Merge tag 'pm-6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
d680c6b4 1// SPDX-License-Identifier: GPL-2.0-or-later
85c8721f 2/* auditsc.c -- System-call auditing support
1da177e4
LT
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 7 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
8 * All Rights Reserved.
9 *
1da177e4
LT
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
20ca73bc
GW
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
b63862f4
DK
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
73241ccc
AG
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
8c8570fb
DK
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
30 */
31
f952d10f
RGB
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#include <linux/init.h>
1da177e4 35#include <asm/types.h>
60063497 36#include <linux/atomic.h>
73241ccc
AG
37#include <linux/fs.h>
38#include <linux/namei.h>
1da177e4 39#include <linux/mm.h>
9984de1a 40#include <linux/export.h>
5a0e3ad6 41#include <linux/slab.h>
01116105 42#include <linux/mount.h>
3ec3b2fb 43#include <linux/socket.h>
20ca73bc 44#include <linux/mqueue.h>
1da177e4
LT
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
5bb289b5 48#include <linux/netlink.h>
f5561964 49#include <linux/compiler.h>
1da177e4 50#include <asm/unistd.h>
8c8570fb 51#include <linux/security.h>
fe7752ba 52#include <linux/list.h>
473ae30b 53#include <linux/binfmts.h>
a1f8e7f7 54#include <linux/highmem.h>
f46038ff 55#include <linux/syscalls.h>
84db564a 56#include <asm/syscall.h>
851f7ff5 57#include <linux/capability.h>
5ad4e53b 58#include <linux/fs_struct.h>
3dc1c1b2 59#include <linux/compat.h>
3f1c8250 60#include <linux/ctype.h>
fcf22d82 61#include <linux/string.h>
43761473 62#include <linux/uaccess.h>
9dd813c1 63#include <linux/fsnotify_backend.h>
fcf22d82 64#include <uapi/linux/limits.h>
8e6cf365 65#include <uapi/linux/netfilter/nf_tables.h>
571e5c0e 66#include <uapi/linux/openat2.h> // struct open_how
032bffd4 67#include <uapi/linux/fanotify.h>
1da177e4 68
fe7752ba 69#include "audit.h"
1da177e4 70
d7e7528b
EP
71/* flags stating the success for a syscall */
72#define AUDITSC_INVALID 0
73#define AUDITSC_SUCCESS 1
74#define AUDITSC_FAILURE 2
75
43761473
PM
76/* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
78#define MAX_EXECVE_AUDIT_LEN 7500
79
3f1c8250
WR
80/* max length to print of cmdline/proctitle value during audit */
81#define MAX_PROCTITLE_AUDIT_LEN 128
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
1da177e4
LT
89struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92};
93
e54dc243
AG
94/* Number of target pids per aux struct. */
95#define AUDIT_AUX_PIDS 16
96
e54dc243
AG
97struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 100 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 101 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
13d826e5 103 struct lsm_prop target_ref[AUDIT_AUX_PIDS];
c2a7780e 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
105 int pid_count;
106};
107
3fc689e9
EP
108struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
114};
115
74c3cbe3
AV
116struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
119};
120
c4dad0aa
RGB
121struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
123 const char *s;
124};
125
db9ff6ec 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
8e6cf365
RGB
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
7e9be112 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
ea078ae9 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
8e6cf365 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
c4dad0aa
RGB
149};
150
55669bfa
AV
151static int audit_match_perm(struct audit_context *ctx, int mask)
152{
c4bacefb 153 unsigned n;
254c8b96 154
1a61c88d 155 if (unlikely(!ctx))
156 return 0;
c4bacefb 157 n = ctx->major;
dbda4c0b 158
55669bfa 159 switch (audit_classify_syscall(ctx->arch, n)) {
42f355ef 160 case AUDITSC_NATIVE:
55669bfa
AV
161 if ((mask & AUDIT_PERM_WRITE) &&
162 audit_match_class(AUDIT_CLASS_WRITE, n))
163 return 1;
164 if ((mask & AUDIT_PERM_READ) &&
165 audit_match_class(AUDIT_CLASS_READ, n))
166 return 1;
167 if ((mask & AUDIT_PERM_ATTR) &&
168 audit_match_class(AUDIT_CLASS_CHATTR, n))
169 return 1;
170 return 0;
42f355ef 171 case AUDITSC_COMPAT: /* 32bit on biarch */
55669bfa
AV
172 if ((mask & AUDIT_PERM_WRITE) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_READ) &&
176 audit_match_class(AUDIT_CLASS_READ_32, n))
177 return 1;
178 if ((mask & AUDIT_PERM_ATTR) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180 return 1;
181 return 0;
42f355ef 182 case AUDITSC_OPEN:
55669bfa 183 return mask & ACC_MODE(ctx->argv[1]);
42f355ef 184 case AUDITSC_OPENAT:
55669bfa 185 return mask & ACC_MODE(ctx->argv[2]);
42f355ef 186 case AUDITSC_SOCKETCALL:
55669bfa 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
42f355ef 188 case AUDITSC_EXECVE:
55669bfa 189 return mask & AUDIT_PERM_EXEC;
1c30e3af 190 case AUDITSC_OPENAT2:
7a82f89d 191 return mask & ACC_MODE((u32)ctx->openat2.flags);
55669bfa
AV
192 default:
193 return 0;
194 }
195}
196
5ef30ee5 197static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 198{
5195d8e2 199 struct audit_names *n;
5ef30ee5 200 umode_t mode = (umode_t)val;
1a61c88d 201
202 if (unlikely(!ctx))
203 return 0;
204
5195d8e2 205 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 206 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 207 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
208 return 1;
209 }
5195d8e2 210
5ef30ee5 211 return 0;
8b67dca9
AV
212}
213
74c3cbe3
AV
214/*
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
222 */
223
679173b7
EP
224static void audit_set_auditable(struct audit_context *ctx)
225{
226 if (!ctx->prio) {
227 ctx->prio = 1;
619ed58a 228 ctx->current_state = AUDIT_STATE_RECORD;
679173b7
EP
229 }
230}
231
74c3cbe3
AV
232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 int left = ctx->tree_count;
254c8b96 236
74c3cbe3
AV
237 if (likely(left)) {
238 p->c[--left] = chunk;
239 ctx->tree_count = left;
240 return 1;
241 }
242 if (!p)
243 return 0;
244 p = p->next;
245 if (p) {
246 p->c[30] = chunk;
247 ctx->trees = p;
248 ctx->tree_count = 30;
249 return 1;
250 }
251 return 0;
252}
253
254static int grow_tree_refs(struct audit_context *ctx)
255{
256 struct audit_tree_refs *p = ctx->trees;
254c8b96 257
74c3cbe3
AV
258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259 if (!ctx->trees) {
260 ctx->trees = p;
261 return 0;
262 }
263 if (p)
264 p->next = ctx->trees;
265 else
266 ctx->first_trees = ctx->trees;
267 ctx->tree_count = 31;
268 return 1;
269}
74c3cbe3
AV
270
271static void unroll_tree_refs(struct audit_context *ctx,
272 struct audit_tree_refs *p, int count)
273{
74c3cbe3
AV
274 struct audit_tree_refs *q;
275 int n;
254c8b96 276
74c3cbe3
AV
277 if (!p) {
278 /* we started with empty chain */
279 p = ctx->first_trees;
280 count = 31;
281 /* if the very first allocation has failed, nothing to do */
282 if (!p)
283 return;
284 }
285 n = count;
286 for (q = p; q != ctx->trees; q = q->next, n = 31) {
287 while (n--) {
288 audit_put_chunk(q->c[n]);
289 q->c[n] = NULL;
290 }
291 }
292 while (n-- > ctx->tree_count) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 ctx->trees = p;
297 ctx->tree_count = count;
74c3cbe3
AV
298}
299
300static void free_tree_refs(struct audit_context *ctx)
301{
302 struct audit_tree_refs *p, *q;
254c8b96 303
74c3cbe3
AV
304 for (p = ctx->first_trees; p; p = q) {
305 q = p->next;
306 kfree(p);
307 }
308}
309
310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311{
74c3cbe3
AV
312 struct audit_tree_refs *p;
313 int n;
254c8b96 314
74c3cbe3
AV
315 if (!tree)
316 return 0;
317 /* full ones */
318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319 for (n = 0; n < 31; n++)
320 if (audit_tree_match(p->c[n], tree))
321 return 1;
322 }
323 /* partial */
324 if (p) {
325 for (n = ctx->tree_count; n < 31; n++)
326 if (audit_tree_match(p->c[n], tree))
327 return 1;
328 }
74c3cbe3
AV
329 return 0;
330}
331
ca57ec0f
EB
332static int audit_compare_uid(kuid_t uid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
b34b0393
EP
336{
337 struct audit_names *n;
b34b0393 338 int rc;
6ddb5680 339
b34b0393 340 if (name) {
ca57ec0f 341 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
342 if (rc)
343 return rc;
344 }
6ddb5680 345
b34b0393
EP
346 if (ctx) {
347 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
348 rc = audit_uid_comparator(uid, f->op, n->uid);
349 if (rc)
350 return rc;
351 }
352 }
353 return 0;
354}
b34b0393 355
ca57ec0f
EB
356static int audit_compare_gid(kgid_t gid,
357 struct audit_names *name,
358 struct audit_field *f,
359 struct audit_context *ctx)
360{
361 struct audit_names *n;
362 int rc;
6ddb5680 363
ca57ec0f
EB
364 if (name) {
365 rc = audit_gid_comparator(gid, f->op, name->gid);
366 if (rc)
367 return rc;
368 }
6ddb5680 369
ca57ec0f
EB
370 if (ctx) {
371 list_for_each_entry(n, &ctx->names_list, list) {
372 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
373 if (rc)
374 return rc;
375 }
376 }
377 return 0;
378}
379
02d86a56
EP
380static int audit_field_compare(struct task_struct *tsk,
381 const struct cred *cred,
382 struct audit_field *f,
383 struct audit_context *ctx,
384 struct audit_names *name)
385{
02d86a56 386 switch (f->val) {
4a6633ed 387 /* process to file object comparisons */
02d86a56 388 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 389 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 390 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 391 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 393 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 395 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 399 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 401 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 403 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 405 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
408 return audit_uid_comparator(cred->uid, f->op,
409 audit_get_loginuid(tsk));
10d68360 410 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 411 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 412 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 413 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 414 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->euid);
10d68360 420 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->suid);
10d68360 423 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->fsuid);
10d68360
PM
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 428 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 429 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 436 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 437 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 439 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 444 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
449 default:
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
451 return 0;
452 }
453 return 0;
454}
455
f368c07d 456/* Determine if any context name data matches a rule's watch data */
1da177e4 457/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
458 * otherwise.
