264 mod->name, PTR_ERR(btf));
7265 kfree(btf_mod);
5e214f2e
CB
7266 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
7267 err = PTR_ERR(btf);
36e68442
AN
7268 goto out;
7269 }
7270 err = btf_alloc_id(btf);
7271 if (err) {
7272 btf_free(btf);
7273 kfree(btf_mod);
7274 goto out;
7275 }
7276
1e89106d 7277 purge_cand_cache(NULL);
36e68442
AN
7278 mutex_lock(&btf_module_mutex);
7279 btf_mod->module = module;
7280 btf_mod->btf = btf;
7281 list_add(&btf_mod->list, &btf_modules);
7282 mutex_unlock(&btf_module_mutex);
7283
7284 if (IS_ENABLED(CONFIG_SYSFS)) {
7285 struct bin_attribute *attr;
7286
7287 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7288 if (!attr)
7289 goto out;
7290
7291 sysfs_bin_attr_init(attr);
7292 attr->attr.name = btf->name;
7293 attr->attr.mode = 0444;
7294 attr->size = btf->data_size;
7295 attr->private = btf;
7296 attr->read = btf_module_read;
7297
7298 err = sysfs_create_bin_file(btf_kobj, attr);
7299 if (err) {
7300 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7301 mod->name, err);
7302 kfree(attr);
7303 err = 0;
7304 goto out;
7305 }
7306
7307 btf_mod->sysfs_attr = attr;
7308 }
7309
18688de2
KKD
7310 break;
7311 case MODULE_STATE_LIVE:
7312 mutex_lock(&btf_module_mutex);
7313 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7314 if (btf_mod->module != module)
7315 continue;
7316
7317 btf_mod->flags |= BTF_MODULE_F_LIVE;
7318 break;
7319 }
7320 mutex_unlock(&btf_module_mutex);
36e68442
AN
7321 break;
7322 case MODULE_STATE_GOING:
7323 mutex_lock(&btf_module_mutex);
7324 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7325 if (btf_mod->module != module)
7326 continue;
7327
7328 list_del(&btf_mod->list);
7329 if (btf_mod->sysfs_attr)
7330 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
1e89106d 7331 purge_cand_cache(btf_mod->btf);
36e68442
AN
7332 btf_put(btf_mod->btf);
7333 kfree(btf_mod->sysfs_attr);
7334 kfree(btf_mod);
7335 break;
7336 }
7337 mutex_unlock(&btf_module_mutex);
7338 break;
7339 }
7340out:
7341 return notifier_from_errno(err);
7342}
7343
7344static struct notifier_block btf_module_nb = {
7345 .notifier_call = btf_module_notify,
7346};
7347
7348static int __init btf_module_init(void)
7349{
7350 register_module_notifier(&btf_module_nb);
7351 return 0;
7352}
7353
7354fs_initcall(btf_module_init);
7355#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
7356
7357struct module *btf_try_get_module(const struct btf *btf)
7358{
7359 struct module *res = NULL;
7360#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7361 struct btf_module *btf_mod, *tmp;
7362
7363 mutex_lock(&btf_module_mutex);
7364 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7365 if (btf_mod->btf != btf)
7366 continue;
7367
18688de2
KKD
7368 /* We must only consider module whose __init routine has
7369 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7370 * which is set from the notifier callback for
7371 * MODULE_STATE_LIVE.
7372 */
7373 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
541c3bad
AN
7374 res = btf_mod->module;
7375
7376 break;
7377 }
7378 mutex_unlock(&btf_module_mutex);
7379#endif
7380
7381 return res;
7382}
3d78417b 7383
9492450f
KKD
7384/* Returns struct btf corresponding to the struct module.
