Merge branch 'bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt'
[linux-block.git] / kernel / bpf / btf.c
CommitLineData
69b693f0
MKL
1/* SPDX-License-Identifier: GPL-2.0 */
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
91cc1a99
AS
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
69b693f0 7#include <uapi/linux/types.h>
b00b8dae 8#include <linux/seq_file.h>
69b693f0 9#include <linux/compiler.h>
2667a262 10#include <linux/ctype.h>
69b693f0
MKL
11#include <linux/errno.h>
12#include <linux/slab.h>
f56a653c
MKL
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
69b693f0
MKL
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
78958fca 17#include <linux/idr.h>
f80442a4 18#include <linux/sort.h>
69b693f0
MKL
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
49f4e672 21#include <linux/btf_ids.h>
91cc1a99
AS
22#include <linux/skmsg.h>
23#include <linux/perf_event.h>
eae2e83e 24#include <linux/bsearch.h>
36e68442
AN
25#include <linux/kobject.h>
26#include <linux/sysfs.h>
91cc1a99 27#include <net/sock.h>
69b693f0
MKL
28
29/* BTF (BPF Type Format) is the meta data format which describes
30 * the data types of BPF program/map. Hence, it basically focus
31 * on the C programming language which the modern BPF is primary
32 * using.
33 *
34 * ELF Section:
35 * ~~~~~~~~~~~
36 * The BTF data is stored under the ".BTF" ELF section
37 *
38 * struct btf_type:
39 * ~~~~~~~~~~~~~~~
40 * Each 'struct btf_type' object describes a C data type.
41 * Depending on the type it is describing, a 'struct btf_type'
42 * object may be followed by more data. F.e.
43 * To describe an array, 'struct btf_type' is followed by
44 * 'struct btf_array'.
45 *
46 * 'struct btf_type' and any extra data following it are
47 * 4 bytes aligned.
48 *
49 * Type section:
50 * ~~~~~~~~~~~~~
51 * The BTF type section contains a list of 'struct btf_type' objects.
52 * Each one describes a C type. Recall from the above section
53 * that a 'struct btf_type' object could be immediately followed by extra
8fb33b60 54 * data in order to describe some particular C types.
69b693f0
MKL
55 *
56 * type_id:
57 * ~~~~~~~
58 * Each btf_type object is identified by a type_id. The type_id
59 * is implicitly implied by the location of the btf_type object in
60 * the BTF type section. The first one has type_id 1. The second
61 * one has type_id 2...etc. Hence, an earlier btf_type has
62 * a smaller type_id.
63 *
64 * A btf_type object may refer to another btf_type object by using
65 * type_id (i.e. the "type" in the "struct btf_type").
66 *
67 * NOTE that we cannot assume any reference-order.
68 * A btf_type object can refer to an earlier btf_type object
69 * but it can also refer to a later btf_type object.
70 *
71 * For example, to describe "const void *". A btf_type
72 * object describing "const" may refer to another btf_type
73 * object describing "void *". This type-reference is done
74 * by specifying type_id:
75 *
76 * [1] CONST (anon) type_id=2
77 * [2] PTR (anon) type_id=0
78 *
79 * The above is the btf_verifier debug log:
80 * - Each line started with "[?]" is a btf_type object
81 * - [?] is the type_id of the btf_type object.
82 * - CONST/PTR is the BTF_KIND_XXX
83 * - "(anon)" is the name of the type. It just
84 * happens that CONST and PTR has no name.
85 * - type_id=XXX is the 'u32 type' in btf_type
86 *
87 * NOTE: "void" has type_id 0
88 *
89 * String section:
90 * ~~~~~~~~~~~~~~
91 * The BTF string section contains the names used by the type section.
92 * Each string is referred by an "offset" from the beginning of the
93 * string section.
94 *
95 * Each string is '\0' terminated.
96 *
97 * The first character in the string section must be '\0'
98 * which is used to mean 'anonymous'. Some btf_type may not
99 * have a name.
100 */
101
102/* BTF verification:
103 *
104 * To verify BTF data, two passes are needed.
105 *
106 * Pass #1
107 * ~~~~~~~
108 * The first pass is to collect all btf_type objects to
109 * an array: "btf->types".
110 *
111 * Depending on the C type that a btf_type is describing,
112 * a btf_type may be followed by extra data. We don't know
113 * how many btf_type is there, and more importantly we don't
114 * know where each btf_type is located in the type section.
115 *
116 * Without knowing the location of each type_id, most verifications
117 * cannot be done. e.g. an earlier btf_type may refer to a later
118 * btf_type (recall the "const void *" above), so we cannot
119 * check this type-reference in the first pass.
120 *
121 * In the first pass, it still does some verifications (e.g.
122 * checking the name is a valid offset to the string section).
eb3f595d
MKL
123 *
124 * Pass #2
125 * ~~~~~~~
126 * The main focus is to resolve a btf_type that is referring
127 * to another type.
128 *
129 * We have to ensure the referring type:
130 * 1) does exist in the BTF (i.e. in btf->types[])
131 * 2) does not cause a loop:
132 * struct A {
133 * struct B b;
134 * };
135 *
136 * struct B {
137 * struct A a;
138 * };
139 *
140 * btf_type_needs_resolve() decides if a btf_type needs
141 * to be resolved.
142 *
143 * The needs_resolve type implements the "resolve()" ops which
144 * essentially does a DFS and detects backedge.
145 *
146 * During resolve (or DFS), different C types have different
147 * "RESOLVED" conditions.
148 *
149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150 * members because a member is always referring to another
151 * type. A struct's member can be treated as "RESOLVED" if
152 * it is referring to a BTF_KIND_PTR. Otherwise, the
153 * following valid C struct would be rejected:
154 *
155 * struct A {
156 * int m;
157 * struct A *a;
158 * };
159 *
160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
162 * detect a pointer loop, e.g.:
163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164 * ^ |
165 * +-----------------------------------------+
166 *
69b693f0
MKL
167 */
168
b1e8818c 169#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
69b693f0
MKL
170#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173#define BITS_ROUNDUP_BYTES(bits) \
174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
b1828f0b 176#define BTF_INFO_MASK 0x9f00ffff
aea2f7b8
MKL
177#define BTF_INT_MASK 0x0fffffff
178#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
69b693f0
MKL
181/* 16MB for 64k structs and each has 16 members and
182 * a few MB spaces for the string section.
183 * The hard limit is S32_MAX.
184 */
185#define BTF_MAX_SIZE (16 * 1024 * 1024)
69b693f0 186
eb3f595d
MKL
187#define for_each_member_from(i, from, struct_type, member) \
188 for (i = from, member = btf_type_member(struct_type) + from; \
189 i < btf_type_vlen(struct_type); \
190 i++, member++)
191
1dc92851
DB
192#define for_each_vsi_from(i, from, struct_type, member) \
193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
194 i < btf_type_vlen(struct_type); \
195 i++, member++)
196
1b9ed84e
QM
197DEFINE_IDR(btf_idr);
198DEFINE_SPINLOCK(btf_idr_lock);
78958fca 199
69b693f0 200struct btf {
f80442a4 201 void *data;
69b693f0 202 struct btf_type **types;
eb3f595d
MKL
203 u32 *resolved_ids;
204 u32 *resolved_sizes;
69b693f0
MKL
205 const char *strings;
206 void *nohdr_data;
f80442a4 207 struct btf_header hdr;
951bb646 208 u32 nr_types; /* includes VOID for base BTF */
69b693f0
MKL
209 u32 types_size;
210 u32 data_size;
f56a653c 211 refcount_t refcnt;
78958fca
MKL
212 u32 id;
213 struct rcu_head rcu;
951bb646
AN
214
215 /* split BTF support */
216 struct btf *base_btf;
217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 u32 start_str_off; /* first string offset (0 for base BTF) */
53297220
AN
219 char name[MODULE_NAME_LEN];
220 bool kernel_btf;
69b693f0
MKL
221};
222
eb3f595d
MKL
223enum verifier_phase {
224 CHECK_META,
225 CHECK_TYPE,
226};
227
228struct resolve_vertex {
229 const struct btf_type *t;
230 u32 type_id;
231 u16 next_member;
232};
233
234enum visit_state {
235 NOT_VISITED,
236 VISITED,
237 RESOLVED,
238};
239
240enum resolve_mode {
241 RESOLVE_TBD, /* To Be Determined */
242 RESOLVE_PTR, /* Resolving for Pointer */
243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
244 * or array
245 */
246};
247
248#define MAX_RESOLVE_DEPTH 32
249
f80442a4
MKL
250struct btf_sec_info {
251 u32 off;
252 u32 len;
253};
254
69b693f0
MKL
255struct btf_verifier_env {
256 struct btf *btf;
eb3f595d
MKL
257 u8 *visit_states;
258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
69b693f0
MKL
259 struct bpf_verifier_log log;
260 u32 log_type_id;
eb3f595d
MKL
261 u32 top_stack;
262 enum verifier_phase phase;
263 enum resolve_mode resolve_mode;
69b693f0
MKL
264};
265
266static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 [BTF_KIND_UNKN] = "UNKNOWN",
268 [BTF_KIND_INT] = "INT",
269 [BTF_KIND_PTR] = "PTR",
270 [BTF_KIND_ARRAY] = "ARRAY",
271 [BTF_KIND_STRUCT] = "STRUCT",
272 [BTF_KIND_UNION] = "UNION",
273 [BTF_KIND_ENUM] = "ENUM",
274 [BTF_KIND_FWD] = "FWD",
275 [BTF_KIND_TYPEDEF] = "TYPEDEF",
276 [BTF_KIND_VOLATILE] = "VOLATILE",
277 [BTF_KIND_CONST] = "CONST",
278 [BTF_KIND_RESTRICT] = "RESTRICT",
2667a262
MKL
279 [BTF_KIND_FUNC] = "FUNC",
280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
1dc92851
DB
281 [BTF_KIND_VAR] = "VAR",
282 [BTF_KIND_DATASEC] = "DATASEC",
b1828f0b 283 [BTF_KIND_FLOAT] = "FLOAT",
69b693f0
MKL
284};
285
e6ac2450 286const char *btf_type_str(const struct btf_type *t)
be8704ff
AS
287{
288 return btf_kind_str[BTF_INFO_KIND(t->info)];
289}
290
31d0bc81
AM
291/* Chunk size we use in safe copy of data to be shown. */
292#define BTF_SHOW_OBJ_SAFE_SIZE 32
293
294/*
295 * This is the maximum size of a base type value (equivalent to a
296 * 128-bit int); if we are at the end of our safe buffer and have
297 * less than 16 bytes space we can't be assured of being able
298 * to copy the next type safely, so in such cases we will initiate
299 * a new copy.
300 */
301#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
302
303/* Type name size */
304#define BTF_SHOW_NAME_SIZE 80
305
306/*
307 * Common data to all BTF show operations. Private show functions can add
308 * their own data to a structure containing a struct btf_show and consult it
309 * in the show callback. See btf_type_show() below.
310 *
311 * One challenge with showing nested data is we want to skip 0-valued
312 * data, but in order to figure out whether a nested object is all zeros
313 * we need to walk through it. As a result, we need to make two passes
314 * when handling structs, unions and arrays; the first path simply looks
315 * for nonzero data, while the second actually does the display. The first
316 * pass is signalled by show->state.depth_check being set, and if we
317 * encounter a non-zero value we set show->state.depth_to_show to
318 * the depth at which we encountered it. When we have completed the
319 * first pass, we will know if anything needs to be displayed if
320 * depth_to_show > depth. See btf_[struct,array]_show() for the
321 * implementation of this.
322 *
323 * Another problem is we want to ensure the data for display is safe to
324 * access. To support this, the anonymous "struct {} obj" tracks the data
325 * object and our safe copy of it. We copy portions of the data needed
326 * to the object "copy" buffer, but because its size is limited to
327 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
328 * traverse larger objects for display.
329 *
330 * The various data type show functions all start with a call to
331 * btf_show_start_type() which returns a pointer to the safe copy
332 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
333 * raw data itself). btf_show_obj_safe() is responsible for
334 * using copy_from_kernel_nofault() to update the safe data if necessary
335 * as we traverse the object's data. skbuff-like semantics are
336 * used:
337 *
338 * - obj.head points to the start of the toplevel object for display
339 * - obj.size is the size of the toplevel object
340 * - obj.data points to the current point in the original data at
341 * which our safe data starts. obj.data will advance as we copy
342 * portions of the data.
343 *
344 * In most cases a single copy will suffice, but larger data structures
345 * such as "struct task_struct" will require many copies. The logic in
346 * btf_show_obj_safe() handles the logic that determines if a new
347 * copy_from_kernel_nofault() is needed.
348 */
349struct btf_show {
350 u64 flags;
351 void *target; /* target of show operation (seq file, buffer) */
352 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
353 const struct btf *btf;
354 /* below are used during iteration */
355 struct {
356 u8 depth;
357 u8 depth_to_show;
358 u8 depth_check;
359 u8 array_member:1,
360 array_terminated:1;
361 u16 array_encoding;
362 u32 type_id;
363 int status; /* non-zero for error */
364 const struct btf_type *type;
365 const struct btf_member *member;
366 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
367 } state;
368 struct {
369 u32 size;
370 void *head;
371 void *data;
372 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
373 } obj;
374};
375
69b693f0
MKL
376struct btf_kind_operations {
377 s32 (*check_meta)(struct btf_verifier_env *env,
378 const struct btf_type *t,
379 u32 meta_left);
eb3f595d
MKL
380 int (*resolve)(struct btf_verifier_env *env,
381 const struct resolve_vertex *v);
179cde8c
MKL
382 int (*check_member)(struct btf_verifier_env *env,
383 const struct btf_type *struct_type,
384 const struct btf_member *member,
385 const struct btf_type *member_type);
9d5f9f70
YS
386 int (*check_kflag_member)(struct btf_verifier_env *env,
387 const struct btf_type *struct_type,
388 const struct btf_member *member,
389 const struct btf_type *member_type);
69b693f0
MKL
390 void (*log_details)(struct btf_verifier_env *env,
391 const struct btf_type *t);
31d0bc81 392 void (*show)(const struct btf *btf, const struct btf_type *t,
b00b8dae 393 u32 type_id, void *data, u8 bits_offsets,
31d0bc81 394 struct btf_show *show);
69b693f0
MKL
395};
396
397static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
398static struct btf_type btf_void;
399
2667a262
MKL
400static int btf_resolve(struct btf_verifier_env *env,
401 const struct btf_type *t, u32 type_id);
402
eb3f595d
MKL
403static bool btf_type_is_modifier(const struct btf_type *t)
404{
405 /* Some of them is not strictly a C modifier
406 * but they are grouped into the same bucket
407 * for BTF concern:
408 * A type (t) that refers to another
409 * type through t->type AND its size cannot
410 * be determined without following the t->type.
411 *
412 * ptr does not fall into this bucket
413 * because its size is always sizeof(void *).
414 */
415 switch (BTF_INFO_KIND(t->info)) {
416 case BTF_KIND_TYPEDEF:
417 case BTF_KIND_VOLATILE:
418 case BTF_KIND_CONST:
419 case BTF_KIND_RESTRICT:
420 return true;
421 }
422
423 return false;
424}
425
2824ecb7 426bool btf_type_is_void(const struct btf_type *t)
eb3f595d 427{
b47a0bd2
MKL
428 return t == &btf_void;
429}
430
431static bool btf_type_is_fwd(const struct btf_type *t)
432{
433 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
434}
435
436static bool btf_type_nosize(const struct btf_type *t)
437{
2667a262
MKL
438 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
439 btf_type_is_func(t) || btf_type_is_func_proto(t);
eb3f595d
MKL
440}
441
b47a0bd2 442static bool btf_type_nosize_or_null(const struct btf_type *t)
eb3f595d 443{
b47a0bd2 444 return !t || btf_type_nosize(t);
eb3f595d
MKL
445}
446
d83525ca
AS
447static bool __btf_type_is_struct(const struct btf_type *t)
448{
449 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
450}
451
eb3f595d
MKL
452static bool btf_type_is_array(const struct btf_type *t)
453{
454 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
455}
456
1dc92851
DB
457static bool btf_type_is_datasec(const struct btf_type *t)
458{
459 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
460}
461
541c3bad 462u32 btf_nr_types(const struct btf *btf)
951bb646
AN
463{
464 u32 total = 0;
465
466 while (btf) {
467 total += btf->nr_types;
468 btf = btf->base_btf;
469 }
470
471 return total;
472}
473
27ae7997
MKL
474s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
475{
476 const struct btf_type *t;
477 const char *tname;
951bb646 478 u32 i, total;
27ae7997 479
541c3bad 480 total = btf_nr_types(btf);
951bb646
AN
481 for (i = 1; i < total; i++) {
482 t = btf_type_by_id(btf, i);
27ae7997
MKL
483 if (BTF_INFO_KIND(t->info) != kind)
484 continue;
485
486 tname = btf_name_by_offset(btf, t->name_off);
487 if (!strcmp(tname, name))
488 return i;
489 }
490
491 return -ENOENT;
492}
493
494const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
495 u32 id, u32 *res_id)
496{
497 const struct btf_type *t = btf_type_by_id(btf, id);
498
499 while (btf_type_is_modifier(t)) {
500 id = t->type;
501 t = btf_type_by_id(btf, t->type);
502 }
503
504 if (res_id)
505 *res_id = id;
506
507 return t;
508}
509
510const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
511 u32 id, u32 *res_id)
512{
513 const struct btf_type *t;
514
515 t = btf_type_skip_modifiers(btf, id, NULL);
516 if (!btf_type_is_ptr(t))
517 return NULL;
518
519 return btf_type_skip_modifiers(btf, t->type, res_id);
520}
521
522const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
523 u32 id, u32 *res_id)
524{
525 const struct btf_type *ptype;
526
527 ptype = btf_type_resolve_ptr(btf, id, res_id);
528 if (ptype && btf_type_is_func_proto(ptype))
529 return ptype;
530
531 return NULL;
532}
533
1dc92851
DB
534/* Types that act only as a source, not sink or intermediate
535 * type when resolving.
536 */
537static bool btf_type_is_resolve_source_only(const struct btf_type *t)
538{
539 return btf_type_is_var(t) ||
540 btf_type_is_datasec(t);
541}
542
eb3f595d
MKL
543/* What types need to be resolved?
544 *
545 * btf_type_is_modifier() is an obvious one.
546 *
547 * btf_type_is_struct() because its member refers to
548 * another type (through member->type).
1dc92851
DB
549 *
550 * btf_type_is_var() because the variable refers to
551 * another type. btf_type_is_datasec() holds multiple
552 * btf_type_is_var() types that need resolving.
553 *
eb3f595d
MKL
554 * btf_type_is_array() because its element (array->type)
555 * refers to another type. Array can be thought of a
556 * special case of struct while array just has the same
557 * member-type repeated by array->nelems of times.
558 */
559static bool btf_type_needs_resolve(const struct btf_type *t)
560{
561 return btf_type_is_modifier(t) ||
1dc92851
DB
562 btf_type_is_ptr(t) ||
563 btf_type_is_struct(t) ||
564 btf_type_is_array(t) ||
565 btf_type_is_var(t) ||
566 btf_type_is_datasec(t);
eb3f595d
MKL
567}
568
569/* t->size can be used */
570static bool btf_type_has_size(const struct btf_type *t)
571{
572 switch (BTF_INFO_KIND(t->info)) {
573 case BTF_KIND_INT:
574 case BTF_KIND_STRUCT:
575 case BTF_KIND_UNION:
576 case BTF_KIND_ENUM:
1dc92851 577 case BTF_KIND_DATASEC:
b1828f0b 578 case BTF_KIND_FLOAT:
eb3f595d
MKL
579 return true;
580 }
581
582 return false;
583}
584
69b693f0
MKL
585static const char *btf_int_encoding_str(u8 encoding)
586{
587 if (encoding == 0)
588 return "(none)";
589 else if (encoding == BTF_INT_SIGNED)
590 return "SIGNED";
591 else if (encoding == BTF_INT_CHAR)
592 return "CHAR";
593 else if (encoding == BTF_INT_BOOL)
594 return "BOOL";
69b693f0
MKL
595 else
596 return "UNKN";
597}
598
69b693f0
MKL
599static u32 btf_type_int(const struct btf_type *t)
600{
601 return *(u32 *)(t + 1);
602}
603
604static const struct btf_array *btf_type_array(const struct btf_type *t)
605{
606 return (const struct btf_array *)(t + 1);
607}
608
69b693f0
MKL
609static const struct btf_enum *btf_type_enum(const struct btf_type *t)
610{
611 return (const struct btf_enum *)(t + 1);
612}
613
1dc92851
DB
614static const struct btf_var *btf_type_var(const struct btf_type *t)
615{
616 return (const struct btf_var *)(t + 1);
617}
618
69b693f0
MKL
619static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
620{
621 return kind_ops[BTF_INFO_KIND(t->info)];
622}
623
583c5318 624static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
69b693f0 625{
951bb646
AN
626 if (!BTF_STR_OFFSET_VALID(offset))
627 return false;
628
629 while (offset < btf->start_str_off)
630 btf = btf->base_btf;
631
632 offset -= btf->start_str_off;
633 return offset < btf->hdr.str_len;
69b693f0
MKL
634}
635
1dc92851
DB
636static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
637{
638 if ((first ? !isalpha(c) :
639 !isalnum(c)) &&
640 c != '_' &&
641 ((c == '.' && !dot_ok) ||
642 c != '.'))
643 return false;
644 return true;
645}
646
951bb646
AN
647static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
648{
649 while (offset < btf->start_str_off)
650 btf = btf->base_btf;
651
652 offset -= btf->start_str_off;
653 if (offset < btf->hdr.str_len)
654 return &btf->strings[offset];
655
656 return NULL;
657}
658
1dc92851 659static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
2667a262
MKL
660{
661 /* offset must be valid */
951bb646 662 const char *src = btf_str_by_offset(btf, offset);
2667a262
MKL
663 const char *src_limit;
664
1dc92851 665 if (!__btf_name_char_ok(*src, true, dot_ok))
2667a262
MKL
666 return false;
667
668 /* set a limit on identifier length */
669 src_limit = src + KSYM_NAME_LEN;
670 src++;
671 while (*src && src < src_limit) {
1dc92851 672 if (!__btf_name_char_ok(*src, false, dot_ok))
2667a262
MKL
673 return false;
674 src++;
675 }
676
677 return !*src;
678}
679
1dc92851
DB
680/* Only C-style identifier is permitted. This can be relaxed if
681 * necessary.
682 */
683static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
684{
685 return __btf_name_valid(btf, offset, false);
686}
687
688static bool btf_name_valid_section(const struct btf *btf, u32 offset)
689{
690 return __btf_name_valid(btf, offset, true);
691}
692
23127b33 693static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
69b693f0 694{
951bb646
AN
695 const char *name;
696
aea2f7b8 697 if (!offset)
69b693f0 698 return "(anon)";
951bb646
AN
699
700 name = btf_str_by_offset(btf, offset);
701 return name ?: "(invalid-name-offset)";
69b693f0
MKL
702}
703
23127b33
MKL
704const char *btf_name_by_offset(const struct btf *btf, u32 offset)
705{
951bb646 706 return btf_str_by_offset(btf, offset);
23127b33
MKL
707}
708
838e9690 709const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
eb3f595d 710{
951bb646
AN
711 while (type_id < btf->start_id)
712 btf = btf->base_btf;
eb3f595d 713
951bb646
AN
714 type_id -= btf->start_id;
715 if (type_id >= btf->nr_types)
716 return NULL;
eb3f595d
MKL
717 return btf->types[type_id];
718}
719
4ef5f574
MKL
720/*
721 * Regular int is not a bit field and it must be either
b1e8818c 722 * u8/u16/u32/u64 or __int128.
4ef5f574
MKL
723 */
724static bool btf_type_int_is_regular(const struct btf_type *t)
725{
36fc3c8c 726 u8 nr_bits, nr_bytes;
4ef5f574
MKL
727 u32 int_data;
728
729 int_data = btf_type_int(t);
730 nr_bits = BTF_INT_BITS(int_data);
731 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
732 if (BITS_PER_BYTE_MASKED(nr_bits) ||
733 BTF_INT_OFFSET(int_data) ||
734 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
b1e8818c
YS
735 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
736 nr_bytes != (2 * sizeof(u64)))) {
4ef5f574
MKL
737 return false;
738 }
739
740 return true;
741}
742
9a1126b6 743/*
ffa0c1cf
YS
744 * Check that given struct member is a regular int with expected
745 * offset and size.
9a1126b6 746 */
ffa0c1cf
YS
747bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
748 const struct btf_member *m,
749 u32 expected_offset, u32 expected_size)
9a1126b6 750{
ffa0c1cf
YS
751 const struct btf_type *t;
752 u32 id, int_data;
753 u8 nr_bits;
9a1126b6 754
ffa0c1cf
YS
755 id = m->type;
756 t = btf_type_id_size(btf, &id, NULL);
757 if (!t || !btf_type_is_int(t))
9a1126b6
RG
758 return false;
759
760 int_data = btf_type_int(t);
761 nr_bits = BTF_INT_BITS(int_data);
ffa0c1cf
YS
762 if (btf_type_kflag(s)) {
763 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
764 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
765
766 /* if kflag set, int should be a regular int and
767 * bit offset should be at byte boundary.
768 */
769 return !bitfield_size &&
770 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
771 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
772 }
773
774 if (BTF_INT_OFFSET(int_data) ||
775 BITS_PER_BYTE_MASKED(m->offset) ||
776 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
777 BITS_PER_BYTE_MASKED(nr_bits) ||
778 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
9a1126b6
RG
779 return false;
780
781 return true;
782}
783
31d0bc81
AM
784/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
785static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
786 u32 id)
787{
788 const struct btf_type *t = btf_type_by_id(btf, id);
789
790 while (btf_type_is_modifier(t) &&
791 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
31d0bc81
AM
792 t = btf_type_by_id(btf, t->type);
793 }
794
795 return t;
796}
797
798#define BTF_SHOW_MAX_ITER 10
799
800#define BTF_KIND_BIT(kind) (1ULL << kind)
801
802/*
803 * Populate show->state.name with type name information.