459 *
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
463 */
1da177e4 464static int audit_filter_rules(struct task_struct *tsk,
93315ed6 465 struct audit_krule *rule,
1da177e4 466 struct audit_context *ctx,
f368c07d 467 struct audit_names *name,
f5629883
TJ
468 enum audit_state *state,
469 bool task_creation)
1da177e4 470{
f5629883 471 const struct cred *cred;
5195d8e2 472 int i, need_sid = 1;
870b7fdc 473 struct lsm_prop prop = { };
8fae4770 474 unsigned int sessionid;
3dc7e315 475
d9516f34
GC
476 if (ctx && rule->prio <= ctx->prio)
477 return 0;
478
f5629883
TJ
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
1da177e4 481 for (i = 0; i < rule->field_count; i++) {
93315ed6 482 struct audit_field *f = &rule->fields[i];
5195d8e2 483 struct audit_names *n;
1da177e4 484 int result = 0;
f1dc4867 485 pid_t pid;
1da177e4 486
93315ed6 487 switch (f->type) {
1da177e4 488 case AUDIT_PID:
fa2bea2f 489 pid = task_tgid_nr(tsk);
f1dc4867 490 result = audit_comparator(pid, f->op, f->val);
1da177e4 491 break;
3c66251e 492 case AUDIT_PPID:
419c58f1
AV
493 if (ctx) {
494 if (!ctx->ppid)
c92cdeb4 495 ctx->ppid = task_ppid_nr(tsk);
3c66251e 496 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 497 }
3c66251e 498 break;
34d99af5
RGB
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
501 if (f->op == Audit_not_equal)
502 result = !result;
34d99af5 503 break;
1da177e4 504 case AUDIT_UID:
ca57ec0f 505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
506 break;
507 case AUDIT_EUID:
ca57ec0f 508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
509 break;
510 case AUDIT_SUID:
ca57ec0f 511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
512 break;
513 case AUDIT_FSUID:
ca57ec0f 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
515 break;
516 case AUDIT_GID:
ca57ec0f 517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
518 if (f->op == Audit_equal) {
519 if (!result)
af85d177 520 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
521 } else if (f->op == Audit_not_equal) {
522 if (result)
af85d177 523 result = !groups_search(cred->group_info, f->gid);
37eebe39 524 }
1da177e4
LT
525 break;
526 case AUDIT_EGID:
ca57ec0f 527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
528 if (f->op == Audit_equal) {
529 if (!result)
af85d177 530 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
531 } else if (f->op == Audit_not_equal) {
532 if (result)
af85d177 533 result = !groups_search(cred->group_info, f->gid);
37eebe39 534 }
1da177e4
LT
535 break;
536 case AUDIT_SGID:
ca57ec0f 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
538 break;
539 case AUDIT_FSGID:
ca57ec0f 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 541 break;
8fae4770 542 case AUDIT_SESSIONID:
5b713886 543 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
1da177e4 546 case AUDIT_PERS:
93315ed6 547 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 548 break;
2fd6f58b 549 case AUDIT_ARCH:
9f8dbe9c 550 if (ctx)
93315ed6 551 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 552 break;
1da177e4
LT
553
554 case AUDIT_EXIT:
ba59eae7 555 if (ctx && ctx->return_valid != AUDITSC_INVALID)
93315ed6 556 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
557 break;
558 case AUDIT_SUCCESS:
ba59eae7 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
93315ed6
AG
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 562 else
93315ed6 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 564 }
1da177e4
LT
565 break;
566 case AUDIT_DEVMAJOR:
16c174bd
EP
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
5195d8e2 572 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
16c174bd
EP
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
5195d8e2 587 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
f368c07d 597 if (name)
db510fc5 598 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 599 else if (ctx) {
5195d8e2
EP
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
efaffd6e
EP
608 case AUDIT_OBJ_UID:
609 if (name) {
ca57ec0f 610 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
54d3218b
EP
620 case AUDIT_OBJ_GID:
621 if (name) {
ca57ec0f 622 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
f368c07d 632 case AUDIT_WATCH:
0223fad3
RGB
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
f368c07d 640 break;
74c3cbe3 641 case AUDIT_DIR:
0223fad3 642 if (ctx) {
74c3cbe3 643 result = match_tree_refs(ctx, rule->tree);
0223fad3
RGB
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
74c3cbe3 647 break;
1da177e4 648 case AUDIT_LOGINUID:
38f80590
RGB
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
1da177e4 651 break;
780a7654
EB
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
bf361231 655 case AUDIT_SADDR_FAM:
6e3ee990 656 if (ctx && ctx->sockaddr)
bf361231
RGB
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
3a6b9f85
DG
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
3dc7e315
DG
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
669 logged upon error */
04305e4a 670 if (f->lsm_rule) {
2ad312d2 671 if (need_sid) {
6326948f
PM
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
37f670aa
CS
677 * use
678 * security_current_getlsmprop_subj()
6326948f
PM
679 * here even though it always refs
680 * @current's creds
681 */
37f670aa 682 security_current_getlsmprop_subj(&prop);
2ad312d2
SG
683 need_sid = 0;
684 }
870b7fdc
CS
685 result = security_audit_rule_match(&prop,
686 f->type,
90462a5b
RGB
687 f->op,
688 f->lsm_rule);
2ad312d2 689 }
3dc7e315 690 break;
6e5a2d1d
DG
691 case AUDIT_OBJ_USER:
692 case AUDIT_OBJ_ROLE:
693 case AUDIT_OBJ_TYPE:
694 case AUDIT_OBJ_LEV_LOW:
695 case AUDIT_OBJ_LEV_HIGH:
696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697 also applies here */
04305e4a 698 if (f->lsm_rule) {
6e5a2d1d
DG
699 /* Find files that match */
700 if (name) {
d7a96f3a 701 result = security_audit_rule_match(
e0a8dcbd 702 &name->oprop,
90462a5b
RGB
703 f->type,
704 f->op,
705 f->lsm_rule);
6e5a2d1d 706 } else if (ctx) {
5195d8e2 707 list_for_each_entry(n, &ctx->names_list, list) {
90462a5b 708 if (security_audit_rule_match(
e0a8dcbd 709 &n->oprop,
90462a5b
RGB
710 f->type,
711 f->op,
712 f->lsm_rule)) {
6e5a2d1d
DG
713 ++result;
714 break;
715 }
716 }
717 }
718 /* Find ipc objects that match */
a33e6751
AV
719 if (!ctx || ctx->type != AUDIT_IPC)
720 break;
7183abcc 721 if (security_audit_rule_match(&ctx->ipc.oprop,
a33e6751 722 f->type, f->op,
90462a5b 723 f->lsm_rule))
a33e6751 724 ++result;
6e5a2d1d
DG
725 }
726 break;
1da177e4
LT
727 case AUDIT_ARG0:
728 case AUDIT_ARG1:
729 case AUDIT_ARG2:
730 case AUDIT_ARG3:
731 if (ctx)
93315ed6 732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 733 break;
5adc8a6a
AG
734 case AUDIT_FILTERKEY:
735 /* ignore this field for filtering */
736 result = 1;
737 break;
55669bfa
AV
738 case AUDIT_PERM:
739 result = audit_match_perm(ctx, f->val);
0223fad3
RGB
740 if (f->op == Audit_not_equal)
741 result = !result;
55669bfa 742 break;
8b67dca9
AV
743 case AUDIT_FILETYPE:
744 result = audit_match_filetype(ctx, f->val);
0223fad3
RGB
745 if (f->op == Audit_not_equal)
746 result = !result;
8b67dca9 747 break;
02d86a56
EP
748 case AUDIT_FIELD_COMPARE:
749 result = audit_field_compare(tsk, cred, f, ctx, name);
750 break;
1da177e4 751 }
f5629883 752 if (!result)
1da177e4
LT
753 return 0;
754 }
0590b933
AV
755
756 if (ctx) {
0590b933
AV
757 if (rule->filterkey) {
758 kfree(ctx->filterkey);
759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
760 }
761 ctx->prio = rule->prio;
762 }
1da177e4 763 switch (rule->action) {
66b12abc 764 case AUDIT_NEVER:
619ed58a 765 *state = AUDIT_STATE_DISABLED;
66b12abc
PM
766 break;
767 case AUDIT_ALWAYS:
619ed58a 768 *state = AUDIT_STATE_RECORD;
66b12abc 769 break;
1da177e4
LT
770 }
771 return 1;
772}
773
774/* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
777 */
e048e02c 778static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
779{
780 struct audit_entry *e;
781 enum audit_state state;
782
783 rcu_read_lock();
0f45aa18 784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786 &state, true)) {
619ed58a 787 if (state == AUDIT_STATE_RECORD)
e048e02c 788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
789 rcu_read_unlock();
790 return state;
791 }
792 }
793 rcu_read_unlock();
619ed58a 794 return AUDIT_STATE_BUILD;
1da177e4
LT
795}
796
a3c54931
AL
797static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
798{
799 int word, bit;
800
801 if (val > 0xffffffff)
802 return false;
803
804 word = AUDIT_WORD(val);
805 if (word >= AUDIT_BITMASK_SIZE)
806 return false;
807
808 bit = AUDIT_BIT(val);
809
810 return rule->mask[word] & bit;
811}
812
67daf270 813/**
50979953 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
67daf270
PM
815 * @tsk: associated task
816 * @ctx: audit context
50979953
AA
817 * @list: audit filter list
818 * @name: audit_name (can be NULL)
819 * @op: current syscall/uring_op
820 *
821 * Run the udit filters specified in @list against @tsk using @ctx,
822 * @name, and @op, as necessary; the caller is responsible for ensuring
823 * that the call is made while the RCU read lock is held. The @name
824 * parameter can be NULL, but all others must be specified.
825 * Returns 1/true if the filter finds a match, 0/false if none are found.
67daf270 826 */
50979953
AA
827static int __audit_filter_op(struct task_struct *tsk,
828 struct audit_context *ctx,
829 struct list_head *list,
830 struct audit_names *name,
831 unsigned long op)
67daf270
PM
832{
833 struct audit_entry *e;
834 enum audit_state state;
835
50979953
AA
836 list_for_each_entry_rcu(e, list, list) {
837 if (audit_in_mask(&e->rule, op) &&
838 audit_filter_rules(tsk, &e->rule, ctx, name,
839 &state, false)) {
840 ctx->current_state = state;
841 return 1;
842 }
843 }
844 return 0;
845}
846
847/**
848 * audit_filter_uring - apply filters to an io_uring operation
849 * @tsk: associated task
850 * @ctx: audit context
851 */
852static void audit_filter_uring(struct task_struct *tsk,
853 struct audit_context *ctx)
854{
67daf270
PM
855 if (auditd_test_task(tsk))
856 return;
857
858 rcu_read_lock();
50979953
AA
859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860 NULL, ctx->uring_op);
67daf270
PM
861 rcu_read_unlock();
862}
863
127c8c5f
YY
864/* At syscall exit time, this filter is called if the audit_state is
865 * not low enough that auditing cannot take place, but is also not
866 * high enough that we already know we have to write an audit record
619ed58a 867 * (i.e., the state is AUDIT_STATE_BUILD).
1da177e4 868 */
127c8c5f 869static void audit_filter_syscall(struct task_struct *tsk,
5504a69a 870 struct audit_context *ctx)
1da177e4 871{
5b52330b 872 if (auditd_test_task(tsk))
127c8c5f 873 return;
f7056d64 874
1da177e4 875 rcu_read_lock();
50979953
AA
876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877 NULL, ctx->major);
f368c07d 878 rcu_read_unlock();
f368c07d
AG
879}
880
5195d8e2
EP
881/*
882 * Given an audit_name check the inode hash table to see if they match.
883 * Called holding the rcu read lock to protect the use of audit_inode_hash
884 */
885static int audit_filter_inode_name(struct task_struct *tsk,
886 struct audit_names *n,
22cde101
AKP
887 struct audit_context *ctx)
888{
5195d8e2
EP
889 int h = audit_hash_ino((u32)n->ino);
890 struct list_head *list = &audit_inode_hash[h];
5195d8e2 891
50979953 892 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
5195d8e2
EP
893}
894
895/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 896 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 897 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
899 */
0590b933 900void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 901{
5195d8e2 902 struct audit_names *n;
f368c07d 903
5b52330b 904 if (auditd_test_task(tsk))
0590b933 905 return;
f368c07d
AG
906
907 rcu_read_lock();
f368c07d 908
5195d8e2
EP
909 list_for_each_entry(n, &ctx->names_list, list) {
910 if (audit_filter_inode_name(tsk, n, ctx))
911 break;
0f45aa18
DW
912 }
913 rcu_read_unlock();
0f45aa18
DW
914}
915
3f1c8250
WR
916static inline void audit_proctitle_free(struct audit_context *context)
917{
918 kfree(context->proctitle.value);
919 context->proctitle.value = NULL;
920 context->proctitle.len = 0;
921}
922
95e0b46f
LR
923static inline void audit_free_module(struct audit_context *context)
924{
925 if (context->type == AUDIT_KERN_MODULE) {
926 kfree(context->module.name);
927 context->module.name = NULL;
928 }
929}
1da177e4
LT
930static inline void audit_free_names(struct audit_context *context)
931{
5195d8e2 932 struct audit_names *n, *next;
1da177e4 933
5195d8e2
EP
934 list_for_each_entry_safe(n, next, &context->names_list, list) {
935 list_del(&n->list);
55422d0b
PM
936 if (n->name)
937 putname(n->name);
5195d8e2
EP
938 if (n->should_free)
939 kfree(n);
8c8570fb 940 }
1da177e4 941 context->name_count = 0;
44707fdf
JB
942 path_put(&context->pwd);
943 context->pwd.dentry = NULL;
944 context->pwd.mnt = NULL;
1da177e4
LT
945}
946
947static inline void audit_free_aux(struct audit_context *context)
948{
949 struct audit_aux_data *aux;
950
951 while ((aux = context->aux)) {
952 context->aux = aux->next;
953 kfree(aux);
954 }
12c5e81d 955 context->aux = NULL;
e54dc243
AG
956 while ((aux = context->aux_pids)) {
957 context->aux_pids = aux->next;
958 kfree(aux);
959 }
12c5e81d
PM
960 context->aux_pids = NULL;
961}
962
963/**
964 * audit_reset_context - reset a audit_context structure
965 * @ctx: the audit_context to reset
966 *
967 * All fields in the audit_context will be reset to an initial state, all
968 * references held by fields will be dropped, and private memory will be
969 * released. When this function returns the audit_context will be suitable
970 * for reuse, so long as the passed context is not NULL or a dummy context.