7385 * This function can return NULL or ERR_PTR.
dee872e1
KKD
7386 */
7387static struct btf *btf_get_module_btf(const struct module *module)
7388{
dee872e1
KKD
7389#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7390 struct btf_module *btf_mod, *tmp;
7391#endif
9492450f
KKD
7392 struct btf *btf = NULL;
7393
7394 if (!module) {
7395 btf = bpf_get_btf_vmlinux();
7ada3787 7396 if (!IS_ERR_OR_NULL(btf))
9492450f
KKD
7397 btf_get(btf);
7398 return btf;
7399 }
dee872e1 7400
dee872e1
KKD
7401#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7402 mutex_lock(&btf_module_mutex);
7403 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7404 if (btf_mod->module != module)
7405 continue;
7406
7407 btf_get(btf_mod->btf);
7408 btf = btf_mod->btf;
7409 break;
7410 }
7411 mutex_unlock(&btf_module_mutex);
7412#endif
7413
7414 return btf;
7415}
7416
3d78417b
AS
7417BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7418{
edc3ec09
KKD
7419 struct btf *btf = NULL;
7420 int btf_obj_fd = 0;
3d78417b
AS
7421 long ret;
7422
7423 if (flags)
7424 return -EINVAL;
7425
7426 if (name_sz <= 1 || name[name_sz - 1])
7427 return -EINVAL;
7428
edc3ec09
KKD
7429 ret = bpf_find_btf_id(name, kind, &btf);
7430 if (ret > 0 && btf_is_module(btf)) {
7431 btf_obj_fd = __btf_new_fd(btf);
7432 if (btf_obj_fd < 0) {
7433 btf_put(btf);
7434 return btf_obj_fd;
3d78417b 7435 }
edc3ec09 7436 return ret | (((u64)btf_obj_fd) << 32);
3d78417b 7437 }
edc3ec09
KKD
7438 if (ret > 0)
7439 btf_put(btf);
3d78417b
AS
7440 return ret;
7441}
7442
7443const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7444 .func = bpf_btf_find_by_name_kind,
7445 .gpl_only = false,
7446 .ret_type = RET_INTEGER,
216e3cd2 7447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
3d78417b
AS
7448 .arg2_type = ARG_CONST_SIZE,
7449 .arg3_type = ARG_ANYTHING,
7450 .arg4_type = ARG_ANYTHING,
7451};
eb529c5b 7452
d19ddb47
SL
7453BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7454#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7455BTF_TRACING_TYPE_xxx
7456#undef BTF_TRACING_TYPE
14f267d9 7457
dee872e1 7458/* Kernel Function (kfunc) BTF ID set registration API */
14f267d9 7459
a4703e31
KKD
7460static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7461 struct btf_id_set8 *add_set)
14f267d9 7462{
a4703e31 7463 bool vmlinux_set = !btf_is_module(btf);
dee872e1 7464 struct btf_kfunc_set_tab *tab;
a4703e31 7465 struct btf_id_set8 *set;
dee872e1
KKD
7466 u32 set_cnt;
7467 int ret;
7468
a4703e31 7469 if (hook >= BTF_KFUNC_HOOK_MAX) {
dee872e1
KKD
7470 ret = -EINVAL;
7471 goto end;
7472 }
7473
7474 if (!add_set->cnt)
7475 return 0;
7476
7477 tab = btf->kfunc_set_tab;
7478 if (!tab) {
7479 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7480 if (!tab)
7481 return -ENOMEM;
7482 btf->kfunc_set_tab = tab;
7483 }
7484
a4703e31 7485 set = tab->sets[hook];
dee872e1
KKD
7486 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7487 * for module sets.
7488 */
7489 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7490 ret = -EINVAL;
7491 goto end;
7492 }
7493
7494 /* We don't need to allocate, concatenate, and sort module sets, because
7495 * only one is allowed per hook. Hence, we can directly assign the
7496 * pointer and return.