804 * Format of type name is
805 *
806 * [.member_name = ] (type_name)
807 */
808static const char *btf_show_name(struct btf_show *show)
809{
810 /* BTF_MAX_ITER array suffixes "[]" */
811 const char *array_suffixes = "[][][][][][][][][][]";
812 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
813 /* BTF_MAX_ITER pointer suffixes "*" */
814 const char *ptr_suffixes = "**********";
815 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
816 const char *name = NULL, *prefix = "", *parens = "";
817 const struct btf_member *m = show->state.member;
818 const struct btf_type *t = show->state.type;
819 const struct btf_array *array;
820 u32 id = show->state.type_id;
821 const char *member = NULL;
822 bool show_member = false;
823 u64 kinds = 0;
824 int i;
825
826 show->state.name[0] = '\0';
827
828 /*
829 * Don't show type name if we're showing an array member;
830 * in that case we show the array type so don't need to repeat
831 * ourselves for each member.
832 */
833 if (show->state.array_member)
834 return "";
835
836 /* Retrieve member name, if any. */
837 if (m) {
838 member = btf_name_by_offset(show->btf, m->name_off);
839 show_member = strlen(member) > 0;
840 id = m->type;
841 }
842
843 /*
844 * Start with type_id, as we have resolved the struct btf_type *
845 * via btf_modifier_show() past the parent typedef to the child
846 * struct, int etc it is defined as. In such cases, the type_id
847 * still represents the starting type while the struct btf_type *
848 * in our show->state points at the resolved type of the typedef.
849 */
850 t = btf_type_by_id(show->btf, id);
851 if (!t)
852 return "";
853
854 /*
855 * The goal here is to build up the right number of pointer and
856 * array suffixes while ensuring the type name for a typedef
857 * is represented. Along the way we accumulate a list of
858 * BTF kinds we have encountered, since these will inform later
859 * display; for example, pointer types will not require an
860 * opening "{" for struct, we will just display the pointer value.
861 *
862 * We also want to accumulate the right number of pointer or array
863 * indices in the format string while iterating until we get to
864 * the typedef/pointee/array member target type.
865 *
866 * We start by pointing at the end of pointer and array suffix
867 * strings; as we accumulate pointers and arrays we move the pointer
868 * or array string backwards so it will show the expected number of
869 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
870 * and/or arrays and typedefs are supported as a precaution.
871 *
872 * We also want to get typedef name while proceeding to resolve
873 * type it points to so that we can add parentheses if it is a
874 * "typedef struct" etc.
875 */
876 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
877
878 switch (BTF_INFO_KIND(t->info)) {
879 case BTF_KIND_TYPEDEF:
880 if (!name)
881 name = btf_name_by_offset(show->btf,
882 t->name_off);
883 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
884 id = t->type;
885 break;
886 case BTF_KIND_ARRAY:
887 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
888 parens = "[";
889 if (!t)
890 return "";
891 array = btf_type_array(t);
892 if (array_suffix > array_suffixes)
893 array_suffix -= 2;
894 id = array->type;
895 break;
896 case BTF_KIND_PTR:
897 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
898 if (ptr_suffix > ptr_suffixes)
899 ptr_suffix -= 1;
900 id = t->type;
901 break;
902 default:
903 id = 0;
904 break;
905 }
906 if (!id)
907 break;
908 t = btf_type_skip_qualifiers(show->btf, id);
909 }
910 /* We may not be able to represent this type; bail to be safe */
911 if (i == BTF_SHOW_MAX_ITER)
912 return "";
913
914 if (!name)
915 name = btf_name_by_offset(show->btf, t->name_off);
916
917 switch (BTF_INFO_KIND(t->info)) {
918 case BTF_KIND_STRUCT:
919 case BTF_KIND_UNION:
920 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
921 "struct" : "union";
922 /* if it's an array of struct/union, parens is already set */
923 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
924 parens = "{";
925 break;
926 case BTF_KIND_ENUM:
927 prefix = "enum";
928 break;
929 default:
930 break;
931 }
932
933 /* pointer does not require parens */
934 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
935 parens = "";
936 /* typedef does not require struct/union/enum prefix */
937 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
938 prefix = "";
939
940 if (!name)
941 name = "";
942
943 /* Even if we don't want type name info, we want parentheses etc */
944 if (show->flags & BTF_SHOW_NONAME)
945 snprintf(show->state.name, sizeof(show->state.name), "%s",
946 parens);
947 else
948 snprintf(show->state.name, sizeof(show->state.name),
949 "%s%s%s(%s%s%s%s%s%s)%s",
950 /* first 3 strings comprise ".member = " */
951 show_member ? "." : "",
952 show_member ? member : "",
953 show_member ? " = " : "",
954 /* ...next is our prefix (struct, enum, etc) */
955 prefix,
956 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
957 /* ...this is the type name itself */
958 name,
959 /* ...suffixed by the appropriate '*', '[]' suffixes */
960 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
961 array_suffix, parens);
962
963 return show->state.name;
964}
965
966static const char *__btf_show_indent(struct btf_show *show)
967{
968 const char *indents = " ";
969 const char *indent = &indents[strlen(indents)];
970
971 if ((indent - show->state.depth) >= indents)
972 return indent - show->state.depth;
973 return indents;
974}
975
976static const char *btf_show_indent(struct btf_show *show)
977{
978 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
979}
980
981static const char *btf_show_newline(struct btf_show *show)
982{
983 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
984}
985
986static const char *btf_show_delim(struct btf_show *show)
987{
988 if (show->state.depth == 0)
989 return "";
990
991 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
992 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
993 return "|";
994
995 return ",";
996}
997
998__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
999{
1000 va_list args;
1001
1002 if (!show->state.depth_check) {
1003 va_start(args, fmt);
1004 show->showfn(show, fmt, args);
1005 va_end(args);
1006 }
1007}
1008
1009/* Macros are used here as btf_show_type_value[s]() prepends and appends
1010 * format specifiers to the format specifier passed in; these do the work of
1011 * adding indentation, delimiters etc while the caller simply has to specify
1012 * the type value(s) in the format specifier + value(s).
1013 */
1014#define btf_show_type_value(show, fmt, value) \
1015 do { \
1016 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1017 show->state.depth == 0) { \
1018 btf_show(show, "%s%s" fmt "%s%s", \
1019 btf_show_indent(show), \
1020 btf_show_name(show), \
1021 value, btf_show_delim(show), \
1022 btf_show_newline(show)); \
1023 if (show->state.depth > show->state.depth_to_show) \
1024 show->state.depth_to_show = show->state.depth; \
1025 } \
1026 } while (0)
1027
1028#define btf_show_type_values(show, fmt, ...) \
1029 do { \
1030 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1031 btf_show_name(show), \
1032 __VA_ARGS__, btf_show_delim(show), \
1033 btf_show_newline(show)); \
1034 if (show->state.depth > show->state.depth_to_show) \
1035 show->state.depth_to_show = show->state.depth; \
1036 } while (0)
1037
1038/* How much is left to copy to safe buffer after @data? */
1039static int btf_show_obj_size_left(struct btf_show *show, void *data)
1040{
1041 return show->obj.head + show->obj.size - data;
1042}
1043
1044/* Is object pointed to by @data of @size already copied to our safe buffer? */
1045static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1046{
1047 return data >= show->obj.data &&
1048 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1049}
1050
1051/*
1052 * If object pointed to by @data of @size falls within our safe buffer, return
1053 * the equivalent pointer to the same safe data. Assumes
1054 * copy_from_kernel_nofault() has already happened and our safe buffer is
1055 * populated.
1056 */
1057static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1058{
1059 if (btf_show_obj_is_safe(show, data, size))
1060 return show->obj.safe + (data - show->obj.data);
1061 return NULL;
1062}
1063
1064/*
1065 * Return a safe-to-access version of data pointed to by @data.
1066 * We do this by copying the relevant amount of information
1067 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1068 *
1069 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1070 * safe copy is needed.
1071 *
1072 * Otherwise we need to determine if we have the required amount
1073 * of data (determined by the @data pointer and the size of the
1074 * largest base type we can encounter (represented by
1075 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1076 * that we will be able to print some of the current object,
1077 * and if more is needed a copy will be triggered.
1078 * Some objects such as structs will not fit into the buffer;
1079 * in such cases additional copies when we iterate over their
1080 * members may be needed.
1081 *
1082 * btf_show_obj_safe() is used to return a safe buffer for
1083 * btf_show_start_type(); this ensures that as we recurse into
1084 * nested types we always have safe data for the given type.
1085 * This approach is somewhat wasteful; it's possible for example
1086 * that when iterating over a large union we'll end up copying the
1087 * same data repeatedly, but the goal is safety not performance.
1088 * We use stack data as opposed to per-CPU buffers because the
1089 * iteration over a type can take some time, and preemption handling
1090 * would greatly complicate use of the safe buffer.
1091 */
1092static void *btf_show_obj_safe(struct btf_show *show,
1093 const struct btf_type *t,
1094 void *data)
1095{
1096 const struct btf_type *rt;
1097 int size_left, size;
1098 void *safe = NULL;
1099
1100 if (show->flags & BTF_SHOW_UNSAFE)
1101 return data;
1102
1103 rt = btf_resolve_size(show->btf, t, &size);
1104 if (IS_ERR(rt)) {
1105 show->state.status = PTR_ERR(rt);
1106 return NULL;
1107 }
1108
1109 /*
1110 * Is this toplevel object? If so, set total object size and
1111 * initialize pointers. Otherwise check if we still fall within
1112 * our safe object data.
1113 */
1114 if (show->state.depth == 0) {
1115 show->obj.size = size;
1116 show->obj.head = data;
1117 } else {
1118 /*
1119 * If the size of the current object is > our remaining
1120 * safe buffer we _may_ need to do a new copy. However
1121 * consider the case of a nested struct; it's size pushes
1122 * us over the safe buffer limit, but showing any individual
1123 * struct members does not. In such cases, we don't need
1124 * to initiate a fresh copy yet; however we definitely need
1125 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1126 * in our buffer, regardless of the current object size.
1127 * The logic here is that as we resolve types we will
1128 * hit a base type at some point, and we need to be sure
1129 * the next chunk of data is safely available to display
1130 * that type info safely. We cannot rely on the size of
1131 * the current object here because it may be much larger
1132 * than our current buffer (e.g. task_struct is 8k).
1133 * All we want to do here is ensure that we can print the
1134 * next basic type, which we can if either
1135 * - the current type size is within the safe buffer; or
1136 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1137 * the safe buffer.
1138 */
1139 safe = __btf_show_obj_safe(show, data,
1140 min(size,
1141 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1142 }
1143
1144 /*
1145 * We need a new copy to our safe object, either because we haven't
8fb33b60 1146 * yet copied and are initializing safe data, or because the data
31d0bc81
AM
1147 * we want falls outside the boundaries of the safe object.
1148 */
1149 if (!safe) {
1150 size_left = btf_show_obj_size_left(show, data);
1151 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1152 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1153 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1154 data, size_left);
1155 if (!show->state.status) {
1156 show->obj.data = data;
1157 safe = show->obj.safe;
1158 }
1159 }
1160
1161 return safe;
1162}
1163
1164/*
1165 * Set the type we are starting to show and return a safe data pointer
1166 * to be used for showing the associated data.
1167 */
1168static void *btf_show_start_type(struct btf_show *show,
1169 const struct btf_type *t,
1170 u32 type_id, void *data)
1171{
1172 show->state.type = t;
1173 show->state.type_id = type_id;
1174 show->state.name[0] = '\0';
1175
1176 return btf_show_obj_safe(show, t, data);
1177}
1178
1179static void btf_show_end_type(struct btf_show *show)
1180{
1181 show->state.type = NULL;
1182 show->state.type_id = 0;
1183 show->state.name[0] = '\0';
1184}
1185
1186static void *btf_show_start_aggr_type(struct btf_show *show,
1187 const struct btf_type *t,
1188 u32 type_id, void *data)
1189{
1190 void *safe_data = btf_show_start_type(show, t, type_id, data);
1191
1192 if (!safe_data)
1193 return safe_data;
1194
1195 btf_show(show, "%s%s%s", btf_show_indent(show),
1196 btf_show_name(show),
1197 btf_show_newline(show));
1198 show->state.depth++;
1199 return safe_data;
1200}
1201
1202static void btf_show_end_aggr_type(struct btf_show *show,
1203 const char *suffix)
1204{
1205 show->state.depth--;
1206 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1207 btf_show_delim(show), btf_show_newline(show));
1208 btf_show_end_type(show);
1209}
1210
1211static void btf_show_start_member(struct btf_show *show,
1212 const struct btf_member *m)
1213{
1214 show->state.member = m;
1215}
1216
1217static void btf_show_start_array_member(struct btf_show *show)
1218{
1219 show->state.array_member = 1;
1220 btf_show_start_member(show, NULL);
1221}
1222
1223static void btf_show_end_member(struct btf_show *show)
1224{
1225 show->state.member = NULL;
1226}
1227
1228static void btf_show_end_array_member(struct btf_show *show)
1229{
1230 show->state.array_member = 0;
1231 btf_show_end_member(show);
1232}
1233
1234static void *btf_show_start_array_type(struct btf_show *show,
1235 const struct btf_type *t,
1236 u32 type_id,
1237 u16 array_encoding,
1238 void *data)
1239{
1240 show->state.array_encoding = array_encoding;
1241 show->state.array_terminated = 0;
1242 return btf_show_start_aggr_type(show, t, type_id, data);
1243}
1244
1245static void btf_show_end_array_type(struct btf_show *show)
1246{
1247 show->state.array_encoding = 0;
1248 show->state.array_terminated = 0;
1249 btf_show_end_aggr_type(show, "]");
1250}
1251
1252static void *btf_show_start_struct_type(struct btf_show *show,
1253 const struct btf_type *t,
1254 u32 type_id,
1255 void *data)
1256{
1257 return btf_show_start_aggr_type(show, t, type_id, data);
1258}
1259
1260static void btf_show_end_struct_type(struct btf_show *show)
1261{
1262 btf_show_end_aggr_type(show, "}");
1263}
1264
69b693f0
MKL
1265__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1266 const char *fmt, ...)
1267{
1268 va_list args;
1269
1270 va_start(args, fmt);
1271 bpf_verifier_vlog(log, fmt, args);
1272 va_end(args);
1273}
1274
1275__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1276 const char *fmt, ...)
1277{
1278 struct bpf_verifier_log *log = &env->log;
1279 va_list args;
1280
1281 if (!bpf_verifier_log_needed(log))
1282 return;
1283
1284 va_start(args, fmt);
1285 bpf_verifier_vlog(log, fmt, args);
1286 va_end(args);
1287}
1288
1289__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1290 const struct btf_type *t,
1291 bool log_details,
1292 const char *fmt, ...)
1293{
1294 struct bpf_verifier_log *log = &env->log;
1295 u8 kind = BTF_INFO_KIND(t->info);
1296 struct btf *btf = env->btf;
1297 va_list args;
1298
1299 if (!bpf_verifier_log_needed(log))
1300 return;
1301
8580ac94
AS
1302 /* btf verifier prints all types it is processing via
1303 * btf_verifier_log_type(..., fmt = NULL).
1304 * Skip those prints for in-kernel BTF verification.
1305 */
1306 if (log->level == BPF_LOG_KERNEL && !fmt)
1307 return;
1308
69b693f0
MKL
1309 __btf_verifier_log(log, "[%u] %s %s%s",
1310 env->log_type_id,
1311 btf_kind_str[kind],
23127b33 1312 __btf_name_by_offset(btf, t->name_off),
69b693f0
MKL
1313 log_details ? " " : "");
1314
1315 if (log_details)
1316 btf_type_ops(t)->log_details(env, t);
1317
1318 if (fmt && *fmt) {
1319 __btf_verifier_log(log, " ");
1320 va_start(args, fmt);
1321 bpf_verifier_vlog(log, fmt, args);
1322 va_end(args);
1323 }
1324
1325 __btf_verifier_log(log, "\n");
1326}
1327
1328#define btf_verifier_log_type(env, t, ...) \
1329 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1330#define btf_verifier_log_basic(env, t, ...) \
1331 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1332
1333__printf(4, 5)
1334static void btf_verifier_log_member(struct btf_verifier_env *env,
1335 const struct btf_type *struct_type,
1336 const struct btf_member *member,
1337 const char *fmt, ...)
1338{
1339 struct bpf_verifier_log *log = &env->log;
1340 struct btf *btf = env->btf;
1341 va_list args;
1342
1343 if (!bpf_verifier_log_needed(log))
1344 return;
1345
8580ac94
AS
1346 if (log->level == BPF_LOG_KERNEL && !fmt)
1347 return;
eb3f595d
MKL
1348 /* The CHECK_META phase already did a btf dump.
1349 *
1350 * If member is logged again, it must hit an error in
1351 * parsing this member. It is useful to print out which
1352 * struct this member belongs to.
1353 */
1354 if (env->phase != CHECK_META)
1355 btf_verifier_log_type(env, struct_type, NULL);
1356
9d5f9f70
YS
1357 if (btf_type_kflag(struct_type))
1358 __btf_verifier_log(log,
1359 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1360 __btf_name_by_offset(btf, member->name_off),
1361 member->type,
1362 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1363 BTF_MEMBER_BIT_OFFSET(member->offset));
1364 else
1365 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1366 __btf_name_by_offset(btf, member->name_off),
1367 member->type, member->offset);
69b693f0
MKL
1368
1369 if (fmt && *fmt) {
1370 __btf_verifier_log(log, " ");
1371 va_start(args, fmt);
1372 bpf_verifier_vlog(log, fmt, args);
1373 va_end(args);
1374 }
1375
1376 __btf_verifier_log(log, "\n");
1377}
1378
1dc92851
DB
1379__printf(4, 5)
1380static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1381 const struct btf_type *datasec_type,
1382 const struct btf_var_secinfo *vsi,
1383 const char *fmt, ...)
1384{
1385 struct bpf_verifier_log *log = &env->log;
1386 va_list args;
1387
1388 if (!bpf_verifier_log_needed(log))
1389 return;
8580ac94
AS
1390 if (log->level == BPF_LOG_KERNEL && !fmt)
1391 return;
1dc92851
DB
1392 if (env->phase != CHECK_META)
1393 btf_verifier_log_type(env, datasec_type, NULL);
1394
1395 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1396 vsi->type, vsi->offset, vsi->size);
1397 if (fmt && *fmt) {
1398 __btf_verifier_log(log, " ");
1399 va_start(args, fmt);
1400 bpf_verifier_vlog(log, fmt, args);
1401 va_end(args);
1402 }
1403
1404 __btf_verifier_log(log, "\n");
1405}
1406
f80442a4
MKL
1407static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1408 u32 btf_data_size)
69b693f0
MKL
1409{
1410 struct bpf_verifier_log *log = &env->log;
1411 const struct btf *btf = env->btf;
1412 const struct btf_header *hdr;
1413
1414 if (!bpf_verifier_log_needed(log))
1415 return;
1416
8580ac94
AS
1417 if (log->level == BPF_LOG_KERNEL)
1418 return;
f80442a4 1419 hdr = &btf->hdr;
69b693f0
MKL
1420 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1421 __btf_verifier_log(log, "version: %u\n", hdr->version);
1422 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
f80442a4 1423 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
69b693f0 1424 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
f80442a4 1425 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
69b693f0
MKL
1426 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1427 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
f80442a4 1428 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
69b693f0
MKL
1429}
1430
1431static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1432{
1433 struct btf *btf = env->btf;
1434
951bb646 1435 if (btf->types_size == btf->nr_types) {
69b693f0
MKL
1436 /* Expand 'types' array */
1437
1438 struct btf_type **new_types;
1439 u32 expand_by, new_size;
1440
951bb646 1441 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
69b693f0
MKL
1442 btf_verifier_log(env, "Exceeded max num of types");
1443 return -E2BIG;
1444 }
1445
1446 expand_by = max_t(u32, btf->types_size >> 2, 16);
aea2f7b8 1447 new_size = min_t(u32, BTF_MAX_TYPE,
69b693f0
MKL
1448 btf->types_size + expand_by);
1449
778e1cdd 1450 new_types = kvcalloc(new_size, sizeof(*new_types),
69b693f0
MKL
1451 GFP_KERNEL | __GFP_NOWARN);
1452 if (!new_types)
1453 return -ENOMEM;
1454
951bb646
AN
1455 if (btf->nr_types == 0) {
1456 if (!btf->base_btf) {
1457 /* lazily init VOID type */
1458 new_types[0] = &btf_void;
1459 btf->nr_types++;
1460 }
1461 } else {
69b693f0 1462 memcpy(new_types, btf->types,
951bb646
AN
1463 sizeof(*btf->types) * btf->nr_types);
1464 }
69b693f0
MKL
1465
1466 kvfree(btf->types);
1467 btf->types = new_types;
1468 btf->types_size = new_size;
1469 }
1470
951bb646 1471 btf->types[btf->nr_types++] = t;
69b693f0
MKL
1472
1473 return 0;
1474}
1475
78958fca
MKL
1476static int btf_alloc_id(struct btf *btf)
1477{
1478 int id;
1479
1480 idr_preload(GFP_KERNEL);
1481 spin_lock_bh(&btf_idr_lock);
1482 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1483 if (id > 0)
1484 btf->id = id;
1485 spin_unlock_bh(&btf_idr_lock);
1486 idr_preload_end();
1487
1488 if (WARN_ON_ONCE(!id))
1489 return -ENOSPC;
1490
1491 return id > 0 ? 0 : id;
1492}
1493
1494static void btf_free_id(struct btf *btf)
1495{
1496 unsigned long flags;
1497
1498 /*
1499 * In map-in-map, calling map_delete_elem() on outer
1500 * map will call bpf_map_put on the inner map.
1501 * It will then eventually call btf_free_id()
1502 * on the inner map. Some of the map_delete_elem()
1503 * implementation may have irq disabled, so
1504 * we need to use the _irqsave() version instead
1505 * of the _bh() version.
1506 */
1507 spin_lock_irqsave(&btf_idr_lock, flags);
1508 idr_remove(&btf_idr, btf->id);
1509 spin_unlock_irqrestore(&btf_idr_lock, flags);
1510}
1511
69b693f0
MKL
1512static void btf_free(struct btf *btf)
1513{
1514 kvfree(btf->types);
eb3f595d
MKL
1515 kvfree(btf->resolved_sizes);
1516 kvfree(btf->resolved_ids);
69b693f0
MKL
1517 kvfree(btf->data);
1518 kfree(btf);
1519}
1520
78958fca 1521static void btf_free_rcu(struct rcu_head *rcu)
f56a653c 1522{
78958fca
MKL
1523 struct btf *btf = container_of(rcu, struct btf, rcu);
1524
1525 btf_free(btf);
f56a653c
MKL
1526}
1527
22dc4a0f
AN
1528void btf_get(struct btf *btf)
1529{
1530 refcount_inc(&btf->refcnt);
1531}
1532
f56a653c
MKL
1533void btf_put(struct btf *btf)
1534{
78958fca
MKL
1535 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1536 btf_free_id(btf);
1537 call_rcu(&btf->rcu, btf_free_rcu);
1538 }
f56a653c
MKL
1539}
1540
eb3f595d
MKL
1541static int env_resolve_init(struct btf_verifier_env *env)
1542{
1543 struct btf *btf = env->btf;
1544 u32 nr_types = btf->nr_types;
1545 u32 *resolved_sizes = NULL;
1546 u32 *resolved_ids = NULL;
1547 u8 *visit_states = NULL;
1548
951bb646 1549 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
eb3f595d
MKL
1550 GFP_KERNEL | __GFP_NOWARN);
1551 if (!resolved_sizes)
1552 goto nomem;
1553
951bb646 1554 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
eb3f595d
MKL
1555 GFP_KERNEL | __GFP_NOWARN);
1556 if (!resolved_ids)
1557 goto nomem;
1558
951bb646 1559 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
eb3f595d
MKL
1560 GFP_KERNEL | __GFP_NOWARN);
1561 if (!visit_states)
1562 goto nomem;
1563
1564 btf->resolved_sizes = resolved_sizes;
1565 btf->resolved_ids = resolved_ids;
1566 env->visit_states = visit_states;
1567
1568 return 0;
1569
1570nomem:
1571 kvfree(resolved_sizes);
1572 kvfree(resolved_ids);
1573 kvfree(visit_states);
1574 return -ENOMEM;
1575}
1576
69b693f0
MKL
1577static void btf_verifier_env_free(struct btf_verifier_env *env)
1578{
eb3f595d 1579 kvfree(env->visit_states);
69b693f0
MKL
1580 kfree(env);
1581}
1582
eb3f595d
MKL
1583static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1584 const struct btf_type *next_type)
1585{
1586 switch (env->resolve_mode) {
1587 case RESOLVE_TBD:
1588 /* int, enum or void is a sink */
1589 return !btf_type_needs_resolve(next_type);
1590 case RESOLVE_PTR:
2667a262
MKL
1591 /* int, enum, void, struct, array, func or func_proto is a sink
1592 * for ptr
1593 */
eb3f595d
MKL
1594 return !btf_type_is_modifier(next_type) &&
1595 !btf_type_is_ptr(next_type);
1596 case RESOLVE_STRUCT_OR_ARRAY:
2667a262
MKL
1597 /* int, enum, void, ptr, func or func_proto is a sink
1598 * for struct and array
1599 */
eb3f595d
MKL
1600 return !btf_type_is_modifier(next_type) &&
1601 !btf_type_is_array(next_type) &&
1602 !btf_type_is_struct(next_type);
1603 default:
53c8036c 1604 BUG();
eb3f595d
MKL
1605 }
1606}
1607
1608static bool env_type_is_resolved(const struct btf_verifier_env *env,
1609 u32 type_id)
1610{
951bb646
AN
1611 /* base BTF types should be resolved by now */
1612 if (type_id < env->btf->start_id)
1613 return true;
1614
1615 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
eb3f595d
MKL
1616}
1617
1618static int env_stack_push(struct btf_verifier_env *env,
1619 const struct btf_type *t, u32 type_id)
1620{
951bb646 1621 const struct btf *btf = env->btf;
eb3f595d
MKL
1622 struct resolve_vertex *v;
1623
1624 if (env->top_stack == MAX_RESOLVE_DEPTH)
1625 return -E2BIG;
1626
951bb646
AN
1627 if (type_id < btf->start_id
1628 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
eb3f595d
MKL
1629 return -EEXIST;
1630
951bb646 1631 env->visit_states[type_id - btf->start_id] = VISITED;
eb3f595d
MKL
1632
1633 v = &env->stack[env->top_stack++];
1634 v->t = t;
1635 v->type_id = type_id;
1636 v->next_member = 0;
1637
1638 if (env->resolve_mode == RESOLVE_TBD) {
1639 if (btf_type_is_ptr(t))
1640 env->resolve_mode = RESOLVE_PTR;
1641 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1642 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1643 }
1644
1645 return 0;
1646}
1647
1648static void env_stack_set_next_member(struct btf_verifier_env *env,
1649 u16 next_member)
1650{
1651 env->stack[env->top_stack - 1].next_member = next_member;
1652}
1653
1654static void env_stack_pop_resolved(struct btf_verifier_env *env,
1655 u32 resolved_type_id,
1656 u32 resolved_size)
1657{
1658 u32 type_id = env->stack[--(env->top_stack)].type_id;
1659 struct btf *btf = env->btf;
1660
951bb646 1661 type_id -= btf->start_id; /* adjust to local type id */
eb3f595d
MKL
1662 btf->resolved_sizes[type_id] = resolved_size;
1663 btf->resolved_ids[type_id] = resolved_type_id;
1664 env->visit_states[type_id] = RESOLVED;
1665}
1666
1667static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1668{
1669 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1670}
1671
7e3617a7
MKL
1672/* Resolve the size of a passed-in "type"
1673 *
1674 * type: is an array (e.g. u32 array[x][y])
1675 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1676 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1677 * corresponds to the return type.