971 */
972static void audit_reset_context(struct audit_context *ctx)
973{
974 if (!ctx)
975 return;
976
e84d9f52 977 /* if ctx is non-null, reset the "ctx->context" regardless */
12c5e81d
PM
978 ctx->context = AUDIT_CTX_UNUSED;
979 if (ctx->dummy)
980 return;
981
982 /*
983 * NOTE: It shouldn't matter in what order we release the fields, so
984 * release them in the order in which they appear in the struct;
985 * this gives us some hope of quickly making sure we are
986 * resetting the audit_context properly.
987 *
988 * Other things worth mentioning:
989 * - we don't reset "dummy"
990 * - we don't reset "state", we do reset "current_state"
991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992 * - much of this is likely overkill, but play it safe for now
993 * - we really need to work on improving the audit_context struct
994 */
995
996 ctx->current_state = ctx->state;
997 ctx->serial = 0;
998 ctx->major = 0;
5bd2182d 999 ctx->uring_op = 0;
12c5e81d
PM
1000 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001 memset(ctx->argv, 0, sizeof(ctx->argv));
1002 ctx->return_code = 0;
1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004 ctx->return_valid = AUDITSC_INVALID;
1005 audit_free_names(ctx);
1006 if (ctx->state != AUDIT_STATE_RECORD) {
1007 kfree(ctx->filterkey);
1008 ctx->filterkey = NULL;
1009 }
1010 audit_free_aux(ctx);
1011 kfree(ctx->sockaddr);
1012 ctx->sockaddr = NULL;
1013 ctx->sockaddr_len = 0;
e84d9f52 1014 ctx->ppid = 0;
12c5e81d
PM
1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017 ctx->personality = 0;
1018 ctx->arch = 0;
1019 ctx->target_pid = 0;
1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021 ctx->target_sessionid = 0;
13d826e5 1022 lsmprop_init(&ctx->target_ref);
12c5e81d
PM
1023 ctx->target_comm[0] = '\0';
1024 unroll_tree_refs(ctx, NULL, 0);
1025 WARN_ON(!list_empty(&ctx->killed_trees));
12c5e81d
PM
1026 audit_free_module(ctx);
1027 ctx->fds[0] = -1;
ef79c396 1028 ctx->type = 0; /* reset last for audit_free_*() */
1da177e4
LT
1029}
1030
1da177e4
LT
1031static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032{
1033 struct audit_context *context;
1034
17c6ee70
RM
1035 context = kzalloc(sizeof(*context), GFP_KERNEL);
1036 if (!context)
1da177e4 1037 return NULL;
12c5e81d 1038 context->context = AUDIT_CTX_UNUSED;
e2c5adc8 1039 context->state = state;
619ed58a 1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
916d7576 1041 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1042 INIT_LIST_HEAD(&context->names_list);
6d915476 1043 context->fds[0] = -1;
ba59eae7 1044 context->return_valid = AUDITSC_INVALID;
1da177e4
LT
1045 return context;
1046}
1047
b0dd25a8
RD
1048/**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1053 * if necessary. Doing so turns on system call auditing for the
1054 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1055 * needed.
1056 */
1da177e4
LT
1057int audit_alloc(struct task_struct *tsk)
1058{
1059 struct audit_context *context;
1060 enum audit_state state;
e048e02c 1061 char *key = NULL;
1da177e4 1062
b593d384 1063 if (likely(!audit_ever_enabled))
12c5e81d 1064 return 0;
1da177e4 1065
e048e02c 1066 state = audit_filter_task(tsk, &key);
619ed58a 1067 if (state == AUDIT_STATE_DISABLED) {
785dc4eb 1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4 1069 return 0;
d48d8051 1070 }
1da177e4 1071
22cde101
AKP
1072 context = audit_alloc_context(state);
1073 if (!context) {
e048e02c 1074 kfree(key);
1da177e4
LT
1075 audit_log_lost("out of memory in audit_alloc");
1076 return -ENOMEM;
1077 }
e048e02c 1078 context->filterkey = key;
1da177e4 1079
c0b0ae8a 1080 audit_set_context(tsk, context);
785dc4eb 1081 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4
LT
1082 return 0;
1083}
1084
1085static inline void audit_free_context(struct audit_context *context)
1086{
12c5e81d
PM
1087 /* resetting is extra work, but it is likely just noise */
1088 audit_reset_context(context);
c3f3ea8a 1089 audit_proctitle_free(context);
c62d773a 1090 free_tree_refs(context);
c62d773a 1091 kfree(context->filterkey);
c62d773a 1092 kfree(context);
1da177e4
LT
1093}
1094
e54dc243 1095static int audit_log_pid_context(struct audit_context *context, pid_t pid,
13d826e5
CS
1096 kuid_t auid, kuid_t uid,
1097 unsigned int sessionid, struct lsm_prop *prop,
1098 char *comm)
e54dc243
AG
1099{
1100 struct audit_buffer *ab;
6fba8981 1101 struct lsm_context ctx;
e54dc243
AG
1102 int rc = 0;
1103
1104 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1105 if (!ab)
6246ccab 1106 return rc;
e54dc243 1107
e1760bd5
EB
1108 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1109 from_kuid(&init_user_ns, auid),
cca080d9 1110 from_kuid(&init_user_ns, uid), sessionid);
13d826e5 1111 if (lsmprop_is_set(prop)) {
2d470c77 1112 if (security_lsmprop_to_secctx(prop, &ctx) < 0) {
ad395abe
EP
1113 audit_log_format(ab, " obj=(none)");
1114 rc = 1;
1115 } else {
6fba8981
CS
1116 audit_log_format(ab, " obj=%s", ctx.context);
1117 security_release_secctx(&ctx);
ad395abe 1118 }
2a862b32 1119 }
c2a7780e
EP
1120 audit_log_format(ab, " ocomm=");
1121 audit_log_untrustedstring(ab, comm);
e54dc243 1122 audit_log_end(ab);
e54dc243
AG
1123
1124 return rc;
1125}
1126
43761473
PM
1127static void audit_log_execve_info(struct audit_context *context,
1128 struct audit_buffer **ab)
bdf4c48a 1129{
43761473
PM
1130 long len_max;
1131 long len_rem;
1132 long len_full;
1133 long len_buf;
8443075e 1134 long len_abuf = 0;
43761473
PM
1135 long len_tmp;
1136 bool require_data;
1137 bool encode;
1138 unsigned int iter;
1139 unsigned int arg;
1140 char *buf_head;
1141 char *buf;
1142 const char __user *p = (const char __user *)current->mm->arg_start;
1143
1144 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1145 * data we put in the audit record for this argument (see the
1146 * code below) ... at this point in time 96 is plenty */
1147 char abuf[96];
1148
1149 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1150 * current value of 7500 is not as important as the fact that it
1151 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1152 * room if we go over a little bit in the logging below */
1153 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1154 len_max = MAX_EXECVE_AUDIT_LEN;
1155
1156 /* scratch buffer to hold the userspace args */
1157 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1158 if (!buf_head) {
1159 audit_panic("out of memory for argv string");
1160 return;
de6bbd1d 1161 }
43761473 1162 buf = buf_head;
040b3a2d 1163
43761473 1164 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1165
43761473
PM
1166 len_rem = len_max;
1167 len_buf = 0;
1168 len_full = 0;
1169 require_data = true;
1170 encode = false;
1171 iter = 0;
1172 arg = 0;
de6bbd1d 1173 do {
43761473
PM
1174 /* NOTE: we don't ever want to trust this value for anything
1175 * serious, but the audit record format insists we
1176 * provide an argument length for really long arguments,
1177 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1178 * to use strncpy_from_user() to obtain this value for
1179 * recording in the log, although we don't use it
1180 * anywhere here to avoid a double-fetch problem */
1181 if (len_full == 0)
1182 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1183
1184 /* read more data from userspace */
1185 if (require_data) {
1186 /* can we make more room in the buffer? */
1187 if (buf != buf_head) {
1188 memmove(buf_head, buf, len_buf);
1189 buf = buf_head;
1190 }
1191
1192 /* fetch as much as we can of the argument */
1193 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1194 len_max - len_buf);
1195 if (len_tmp == -EFAULT) {
1196 /* unable to copy from userspace */
1197 send_sig(SIGKILL, current, 0);
1198 goto out;
1199 } else if (len_tmp == (len_max - len_buf)) {
1200 /* buffer is not large enough */
1201 require_data = true;
1202 /* NOTE: if we are going to span multiple
1203 * buffers force the encoding so we stand
1204 * a chance at a sane len_full value and
1205 * consistent record encoding */
1206 encode = true;
1207 len_full = len_full * 2;
1208 p += len_tmp;
1209 } else {
1210 require_data = false;
1211 if (!encode)
1212 encode = audit_string_contains_control(
1213 buf, len_tmp);
1214 /* try to use a trusted value for len_full */
1215 if (len_full < len_max)
1216 len_full = (encode ?