7497 */
7498 if (!vmlinux_set) {
a4703e31 7499 tab->sets[hook] = add_set;
dee872e1
KKD
7500 return 0;
7501 }
7502
7503 /* In case of vmlinux sets, there may be more than one set being
7504 * registered per hook. To create a unified set, we allocate a new set
7505 * and concatenate all individual sets being registered. While each set
7506 * is individually sorted, they may become unsorted when concatenated,
7507 * hence re-sorting the final set again is required to make binary
a4703e31 7508 * searching the set using btf_id_set8_contains function work.
dee872e1
KKD
7509 */
7510 set_cnt = set ? set->cnt : 0;
7511
7512 if (set_cnt > U32_MAX - add_set->cnt) {
7513 ret = -EOVERFLOW;
7514 goto end;
7515 }
7516
7517 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7518 ret = -E2BIG;
7519 goto end;
7520 }
7521
7522 /* Grow set */
a4703e31
KKD
7523 set = krealloc(tab->sets[hook],
7524 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
dee872e1
KKD
7525 GFP_KERNEL | __GFP_NOWARN);
7526 if (!set) {
7527 ret = -ENOMEM;
7528 goto end;
7529 }
7530
7531 /* For newly allocated set, initialize set->cnt to 0 */
a4703e31 7532 if (!tab->sets[hook])
dee872e1 7533 set->cnt = 0;
a4703e31 7534 tab->sets[hook] = set;
dee872e1
KKD
7535
7536 /* Concatenate the two sets */
a4703e31 7537 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
dee872e1
KKD
7538 set->cnt += add_set->cnt;
7539
a4703e31 7540 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
dee872e1
KKD
7541
7542 return 0;
7543end:
7544 btf_free_kfunc_set_tab(btf);
7545 return ret;
14f267d9 7546}
14f267d9 7547
a4703e31 7548static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7549 enum btf_kfunc_hook hook,
dee872e1 7550 u32 kfunc_btf_id)
14f267d9 7551{
a4703e31
KKD
7552 struct btf_id_set8 *set;
7553 u32 *id;
14f267d9 7554
a4703e31
KKD
7555 if (hook >= BTF_KFUNC_HOOK_MAX)
7556 return NULL;
dee872e1 7557 if (!btf->kfunc_set_tab)
a4703e31
KKD
7558 return NULL;
7559 set = btf->kfunc_set_tab->sets[hook];
dee872e1 7560 if (!set)
a4703e31
KKD
7561 return NULL;
7562 id = btf_id_set8_contains(set, kfunc_btf_id);
7563 if (!id)
7564 return NULL;
7565 /* The flags for BTF ID are located next to it */
7566 return id + 1;
dee872e1
KKD
7567}
7568
7569static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7570{
7571 switch (prog_type) {
cfe14564
YS
7572 case BPF_PROG_TYPE_UNSPEC:
7573 return BTF_KFUNC_HOOK_COMMON;
dee872e1
KKD
7574 case BPF_PROG_TYPE_XDP:
7575 return BTF_KFUNC_HOOK_XDP;
7576 case BPF_PROG_TYPE_SCHED_CLS:
7577 return BTF_KFUNC_HOOK_TC;
7578 case BPF_PROG_TYPE_STRUCT_OPS:
7579 return BTF_KFUNC_HOOK_STRUCT_OPS;
97949767 7580 case BPF_PROG_TYPE_TRACING:
d15bf150 7581 case BPF_PROG_TYPE_LSM:
97949767
BT
7582 return BTF_KFUNC_HOOK_TRACING;
7583 case BPF_PROG_TYPE_SYSCALL:
7584 return BTF_KFUNC_HOOK_SYSCALL;
dee872e1
KKD
7585 default:
7586 return BTF_KFUNC_HOOK_MAX;
14f267d9 7587 }
14f267d9
KKD
7588}
7589
dee872e1
KKD
7590/* Caution:
7591 * Reference to the module (obtained using btf_try_get_module) corresponding to
7592 * the struct btf *MUST* be held when calling this function from verifier
7593 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7594 * keeping the reference for the duration of the call provides the necessary
7595 * protection for looking up a well-formed btf->kfunc_set_tab.