1678 * *elem_type: u32
69ff3047 1679 * *elem_id: id of u32
7e3617a7
MKL
1680 * *total_nelems: (x * y). Hence, individual elem size is
1681 * (*type_size / *total_nelems)
887c31a3 1682 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7
MKL
1683 *
1684 * type: is not an array (e.g. const struct X)
1685 * return type: type "struct X"
1686 * *type_size: sizeof(struct X)
1687 * *elem_type: same as return type ("struct X")
69ff3047 1688 * *elem_id: 0
7e3617a7 1689 * *total_nelems: 1
887c31a3 1690 * *type_id: id of type if it's changed within the function, 0 if not
7e3617a7 1691 */
6298399b
JO
1692static const struct btf_type *
1693__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1694 u32 *type_size, const struct btf_type **elem_type,
887c31a3 1695 u32 *elem_id, u32 *total_nelems, u32 *type_id)
7e3617a7
MKL
1696{
1697 const struct btf_type *array_type = NULL;
69ff3047 1698 const struct btf_array *array = NULL;
887c31a3 1699 u32 i, size, nelems = 1, id = 0;
7e3617a7
MKL
1700
1701 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1702 switch (BTF_INFO_KIND(type->info)) {
1703 /* type->size can be used */
1704 case BTF_KIND_INT:
1705 case BTF_KIND_STRUCT:
1706 case BTF_KIND_UNION:
1707 case BTF_KIND_ENUM:
b1828f0b 1708 case BTF_KIND_FLOAT:
7e3617a7
MKL
1709 size = type->size;
1710 goto resolved;
1711
1712 case BTF_KIND_PTR:
1713 size = sizeof(void *);
1714 goto resolved;
1715
1716 /* Modifiers */
1717 case BTF_KIND_TYPEDEF:
1718 case BTF_KIND_VOLATILE:
1719 case BTF_KIND_CONST:
1720 case BTF_KIND_RESTRICT:
887c31a3 1721 id = type->type;
7e3617a7
MKL
1722 type = btf_type_by_id(btf, type->type);
1723 break;
1724
1725 case BTF_KIND_ARRAY:
1726 if (!array_type)
1727 array_type = type;
1728 array = btf_type_array(type);
1729 if (nelems && array->nelems > U32_MAX / nelems)
1730 return ERR_PTR(-EINVAL);
1731 nelems *= array->nelems;
1732 type = btf_type_by_id(btf, array->type);
1733 break;
1734
1735 /* type without size */
1736 default:
1737 return ERR_PTR(-EINVAL);
1738 }
1739 }
1740
1741 return ERR_PTR(-EINVAL);
1742
1743resolved:
1744 if (nelems && size > U32_MAX / nelems)
1745 return ERR_PTR(-EINVAL);
1746
1747 *type_size = nelems * size;
85d33df3
MKL
1748 if (total_nelems)
1749 *total_nelems = nelems;
1750 if (elem_type)
1751 *elem_type = type;
69ff3047
JO
1752 if (elem_id)
1753 *elem_id = array ? array->type : 0;
887c31a3
JO
1754 if (type_id && id)
1755 *type_id = id;
7e3617a7
MKL
1756
1757 return array_type ? : type;
1758}
1759
6298399b
JO
1760const struct btf_type *
1761btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1762 u32 *type_size)
1763{
887c31a3 1764 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
6298399b
JO
1765}
1766
951bb646
AN
1767static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1768{
1769 while (type_id < btf->start_id)
1770 btf = btf->base_btf;
1771
1772 return btf->resolved_ids[type_id - btf->start_id];
1773}
1774
eb3f595d
MKL
1775/* The input param "type_id" must point to a needs_resolve type */
1776static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1777 u32 *type_id)
1778{
951bb646 1779 *type_id = btf_resolved_type_id(btf, *type_id);
eb3f595d
MKL
1780 return btf_type_by_id(btf, *type_id);
1781}
1782
951bb646
AN
1783static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1784{
1785 while (type_id < btf->start_id)
1786 btf = btf->base_btf;
1787
1788 return btf->resolved_sizes[type_id - btf->start_id];
1789}
1790
eb3f595d
MKL
1791const struct btf_type *btf_type_id_size(const struct btf *btf,
1792 u32 *type_id, u32 *ret_size)
1793{
1794 const struct btf_type *size_type;
1795 u32 size_type_id = *type_id;
1796 u32 size = 0;
1797
1798 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1799 if (btf_type_nosize_or_null(size_type))
eb3f595d
MKL
1800 return NULL;
1801
1802 if (btf_type_has_size(size_type)) {
1803 size = size_type->size;
1804 } else if (btf_type_is_array(size_type)) {
951bb646 1805 size = btf_resolved_type_size(btf, size_type_id);
eb3f595d
MKL
1806 } else if (btf_type_is_ptr(size_type)) {
1807 size = sizeof(void *);
1808 } else {
1dc92851
DB
1809 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1810 !btf_type_is_var(size_type)))
eb3f595d
MKL
1811 return NULL;
1812
951bb646 1813 size_type_id = btf_resolved_type_id(btf, size_type_id);
eb3f595d 1814 size_type = btf_type_by_id(btf, size_type_id);
b47a0bd2 1815 if (btf_type_nosize_or_null(size_type))
eb3f595d 1816 return NULL;
1acc5d5c
AN
1817 else if (btf_type_has_size(size_type))
1818 size = size_type->size;
1819 else if (btf_type_is_array(size_type))
951bb646 1820 size = btf_resolved_type_size(btf, size_type_id);
1acc5d5c
AN
1821 else if (btf_type_is_ptr(size_type))
1822 size = sizeof(void *);
1823 else
1824 return NULL;
eb3f595d
MKL
1825 }
1826
1827 *type_id = size_type_id;
1828 if (ret_size)
1829 *ret_size = size;
1830
1831 return size_type;
1832}
1833
179cde8c
MKL
1834static int btf_df_check_member(struct btf_verifier_env *env,
1835 const struct btf_type *struct_type,
1836 const struct btf_member *member,
1837 const struct btf_type *member_type)
1838{
1839 btf_verifier_log_basic(env, struct_type,
1840 "Unsupported check_member");
1841 return -EINVAL;
1842}
1843
9d5f9f70
YS
1844static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1845 const struct btf_type *struct_type,
1846 const struct btf_member *member,
1847 const struct btf_type *member_type)
1848{
1849 btf_verifier_log_basic(env, struct_type,
1850 "Unsupported check_kflag_member");
1851 return -EINVAL;
1852}
1853
b1828f0b 1854/* Used for ptr, array struct/union and float type members.
9d5f9f70
YS
1855 * int, enum and modifier types have their specific callback functions.
1856 */
1857static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1858 const struct btf_type *struct_type,
1859 const struct btf_member *member,
1860 const struct btf_type *member_type)
1861{
1862 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1863 btf_verifier_log_member(env, struct_type, member,
1864 "Invalid member bitfield_size");
1865 return -EINVAL;
1866 }
1867
1868 /* bitfield size is 0, so member->offset represents bit offset only.
1869 * It is safe to call non kflag check_member variants.
1870 */
1871 return btf_type_ops(member_type)->check_member(env, struct_type,
1872 member,
1873 member_type);
1874}
1875
eb3f595d
MKL
1876static int btf_df_resolve(struct btf_verifier_env *env,
1877 const struct resolve_vertex *v)
1878{
1879 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1880 return -EINVAL;
1881}
1882
31d0bc81
AM
1883static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1884 u32 type_id, void *data, u8 bits_offsets,
1885 struct btf_show *show)
b00b8dae 1886{
31d0bc81 1887 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
b00b8dae
MKL
1888}
1889
179cde8c
MKL
1890static int btf_int_check_member(struct btf_verifier_env *env,
1891 const struct btf_type *struct_type,
1892 const struct btf_member *member,
1893 const struct btf_type *member_type)
1894{
1895 u32 int_data = btf_type_int(member_type);
1896 u32 struct_bits_off = member->offset;
1897 u32 struct_size = struct_type->size;
1898 u32 nr_copy_bits;
1899 u32 bytes_offset;
1900
1901 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1902 btf_verifier_log_member(env, struct_type, member,
1903 "bits_offset exceeds U32_MAX");
1904 return -EINVAL;
1905 }
1906
1907 struct_bits_off += BTF_INT_OFFSET(int_data);
1908 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1909 nr_copy_bits = BTF_INT_BITS(int_data) +
1910 BITS_PER_BYTE_MASKED(struct_bits_off);
1911
b1e8818c 1912 if (nr_copy_bits > BITS_PER_U128) {
179cde8c 1913 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1914 "nr_copy_bits exceeds 128");
179cde8c
MKL
1915 return -EINVAL;
1916 }
1917
1918 if (struct_size < bytes_offset ||
1919 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1920 btf_verifier_log_member(env, struct_type, member,
1921 "Member exceeds struct_size");
1922 return -EINVAL;
1923 }
1924
1925 return 0;
1926}
1927
9d5f9f70
YS
1928static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1929 const struct btf_type *struct_type,
1930 const struct btf_member *member,
1931 const struct btf_type *member_type)
1932{
1933 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1934 u32 int_data = btf_type_int(member_type);
1935 u32 struct_size = struct_type->size;
1936 u32 nr_copy_bits;
1937
1938 /* a regular int type is required for the kflag int member */
1939 if (!btf_type_int_is_regular(member_type)) {
1940 btf_verifier_log_member(env, struct_type, member,
1941 "Invalid member base type");
1942 return -EINVAL;
1943 }
1944
1945 /* check sanity of bitfield size */
1946 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1947 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1948 nr_int_data_bits = BTF_INT_BITS(int_data);
1949 if (!nr_bits) {
1950 /* Not a bitfield member, member offset must be at byte
1951 * boundary.
1952 */
1953 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1954 btf_verifier_log_member(env, struct_type, member,
1955 "Invalid member offset");
1956 return -EINVAL;
1957 }
1958
1959 nr_bits = nr_int_data_bits;
1960 } else if (nr_bits > nr_int_data_bits) {
1961 btf_verifier_log_member(env, struct_type, member,
1962 "Invalid member bitfield_size");
1963 return -EINVAL;
1964 }
1965
1966 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1967 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
b1e8818c 1968 if (nr_copy_bits > BITS_PER_U128) {
9d5f9f70 1969 btf_verifier_log_member(env, struct_type, member,
b1e8818c 1970 "nr_copy_bits exceeds 128");
9d5f9f70
YS
1971 return -EINVAL;
1972 }
1973
1974 if (struct_size < bytes_offset ||
1975 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1976 btf_verifier_log_member(env, struct_type, member,
1977 "Member exceeds struct_size");
1978 return -EINVAL;
1979 }
1980
1981 return 0;
1982}
1983
69b693f0
MKL
1984static s32 btf_int_check_meta(struct btf_verifier_env *env,
1985 const struct btf_type *t,
1986 u32 meta_left)
1987{
1988 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1989 u16 encoding;
1990
1991 if (meta_left < meta_needed) {
1992 btf_verifier_log_basic(env, t,
1993 "meta_left:%u meta_needed:%u",
1994 meta_left, meta_needed);
1995 return -EINVAL;
1996 }
1997
1998 if (btf_type_vlen(t)) {
1999 btf_verifier_log_type(env, t, "vlen != 0");
2000 return -EINVAL;
2001 }
2002
9d5f9f70
YS
2003 if (btf_type_kflag(t)) {
2004 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2005 return -EINVAL;
2006 }
2007
69b693f0 2008 int_data = btf_type_int(t);
aea2f7b8
MKL
2009 if (int_data & ~BTF_INT_MASK) {
2010 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2011 int_data);
2012 return -EINVAL;
2013 }
2014
69b693f0
MKL
2015 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2016
b1e8818c 2017 if (nr_bits > BITS_PER_U128) {
69b693f0 2018 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
b1e8818c 2019 BITS_PER_U128);
69b693f0
MKL
2020 return -EINVAL;
2021 }
2022
2023 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2024 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2025 return -EINVAL;
2026 }
2027
aea2f7b8
MKL
2028 /*
2029 * Only one of the encoding bits is allowed and it
2030 * should be sufficient for the pretty print purpose (i.e. decoding).
2031 * Multiple bits can be allowed later if it is found
2032 * to be insufficient.
2033 */
69b693f0
MKL
2034 encoding = BTF_INT_ENCODING(int_data);
2035 if (encoding &&
2036 encoding != BTF_INT_SIGNED &&
2037 encoding != BTF_INT_CHAR &&
aea2f7b8 2038 encoding != BTF_INT_BOOL) {
69b693f0
MKL
2039 btf_verifier_log_type(env, t, "Unsupported encoding");
2040 return -ENOTSUPP;
2041 }
2042
2043 btf_verifier_log_type(env, t, NULL);
2044
2045 return meta_needed;
2046}
2047
2048static void btf_int_log(struct btf_verifier_env *env,
2049 const struct btf_type *t)
2050{
2051 int int_data = btf_type_int(t);
2052
2053 btf_verifier_log(env,
2054 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2055 t->size, BTF_INT_OFFSET(int_data),
2056 BTF_INT_BITS(int_data),
2057 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2058}
2059
31d0bc81 2060static void btf_int128_print(struct btf_show *show, void *data)
b1e8818c
YS
2061{
2062 /* data points to a __int128 number.
2063 * Suppose
2064 * int128_num = *(__int128 *)data;
2065 * The below formulas shows what upper_num and lower_num represents:
2066 * upper_num = int128_num >> 64;
2067 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2068 */
2069 u64 upper_num, lower_num;
2070
2071#ifdef __BIG_ENDIAN_BITFIELD
2072 upper_num = *(u64 *)data;
2073 lower_num = *(u64 *)(data + 8);
2074#else
2075 upper_num = *(u64 *)(data + 8);
2076 lower_num = *(u64 *)data;
2077#endif
2078 if (upper_num == 0)
31d0bc81 2079 btf_show_type_value(show, "0x%llx", lower_num);
b1e8818c 2080 else
31d0bc81
AM
2081 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2082 lower_num);
b1e8818c
YS
2083}
2084
2085static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2086 u16 right_shift_bits)
2087{
2088 u64 upper_num, lower_num;
2089
2090#ifdef __BIG_ENDIAN_BITFIELD
2091 upper_num = print_num[0];
2092 lower_num = print_num[1];
2093#else
2094 upper_num = print_num[1];
2095 lower_num = print_num[0];
2096#endif
2097
2098 /* shake out un-needed bits by shift/or operations */
2099 if (left_shift_bits >= 64) {
2100 upper_num = lower_num << (left_shift_bits - 64);
2101 lower_num = 0;
2102 } else {
2103 upper_num = (upper_num << left_shift_bits) |
2104 (lower_num >> (64 - left_shift_bits));
2105 lower_num = lower_num << left_shift_bits;
2106 }
2107
2108 if (right_shift_bits >= 64) {
2109 lower_num = upper_num >> (right_shift_bits - 64);
2110 upper_num = 0;
2111 } else {
2112 lower_num = (lower_num >> right_shift_bits) |
2113 (upper_num << (64 - right_shift_bits));
2114 upper_num = upper_num >> right_shift_bits;
2115 }
2116
2117#ifdef __BIG_ENDIAN_BITFIELD
2118 print_num[0] = upper_num;
2119 print_num[1] = lower_num;
2120#else
2121 print_num[0] = lower_num;
2122 print_num[1] = upper_num;
2123#endif
2124}
2125
31d0bc81
AM
2126static void btf_bitfield_show(void *data, u8 bits_offset,
2127 u8 nr_bits, struct btf_show *show)
b00b8dae 2128{
b65f370d 2129 u16 left_shift_bits, right_shift_bits;
36fc3c8c
MKL
2130 u8 nr_copy_bytes;
2131 u8 nr_copy_bits;
b1e8818c 2132 u64 print_num[2] = {};
b00b8dae 2133
b00b8dae
MKL
2134 nr_copy_bits = nr_bits + bits_offset;
2135 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2136
b1e8818c 2137 memcpy(print_num, data, nr_copy_bytes);
b00b8dae 2138
b65f370d
OK
2139#ifdef __BIG_ENDIAN_BITFIELD
2140 left_shift_bits = bits_offset;
2141#else
b1e8818c 2142 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
b65f370d 2143#endif
b1e8818c 2144 right_shift_bits = BITS_PER_U128 - nr_bits;
b00b8dae 2145
b1e8818c 2146 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
31d0bc81 2147 btf_int128_print(show, print_num);
b00b8dae
MKL
2148}
2149
9d5f9f70 2150
31d0bc81
AM
2151static void btf_int_bits_show(const struct btf *btf,
2152 const struct btf_type *t,
2153 void *data, u8 bits_offset,
2154 struct btf_show *show)
f97be3ab
YS
2155{
2156 u32 int_data = btf_type_int(t);
2157 u8 nr_bits = BTF_INT_BITS(int_data);
2158 u8 total_bits_offset;
2159
2160 /*
2161 * bits_offset is at most 7.
b1e8818c 2162 * BTF_INT_OFFSET() cannot exceed 128 bits.
f97be3ab
YS
2163 */
2164 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
17e3ac81
YS
2165 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2166 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
31d0bc81 2167 btf_bitfield_show(data, bits_offset, nr_bits, show);
f97be3ab
YS
2168}
2169
31d0bc81
AM
2170static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2171 u32 type_id, void *data, u8 bits_offset,
2172 struct btf_show *show)
b00b8dae
MKL
2173{
2174 u32 int_data = btf_type_int(t);
2175 u8 encoding = BTF_INT_ENCODING(int_data);
2176 bool sign = encoding & BTF_INT_SIGNED;
36fc3c8c 2177 u8 nr_bits = BTF_INT_BITS(int_data);
31d0bc81
AM
2178 void *safe_data;
2179
2180 safe_data = btf_show_start_type(show, t, type_id, data);
2181 if (!safe_data)
2182 return;
b00b8dae
MKL
2183
2184 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2185 BITS_PER_BYTE_MASKED(nr_bits)) {
31d0bc81
AM
2186 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2187 goto out;
b00b8dae
MKL
2188 }
2189
2190 switch (nr_bits) {
b1e8818c 2191 case 128:
31d0bc81 2192 btf_int128_print(show, safe_data);
b1e8818c 2193 break;
b00b8dae
MKL
2194 case 64:
2195 if (sign)
31d0bc81 2196 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
b00b8dae 2197 else
31d0bc81 2198 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
b00b8dae
MKL
2199 break;
2200 case 32:
2201 if (sign)
31d0bc81 2202 btf_show_type_value(show, "%d", *(s32 *)safe_data);
b00b8dae 2203 else
31d0bc81 2204 btf_show_type_value(show, "%u", *(u32 *)safe_data);
b00b8dae
MKL
2205 break;
2206 case 16:
2207 if (sign)
31d0bc81 2208 btf_show_type_value(show, "%d", *(s16 *)safe_data);
b00b8dae 2209 else
31d0bc81 2210 btf_show_type_value(show, "%u", *(u16 *)safe_data);
b00b8dae
MKL
2211 break;
2212 case 8:
31d0bc81
AM
2213 if (show->state.array_encoding == BTF_INT_CHAR) {
2214 /* check for null terminator */
2215 if (show->state.array_terminated)
2216 break;
2217 if (*(char *)data == '\0') {
2218 show->state.array_terminated = 1;
2219 break;
2220 }
2221 if (isprint(*(char *)data)) {
2222 btf_show_type_value(show, "'%c'",
2223 *(char *)safe_data);
2224 break;
2225 }
2226 }
b00b8dae 2227 if (sign)
31d0bc81 2228 btf_show_type_value(show, "%d", *(s8 *)safe_data);
b00b8dae 2229 else
31d0bc81 2230 btf_show_type_value(show, "%u", *(u8 *)safe_data);
b00b8dae
MKL
2231 break;
2232 default:
31d0bc81
AM
2233 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2234 break;
b00b8dae 2235 }
31d0bc81
AM
2236out:
2237 btf_show_end_type(show);
b00b8dae
MKL
2238}
2239
69b693f0
MKL
2240static const struct btf_kind_operations int_ops = {
2241 .check_meta = btf_int_check_meta,
eb3f595d 2242 .resolve = btf_df_resolve,
179cde8c 2243 .check_member = btf_int_check_member,
9d5f9f70 2244 .check_kflag_member = btf_int_check_kflag_member,
69b693f0 2245 .log_details = btf_int_log,
31d0bc81 2246 .show = btf_int_show,
69b693f0
MKL
2247};
2248
179cde8c
MKL
2249static int btf_modifier_check_member(struct btf_verifier_env *env,
2250 const struct btf_type *struct_type,
2251 const struct btf_member *member,
2252 const struct btf_type *member_type)
2253{
2254 const struct btf_type *resolved_type;
2255 u32 resolved_type_id = member->type;
2256 struct btf_member resolved_member;
2257 struct btf *btf = env->btf;
2258
2259 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2260 if (!resolved_type) {
2261 btf_verifier_log_member(env, struct_type, member,
2262 "Invalid member");
2263 return -EINVAL;
2264 }
2265
2266 resolved_member = *member;
2267 resolved_member.type = resolved_type_id;
2268
2269 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2270 &resolved_member,
2271 resolved_type);
2272}
2273
9d5f9f70
YS
2274static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2275 const struct btf_type *struct_type,
2276 const struct btf_member *member,
2277 const struct btf_type *member_type)
2278{
2279 const struct btf_type *resolved_type;
2280 u32 resolved_type_id = member->type;
2281 struct btf_member resolved_member;
2282 struct btf *btf = env->btf;
2283
2284 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2285 if (!resolved_type) {
2286 btf_verifier_log_member(env, struct_type, member,
2287 "Invalid member");
2288 return -EINVAL;
2289 }
2290
2291 resolved_member = *member;
2292 resolved_member.type = resolved_type_id;
2293
2294 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2295 &resolved_member,
2296 resolved_type);
2297}
2298
179cde8c
MKL
2299static int btf_ptr_check_member(struct btf_verifier_env *env,
2300 const struct btf_type *struct_type,
2301 const struct btf_member *member,
2302 const struct btf_type *member_type)
2303{
2304 u32 struct_size, struct_bits_off, bytes_offset;
2305
2306 struct_size = struct_type->size;
2307 struct_bits_off = member->offset;
2308 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2309
2310 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2311 btf_verifier_log_member(env, struct_type, member,
2312 "Member is not byte aligned");
2313 return -EINVAL;
2314 }
2315
2316 if (struct_size - bytes_offset < sizeof(void *)) {
2317 btf_verifier_log_member(env, struct_type, member,
2318 "Member exceeds struct_size");
2319 return -EINVAL;
2320 }
2321
2322 return 0;
2323}
2324
69b693f0
MKL
2325static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2326 const struct btf_type *t,
2327 u32 meta_left)
2328{
2329 if (btf_type_vlen(t)) {
2330 btf_verifier_log_type(env, t, "vlen != 0");
2331 return -EINVAL;
2332 }
2333
9d5f9f70
YS
2334 if (btf_type_kflag(t)) {
2335 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2336 return -EINVAL;
2337 }
2338
aea2f7b8 2339 if (!BTF_TYPE_ID_VALID(t->type)) {
69b693f0
MKL
2340 btf_verifier_log_type(env, t, "Invalid type_id");
2341 return -EINVAL;
2342 }
2343
eb04bbb6
YS
2344 /* typedef type must have a valid name, and other ref types,
2345 * volatile, const, restrict, should have a null name.