1217 len_tmp * 2 : len_tmp);
1218 p += len_tmp + 1;
1219 }
1220 len_buf += len_tmp;
1221 buf_head[len_buf] = '\0';
bdf4c48a 1222
43761473
PM
1223 /* length of the buffer in the audit record? */
1224 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1225 }
de6bbd1d 1226
43761473 1227 /* write as much as we can to the audit log */
ea956d8b 1228 if (len_buf >= 0) {
43761473
PM
1229 /* NOTE: some magic numbers here - basically if we
1230 * can't fit a reasonable amount of data into the
1231 * existing audit buffer, flush it and start with
1232 * a new buffer */
1233 if ((sizeof(abuf) + 8) > len_rem) {
1234 len_rem = len_max;
1235 audit_log_end(*ab);
1236 *ab = audit_log_start(context,
1237 GFP_KERNEL, AUDIT_EXECVE);
1238 if (!*ab)
1239 goto out;
1240 }
bdf4c48a 1241
43761473
PM
1242 /* create the non-arg portion of the arg record */
1243 len_tmp = 0;
1244 if (require_data || (iter > 0) ||
1245 ((len_abuf + sizeof(abuf)) > len_rem)) {
1246 if (iter == 0) {
1247 len_tmp += snprintf(&abuf[len_tmp],
1248 sizeof(abuf) - len_tmp,
1249 " a%d_len=%lu",
1250 arg, len_full);
1251 }
1252 len_tmp += snprintf(&abuf[len_tmp],
1253 sizeof(abuf) - len_tmp,
1254 " a%d[%d]=", arg, iter++);
1255 } else
1256 len_tmp += snprintf(&abuf[len_tmp],
1257 sizeof(abuf) - len_tmp,
1258 " a%d=", arg);
1259 WARN_ON(len_tmp >= sizeof(abuf));
1260 abuf[sizeof(abuf) - 1] = '\0';
1261
1262 /* log the arg in the audit record */
1263 audit_log_format(*ab, "%s", abuf);
1264 len_rem -= len_tmp;
1265 len_tmp = len_buf;
1266 if (encode) {
1267 if (len_abuf > len_rem)
1268 len_tmp = len_rem / 2; /* encoding */
1269 audit_log_n_hex(*ab, buf, len_tmp);
1270 len_rem -= len_tmp * 2;
1271 len_abuf -= len_tmp * 2;
1272 } else {
1273 if (len_abuf > len_rem)
1274 len_tmp = len_rem - 2; /* quotes */
1275 audit_log_n_string(*ab, buf, len_tmp);
1276 len_rem -= len_tmp + 2;
1277 /* don't subtract the "2" because we still need
1278 * to add quotes to the remaining string */
1279 len_abuf -= len_tmp;
1280 }
1281 len_buf -= len_tmp;
1282 buf += len_tmp;
1283 }
bdf4c48a 1284
43761473
PM
1285 /* ready to move to the next argument? */
1286 if ((len_buf == 0) && !require_data) {
1287 arg++;
1288 iter = 0;
1289 len_full = 0;
1290 require_data = true;
1291 encode = false;
1292 }
1293 } while (arg < context->execve.argc);
de6bbd1d 1294
43761473 1295 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1296
43761473
PM
1297out:
1298 kfree(buf_head);
bdf4c48a
PZ
1299}
1300
2efa48fe
Y
1301static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1302 kernel_cap_t *cap)
5f3d544f 1303{
5f3d544f
RGB
1304 if (cap_isclear(*cap)) {
1305 audit_log_format(ab, " %s=0", prefix);
1306 return;
1307 }
f122a08b 1308 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
5f3d544f
RGB
1309}
1310
1311static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1312{
1313 if (name->fcap_ver == -1) {
1314 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1315 return;
1316 }
1317 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1318 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1319 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1320 name->fcap.fE, name->fcap_ver,
1321 from_kuid(&init_user_ns, name->fcap.rootid));
1322}
1323
272ceeae
RGB
1324static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1325{
1326 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1327 const struct timespec64 *tk = &context->time.tk_injoffset;
1328 static const char * const ntp_name[] = {
1329 "offset",
1330 "freq",
1331 "status",
1332 "tai",
1333 "tick",
1334 "adjust",
1335 };
1336 int type;
1337
1338 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1339 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1340 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1341 if (!*ab) {
1342 *ab = audit_log_start(context,
1343 GFP_KERNEL,
1344 AUDIT_TIME_ADJNTPVAL);
1345 if (!*ab)
1346 return;
1347 }
1348 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1349 ntp_name[type],
1350 ntp->vals[type].oldval,
1351 ntp->vals[type].newval);
1352 audit_log_end(*ab);
1353 *ab = NULL;
1354 }
1355 }
1356 }
1357 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1358 if (!*ab) {
1359 *ab = audit_log_start(context, GFP_KERNEL,
1360 AUDIT_TIME_INJOFFSET);
1361 if (!*ab)
1362 return;
1363 }
1364 audit_log_format(*ab, "sec=%lli nsec=%li",
1365 (long long)tk->tv_sec, tk->tv_nsec);
1366 audit_log_end(*ab);
1367 *ab = NULL;
1368 }
1369}
1370
a33e6751 1371static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1372{
1373 struct audit_buffer *ab;
1374 int i;
1375
1376 ab = audit_log_start(context, GFP_KERNEL, context->type);
1377 if (!ab)
1378 return;
1379
1380 switch (context->type) {
1381 case AUDIT_SOCKETCALL: {
1382 int nargs = context->socketcall.nargs;
254c8b96 1383
f3298dc4
AV
1384 audit_log_format(ab, "nargs=%d", nargs);
1385 for (i = 0; i < nargs; i++)
1386 audit_log_format(ab, " a%d=%lx", i,
1387 context->socketcall.args[i]);
1388 break; }
7183abcc 1389 case AUDIT_IPC:
2570ebbd 1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1391 from_kuid(&init_user_ns, context->ipc.uid),
1392 from_kgid(&init_user_ns, context->ipc.gid),
1393 context->ipc.mode);
7183abcc 1394 if (lsmprop_is_set(&context->ipc.oprop)) {
2d470c77 1395 struct lsm_context lsmctx;
254c8b96 1396
7183abcc 1397 if (security_lsmprop_to_secctx(&context->ipc.oprop,
2d470c77 1398 &lsmctx) < 0) {
a33e6751
AV
1399 *call_panic = 1;
1400 } else {
2d470c77
CS
1401 audit_log_format(ab, " obj=%s", lsmctx.context);
1402 security_release_secctx(&lsmctx);
a33e6751
AV
1403 }
1404 }
e816f370
AV
1405 if (context->ipc.has_perm) {
1406 audit_log_end(ab);
1407 ab = audit_log_start(context, GFP_KERNEL,
1408 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1409 if (unlikely(!ab))
1410 return;
e816f370 1411 audit_log_format(ab,
2570ebbd 1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1413 context->ipc.qbytes,
1414 context->ipc.perm_uid,
1415 context->ipc.perm_gid,
1416 context->ipc.perm_mode);
e816f370 1417 }
7183abcc 1418 break;
fe8e52b9 1419 case AUDIT_MQ_OPEN:
564f6993 1420 audit_log_format(ab,
df0a4283 1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1422 "mq_msgsize=%ld mq_curmsgs=%ld",
1423 context->mq_open.oflag, context->mq_open.mode,
1424 context->mq_open.attr.mq_flags,
1425 context->mq_open.attr.mq_maxmsg,
1426 context->mq_open.attr.mq_msgsize,
1427 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1428 break;
1429 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1430 audit_log_format(ab,
1431 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1433 context->mq_sendrecv.mqdes,
1434 context->mq_sendrecv.msg_len,
1435 context->mq_sendrecv.msg_prio,
b9047726 1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1437 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1438 break;
1439 case AUDIT_MQ_NOTIFY:
20114f71
AV
1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441 context->mq_notify.mqdes,
1442 context->mq_notify.sigev_signo);
fe8e52b9 1443 break;
7392906e
AV
1444 case AUDIT_MQ_GETSETATTR: {
1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
254c8b96 1446
7392906e
AV
1447 audit_log_format(ab,
1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449 "mq_curmsgs=%ld ",
1450 context->mq_getsetattr.mqdes,
1451 attr->mq_flags, attr->mq_maxmsg,
1452 attr->mq_msgsize, attr->mq_curmsgs);
1453 break; }
fe8e52b9 1454 case AUDIT_CAPSET:
57f71a0a
AV
1455 audit_log_format(ab, "pid=%d", context->capset.pid);
1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1460 break;
1461 case AUDIT_MMAP:
120a795d
AV
1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463 context->mmap.flags);
fe8e52b9 1464 break;
571e5c0e
RGB
1465 case AUDIT_OPENAT2:
1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467 context->openat2.flags,
1468 context->openat2.mode,
1469 context->openat2.resolve);
1470 break;
fe8e52b9 1471 case AUDIT_EXECVE:
d9cfea91 1472 audit_log_execve_info(context, &ab);
fe8e52b9 1473 break;
ca86cad7
RGB
1474 case AUDIT_KERN_MODULE:
1475 audit_log_format(ab, "name=");
b305f7ed
YW
1476 if (context->module.name) {
1477 audit_log_untrustedstring(ab, context->module.name);
b305f7ed
YW
1478 } else
1479 audit_log_format(ab, "(null)");
1480
ca86cad7 1481 break;
272ceeae
RGB
1482 case AUDIT_TIME_ADJNTPVAL:
1483 case AUDIT_TIME_INJOFFSET:
1484 /* this call deviates from the rest, eating the buffer */
1485 audit_log_time(context, &ab);
1486 break;
f3298dc4
AV
1487 }
1488 audit_log_end(ab);
1489}
1490
3f1c8250
WR
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493 char *end = proctitle + len - 1;
254c8b96 1494
3f1c8250
WR
1495 while (end > proctitle && !isprint(*end))
1496 end--;
1497
1498 /* catch the case where proctitle is only 1 non-print character */
1499 len = end - proctitle + 1;
1500 len -= isprint(proctitle[len-1]) == 0;
1501 return len;
1502}
1503
5f3d544f
RGB
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513 const struct path *path, int record_num, int *call_panic)
1514{
1515 struct audit_buffer *ab;
1516
1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518 if (!ab)
1519 return;
1520
1521 audit_log_format(ab, "item=%d", record_num);
1522
1523 if (path)
1524 audit_log_d_path(ab, " name=", path);
1525 else if (n->name) {
1526 switch (n->name_len) {
1527 case AUDIT_NAME_FULL:
1528 /* log the full path */
1529 audit_log_format(ab, " name=");
1530 audit_log_untrustedstring(ab, n->name->name);
1531 break;
1532 case 0:
1533 /* name was specified as a relative path and the
1534 * directory component is the cwd
1535 */
6d915476
RGB
1536 if (context->pwd.dentry && context->pwd.mnt)
1537 audit_log_d_path(ab, " name=", &context->pwd);
1538 else
1539 audit_log_format(ab, " name=(null)");
5f3d544f
RGB
1540 break;
1541 default:
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1545 n->name_len);
1546 }
1547 } else
1548 audit_log_format(ab, " name=(null)");
1549
1550 if (n->ino != AUDIT_INO_UNSET)
1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552 n->ino,
1553 MAJOR(n->dev),
1554 MINOR(n->dev),
1555 n->mode,
1556 from_kuid(&init_user_ns, n->uid),
1557 from_kgid(&init_user_ns, n->gid),
1558 MAJOR(n->rdev),
1559 MINOR(n->rdev));
e0a8dcbd 1560 if (lsmprop_is_set(&n->oprop)) {
6fba8981 1561 struct lsm_context ctx;
5f3d544f 1562
2d470c77 1563 if (security_lsmprop_to_secctx(&n->oprop, &ctx) < 0) {
5f3d544f
RGB
1564 if (call_panic)
1565 *call_panic = 2;
1566 } else {
6fba8981
CS
1567 audit_log_format(ab, " obj=%s", ctx.context);
1568 security_release_secctx(&ctx);
5f3d544f
RGB
1569 }
1570 }
1571
1572 /* log the audit_names record type */
1573 switch (n->type) {
1574 case AUDIT_TYPE_NORMAL:
1575 audit_log_format(ab, " nametype=NORMAL");
1576 break;
1577 case AUDIT_TYPE_PARENT:
1578 audit_log_format(ab, " nametype=PARENT");
1579 break;
1580 case AUDIT_TYPE_CHILD_DELETE:
1581 audit_log_format(ab, " nametype=DELETE");
1582 break;
1583 case AUDIT_TYPE_CHILD_CREATE:
1584 audit_log_format(ab, " nametype=CREATE");
1585 break;
1586 default:
1587 audit_log_format(ab, " nametype=UNKNOWN");
1588 break;
1589 }
1590
1591 audit_log_fcaps(ab, n);
1592 audit_log_end(ab);
1593}
1594
2a1fe215 1595static void audit_log_proctitle(void)
3f1c8250
WR
1596{
1597 int res;
1598 char *buf;
1599 char *msg = "(null)";
1600 int len = strlen(msg);
2a1fe215 1601 struct audit_context *context = audit_context();
3f1c8250
WR
1602 struct audit_buffer *ab;
1603
1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1605 if (!ab)
1606 return; /* audit_panic or being filtered */
1607
1608 audit_log_format(ab, "proctitle=");
1609
1610 /* Not cached */
1611 if (!context->proctitle.value) {
1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1613 if (!buf)
1614 goto out;
1615 /* Historically called this from procfs naming */
2a1fe215 1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1617 if (res == 0) {
1618 kfree(buf);
1619 goto out;
1620 }
1621 res = audit_proctitle_rtrim(buf, res);
1622 if (res == 0) {
1623 kfree(buf);
1624 goto out;
1625 }
1626 context->proctitle.value = buf;
1627 context->proctitle.len = res;
1628 }
1629 msg = context->proctitle.value;
1630 len = context->proctitle.len;
1631out:
1632 audit_log_n_untrustedstring(ab, msg, len);
1633 audit_log_end(ab);
1634}
1635
5bd2182d
PM
1636/**