7596 */
a4703e31 7597u32 *btf_kfunc_id_set_contains(const struct btf *btf,
dee872e1 7598 enum bpf_prog_type prog_type,
a4703e31 7599 u32 kfunc_btf_id)
dee872e1
KKD
7600{
7601 enum btf_kfunc_hook hook;
cfe14564
YS
7602 u32 *kfunc_flags;
7603
7604 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7605 if (kfunc_flags)
7606 return kfunc_flags;
0e32dfc8 7607
dee872e1 7608 hook = bpf_prog_type_to_kfunc_hook(prog_type);
a4703e31 7609 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
dee872e1 7610}
d9847eb8 7611
5b481aca
BT
7612u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7613{
7614 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7615}
7616
7617static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7618 const struct btf_kfunc_id_set *kset)
dee872e1 7619{
dee872e1
KKD
7620 struct btf *btf;
7621 int ret;
7622
7623 btf = btf_get_module_btf(kset->owner);
c446fdac
SF
7624 if (!btf) {
7625 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7626 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7627 return -ENOENT;
7628 }
7629 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7630 pr_err("missing module BTF, cannot register kfuncs\n");
7631 return -ENOENT;
7632 }
7633 return 0;
7634 }
7635 if (IS_ERR(btf))
7636 return PTR_ERR(btf);
dee872e1 7637
a4703e31 7638 ret = btf_populate_kfunc_set(btf, hook, kset->set);
9492450f 7639 btf_put(btf);
dee872e1
KKD
7640 return ret;
7641}
5b481aca
BT
7642
7643/* This function must be invoked only from initcalls/module init functions */
7644int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7645 const struct btf_kfunc_id_set *kset)
7646{
7647 enum btf_kfunc_hook hook;
7648
7649 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7650 return __register_btf_kfunc_id_set(hook, kset);
7651}
dee872e1 7652EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
be315829 7653
5b481aca
BT
7654/* This function must be invoked only from initcalls/module init functions */
7655int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7656{
7657 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7658}
7659EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7660
5ce937d6
KKD
7661s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7662{
7663 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7664 struct btf_id_dtor_kfunc *dtor;
7665
7666 if (!tab)
7667 return -ENOENT;
7668 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7669 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7670 */
7671 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7672 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7673 if (!dtor)
7674 return -ENOENT;
7675 return dtor->kfunc_btf_id;
7676}
7677
14a324f6
KKD
7678static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7679{
7680 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7681 const struct btf_param *args;
7682 s32 dtor_btf_id;
7683 u32 nr_args, i;
7684
7685 for (i = 0; i < cnt; i++) {
7686 dtor_btf_id = dtors[i].kfunc_btf_id;
7687
7688 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7689 if (!dtor_func || !btf_type_is_func(dtor_func))
7690 return -EINVAL;
7691
7692 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7693 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7694 return -EINVAL;
7695
7696 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7697 t = btf_type_by_id(btf, dtor_func_proto->type);
7698 if (!t || !btf_type_is_void(t))
7699 return -EINVAL;
7700
7701 nr_args = btf_type_vlen(dtor_func_proto);
7702 if (nr_args != 1)
7703 return -EINVAL;
7704 args = btf_params(dtor_func_proto);
7705 t = btf_type_by_id(btf, args[0].type);