2346 */
2347 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2348 if (!t->name_off ||
2349 !btf_name_valid_identifier(env->btf, t->name_off)) {
2350 btf_verifier_log_type(env, t, "Invalid name");
2351 return -EINVAL;
2352 }
2353 } else {
2354 if (t->name_off) {
2355 btf_verifier_log_type(env, t, "Invalid name");
2356 return -EINVAL;
2357 }
2358 }
2359
69b693f0
MKL
2360 btf_verifier_log_type(env, t, NULL);
2361
2362 return 0;
2363}
2364
eb3f595d
MKL
2365static int btf_modifier_resolve(struct btf_verifier_env *env,
2366 const struct resolve_vertex *v)
2367{
2368 const struct btf_type *t = v->t;
2369 const struct btf_type *next_type;
2370 u32 next_type_id = t->type;
2371 struct btf *btf = env->btf;
eb3f595d
MKL
2372
2373 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2374 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2375 btf_verifier_log_type(env, v->t, "Invalid type_id");
2376 return -EINVAL;
2377 }
2378
eb3f595d
MKL
2379 if (!env_type_is_resolve_sink(env, next_type) &&
2380 !env_type_is_resolved(env, next_type_id))
2381 return env_stack_push(env, next_type, next_type_id);
2382
2383 /* Figure out the resolved next_type_id with size.
2384 * They will be stored in the current modifier's
2385 * resolved_ids and resolved_sizes such that it can
2386 * save us a few type-following when we use it later (e.g. in
2387 * pretty print).
2388 */
1acc5d5c 2389 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2667a262
MKL
2390 if (env_type_is_resolved(env, next_type_id))
2391 next_type = btf_type_id_resolve(btf, &next_type_id);
2392
2393 /* "typedef void new_void", "const void"...etc */
2394 if (!btf_type_is_void(next_type) &&
81f5c6f5
YS
2395 !btf_type_is_fwd(next_type) &&
2396 !btf_type_is_func_proto(next_type)) {
2667a262
MKL
2397 btf_verifier_log_type(env, v->t, "Invalid type_id");
2398 return -EINVAL;
2399 }
eb3f595d
MKL
2400 }
2401
1acc5d5c 2402 env_stack_pop_resolved(env, next_type_id, 0);
eb3f595d
MKL
2403
2404 return 0;
2405}
2406
1dc92851
DB
2407static int btf_var_resolve(struct btf_verifier_env *env,
2408 const struct resolve_vertex *v)
2409{
2410 const struct btf_type *next_type;
2411 const struct btf_type *t = v->t;
2412 u32 next_type_id = t->type;
2413 struct btf *btf = env->btf;
1dc92851
DB
2414
2415 next_type = btf_type_by_id(btf, next_type_id);
2416 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2417 btf_verifier_log_type(env, v->t, "Invalid type_id");
2418 return -EINVAL;
2419 }
2420
2421 if (!env_type_is_resolve_sink(env, next_type) &&
2422 !env_type_is_resolved(env, next_type_id))
2423 return env_stack_push(env, next_type, next_type_id);
2424
2425 if (btf_type_is_modifier(next_type)) {
2426 const struct btf_type *resolved_type;
2427 u32 resolved_type_id;
2428
2429 resolved_type_id = next_type_id;
2430 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2431
2432 if (btf_type_is_ptr(resolved_type) &&
2433 !env_type_is_resolve_sink(env, resolved_type) &&
2434 !env_type_is_resolved(env, resolved_type_id))
2435 return env_stack_push(env, resolved_type,
2436 resolved_type_id);
2437 }
2438
2439 /* We must resolve to something concrete at this point, no
2440 * forward types or similar that would resolve to size of
2441 * zero is allowed.
2442 */
1acc5d5c 2443 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1dc92851
DB
2444 btf_verifier_log_type(env, v->t, "Invalid type_id");
2445 return -EINVAL;
2446 }
2447
1acc5d5c 2448 env_stack_pop_resolved(env, next_type_id, 0);
1dc92851
DB
2449
2450 return 0;
2451}
2452
eb3f595d
MKL
2453static int btf_ptr_resolve(struct btf_verifier_env *env,
2454 const struct resolve_vertex *v)
2455{
2456 const struct btf_type *next_type;
2457 const struct btf_type *t = v->t;
2458 u32 next_type_id = t->type;
2459 struct btf *btf = env->btf;
eb3f595d
MKL
2460
2461 next_type = btf_type_by_id(btf, next_type_id);
1dc92851 2462 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
eb3f595d
MKL
2463 btf_verifier_log_type(env, v->t, "Invalid type_id");
2464 return -EINVAL;
2465 }
2466
eb3f595d
MKL
2467 if (!env_type_is_resolve_sink(env, next_type) &&
2468 !env_type_is_resolved(env, next_type_id))
2469 return env_stack_push(env, next_type, next_type_id);
2470
2471 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2472 * the modifier may have stopped resolving when it was resolved
2473 * to a ptr (last-resolved-ptr).
2474 *
2475 * We now need to continue from the last-resolved-ptr to
2476 * ensure the last-resolved-ptr will not referring back to
2477 * the currenct ptr (t).
2478 */
2479 if (btf_type_is_modifier(next_type)) {
2480 const struct btf_type *resolved_type;
2481 u32 resolved_type_id;
2482
2483 resolved_type_id = next_type_id;
2484 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2485
2486 if (btf_type_is_ptr(resolved_type) &&
2487 !env_type_is_resolve_sink(env, resolved_type) &&
2488 !env_type_is_resolved(env, resolved_type_id))
2489 return env_stack_push(env, resolved_type,
2490 resolved_type_id);
2491 }
2492
2667a262
MKL
2493 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2494 if (env_type_is_resolved(env, next_type_id))
2495 next_type = btf_type_id_resolve(btf, &next_type_id);
2496
2497 if (!btf_type_is_void(next_type) &&
2498 !btf_type_is_fwd(next_type) &&
2499 !btf_type_is_func_proto(next_type)) {
2500 btf_verifier_log_type(env, v->t, "Invalid type_id");
2501 return -EINVAL;
2502 }
eb3f595d
MKL
2503 }
2504
eb3f595d
MKL
2505 env_stack_pop_resolved(env, next_type_id, 0);
2506
2507 return 0;
2508}
2509
31d0bc81
AM
2510static void btf_modifier_show(const struct btf *btf,
2511 const struct btf_type *t,
2512 u32 type_id, void *data,
2513 u8 bits_offset, struct btf_show *show)
b00b8dae 2514{
85d33df3
MKL
2515 if (btf->resolved_ids)
2516 t = btf_type_id_resolve(btf, &type_id);
2517 else
2518 t = btf_type_skip_modifiers(btf, type_id, NULL);
b00b8dae 2519
31d0bc81 2520 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2521}
2522
31d0bc81
AM
2523static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2524 u32 type_id, void *data, u8 bits_offset,
2525 struct btf_show *show)
1dc92851
DB
2526{
2527 t = btf_type_id_resolve(btf, &type_id);
2528
31d0bc81 2529 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
1dc92851
DB
2530}
2531
31d0bc81
AM
2532static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2533 u32 type_id, void *data, u8 bits_offset,
2534 struct btf_show *show)
b00b8dae 2535{
31d0bc81
AM
2536 void *safe_data;
2537
2538 safe_data = btf_show_start_type(show, t, type_id, data);
2539 if (!safe_data)
2540 return;
2541
2542 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2543 if (show->flags & BTF_SHOW_PTR_RAW)
2544 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2545 else
2546 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2547 btf_show_end_type(show);
b00b8dae
MKL
2548}
2549
69b693f0
MKL
2550static void btf_ref_type_log(struct btf_verifier_env *env,
2551 const struct btf_type *t)
2552{
2553 btf_verifier_log(env, "type_id=%u", t->type);
2554}
2555
2556static struct btf_kind_operations modifier_ops = {
2557 .check_meta = btf_ref_type_check_meta,
eb3f595d 2558 .resolve = btf_modifier_resolve,
179cde8c 2559 .check_member = btf_modifier_check_member,
9d5f9f70 2560 .check_kflag_member = btf_modifier_check_kflag_member,
69b693f0 2561 .log_details = btf_ref_type_log,
31d0bc81 2562 .show = btf_modifier_show,
69b693f0
MKL
2563};
2564
2565static struct btf_kind_operations ptr_ops = {
2566 .check_meta = btf_ref_type_check_meta,
eb3f595d 2567 .resolve = btf_ptr_resolve,
179cde8c 2568 .check_member = btf_ptr_check_member,
9d5f9f70 2569 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2570 .log_details = btf_ref_type_log,
31d0bc81 2571 .show = btf_ptr_show,
69b693f0
MKL
2572};
2573
8175383f
MKL
2574static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2575 const struct btf_type *t,
2576 u32 meta_left)
2577{
2578 if (btf_type_vlen(t)) {
2579 btf_verifier_log_type(env, t, "vlen != 0");
2580 return -EINVAL;
2581 }
2582
2583 if (t->type) {
2584 btf_verifier_log_type(env, t, "type != 0");
2585 return -EINVAL;
2586 }
2587
eb04bbb6
YS
2588 /* fwd type must have a valid name */
2589 if (!t->name_off ||
2590 !btf_name_valid_identifier(env->btf, t->name_off)) {
2591 btf_verifier_log_type(env, t, "Invalid name");
2592 return -EINVAL;
2593 }
2594
8175383f
MKL
2595 btf_verifier_log_type(env, t, NULL);
2596
2597 return 0;
2598}
2599
76c43ae8
YS
2600static void btf_fwd_type_log(struct btf_verifier_env *env,
2601 const struct btf_type *t)
2602{
2603 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2604}
2605
69b693f0 2606static struct btf_kind_operations fwd_ops = {
8175383f 2607 .check_meta = btf_fwd_check_meta,
eb3f595d 2608 .resolve = btf_df_resolve,
179cde8c 2609 .check_member = btf_df_check_member,
9d5f9f70 2610 .check_kflag_member = btf_df_check_kflag_member,
76c43ae8 2611 .log_details = btf_fwd_type_log,
31d0bc81 2612 .show = btf_df_show,
69b693f0
MKL
2613};
2614
179cde8c
MKL
2615static int btf_array_check_member(struct btf_verifier_env *env,
2616 const struct btf_type *struct_type,
2617 const struct btf_member *member,
2618 const struct btf_type *member_type)
2619{
2620 u32 struct_bits_off = member->offset;
2621 u32 struct_size, bytes_offset;
2622 u32 array_type_id, array_size;
2623 struct btf *btf = env->btf;
2624
2625 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2626 btf_verifier_log_member(env, struct_type, member,
2627 "Member is not byte aligned");
2628 return -EINVAL;
2629 }
2630
2631 array_type_id = member->type;
2632 btf_type_id_size(btf, &array_type_id, &array_size);
2633 struct_size = struct_type->size;
2634 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2635 if (struct_size - bytes_offset < array_size) {
2636 btf_verifier_log_member(env, struct_type, member,
2637 "Member exceeds struct_size");
2638 return -EINVAL;
2639 }
2640
2641 return 0;
2642}
2643
69b693f0
MKL
2644static s32 btf_array_check_meta(struct btf_verifier_env *env,
2645 const struct btf_type *t,
2646 u32 meta_left)
2647{
2648 const struct btf_array *array = btf_type_array(t);
2649 u32 meta_needed = sizeof(*array);
2650
2651 if (meta_left < meta_needed) {
2652 btf_verifier_log_basic(env, t,
2653 "meta_left:%u meta_needed:%u",
2654 meta_left, meta_needed);
2655 return -EINVAL;
2656 }
2657
eb04bbb6
YS
2658 /* array type should not have a name */
2659 if (t->name_off) {
2660 btf_verifier_log_type(env, t, "Invalid name");
2661 return -EINVAL;
2662 }
2663
69b693f0
MKL
2664 if (btf_type_vlen(t)) {
2665 btf_verifier_log_type(env, t, "vlen != 0");
2666 return -EINVAL;
2667 }
2668
9d5f9f70
YS
2669 if (btf_type_kflag(t)) {
2670 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2671 return -EINVAL;
2672 }
2673
b9308ae6
MKL
2674 if (t->size) {
2675 btf_verifier_log_type(env, t, "size != 0");
2676 return -EINVAL;
2677 }
2678
4ef5f574
MKL
2679 /* Array elem type and index type cannot be in type void,
2680 * so !array->type and !array->index_type are not allowed.
69b693f0 2681 */
aea2f7b8 2682 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
4ef5f574
MKL
2683 btf_verifier_log_type(env, t, "Invalid elem");
2684 return -EINVAL;
2685 }
2686
aea2f7b8 2687 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
4ef5f574 2688 btf_verifier_log_type(env, t, "Invalid index");
69b693f0
MKL
2689 return -EINVAL;
2690 }
2691
2692 btf_verifier_log_type(env, t, NULL);
2693
2694 return meta_needed;
2695}
2696
eb3f595d
MKL
2697static int btf_array_resolve(struct btf_verifier_env *env,
2698 const struct resolve_vertex *v)
2699{
2700 const struct btf_array *array = btf_type_array(v->t);
4ef5f574
MKL
2701 const struct btf_type *elem_type, *index_type;
2702 u32 elem_type_id, index_type_id;
eb3f595d
MKL
2703 struct btf *btf = env->btf;
2704 u32 elem_size;
2705
4ef5f574
MKL
2706 /* Check array->index_type */
2707 index_type_id = array->index_type;
2708 index_type = btf_type_by_id(btf, index_type_id);
e4f07120
SF
2709 if (btf_type_nosize_or_null(index_type) ||
2710 btf_type_is_resolve_source_only(index_type)) {
4ef5f574
MKL
2711 btf_verifier_log_type(env, v->t, "Invalid index");
2712 return -EINVAL;
2713 }
2714
2715 if (!env_type_is_resolve_sink(env, index_type) &&
2716 !env_type_is_resolved(env, index_type_id))
2717 return env_stack_push(env, index_type, index_type_id);
2718
2719 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2720 if (!index_type || !btf_type_is_int(index_type) ||
2721 !btf_type_int_is_regular(index_type)) {
2722 btf_verifier_log_type(env, v->t, "Invalid index");
2723 return -EINVAL;
2724 }
2725
2726 /* Check array->type */
2727 elem_type_id = array->type;
eb3f595d 2728 elem_type = btf_type_by_id(btf, elem_type_id);
e4f07120
SF
2729 if (btf_type_nosize_or_null(elem_type) ||
2730 btf_type_is_resolve_source_only(elem_type)) {
eb3f595d
MKL
2731 btf_verifier_log_type(env, v->t,
2732 "Invalid elem");
2733 return -EINVAL;
2734 }
2735
2736 if (!env_type_is_resolve_sink(env, elem_type) &&
2737 !env_type_is_resolved(env, elem_type_id))
2738 return env_stack_push(env, elem_type, elem_type_id);
2739
2740 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2741 if (!elem_type) {
2742 btf_verifier_log_type(env, v->t, "Invalid elem");
2743 return -EINVAL;
2744 }
2745
4ef5f574
MKL
2746 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2747 btf_verifier_log_type(env, v->t, "Invalid array of int");
2748 return -EINVAL;
eb3f595d
MKL
2749 }
2750
2751 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2752 btf_verifier_log_type(env, v->t,
2753 "Array size overflows U32_MAX");
2754 return -EINVAL;
2755 }
2756
2757 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2758
2759 return 0;
2760}
2761
69b693f0
MKL
2762static void btf_array_log(struct btf_verifier_env *env,
2763 const struct btf_type *t)
2764{
2765 const struct btf_array *array = btf_type_array(t);
2766
2767 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2768 array->type, array->index_type, array->nelems);
2769}
2770
31d0bc81
AM
2771static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2772 u32 type_id, void *data, u8 bits_offset,
2773 struct btf_show *show)
b00b8dae
MKL
2774{
2775 const struct btf_array *array = btf_type_array(t);
2776 const struct btf_kind_operations *elem_ops;
2777 const struct btf_type *elem_type;
31d0bc81
AM
2778 u32 i, elem_size = 0, elem_type_id;
2779 u16 encoding = 0;
b00b8dae
MKL
2780
2781 elem_type_id = array->type;
31d0bc81
AM
2782 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2783 if (elem_type && btf_type_has_size(elem_type))
2784 elem_size = elem_type->size;
2785
2786 if (elem_type && btf_type_is_int(elem_type)) {
2787 u32 int_type = btf_type_int(elem_type);
2788
2789 encoding = BTF_INT_ENCODING(int_type);
2790
2791 /*
2792 * BTF_INT_CHAR encoding never seems to be set for
2793 * char arrays, so if size is 1 and element is
2794 * printable as a char, we'll do that.
2795 */
2796 if (elem_size == 1)
2797 encoding = BTF_INT_CHAR;
2798 }
2799
2800 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2801 return;
2802
2803 if (!elem_type)
2804 goto out;
b00b8dae 2805 elem_ops = btf_type_ops(elem_type);
31d0bc81 2806
b00b8dae 2807 for (i = 0; i < array->nelems; i++) {
b00b8dae 2808
31d0bc81
AM
2809 btf_show_start_array_member(show);
2810
2811 elem_ops->show(btf, elem_type, elem_type_id, data,
2812 bits_offset, show);
b00b8dae 2813 data += elem_size;
31d0bc81
AM
2814
2815 btf_show_end_array_member(show);
2816
2817 if (show->state.array_terminated)
2818 break;
b00b8dae 2819 }
31d0bc81
AM
2820out:
2821 btf_show_end_array_type(show);
2822}
2823
2824static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2825 u32 type_id, void *data, u8 bits_offset,
2826 struct btf_show *show)
2827{
2828 const struct btf_member *m = show->state.member;
2829
2830 /*
2831 * First check if any members would be shown (are non-zero).
2832 * See comments above "struct btf_show" definition for more
2833 * details on how this works at a high-level.
2834 */
2835 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2836 if (!show->state.depth_check) {
2837 show->state.depth_check = show->state.depth + 1;
2838 show->state.depth_to_show = 0;
2839 }
2840 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2841 show->state.member = m;
2842
2843 if (show->state.depth_check != show->state.depth + 1)
2844 return;
2845 show->state.depth_check = 0;
2846
2847 if (show->state.depth_to_show <= show->state.depth)
2848 return;
2849 /*
2850 * Reaching here indicates we have recursed and found
2851 * non-zero array member(s).
2852 */
2853 }
2854 __btf_array_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
2855}
2856
69b693f0
MKL
2857static struct btf_kind_operations array_ops = {
2858 .check_meta = btf_array_check_meta,
eb3f595d 2859 .resolve = btf_array_resolve,
179cde8c 2860 .check_member = btf_array_check_member,
9d5f9f70 2861 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 2862 .log_details = btf_array_log,
31d0bc81 2863 .show = btf_array_show,
69b693f0
MKL
2864};
2865
179cde8c
MKL
2866static int btf_struct_check_member(struct btf_verifier_env *env,
2867 const struct btf_type *struct_type,
2868 const struct btf_member *member,
2869 const struct btf_type *member_type)
2870{
2871 u32 struct_bits_off = member->offset;
2872 u32 struct_size, bytes_offset;
2873
2874 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2875 btf_verifier_log_member(env, struct_type, member,
2876 "Member is not byte aligned");
2877 return -EINVAL;
2878 }
2879
2880 struct_size = struct_type->size;
2881 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2882 if (struct_size - bytes_offset < member_type->size) {
2883 btf_verifier_log_member(env, struct_type, member,
2884 "Member exceeds struct_size");
2885 return -EINVAL;
2886 }
2887
2888 return 0;
2889}
2890
69b693f0
MKL
2891static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2892 const struct btf_type *t,
2893 u32 meta_left)
2894{
2895 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2896 const struct btf_member *member;
6283fa38 2897 u32 meta_needed, last_offset;
69b693f0
MKL
2898 struct btf *btf = env->btf;
2899 u32 struct_size = t->size;
9d5f9f70 2900 u32 offset;
69b693f0
MKL
2901 u16 i;
2902
2903 meta_needed = btf_type_vlen(t) * sizeof(*member);
2904 if (meta_left < meta_needed) {
2905 btf_verifier_log_basic(env, t,
2906 "meta_left:%u meta_needed:%u",
2907 meta_left, meta_needed);
2908 return -EINVAL;
2909 }
2910
eb04bbb6
YS
2911 /* struct type either no name or a valid one */
2912 if (t->name_off &&
2913 !btf_name_valid_identifier(env->btf, t->name_off)) {
2914 btf_verifier_log_type(env, t, "Invalid name");
2915 return -EINVAL;
2916 }
2917
69b693f0
MKL
2918 btf_verifier_log_type(env, t, NULL);
2919
6283fa38 2920 last_offset = 0;
69b693f0 2921 for_each_member(i, t, member) {
fbcf93eb 2922 if (!btf_name_offset_valid(btf, member->name_off)) {
69b693f0
MKL
2923 btf_verifier_log_member(env, t, member,
2924 "Invalid member name_offset:%u",
fbcf93eb 2925 member->name_off);
69b693f0
MKL
2926 return -EINVAL;
2927 }
2928
eb04bbb6
YS
2929 /* struct member either no name or a valid one */
2930 if (member->name_off &&
2931 !btf_name_valid_identifier(btf, member->name_off)) {
2932 btf_verifier_log_member(env, t, member, "Invalid name");
2933 return -EINVAL;
2934 }
69b693f0 2935 /* A member cannot be in type void */
aea2f7b8 2936 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
69b693f0
MKL
2937 btf_verifier_log_member(env, t, member,
2938 "Invalid type_id");
2939 return -EINVAL;
2940 }
2941
9d5f9f70
YS
2942 offset = btf_member_bit_offset(t, member);
2943 if (is_union && offset) {
69b693f0
MKL
2944 btf_verifier_log_member(env, t, member,
2945 "Invalid member bits_offset");
2946 return -EINVAL;
2947 }
2948
6283fa38
MKL
2949 /*
2950 * ">" instead of ">=" because the last member could be
2951 * "char a[0];"
2952 */
9d5f9f70 2953 if (last_offset > offset) {
6283fa38
MKL
2954 btf_verifier_log_member(env, t, member,
2955 "Invalid member bits_offset");
2956 return -EINVAL;
2957 }
2958
9d5f9f70 2959 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
69b693f0 2960 btf_verifier_log_member(env, t, member,
311fe1a8 2961 "Member bits_offset exceeds its struct size");
69b693f0
MKL
2962 return -EINVAL;
2963 }
2964
2965 btf_verifier_log_member(env, t, member, NULL);
9d5f9f70 2966 last_offset = offset;
69b693f0
MKL
2967 }
2968
2969 return meta_needed;
2970}
2971
eb3f595d
MKL
2972static int btf_struct_resolve(struct btf_verifier_env *env,
2973 const struct resolve_vertex *v)
2974{
2975 const struct btf_member *member;
179cde8c 2976 int err;
eb3f595d
MKL
2977 u16 i;
2978
2979 /* Before continue resolving the next_member,
2980 * ensure the last member is indeed resolved to a
2981 * type with size info.
2982 */
2983 if (v->next_member) {
179cde8c 2984 const struct btf_type *last_member_type;
eb3f595d
MKL
2985 const struct btf_member *last_member;
2986 u16 last_member_type_id;
2987
2988 last_member = btf_type_member(v->t) + v->next_member - 1;
2989 last_member_type_id = last_member->type;
2990 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2991 last_member_type_id)))
2992 return -EINVAL;
179cde8c
MKL
2993
2994 last_member_type = btf_type_by_id(env->btf,
2995 last_member_type_id);
9d5f9f70
YS
2996 if (btf_type_kflag(v->t))
2997 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2998 last_member,
2999 last_member_type);
3000 else
3001 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3002 last_member,
3003 last_member_type);
179cde8c
MKL
3004 if (err)
3005 return err;
eb3f595d
MKL
3006 }
3007
3008 for_each_member_from(i, v->next_member, v->t, member) {
3009 u32 member_type_id = member->type;
3010 const struct btf_type *member_type = btf_type_by_id(env->btf,
3011 member_type_id);
3012
e4f07120
SF
3013 if (btf_type_nosize_or_null(member_type) ||
3014 btf_type_is_resolve_source_only(member_type)) {
eb3f595d
MKL
3015 btf_verifier_log_member(env, v->t, member,
3016 "Invalid member");
3017 return -EINVAL;
3018 }
3019
3020 if (!env_type_is_resolve_sink(env, member_type) &&
3021 !env_type_is_resolved(env, member_type_id)) {
3022 env_stack_set_next_member(env, i + 1);
3023 return env_stack_push(env, member_type, member_type_id);
3024 }
179cde8c 3025
9d5f9f70
YS
3026 if (btf_type_kflag(v->t))
3027 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3028 member,
3029 member_type);
3030 else
3031 err = btf_type_ops(member_type)->check_member(env, v->t,
3032 member,
3033 member_type);
179cde8c
MKL
3034 if (err)
3035 return err;
eb3f595d
MKL
3036 }
3037
3038 env_stack_pop_resolved(env, 0, 0);
3039
3040 return 0;
3041}
3042
69b693f0
MKL
3043static void btf_struct_log(struct btf_verifier_env *env,
3044 const struct btf_type *t)
3045{
3046 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3047}
3048
68134668
AS
3049static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3050 const char *name, int sz, int align)
d83525ca
AS
3051{
3052 const struct btf_member *member;
3053 u32 i, off = -ENOENT;
3054
d83525ca
AS
3055 for_each_member(i, t, member) {
3056 const struct btf_type *member_type = btf_type_by_id(btf,
3057 member->type);
3058 if (!__btf_type_is_struct(member_type))
3059 continue;
68134668 3060 if (member_type->size != sz)
d83525ca 3061 continue;
68134668 3062 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
d83525ca
AS
3063 continue;
3064 if (off != -ENOENT)
68134668 3065 /* only one such field is allowed */
d83525ca
AS
3066 return -E2BIG;
3067 off = btf_member_bit_offset(t, member);
3068 if (off % 8)
3069 /* valid C code cannot generate such BTF */
3070 return -EINVAL;
3071 off /= 8;
68134668
AS
3072 if (off % align)
3073 return -EINVAL;
3074 }
3075 return off;
3076}
3077
3078static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3079 const char *name, int sz, int align)
3080{
3081 const struct btf_var_secinfo *vsi;
3082 u32 i, off = -ENOENT;
3083
3084 for_each_vsi(i, t, vsi) {
3085 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3086 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3087
3088 if (!__btf_type_is_struct(var_type))
3089 continue;
3090 if (var_type->size != sz)
3091 continue;
3092 if (vsi->size != sz)
3093 continue;
3094 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3095 continue;
3096 if (off != -ENOENT)
3097 /* only one such field is allowed */
3098 return -E2BIG;
3099 off = vsi->offset;
3100 if (off % align)
d83525ca
AS
3101 return -EINVAL;
3102 }
3103 return off;
3104}
3105
68134668
AS
3106static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3107 const char *name, int sz, int align)
3108{
3109
3110 if (__btf_type_is_struct(t))
3111 return btf_find_struct_field(btf, t, name, sz, align);
3112 else if (btf_type_is_datasec(t))
3113 return btf_find_datasec_var(btf, t, name, sz, align);
3114 return -EINVAL;
3115}
3116
3117/* find 'struct bpf_spin_lock' in map value.