1637 * audit_log_uring - generate a AUDIT_URINGOP record
1638 * @ctx: the audit context
1639 */
1640static void audit_log_uring(struct audit_context *ctx)
1641{
1642 struct audit_buffer *ab;
1643 const struct cred *cred;
1644
1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1646 if (!ab)
1647 return;
1648 cred = current_cred();
1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650 if (ctx->return_valid != AUDITSC_INVALID)
1651 audit_log_format(ab, " success=%s exit=%ld",
89282bea
TB
1652 str_yes_no(ctx->return_valid ==
1653 AUDITSC_SUCCESS),
5bd2182d
PM
1654 ctx->return_code);
1655 audit_log_format(ab,
1656 " items=%d"
1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1659 ctx->name_count,
1660 task_ppid_nr(current), task_tgid_nr(current),
1661 from_kuid(&init_user_ns, cred->uid),
1662 from_kgid(&init_user_ns, cred->gid),
1663 from_kuid(&init_user_ns, cred->euid),
1664 from_kuid(&init_user_ns, cred->suid),
1665 from_kuid(&init_user_ns, cred->fsuid),
1666 from_kgid(&init_user_ns, cred->egid),
1667 from_kgid(&init_user_ns, cred->sgid),
1668 from_kgid(&init_user_ns, cred->fsgid));
1669 audit_log_task_context(ab);
1670 audit_log_key(ab, ctx->filterkey);
1671 audit_log_end(ab);
1672}
1673
2a1fe215 1674static void audit_log_exit(void)
1da177e4 1675{
9c7aa6aa 1676 int i, call_panic = 0;
2a1fe215 1677 struct audit_context *context = audit_context();
1da177e4 1678 struct audit_buffer *ab;
7551ced3 1679 struct audit_aux_data *aux;
5195d8e2 1680 struct audit_names *n;
1da177e4 1681
2a1fe215 1682 context->personality = current->personality;
e495149b 1683
12c5e81d
PM
1684 switch (context->context) {
1685 case AUDIT_CTX_SYSCALL:
1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1687 if (!ab)
1688 return;
1689 audit_log_format(ab, "arch=%x syscall=%d",
1690 context->arch, context->major);
1691 if (context->personality != PER_LINUX)
1692 audit_log_format(ab, " per=%lx", context->personality);
1693 if (context->return_valid != AUDITSC_INVALID)
1694 audit_log_format(ab, " success=%s exit=%ld",
89282bea
TB
1695 str_yes_no(context->return_valid ==
1696 AUDITSC_SUCCESS),
12c5e81d
PM
1697 context->return_code);
1698 audit_log_format(ab,
1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1700 context->argv[0],
1701 context->argv[1],
1702 context->argv[2],
1703 context->argv[3],
1704 context->name_count);
1705 audit_log_task_info(ab);
1706 audit_log_key(ab, context->filterkey);
1707 audit_log_end(ab);
1708 break;
5bd2182d
PM
1709 case AUDIT_CTX_URING:
1710 audit_log_uring(context);
1711 break;
12c5e81d
PM
1712 default:
1713 BUG();
1714 break;
1715 }
1da177e4 1716
7551ced3 1717 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1718
e495149b 1719 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1720 if (!ab)
1721 continue; /* audit_panic has been called */
1722
1da177e4 1723 switch (aux->type) {
20ca73bc 1724
3fc689e9
EP
1725 case AUDIT_BPRM_FCAPS: {
1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
254c8b96 1727
3fc689e9
EP
1728 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1740 audit_log_format(ab, " frootid=%d",
1741 from_kuid(&init_user_ns,
1742 axs->fcap.rootid));
3fc689e9
EP
1743 break; }
1744
1da177e4
LT
1745 }
1746 audit_log_end(ab);
1da177e4
LT
1747 }
1748
f3298dc4 1749 if (context->type)
a33e6751 1750 show_special(context, &call_panic);
f3298dc4 1751
157cf649
AV
1752 if (context->fds[0] >= 0) {
1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1754 if (ab) {
1755 audit_log_format(ab, "fd0=%d fd1=%d",
1756 context->fds[0], context->fds[1]);
1757 audit_log_end(ab);
1758 }
1759 }
1760
4f6b434f
AV
1761 if (context->sockaddr_len) {
1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1763 if (ab) {
1764 audit_log_format(ab, "saddr=");
1765 audit_log_n_hex(ab, (void *)context->sockaddr,
1766 context->sockaddr_len);
1767 audit_log_end(ab);
1768 }
1769 }
1770
e54dc243
AG
1771 for (aux = context->aux_pids; aux; aux = aux->next) {
1772 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1773
1774 for (i = 0; i < axs->pid_count; i++)
1775 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1776 axs->target_auid[i],
1777 axs->target_uid[i],
4746ec5b 1778 axs->target_sessionid[i],
13d826e5 1779 &axs->target_ref[i],
c2a7780e 1780 axs->target_comm[i]))
e54dc243 1781 call_panic = 1;
a5cb013d
AV
1782 }
1783
e54dc243
AG
1784 if (context->target_pid &&
1785 audit_log_pid_context(context, context->target_pid,
c2a7780e 1786 context->target_auid, context->target_uid,
4746ec5b 1787 context->target_sessionid,
13d826e5 1788 &context->target_ref, context->target_comm))
e54dc243
AG
1789 call_panic = 1;
1790
44707fdf 1791 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1793 if (ab) {
0b7a0fdb 1794 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1795 audit_log_end(ab);
1796 }
1797 }
73241ccc 1798
5195d8e2 1799 i = 0;
79f6530c
JL
1800 list_for_each_entry(n, &context->names_list, list) {
1801 if (n->hidden)
1802 continue;
b24a30a7 1803 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1804 }
c0641f28 1805
12c5e81d
PM
1806 if (context->context == AUDIT_CTX_SYSCALL)
1807 audit_log_proctitle();
3f1c8250 1808
c0641f28
EP
1809 /* Send end of event record to help user space know we are finished */
1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1811 if (ab)
1812 audit_log_end(ab);
9c7aa6aa 1813 if (call_panic)
12c5e81d 1814 audit_panic("error in audit_log_exit()");
1da177e4
LT
1815}
1816
b0dd25a8 1817/**
196a5085 1818 * __audit_free - free a per-task audit context
b0dd25a8
RD
1819 * @tsk: task whose audit context block to free
1820 *
67daf270 1821 * Called from copy_process, do_exit, and the io_uring code
b0dd25a8 1822 */
a4ff8dba 1823void __audit_free(struct task_struct *tsk)
1da177e4 1824{
2a1fe215 1825 struct audit_context *context = tsk->audit_context;
1da177e4 1826
56179a6e 1827 if (!context)
1da177e4
LT
1828 return;
1829
12c5e81d 1830 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
1831 if (!list_empty(&context->killed_trees))
1832 audit_kill_trees(context);
1833
2a1fe215
PM
1834 /* We are called either by do_exit() or the fork() error handling code;
1835 * in the former case tsk == current and in the latter tsk is a
0351dc57 1836 * random task_struct that doesn't have any meaningful data we
2a1fe215
PM
1837 * need to log via audit_log_exit().
1838 */
67daf270 1839 if (tsk == current && !context->dummy) {
ba59eae7 1840 context->return_valid = AUDITSC_INVALID;
2a1fe215 1841 context->return_code = 0;
67daf270
PM
1842 if (context->context == AUDIT_CTX_SYSCALL) {
1843 audit_filter_syscall(tsk, context);
1844 audit_filter_inodes(tsk, context);
1845 if (context->current_state == AUDIT_STATE_RECORD)
1846 audit_log_exit();
1847 } else if (context->context == AUDIT_CTX_URING) {
1848 /* TODO: verify this case is real and valid */
1849 audit_filter_uring(tsk, context);
1850 audit_filter_inodes(tsk, context);
1851 if (context->current_state == AUDIT_STATE_RECORD)
1852 audit_log_uring(context);
1853 }
2a1fe215
PM
1854 }
1855
2a1fe215 1856 audit_set_context(tsk, NULL);
1da177e4
LT
1857 audit_free_context(context);
1858}
1859
12c5e81d
PM
1860/**
1861 * audit_return_fixup - fixup the return codes in the audit_context
1862 * @ctx: the audit_context
1863 * @success: true/false value to indicate if the operation succeeded or not
1864 * @code: operation return code
1865 *
1866 * We need to fixup the return code in the audit logs if the actual return
1867 * codes are later going to be fixed by the arch specific signal handlers.
1868 */
1869static void audit_return_fixup(struct audit_context *ctx,
1870 int success, long code)
1871{
1872 /*
1873 * This is actually a test for:
1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1876 *
1877 * but is faster than a bunch of ||
1878 */
1879 if (unlikely(code <= -ERESTARTSYS) &&
1880 (code >= -ERESTART_RESTARTBLOCK) &&
1881 (code != -ENOIOCTLCMD))
1882 ctx->return_code = -EINTR;
1883 else
1884 ctx->return_code = code;
1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1886}
1887
5bd2182d
PM
1888/**
1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890 * @op: the io_uring opcode
1891 *
1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1893 * operations. This function should only ever be called from
1894 * audit_uring_entry() as we rely on the audit context checking present in that
1895 * function.
1896 */
1897void __audit_uring_entry(u8 op)
1898{
1899 struct audit_context *ctx = audit_context();
1900
1901 if (ctx->state == AUDIT_STATE_DISABLED)
1902 return;
1903
1904 /*
1905 * NOTE: It's possible that we can be called from the process' context
1906 * before it returns to userspace, and before audit_syscall_exit()
1907 * is called. In this case there is not much to do, just record
1908 * the io_uring details and return.
1909 */
1910 ctx->uring_op = op;
1911 if (ctx->context == AUDIT_CTX_SYSCALL)
1912 return;
1913
1914 ctx->dummy = !audit_n_rules;
1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1916 ctx->prio = 0;
1917
1918 ctx->context = AUDIT_CTX_URING;
1919 ctx->current_state = ctx->state;
1920 ktime_get_coarse_real_ts64(&ctx->ctime);
1921}
1922
1923/**
1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925 * @success: true/false value to indicate if the operation succeeded or not
1926 * @code: operation return code
1927 *
1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1929 * operations. This function should only ever be called from
1930 * audit_uring_exit() as we rely on the audit context checking present in that
1931 * function.
1932 */
1933void __audit_uring_exit(int success, long code)
1934{
1935 struct audit_context *ctx = audit_context();
1936
69e9cd66
JO
1937 if (ctx->dummy) {
1938 if (ctx->context != AUDIT_CTX_URING)
1939 return;
1940 goto out;
1941 }
1942
d4fefa48 1943 audit_return_fixup(ctx, success, code);
5bd2182d
PM
1944 if (ctx->context == AUDIT_CTX_SYSCALL) {
1945 /*
1946 * NOTE: See the note in __audit_uring_entry() about the case
1947 * where we may be called from process context before we
1948 * return to userspace via audit_syscall_exit(). In this
1949 * case we simply emit a URINGOP record and bail, the
1950 * normal syscall exit handling will take care of
1951 * everything else.
1952 * It is also worth mentioning that when we are called,
1953 * the current process creds may differ from the creds
1954 * used during the normal syscall processing; keep that
1955 * in mind if/when we move the record generation code.
1956 */
1957
1958 /*
1959 * We need to filter on the syscall info here to decide if we
1960 * should emit a URINGOP record. I know it seems odd but this
1961 * solves the problem where users have a filter to block *all*
1962 * syscall records in the "exit" filter; we want to preserve
1963 * the behavior here.
1964 */
1965 audit_filter_syscall(current, ctx);
67daf270
PM
1966 if (ctx->current_state != AUDIT_STATE_RECORD)
1967 audit_filter_uring(current, ctx);
5bd2182d
PM
1968 audit_filter_inodes(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 return;
1971
1972 audit_log_uring(ctx);
1973 return;
1974 }
1975
1976 /* this may generate CONFIG_CHANGE records */
1977 if (!list_empty(&ctx->killed_trees))
1978 audit_kill_trees(ctx);
1979
67daf270
PM
1980 /* run through both filters to ensure we set the filterkey properly */
1981 audit_filter_uring(current, ctx);
5bd2182d
PM
1982 audit_filter_inodes(current, ctx);
1983 if (ctx->current_state != AUDIT_STATE_RECORD)
1984 goto out;
5bd2182d
PM
1985 audit_log_exit();
1986
1987out:
1988 audit_reset_context(ctx);
1989}
1990
b0dd25a8 1991/**
196a5085 1992 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1993 * @major: major syscall type (function)
1994 * @a1: additional syscall register 1
1995 * @a2: additional syscall register 2
1996 * @a3: additional syscall register 3
1997 * @a4: additional syscall register 4
1998 *
1999 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
2000 * audit context was created when the task was created and the state or
2001 * filters demand the audit context be built. If the state from the
619ed58a 2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1da177e4
LT
2003 * then the record will be written at syscall exit time (otherwise, it
2004 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
2005 * be written).