7706 /* Allow any pointer type, as width on targets Linux supports
7707 * will be same for all pointer types (i.e. sizeof(void *))
7708 */
7709 if (!t || !btf_type_is_ptr(t))
7710 return -EINVAL;
7711 }
7712 return 0;
7713}
7714
5ce937d6
KKD
7715/* This function must be invoked only from initcalls/module init functions */
7716int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7717 struct module *owner)
7718{
7719 struct btf_id_dtor_kfunc_tab *tab;
7720 struct btf *btf;
7721 u32 tab_cnt;
7722 int ret;
7723
7724 btf = btf_get_module_btf(owner);
7725 if (!btf) {
7726 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7727 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7728 return -ENOENT;
7729 }
7730 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7731 pr_err("missing module BTF, cannot register dtor kfuncs\n");
7732 return -ENOENT;
7733 }
7734 return 0;
7735 }
7736 if (IS_ERR(btf))
7737 return PTR_ERR(btf);
7738
7739 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7740 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7741 ret = -E2BIG;
7742 goto end;
7743 }
7744
14a324f6
KKD
7745 /* Ensure that the prototype of dtor kfuncs being registered is sane */
7746 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7747 if (ret < 0)
7748 goto end;
7749
5ce937d6
KKD
7750 tab = btf->dtor_kfunc_tab;
7751 /* Only one call allowed for modules */
7752 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7753 ret = -EINVAL;
7754 goto end;
7755 }
7756
7757 tab_cnt = tab ? tab->cnt : 0;
7758 if (tab_cnt > U32_MAX - add_cnt) {
7759 ret = -EOVERFLOW;
7760 goto end;
7761 }
7762 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7763 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7764 ret = -E2BIG;
7765 goto end;
7766 }
7767
7768 tab = krealloc(btf->dtor_kfunc_tab,
7769 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7770 GFP_KERNEL | __GFP_NOWARN);
7771 if (!tab) {
7772 ret = -ENOMEM;
7773 goto end;
7774 }
7775
7776 if (!btf->dtor_kfunc_tab)
7777 tab->cnt = 0;
7778 btf->dtor_kfunc_tab = tab;
7779
7780 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7781 tab->cnt += add_cnt;
7782
7783 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7784
7785 return 0;
7786end:
7787 btf_free_dtor_kfunc_tab(btf);
7788 btf_put(btf);
7789 return ret;
7790}
7791EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7792
e70e13e7
MC
7793#define MAX_TYPES_ARE_COMPAT_DEPTH 2
7794
e70e13e7
MC
7795/* Check local and target types for compatibility. This check is used for
7796 * type-based CO-RE relocations and follow slightly different rules than
7797 * field-based relocations. This function assumes that root types were already
7798 * checked for name match. Beyond that initial root-level name check, names
7799 * are completely ignored. Compatibility rules are as follows:
6089fb32 7800 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
e70e13e7
MC
7801 * kind should match for local and target types (i.e., STRUCT is not
7802 * compatible with UNION);
6089fb32 7803 * - for ENUMs/ENUM64s, the size is ignored;
e70e13e7
MC
7804 * - for INT, size and signedness are ignored;
7805 * - for ARRAY, dimensionality is ignored, element types are checked for
7806 * compatibility recursively;
7807 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
7808 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7809 * - FUNC_PROTOs are compatible if they have compatible signature: same
7810 * number of input args and compatible return and argument types.
7811 * These rules are not set in stone and probably will be adjusted as we get
7812 * more experience with using BPF CO-RE relocations.
