audit: Use more current logging style again
[linux-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
1da177e4 73
fe7752ba 74#include "audit.h"
1da177e4 75
d7e7528b
EP
76/* flags stating the success for a syscall */
77#define AUDITSC_INVALID 0
78#define AUDITSC_SUCCESS 1
79#define AUDITSC_FAILURE 2
80
de6bbd1d
EP
81/* no execve audit message should be longer than this (userspace limits) */
82#define MAX_EXECVE_AUDIT_LEN 7500
83
471a5c7c
AV
84/* number of audit rules */
85int audit_n_rules;
86
e54dc243
AG
87/* determines whether we collect data for signals sent */
88int audit_signals;
89
1da177e4
LT
90struct audit_aux_data {
91 struct audit_aux_data *next;
92 int type;
93};
94
95#define AUDIT_AUX_IPCPERM 0
96
e54dc243
AG
97/* Number of target pids per aux struct. */
98#define AUDIT_AUX_PIDS 16
99
e54dc243
AG
100struct audit_aux_data_pids {
101 struct audit_aux_data d;
102 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 103 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 104 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 105 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 106 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 107 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
108 int pid_count;
109};
110
3fc689e9
EP
111struct audit_aux_data_bprm_fcaps {
112 struct audit_aux_data d;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 struct audit_cap_data old_pcap;
116 struct audit_cap_data new_pcap;
117};
118
74c3cbe3
AV
119struct audit_tree_refs {
120 struct audit_tree_refs *next;
121 struct audit_chunk *c[31];
122};
123
55669bfa
AV
124static inline int open_arg(int flags, int mask)
125{
126 int n = ACC_MODE(flags);
127 if (flags & (O_TRUNC | O_CREAT))
128 n |= AUDIT_PERM_WRITE;
129 return n & mask;
130}
131
132static int audit_match_perm(struct audit_context *ctx, int mask)
133{
c4bacefb 134 unsigned n;
1a61c88d 135 if (unlikely(!ctx))
136 return 0;
c4bacefb 137 n = ctx->major;
dbda4c0b 138
55669bfa
AV
139 switch (audit_classify_syscall(ctx->arch, n)) {
140 case 0: /* native */
141 if ((mask & AUDIT_PERM_WRITE) &&
142 audit_match_class(AUDIT_CLASS_WRITE, n))
143 return 1;
144 if ((mask & AUDIT_PERM_READ) &&
145 audit_match_class(AUDIT_CLASS_READ, n))
146 return 1;
147 if ((mask & AUDIT_PERM_ATTR) &&
148 audit_match_class(AUDIT_CLASS_CHATTR, n))
149 return 1;
150 return 0;
151 case 1: /* 32bit on biarch */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ_32, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return 1;
161 return 0;
162 case 2: /* open */
163 return mask & ACC_MODE(ctx->argv[1]);
164 case 3: /* openat */
165 return mask & ACC_MODE(ctx->argv[2]);
166 case 4: /* socketcall */
167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 case 5: /* execve */
169 return mask & AUDIT_PERM_EXEC;
170 default:
171 return 0;
172 }
173}
174
5ef30ee5 175static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 176{
5195d8e2 177 struct audit_names *n;
5ef30ee5 178 umode_t mode = (umode_t)val;
1a61c88d 179
180 if (unlikely(!ctx))
181 return 0;
182
5195d8e2
EP
183 list_for_each_entry(n, &ctx->names_list, list) {
184 if ((n->ino != -1) &&
185 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
186 return 1;
187 }
5195d8e2 188
5ef30ee5 189 return 0;
8b67dca9
AV
190}
191
74c3cbe3
AV
192/*
193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
194 * ->first_trees points to its beginning, ->trees - to the current end of data.
195 * ->tree_count is the number of free entries in array pointed to by ->trees.
196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
198 * it's going to remain 1-element for almost any setup) until we free context itself.
199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 */
201
202#ifdef CONFIG_AUDIT_TREE
679173b7
EP
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
74c3cbe3
AV
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
247#endif
248
249static void unroll_tree_refs(struct audit_context *ctx,
250 struct audit_tree_refs *p, int count)
251{
252#ifdef CONFIG_AUDIT_TREE
253 struct audit_tree_refs *q;
254 int n;
255 if (!p) {
256 /* we started with empty chain */
257 p = ctx->first_trees;
258 count = 31;
259 /* if the very first allocation has failed, nothing to do */
260 if (!p)
261 return;
262 }
263 n = count;
264 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 while (n--) {
266 audit_put_chunk(q->c[n]);
267 q->c[n] = NULL;
268 }
269 }
270 while (n-- > ctx->tree_count) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 ctx->trees = p;
275 ctx->tree_count = count;
276#endif
277}
278
279static void free_tree_refs(struct audit_context *ctx)
280{
281 struct audit_tree_refs *p, *q;
282 for (p = ctx->first_trees; p; p = q) {
283 q = p->next;
284 kfree(p);
285 }
286}
287
288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289{
290#ifdef CONFIG_AUDIT_TREE
291 struct audit_tree_refs *p;
292 int n;
293 if (!tree)
294 return 0;
295 /* full ones */
296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
297 for (n = 0; n < 31; n++)
298 if (audit_tree_match(p->c[n], tree))
299 return 1;
300 }
301 /* partial */
302 if (p) {
303 for (n = ctx->tree_count; n < 31; n++)
304 if (audit_tree_match(p->c[n], tree))
305 return 1;
306 }
307#endif
308 return 0;
309}
310
ca57ec0f
EB
311static int audit_compare_uid(kuid_t uid,
312 struct audit_names *name,
313 struct audit_field *f,
314 struct audit_context *ctx)
b34b0393
EP
315{
316 struct audit_names *n;
b34b0393 317 int rc;
ca57ec0f 318
b34b0393 319 if (name) {
ca57ec0f 320 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
321 if (rc)
322 return rc;
323 }
ca57ec0f 324
b34b0393
EP
325 if (ctx) {
326 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
327 rc = audit_uid_comparator(uid, f->op, n->uid);
328 if (rc)
329 return rc;
330 }
331 }
332 return 0;
333}
b34b0393 334
ca57ec0f
EB
335static int audit_compare_gid(kgid_t gid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339{
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_gid_comparator(gid, f->op, name->gid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357}
358
02d86a56
EP
359static int audit_field_compare(struct task_struct *tsk,
360 const struct cred *cred,
361 struct audit_field *f,
362 struct audit_context *ctx,
363 struct audit_names *name)
364{
02d86a56 365 switch (f->val) {
4a6633ed 366 /* process to file object comparisons */
02d86a56 367 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 368 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 369 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 370 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 371 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 372 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 373 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 374 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 375 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 376 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 377 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 378 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 379 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 380 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 382 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 384 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
385 /* uid comparisons */
386 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 388 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 389 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 390 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 391 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 392 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
394 /* auid comparisons */
395 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 397 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 399 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
401 /* euid comparisons */
402 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 403 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 404 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
406 /* suid comparisons */
407 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
409 /* gid comparisons */
410 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 411 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 412 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 413 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 414 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
416 /* egid comparisons */
417 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 418 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 419 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
421 /* sgid comparison */
422 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
424 default:
425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
426 return 0;
427 }
428 return 0;
429}
430
f368c07d 431/* Determine if any context name data matches a rule's watch data */
1da177e4 432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
433 * otherwise.