3118 * return >= 0 offset if found
3119 * and < 0 in case of error
3120 */
3121int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3122{
3123 return btf_find_field(btf, t, "bpf_spin_lock",
3124 sizeof(struct bpf_spin_lock),
3125 __alignof__(struct bpf_spin_lock));
3126}
3127
3128int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3129{
3130 return btf_find_field(btf, t, "bpf_timer",
3131 sizeof(struct bpf_timer),
3132 __alignof__(struct bpf_timer));
3133}
3134
31d0bc81
AM
3135static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3136 u32 type_id, void *data, u8 bits_offset,
3137 struct btf_show *show)
b00b8dae 3138{
b00b8dae 3139 const struct btf_member *member;
31d0bc81 3140 void *safe_data;
b00b8dae
MKL
3141 u32 i;
3142
31d0bc81
AM
3143 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3144 if (!safe_data)
3145 return;
3146
b00b8dae
MKL
3147 for_each_member(i, t, member) {
3148 const struct btf_type *member_type = btf_type_by_id(btf,
3149 member->type);
b00b8dae 3150 const struct btf_kind_operations *ops;
9d5f9f70
YS
3151 u32 member_offset, bitfield_size;
3152 u32 bytes_offset;
3153 u8 bits8_offset;
b00b8dae 3154
31d0bc81 3155 btf_show_start_member(show, member);
b00b8dae 3156
9d5f9f70
YS
3157 member_offset = btf_member_bit_offset(t, member);
3158 bitfield_size = btf_member_bitfield_size(t, member);
17e3ac81
YS
3159 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3160 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
9d5f9f70 3161 if (bitfield_size) {
31d0bc81
AM
3162 safe_data = btf_show_start_type(show, member_type,
3163 member->type,
3164 data + bytes_offset);
3165 if (safe_data)
3166 btf_bitfield_show(safe_data,
3167 bits8_offset,
3168 bitfield_size, show);
3169 btf_show_end_type(show);
9d5f9f70 3170 } else {
9d5f9f70 3171 ops = btf_type_ops(member_type);
31d0bc81
AM
3172 ops->show(btf, member_type, member->type,
3173 data + bytes_offset, bits8_offset, show);
9d5f9f70 3174 }
31d0bc81
AM
3175
3176 btf_show_end_member(show);
b00b8dae 3177 }
31d0bc81
AM
3178
3179 btf_show_end_struct_type(show);
3180}
3181
3182static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3183 u32 type_id, void *data, u8 bits_offset,
3184 struct btf_show *show)
3185{
3186 const struct btf_member *m = show->state.member;
3187
3188 /*
3189 * First check if any members would be shown (are non-zero).
3190 * See comments above "struct btf_show" definition for more
3191 * details on how this works at a high-level.
3192 */
3193 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3194 if (!show->state.depth_check) {
3195 show->state.depth_check = show->state.depth + 1;
3196 show->state.depth_to_show = 0;
3197 }
3198 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3199 /* Restore saved member data here */
3200 show->state.member = m;
3201 if (show->state.depth_check != show->state.depth + 1)
3202 return;
3203 show->state.depth_check = 0;
3204
3205 if (show->state.depth_to_show <= show->state.depth)
3206 return;
3207 /*
3208 * Reaching here indicates we have recursed and found
3209 * non-zero child values.
3210 */
3211 }
3212
3213 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
b00b8dae
MKL
3214}
3215
69b693f0
MKL
3216static struct btf_kind_operations struct_ops = {
3217 .check_meta = btf_struct_check_meta,
eb3f595d 3218 .resolve = btf_struct_resolve,
179cde8c 3219 .check_member = btf_struct_check_member,
9d5f9f70 3220 .check_kflag_member = btf_generic_check_kflag_member,
69b693f0 3221 .log_details = btf_struct_log,
31d0bc81 3222 .show = btf_struct_show,
69b693f0
MKL
3223};
3224
179cde8c
MKL
3225static int btf_enum_check_member(struct btf_verifier_env *env,
3226 const struct btf_type *struct_type,
3227 const struct btf_member *member,
3228 const struct btf_type *member_type)
3229{
3230 u32 struct_bits_off = member->offset;
3231 u32 struct_size, bytes_offset;
3232
3233 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3234 btf_verifier_log_member(env, struct_type, member,
3235 "Member is not byte aligned");
3236 return -EINVAL;
3237 }
3238
3239 struct_size = struct_type->size;
3240 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
da6c7fae 3241 if (struct_size - bytes_offset < member_type->size) {
179cde8c
MKL
3242 btf_verifier_log_member(env, struct_type, member,
3243 "Member exceeds struct_size");
3244 return -EINVAL;
3245 }
3246
3247 return 0;
3248}
3249
9d5f9f70
YS
3250static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3251 const struct btf_type *struct_type,
3252 const struct btf_member *member,
3253 const struct btf_type *member_type)
3254{
3255 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3256 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3257
3258 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3259 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3260 if (!nr_bits) {
3261 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3262 btf_verifier_log_member(env, struct_type, member,
3263 "Member is not byte aligned");
e3439af4 3264 return -EINVAL;
9d5f9f70
YS
3265 }
3266
3267 nr_bits = int_bitsize;
3268 } else if (nr_bits > int_bitsize) {
3269 btf_verifier_log_member(env, struct_type, member,
3270 "Invalid member bitfield_size");
3271 return -EINVAL;
3272 }
3273
3274 struct_size = struct_type->size;
3275 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3276 if (struct_size < bytes_end) {
3277 btf_verifier_log_member(env, struct_type, member,
3278 "Member exceeds struct_size");
3279 return -EINVAL;
3280 }
3281
3282 return 0;
3283}
3284
69b693f0
MKL
3285static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3286 const struct btf_type *t,
3287 u32 meta_left)
3288{
3289 const struct btf_enum *enums = btf_type_enum(t);
3290 struct btf *btf = env->btf;
3291 u16 i, nr_enums;
3292 u32 meta_needed;
3293
3294 nr_enums = btf_type_vlen(t);
3295 meta_needed = nr_enums * sizeof(*enums);
3296
3297 if (meta_left < meta_needed) {
3298 btf_verifier_log_basic(env, t,
3299 "meta_left:%u meta_needed:%u",
3300 meta_left, meta_needed);
3301 return -EINVAL;
3302 }
3303
9d5f9f70
YS
3304 if (btf_type_kflag(t)) {
3305 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3306 return -EINVAL;
3307 }
3308
9eea9849
AS
3309 if (t->size > 8 || !is_power_of_2(t->size)) {
3310 btf_verifier_log_type(env, t, "Unexpected size");
69b693f0
MKL
3311 return -EINVAL;
3312 }
3313
eb04bbb6
YS
3314 /* enum type either no name or a valid one */
3315 if (t->name_off &&
3316 !btf_name_valid_identifier(env->btf, t->name_off)) {
3317 btf_verifier_log_type(env, t, "Invalid name");
3318 return -EINVAL;
3319 }
3320
69b693f0
MKL
3321 btf_verifier_log_type(env, t, NULL);
3322
3323 for (i = 0; i < nr_enums; i++) {
fbcf93eb 3324 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
69b693f0 3325 btf_verifier_log(env, "\tInvalid name_offset:%u",
fbcf93eb 3326 enums[i].name_off);
69b693f0
MKL
3327 return -EINVAL;
3328 }
3329
eb04bbb6
YS
3330 /* enum member must have a valid name */
3331 if (!enums[i].name_off ||
3332 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3333 btf_verifier_log_type(env, t, "Invalid name");
3334 return -EINVAL;
3335 }
3336
8580ac94
AS
3337 if (env->log.level == BPF_LOG_KERNEL)
3338 continue;
69b693f0 3339 btf_verifier_log(env, "\t%s val=%d\n",
23127b33 3340 __btf_name_by_offset(btf, enums[i].name_off),
69b693f0
MKL
3341 enums[i].val);
3342 }
3343
3344 return meta_needed;
3345}
3346
3347static void btf_enum_log(struct btf_verifier_env *env,
3348 const struct btf_type *t)
3349{
3350 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3351}
3352
31d0bc81
AM
3353static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3354 u32 type_id, void *data, u8 bits_offset,
3355 struct btf_show *show)
b00b8dae
MKL
3356{
3357 const struct btf_enum *enums = btf_type_enum(t);
3358 u32 i, nr_enums = btf_type_vlen(t);
31d0bc81
AM
3359 void *safe_data;
3360 int v;
3361
3362 safe_data = btf_show_start_type(show, t, type_id, data);
3363 if (!safe_data)
3364 return;
3365
3366 v = *(int *)safe_data;
b00b8dae
MKL
3367
3368 for (i = 0; i < nr_enums; i++) {
31d0bc81
AM
3369 if (v != enums[i].val)
3370 continue;
3371
3372 btf_show_type_value(show, "%s",
3373 __btf_name_by_offset(btf,
3374 enums[i].name_off));
3375
3376 btf_show_end_type(show);
3377 return;
b00b8dae
MKL
3378 }
3379
31d0bc81
AM
3380 btf_show_type_value(show, "%d", v);
3381 btf_show_end_type(show);
b00b8dae
MKL
3382}
3383
69b693f0
MKL
3384static struct btf_kind_operations enum_ops = {
3385 .check_meta = btf_enum_check_meta,
eb3f595d 3386 .resolve = btf_df_resolve,
179cde8c 3387 .check_member = btf_enum_check_member,
9d5f9f70 3388 .check_kflag_member = btf_enum_check_kflag_member,
69b693f0 3389 .log_details = btf_enum_log,
31d0bc81 3390 .show = btf_enum_show,
69b693f0
MKL
3391};
3392
2667a262
MKL
3393static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3394 const struct btf_type *t,
3395 u32 meta_left)
3396{
3397 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3398
3399 if (meta_left < meta_needed) {
3400 btf_verifier_log_basic(env, t,
3401 "meta_left:%u meta_needed:%u",
3402 meta_left, meta_needed);
3403 return -EINVAL;
3404 }
3405
3406 if (t->name_off) {
3407 btf_verifier_log_type(env, t, "Invalid name");
3408 return -EINVAL;
3409 }
3410
9d5f9f70
YS
3411 if (btf_type_kflag(t)) {
3412 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3413 return -EINVAL;
3414 }
3415
2667a262
MKL
3416 btf_verifier_log_type(env, t, NULL);
3417
3418 return meta_needed;
3419}
3420
3421static void btf_func_proto_log(struct btf_verifier_env *env,
3422 const struct btf_type *t)
3423{
3424 const struct btf_param *args = (const struct btf_param *)(t + 1);
3425 u16 nr_args = btf_type_vlen(t), i;
3426
3427 btf_verifier_log(env, "return=%u args=(", t->type);
3428 if (!nr_args) {
3429 btf_verifier_log(env, "void");
3430 goto done;
3431 }
3432
3433 if (nr_args == 1 && !args[0].type) {
3434 /* Only one vararg */
3435 btf_verifier_log(env, "vararg");
3436 goto done;
3437 }
3438
3439 btf_verifier_log(env, "%u %s", args[0].type,
23127b33
MKL
3440 __btf_name_by_offset(env->btf,
3441 args[0].name_off));
2667a262
MKL
3442 for (i = 1; i < nr_args - 1; i++)
3443 btf_verifier_log(env, ", %u %s", args[i].type,
23127b33
MKL
3444 __btf_name_by_offset(env->btf,
3445 args[i].name_off));
2667a262
MKL
3446
3447 if (nr_args > 1) {
3448 const struct btf_param *last_arg = &args[nr_args - 1];
3449
3450 if (last_arg->type)
3451 btf_verifier_log(env, ", %u %s", last_arg->type,
23127b33
MKL
3452 __btf_name_by_offset(env->btf,
3453 last_arg->name_off));
2667a262
MKL
3454 else
3455 btf_verifier_log(env, ", vararg");
3456 }
3457
3458done:
3459 btf_verifier_log(env, ")");
3460}
3461
3462static struct btf_kind_operations func_proto_ops = {
3463 .check_meta = btf_func_proto_check_meta,
3464 .resolve = btf_df_resolve,
3465 /*
3466 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3467 * a struct's member.
3468 *
8fb33b60 3469 * It should be a function pointer instead.
2667a262
MKL
3470 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3471 *
3472 * Hence, there is no btf_func_check_member().
3473 */
3474 .check_member = btf_df_check_member,
9d5f9f70 3475 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3476 .log_details = btf_func_proto_log,
31d0bc81 3477 .show = btf_df_show,
2667a262
MKL
3478};
3479
3480static s32 btf_func_check_meta(struct btf_verifier_env *env,
3481 const struct btf_type *t,
3482 u32 meta_left)
3483{
3484 if (!t->name_off ||
3485 !btf_name_valid_identifier(env->btf, t->name_off)) {
3486 btf_verifier_log_type(env, t, "Invalid name");
3487 return -EINVAL;
3488 }
3489
51c39bb1
AS
3490 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3491 btf_verifier_log_type(env, t, "Invalid func linkage");
2667a262
MKL
3492 return -EINVAL;
3493 }
3494
9d5f9f70
YS
3495 if (btf_type_kflag(t)) {
3496 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3497 return -EINVAL;
3498 }
3499
2667a262
MKL
3500 btf_verifier_log_type(env, t, NULL);
3501
3502 return 0;
3503}
3504
3505static struct btf_kind_operations func_ops = {
3506 .check_meta = btf_func_check_meta,
3507 .resolve = btf_df_resolve,
3508 .check_member = btf_df_check_member,
9d5f9f70 3509 .check_kflag_member = btf_df_check_kflag_member,
2667a262 3510 .log_details = btf_ref_type_log,
31d0bc81 3511 .show = btf_df_show,
2667a262
MKL
3512};
3513
1dc92851
DB
3514static s32 btf_var_check_meta(struct btf_verifier_env *env,
3515 const struct btf_type *t,
3516 u32 meta_left)
3517{
3518 const struct btf_var *var;
3519 u32 meta_needed = sizeof(*var);
3520
3521 if (meta_left < meta_needed) {
3522 btf_verifier_log_basic(env, t,
3523 "meta_left:%u meta_needed:%u",
3524 meta_left, meta_needed);
3525 return -EINVAL;
3526 }
3527
3528 if (btf_type_vlen(t)) {
3529 btf_verifier_log_type(env, t, "vlen != 0");
3530 return -EINVAL;
3531 }
3532
3533 if (btf_type_kflag(t)) {
3534 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3535 return -EINVAL;
3536 }
3537
3538 if (!t->name_off ||
3539 !__btf_name_valid(env->btf, t->name_off, true)) {
3540 btf_verifier_log_type(env, t, "Invalid name");
3541 return -EINVAL;
3542 }
3543
3544 /* A var cannot be in type void */
3545 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3546 btf_verifier_log_type(env, t, "Invalid type_id");
3547 return -EINVAL;
3548 }
3549
3550 var = btf_type_var(t);
3551 if (var->linkage != BTF_VAR_STATIC &&
3552 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3553 btf_verifier_log_type(env, t, "Linkage not supported");
3554 return -EINVAL;
3555 }
3556
3557 btf_verifier_log_type(env, t, NULL);
3558
3559 return meta_needed;
3560}
3561
3562static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3563{
3564 const struct btf_var *var = btf_type_var(t);
3565
3566 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3567}
3568
3569static const struct btf_kind_operations var_ops = {
3570 .check_meta = btf_var_check_meta,
3571 .resolve = btf_var_resolve,
3572 .check_member = btf_df_check_member,
3573 .check_kflag_member = btf_df_check_kflag_member,
3574 .log_details = btf_var_log,
31d0bc81 3575 .show = btf_var_show,
1dc92851
DB
3576};
3577
3578static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3579 const struct btf_type *t,
3580 u32 meta_left)
3581{
3582 const struct btf_var_secinfo *vsi;
3583 u64 last_vsi_end_off = 0, sum = 0;
3584 u32 i, meta_needed;
3585
3586 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3587 if (meta_left < meta_needed) {
3588 btf_verifier_log_basic(env, t,
3589 "meta_left:%u meta_needed:%u",
3590 meta_left, meta_needed);
3591 return -EINVAL;
3592 }
3593
1dc92851
DB
3594 if (!t->size) {
3595 btf_verifier_log_type(env, t, "size == 0");
3596 return -EINVAL;
3597 }
3598
3599 if (btf_type_kflag(t)) {
3600 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3601 return -EINVAL;
3602 }
3603
3604 if (!t->name_off ||
3605 !btf_name_valid_section(env->btf, t->name_off)) {
3606 btf_verifier_log_type(env, t, "Invalid name");
3607 return -EINVAL;
3608 }
3609
3610 btf_verifier_log_type(env, t, NULL);
3611
3612 for_each_vsi(i, t, vsi) {
3613 /* A var cannot be in type void */
3614 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3615 btf_verifier_log_vsi(env, t, vsi,
3616 "Invalid type_id");
3617 return -EINVAL;
3618 }
3619
3620 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3621 btf_verifier_log_vsi(env, t, vsi,
3622 "Invalid offset");
3623 return -EINVAL;
3624 }
3625
3626 if (!vsi->size || vsi->size > t->size) {
3627 btf_verifier_log_vsi(env, t, vsi,
3628 "Invalid size");
3629 return -EINVAL;
3630 }
3631
3632 last_vsi_end_off = vsi->offset + vsi->size;
3633 if (last_vsi_end_off > t->size) {
3634 btf_verifier_log_vsi(env, t, vsi,
3635 "Invalid offset+size");
3636 return -EINVAL;
3637 }
3638
3639 btf_verifier_log_vsi(env, t, vsi, NULL);
3640 sum += vsi->size;
3641 }
3642
3643 if (t->size < sum) {
3644 btf_verifier_log_type(env, t, "Invalid btf_info size");
3645 return -EINVAL;
3646 }
3647
3648 return meta_needed;
3649}
3650
3651static int btf_datasec_resolve(struct btf_verifier_env *env,
3652 const struct resolve_vertex *v)
3653{
3654 const struct btf_var_secinfo *vsi;
3655 struct btf *btf = env->btf;
3656 u16 i;
3657
3658 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3659 u32 var_type_id = vsi->type, type_id, type_size = 0;
3660 const struct btf_type *var_type = btf_type_by_id(env->btf,
3661 var_type_id);
3662 if (!var_type || !btf_type_is_var(var_type)) {
3663 btf_verifier_log_vsi(env, v->t, vsi,
3664 "Not a VAR kind member");
3665 return -EINVAL;
3666 }
3667
3668 if (!env_type_is_resolve_sink(env, var_type) &&
3669 !env_type_is_resolved(env, var_type_id)) {
3670 env_stack_set_next_member(env, i + 1);
3671 return env_stack_push(env, var_type, var_type_id);
3672 }
3673
3674 type_id = var_type->type;
3675 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3676 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3677 return -EINVAL;
3678 }
3679
3680 if (vsi->size < type_size) {
3681 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3682 return -EINVAL;
3683 }
3684 }
3685
3686 env_stack_pop_resolved(env, 0, 0);
3687 return 0;
3688}
3689
3690static void btf_datasec_log(struct btf_verifier_env *env,
3691 const struct btf_type *t)
3692{
3693 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3694}
3695
31d0bc81
AM
3696static void btf_datasec_show(const struct btf *btf,
3697 const struct btf_type *t, u32 type_id,
3698 void *data, u8 bits_offset,
3699 struct btf_show *show)
1dc92851
DB
3700{
3701 const struct btf_var_secinfo *vsi;
3702 const struct btf_type *var;
3703 u32 i;
3704
31d0bc81
AM
3705 if (!btf_show_start_type(show, t, type_id, data))
3706 return;
3707
3708 btf_show_type_value(show, "section (\"%s\") = {",
3709 __btf_name_by_offset(btf, t->name_off));
1dc92851
DB
3710 for_each_vsi(i, t, vsi) {
3711 var = btf_type_by_id(btf, vsi->type);
3712 if (i)
31d0bc81
AM
3713 btf_show(show, ",");
3714 btf_type_ops(var)->show(btf, var, vsi->type,
3715 data + vsi->offset, bits_offset, show);
1dc92851 3716 }
31d0bc81 3717 btf_show_end_type(show);
1dc92851
DB
3718}
3719
3720static const struct btf_kind_operations datasec_ops = {
3721 .check_meta = btf_datasec_check_meta,
3722 .resolve = btf_datasec_resolve,
3723 .check_member = btf_df_check_member,
3724 .check_kflag_member = btf_df_check_kflag_member,
3725 .log_details = btf_datasec_log,
31d0bc81 3726 .show = btf_datasec_show,
1dc92851
DB
3727};
3728
b1828f0b
IL
3729static s32 btf_float_check_meta(struct btf_verifier_env *env,
3730 const struct btf_type *t,
3731 u32 meta_left)
3732{
3733 if (btf_type_vlen(t)) {
3734 btf_verifier_log_type(env, t, "vlen != 0");
3735 return -EINVAL;
3736 }
3737
3738 if (btf_type_kflag(t)) {
3739 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3740 return -EINVAL;
3741 }
3742
3743 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3744 t->size != 16) {
3745 btf_verifier_log_type(env, t, "Invalid type_size");
3746 return -EINVAL;
3747 }
3748
3749 btf_verifier_log_type(env, t, NULL);
3750
3751 return 0;
3752}
3753
3754static int btf_float_check_member(struct btf_verifier_env *env,
3755 const struct btf_type *struct_type,
3756 const struct btf_member *member,
3757 const struct btf_type *member_type)
3758{
3759 u64 start_offset_bytes;
3760 u64 end_offset_bytes;
3761 u64 misalign_bits;
3762 u64 align_bytes;
3763 u64 align_bits;
3764
3765 /* Different architectures have different alignment requirements, so
3766 * here we check only for the reasonable minimum. This way we ensure
3767 * that types after CO-RE can pass the kernel BTF verifier.