2006 */
b4f0d375
RGB
2007void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008 unsigned long a3, unsigned long a4)
1da177e4 2009{
cdfb6b34 2010 struct audit_context *context = audit_context();
1da177e4
LT
2011 enum audit_state state;
2012
94d14e3e 2013 if (!audit_enabled || !context)
86a1c34a 2014 return;
1da177e4 2015
12c5e81d
PM
2016 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017 WARN_ON(context->name_count);
2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019 audit_panic("unrecoverable error in audit_syscall_entry()");
2020 return;
2021 }
1da177e4 2022
1da177e4 2023 state = context->state;
619ed58a 2024 if (state == AUDIT_STATE_DISABLED)
5260ecc2
RGB
2025 return;
2026
d51374ad 2027 context->dummy = !audit_n_rules;
619ed58a 2028 if (!context->dummy && state == AUDIT_STATE_BUILD) {
0590b933 2029 context->prio = 0;
cdfb6b34 2030 if (auditd_test_task(current))
5260ecc2 2031 return;
0590b933 2032 }
1da177e4 2033
16add411 2034 context->arch = syscall_get_arch(current);
5260ecc2
RGB
2035 context->major = major;
2036 context->argv[0] = a1;
2037 context->argv[1] = a2;
2038 context->argv[2] = a3;
2039 context->argv[3] = a4;
12c5e81d 2040 context->context = AUDIT_CTX_SYSCALL;
0590b933 2041 context->current_state = state;
290e44b7 2042 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
2043}
2044
b0dd25a8 2045/**
196a5085 2046 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
2047 * @success: success value of the syscall
2048 * @return_code: return value of the syscall
b0dd25a8
RD
2049 *
2050 * Tear down after system call. If the audit context has been marked as
619ed58a 2051 * auditable (either because of the AUDIT_STATE_RECORD state from
42ae610c 2052 * filtering, or because some other part of the kernel wrote an audit
1da177e4 2053 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
2054 * free the names stored from getname().
2055 */
d7e7528b 2056void __audit_syscall_exit(int success, long return_code)
1da177e4 2057{
12c5e81d 2058 struct audit_context *context = audit_context();
1da177e4 2059
12c5e81d
PM
2060 if (!context || context->dummy ||
2061 context->context != AUDIT_CTX_SYSCALL)
2062 goto out;
1da177e4 2063
12c5e81d 2064 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
2065 if (!list_empty(&context->killed_trees))
2066 audit_kill_trees(context);
2067
d4fefa48 2068 audit_return_fixup(context, success, return_code);
12c5e81d
PM
2069 /* run through both filters to ensure we set the filterkey properly */
2070 audit_filter_syscall(current, context);
2071 audit_filter_inodes(current, context);
3ed66951 2072 if (context->current_state != AUDIT_STATE_RECORD)
12c5e81d 2073 goto out;
2a1fe215 2074
12c5e81d 2075 audit_log_exit();
2fd6f58b 2076
12c5e81d
PM
2077out:
2078 audit_reset_context(context);
1da177e4
LT
2079}
2080
74c3cbe3
AV
2081static inline void handle_one(const struct inode *inode)
2082{
74c3cbe3
AV
2083 struct audit_context *context;
2084 struct audit_tree_refs *p;
2085 struct audit_chunk *chunk;
2086 int count;
254c8b96 2087
08991e83 2088 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 2089 return;
cdfb6b34 2090 context = audit_context();
74c3cbe3
AV
2091 p = context->trees;
2092 count = context->tree_count;
2093 rcu_read_lock();
2094 chunk = audit_tree_lookup(inode);
2095 rcu_read_unlock();
2096 if (!chunk)
2097 return;
2098 if (likely(put_tree_ref(context, chunk)))
2099 return;
2100 if (unlikely(!grow_tree_refs(context))) {
f952d10f 2101 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2102 audit_set_auditable(context);
2103 audit_put_chunk(chunk);
2104 unroll_tree_refs(context, p, count);
2105 return;
2106 }
2107 put_tree_ref(context, chunk);
74c3cbe3
AV
2108}
2109
2110static void handle_path(const struct dentry *dentry)
2111{
74c3cbe3
AV
2112 struct audit_context *context;
2113 struct audit_tree_refs *p;
2114 const struct dentry *d, *parent;
2115 struct audit_chunk *drop;
2116 unsigned long seq;
2117 int count;
2118
cdfb6b34 2119 context = audit_context();
74c3cbe3
AV
2120 p = context->trees;
2121 count = context->tree_count;
2122retry:
2123 drop = NULL;
2124 d = dentry;
2125 rcu_read_lock();
2126 seq = read_seqbegin(&rename_lock);
62acadda 2127 for (;;) {
3b362157 2128 struct inode *inode = d_backing_inode(d);
254c8b96 2129
08991e83 2130 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3 2131 struct audit_chunk *chunk;
254c8b96 2132
74c3cbe3
AV
2133 chunk = audit_tree_lookup(inode);
2134 if (chunk) {
2135 if (unlikely(!put_tree_ref(context, chunk))) {
2136 drop = chunk;
2137 break;
2138 }
2139 }
2140 }
2141 parent = d->d_parent;
2142 if (parent == d)
2143 break;
2144 d = parent;
2145 }
2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2147 rcu_read_unlock();
2148 if (!drop) {
2149 /* just a race with rename */
2150 unroll_tree_refs(context, p, count);
2151 goto retry;
2152 }
2153 audit_put_chunk(drop);
2154 if (grow_tree_refs(context)) {
2155 /* OK, got more space */
2156 unroll_tree_refs(context, p, count);
2157 goto retry;
2158 }
2159 /* too bad */
f952d10f 2160 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2161 unroll_tree_refs(context, p, count);
2162 audit_set_auditable(context);
2163 return;
2164 }
2165 rcu_read_unlock();
74c3cbe3
AV
2166}
2167
78e2e802
JL
2168static struct audit_names *audit_alloc_name(struct audit_context *context,
2169 unsigned char type)
5195d8e2
EP
2170{
2171 struct audit_names *aname;
2172
2173 if (context->name_count < AUDIT_NAMES) {
2174 aname = &context->preallocated_names[context->name_count];
2175 memset(aname, 0, sizeof(*aname));
2176 } else {
2177 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2178 if (!aname)
2179 return NULL;
2180 aname->should_free = true;
2181 }
2182
84cb777e 2183 aname->ino = AUDIT_INO_UNSET;
78e2e802 2184 aname->type = type;
5195d8e2
EP
2185 list_add_tail(&aname->list, &context->names_list);
2186
2187 context->name_count++;
6d915476
RGB
2188 if (!context->pwd.dentry)
2189 get_fs_pwd(current->fs, &context->pwd);
5195d8e2
EP
2190 return aname;
2191}
2192
7ac86265 2193/**
196a5085 2194 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
2195 * @uptr: userland ptr to pathname
2196 *
2197 * Search the audit_names list for the current audit context. If there is an
2198 * existing entry with a matching "uptr" then return the filename
2199 * associated with that audit_name. If not, return NULL.
2200 */
2201struct filename *
2202__audit_reusename(const __user char *uptr)
2203{
cdfb6b34 2204 struct audit_context *context = audit_context();
7ac86265
JL
2205 struct audit_names *n;
2206
2207 list_for_each_entry(n, &context->names_list, list) {
2208 if (!n->name)
2209 continue;
61185101
MG
2210 if (n->name->uptr == uptr)
2211 return refname(n->name);
7ac86265
JL
2212 }
2213 return NULL;
2214}
2215
b0dd25a8 2216/**
196a5085 2217 * __audit_getname - add a name to the list
b0dd25a8
RD
2218 * @name: name to add
2219 *
2220 * Add a name to the list of audit names for this context.
2221 * Called from fs/namei.c:getname().
2222 */
91a27b2a 2223void __audit_getname(struct filename *name)
1da177e4 2224{
cdfb6b34 2225 struct audit_context *context = audit_context();
5195d8e2 2226 struct audit_names *n;
1da177e4 2227
12c5e81d 2228 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2229 return;
91a27b2a 2230
78e2e802 2231 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2232 if (!n)
2233 return;
2234
2235 n->name = name;
2236 n->name_len = AUDIT_NAME_FULL;
adb5c247 2237 name->aname = n;
61185101 2238 refname(name);
1da177e4
LT
2239}
2240
5f3d544f
RGB
2241static inline int audit_copy_fcaps(struct audit_names *name,
2242 const struct dentry *dentry)
2243{
2244 struct cpu_vfs_cap_data caps;
2245 int rc;
2246
2247 if (!dentry)
2248 return 0;
2249
39f60c1c 2250 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
5f3d544f
RGB
2251 if (rc)
2252 return rc;
2253
2254 name->fcap.permitted = caps.permitted;
2255 name->fcap.inheritable = caps.inheritable;
2256 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2257 name->fcap.rootid = caps.rootid;
2258 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2259 VFS_CAP_REVISION_SHIFT;
2260
2261 return 0;
2262}
2263
2264/* Copy inode data into an audit_names. */
2efa48fe
Y
2265static void audit_copy_inode(struct audit_names *name,
2266 const struct dentry *dentry,
2267 struct inode *inode, unsigned int flags)
5f3d544f
RGB
2268{
2269 name->ino = inode->i_ino;
2270 name->dev = inode->i_sb->s_dev;
2271 name->mode = inode->i_mode;
2272 name->uid = inode->i_uid;
2273 name->gid = inode->i_gid;
2274 name->rdev = inode->i_rdev;
e0a8dcbd 2275 security_inode_getlsmprop(inode, &name->oprop);
5f3d544f
RGB
2276 if (flags & AUDIT_INODE_NOEVAL) {
2277 name->fcap_ver = -1;
2278 return;
2279 }
2280 audit_copy_fcaps(name, dentry);
2281}
2282
b0dd25a8 2283/**
bfcec708 2284 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2285 * @name: name being audited
481968f4 2286 * @dentry: dentry being audited
79f6530c 2287 * @flags: attributes for this particular entry
b0dd25a8 2288 */
adb5c247 2289void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 2290 unsigned int flags)
1da177e4 2291{
cdfb6b34 2292 struct audit_context *context = audit_context();
d6335d77 2293 struct inode *inode = d_backing_inode(dentry);
5195d8e2 2294 struct audit_names *n;
79f6530c 2295 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
2296 struct audit_entry *e;
2297 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2298 int i;
1da177e4 2299
12c5e81d 2300 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2301 return;
5195d8e2 2302
a252f56a 2303 rcu_read_lock();
699c1868
RGB
2304 list_for_each_entry_rcu(e, list, list) {
2305 for (i = 0; i < e->rule.field_count; i++) {
2306 struct audit_field *f = &e->rule.fields[i];
2307
2308 if (f->type == AUDIT_FSTYPE
2309 && audit_comparator(inode->i_sb->s_magic,
2310 f->op, f->val)
2311 && e->rule.action == AUDIT_NEVER) {
2312 rcu_read_unlock();
2313 return;
a252f56a
RGB
2314 }
2315 }
2316 }
2317 rcu_read_unlock();
2318
9cec9d68
JL
2319 if (!name)
2320 goto out_alloc;
2321
adb5c247
JL
2322 /*
2323 * If we have a pointer to an audit_names entry already, then we can
2324 * just use it directly if the type is correct.