434 *
435 * If task_creation is true, this is an explicit indication that we are
436 * filtering a task rule at task creation time. This and tsk == current are
437 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 */
1da177e4 439static int audit_filter_rules(struct task_struct *tsk,
93315ed6 440 struct audit_krule *rule,
1da177e4 441 struct audit_context *ctx,
f368c07d 442 struct audit_names *name,
f5629883
TJ
443 enum audit_state *state,
444 bool task_creation)
1da177e4 445{
f5629883 446 const struct cred *cred;
5195d8e2 447 int i, need_sid = 1;
3dc7e315
DG
448 u32 sid;
449
f5629883
TJ
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
1da177e4 452 for (i = 0; i < rule->field_count; i++) {
93315ed6 453 struct audit_field *f = &rule->fields[i];
5195d8e2 454 struct audit_names *n;
1da177e4
LT
455 int result = 0;
456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
93315ed6 459 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 460 break;
3c66251e 461 case AUDIT_PPID:
419c58f1
AV
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = sys_getppid();
3c66251e 465 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 466 }
3c66251e 467 break;
1da177e4 468 case AUDIT_UID:
ca57ec0f 469 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
470 break;
471 case AUDIT_EUID:
ca57ec0f 472 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
473 break;
474 case AUDIT_SUID:
ca57ec0f 475 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
476 break;
477 case AUDIT_FSUID:
ca57ec0f 478 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
479 break;
480 case AUDIT_GID:
ca57ec0f 481 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
482 if (f->op == Audit_equal) {
483 if (!result)
484 result = in_group_p(f->gid);
485 } else if (f->op == Audit_not_equal) {
486 if (result)
487 result = !in_group_p(f->gid);
488 }
1da177e4
LT
489 break;
490 case AUDIT_EGID:
ca57ec0f 491 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
492 if (f->op == Audit_equal) {
493 if (!result)
494 result = in_egroup_p(f->gid);
495 } else if (f->op == Audit_not_equal) {
496 if (result)
497 result = !in_egroup_p(f->gid);
498 }
1da177e4
LT
499 break;
500 case AUDIT_SGID:
ca57ec0f 501 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
502 break;
503 case AUDIT_FSGID:
ca57ec0f 504 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
505 break;
506 case AUDIT_PERS:
93315ed6 507 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 508 break;
2fd6f58b 509 case AUDIT_ARCH:
9f8dbe9c 510 if (ctx)
93315ed6 511 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 512 break;
1da177e4
LT
513
514 case AUDIT_EXIT:
515 if (ctx && ctx->return_valid)
93315ed6 516 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
517 break;
518 case AUDIT_SUCCESS:
b01f2cc1 519 if (ctx && ctx->return_valid) {
93315ed6
AG
520 if (f->val)
521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 522 else
93315ed6 523 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 524 }
1da177e4
LT
525 break;
526 case AUDIT_DEVMAJOR:
16c174bd
EP
527 if (name) {
528 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
529 audit_comparator(MAJOR(name->rdev), f->op, f->val))
530 ++result;
531 } else if (ctx) {
5195d8e2 532 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
533 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
534 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
535 ++result;
536 break;
537 }
538 }
539 }
540 break;
541 case AUDIT_DEVMINOR:
16c174bd
EP
542 if (name) {
543 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
544 audit_comparator(MINOR(name->rdev), f->op, f->val))
545 ++result;
546 } else if (ctx) {
5195d8e2 547 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
548 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
549 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
550 ++result;
551 break;
552 }
553 }
554 }
555 break;
556 case AUDIT_INODE:
f368c07d 557 if (name)
db510fc5 558 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 559 else if (ctx) {
5195d8e2
EP
560 list_for_each_entry(n, &ctx->names_list, list) {
561 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
562 ++result;
563 break;
564 }
565 }
566 }
567 break;
efaffd6e
EP
568 case AUDIT_OBJ_UID:
569 if (name) {
ca57ec0f 570 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 573 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
574 ++result;
575 break;
576 }
577 }
578 }
579 break;
54d3218b
EP
580 case AUDIT_OBJ_GID:
581 if (name) {
ca57ec0f 582 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 585 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
586 ++result;
587 break;
588 }
589 }
590 }
591 break;
f368c07d 592 case AUDIT_WATCH:
ae7b8f41
EP
593 if (name)
594 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 595 break;
74c3cbe3
AV
596 case AUDIT_DIR:
597 if (ctx)
598 result = match_tree_refs(ctx, rule->tree);
599 break;
1da177e4
LT
600 case AUDIT_LOGINUID:
601 result = 0;
602 if (ctx)
ca57ec0f 603 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 604 break;
780a7654
EB
605 case AUDIT_LOGINUID_SET:
606 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
607 break;
3a6b9f85
DG
608 case AUDIT_SUBJ_USER:
609 case AUDIT_SUBJ_ROLE:
610 case AUDIT_SUBJ_TYPE:
611 case AUDIT_SUBJ_SEN:
612 case AUDIT_SUBJ_CLR:
3dc7e315
DG
613 /* NOTE: this may return negative values indicating
614 a temporary error. We simply treat this as a
615 match for now to avoid losing information that
616 may be wanted. An error message will also be
617 logged upon error */
04305e4a 618 if (f->lsm_rule) {
2ad312d2 619 if (need_sid) {
2a862b32 620 security_task_getsecid(tsk, &sid);
2ad312d2
SG
621 need_sid = 0;
622 }
d7a96f3a 623 result = security_audit_rule_match(sid, f->type,
3dc7e315 624 f->op,
04305e4a 625 f->lsm_rule,
3dc7e315 626 ctx);
2ad312d2 627 }
3dc7e315 628 break;
6e5a2d1d
DG
629 case AUDIT_OBJ_USER:
630 case AUDIT_OBJ_ROLE:
631 case AUDIT_OBJ_TYPE:
632 case AUDIT_OBJ_LEV_LOW:
633 case AUDIT_OBJ_LEV_HIGH:
634 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
635 also applies here */
04305e4a 636 if (f->lsm_rule) {
6e5a2d1d
DG
637 /* Find files that match */
638 if (name) {
d7a96f3a 639 result = security_audit_rule_match(
6e5a2d1d 640 name->osid, f->type, f->op,
04305e4a 641 f->lsm_rule, ctx);
6e5a2d1d 642 } else if (ctx) {
5195d8e2
EP
643 list_for_each_entry(n, &ctx->names_list, list) {
644 if (security_audit_rule_match(n->osid, f->type,
645 f->op, f->lsm_rule,
646 ctx)) {
6e5a2d1d
DG
647 ++result;
648 break;
649 }
650 }
651 }
652 /* Find ipc objects that match */
a33e6751
AV
653 if (!ctx || ctx->type != AUDIT_IPC)
654 break;
655 if (security_audit_rule_match(ctx->ipc.osid,
656 f->type, f->op,
657 f->lsm_rule, ctx))
658 ++result;
6e5a2d1d
DG
659 }
660 break;
1da177e4
LT
661 case AUDIT_ARG0:
662 case AUDIT_ARG1:
663 case AUDIT_ARG2:
664 case AUDIT_ARG3:
665 if (ctx)
93315ed6 666 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 667 break;
5adc8a6a
AG
668 case AUDIT_FILTERKEY:
669 /* ignore this field for filtering */
670 result = 1;
671 break;
55669bfa
AV
672 case AUDIT_PERM:
673 result = audit_match_perm(ctx, f->val);
674 break;
8b67dca9
AV
675 case AUDIT_FILETYPE:
676 result = audit_match_filetype(ctx, f->val);
677 break;
02d86a56
EP
678 case AUDIT_FIELD_COMPARE:
679 result = audit_field_compare(tsk, cred, f, ctx, name);
680 break;
1da177e4 681 }
f5629883 682 if (!result)
1da177e4
LT
683 return 0;
684 }
0590b933
AV
685
686 if (ctx) {
687 if (rule->prio <= ctx->prio)
688 return 0;
689 if (rule->filterkey) {
690 kfree(ctx->filterkey);
691 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
692 }
693 ctx->prio = rule->prio;
694 }
1da177e4
LT
695 switch (rule->action) {
696 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
697 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
698 }
699 return 1;
700}
701
702/* At process creation time, we can determine if system-call auditing is
703 * completely disabled for this task. Since we only have the task
704 * structure at this point, we can only check uid and gid.