3768 */
3769 align_bytes = min_t(u64, sizeof(void *), member_type->size);
3770 align_bits = align_bytes * BITS_PER_BYTE;
3771 div64_u64_rem(member->offset, align_bits, &misalign_bits);
3772 if (misalign_bits) {
3773 btf_verifier_log_member(env, struct_type, member,
3774 "Member is not properly aligned");
3775 return -EINVAL;
3776 }
3777
3778 start_offset_bytes = member->offset / BITS_PER_BYTE;
3779 end_offset_bytes = start_offset_bytes + member_type->size;
3780 if (end_offset_bytes > struct_type->size) {
3781 btf_verifier_log_member(env, struct_type, member,
3782 "Member exceeds struct_size");
3783 return -EINVAL;
3784 }
3785
3786 return 0;
3787}
3788
3789static void btf_float_log(struct btf_verifier_env *env,
3790 const struct btf_type *t)
3791{
3792 btf_verifier_log(env, "size=%u", t->size);
3793}
3794
3795static const struct btf_kind_operations float_ops = {
3796 .check_meta = btf_float_check_meta,
3797 .resolve = btf_df_resolve,
3798 .check_member = btf_float_check_member,
3799 .check_kflag_member = btf_generic_check_kflag_member,
3800 .log_details = btf_float_log,
3801 .show = btf_df_show,
3802};
3803
2667a262
MKL
3804static int btf_func_proto_check(struct btf_verifier_env *env,
3805 const struct btf_type *t)
3806{
3807 const struct btf_type *ret_type;
3808 const struct btf_param *args;
3809 const struct btf *btf;
3810 u16 nr_args, i;
3811 int err;
3812
3813 btf = env->btf;
3814 args = (const struct btf_param *)(t + 1);
3815 nr_args = btf_type_vlen(t);
3816
3817 /* Check func return type which could be "void" (t->type == 0) */
3818 if (t->type) {
3819 u32 ret_type_id = t->type;
3820
3821 ret_type = btf_type_by_id(btf, ret_type_id);
3822 if (!ret_type) {
3823 btf_verifier_log_type(env, t, "Invalid return type");
3824 return -EINVAL;
3825 }
3826
3827 if (btf_type_needs_resolve(ret_type) &&
3828 !env_type_is_resolved(env, ret_type_id)) {
3829 err = btf_resolve(env, ret_type, ret_type_id);
3830 if (err)
3831 return err;
3832 }
3833
3834 /* Ensure the return type is a type that has a size */
3835 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3836 btf_verifier_log_type(env, t, "Invalid return type");
3837 return -EINVAL;
3838 }
3839 }
3840
3841 if (!nr_args)
3842 return 0;
3843
3844 /* Last func arg type_id could be 0 if it is a vararg */
3845 if (!args[nr_args - 1].type) {
3846 if (args[nr_args - 1].name_off) {
3847 btf_verifier_log_type(env, t, "Invalid arg#%u",
3848 nr_args);
3849 return -EINVAL;
3850 }
3851 nr_args--;
3852 }
3853
3854 err = 0;
3855 for (i = 0; i < nr_args; i++) {
3856 const struct btf_type *arg_type;
3857 u32 arg_type_id;
3858
3859 arg_type_id = args[i].type;
3860 arg_type = btf_type_by_id(btf, arg_type_id);
3861 if (!arg_type) {
3862 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3863 err = -EINVAL;
3864 break;
3865 }
3866
3867 if (args[i].name_off &&
3868 (!btf_name_offset_valid(btf, args[i].name_off) ||
3869 !btf_name_valid_identifier(btf, args[i].name_off))) {
3870 btf_verifier_log_type(env, t,
3871 "Invalid arg#%u", i + 1);
3872 err = -EINVAL;
3873 break;
3874 }
3875
3876 if (btf_type_needs_resolve(arg_type) &&
3877 !env_type_is_resolved(env, arg_type_id)) {
3878 err = btf_resolve(env, arg_type, arg_type_id);
3879 if (err)
3880 break;
3881 }
3882
3883 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3884 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3885 err = -EINVAL;
3886 break;
3887 }
3888 }
3889
3890 return err;
3891}
3892
3893static int btf_func_check(struct btf_verifier_env *env,
3894 const struct btf_type *t)
3895{
3896 const struct btf_type *proto_type;
3897 const struct btf_param *args;
3898 const struct btf *btf;
3899 u16 nr_args, i;
3900
3901 btf = env->btf;
3902 proto_type = btf_type_by_id(btf, t->type);
3903
3904 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3905 btf_verifier_log_type(env, t, "Invalid type_id");
3906 return -EINVAL;
3907 }
3908
3909 args = (const struct btf_param *)(proto_type + 1);
3910 nr_args = btf_type_vlen(proto_type);
3911 for (i = 0; i < nr_args; i++) {
3912 if (!args[i].name_off && args[i].type) {
3913 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3914 return -EINVAL;
3915 }
3916 }
3917
3918 return 0;
3919}
3920
69b693f0
MKL
3921static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3922 [BTF_KIND_INT] = &int_ops,
3923 [BTF_KIND_PTR] = &ptr_ops,
3924 [BTF_KIND_ARRAY] = &array_ops,
3925 [BTF_KIND_STRUCT] = &struct_ops,
3926 [BTF_KIND_UNION] = &struct_ops,
3927 [BTF_KIND_ENUM] = &enum_ops,
3928 [BTF_KIND_FWD] = &fwd_ops,
3929 [BTF_KIND_TYPEDEF] = &modifier_ops,
3930 [BTF_KIND_VOLATILE] = &modifier_ops,
3931 [BTF_KIND_CONST] = &modifier_ops,
3932 [BTF_KIND_RESTRICT] = &modifier_ops,
2667a262
MKL
3933 [BTF_KIND_FUNC] = &func_ops,
3934 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
1dc92851
DB
3935 [BTF_KIND_VAR] = &var_ops,
3936 [BTF_KIND_DATASEC] = &datasec_ops,
b1828f0b 3937 [BTF_KIND_FLOAT] = &float_ops,
69b693f0
MKL
3938};
3939
3940static s32 btf_check_meta(struct btf_verifier_env *env,
3941 const struct btf_type *t,
3942 u32 meta_left)
3943{
3944 u32 saved_meta_left = meta_left;
3945 s32 var_meta_size;
3946
3947 if (meta_left < sizeof(*t)) {
3948 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3949 env->log_type_id, meta_left, sizeof(*t));
3950 return -EINVAL;
3951 }
3952 meta_left -= sizeof(*t);
3953
aea2f7b8
MKL
3954 if (t->info & ~BTF_INFO_MASK) {
3955 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3956 env->log_type_id, t->info);
3957 return -EINVAL;
3958 }
3959
69b693f0
MKL
3960 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3961 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3962 btf_verifier_log(env, "[%u] Invalid kind:%u",
3963 env->log_type_id, BTF_INFO_KIND(t->info));
3964 return -EINVAL;
3965 }
3966
fbcf93eb 3967 if (!btf_name_offset_valid(env->btf, t->name_off)) {
69b693f0 3968 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
fbcf93eb 3969 env->log_type_id, t->name_off);
69b693f0
MKL
3970 return -EINVAL;
3971 }
3972
3973 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3974 if (var_meta_size < 0)
3975 return var_meta_size;
3976
3977 meta_left -= var_meta_size;
3978
3979 return saved_meta_left - meta_left;
3980}
3981
3982static int btf_check_all_metas(struct btf_verifier_env *env)
3983{
3984 struct btf *btf = env->btf;
3985 struct btf_header *hdr;
3986 void *cur, *end;
3987
f80442a4 3988 hdr = &btf->hdr;
69b693f0 3989 cur = btf->nohdr_data + hdr->type_off;
4b1c5d91 3990 end = cur + hdr->type_len;
69b693f0 3991
951bb646 3992 env->log_type_id = btf->base_btf ? btf->start_id : 1;
69b693f0
MKL
3993 while (cur < end) {
3994 struct btf_type *t = cur;
3995 s32 meta_size;
3996
3997 meta_size = btf_check_meta(env, t, end - cur);
3998 if (meta_size < 0)
3999 return meta_size;
4000
4001 btf_add_type(env, t);
4002 cur += meta_size;
4003 env->log_type_id++;
4004 }
4005
4006 return 0;
4007}
4008
eb3f595d
MKL
4009static bool btf_resolve_valid(struct btf_verifier_env *env,
4010 const struct btf_type *t,
4011 u32 type_id)
4012{
4013 struct btf *btf = env->btf;
4014
4015 if (!env_type_is_resolved(env, type_id))
4016 return false;
4017
1dc92851 4018 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
951bb646
AN
4019 return !btf_resolved_type_id(btf, type_id) &&
4020 !btf_resolved_type_size(btf, type_id);
eb3f595d 4021
1dc92851
DB
4022 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4023 btf_type_is_var(t)) {
eb3f595d 4024 t = btf_type_id_resolve(btf, &type_id);
1dc92851
DB
4025 return t &&
4026 !btf_type_is_modifier(t) &&
4027 !btf_type_is_var(t) &&
4028 !btf_type_is_datasec(t);
eb3f595d
MKL
4029 }
4030
4031 if (btf_type_is_array(t)) {
4032 const struct btf_array *array = btf_type_array(t);
4033 const struct btf_type *elem_type;
4034 u32 elem_type_id = array->type;
4035 u32 elem_size;
4036
4037 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4038 return elem_type && !btf_type_is_modifier(elem_type) &&
4039 (array->nelems * elem_size ==
951bb646 4040 btf_resolved_type_size(btf, type_id));
eb3f595d
MKL
4041 }
4042
4043 return false;
4044}
4045
2667a262
MKL
4046static int btf_resolve(struct btf_verifier_env *env,
4047 const struct btf_type *t, u32 type_id)
4048{
4049 u32 save_log_type_id = env->log_type_id;
4050 const struct resolve_vertex *v;
4051 int err = 0;
4052
4053 env->resolve_mode = RESOLVE_TBD;
4054 env_stack_push(env, t, type_id);
4055 while (!err && (v = env_stack_peak(env))) {
4056 env->log_type_id = v->type_id;
4057 err = btf_type_ops(v->t)->resolve(env, v);
4058 }
4059
4060 env->log_type_id = type_id;
4061 if (err == -E2BIG) {
4062 btf_verifier_log_type(env, t,
4063 "Exceeded max resolving depth:%u",
4064 MAX_RESOLVE_DEPTH);
4065 } else if (err == -EEXIST) {
4066 btf_verifier_log_type(env, t, "Loop detected");
4067 }
4068
4069 /* Final sanity check */
4070 if (!err && !btf_resolve_valid(env, t, type_id)) {
4071 btf_verifier_log_type(env, t, "Invalid resolve state");
4072 err = -EINVAL;
4073 }
4074
4075 env->log_type_id = save_log_type_id;
4076 return err;
4077}
4078
eb3f595d
MKL
4079static int btf_check_all_types(struct btf_verifier_env *env)
4080{
4081 struct btf *btf = env->btf;
951bb646
AN
4082 const struct btf_type *t;
4083 u32 type_id, i;
eb3f595d
MKL
4084 int err;
4085
4086 err = env_resolve_init(env);
4087 if (err)
4088 return err;
4089
4090 env->phase++;
951bb646
AN
4091 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4092 type_id = btf->start_id + i;
4093 t = btf_type_by_id(btf, type_id);
eb3f595d
MKL
4094
4095 env->log_type_id = type_id;
4096 if (btf_type_needs_resolve(t) &&
4097 !env_type_is_resolved(env, type_id)) {
4098 err = btf_resolve(env, t, type_id);
4099 if (err)
4100 return err;
4101 }
4102
2667a262
MKL
4103 if (btf_type_is_func_proto(t)) {
4104 err = btf_func_proto_check(env, t);
4105 if (err)
4106 return err;
4107 }
4108
4109 if (btf_type_is_func(t)) {
4110 err = btf_func_check(env, t);
4111 if (err)
4112 return err;
eb3f595d
MKL
4113 }
4114 }
4115
4116 return 0;
4117}
4118
69b693f0
MKL
4119static int btf_parse_type_sec(struct btf_verifier_env *env)
4120{
f80442a4 4121 const struct btf_header *hdr = &env->btf->hdr;
eb3f595d
MKL
4122 int err;
4123
f80442a4
MKL
4124 /* Type section must align to 4 bytes */
4125 if (hdr->type_off & (sizeof(u32) - 1)) {
4126 btf_verifier_log(env, "Unaligned type_off");
4127 return -EINVAL;
4128 }
4129
951bb646 4130 if (!env->btf->base_btf && !hdr->type_len) {
f80442a4
MKL
4131 btf_verifier_log(env, "No type found");
4132 return -EINVAL;
4133 }
4134
eb3f595d
MKL
4135 err = btf_check_all_metas(env);
4136 if (err)
4137 return err;
4138
4139 return btf_check_all_types(env);
69b693f0
MKL
4140}
4141
4142static int btf_parse_str_sec(struct btf_verifier_env *env)
4143{
4144 const struct btf_header *hdr;
4145 struct btf *btf = env->btf;
4146 const char *start, *end;
4147
f80442a4 4148 hdr = &btf->hdr;
69b693f0
MKL
4149 start = btf->nohdr_data + hdr->str_off;
4150 end = start + hdr->str_len;
4151
f80442a4
MKL
4152 if (end != btf->data + btf->data_size) {
4153 btf_verifier_log(env, "String section is not at the end");
4154 return -EINVAL;
4155 }
4156
951bb646
AN
4157 btf->strings = start;
4158
4159 if (btf->base_btf && !hdr->str_len)
4160 return 0;
4161 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4162 btf_verifier_log(env, "Invalid string section");
4163 return -EINVAL;
4164 }
4165 if (!btf->base_btf && start[0]) {
69b693f0
MKL
4166 btf_verifier_log(env, "Invalid string section");
4167 return -EINVAL;
4168 }
69b693f0
MKL
4169
4170 return 0;
4171}
4172
f80442a4
MKL
4173static const size_t btf_sec_info_offset[] = {
4174 offsetof(struct btf_header, type_off),
4175 offsetof(struct btf_header, str_off),
4176};
4177
4178static int btf_sec_info_cmp(const void *a, const void *b)
69b693f0 4179{
f80442a4
MKL
4180 const struct btf_sec_info *x = a;
4181 const struct btf_sec_info *y = b;
4182
4183 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4184}
4185
4186static int btf_check_sec_info(struct btf_verifier_env *env,
4187 u32 btf_data_size)
4188{
a2889a4c 4189 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
f80442a4 4190 u32 total, expected_total, i;
69b693f0 4191 const struct btf_header *hdr;
f80442a4
MKL
4192 const struct btf *btf;
4193
4194 btf = env->btf;
4195 hdr = &btf->hdr;
4196
4197 /* Populate the secs from hdr */
a2889a4c 4198 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
f80442a4
MKL
4199 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4200 btf_sec_info_offset[i]);
4201
a2889a4c
MKL
4202 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4203 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
f80442a4
MKL
4204
4205 /* Check for gaps and overlap among sections */
4206 total = 0;
4207 expected_total = btf_data_size - hdr->hdr_len;
a2889a4c 4208 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
f80442a4
MKL
4209 if (expected_total < secs[i].off) {
4210 btf_verifier_log(env, "Invalid section offset");
4211 return -EINVAL;
4212 }
4213 if (total < secs[i].off) {
4214 /* gap */
4215 btf_verifier_log(env, "Unsupported section found");
4216 return -EINVAL;
4217 }
4218 if (total > secs[i].off) {
4219 btf_verifier_log(env, "Section overlap found");
4220 return -EINVAL;
4221 }
4222 if (expected_total - total < secs[i].len) {
4223 btf_verifier_log(env,
4224 "Total section length too long");
4225 return -EINVAL;
4226 }
4227 total += secs[i].len;
4228 }
4229
4230 /* There is data other than hdr and known sections */
4231 if (expected_total != total) {
4232 btf_verifier_log(env, "Unsupported section found");
4233 return -EINVAL;
4234 }
4235
4236 return 0;
4237}
4238
4a6998af 4239static int btf_parse_hdr(struct btf_verifier_env *env)
f80442a4 4240{
4a6998af 4241 u32 hdr_len, hdr_copy, btf_data_size;
f80442a4 4242 const struct btf_header *hdr;
f80442a4
MKL
4243 struct btf *btf;
4244 int err;
69b693f0 4245
f80442a4 4246 btf = env->btf;
4a6998af 4247 btf_data_size = btf->data_size;
f80442a4 4248
4a6998af
ML
4249 if (btf_data_size <
4250 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
f80442a4
MKL
4251 btf_verifier_log(env, "hdr_len not found");
4252 return -EINVAL;
4253 }
4254
4a6998af
ML
4255 hdr = btf->data;
4256 hdr_len = hdr->hdr_len;
f80442a4 4257 if (btf_data_size < hdr_len) {
69b693f0
MKL
4258 btf_verifier_log(env, "btf_header not found");
4259 return -EINVAL;
4260 }
4261
4a6998af
ML
4262 /* Ensure the unsupported header fields are zero */
4263 if (hdr_len > sizeof(btf->hdr)) {
4264 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4265 u8 *end = btf->data + hdr_len;
4266
4267 for (; expected_zero < end; expected_zero++) {
4268 if (*expected_zero) {
4269 btf_verifier_log(env, "Unsupported btf_header");
4270 return -E2BIG;
4271 }
4272 }
f80442a4
MKL
4273 }
4274
4275 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4a6998af 4276 memcpy(&btf->hdr, btf->data, hdr_copy);
f80442a4
MKL
4277
4278 hdr = &btf->hdr;
4279
4280 btf_verifier_log_hdr(env, btf_data_size);
69b693f0 4281
69b693f0
MKL
4282 if (hdr->magic != BTF_MAGIC) {
4283 btf_verifier_log(env, "Invalid magic");
4284 return -EINVAL;
4285 }
4286
4287 if (hdr->version != BTF_VERSION) {
4288 btf_verifier_log(env, "Unsupported version");
4289 return -ENOTSUPP;
4290 }
4291
4292 if (hdr->flags) {
4293 btf_verifier_log(env, "Unsupported flags");
4294 return -ENOTSUPP;
4295 }
4296
bcc5e616 4297 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
69b693f0
MKL
4298 btf_verifier_log(env, "No data");
4299 return -EINVAL;
4300 }
4301
f80442a4
MKL
4302 err = btf_check_sec_info(env, btf_data_size);
4303 if (err)
4304 return err;
69b693f0
MKL
4305
4306 return 0;
4307}
4308
c571bd75 4309static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
69b693f0
MKL
4310 u32 log_level, char __user *log_ubuf, u32 log_size)
4311{
4312 struct btf_verifier_env *env = NULL;
4313 struct bpf_verifier_log *log;
4314 struct btf *btf = NULL;
4315 u8 *data;
4316 int err;
4317
4318 if (btf_data_size > BTF_MAX_SIZE)
4319 return ERR_PTR(-E2BIG);
4320
4321 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4322 if (!env)
4323 return ERR_PTR(-ENOMEM);
4324
4325 log = &env->log;
4326 if (log_level || log_ubuf || log_size) {
4327 /* user requested verbose verifier output
4328 * and supplied buffer to store the verification trace
4329 */
4330 log->level = log_level;
4331 log->ubuf = log_ubuf;
4332 log->len_total = log_size;
4333
4334 /* log attributes have to be sane */
4335 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4336 !log->level || !log->ubuf) {
4337 err = -EINVAL;
4338 goto errout;
4339 }
4340 }
4341
4342 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4343 if (!btf) {
4344 err = -ENOMEM;
4345 goto errout;
4346 }
f80442a4
MKL
4347 env->btf = btf;
4348
69b693f0
MKL
4349 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4350 if (!data) {
4351 err = -ENOMEM;
4352 goto errout;
4353 }
4354
4355 btf->data = data;
4356 btf->data_size = btf_data_size;
4357
c571bd75 4358 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
69b693f0
MKL
4359 err = -EFAULT;
4360 goto errout;
4361 }
4362
4a6998af
ML
4363 err = btf_parse_hdr(env);
4364 if (err)
4365 goto errout;
4366
4367 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4368
69b693f0
MKL
4369 err = btf_parse_str_sec(env);
4370 if (err)
4371 goto errout;
4372
4373 err = btf_parse_type_sec(env);
4374 if (err)
4375 goto errout;
4376
f80442a4 4377 if (log->level && bpf_verifier_log_full(log)) {
69b693f0
MKL
4378 err = -ENOSPC;
4379 goto errout;
4380 }
4381
f80442a4
MKL
4382 btf_verifier_env_free(env);
4383 refcount_set(&btf->refcnt, 1);
4384 return btf;
69b693f0
MKL
4385
4386errout:
4387 btf_verifier_env_free(env);
4388 if (btf)
4389 btf_free(btf);
4390 return ERR_PTR(err);
4391}
b00b8dae 4392
90ceddcb
FS
4393extern char __weak __start_BTF[];
4394extern char __weak __stop_BTF[];
91cc1a99
AS
4395extern struct btf *btf_vmlinux;
4396
4397#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 4398#define BPF_LINK_TYPE(_id, _name)
91cc1a99
AS
4399static union {
4400 struct bpf_ctx_convert {
4401#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4402 prog_ctx_type _id##_prog; \
4403 kern_ctx_type _id##_kern;
4404#include <linux/bpf_types.h>
4405#undef BPF_PROG_TYPE
4406 } *__t;
4407 /* 't' is written once under lock. Read many times. */
4408 const struct btf_type *t;
4409} bpf_ctx_convert;
4410enum {
4411#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4412 __ctx_convert##_id,
4413#include <linux/bpf_types.h>
4414#undef BPF_PROG_TYPE
ce27709b 4415 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
91cc1a99
AS
4416};
4417static u8 bpf_ctx_convert_map[] = {
4418#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4419 [_id] = __ctx_convert##_id,
4420#include <linux/bpf_types.h>
4421#undef BPF_PROG_TYPE
4c80c7bc 4422 0, /* avoid empty array */
91cc1a99
AS
4423};
4424#undef BPF_MAP_TYPE
f2e10bff 4425#undef BPF_LINK_TYPE
91cc1a99
AS
4426
4427static const struct btf_member *
34747c41 4428btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
51c39bb1
AS
4429 const struct btf_type *t, enum bpf_prog_type prog_type,
4430 int arg)
91cc1a99
AS
4431{
4432 const struct btf_type *conv_struct;
4433 const struct btf_type *ctx_struct;
4434 const struct btf_member *ctx_type;
4435 const char *tname, *ctx_tname;
4436
4437 conv_struct = bpf_ctx_convert.t;
4438 if (!conv_struct) {
4439 bpf_log(log, "btf_vmlinux is malformed\n");
4440 return NULL;
4441 }
4442 t = btf_type_by_id(btf, t->type);
4443 while (btf_type_is_modifier(t))
4444 t = btf_type_by_id(btf, t->type);
4445 if (!btf_type_is_struct(t)) {
4446 /* Only pointer to struct is supported for now.
4447 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4448 * is not supported yet.
4449 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4450 */
91cc1a99
AS
4451 return NULL;
4452 }
4453 tname = btf_name_by_offset(btf, t->name_off);
4454 if (!tname) {
51c39bb1 4455 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
91cc1a99
AS
4456 return NULL;
4457 }
4458 /* prog_type is valid bpf program type. No need for bounds check. */
4459 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4460 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4461 * Like 'struct __sk_buff'
4462 */
4463 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4464 if (!ctx_struct)
4465 /* should not happen */
4466 return NULL;
4467 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4468 if (!ctx_tname) {
4469 /* should not happen */
4470 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4471 return NULL;
4472 }
4473 /* only compare that prog's ctx type name is the same as
4474 * kernel expects. No need to compare field by field.
4475 * It's ok for bpf prog to do:
4476 * struct __sk_buff {};
4477 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4478 * { // no fields of skb are ever used }
4479 */
4480 if (strcmp(ctx_tname, tname))
4481 return NULL;
4482 return ctx_type;
4483}
8580ac94 4484
41c48f3a
AI
4485static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4486#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4487#define BPF_LINK_TYPE(_id, _name)
4488#define BPF_MAP_TYPE(_id, _ops) \
4489 [_id] = &_ops,
4490#include <linux/bpf_types.h>
4491#undef BPF_PROG_TYPE
4492#undef BPF_LINK_TYPE
4493#undef BPF_MAP_TYPE
4494};
4495
4496static int btf_vmlinux_map_ids_init(const struct btf *btf,
4497 struct bpf_verifier_log *log)
4498{
4499 const struct bpf_map_ops *ops;
4500 int i, btf_id;
4501
4502 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4503 ops = btf_vmlinux_map_ops[i];
4504 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4505 continue;
4506 if (!ops->map_btf_name || !ops->map_btf_id) {
4507 bpf_log(log, "map type %d is misconfigured\n", i);
4508 return -EINVAL;
4509 }
4510 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4511 BTF_KIND_STRUCT);
4512 if (btf_id < 0)
4513 return btf_id;
4514 *ops->map_btf_id = btf_id;
4515 }
4516
4517 return 0;
4518}
4519
5b92a28a
AS
4520static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4521 struct btf *btf,
4522 const struct btf_type *t,
51c39bb1
AS
4523 enum bpf_prog_type prog_type,
4524 int arg)
5b92a28a
AS
4525{
4526 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4527
51c39bb1 4528 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5b92a28a
AS
4529 if (!prog_ctx_type)
4530 return -ENOENT;
4531 kern_ctx_type = prog_ctx_type + 1;
4532 return kern_ctx_type->type;
4533}
4534
49f4e672
JO
4535BTF_ID_LIST(bpf_ctx_convert_btf_id)
4536BTF_ID(struct, bpf_ctx_convert)
4537
8580ac94
AS
4538struct btf *btf_parse_vmlinux(void)
4539{
4540 struct btf_verifier_env *env = NULL;
4541 struct bpf_verifier_log *log;
4542 struct btf *btf = NULL;
49f4e672 4543 int err;
8580ac94
AS
4544
4545 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4546 if (!env)
4547 return ERR_PTR(-ENOMEM);
4548
4549 log = &env->log;
4550 log->level = BPF_LOG_KERNEL;
4551
4552 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4553 if (!btf) {
4554 err = -ENOMEM;
4555 goto errout;
4556 }
4557 env->btf = btf;
4558
90ceddcb
FS
4559 btf->data = __start_BTF;
4560 btf->data_size = __stop_BTF - __start_BTF;
53297220
AN
4561 btf->kernel_btf = true;
4562 snprintf(btf->name, sizeof(btf->name), "vmlinux");
8580ac94
AS
4563
4564 err = btf_parse_hdr(env);
4565 if (err)
4566 goto errout;
4567
4568 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4569
4570 err = btf_parse_str_sec(env);
4571 if (err)
4572 goto errout;
4573
4574 err = btf_check_all_metas(env);
4575 if (err)
4576 goto errout;
4577
a2d0d62f 4578 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
49f4e672 4579 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
91cc1a99 4580
41c48f3a
AI
4581 /* find bpf map structs for map_ptr access checking */
4582 err = btf_vmlinux_map_ids_init(btf, log);
4583 if (err < 0)
4584 goto errout;
4585
d3e42bb0 4586 bpf_struct_ops_init(btf, log);
27ae7997 4587
8580ac94 4588 refcount_set(&btf->refcnt, 1);
53297220
AN
4589
4590 err = btf_alloc_id(btf);
4591 if (err)
4592 goto errout;
4593
4594 btf_verifier_env_free(env);
8580ac94
AS
4595 return btf;
4596
4597errout:
4598 btf_verifier_env_free(env);
4599 if (btf) {
4600 kvfree(btf->types);
4601 kfree(btf);
4602 }
4603 return ERR_PTR(err);
4604}
4605
7112d127
AN
4606#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4607
36e68442
AN
4608static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4609{
4610 struct btf_verifier_env *env = NULL;
4611 struct bpf_verifier_log *log;
4612 struct btf *btf = NULL, *base_btf;
4613 int err;
4614
4615 base_btf = bpf_get_btf_vmlinux();
4616 if (IS_ERR(base_btf))
4617 return base_btf;
4618 if (!base_btf)
4619 return ERR_PTR(-EINVAL);
4620
4621 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4622 if (!env)
4623 return ERR_PTR(-ENOMEM);
4624
4625 log = &env->log;
4626 log->level = BPF_LOG_KERNEL;
4627
4628 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4629 if (!btf) {
4630 err = -ENOMEM;
4631 goto errout;
4632 }
4633 env->btf = btf;
4634
4635 btf->base_btf = base_btf;
4636 btf->start_id = base_btf->nr_types;
4637 btf->start_str_off = base_btf->hdr.str_len;
4638 btf->kernel_btf = true;
4639 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4640
4641 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4642 if (!btf->data) {
4643 err = -ENOMEM;
4644 goto errout;
4645 }
4646 memcpy(btf->data, data, data_size);
4647 btf->data_size = data_size;
4648
4649 err = btf_parse_hdr(env);
4650 if (err)
4651 goto errout;
4652
4653 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4654
4655 err = btf_parse_str_sec(env);
4656 if (err)
4657 goto errout;
4658
4659 err = btf_check_all_metas(env);
4660 if (err)
4661 goto errout;
4662
4663 btf_verifier_env_free(env);
4664 refcount_set(&btf->refcnt, 1);
4665 return btf;
4666
4667errout:
4668 btf_verifier_env_free(env);
4669 if (btf) {
4670 kvfree(btf->data);
4671 kvfree(btf->types);
4672 kfree(btf);
4673 }
4674 return ERR_PTR(err);
4675}
4676
7112d127
AN
4677#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4678
5b92a28a
AS
4679struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4680{
3aac1ead 4681 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4682
22dc4a0f 4683 if (tgt_prog)
5b92a28a 4684 return tgt_prog->aux->btf;
22dc4a0f
AN
4685 else
4686 return prog->aux->attach_btf;
5b92a28a
AS
4687}
4688
84ad7a7a
JO
4689static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4690{
4691 /* t comes in already as a pointer */
4692 t = btf_type_by_id(btf, t->type);
4693
4694 /* allow const */
4695 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4696 t = btf_type_by_id(btf, t->type);
4697
4698 /* char, signed char, unsigned char */
4699 return btf_type_is_int(t) && t->size == 1;
4700}
4701
9e15db66
AS
4702bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4703 const struct bpf_prog *prog,
4704 struct bpf_insn_access_aux *info)
4705{
38207291 4706 const struct btf_type *t = prog->aux->attach_func_proto;
3aac1ead 4707 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5b92a28a 4708 struct btf *btf = bpf_prog_get_target_btf(prog);
38207291 4709 const char *tname = prog->aux->attach_func_name;
9e15db66 4710 struct bpf_verifier_log *log = info->log;
9e15db66 4711 const struct btf_param *args;
9e15db66 4712 u32 nr_args, arg;
3c32cc1b 4713 int i, ret;
9e15db66 4714
9e15db66 4715 if (off % 8) {
38207291 4716 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
9e15db66
AS
4717 tname, off);
4718 return false;
4719 }
4720 arg = off / 8;
4721 args = (const struct btf_param *)(t + 1);
523a4cf4
DB
4722 /* if (t == NULL) Fall back to default BPF prog with
4723 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4724 */
4725 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
38207291
MKL
4726 if (prog->aux->attach_btf_trace) {
4727 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4728 args++;
4729 nr_args--;
4730 }
fec56f58 4731
f50b49a0
KS
4732 if (arg > nr_args) {
4733 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4734 tname, arg + 1);
4735 return false;
4736 }
4737
6ba43b76 4738 if (arg == nr_args) {
f50b49a0
KS
4739 switch (prog->expected_attach_type) {
4740 case BPF_LSM_MAC:
4741 case BPF_TRACE_FEXIT:
9e4e01df
KS
4742 /* When LSM programs are attached to void LSM hooks
4743 * they use FEXIT trampolines and when attached to
4744 * int LSM hooks, they use MODIFY_RETURN trampolines.