7813 */
29db4bea
AS
7814int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7815 const struct btf *targ_btf, __u32 targ_id)
7816{
fd75733d 7817 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
e70e13e7 7818 MAX_TYPES_ARE_COMPAT_DEPTH);
29db4bea
AS
7819}
7820
ec6209c8
DM
7821#define MAX_TYPES_MATCH_DEPTH 2
7822
7823int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7824 const struct btf *targ_btf, u32 targ_id)
7825{
7826 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7827 MAX_TYPES_MATCH_DEPTH);
7828}
7829
29db4bea
AS
7830static bool bpf_core_is_flavor_sep(const char *s)
7831{
7832 /* check X___Y name pattern, where X and Y are not underscores */
7833 return s[0] != '_' && /* X */
7834 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
7835 s[4] != '_'; /* Y */
7836}
7837
7838size_t bpf_core_essential_name_len(const char *name)
7839{
7840 size_t n = strlen(name);
7841 int i;
7842
7843 for (i = n - 5; i >= 0; i--) {
7844 if (bpf_core_is_flavor_sep(name + i))
7845 return i + 1;
7846 }
7847 return n;
7848}
fbd94c7a 7849
1e89106d
AS
7850struct bpf_cand_cache {
7851 const char *name;
7852 u32 name_len;
7853 u16 kind;
7854 u16 cnt;
7855 struct {
7856 const struct btf *btf;
7857 u32 id;
7858 } cands[];
7859};
7860
7861static void bpf_free_cands(struct bpf_cand_cache *cands)
7862{
7863 if (!cands->cnt)
7864 /* empty candidate array was allocated on stack */
7865 return;
7866 kfree(cands);
7867}
7868
7869static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7870{
7871 kfree(cands->name);
7872 kfree(cands);
7873}
7874
7875#define VMLINUX_CAND_CACHE_SIZE 31
7876static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7877
7878#define MODULE_CAND_CACHE_SIZE 31
7879static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7880
7881static DEFINE_MUTEX(cand_cache_mutex);
7882
7883static void __print_cand_cache(struct bpf_verifier_log *log,
7884 struct bpf_cand_cache **cache,
7885 int cache_size)
7886{
7887 struct bpf_cand_cache *cc;
7888 int i, j;
7889
7890 for (i = 0; i < cache_size; i++) {
7891 cc = cache[i];
7892 if (!cc)
7893 continue;
7894 bpf_log(log, "[%d]%s(", i, cc->name);
7895 for (j = 0; j < cc->cnt; j++) {
7896 bpf_log(log, "%d", cc->cands[j].id);
7897 if (j < cc->cnt - 1)
7898 bpf_log(log, " ");
7899 }
7900 bpf_log(log, "), ");
7901 }
7902}
7903
7904static void print_cand_cache(struct bpf_verifier_log *log)
7905{
7906 mutex_lock(&cand_cache_mutex);
7907 bpf_log(log, "vmlinux_cand_cache:");
7908 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7909 bpf_log(log, "\nmodule_cand_cache:");
7910 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7911 bpf_log(log, "\n");
7912 mutex_unlock(&cand_cache_mutex);
7913}
7914
7915static u32 hash_cands(struct bpf_cand_cache *cands)
7916{
7917 return jhash(cands->name, cands->name_len, 0);
7918}
7919
7920static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7921 struct bpf_cand_cache **cache,
7922 int cache_size)
7923{
7924 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7925
7926 if (cc && cc->name_len == cands->name_len &&
7927 !strncmp(cc->name, cands->name, cands->name_len))
7928 return cc;
7929 return NULL;
7930}
7931
7932static size_t sizeof_cands(int cnt)
7933{
7934 return offsetof(struct bpf_cand_cache, cands[cnt]);
7935}
7936
7937static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7938 struct bpf_cand_cache **cache,
7939 int cache_size)
7940{
7941 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7942
7943 if (*cc) {
7944 bpf_free_cands_from_cache(*cc);
7945 *cc = NULL;
7946 }
4674f210 7947 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
1e89106d
AS
7948 if (!new_cands) {
7949 bpf_free_cands(cands);
7950 return ERR_PTR(-ENOMEM);
7951 }
1e89106d
AS
7952 /* strdup the name, since it will stay in cache.
7953 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7954 */
7955 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7956 bpf_free_cands(cands);
7957 if (!new_cands->name) {
7958 kfree(new_cands);
7959 return ERR_PTR(-ENOMEM);
7960 }
7961 *cc = new_cands;
7962 return new_cands;
7963}
7964
29f2e5bd 7965#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
1e89106d
AS
7966static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7967 int cache_size)
7968{
7969 struct bpf_cand_cache *cc;
7970 int i, j;
7971
7972 for (i = 0; i < cache_size; i++) {
7973 cc = cache[i];
7974 if (!cc)
7975 continue;
7976 if (!btf) {
7977 /* when new module is loaded purge all of module_cand_cache,
7978 * since new module might have candidates with the name
7979 * that matches cached cands.