705 */
e048e02c 706static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
707{
708 struct audit_entry *e;
709 enum audit_state state;
710
711 rcu_read_lock();
0f45aa18 712 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
713 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
714 &state, true)) {
e048e02c
AV
715 if (state == AUDIT_RECORD_CONTEXT)
716 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
717 rcu_read_unlock();
718 return state;
719 }
720 }
721 rcu_read_unlock();
722 return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall entry and exit time, this filter is called if the
726 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 727 * also not high enough that we already know we have to write an audit
b0dd25a8 728 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
729 */
730static enum audit_state audit_filter_syscall(struct task_struct *tsk,
731 struct audit_context *ctx,
732 struct list_head *list)
733{
734 struct audit_entry *e;
c3896495 735 enum audit_state state;
1da177e4 736
351bb722 737 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
738 return AUDIT_DISABLED;
739
1da177e4 740 rcu_read_lock();
c3896495 741 if (!list_empty(list)) {
b63862f4
DK
742 int word = AUDIT_WORD(ctx->major);
743 int bit = AUDIT_BIT(ctx->major);
744
745 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
746 if ((e->rule.mask[word] & bit) == bit &&
747 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 748 &state, false)) {
f368c07d 749 rcu_read_unlock();
0590b933 750 ctx->current_state = state;
f368c07d
AG
751 return state;
752 }
753 }
754 }
755 rcu_read_unlock();
756 return AUDIT_BUILD_CONTEXT;
757}
758
5195d8e2
EP
759/*
760 * Given an audit_name check the inode hash table to see if they match.
761 * Called holding the rcu read lock to protect the use of audit_inode_hash
762 */
763static int audit_filter_inode_name(struct task_struct *tsk,
764 struct audit_names *n,
765 struct audit_context *ctx) {
766 int word, bit;
767 int h = audit_hash_ino((u32)n->ino);
768 struct list_head *list = &audit_inode_hash[h];
769 struct audit_entry *e;
770 enum audit_state state;
771
772 word = AUDIT_WORD(ctx->major);
773 bit = AUDIT_BIT(ctx->major);
774
775 if (list_empty(list))
776 return 0;
777
778 list_for_each_entry_rcu(e, list, list) {
779 if ((e->rule.mask[word] & bit) == bit &&
780 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
781 ctx->current_state = state;
782 return 1;
783 }
784 }
785
786 return 0;
787}
788
789/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 790 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 791 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
792 * Regarding audit_state, same rules apply as for audit_filter_syscall().
793 */
0590b933 794void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 795{
5195d8e2 796 struct audit_names *n;
f368c07d
AG
797
798 if (audit_pid && tsk->tgid == audit_pid)
0590b933 799 return;
f368c07d
AG
800
801 rcu_read_lock();
f368c07d 802
5195d8e2
EP
803 list_for_each_entry(n, &ctx->names_list, list) {
804 if (audit_filter_inode_name(tsk, n, ctx))
805 break;
0f45aa18
DW
806 }
807 rcu_read_unlock();
0f45aa18
DW
808}
809
1da177e4
LT
810static inline struct audit_context *audit_get_context(struct task_struct *tsk,
811 int return_valid,
6d208da8 812 long return_code)
1da177e4
LT
813{
814 struct audit_context *context = tsk->audit_context;
815
56179a6e 816 if (!context)
1da177e4
LT
817 return NULL;
818 context->return_valid = return_valid;
f701b75e
EP
819
820 /*
821 * we need to fix up the return code in the audit logs if the actual
822 * return codes are later going to be fixed up by the arch specific
823 * signal handlers
824 *
825 * This is actually a test for:
826 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
827 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
828 *
829 * but is faster than a bunch of ||
830 */
831 if (unlikely(return_code <= -ERESTARTSYS) &&
832 (return_code >= -ERESTART_RESTARTBLOCK) &&
833 (return_code != -ENOIOCTLCMD))
834 context->return_code = -EINTR;
835 else
836 context->return_code = return_code;
1da177e4 837
0590b933
AV
838 if (context->in_syscall && !context->dummy) {
839 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
840 audit_filter_inodes(tsk, context);
1da177e4
LT
841 }
842
1da177e4
LT
843 tsk->audit_context = NULL;
844 return context;
845}
846
847static inline void audit_free_names(struct audit_context *context)
848{
5195d8e2 849 struct audit_names *n, *next;
1da177e4
LT
850
851#if AUDIT_DEBUG == 2
0590b933 852 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
853 int i = 0;
854
f952d10f
RGB
855 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
856 " name_count=%d put_count=%d ino_count=%d"
857 " [NOT freeing]\n", __FILE__, __LINE__,
1da177e4
LT
858 context->serial, context->major, context->in_syscall,
859 context->name_count, context->put_count,
860 context->ino_count);
5195d8e2 861 list_for_each_entry(n, &context->names_list, list) {
f952d10f
RGB
862 pr_err("names[%d] = %p = %s\n", i++, n->name,
863 n->name->name ?: "(null)");
8c8570fb 864 }
1da177e4
LT
865 dump_stack();
866 return;
867 }
868#endif
869#if AUDIT_DEBUG
870 context->put_count = 0;
871 context->ino_count = 0;
872#endif
873
5195d8e2
EP
874 list_for_each_entry_safe(n, next, &context->names_list, list) {
875 list_del(&n->list);
876 if (n->name && n->name_put)
65ada7bc 877 final_putname(n->name);
5195d8e2
EP
878 if (n->should_free)
879 kfree(n);
8c8570fb 880 }
1da177e4 881 context->name_count = 0;
44707fdf
JB
882 path_put(&context->pwd);
883 context->pwd.dentry = NULL;
884 context->pwd.mnt = NULL;
1da177e4
LT
885}
886
887static inline void audit_free_aux(struct audit_context *context)
888{
889 struct audit_aux_data *aux;
890
891 while ((aux = context->aux)) {
892 context->aux = aux->next;
893 kfree(aux);
894 }
e54dc243
AG
895 while ((aux = context->aux_pids)) {
896 context->aux_pids = aux->next;
897 kfree(aux);
898 }
1da177e4
LT
899}
900
1da177e4
LT
901static inline struct audit_context *audit_alloc_context(enum audit_state state)
902{
903 struct audit_context *context;
904
17c6ee70
RM
905 context = kzalloc(sizeof(*context), GFP_KERNEL);
906 if (!context)
1da177e4 907 return NULL;
e2c5adc8
AM
908 context->state = state;
909 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 910 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 911 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
912 return context;
913}
914
b0dd25a8
RD
915/**
916 * audit_alloc - allocate an audit context block for a task
917 * @tsk: task
918 *
919 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
920 * if necessary. Doing so turns on system call auditing for the
921 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
922 * needed.
923 */
1da177e4
LT
924int audit_alloc(struct task_struct *tsk)
925{
926 struct audit_context *context;
927 enum audit_state state;
e048e02c 928 char *key = NULL;
1da177e4 929
b593d384 930 if (likely(!audit_ever_enabled))
1da177e4
LT
931 return 0; /* Return if not auditing. */
932
e048e02c 933 state = audit_filter_task(tsk, &key);
d48d8051
ON
934 if (state == AUDIT_DISABLED) {
935 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 936 return 0;
d48d8051 937 }
1da177e4
LT
938
939 if (!(context = audit_alloc_context(state))) {
e048e02c 940 kfree(key);
1da177e4
LT
941 audit_log_lost("out of memory in audit_alloc");
942 return -ENOMEM;
943 }
e048e02c 944 context->filterkey = key;
1da177e4 945
1da177e4
LT
946 tsk->audit_context = context;
947 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
948 return 0;
949}
950
951static inline void audit_free_context(struct audit_context *context)
952{
c62d773a
AV
953 audit_free_names(context);
954 unroll_tree_refs(context, NULL, 0);
955 free_tree_refs(context);
956 audit_free_aux(context);
957 kfree(context->filterkey);
958 kfree(context->sockaddr);
959 kfree(context);
1da177e4
LT
960}
961
e54dc243 962static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 963 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 964 u32 sid, char *comm)
e54dc243
AG
965{
966 struct audit_buffer *ab;
2a862b32 967 char *ctx = NULL;
e54dc243
AG
968 u32 len;
969 int rc = 0;
970
971 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
972 if (!ab)
6246ccab 973 return rc;
e54dc243 974
e1760bd5
EB
975 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
976 from_kuid(&init_user_ns, auid),
cca080d9 977 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
978 if (sid) {
979 if (security_secid_to_secctx(sid, &ctx, &len)) {
980 audit_log_format(ab, " obj=(none)");
981 rc = 1;
982 } else {
983 audit_log_format(ab, " obj=%s", ctx);
984 security_release_secctx(ctx, len);
985 }
2a862b32 986 }
c2a7780e
EP
987 audit_log_format(ab, " ocomm=");
988 audit_log_untrustedstring(ab, comm);
e54dc243 989 audit_log_end(ab);
e54dc243
AG
990
991 return rc;
992}
993
de6bbd1d
EP
994/*
995 * to_send and len_sent accounting are very loose estimates. We aren't
996 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 997 * within about 500 bytes (next page boundary)
de6bbd1d
EP
998 *
999 * why snprintf? an int is up to 12 digits long. if we just assumed when
1000 * logging that a[%d]= was going to be 16 characters long we would be wasting
1001 * space in every audit message. In one 7500 byte message we can log up to
1002 * about 1000 min size arguments. That comes down to about 50% waste of space
1003 * if we didn't do the snprintf to find out how long arg_num_len was.