4745 *
4746 * While the LSM programs are BPF_MODIFY_RETURN-like
4747 * the check:
4748 *
4749 * if (ret_type != 'int')
4750 * return -EINVAL;
4751 *
4752 * is _not_ done here. This is still safe as LSM hooks
4753 * have only void and int return types.
4754 */
6ba43b76
KS
4755 if (!t)
4756 return true;
4757 t = btf_type_by_id(btf, t->type);
f50b49a0
KS
4758 break;
4759 case BPF_MODIFY_RETURN:
6ba43b76
KS
4760 /* For now the BPF_MODIFY_RETURN can only be attached to
4761 * functions that return an int.
4762 */
4763 if (!t)
4764 return false;
4765
4766 t = btf_type_skip_modifiers(btf, t->type, NULL);
a9b59159 4767 if (!btf_type_is_small_int(t)) {
6ba43b76
KS
4768 bpf_log(log,
4769 "ret type %s not allowed for fmod_ret\n",
4770 btf_kind_str[BTF_INFO_KIND(t->info)]);
4771 return false;
4772 }
f50b49a0
KS
4773 break;
4774 default:
4775 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4776 tname, arg + 1);
4777 return false;
6ba43b76 4778 }
fec56f58 4779 } else {
5b92a28a 4780 if (!t)
523a4cf4 4781 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5b92a28a
AS
4782 return true;
4783 t = btf_type_by_id(btf, args[arg].type);
9e15db66 4784 }
f50b49a0 4785
9e15db66
AS
4786 /* skip modifiers */
4787 while (btf_type_is_modifier(t))
5b92a28a 4788 t = btf_type_by_id(btf, t->type);
a9b59159 4789 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
9e15db66
AS
4790 /* accessing a scalar */
4791 return true;
4792 if (!btf_type_is_ptr(t)) {
4793 bpf_log(log,
38207291 4794 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
9e15db66 4795 tname, arg,
5b92a28a 4796 __btf_name_by_offset(btf, t->name_off),
9e15db66
AS
4797 btf_kind_str[BTF_INFO_KIND(t->info)]);
4798 return false;
4799 }
afbf21dc
YS
4800
4801 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4802 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4803 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4804
4805 if (ctx_arg_info->offset == off &&
4806 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4807 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4808 info->reg_type = ctx_arg_info->reg_type;
4809 return true;
4810 }
4811 }
4812
9e15db66
AS
4813 if (t->type == 0)
4814 /* This is a pointer to void.
4815 * It is the same as scalar from the verifier safety pov.
4816 * No further pointer walking is allowed.
4817 */
4818 return true;
4819
84ad7a7a
JO
4820 if (is_string_ptr(btf, t))
4821 return true;
4822
9e15db66 4823 /* this is a pointer to another type */
3c32cc1b
YS
4824 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4825 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4826
4827 if (ctx_arg_info->offset == off) {
d3621642
YS
4828 if (!ctx_arg_info->btf_id) {
4829 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
4830 return false;
4831 }
4832
3c32cc1b 4833 info->reg_type = ctx_arg_info->reg_type;
22dc4a0f 4834 info->btf = btf_vmlinux;
951cf368
YS
4835 info->btf_id = ctx_arg_info->btf_id;
4836 return true;
3c32cc1b
YS
4837 }
4838 }
9e15db66 4839
951cf368 4840 info->reg_type = PTR_TO_BTF_ID;
5b92a28a 4841 if (tgt_prog) {
43bc2874
THJ
4842 enum bpf_prog_type tgt_type;
4843
4844 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4845 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4846 else
4847 tgt_type = tgt_prog->type;
4848
4849 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5b92a28a 4850 if (ret > 0) {
22dc4a0f 4851 info->btf = btf_vmlinux;
5b92a28a
AS
4852 info->btf_id = ret;
4853 return true;
4854 } else {
4855 return false;
4856 }
4857 }
275517ff 4858
22dc4a0f 4859 info->btf = btf;
275517ff 4860 info->btf_id = t->type;
5b92a28a 4861 t = btf_type_by_id(btf, t->type);
9e15db66 4862 /* skip modifiers */
275517ff
MKL
4863 while (btf_type_is_modifier(t)) {
4864 info->btf_id = t->type;
5b92a28a 4865 t = btf_type_by_id(btf, t->type);
275517ff 4866 }
9e15db66
AS
4867 if (!btf_type_is_struct(t)) {
4868 bpf_log(log,
38207291 4869 "func '%s' arg%d type %s is not a struct\n",
9e15db66
AS
4870 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4871 return false;
4872 }
38207291 4873 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
9e15db66 4874 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5b92a28a 4875 __btf_name_by_offset(btf, t->name_off));
9e15db66
AS
4876 return true;
4877}
4878
1c6d28a6
JO
4879enum bpf_struct_walk_result {
4880 /* < 0 error */
4881 WALK_SCALAR = 0,
4882 WALK_PTR,
4883 WALK_STRUCT,
4884};
4885
22dc4a0f 4886static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
4887 const struct btf_type *t, int off, int size,
4888 u32 *next_btf_id)
9e15db66 4889{
7e3617a7
MKL
4890 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4891 const struct btf_type *mtype, *elem_type = NULL;
9e15db66 4892 const struct btf_member *member;
9e15db66 4893 const char *tname, *mname;
1c6d28a6 4894 u32 vlen, elem_id, mid;
9e15db66
AS
4895
4896again:
22dc4a0f 4897 tname = __btf_name_by_offset(btf, t->name_off);
9e15db66 4898 if (!btf_type_is_struct(t)) {
275517ff 4899 bpf_log(log, "Type '%s' is not a struct\n", tname);
9e15db66
AS
4900 return -EINVAL;
4901 }
4902
9c5f8a10 4903 vlen = btf_type_vlen(t);
976aba00 4904 if (off + size > t->size) {
9c5f8a10
YS
4905 /* If the last element is a variable size array, we may
4906 * need to relax the rule.
4907 */
4908 struct btf_array *array_elem;
4909
4910 if (vlen == 0)
4911 goto error;
4912
4913 member = btf_type_member(t) + vlen - 1;
22dc4a0f 4914 mtype = btf_type_skip_modifiers(btf, member->type,
9c5f8a10
YS
4915 NULL);
4916 if (!btf_type_is_array(mtype))
4917 goto error;
4918
4919 array_elem = (struct btf_array *)(mtype + 1);
4920 if (array_elem->nelems != 0)
4921 goto error;
4922
4923 moff = btf_member_bit_offset(t, member) / 8;
4924 if (off < moff)
4925 goto error;
4926
4927 /* Only allow structure for now, can be relaxed for
4928 * other types later.
4929 */
22dc4a0f 4930 t = btf_type_skip_modifiers(btf, array_elem->type,
dafe58fc
JO
4931 NULL);
4932 if (!btf_type_is_struct(t))
9c5f8a10
YS
4933 goto error;
4934
dafe58fc
JO
4935 off = (off - moff) % t->size;
4936 goto again;
9c5f8a10
YS
4937
4938error:
976aba00
MKL
4939 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4940 tname, off, size);
4941 return -EACCES;
4942 }
9e15db66 4943
976aba00 4944 for_each_member(i, t, member) {
7e3617a7
MKL
4945 /* offset of the field in bytes */
4946 moff = btf_member_bit_offset(t, member) / 8;
4947 if (off + size <= moff)
9e15db66
AS
4948 /* won't find anything, field is already too far */
4949 break;
976aba00
MKL
4950
4951 if (btf_member_bitfield_size(t, member)) {
4952 u32 end_bit = btf_member_bit_offset(t, member) +
4953 btf_member_bitfield_size(t, member);
4954
4955 /* off <= moff instead of off == moff because clang
4956 * does not generate a BTF member for anonymous
4957 * bitfield like the ":16" here:
4958 * struct {
4959 * int :16;
4960 * int x:8;
4961 * };
4962 */
4963 if (off <= moff &&
4964 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
1c6d28a6 4965 return WALK_SCALAR;
976aba00
MKL
4966
4967 /* off may be accessing a following member
4968 *
4969 * or
4970 *
4971 * Doing partial access at either end of this
4972 * bitfield. Continue on this case also to
4973 * treat it as not accessing this bitfield
4974 * and eventually error out as field not
4975 * found to keep it simple.
4976 * It could be relaxed if there was a legit
4977 * partial access case later.
4978 */
4979 continue;
4980 }
4981
7e3617a7
MKL
4982 /* In case of "off" is pointing to holes of a struct */
4983 if (off < moff)
976aba00 4984 break;
9e15db66
AS
4985
4986 /* type of the field */
1c6d28a6 4987 mid = member->type;
22dc4a0f
AN
4988 mtype = btf_type_by_id(btf, member->type);
4989 mname = __btf_name_by_offset(btf, member->name_off);
9e15db66 4990
22dc4a0f 4991 mtype = __btf_resolve_size(btf, mtype, &msize,
1c6d28a6
JO
4992 &elem_type, &elem_id, &total_nelems,
4993 &mid);
7e3617a7 4994 if (IS_ERR(mtype)) {
9e15db66
AS
4995 bpf_log(log, "field %s doesn't have size\n", mname);
4996 return -EFAULT;
4997 }
7e3617a7
MKL
4998
4999 mtrue_end = moff + msize;
5000 if (off >= mtrue_end)
9e15db66
AS
5001 /* no overlap with member, keep iterating */
5002 continue;
7e3617a7
MKL
5003
5004 if (btf_type_is_array(mtype)) {
5005 u32 elem_idx;
5006
6298399b 5007 /* __btf_resolve_size() above helps to
7e3617a7
MKL
5008 * linearize a multi-dimensional array.
5009 *
5010 * The logic here is treating an array
5011 * in a struct as the following way:
5012 *
5013 * struct outer {
5014 * struct inner array[2][2];
5015 * };
5016 *
5017 * looks like:
5018 *
5019 * struct outer {
5020 * struct inner array_elem0;
5021 * struct inner array_elem1;
5022 * struct inner array_elem2;
5023 * struct inner array_elem3;
5024 * };
5025 *
5026 * When accessing outer->array[1][0], it moves
5027 * moff to "array_elem2", set mtype to
5028 * "struct inner", and msize also becomes
5029 * sizeof(struct inner). Then most of the
5030 * remaining logic will fall through without
5031 * caring the current member is an array or
5032 * not.
5033 *
5034 * Unlike mtype/msize/moff, mtrue_end does not
5035 * change. The naming difference ("_true") tells
5036 * that it is not always corresponding to
5037 * the current mtype/msize/moff.
5038 * It is the true end of the current
5039 * member (i.e. array in this case). That
5040 * will allow an int array to be accessed like
5041 * a scratch space,
5042 * i.e. allow access beyond the size of
5043 * the array's element as long as it is
5044 * within the mtrue_end boundary.
5045 */
5046
5047 /* skip empty array */
5048 if (moff == mtrue_end)
5049 continue;
5050
5051 msize /= total_nelems;
5052 elem_idx = (off - moff) / msize;
5053 moff += elem_idx * msize;
5054 mtype = elem_type;
1c6d28a6 5055 mid = elem_id;
7e3617a7
MKL
5056 }
5057
9e15db66
AS
5058 /* the 'off' we're looking for is either equal to start
5059 * of this field or inside of this struct
5060 */
5061 if (btf_type_is_struct(mtype)) {
5062 /* our field must be inside that union or struct */
5063 t = mtype;
5064
1c6d28a6
JO
5065 /* return if the offset matches the member offset */
5066 if (off == moff) {
5067 *next_btf_id = mid;
5068 return WALK_STRUCT;
5069 }
5070
9e15db66 5071 /* adjust offset we're looking for */
7e3617a7 5072 off -= moff;
9e15db66
AS
5073 goto again;
5074 }
9e15db66
AS
5075
5076 if (btf_type_is_ptr(mtype)) {
5077 const struct btf_type *stype;
257af63d 5078 u32 id;
9e15db66 5079
7e3617a7
MKL
5080 if (msize != size || off != moff) {
5081 bpf_log(log,
5082 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5083 mname, moff, tname, off, size);
5084 return -EACCES;
5085 }
22dc4a0f 5086 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
9e15db66 5087 if (btf_type_is_struct(stype)) {
257af63d 5088 *next_btf_id = id;
1c6d28a6 5089 return WALK_PTR;
9e15db66
AS
5090 }
5091 }
7e3617a7
MKL
5092
5093 /* Allow more flexible access within an int as long as
5094 * it is within mtrue_end.
5095 * Since mtrue_end could be the end of an array,
5096 * that also allows using an array of int as a scratch
5097 * space. e.g. skb->cb[].
5098 */
5099 if (off + size > mtrue_end) {
5100 bpf_log(log,
5101 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5102 mname, mtrue_end, tname, off, size);
5103 return -EACCES;
5104 }
5105
1c6d28a6 5106 return WALK_SCALAR;
9e15db66
AS
5107 }
5108 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5109 return -EINVAL;
5110}
5111
22dc4a0f 5112int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
1c6d28a6
JO
5113 const struct btf_type *t, int off, int size,
5114 enum bpf_access_type atype __maybe_unused,
5115 u32 *next_btf_id)
5116{
5117 int err;
5118 u32 id;
5119
5120 do {
22dc4a0f 5121 err = btf_struct_walk(log, btf, t, off, size, &id);
1c6d28a6
JO
5122
5123 switch (err) {
5124 case WALK_PTR:
5125 /* If we found the pointer or scalar on t+off,
5126 * we're done.
5127 */
5128 *next_btf_id = id;
5129 return PTR_TO_BTF_ID;
5130 case WALK_SCALAR:
5131 return SCALAR_VALUE;
5132 case WALK_STRUCT:
5133 /* We found nested struct, so continue the search
5134 * by diving in it. At this point the offset is
5135 * aligned with the new type, so set it to 0.
5136 */
22dc4a0f 5137 t = btf_type_by_id(btf, id);
1c6d28a6
JO
5138 off = 0;
5139 break;
5140 default:
5141 /* It's either error or unknown return value..
5142 * scream and leave.
5143 */
5144 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5145 return -EINVAL;
5146 return err;
5147 }
5148 } while (t);
5149
5150 return -EINVAL;
5151}
5152
22dc4a0f
AN
5153/* Check that two BTF types, each specified as an BTF object + id, are exactly
5154 * the same. Trivial ID check is not enough due to module BTFs, because we can
5155 * end up with two different module BTFs, but IDs point to the common type in
5156 * vmlinux BTF.
5157 */
5158static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5159 const struct btf *btf2, u32 id2)
5160{
5161 if (id1 != id2)
5162 return false;
5163 if (btf1 == btf2)
5164 return true;
5165 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5166}
5167
faaf4a79 5168bool btf_struct_ids_match(struct bpf_verifier_log *log,
22dc4a0f
AN
5169 const struct btf *btf, u32 id, int off,
5170 const struct btf *need_btf, u32 need_type_id)
faaf4a79
JO
5171{
5172 const struct btf_type *type;
5173 int err;
5174
5175 /* Are we already done? */
22dc4a0f 5176 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
faaf4a79
JO
5177 return true;
5178
5179again:
22dc4a0f 5180 type = btf_type_by_id(btf, id);
faaf4a79
JO
5181 if (!type)
5182 return false;
22dc4a0f 5183 err = btf_struct_walk(log, btf, type, off, 1, &id);
faaf4a79
JO
5184 if (err != WALK_STRUCT)
5185 return false;
5186
5187 /* We found nested struct object. If it matches
5188 * the requested ID, we're done. Otherwise let's
5189 * continue the search with offset 0 in the new
5190 * type.
5191 */
22dc4a0f 5192 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
faaf4a79
JO
5193 off = 0;
5194 goto again;
5195 }
5196
5197 return true;
5198}
5199
fec56f58
AS
5200static int __get_type_size(struct btf *btf, u32 btf_id,
5201 const struct btf_type **bad_type)
5202{
5203 const struct btf_type *t;
5204
5205 if (!btf_id)
5206 /* void */
5207 return 0;
5208 t = btf_type_by_id(btf, btf_id);
5209 while (t && btf_type_is_modifier(t))
5210 t = btf_type_by_id(btf, t->type);
d0f01043 5211 if (!t) {
951bb646 5212 *bad_type = btf_type_by_id(btf, 0);
fec56f58 5213 return -EINVAL;
d0f01043 5214 }
fec56f58
AS
5215 if (btf_type_is_ptr(t))
5216 /* kernel size of pointer. Not BPF's size of pointer*/
5217 return sizeof(void *);
5218 if (btf_type_is_int(t) || btf_type_is_enum(t))
5219 return t->size;
5220 *bad_type = t;
5221 return -EINVAL;
5222}
5223
5224int btf_distill_func_proto(struct bpf_verifier_log *log,
5225 struct btf *btf,
5226 const struct btf_type *func,
5227 const char *tname,
5228 struct btf_func_model *m)
5229{
5230 const struct btf_param *args;
5231 const struct btf_type *t;
5232 u32 i, nargs;
5233 int ret;
5234
5b92a28a
AS
5235 if (!func) {
5236 /* BTF function prototype doesn't match the verifier types.
523a4cf4 5237 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5b92a28a 5238 */
523a4cf4 5239 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5b92a28a
AS
5240 m->arg_size[i] = 8;
5241 m->ret_size = 8;
523a4cf4 5242 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5b92a28a
AS
5243 return 0;
5244 }
fec56f58
AS
5245 args = (const struct btf_param *)(func + 1);
5246 nargs = btf_type_vlen(func);
5247 if (nargs >= MAX_BPF_FUNC_ARGS) {
5248 bpf_log(log,
5249 "The function %s has %d arguments. Too many.\n",
5250 tname, nargs);
5251 return -EINVAL;
5252 }
5253 ret = __get_type_size(btf, func->type, &t);
5254 if (ret < 0) {
5255 bpf_log(log,
5256 "The function %s return type %s is unsupported.\n",
5257 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5258 return -EINVAL;
5259 }
5260 m->ret_size = ret;
5261
5262 for (i = 0; i < nargs; i++) {
31379397
JO
5263 if (i == nargs - 1 && args[i].type == 0) {
5264 bpf_log(log,
5265 "The function %s with variable args is unsupported.\n",
5266 tname);
5267 return -EINVAL;
5268 }
fec56f58
AS
5269 ret = __get_type_size(btf, args[i].type, &t);
5270 if (ret < 0) {
5271 bpf_log(log,
5272 "The function %s arg%d type %s is unsupported.\n",
5273 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5274 return -EINVAL;
5275 }
31379397
JO
5276 if (ret == 0) {
5277 bpf_log(log,
5278 "The function %s has malformed void argument.\n",
5279 tname);
5280 return -EINVAL;
5281 }
fec56f58
AS
5282 m->arg_size[i] = ret;
5283 }
5284 m->nr_args = nargs;
5285 return 0;
5286}
5287
be8704ff
AS
5288/* Compare BTFs of two functions assuming only scalars and pointers to context.
5289 * t1 points to BTF_KIND_FUNC in btf1
5290 * t2 points to BTF_KIND_FUNC in btf2
5291 * Returns:
5292 * EINVAL - function prototype mismatch
5293 * EFAULT - verifier bug
5294 * 0 - 99% match. The last 1% is validated by the verifier.
5295 */
2bf0eb9b
HY
5296static int btf_check_func_type_match(struct bpf_verifier_log *log,
5297 struct btf *btf1, const struct btf_type *t1,
5298 struct btf *btf2, const struct btf_type *t2)
be8704ff
AS
5299{
5300 const struct btf_param *args1, *args2;
5301 const char *fn1, *fn2, *s1, *s2;
5302 u32 nargs1, nargs2, i;
5303
5304 fn1 = btf_name_by_offset(btf1, t1->name_off);
5305 fn2 = btf_name_by_offset(btf2, t2->name_off);
5306
5307 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5308 bpf_log(log, "%s() is not a global function\n", fn1);
5309 return -EINVAL;
5310 }
5311 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5312 bpf_log(log, "%s() is not a global function\n", fn2);
5313 return -EINVAL;
5314 }
5315
5316 t1 = btf_type_by_id(btf1, t1->type);
5317 if (!t1 || !btf_type_is_func_proto(t1))
5318 return -EFAULT;
5319 t2 = btf_type_by_id(btf2, t2->type);
5320 if (!t2 || !btf_type_is_func_proto(t2))
5321 return -EFAULT;
5322
5323 args1 = (const struct btf_param *)(t1 + 1);
5324 nargs1 = btf_type_vlen(t1);
5325 args2 = (const struct btf_param *)(t2 + 1);
5326 nargs2 = btf_type_vlen(t2);
5327
5328 if (nargs1 != nargs2) {
5329 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5330 fn1, nargs1, fn2, nargs2);
5331 return -EINVAL;
5332 }
5333
5334 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5335 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5336 if (t1->info != t2->info) {
5337 bpf_log(log,
5338 "Return type %s of %s() doesn't match type %s of %s()\n",
5339 btf_type_str(t1), fn1,
5340 btf_type_str(t2), fn2);
5341 return -EINVAL;
5342 }
5343
5344 for (i = 0; i < nargs1; i++) {
5345 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5346 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5347
5348 if (t1->info != t2->info) {
5349 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5350 i, fn1, btf_type_str(t1),
5351 fn2, btf_type_str(t2));
5352 return -EINVAL;
5353 }
5354 if (btf_type_has_size(t1) && t1->size != t2->size) {
5355 bpf_log(log,
5356 "arg%d in %s() has size %d while %s() has %d\n",
5357 i, fn1, t1->size,
5358 fn2, t2->size);
5359 return -EINVAL;
5360 }
5361
5362 /* global functions are validated with scalars and pointers
5363 * to context only. And only global functions can be replaced.
5364 * Hence type check only those types.
5365 */
5366 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5367 continue;
5368 if (!btf_type_is_ptr(t1)) {
5369 bpf_log(log,
5370 "arg%d in %s() has unrecognized type\n",
5371 i, fn1);
5372 return -EINVAL;
5373 }
5374 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5375 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5376 if (!btf_type_is_struct(t1)) {
5377 bpf_log(log,
5378 "arg%d in %s() is not a pointer to context\n",
5379 i, fn1);
5380 return -EINVAL;
5381 }
5382 if (!btf_type_is_struct(t2)) {
5383 bpf_log(log,
5384 "arg%d in %s() is not a pointer to context\n",
5385 i, fn2);
5386 return -EINVAL;
5387 }
5388 /* This is an optional check to make program writing easier.
5389 * Compare names of structs and report an error to the user.
5390 * btf_prepare_func_args() already checked that t2 struct
5391 * is a context type. btf_prepare_func_args() will check
5392 * later that t1 struct is a context type as well.
5393 */
5394 s1 = btf_name_by_offset(btf1, t1->name_off);
5395 s2 = btf_name_by_offset(btf2, t2->name_off);
5396 if (strcmp(s1, s2)) {
5397 bpf_log(log,
5398 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5399 i, fn1, s1, fn2, s2);
5400 return -EINVAL;
5401 }
5402 }
5403 return 0;
5404}
5405
5406/* Compare BTFs of given program with BTF of target program */
efc68158 5407int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
be8704ff
AS
5408 struct btf *btf2, const struct btf_type *t2)
5409{
5410 struct btf *btf1 = prog->aux->btf;
5411 const struct btf_type *t1;
5412 u32 btf_id = 0;
5413
5414 if (!prog->aux->func_info) {
efc68158 5415 bpf_log(log, "Program extension requires BTF\n");
be8704ff
AS
5416 return -EINVAL;
5417 }
5418
5419 btf_id = prog->aux->func_info[0].type_id;
5420 if (!btf_id)
5421 return -EFAULT;
5422
5423 t1 = btf_type_by_id(btf1, btf_id);
5424 if (!t1 || !btf_type_is_func(t1))
5425 return -EFAULT;
5426
efc68158 5427 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
be8704ff
AS
5428}
5429
e6ac2450
MKL
5430static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5431#ifdef CONFIG_NET
5432 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5433 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5434 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5435#endif
5436};
5437
34747c41
MKL
5438static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5439 const struct btf *btf, u32 func_id,
5440 struct bpf_reg_state *regs,
5441 bool ptr_to_mem_ok)
8c1b6e69 5442{
8c1b6e69 5443 struct bpf_verifier_log *log = &env->log;
34747c41 5444 const char *func_name, *ref_tname;
e5069b9c 5445 const struct btf_type *t, *ref_t;
34747c41 5446 const struct btf_param *args;
e6ac2450 5447 u32 i, nargs, ref_id;
8c1b6e69 5448
34747c41 5449 t = btf_type_by_id(btf, func_id);
8c1b6e69 5450 if (!t || !btf_type_is_func(t)) {
51c39bb1 5451 /* These checks were already done by the verifier while loading
e6ac2450 5452 * struct bpf_func_info or in add_kfunc_call().