7980 */
7981 bpf_free_cands_from_cache(cc);
7982 cache[i] = NULL;
7983 continue;
7984 }
7985 /* when module is unloaded purge cache entries
7986 * that match module's btf
7987 */
7988 for (j = 0; j < cc->cnt; j++)
7989 if (cc->cands[j].btf == btf) {
7990 bpf_free_cands_from_cache(cc);
7991 cache[i] = NULL;
7992 break;
7993 }
7994 }
7995
7996}
7997
7998static void purge_cand_cache(struct btf *btf)
7999{
8000 mutex_lock(&cand_cache_mutex);
8001 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8002 mutex_unlock(&cand_cache_mutex);
8003}
29f2e5bd 8004#endif
1e89106d
AS
8005
8006static struct bpf_cand_cache *
8007bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8008 int targ_start_id)
8009{
8010 struct bpf_cand_cache *new_cands;
8011 const struct btf_type *t;
8012 const char *targ_name;
8013 size_t targ_essent_len;
8014 int n, i;
8015
8016 n = btf_nr_types(targ_btf);
8017 for (i = targ_start_id; i < n; i++) {
8018 t = btf_type_by_id(targ_btf, i);
8019 if (btf_kind(t) != cands->kind)
8020 continue;
8021
8022 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8023 if (!targ_name)
8024 continue;
8025
8026 /* the resched point is before strncmp to make sure that search
8027 * for non-existing name will have a chance to schedule().
8028 */
8029 cond_resched();
8030
8031 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8032 continue;
8033
8034 targ_essent_len = bpf_core_essential_name_len(targ_name);
8035 if (targ_essent_len != cands->name_len)
8036 continue;
8037
8038 /* most of the time there is only one candidate for a given kind+name pair */
8039 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8040 if (!new_cands) {
8041 bpf_free_cands(cands);
8042 return ERR_PTR(-ENOMEM);
8043 }
8044
8045 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8046 bpf_free_cands(cands);
8047 cands = new_cands;
8048 cands->cands[cands->cnt].btf = targ_btf;
8049 cands->cands[cands->cnt].id = i;
8050 cands->cnt++;
8051 }
8052 return cands;
8053}
8054
8055static struct bpf_cand_cache *
8056bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8057{
8058 struct bpf_cand_cache *cands, *cc, local_cand = {};
8059 const struct btf *local_btf = ctx->btf;
8060 const struct btf_type *local_type;
8061 const struct btf *main_btf;
8062 size_t local_essent_len;
8063 struct btf *mod_btf;
8064 const char *name;
8065 int id;
8066
8067 main_btf = bpf_get_btf_vmlinux();
8068 if (IS_ERR(main_btf))
f18a4997 8069 return ERR_CAST(main_btf);
7ada3787
KKD
8070 if (!main_btf)
8071 return ERR_PTR(-EINVAL);
1e89106d
AS
8072
8073 local_type = btf_type_by_id(local_btf, local_type_id);
8074 if (!local_type)
8075 return ERR_PTR(-EINVAL);
8076
8077 name = btf_name_by_offset(local_btf, local_type->name_off);
8078 if (str_is_empty(name))
8079 return ERR_PTR(-EINVAL);
8080 local_essent_len = bpf_core_essential_name_len(name);
8081
8082 cands = &local_cand;
8083 cands->name = name;
8084 cands->kind = btf_kind(local_type);
8085 cands->name_len = local_essent_len;
8086
8087 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8088 /* cands is a pointer to stack here */
8089 if (cc) {
8090 if (cc->cnt)
8091 return cc;
8092 goto check_modules;
8093 }
8094
8095 /* Attempt to find target candidates in vmlinux BTF first */
8096 cands = bpf_core_add_cands(cands, main_btf, 1);
8097 if (IS_ERR(cands))
f18a4997 8098 return ERR_CAST(cands);
1e89106d
AS
8099
8100 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8101
8102 /* populate cache even when cands->cnt == 0 */