1004 */
1005static int audit_log_single_execve_arg(struct audit_context *context,
1006 struct audit_buffer **ab,
1007 int arg_num,
1008 size_t *len_sent,
1009 const char __user *p,
1010 char *buf)
bdf4c48a 1011{
de6bbd1d
EP
1012 char arg_num_len_buf[12];
1013 const char __user *tmp_p = p;
b87ce6e4
EP
1014 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1015 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1016 size_t len, len_left, to_send;
1017 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1018 unsigned int i, has_cntl = 0, too_long = 0;
1019 int ret;
1020
1021 /* strnlen_user includes the null we don't want to send */
1022 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1023
de6bbd1d
EP
1024 /*
1025 * We just created this mm, if we can't find the strings
1026 * we just copied into it something is _very_ wrong. Similar
1027 * for strings that are too long, we should not have created
1028 * any.
1029 */
b0abcfc1 1030 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1031 WARN_ON(1);
1032 send_sig(SIGKILL, current, 0);
b0abcfc1 1033 return -1;
de6bbd1d 1034 }
040b3a2d 1035
de6bbd1d
EP
1036 /* walk the whole argument looking for non-ascii chars */
1037 do {
1038 if (len_left > MAX_EXECVE_AUDIT_LEN)
1039 to_send = MAX_EXECVE_AUDIT_LEN;
1040 else
1041 to_send = len_left;
1042 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1043 /*
de6bbd1d
EP
1044 * There is no reason for this copy to be short. We just
1045 * copied them here, and the mm hasn't been exposed to user-
1046 * space yet.
bdf4c48a 1047 */
de6bbd1d 1048 if (ret) {
bdf4c48a
PZ
1049 WARN_ON(1);
1050 send_sig(SIGKILL, current, 0);
b0abcfc1 1051 return -1;
bdf4c48a 1052 }
de6bbd1d
EP
1053 buf[to_send] = '\0';
1054 has_cntl = audit_string_contains_control(buf, to_send);
1055 if (has_cntl) {
1056 /*
1057 * hex messages get logged as 2 bytes, so we can only
1058 * send half as much in each message
1059 */
1060 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1061 break;
1062 }
de6bbd1d
EP
1063 len_left -= to_send;
1064 tmp_p += to_send;
1065 } while (len_left > 0);
1066
1067 len_left = len;
1068
1069 if (len > max_execve_audit_len)
1070 too_long = 1;
1071
1072 /* rewalk the argument actually logging the message */
1073 for (i = 0; len_left > 0; i++) {
1074 int room_left;
1075
1076 if (len_left > max_execve_audit_len)
1077 to_send = max_execve_audit_len;
1078 else
1079 to_send = len_left;
1080
1081 /* do we have space left to send this argument in this ab? */
1082 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1083 if (has_cntl)
1084 room_left -= (to_send * 2);
1085 else
1086 room_left -= to_send;
1087 if (room_left < 0) {
1088 *len_sent = 0;
1089 audit_log_end(*ab);
1090 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1091 if (!*ab)
1092 return 0;
1093 }
bdf4c48a 1094
bdf4c48a 1095 /*
de6bbd1d
EP
1096 * first record needs to say how long the original string was
1097 * so we can be sure nothing was lost.
1098 */
1099 if ((i == 0) && (too_long))
ca96a895 1100 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1101 has_cntl ? 2*len : len);
1102
1103 /*
1104 * normally arguments are small enough to fit and we already
1105 * filled buf above when we checked for control characters
1106 * so don't bother with another copy_from_user
bdf4c48a 1107 */
de6bbd1d
EP
1108 if (len >= max_execve_audit_len)
1109 ret = copy_from_user(buf, p, to_send);
1110 else
1111 ret = 0;
040b3a2d 1112 if (ret) {
bdf4c48a
PZ
1113 WARN_ON(1);
1114 send_sig(SIGKILL, current, 0);
b0abcfc1 1115 return -1;
bdf4c48a 1116 }
de6bbd1d
EP
1117 buf[to_send] = '\0';
1118
1119 /* actually log it */
ca96a895 1120 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1121 if (too_long)
1122 audit_log_format(*ab, "[%d]", i);
1123 audit_log_format(*ab, "=");
1124 if (has_cntl)
b556f8ad 1125 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1126 else
9d960985 1127 audit_log_string(*ab, buf);
de6bbd1d
EP
1128
1129 p += to_send;
1130 len_left -= to_send;
1131 *len_sent += arg_num_len;
1132 if (has_cntl)
1133 *len_sent += to_send * 2;
1134 else
1135 *len_sent += to_send;
1136 }
1137 /* include the null we didn't log */
1138 return len + 1;
1139}
1140
1141static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1142 struct audit_buffer **ab)
de6bbd1d 1143{
5afb8a3f
XW
1144 int i, len;
1145 size_t len_sent = 0;
de6bbd1d
EP
1146 const char __user *p;
1147 char *buf;
bdf4c48a 1148
d9cfea91 1149 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1150
d9cfea91 1151 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1152
1153 /*
1154 * we need some kernel buffer to hold the userspace args. Just
1155 * allocate one big one rather than allocating one of the right size
1156 * for every single argument inside audit_log_single_execve_arg()
1157 * should be <8k allocation so should be pretty safe.