2325 */
2326 n = name->aname;
2327 if (n) {
2328 if (parent) {
2329 if (n->type == AUDIT_TYPE_PARENT ||
2330 n->type == AUDIT_TYPE_UNKNOWN)
2331 goto out;
2332 } else {
2333 if (n->type != AUDIT_TYPE_PARENT)
2334 goto out;
2335 }
2336 }
2337
5195d8e2 2338 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
2339 if (n->ino) {
2340 /* valid inode number, use that for the comparison */
2341 if (n->ino != inode->i_ino ||
2342 n->dev != inode->i_sb->s_dev)
2343 continue;
2344 } else if (n->name) {
2345 /* inode number has not been set, check the name */
2346 if (strcmp(n->name->name, name->name))
2347 continue;
2348 } else
2349 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
2350 continue;
2351
2352 /* match the correct record type */
2353 if (parent) {
2354 if (n->type == AUDIT_TYPE_PARENT ||
2355 n->type == AUDIT_TYPE_UNKNOWN)
2356 goto out;
2357 } else {
2358 if (n->type != AUDIT_TYPE_PARENT)
2359 goto out;
2360 }
1da177e4 2361 }
5195d8e2 2362
9cec9d68 2363out_alloc:
4a928436
PM
2364 /* unable to find an entry with both a matching name and type */
2365 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2366 if (!n)
2367 return;
fcf22d82 2368 if (name) {
fd3522fd 2369 n->name = name;
61185101 2370 refname(name);
fcf22d82 2371 }
4a928436 2372
5195d8e2 2373out:
bfcec708 2374 if (parent) {
91a27b2a 2375 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 2376 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
2377 if (flags & AUDIT_INODE_HIDDEN)
2378 n->hidden = true;
bfcec708
JL
2379 } else {
2380 n->name_len = AUDIT_NAME_FULL;
2381 n->type = AUDIT_TYPE_NORMAL;
2382 }
74c3cbe3 2383 handle_path(dentry);
57d46577 2384 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
73241ccc
AG
2385}
2386
9f45f5bf
AV
2387void __audit_file(const struct file *file)
2388{
2389 __audit_inode(NULL, file->f_path.dentry, 0);
2390}
2391
73241ccc 2392/**
c43a25ab 2393 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2394 * @parent: inode of dentry parent
c43a25ab 2395 * @dentry: dentry being audited
4fa6b5ec 2396 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2397 *
2398 * For syscalls that create or remove filesystem objects, audit_inode
2399 * can only collect information for the filesystem object's parent.
2400 * This call updates the audit context with the child's information.
2401 * Syscalls that create a new filesystem object must be hooked after
2402 * the object is created. Syscalls that remove a filesystem object
2403 * must be hooked prior, in order to capture the target inode during
2404 * unsuccessful attempts.
2405 */
d6335d77 2406void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
2407 const struct dentry *dentry,
2408 const unsigned char type)
73241ccc 2409{
cdfb6b34 2410 struct audit_context *context = audit_context();
d6335d77 2411 struct inode *inode = d_backing_inode(dentry);
795d673a 2412 const struct qstr *dname = &dentry->d_name;
4fa6b5ec 2413 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
2414 struct audit_entry *e;
2415 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2416 int i;
73241ccc 2417
12c5e81d 2418 if (context->context == AUDIT_CTX_UNUSED)
73241ccc
AG
2419 return;
2420
42d5e376 2421 rcu_read_lock();
699c1868
RGB
2422 list_for_each_entry_rcu(e, list, list) {
2423 for (i = 0; i < e->rule.field_count; i++) {
2424 struct audit_field *f = &e->rule.fields[i];
2425
2426 if (f->type == AUDIT_FSTYPE
2427 && audit_comparator(parent->i_sb->s_magic,
2428 f->op, f->val)
2429 && e->rule.action == AUDIT_NEVER) {
2430 rcu_read_unlock();
2431 return;
42d5e376
RGB
2432 }
2433 }
2434 }
2435 rcu_read_unlock();
2436
74c3cbe3
AV
2437 if (inode)
2438 handle_one(inode);
73241ccc 2439
4fa6b5ec 2440 /* look for a parent entry first */
5195d8e2 2441 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
2442 if (!n->name ||
2443 (n->type != AUDIT_TYPE_PARENT &&
2444 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2445 continue;
2446
57c59f58
PM
2447 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2448 !audit_compare_dname_path(dname,
2449 n->name->name, n->name_len)) {
2450 if (n->type == AUDIT_TYPE_UNKNOWN)
2451 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
2452 found_parent = n;
2453 break;
f368c07d 2454 }
5712e88f 2455 }
73241ccc 2456
b59bc6e3
GC
2457 cond_resched();
2458
4fa6b5ec 2459 /* is there a matching child entry? */
5195d8e2 2460 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2461 /* can only match entries that have a name */
57c59f58
PM
2462 if (!n->name ||
2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2464 continue;
2465
795d673a 2466 if (!strcmp(dname->name, n->name->name) ||
91a27b2a 2467 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2468 found_parent ?
2469 found_parent->name_len :
e3d6b07b 2470 AUDIT_NAME_FULL)) {
57c59f58
PM
2471 if (n->type == AUDIT_TYPE_UNKNOWN)
2472 n->type = type;
4fa6b5ec
JL
2473 found_child = n;
2474 break;
5712e88f 2475 }
ac9910ce 2476 }
5712e88f 2477
5712e88f 2478 if (!found_parent) {
4fa6b5ec
JL
2479 /* create a new, "anonymous" parent record */
2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2481 if (!n)
ac9910ce 2482 return;
57d46577 2483 audit_copy_inode(n, NULL, parent, 0);
73d3ec5a 2484 }
5712e88f
AG
2485
2486 if (!found_child) {
4fa6b5ec
JL
2487 found_child = audit_alloc_name(context, type);
2488 if (!found_child)
5712e88f 2489 return;
5712e88f
AG
2490
2491 /* Re-use the name belonging to the slot for a matching parent
2492 * directory. All names for this context are relinquished in
2493 * audit_free_names() */
2494 if (found_parent) {
4fa6b5ec
JL
2495 found_child->name = found_parent->name;
2496 found_child->name_len = AUDIT_NAME_FULL;
61185101 2497 refname(found_child->name);
5712e88f 2498 }
5712e88f 2499 }
57c59f58 2500
4fa6b5ec 2501 if (inode)
57d46577 2502 audit_copy_inode(found_child, dentry, inode, 0);
4fa6b5ec 2503 else
84cb777e 2504 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 2505}
50e437d5 2506EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2507
b0dd25a8
RD
2508/**
2509 * auditsc_get_stamp - get local copies of audit_context values
2510 * @ctx: audit_context for the task
2115bb25 2511 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
2512 * @serial: serial value that is recorded in the audit_context
2513 *
2514 * Also sets the context as auditable.
2515 */
48887e63 2516int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 2517 struct timespec64 *t, unsigned int *serial)
1da177e4 2518{
12c5e81d 2519 if (ctx->context == AUDIT_CTX_UNUSED)
48887e63 2520 return 0;
ce625a80
DW
2521 if (!ctx->serial)
2522 ctx->serial = audit_serial();
bfb4496e
DW
2523 t->tv_sec = ctx->ctime.tv_sec;
2524 t->tv_nsec = ctx->ctime.tv_nsec;
2525 *serial = ctx->serial;
0590b933
AV
2526 if (!ctx->prio) {
2527 ctx->prio = 1;
619ed58a 2528 ctx->current_state = AUDIT_STATE_RECORD;
0590b933 2529 }
48887e63 2530 return 1;
1da177e4
LT
2531}
2532
20ca73bc
GW
2533/**
2534 * __audit_mq_open - record audit data for a POSIX MQ open
2535 * @oflag: open flag
2536 * @mode: mode bits
6b962559 2537 * @attr: queue attributes
20ca73bc 2538 *
20ca73bc 2539 */
df0a4283 2540void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2541{
cdfb6b34 2542 struct audit_context *context = audit_context();
20ca73bc 2543
564f6993
AV
2544 if (attr)
2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2546 else
2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2548
564f6993
AV
2549 context->mq_open.oflag = oflag;
2550 context->mq_open.mode = mode;
20ca73bc 2551
564f6993 2552 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2553}
2554
2555/**
c32c8af4 2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2557 * @mqdes: MQ descriptor
2558 * @msg_len: Message length
2559 * @msg_prio: Message priority
c32c8af4 2560 * @abs_timeout: Message timeout in absolute time
20ca73bc 2561 *
20ca73bc 2562 */
c32c8af4 2563void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2564 const struct timespec64 *abs_timeout)
20ca73bc 2565{
cdfb6b34 2566 struct audit_context *context = audit_context();
b9047726 2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2568
c32c8af4 2569 if (abs_timeout)
b9047726 2570 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2571 else
b9047726 2572 memset(p, 0, sizeof(*p));
20ca73bc 2573
c32c8af4
AV
2574 context->mq_sendrecv.mqdes = mqdes;
2575 context->mq_sendrecv.msg_len = msg_len;
2576 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2577
c32c8af4 2578 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2579}
2580
2581/**
2582 * __audit_mq_notify - record audit data for a POSIX MQ notify
2583 * @mqdes: MQ descriptor
6b962559 2584 * @notification: Notification event
20ca73bc 2585 *
20ca73bc
GW
2586 */
2587
20114f71 2588void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2589{
cdfb6b34 2590 struct audit_context *context = audit_context();
20ca73bc 2591
20114f71
AV
2592 if (notification)
2593 context->mq_notify.sigev_signo = notification->sigev_signo;
2594 else
2595 context->mq_notify.sigev_signo = 0;
20ca73bc 2596
20114f71
AV
2597 context->mq_notify.mqdes = mqdes;
2598 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2599}
2600
2601/**
2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2603 * @mqdes: MQ descriptor
2604 * @mqstat: MQ flags
2605 *
20ca73bc 2606 */
7392906e 2607void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2608{
cdfb6b34 2609 struct audit_context *context = audit_context();
254c8b96 2610
7392906e
AV
2611 context->mq_getsetattr.mqdes = mqdes;
2612 context->mq_getsetattr.mqstat = *mqstat;
2613 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2614}
2615
b0dd25a8 2616/**
196a5085 2617 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2618 * @ipcp: ipc permissions
2619 *
073115d6 2620 */
a33e6751 2621void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2622{
cdfb6b34 2623 struct audit_context *context = audit_context();
254c8b96 2624
a33e6751
AV
2625 context->ipc.uid = ipcp->uid;
2626 context->ipc.gid = ipcp->gid;
2627 context->ipc.mode = ipcp->mode;
e816f370 2628 context->ipc.has_perm = 0;
f4602f16 2629 security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
a33e6751 2630 context->type = AUDIT_IPC;
073115d6
SG
2631}
2632
2633/**
196a5085 2634 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2635 * @qbytes: msgq bytes
2636 * @uid: msgq user id
2637 * @gid: msgq group id
2638 * @mode: msgq mode (permissions)
2639 *
e816f370 2640 * Called only after audit_ipc_obj().
b0dd25a8 2641 */
2570ebbd 2642void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2643{
cdfb6b34 2644 struct audit_context *context = audit_context();
1da177e4 2645
e816f370
AV
2646 context->ipc.qbytes = qbytes;
2647 context->ipc.perm_uid = uid;
2648 context->ipc.perm_gid = gid;
2649 context->ipc.perm_mode = mode;
2650 context->ipc.has_perm = 1;
1da177e4 2651}
c2f0c7c3 2652
d9cfea91 2653void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2654{
cdfb6b34 2655 struct audit_context *context = audit_context();
473ae30b 2656
d9cfea91
RGB
2657 context->type = AUDIT_EXECVE;
2658 context->execve.argc = bprm->argc;
473ae30b
AV
2659}
2660
2661
b0dd25a8 2662/**
196a5085 2663 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2665 * @args: args array
2666 *
b0dd25a8 2667 */
2950fa9d 2668int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2669{
cdfb6b34 2670 struct audit_context *context = audit_context();
3ec3b2fb 2671
2950fa9d
CG
2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2673 return -EINVAL;
f3298dc4
AV
2674 context->type = AUDIT_SOCKETCALL;
2675 context->socketcall.nargs = nargs;
2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2677 return 0;
3ec3b2fb
DW
2678}
2679
db349509
AV
2680/**
2681 * __audit_fd_pair - record audit data for pipe and socketpair
2682 * @fd1: the first file descriptor
2683 * @fd2: the second file descriptor
2684 *
db349509 2685 */
157cf649 2686void __audit_fd_pair(int fd1, int fd2)
db349509 2687{
cdfb6b34 2688 struct audit_context *context = audit_context();
254c8b96 2689
157cf649
AV
2690 context->fds[0] = fd1;
2691 context->fds[1] = fd2;
db349509
AV
2692}
2693
b0dd25a8 2694/**
196a5085 2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2696 * @len: data length in user space
2697 * @a: data address in kernel space
2698 *
2699 * Returns 0 for success or NULL context or < 0 on error.