8103 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8104 if (IS_ERR(cc))
f18a4997 8105 return ERR_CAST(cc);
1e89106d
AS
8106
8107 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8108 if (cc->cnt)
8109 return cc;
8110
8111check_modules:
8112 /* cands is a pointer to stack here and cands->cnt == 0 */
8113 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8114 if (cc)
8115 /* if cache has it return it even if cc->cnt == 0 */
8116 return cc;
8117
8118 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8119 spin_lock_bh(&btf_idr_lock);
8120 idr_for_each_entry(&btf_idr, mod_btf, id) {
8121 if (!btf_is_module(mod_btf))
8122 continue;
8123 /* linear search could be slow hence unlock/lock
8124 * the IDR to avoiding holding it for too long
8125 */
8126 btf_get(mod_btf);
8127 spin_unlock_bh(&btf_idr_lock);
8128 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8129 if (IS_ERR(cands)) {
8130 btf_put(mod_btf);
f18a4997 8131 return ERR_CAST(cands);
1e89106d
AS
8132 }
8133 spin_lock_bh(&btf_idr_lock);
8134 btf_put(mod_btf);
8135 }
8136 spin_unlock_bh(&btf_idr_lock);
8137 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8138 * or pointer to stack if cands->cnd == 0.
8139 * Copy it into the cache even when cands->cnt == 0 and
8140 * return the result.
8141 */
8142 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8143}
8144
fbd94c7a
AS
8145int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8146 int relo_idx, void *insn)
8147{
1e89106d
AS
8148 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8149 struct bpf_core_cand_list cands = {};
adb8fa19 8150 struct bpf_core_relo_res targ_res;
78c1f8d0 8151 struct bpf_core_spec *specs;
1e89106d
AS
8152 int err;
8153
78c1f8d0
AS
8154 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8155 * into arrays of btf_ids of struct fields and array indices.
8156 */
8157 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8158 if (!specs)
8159 return -ENOMEM;
8160
1e89106d
AS
8161 if (need_cands) {
8162 struct bpf_cand_cache *cc;
8163 int i;
8164
8165 mutex_lock(&cand_cache_mutex);
8166 cc = bpf_core_find_cands(ctx, relo->type_id);
8167 if (IS_ERR(cc)) {
8168 bpf_log(ctx->log, "target candidate search failed for %d\n",
8169 relo->type_id);
8170 err = PTR_ERR(cc);
8171 goto out;
8172 }
8173 if (cc->cnt) {
8174 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8175 if (!cands.cands) {
8176 err = -ENOMEM;
8177 goto out;
8178 }
8179 }
8180 for (i = 0; i < cc->cnt; i++) {
8181 bpf_log(ctx->log,
8182 "CO-RE relocating %s %s: found target candidate [%d]\n",
8183 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8184 cands.cands[i].btf = cc->cands[i].btf;
8185 cands.cands[i].id = cc->cands[i].id;
8186 }
8187 cands.len = cc->cnt;
8188 /* cand_cache_mutex needs to span the cache lookup and
8189 * copy of btf pointer into bpf_core_cand_list,
adb8fa19 8190 * since module can be unloaded while bpf_core_calc_relo_insn
1e89106d
AS
8191 * is working with module's btf.
8192 */
8193 }
8194
adb8fa19
MV
8195 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8196 &targ_res);
8197 if (err)
8198 goto out;
8199
8200 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8201 &targ_res);
8202
1e89106d 8203out:
78c1f8d0 8204 kfree(specs);
1e89106d
AS
8205 if (need_cands) {
8206 kfree(cands.cands);
8207 mutex_unlock(&cand_cache_mutex);
8208 if (ctx->log->level & BPF_LOG_LEVEL2)
8209 print_cand_cache(ctx->log);
8210 }
8211 return err;
fbd94c7a 8212}