1158 */
1159 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1160 if (!buf) {
1161 audit_panic("out of memory for argv string\n");
1162 return;
bdf4c48a 1163 }
de6bbd1d 1164
d9cfea91 1165 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1166 len = audit_log_single_execve_arg(context, ab, i,
1167 &len_sent, p, buf);
1168 if (len <= 0)
1169 break;
1170 p += len;
1171 }
1172 kfree(buf);
bdf4c48a
PZ
1173}
1174
a33e6751 1175static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1176{
1177 struct audit_buffer *ab;
1178 int i;
1179
1180 ab = audit_log_start(context, GFP_KERNEL, context->type);
1181 if (!ab)
1182 return;
1183
1184 switch (context->type) {
1185 case AUDIT_SOCKETCALL: {
1186 int nargs = context->socketcall.nargs;
1187 audit_log_format(ab, "nargs=%d", nargs);
1188 for (i = 0; i < nargs; i++)
1189 audit_log_format(ab, " a%d=%lx", i,
1190 context->socketcall.args[i]);
1191 break; }
a33e6751
AV
1192 case AUDIT_IPC: {
1193 u32 osid = context->ipc.osid;
1194
2570ebbd 1195 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1196 from_kuid(&init_user_ns, context->ipc.uid),
1197 from_kgid(&init_user_ns, context->ipc.gid),
1198 context->ipc.mode);
a33e6751
AV
1199 if (osid) {
1200 char *ctx = NULL;
1201 u32 len;
1202 if (security_secid_to_secctx(osid, &ctx, &len)) {
1203 audit_log_format(ab, " osid=%u", osid);
1204 *call_panic = 1;
1205 } else {
1206 audit_log_format(ab, " obj=%s", ctx);
1207 security_release_secctx(ctx, len);
1208 }
1209 }
e816f370
AV
1210 if (context->ipc.has_perm) {
1211 audit_log_end(ab);
1212 ab = audit_log_start(context, GFP_KERNEL,
1213 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1214 if (unlikely(!ab))
1215 return;
e816f370 1216 audit_log_format(ab,
2570ebbd 1217 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1218 context->ipc.qbytes,
1219 context->ipc.perm_uid,
1220 context->ipc.perm_gid,
1221 context->ipc.perm_mode);
e816f370 1222 }
a33e6751 1223 break; }
564f6993
AV
1224 case AUDIT_MQ_OPEN: {
1225 audit_log_format(ab,
df0a4283 1226 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1227 "mq_msgsize=%ld mq_curmsgs=%ld",
1228 context->mq_open.oflag, context->mq_open.mode,
1229 context->mq_open.attr.mq_flags,
1230 context->mq_open.attr.mq_maxmsg,
1231 context->mq_open.attr.mq_msgsize,
1232 context->mq_open.attr.mq_curmsgs);
1233 break; }
c32c8af4
AV
1234 case AUDIT_MQ_SENDRECV: {
1235 audit_log_format(ab,
1236 "mqdes=%d msg_len=%zd msg_prio=%u "
1237 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238 context->mq_sendrecv.mqdes,
1239 context->mq_sendrecv.msg_len,
1240 context->mq_sendrecv.msg_prio,
1241 context->mq_sendrecv.abs_timeout.tv_sec,
1242 context->mq_sendrecv.abs_timeout.tv_nsec);
1243 break; }
20114f71
AV
1244 case AUDIT_MQ_NOTIFY: {
1245 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246 context->mq_notify.mqdes,
1247 context->mq_notify.sigev_signo);
1248 break; }
7392906e
AV
1249 case AUDIT_MQ_GETSETATTR: {
1250 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251 audit_log_format(ab,
1252 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253 "mq_curmsgs=%ld ",
1254 context->mq_getsetattr.mqdes,
1255 attr->mq_flags, attr->mq_maxmsg,
1256 attr->mq_msgsize, attr->mq_curmsgs);
1257 break; }
57f71a0a
AV
1258 case AUDIT_CAPSET: {
1259 audit_log_format(ab, "pid=%d", context->capset.pid);
1260 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263 break; }
120a795d
AV
1264 case AUDIT_MMAP: {
1265 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266 context->mmap.flags);
1267 break; }
d9cfea91
RGB
1268 case AUDIT_EXECVE: {
1269 audit_log_execve_info(context, &ab);
1270 break; }
f3298dc4
AV
1271 }
1272 audit_log_end(ab);
1273}
1274
e495149b 1275static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1276{
9c7aa6aa 1277 int i, call_panic = 0;
1da177e4 1278 struct audit_buffer *ab;
7551ced3 1279 struct audit_aux_data *aux;
5195d8e2 1280 struct audit_names *n;
1da177e4 1281
e495149b 1282 /* tsk == current */
3f2792ff 1283 context->personality = tsk->personality;
e495149b
AV
1284
1285 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1286 if (!ab)
1287 return; /* audit_panic has been called */
bccf6ae0
DW
1288 audit_log_format(ab, "arch=%x syscall=%d",
1289 context->arch, context->major);
1da177e4
LT
1290 if (context->personality != PER_LINUX)
1291 audit_log_format(ab, " per=%lx", context->personality);
1292 if (context->return_valid)
9f8dbe9c 1293 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1294 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1295 context->return_code);
eb84a20e 1296
1da177e4 1297 audit_log_format(ab,
e23eb920
PM
1298 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1299 context->argv[0],
1300 context->argv[1],
1301 context->argv[2],
1302 context->argv[3],
1303 context->name_count);
eb84a20e 1304
e495149b 1305 audit_log_task_info(ab, tsk);
9d960985 1306 audit_log_key(ab, context->filterkey);
1da177e4 1307 audit_log_end(ab);
1da177e4 1308
7551ced3 1309 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1310
e495149b 1311 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1312 if (!ab)
1313 continue; /* audit_panic has been called */
1314
1da177e4 1315 switch (aux->type) {
20ca73bc 1316
3fc689e9
EP
1317 case AUDIT_BPRM_FCAPS: {
1318 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1319 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1320 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1321 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1322 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1323 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1324 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1325 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1326 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1327 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1328 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1329 break; }
1330
1da177e4
LT
1331 }
1332 audit_log_end(ab);
1da177e4
LT
1333 }
1334
f3298dc4 1335 if (context->type)
a33e6751 1336 show_special(context, &call_panic);
f3298dc4 1337
157cf649
AV
1338 if (context->fds[0] >= 0) {
1339 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1340 if (ab) {
1341 audit_log_format(ab, "fd0=%d fd1=%d",
1342 context->fds[0], context->fds[1]);
1343 audit_log_end(ab);
1344 }
1345 }
1346
4f6b434f
AV
1347 if (context->sockaddr_len) {
1348 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1349 if (ab) {
1350 audit_log_format(ab, "saddr=");
1351 audit_log_n_hex(ab, (void *)context->sockaddr,
1352 context->sockaddr_len);
1353 audit_log_end(ab);
1354 }
1355 }
1356
e54dc243
AG
1357 for (aux = context->aux_pids; aux; aux = aux->next) {
1358 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1359
1360 for (i = 0; i < axs->pid_count; i++)
1361 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1362 axs->target_auid[i],
1363 axs->target_uid[i],
4746ec5b 1364 axs->target_sessionid[i],
c2a7780e
EP
1365 axs->target_sid[i],
1366 axs->target_comm[i]))
e54dc243 1367 call_panic = 1;
a5cb013d
AV
1368 }
1369
e54dc243
AG
1370 if (context->target_pid &&
1371 audit_log_pid_context(context, context->target_pid,
c2a7780e 1372 context->target_auid, context->target_uid,
4746ec5b 1373 context->target_sessionid,
c2a7780e 1374 context->target_sid, context->target_comm))
e54dc243
AG
1375 call_panic = 1;
1376
44707fdf 1377 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1378 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1379 if (ab) {
c158a35c 1380 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1381 audit_log_end(ab);
1382 }
1383 }
73241ccc 1384
5195d8e2 1385 i = 0;
79f6530c
JL
1386 list_for_each_entry(n, &context->names_list, list) {
1387 if (n->hidden)
1388 continue;
b24a30a7 1389 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1390 }
c0641f28
EP
1391
1392 /* Send end of event record to help user space know we are finished */
1393 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1394 if (ab)
1395 audit_log_end(ab);
9c7aa6aa
SG
1396 if (call_panic)
1397 audit_panic("error converting sid to string");
1da177e4
LT
1398}
1399
b0dd25a8
RD
1400/**
1401 * audit_free - free a per-task audit context
1402 * @tsk: task whose audit context block to free
1403 *
fa84cb93 1404 * Called from copy_process and do_exit
b0dd25a8 1405 */
a4ff8dba 1406void __audit_free(struct task_struct *tsk)
1da177e4
LT
1407{
1408 struct audit_context *context;
1409
1da177e4 1410 context = audit_get_context(tsk, 0, 0);
56179a6e 1411 if (!context)
1da177e4
LT
1412 return;
1413
1414 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1415 * function (e.g., exit_group), then free context block.
1416 * We use GFP_ATOMIC here because we might be doing this
f5561964 1417 * in the context of the idle thread */
e495149b 1418 /* that can happen only if we are called from do_exit() */
0590b933 1419 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1420 audit_log_exit(context, tsk);
916d7576
AV
1421 if (!list_empty(&context->killed_trees))
1422 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1423
1424 audit_free_context(context);
1425}
1426
b0dd25a8
RD
1427/**
1428 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1429 * @arch: architecture type
1430 * @major: major syscall type (function)
1431 * @a1: additional syscall register 1
1432 * @a2: additional syscall register 2
1433 * @a3: additional syscall register 3
1434 * @a4: additional syscall register 4
1435 *
1436 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1437 * audit context was created when the task was created and the state or
1438 * filters demand the audit context be built. If the state from the
1439 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1440 * then the record will be written at syscall exit time (otherwise, it
1441 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1442 * be written).