2700 */
07c49417 2701int __audit_sockaddr(int len, void *a)
3ec3b2fb 2702{
cdfb6b34 2703 struct audit_context *context = audit_context();
3ec3b2fb 2704
4f6b434f
AV
2705 if (!context->sockaddr) {
2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
254c8b96 2707
4f6b434f
AV
2708 if (!p)
2709 return -ENOMEM;
2710 context->sockaddr = p;
2711 }
3ec3b2fb 2712
4f6b434f
AV
2713 context->sockaddr_len = len;
2714 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2715 return 0;
2716}
2717
a5cb013d
AV
2718void __audit_ptrace(struct task_struct *t)
2719{
cdfb6b34 2720 struct audit_context *context = audit_context();
a5cb013d 2721
fa2bea2f 2722 context->target_pid = task_tgid_nr(t);
c2a7780e 2723 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2724 context->target_uid = task_uid(t);
4746ec5b 2725 context->target_sessionid = audit_get_sessionid(t);
286d7a54 2726 strscpy(context->target_comm, t->comm);
d9381508 2727 security_task_getlsmprop_obj(t, &context->target_ref);
a5cb013d
AV
2728}
2729
b0dd25a8 2730/**
b48345aa 2731 * audit_signal_info_syscall - record signal info for syscalls
b0dd25a8
RD
2732 * @t: task being signaled
2733 *
2734 * If the audit subsystem is being terminated, record the task (pid)
2735 * and uid that is doing that.
2736 */
b48345aa 2737int audit_signal_info_syscall(struct task_struct *t)
c2f0c7c3 2738{
e54dc243 2739 struct audit_aux_data_pids *axp;
cdfb6b34 2740 struct audit_context *ctx = audit_context();
b48345aa 2741 kuid_t t_uid = task_uid(t);
e54dc243 2742
ab6434a1
PM
2743 if (!audit_signals || audit_dummy_context())
2744 return 0;
2745
e54dc243
AG
2746 /* optimize the common case by putting first signal recipient directly
2747 * in audit_context */
2748 if (!ctx->target_pid) {
f1dc4867 2749 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2750 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2751 ctx->target_uid = t_uid;
4746ec5b 2752 ctx->target_sessionid = audit_get_sessionid(t);
286d7a54 2753 strscpy(ctx->target_comm, t->comm);
d9381508 2754 security_task_getlsmprop_obj(t, &ctx->target_ref);
e54dc243
AG
2755 return 0;
2756 }
2757
2758 axp = (void *)ctx->aux_pids;
2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2761 if (!axp)
2762 return -ENOMEM;
2763
2764 axp->d.type = AUDIT_OBJ_PID;
2765 axp->d.next = ctx->aux_pids;
2766 ctx->aux_pids = (void *)axp;
2767 }
88ae704c 2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2769
f1dc4867 2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2772 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
13d826e5 2774 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
286d7a54 2775 strscpy(axp->target_comm[axp->pid_count], t->comm);
e54dc243
AG
2776 axp->pid_count++;
2777
2778 return 0;
c2f0c7c3 2779}
0a4ff8c2 2780
3fc689e9
EP
2781/**
2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2783 * @bprm: pointer to the bprm being processed
2784 * @new: the proposed new credentials
2785 * @old: the old credentials
3fc689e9
EP
2786 *
2787 * Simply check if the proc already has the caps given by the file and if not
2788 * store the priv escalation info for later auditing at the end of the syscall
2789 *
3fc689e9
EP
2790 * -Eric
2791 */
d84f4f99
DH
2792int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2793 const struct cred *new, const struct cred *old)
3fc689e9
EP
2794{
2795 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2796 struct audit_context *context = audit_context();
3fc689e9 2797 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2798
2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2800 if (!ax)
d84f4f99 2801 return -ENOMEM;
3fc689e9
EP
2802
2803 ax->d.type = AUDIT_BPRM_FCAPS;
2804 ax->d.next = context->aux;
2805 context->aux = (void *)ax;
2806
39f60c1c 2807 get_vfs_caps_from_disk(&nop_mnt_idmap,
71bc356f 2808 bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2809
2810 ax->fcap.permitted = vcaps.permitted;
2811 ax->fcap.inheritable = vcaps.inheritable;
2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2813 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2815
d84f4f99
DH
2816 ax->old_pcap.permitted = old->cap_permitted;
2817 ax->old_pcap.inheritable = old->cap_inheritable;
2818 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2819 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2820
d84f4f99
DH
2821 ax->new_pcap.permitted = new->cap_permitted;
2822 ax->new_pcap.inheritable = new->cap_inheritable;
2823 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2824 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2825 return 0;
3fc689e9
EP
2826}
2827
e68b75a0
EP
2828/**
2829 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2830 * @new: the new credentials
2831 * @old: the old (current) credentials
e68b75a0 2832 *
da3dae54 2833 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2834 * audit system if applicable
2835 */
ca24a23e 2836void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2837{
cdfb6b34 2838 struct audit_context *context = audit_context();
254c8b96 2839
fa2bea2f 2840 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2841 context->capset.cap.effective = new->cap_effective;
2842 context->capset.cap.inheritable = new->cap_effective;
2843 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2844 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2845 context->type = AUDIT_CAPSET;
e68b75a0
EP
2846}
2847
120a795d
AV
2848void __audit_mmap_fd(int fd, int flags)
2849{
cdfb6b34 2850 struct audit_context *context = audit_context();
254c8b96 2851
120a795d
AV
2852 context->mmap.fd = fd;
2853 context->mmap.flags = flags;
2854 context->type = AUDIT_MMAP;
2855}
2856
571e5c0e
RGB
2857void __audit_openat2_how(struct open_how *how)
2858{
2859 struct audit_context *context = audit_context();
2860
2861 context->openat2.flags = how->flags;
2862 context->openat2.mode = how->mode;
2863 context->openat2.resolve = how->resolve;
2864 context->type = AUDIT_OPENAT2;
2865}
2866
ca86cad7
RGB
2867void __audit_log_kern_module(char *name)
2868{
cdfb6b34 2869 struct audit_context *context = audit_context();
ca86cad7 2870
b305f7ed
YW
2871 context->module.name = kstrdup(name, GFP_KERNEL);
2872 if (!context->module.name)
2873 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2874 context->type = AUDIT_KERN_MODULE;
2875}
2876
032bffd4 2877void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
de8cd83e 2878{
032bffd4
RGB
2879 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2880 switch (friar->hdr.type) {
2881 case FAN_RESPONSE_INFO_NONE:
2882 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2883 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2884 response, FAN_RESPONSE_INFO_NONE);
2885 break;
2886 case FAN_RESPONSE_INFO_AUDIT_RULE:
2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2889 response, friar->hdr.type, friar->rule_number,
2890 friar->subj_trust, friar->obj_trust);
2891 }
de8cd83e
SG
2892}
2893
2d87a067
OM
2894void __audit_tk_injoffset(struct timespec64 offset)
2895{
272ceeae 2896 struct audit_context *context = audit_context();
7e8eda73 2897
272ceeae
RGB
2898 /* only set type if not already set by NTP */
2899 if (!context->type)
2900 context->type = AUDIT_TIME_INJOFFSET;
2901 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
7e8eda73
OM
2902}
2903
2904void __audit_ntp_log(const struct audit_ntp_data *ad)
2905{
272ceeae
RGB
2906 struct audit_context *context = audit_context();
2907 int type;
2908
2909 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2910 if (ad->vals[type].newval != ad->vals[type].oldval) {
2911 /* unconditionally set type, overwriting TK */
2912 context->type = AUDIT_TIME_ADJNTPVAL;
2913 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2914 break;
2915 }
7e8eda73
OM
2916}
2917
c4dad0aa 2918void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
14224039 2919 enum audit_nfcfgop op, gfp_t gfp)
c4dad0aa
RGB
2920{
2921 struct audit_buffer *ab;
9d44a121 2922 char comm[sizeof(current->comm)];
c4dad0aa 2923
14224039 2924 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
c4dad0aa
RGB
2925 if (!ab)
2926 return;
2927 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2928 name, af, nentries, audit_nfcfgs[op].s);
9d44a121 2929
61c60977 2930 audit_log_format(ab, " pid=%u", task_tgid_nr(current));
9d44a121
RGB
2931 audit_log_task_context(ab); /* subj= */
2932 audit_log_format(ab, " comm=");
2933 audit_log_untrustedstring(ab, get_task_comm(comm, current));
c4dad0aa
RGB
2934 audit_log_end(ab);
2935}
2936EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2937
7b9205bd 2938static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2939{
cca080d9
EB
2940 kuid_t auid, uid;
2941 kgid_t gid;
85e7bac3 2942 unsigned int sessionid;
9eab339b 2943 char comm[sizeof(current->comm)];
85e7bac3
EP
2944
2945 auid = audit_get_loginuid(current);
2946 sessionid = audit_get_sessionid(current);
2947 current_uid_gid(&uid, &gid);
2948
2949 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2950 from_kuid(&init_user_ns, auid),
2951 from_kuid(&init_user_ns, uid),
2952 from_kgid(&init_user_ns, gid),
2953 sessionid);
85e7bac3 2954 audit_log_task_context(ab);
fa2bea2f 2955 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2956 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2957 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2958}
2959
0a4ff8c2
SG
2960/**
2961 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2962 * @signr: signal value
0a4ff8c2
SG
2963 *
2964 * If a process ends with a core dump, something fishy is going on and we
2965 * should record the event for investigation.
2966 */
2967void audit_core_dumps(long signr)
2968{
2969 struct audit_buffer *ab;
0a4ff8c2
SG
2970
2971 if (!audit_enabled)
2972 return;
2973
2974 if (signr == SIGQUIT) /* don't care for those */
2975 return;
2976
d87de4a8 2977 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2978 if (unlikely(!ab))
2979 return;
61c0ee87 2980 audit_log_task(ab);
89670aff 2981 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2982 audit_log_end(ab);
2983}
0a4ff8c2 2984
326bee02
TH
2985/**
2986 * audit_seccomp - record information about a seccomp action
2987 * @syscall: syscall number
2988 * @signr: signal value
2989 * @code: the seccomp action
2990 *
2991 * Record the information associated with a seccomp action. Event filtering for
2992 * seccomp actions that are not to be logged is done in seccomp_log().
2993 * Therefore, this function forces auditing independent of the audit_enabled
2994 * and dummy context state because seccomp actions should be logged even when
2995 * audit is not in use.
2996 */
2997void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2998{
2999 struct audit_buffer *ab;
3000
9b8753ff 3001 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
3002 if (unlikely(!ab))
3003 return;
3004 audit_log_task(ab);
84db564a 3005 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
16add411 3006 signr, syscall_get_arch(current), syscall,
efbc0fbf 3007 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
3008 audit_log_end(ab);
3009}
916d7576 3010
ea6eca77
TH
3011void audit_seccomp_actions_logged(const char *names, const char *old_names,
3012 int res)
3013{
3014 struct audit_buffer *ab;
3015
3016 if (!audit_enabled)
3017 return;
3018
8982a1fb 3019 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
3020 AUDIT_CONFIG_CHANGE);
3021 if (unlikely(!ab))
3022 return;
3023
d0a3f18a
PM
3024 audit_log_format(ab,
3025 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3026 names, old_names, res);
ea6eca77
TH
3027 audit_log_end(ab);
3028}
3029
916d7576
AV
3030struct list_head *audit_killed_trees(void)
3031{
cdfb6b34 3032 struct audit_context *ctx = audit_context();
12c5e81d 3033 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
916d7576
AV
3034 return NULL;
3035 return &ctx->killed_trees;
3036}