51c39bb1 5453 */
34747c41
MKL
5454 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5455 func_id);
51c39bb1 5456 return -EFAULT;
8c1b6e69 5457 }
34747c41 5458 func_name = btf_name_by_offset(btf, t->name_off);
8c1b6e69
AS
5459
5460 t = btf_type_by_id(btf, t->type);
5461 if (!t || !btf_type_is_func_proto(t)) {
34747c41 5462 bpf_log(log, "Invalid BTF of func %s\n", func_name);
51c39bb1 5463 return -EFAULT;
8c1b6e69
AS
5464 }
5465 args = (const struct btf_param *)(t + 1);
5466 nargs = btf_type_vlen(t);
523a4cf4 5467 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
34747c41 5468 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
523a4cf4 5469 MAX_BPF_FUNC_REG_ARGS);
34747c41 5470 return -EINVAL;
8c1b6e69 5471 }
e5069b9c 5472
8c1b6e69
AS
5473 /* check that BTF function arguments match actual types that the
5474 * verifier sees.
5475 */
5476 for (i = 0; i < nargs; i++) {
34747c41
MKL
5477 u32 regno = i + 1;
5478 struct bpf_reg_state *reg = &regs[regno];
feb4adfa 5479
34747c41
MKL
5480 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5481 if (btf_type_is_scalar(t)) {
feb4adfa 5482 if (reg->type == SCALAR_VALUE)
8c1b6e69 5483 continue;
34747c41
MKL
5484 bpf_log(log, "R%d is not a scalar\n", regno);
5485 return -EINVAL;
8c1b6e69 5486 }
34747c41
MKL
5487
5488 if (!btf_type_is_ptr(t)) {
5489 bpf_log(log, "Unrecognized arg#%d type %s\n",
5490 i, btf_type_str(t));
5491 return -EINVAL;
5492 }
5493
e6ac2450 5494 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
34747c41 5495 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
e6ac2450
MKL
5496 if (btf_is_kernel(btf)) {
5497 const struct btf_type *reg_ref_t;
5498 const struct btf *reg_btf;
5499 const char *reg_ref_tname;
5500 u32 reg_ref_id;
5501
5502 if (!btf_type_is_struct(ref_t)) {
5503 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5504 func_name, i, btf_type_str(ref_t),
5505 ref_tname);
5506 return -EINVAL;
5507 }
5508
5509 if (reg->type == PTR_TO_BTF_ID) {
5510 reg_btf = reg->btf;
5511 reg_ref_id = reg->btf_id;
5512 } else if (reg2btf_ids[reg->type]) {
5513 reg_btf = btf_vmlinux;
5514 reg_ref_id = *reg2btf_ids[reg->type];
5515 } else {
5516 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5517 func_name, i,
5518 btf_type_str(ref_t), ref_tname, regno);
5519 return -EINVAL;
5520 }
5521
5522 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5523 &reg_ref_id);
5524 reg_ref_tname = btf_name_by_offset(reg_btf,
5525 reg_ref_t->name_off);
5526 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5527 reg->off, btf, ref_id)) {
5528 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5529 func_name, i,
5530 btf_type_str(ref_t), ref_tname,
5531 regno, btf_type_str(reg_ref_t),
5532 reg_ref_tname);
5533 return -EINVAL;
5534 }
5535 } else if (btf_get_prog_ctx_type(log, btf, t,
5536 env->prog->type, i)) {
51c39bb1
AS
5537 /* If function expects ctx type in BTF check that caller
5538 * is passing PTR_TO_CTX.
8c1b6e69 5539 */
34747c41
MKL
5540 if (reg->type != PTR_TO_CTX) {
5541 bpf_log(log,
5542 "arg#%d expected pointer to ctx, but got %s\n",
5543 i, btf_type_str(t));
5544 return -EINVAL;
51c39bb1 5545 }
34747c41
MKL
5546 if (check_ctx_reg(env, reg, regno))
5547 return -EINVAL;
5548 } else if (ptr_to_mem_ok) {
5549 const struct btf_type *resolve_ret;
5550 u32 type_size;
e5069b9c 5551
34747c41
MKL
5552 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5553 if (IS_ERR(resolve_ret)) {
e5069b9c 5554 bpf_log(log,
34747c41
MKL
5555 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5556 i, btf_type_str(ref_t), ref_tname,
5557 PTR_ERR(resolve_ret));
5558 return -EINVAL;
e5069b9c
DB
5559 }
5560
34747c41
MKL
5561 if (check_mem_reg(env, reg, regno, type_size))
5562 return -EINVAL;
5563 } else {
5564 return -EINVAL;
8c1b6e69 5565 }
8c1b6e69 5566 }
34747c41 5567
8c1b6e69 5568 return 0;
34747c41
MKL
5569}
5570
5571/* Compare BTF of a function with given bpf_reg_state.
5572 * Returns:
5573 * EFAULT - there is a verifier bug. Abort verification.
5574 * EINVAL - there is a type mismatch or BTF is not available.
5575 * 0 - BTF matches with what bpf_reg_state expects.
5576 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5577 */
5578int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5579 struct bpf_reg_state *regs)
5580{
5581 struct bpf_prog *prog = env->prog;
5582 struct btf *btf = prog->aux->btf;
5583 bool is_global;
5584 u32 btf_id;
5585 int err;
5586
5587 if (!prog->aux->func_info)
5588 return -EINVAL;
5589
5590 btf_id = prog->aux->func_info[subprog].type_id;
5591 if (!btf_id)
5592 return -EFAULT;
5593
5594 if (prog->aux->func_info_aux[subprog].unreliable)
5595 return -EINVAL;
5596
5597 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5598 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5599
51c39bb1
AS
5600 /* Compiler optimizations can remove arguments from static functions
5601 * or mismatched type can be passed into a global function.
5602 * In such cases mark the function as unreliable from BTF point of view.
5603 */
34747c41
MKL
5604 if (err)
5605 prog->aux->func_info_aux[subprog].unreliable = true;
5606 return err;
51c39bb1
AS
5607}
5608
e6ac2450
MKL
5609int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5610 const struct btf *btf, u32 func_id,
5611 struct bpf_reg_state *regs)
5612{
5613 return btf_check_func_arg_match(env, btf, func_id, regs, false);
5614}
5615
51c39bb1
AS
5616/* Convert BTF of a function into bpf_reg_state if possible
5617 * Returns:
5618 * EFAULT - there is a verifier bug. Abort verification.
5619 * EINVAL - cannot convert BTF.
5620 * 0 - Successfully converted BTF into bpf_reg_state
5621 * (either PTR_TO_CTX or SCALAR_VALUE).
5622 */
5623int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
feb4adfa 5624 struct bpf_reg_state *regs)
51c39bb1
AS
5625{
5626 struct bpf_verifier_log *log = &env->log;
5627 struct bpf_prog *prog = env->prog;
be8704ff 5628 enum bpf_prog_type prog_type = prog->type;
51c39bb1
AS
5629 struct btf *btf = prog->aux->btf;
5630 const struct btf_param *args;
e5069b9c 5631 const struct btf_type *t, *ref_t;
51c39bb1
AS
5632 u32 i, nargs, btf_id;
5633 const char *tname;
5634
5635 if (!prog->aux->func_info ||
5636 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5637 bpf_log(log, "Verifier bug\n");
5638 return -EFAULT;
5639 }
5640
5641 btf_id = prog->aux->func_info[subprog].type_id;
5642 if (!btf_id) {
5643 bpf_log(log, "Global functions need valid BTF\n");
5644 return -EFAULT;
5645 }
5646
5647 t = btf_type_by_id(btf, btf_id);
5648 if (!t || !btf_type_is_func(t)) {
5649 /* These checks were already done by the verifier while loading
5650 * struct bpf_func_info
5651 */
5652 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5653 subprog);
5654 return -EFAULT;
5655 }
5656 tname = btf_name_by_offset(btf, t->name_off);
5657
5658 if (log->level & BPF_LOG_LEVEL)
5659 bpf_log(log, "Validating %s() func#%d...\n",
5660 tname, subprog);
5661
5662 if (prog->aux->func_info_aux[subprog].unreliable) {
5663 bpf_log(log, "Verifier bug in function %s()\n", tname);
5664 return -EFAULT;
5665 }
be8704ff 5666 if (prog_type == BPF_PROG_TYPE_EXT)
3aac1ead 5667 prog_type = prog->aux->dst_prog->type;
51c39bb1
AS
5668
5669 t = btf_type_by_id(btf, t->type);
5670 if (!t || !btf_type_is_func_proto(t)) {
5671 bpf_log(log, "Invalid type of function %s()\n", tname);
5672 return -EFAULT;
5673 }
5674 args = (const struct btf_param *)(t + 1);
5675 nargs = btf_type_vlen(t);
523a4cf4
DB
5676 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5677 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5678 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
51c39bb1
AS
5679 return -EINVAL;
5680 }
5681 /* check that function returns int */
5682 t = btf_type_by_id(btf, t->type);
5683 while (btf_type_is_modifier(t))
5684 t = btf_type_by_id(btf, t->type);
5685 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5686 bpf_log(log,
5687 "Global function %s() doesn't return scalar. Only those are supported.\n",
5688 tname);
5689 return -EINVAL;
5690 }
5691 /* Convert BTF function arguments into verifier types.
5692 * Only PTR_TO_CTX and SCALAR are supported atm.
5693 */
5694 for (i = 0; i < nargs; i++) {
feb4adfa
DB
5695 struct bpf_reg_state *reg = &regs[i + 1];
5696
51c39bb1
AS
5697 t = btf_type_by_id(btf, args[i].type);
5698 while (btf_type_is_modifier(t))
5699 t = btf_type_by_id(btf, t->type);
5700 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
feb4adfa 5701 reg->type = SCALAR_VALUE;
51c39bb1
AS
5702 continue;
5703 }
e5069b9c
DB
5704 if (btf_type_is_ptr(t)) {
5705 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5706 reg->type = PTR_TO_CTX;
5707 continue;
5708 }
5709
5710 t = btf_type_skip_modifiers(btf, t->type, NULL);
5711
5712 ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5713 if (IS_ERR(ref_t)) {
5714 bpf_log(log,
5715 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5716 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5717 PTR_ERR(ref_t));
5718 return -EINVAL;
5719 }
5720
5721 reg->type = PTR_TO_MEM_OR_NULL;
5722 reg->id = ++env->id_gen;
5723
51c39bb1
AS
5724 continue;
5725 }
5726 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5727 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5728 return -EINVAL;
5729 }
8c1b6e69
AS
5730 return 0;
5731}
5732
31d0bc81
AM
5733static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5734 struct btf_show *show)
5735{
5736 const struct btf_type *t = btf_type_by_id(btf, type_id);
5737
5738 show->btf = btf;
5739 memset(&show->state, 0, sizeof(show->state));
5740 memset(&show->obj, 0, sizeof(show->obj));
5741
5742 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5743}
5744
5745static void btf_seq_show(struct btf_show *show, const char *fmt,
5746 va_list args)
5747{
5748 seq_vprintf((struct seq_file *)show->target, fmt, args);
5749}
5750
eb411377
AM
5751int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5752 void *obj, struct seq_file *m, u64 flags)
31d0bc81
AM
5753{
5754 struct btf_show sseq;
5755
5756 sseq.target = m;
5757 sseq.showfn = btf_seq_show;
5758 sseq.flags = flags;
5759
5760 btf_type_show(btf, type_id, obj, &sseq);
5761
5762 return sseq.state.status;
5763}
5764
b00b8dae
MKL
5765void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5766 struct seq_file *m)
5767{
31d0bc81
AM
5768 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5769 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5770 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5771}
5772
5773struct btf_show_snprintf {
5774 struct btf_show show;
5775 int len_left; /* space left in string */
5776 int len; /* length we would have written */
5777};
5778
5779static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5780 va_list args)
5781{
5782 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5783 int len;
5784
5785 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5786
5787 if (len < 0) {
5788 ssnprintf->len_left = 0;
5789 ssnprintf->len = len;
5790 } else if (len > ssnprintf->len_left) {
5791 /* no space, drive on to get length we would have written */
5792 ssnprintf->len_left = 0;
5793 ssnprintf->len += len;
5794 } else {
5795 ssnprintf->len_left -= len;
5796 ssnprintf->len += len;
5797 show->target += len;
5798 }
5799}
5800
5801int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5802 char *buf, int len, u64 flags)
5803{
5804 struct btf_show_snprintf ssnprintf;
5805
5806 ssnprintf.show.target = buf;
5807 ssnprintf.show.flags = flags;
5808 ssnprintf.show.showfn = btf_snprintf_show;
5809 ssnprintf.len_left = len;
5810 ssnprintf.len = 0;
5811
5812 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5813
5814 /* If we encontered an error, return it. */
5815 if (ssnprintf.show.state.status)
5816 return ssnprintf.show.state.status;
b00b8dae 5817
31d0bc81
AM
5818 /* Otherwise return length we would have written */
5819 return ssnprintf.len;
b00b8dae 5820}
f56a653c 5821
3481e64b
QM
5822#ifdef CONFIG_PROC_FS
5823static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5824{
5825 const struct btf *btf = filp->private_data;
5826
5827 seq_printf(m, "btf_id:\t%u\n", btf->id);
5828}
5829#endif
5830
f56a653c
MKL
5831static int btf_release(struct inode *inode, struct file *filp)
5832{
5833 btf_put(filp->private_data);
5834 return 0;
5835}
5836
60197cfb 5837const struct file_operations btf_fops = {
3481e64b
QM
5838#ifdef CONFIG_PROC_FS
5839 .show_fdinfo = bpf_btf_show_fdinfo,
5840#endif
f56a653c
MKL
5841 .release = btf_release,
5842};
5843
78958fca
MKL
5844static int __btf_new_fd(struct btf *btf)
5845{
5846 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5847}
5848
c571bd75 5849int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
f56a653c
MKL
5850{
5851 struct btf *btf;
78958fca 5852 int ret;
f56a653c 5853
c571bd75 5854 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
f56a653c
MKL
5855 attr->btf_size, attr->btf_log_level,
5856 u64_to_user_ptr(attr->btf_log_buf),
5857 attr->btf_log_size);
5858 if (IS_ERR(btf))
5859 return PTR_ERR(btf);
5860
78958fca
MKL
5861 ret = btf_alloc_id(btf);
5862 if (ret) {
5863 btf_free(btf);
5864 return ret;
5865 }
5866
5867 /*
5868 * The BTF ID is published to the userspace.
5869 * All BTF free must go through call_rcu() from
5870 * now on (i.e. free by calling btf_put()).
5871 */
5872
5873 ret = __btf_new_fd(btf);
5874 if (ret < 0)
f56a653c
MKL
5875 btf_put(btf);
5876
78958fca 5877 return ret;
f56a653c
MKL
5878}
5879
5880struct btf *btf_get_by_fd(int fd)
5881{
5882 struct btf *btf;
5883 struct fd f;
5884
5885 f = fdget(fd);
5886
5887 if (!f.file)
5888 return ERR_PTR(-EBADF);
5889
5890 if (f.file->f_op != &btf_fops) {
5891 fdput(f);
5892 return ERR_PTR(-EINVAL);
5893 }
5894
5895 btf = f.file->private_data;
78958fca 5896 refcount_inc(&btf->refcnt);
f56a653c
MKL
5897 fdput(f);
5898
5899 return btf;
5900}
60197cfb
MKL
5901
5902int btf_get_info_by_fd(const struct btf *btf,
5903 const union bpf_attr *attr,
5904 union bpf_attr __user *uattr)
5905{
62dab84c 5906 struct bpf_btf_info __user *uinfo;
5c6f2588 5907 struct bpf_btf_info info;
62dab84c
MKL
5908 u32 info_copy, btf_copy;
5909 void __user *ubtf;
53297220
AN
5910 char __user *uname;
5911 u32 uinfo_len, uname_len, name_len;
5912 int ret = 0;
60197cfb 5913
62dab84c
MKL
5914 uinfo = u64_to_user_ptr(attr->info.info);
5915 uinfo_len = attr->info.info_len;
5916
5917 info_copy = min_t(u32, uinfo_len, sizeof(info));
5c6f2588 5918 memset(&info, 0, sizeof(info));
62dab84c
MKL
5919 if (copy_from_user(&info, uinfo, info_copy))
5920 return -EFAULT;
5921
5922 info.id = btf->id;
5923 ubtf = u64_to_user_ptr(info.btf);
5924 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5925 if (copy_to_user(ubtf, btf->data, btf_copy))
5926 return -EFAULT;
5927 info.btf_size = btf->data_size;
5928
53297220
AN
5929 info.kernel_btf = btf->kernel_btf;
5930
5931 uname = u64_to_user_ptr(info.name);
5932 uname_len = info.name_len;
5933 if (!uname ^ !uname_len)
5934 return -EINVAL;
5935
5936 name_len = strlen(btf->name);
5937 info.name_len = name_len;
5938
5939 if (uname) {
5940 if (uname_len >= name_len + 1) {
5941 if (copy_to_user(uname, btf->name, name_len + 1))
5942 return -EFAULT;
5943 } else {
5944 char zero = '\0';
5945
5946 if (copy_to_user(uname, btf->name, uname_len - 1))
5947 return -EFAULT;
5948 if (put_user(zero, uname + uname_len - 1))
5949 return -EFAULT;
5950 /* let user-space know about too short buffer */
5951 ret = -ENOSPC;
5952 }
5953 }
5954
62dab84c
MKL
5955 if (copy_to_user(uinfo, &info, info_copy) ||
5956 put_user(info_copy, &uattr->info.info_len))
60197cfb
MKL
5957 return -EFAULT;
5958
53297220 5959 return ret;
60197cfb 5960}
78958fca
MKL
5961
5962int btf_get_fd_by_id(u32 id)
5963{
5964 struct btf *btf;
5965 int fd;
5966
5967 rcu_read_lock();
5968 btf = idr_find(&btf_idr, id);
5969 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5970 btf = ERR_PTR(-ENOENT);
5971 rcu_read_unlock();
5972
5973 if (IS_ERR(btf))
5974 return PTR_ERR(btf);
5975
5976 fd = __btf_new_fd(btf);
5977 if (fd < 0)
5978 btf_put(btf);
5979
5980 return fd;
5981}
5982
22dc4a0f 5983u32 btf_obj_id(const struct btf *btf)
78958fca
MKL
5984{
5985 return btf->id;
5986}
eae2e83e 5987
290248a5
AN
5988bool btf_is_kernel(const struct btf *btf)
5989{
5990 return btf->kernel_btf;
5991}
5992
541c3bad
AN
5993bool btf_is_module(const struct btf *btf)
5994{
5995 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5996}
5997
eae2e83e
JO
5998static int btf_id_cmp_func(const void *a, const void *b)
5999{
6000 const int *pa = a, *pb = b;
6001
6002 return *pa - *pb;
6003}
6004
2af30f11 6005bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
eae2e83e
JO
6006{
6007 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6008}
36e68442
AN
6009
6010#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6011struct btf_module {
6012 struct list_head list;
6013 struct module *module;
6014 struct btf *btf;
6015 struct bin_attribute *sysfs_attr;
6016};
6017
6018static LIST_HEAD(btf_modules);
6019static DEFINE_MUTEX(btf_module_mutex);
6020
6021static ssize_t
6022btf_module_read(struct file *file, struct kobject *kobj,
6023 struct bin_attribute *bin_attr,
6024 char *buf, loff_t off, size_t len)
6025{
6026 const struct btf *btf = bin_attr->private;
6027
6028 memcpy(buf, btf->data + off, len);
6029 return len;
6030}
6031
6032static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6033 void *module)
6034{
6035 struct btf_module *btf_mod, *tmp;
6036 struct module *mod = module;
6037 struct btf *btf;
6038 int err = 0;
6039
6040 if (mod->btf_data_size == 0 ||
6041 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
6042 goto out;
6043
6044 switch (op) {
6045 case MODULE_STATE_COMING:
6046 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6047 if (!btf_mod) {
6048 err = -ENOMEM;
6049 goto out;
6050 }
6051 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6052 if (IS_ERR(btf)) {
6053 pr_warn("failed to validate module [%s] BTF: %ld\n",
6054 mod->name, PTR_ERR(btf));
6055 kfree(btf_mod);
6056 err = PTR_ERR(btf);
6057 goto out;
6058 }
6059 err = btf_alloc_id(btf);
6060 if (err) {
6061 btf_free(btf);
6062 kfree(btf_mod);
6063 goto out;
6064 }
6065
6066 mutex_lock(&btf_module_mutex);
6067 btf_mod->module = module;
6068 btf_mod->btf = btf;
6069 list_add(&btf_mod->list, &btf_modules);
6070 mutex_unlock(&btf_module_mutex);
6071
6072 if (IS_ENABLED(CONFIG_SYSFS)) {
6073 struct bin_attribute *attr;
6074
6075 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6076 if (!attr)
6077 goto out;
6078
6079 sysfs_bin_attr_init(attr);
6080 attr->attr.name = btf->name;
6081 attr->attr.mode = 0444;
6082 attr->size = btf->data_size;
6083 attr->private = btf;
6084 attr->read = btf_module_read;
6085
6086 err = sysfs_create_bin_file(btf_kobj, attr);
6087 if (err) {
6088 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6089 mod->name, err);
6090 kfree(attr);
6091 err = 0;
6092 goto out;
6093 }
6094
6095 btf_mod->sysfs_attr = attr;
6096 }
6097
6098 break;
6099 case MODULE_STATE_GOING:
6100 mutex_lock(&btf_module_mutex);
6101 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6102 if (btf_mod->module != module)
6103 continue;
6104
6105 list_del(&btf_mod->list);
6106 if (btf_mod->sysfs_attr)
6107 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6108 btf_put(btf_mod->btf);
6109 kfree(btf_mod->sysfs_attr);
6110 kfree(btf_mod);
6111 break;
6112 }
6113 mutex_unlock(&btf_module_mutex);
6114 break;
6115 }
6116out:
6117 return notifier_from_errno(err);
6118}
6119
6120static struct notifier_block btf_module_nb = {
6121 .notifier_call = btf_module_notify,
6122};
6123
6124static int __init btf_module_init(void)
6125{
6126 register_module_notifier(&btf_module_nb);
6127 return 0;
6128}
6129
6130fs_initcall(btf_module_init);
6131#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
541c3bad
AN
6132
6133struct module *btf_try_get_module(const struct btf *btf)
6134{
6135 struct module *res = NULL;
6136#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6137 struct btf_module *btf_mod, *tmp;
6138
6139 mutex_lock(&btf_module_mutex);
6140 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6141 if (btf_mod->btf != btf)
6142 continue;
6143
6144 if (try_module_get(btf_mod->module))
6145 res = btf_mod->module;
6146
6147 break;
6148 }
6149 mutex_unlock(&btf_module_mutex);
6150#endif
6151
6152 return res;
6153}
3d78417b
AS
6154
6155BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6156{
6157 struct btf *btf;
6158 long ret;
6159
6160 if (flags)
6161 return -EINVAL;
6162
6163 if (name_sz <= 1 || name[name_sz - 1])
6164 return -EINVAL;
6165
6166 btf = bpf_get_btf_vmlinux();
6167 if (IS_ERR(btf))
6168 return PTR_ERR(btf);
6169
6170 ret = btf_find_by_name_kind(btf, name, kind);
6171 /* ret is never zero, since btf_find_by_name_kind returns
6172 * positive btf_id or negative error.
6173 */
6174 if (ret < 0) {
6175 struct btf *mod_btf;
6176 int id;
6177
6178 /* If name is not found in vmlinux's BTF then search in module's BTFs */
6179 spin_lock_bh(&btf_idr_lock);
6180 idr_for_each_entry(&btf_idr, mod_btf, id) {
6181 if (!btf_is_module(mod_btf))
6182 continue;
6183 /* linear search could be slow hence unlock/lock
6184 * the IDR to avoiding holding it for too long
6185 */
6186 btf_get(mod_btf);
6187 spin_unlock_bh(&btf_idr_lock);
6188 ret = btf_find_by_name_kind(mod_btf, name, kind);
6189 if (ret > 0) {
6190 int btf_obj_fd;
6191
6192 btf_obj_fd = __btf_new_fd(mod_btf);
6193 if (btf_obj_fd < 0) {
6194 btf_put(mod_btf);
6195 return btf_obj_fd;
6196 }
6197 return ret | (((u64)btf_obj_fd) << 32);
6198 }
6199 spin_lock_bh(&btf_idr_lock);
6200 btf_put(mod_btf);
6201 }
6202 spin_unlock_bh(&btf_idr_lock);
6203 }
6204 return ret;
6205}
6206
6207const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6208 .func = bpf_btf_find_by_name_kind,
6209 .gpl_only = false,
6210 .ret_type = RET_INTEGER,
6211 .arg1_type = ARG_PTR_TO_MEM,
6212 .arg2_type = ARG_CONST_SIZE,
6213 .arg3_type = ARG_ANYTHING,
6214 .arg4_type = ARG_ANYTHING,
6215};