1443 */
b05d8447 1444void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1445 unsigned long a1, unsigned long a2,
1446 unsigned long a3, unsigned long a4)
1447{
5411be59 1448 struct task_struct *tsk = current;
1da177e4
LT
1449 struct audit_context *context = tsk->audit_context;
1450 enum audit_state state;
1451
56179a6e 1452 if (!context)
86a1c34a 1453 return;
1da177e4 1454
1da177e4
LT
1455 BUG_ON(context->in_syscall || context->name_count);
1456
1457 if (!audit_enabled)
1458 return;
1459
2fd6f58b 1460 context->arch = arch;
1da177e4
LT
1461 context->major = major;
1462 context->argv[0] = a1;
1463 context->argv[1] = a2;
1464 context->argv[2] = a3;
1465 context->argv[3] = a4;
1466
1467 state = context->state;
d51374ad 1468 context->dummy = !audit_n_rules;
0590b933
AV
1469 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1470 context->prio = 0;
0f45aa18 1471 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1472 }
56179a6e 1473 if (state == AUDIT_DISABLED)
1da177e4
LT
1474 return;
1475
ce625a80 1476 context->serial = 0;
1da177e4
LT
1477 context->ctime = CURRENT_TIME;
1478 context->in_syscall = 1;
0590b933 1479 context->current_state = state;
419c58f1 1480 context->ppid = 0;
1da177e4
LT
1481}
1482
b0dd25a8
RD
1483/**
1484 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1485 * @success: success value of the syscall
1486 * @return_code: return value of the syscall
b0dd25a8
RD
1487 *
1488 * Tear down after system call. If the audit context has been marked as
1da177e4 1489 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1490 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1491 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1492 * free the names stored from getname().
1493 */
d7e7528b 1494void __audit_syscall_exit(int success, long return_code)
1da177e4 1495{
5411be59 1496 struct task_struct *tsk = current;
1da177e4
LT
1497 struct audit_context *context;
1498
d7e7528b
EP
1499 if (success)
1500 success = AUDITSC_SUCCESS;
1501 else
1502 success = AUDITSC_FAILURE;
1da177e4 1503
d7e7528b 1504 context = audit_get_context(tsk, success, return_code);
56179a6e 1505 if (!context)
97e94c45 1506 return;
1da177e4 1507
0590b933 1508 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1509 audit_log_exit(context, tsk);
1da177e4
LT
1510
1511 context->in_syscall = 0;
0590b933 1512 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1513
916d7576
AV
1514 if (!list_empty(&context->killed_trees))
1515 audit_kill_trees(&context->killed_trees);
1516
c62d773a
AV
1517 audit_free_names(context);
1518 unroll_tree_refs(context, NULL, 0);
1519 audit_free_aux(context);
1520 context->aux = NULL;
1521 context->aux_pids = NULL;
1522 context->target_pid = 0;
1523 context->target_sid = 0;
1524 context->sockaddr_len = 0;
1525 context->type = 0;
1526 context->fds[0] = -1;
1527 if (context->state != AUDIT_RECORD_CONTEXT) {
1528 kfree(context->filterkey);
1529 context->filterkey = NULL;
1da177e4 1530 }
c62d773a 1531 tsk->audit_context = context;
1da177e4
LT
1532}
1533
74c3cbe3
AV
1534static inline void handle_one(const struct inode *inode)
1535{
1536#ifdef CONFIG_AUDIT_TREE
1537 struct audit_context *context;
1538 struct audit_tree_refs *p;
1539 struct audit_chunk *chunk;
1540 int count;
e61ce867 1541 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1542 return;
1543 context = current->audit_context;
1544 p = context->trees;
1545 count = context->tree_count;
1546 rcu_read_lock();
1547 chunk = audit_tree_lookup(inode);
1548 rcu_read_unlock();
1549 if (!chunk)
1550 return;
1551 if (likely(put_tree_ref(context, chunk)))
1552 return;
1553 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1554 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1555 audit_set_auditable(context);
1556 audit_put_chunk(chunk);
1557 unroll_tree_refs(context, p, count);
1558 return;
1559 }
1560 put_tree_ref(context, chunk);
1561#endif
1562}
1563
1564static void handle_path(const struct dentry *dentry)
1565{
1566#ifdef CONFIG_AUDIT_TREE
1567 struct audit_context *context;
1568 struct audit_tree_refs *p;
1569 const struct dentry *d, *parent;
1570 struct audit_chunk *drop;
1571 unsigned long seq;
1572 int count;
1573
1574 context = current->audit_context;
1575 p = context->trees;
1576 count = context->tree_count;
1577retry:
1578 drop = NULL;
1579 d = dentry;
1580 rcu_read_lock();
1581 seq = read_seqbegin(&rename_lock);
1582 for(;;) {
1583 struct inode *inode = d->d_inode;
e61ce867 1584 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1585 struct audit_chunk *chunk;
1586 chunk = audit_tree_lookup(inode);
1587 if (chunk) {
1588 if (unlikely(!put_tree_ref(context, chunk))) {
1589 drop = chunk;
1590 break;
1591 }
1592 }
1593 }
1594 parent = d->d_parent;
1595 if (parent == d)
1596 break;
1597 d = parent;
1598 }
1599 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1600 rcu_read_unlock();
1601 if (!drop) {
1602 /* just a race with rename */
1603 unroll_tree_refs(context, p, count);
1604 goto retry;
1605 }
1606 audit_put_chunk(drop);
1607 if (grow_tree_refs(context)) {
1608 /* OK, got more space */
1609 unroll_tree_refs(context, p, count);
1610 goto retry;
1611 }
1612 /* too bad */
f952d10f 1613 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1614 unroll_tree_refs(context, p, count);
1615 audit_set_auditable(context);
1616 return;
1617 }
1618 rcu_read_unlock();
1619#endif
1620}
1621
78e2e802
JL
1622static struct audit_names *audit_alloc_name(struct audit_context *context,
1623 unsigned char type)
5195d8e2
EP
1624{
1625 struct audit_names *aname;
1626
1627 if (context->name_count < AUDIT_NAMES) {
1628 aname = &context->preallocated_names[context->name_count];
1629 memset(aname, 0, sizeof(*aname));
1630 } else {
1631 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1632 if (!aname)
1633 return NULL;
1634 aname->should_free = true;
1635 }
1636
1637 aname->ino = (unsigned long)-1;
78e2e802 1638 aname->type = type;
5195d8e2
EP
1639 list_add_tail(&aname->list, &context->names_list);
1640
1641 context->name_count++;
1642#if AUDIT_DEBUG
1643 context->ino_count++;
1644#endif
1645 return aname;
1646}
1647
7ac86265
JL
1648/**
1649 * audit_reusename - fill out filename with info from existing entry
1650 * @uptr: userland ptr to pathname
1651 *
1652 * Search the audit_names list for the current audit context. If there is an
1653 * existing entry with a matching "uptr" then return the filename
1654 * associated with that audit_name. If not, return NULL.
1655 */
1656struct filename *
1657__audit_reusename(const __user char *uptr)
1658{
1659 struct audit_context *context = current->audit_context;
1660 struct audit_names *n;
1661
1662 list_for_each_entry(n, &context->names_list, list) {
1663 if (!n->name)
1664 continue;
1665 if (n->name->uptr == uptr)
1666 return n->name;
1667 }
1668 return NULL;
1669}
1670
b0dd25a8
RD
1671/**
1672 * audit_getname - add a name to the list
1673 * @name: name to add
1674 *
1675 * Add a name to the list of audit names for this context.
1676 * Called from fs/namei.c:getname().
1677 */
91a27b2a 1678void __audit_getname(struct filename *name)
1da177e4
LT
1679{
1680 struct audit_context *context = current->audit_context;
5195d8e2 1681 struct audit_names *n;
1da177e4 1682
1da177e4
LT
1683 if (!context->in_syscall) {
1684#if AUDIT_DEBUG == 2
f952d10f 1685 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1da177e4
LT
1686 __FILE__, __LINE__, context->serial, name);
1687 dump_stack();
1688#endif
1689 return;
1690 }
5195d8e2 1691
91a27b2a
JL
1692#if AUDIT_DEBUG
1693 /* The filename _must_ have a populated ->name */
1694 BUG_ON(!name->name);
1695#endif
1696
78e2e802 1697 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1698 if (!n)
1699 return;
1700
1701 n->name = name;
1702 n->name_len = AUDIT_NAME_FULL;
1703 n->name_put = true;
adb5c247 1704 name->aname = n;
5195d8e2 1705
f7ad3c6b
MS
1706 if (!context->pwd.dentry)
1707 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1708}
1709
b0dd25a8
RD
1710/* audit_putname - intercept a putname request
1711 * @name: name to intercept and delay for putname
1712 *
1713 * If we have stored the name from getname in the audit context,
1714 * then we delay the putname until syscall exit.
1715 * Called from include/linux/fs.h:putname().
1716 */
91a27b2a 1717void audit_putname(struct filename *name)
1da177e4
LT
1718{
1719 struct audit_context *context = current->audit_context;
1720
1721 BUG_ON(!context);
1722 if (!context->in_syscall) {
1723#if AUDIT_DEBUG == 2
f952d10f 1724 pr_err("%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1725 __FILE__, __LINE__, context->serial, name);
1726 if (context->name_count) {
5195d8e2 1727 struct audit_names *n;
34c474de 1728 int i = 0;
5195d8e2
EP
1729
1730 list_for_each_entry(n, &context->names_list, list)
f952d10f
RGB
1731 pr_err("name[%d] = %p = %s\n", i++, n->name,
1732 n->name->name ?: "(null)");
5195d8e2 1733 }
1da177e4 1734#endif
65ada7bc 1735 final_putname(name);
1da177e4
LT
1736 }
1737#if AUDIT_DEBUG
1738 else {
1739 ++context->put_count;
1740 if (context->put_count > context->name_count) {
f952d10f
RGB
1741 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1742 " name_count=%d put_count=%d\n",
1da177e4
LT
1743 __FILE__, __LINE__,
1744 context->serial, context->major,
91a27b2a
JL
1745 context->in_syscall, name->name,
1746 context->name_count, context->put_count);
1da177e4
LT
1747 dump_stack();
1748 }
1749 }
1750#endif
1751}
1752
b0dd25a8 1753/**
bfcec708 1754 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1755 * @name: name being audited
481968f4 1756 * @dentry: dentry being audited
79f6530c 1757 * @flags: attributes for this particular entry
b0dd25a8 1758 */
adb5c247 1759void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1760 unsigned int flags)
1da177e4 1761{
1da177e4 1762 struct audit_context *context = current->audit_context;
74c3cbe3 1763 const struct inode *inode = dentry->d_inode;
5195d8e2 1764 struct audit_names *n;
79f6530c 1765 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1766
1767 if (!context->in_syscall)
1768 return;
5195d8e2 1769
9cec9d68
JL
1770 if (!name)
1771 goto out_alloc;
1772
adb5c247
JL
1773#if AUDIT_DEBUG
1774 /* The struct filename _must_ have a populated ->name */
1775 BUG_ON(!name->name);
1776#endif
1777 /*
1778 * If we have a pointer to an audit_names entry already, then we can
1779 * just use it directly if the type is correct.
1780 */
1781 n = name->aname;
1782 if (n) {
1783 if (parent) {
1784 if (n->type == AUDIT_TYPE_PARENT ||
1785 n->type == AUDIT_TYPE_UNKNOWN)
1786 goto out;
1787 } else {
1788 if (n->type != AUDIT_TYPE_PARENT)
1789 goto out;
1790 }
1791 }
1792
5195d8e2 1793 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1794 /* does the name pointer match? */
adb5c247 1795 if (!n->name || n->name->name != name->name)
bfcec708
JL
1796 continue;
1797
1798 /* match the correct record type */
1799 if (parent) {
1800 if (n->type == AUDIT_TYPE_PARENT ||
1801 n->type == AUDIT_TYPE_UNKNOWN)
1802 goto out;
1803 } else {
1804 if (n->type != AUDIT_TYPE_PARENT)
1805 goto out;
1806 }
1da177e4 1807 }
5195d8e2 1808
9cec9d68 1809out_alloc:
bfcec708
JL
1810 /* unable to find the name from a previous getname(). Allocate a new
1811 * anonymous entry.
1812 */
78e2e802 1813 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1814 if (!n)
1815 return;
1816out:
bfcec708 1817 if (parent) {
91a27b2a 1818 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1819 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1820 if (flags & AUDIT_INODE_HIDDEN)
1821 n->hidden = true;
bfcec708
JL
1822 } else {
1823 n->name_len = AUDIT_NAME_FULL;
1824 n->type = AUDIT_TYPE_NORMAL;
1825 }
74c3cbe3 1826 handle_path(dentry);
5195d8e2 1827 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1828}
1829
1830/**
c43a25ab 1831 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1832 * @parent: inode of dentry parent
c43a25ab 1833 * @dentry: dentry being audited
4fa6b5ec 1834 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1835 *
1836 * For syscalls that create or remove filesystem objects, audit_inode
1837 * can only collect information for the filesystem object's parent.
1838 * This call updates the audit context with the child's information.
1839 * Syscalls that create a new filesystem object must be hooked after
1840 * the object is created. Syscalls that remove a filesystem object
1841 * must be hooked prior, in order to capture the target inode during
1842 * unsuccessful attempts.
1843 */
c43a25ab 1844void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1845 const struct dentry *dentry,
1846 const unsigned char type)
73241ccc 1847{
73241ccc 1848 struct audit_context *context = current->audit_context;
5a190ae6 1849 const struct inode *inode = dentry->d_inode;
cccc6bba 1850 const char *dname = dentry->d_name.name;
4fa6b5ec 1851 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1852
1853 if (!context->in_syscall)
1854 return;
1855
74c3cbe3
AV
1856 if (inode)
1857 handle_one(inode);
73241ccc 1858
4fa6b5ec 1859 /* look for a parent entry first */
5195d8e2 1860 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1861 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1862 continue;
1863
1864 if (n->ino == parent->i_ino &&
91a27b2a 1865 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1866 found_parent = n;
1867 break;
f368c07d 1868 }
5712e88f 1869 }
73241ccc 1870
4fa6b5ec 1871 /* is there a matching child entry? */
5195d8e2 1872 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1873 /* can only match entries that have a name */
1874 if (!n->name || n->type != type)
1875 continue;
1876
1877 /* if we found a parent, make sure this one is a child of it */
1878 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1879 continue;
1880
91a27b2a
JL
1881 if (!strcmp(dname, n->name->name) ||
1882 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1883 found_parent ?
1884 found_parent->name_len :
e3d6b07b 1885 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1886 found_child = n;
1887 break;
5712e88f 1888 }
ac9910ce 1889 }
5712e88f 1890
5712e88f 1891 if (!found_parent) {
4fa6b5ec
JL
1892 /* create a new, "anonymous" parent record */
1893 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1894 if (!n)
ac9910ce 1895 return;
5195d8e2 1896 audit_copy_inode(n, NULL, parent);
73d3ec5a 1897 }
5712e88f
AG
1898
1899 if (!found_child) {
4fa6b5ec
JL
1900 found_child = audit_alloc_name(context, type);
1901 if (!found_child)
5712e88f 1902 return;
5712e88f
AG
1903
1904 /* Re-use the name belonging to the slot for a matching parent
1905 * directory. All names for this context are relinquished in
1906 * audit_free_names() */
1907 if (found_parent) {
4fa6b5ec
JL
1908 found_child->name = found_parent->name;
1909 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1910 /* don't call __putname() */
4fa6b5ec 1911 found_child->name_put = false;
5712e88f 1912 }
5712e88f 1913 }
4fa6b5ec
JL
1914 if (inode)
1915 audit_copy_inode(found_child, dentry, inode);
1916 else
1917 found_child->ino = (unsigned long)-1;
3e2efce0 1918}
50e437d5 1919EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1920
b0dd25a8
RD
1921/**
1922 * auditsc_get_stamp - get local copies of audit_context values
1923 * @ctx: audit_context for the task
1924 * @t: timespec to store time recorded in the audit_context
1925 * @serial: serial value that is recorded in the audit_context
1926 *
1927 * Also sets the context as auditable.
1928 */
48887e63 1929int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1930 struct timespec *t, unsigned int *serial)
1da177e4 1931{
48887e63
AV
1932 if (!ctx->in_syscall)
1933 return 0;
ce625a80
DW
1934 if (!ctx->serial)
1935 ctx->serial = audit_serial();
bfb4496e
DW
1936 t->tv_sec = ctx->ctime.tv_sec;
1937 t->tv_nsec = ctx->ctime.tv_nsec;
1938 *serial = ctx->serial;
0590b933
AV
1939 if (!ctx->prio) {
1940 ctx->prio = 1;
1941 ctx->current_state = AUDIT_RECORD_CONTEXT;
1942 }
48887e63 1943 return 1;
1da177e4
LT
1944}
1945
4746ec5b
EP
1946/* global counter which is incremented every time something logs in */
1947static atomic_t session_id = ATOMIC_INIT(0);
1948
da0a6104
EP
1949static int audit_set_loginuid_perm(kuid_t loginuid)
1950{
da0a6104
EP
1951 /* if we are unset, we don't need privs */
1952 if (!audit_loginuid_set(current))
1953 return 0;
21b85c31
EP
1954 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1955 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1956 return -EPERM;
83fa6bbe
EP
1957 /* it is set, you need permission */
1958 if (!capable(CAP_AUDIT_CONTROL))
1959 return -EPERM;
d040e5af
EP
1960 /* reject if this is not an unset and we don't allow that */
1961 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1962 return -EPERM;
83fa6bbe 1963 return 0;
da0a6104
EP
1964}
1965
1966static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1967 unsigned int oldsessionid, unsigned int sessionid,
1968 int rc)
1969{
1970 struct audit_buffer *ab;
5ee9a75c 1971 uid_t uid, oldloginuid, loginuid;
da0a6104 1972
c2412d91
G
1973 if (!audit_enabled)
1974 return;
1975
da0a6104 1976 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
1977 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1978 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
1979
1980 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1981 if (!ab)
1982 return;
5ee9a75c
RGB
1983 audit_log_format(ab, "pid=%d uid=%u"
1984 " old-auid=%u new-auid=%u old-ses=%u new-ses=%u"
1985 " res=%d",
1986 current->pid, uid,
1987 oldloginuid, loginuid, oldsessionid, sessionid,
1988 !rc);
da0a6104
EP
1989 audit_log_end(ab);
1990}
1991
b0dd25a8 1992/**
0a300be6 1993 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
1994 * @loginuid: loginuid value
1995 *
1996 * Returns 0.
1997 *
1998 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1999 */
e1760bd5 2000int audit_set_loginuid(kuid_t loginuid)
1da177e4 2001{
0a300be6 2002 struct task_struct *task = current;
9175c9d2
EP
2003 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2004 kuid_t oldloginuid;
da0a6104 2005 int rc;
41757106 2006
da0a6104
EP
2007 oldloginuid = audit_get_loginuid(current);
2008 oldsessionid = audit_get_sessionid(current);
2009
2010 rc = audit_set_loginuid_perm(loginuid);
2011 if (rc)
2012 goto out;
633b4545 2013
81407c84
EP
2014 /* are we setting or clearing? */
2015 if (uid_valid(loginuid))
4440e854 2016 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2017
4746ec5b 2018 task->sessionid = sessionid;
bfef93a5 2019 task->loginuid = loginuid;
da0a6104
EP
2020out:
2021 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2022 return rc;
1da177e4
LT
2023}
2024
20ca73bc
GW
2025/**
2026 * __audit_mq_open - record audit data for a POSIX MQ open
2027 * @oflag: open flag
2028 * @mode: mode bits
6b962559 2029 * @attr: queue attributes
20ca73bc 2030 *
20ca73bc 2031 */
df0a4283 2032void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2033{
20ca73bc
GW
2034 struct audit_context *context = current->audit_context;
2035
564f6993
AV
2036 if (attr)
2037 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2038 else
2039 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2040
564f6993
AV
2041 context->mq_open.oflag = oflag;
2042 context->mq_open.mode = mode;
20ca73bc 2043
564f6993 2044 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2045}
2046
2047/**
c32c8af4 2048 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2049 * @mqdes: MQ descriptor
2050 * @msg_len: Message length
2051 * @msg_prio: Message priority
c32c8af4 2052 * @abs_timeout: Message timeout in absolute time
20ca73bc 2053 *
20ca73bc 2054 */
c32c8af4
AV
2055void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2056 const struct timespec *abs_timeout)
20ca73bc 2057{
20ca73bc 2058 struct audit_context *context = current->audit_context;
c32c8af4 2059 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2060
c32c8af4
AV
2061 if (abs_timeout)
2062 memcpy(p, abs_timeout, sizeof(struct timespec));
2063 else
2064 memset(p, 0, sizeof(struct timespec));
20ca73bc 2065
c32c8af4
AV
2066 context->mq_sendrecv.mqdes = mqdes;
2067 context->mq_sendrecv.msg_len = msg_len;
2068 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2069
c32c8af4 2070 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2071}
2072
2073/**
2074 * __audit_mq_notify - record audit data for a POSIX MQ notify
2075 * @mqdes: MQ descriptor
6b962559 2076 * @notification: Notification event
20ca73bc 2077 *
20ca73bc
GW
2078 */
2079
20114f71 2080void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2081{
20ca73bc
GW
2082 struct audit_context *context = current->audit_context;
2083
20114f71
AV
2084 if (notification)
2085 context->mq_notify.sigev_signo = notification->sigev_signo;
2086 else
2087 context->mq_notify.sigev_signo = 0;
20ca73bc 2088
20114f71
AV
2089 context->mq_notify.mqdes = mqdes;
2090 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2091}
2092
2093/**
2094 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2095 * @mqdes: MQ descriptor
2096 * @mqstat: MQ flags
2097 *
20ca73bc 2098 */
7392906e 2099void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2100{
20ca73bc 2101 struct audit_context *context = current->audit_context;
7392906e
AV
2102 context->mq_getsetattr.mqdes = mqdes;
2103 context->mq_getsetattr.mqstat = *mqstat;
2104 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2105}
2106
b0dd25a8 2107/**
073115d6
SG
2108 * audit_ipc_obj - record audit data for ipc object
2109 * @ipcp: ipc permissions
2110 *
073115d6 2111 */
a33e6751 2112void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2113{
073115d6 2114 struct audit_context *context = current->audit_context;
a33e6751
AV
2115 context->ipc.uid = ipcp->uid;
2116 context->ipc.gid = ipcp->gid;
2117 context->ipc.mode = ipcp->mode;
e816f370 2118 context->ipc.has_perm = 0;
a33e6751
AV
2119 security_ipc_getsecid(ipcp, &context->ipc.osid);
2120 context->type = AUDIT_IPC;
073115d6
SG
2121}
2122
2123/**
2124 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2125 * @qbytes: msgq bytes
2126 * @uid: msgq user id
2127 * @gid: msgq group id
2128 * @mode: msgq mode (permissions)
2129 *
e816f370 2130 * Called only after audit_ipc_obj().
b0dd25a8 2131 */
2570ebbd 2132void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2133{
1da177e4
LT
2134 struct audit_context *context = current->audit_context;
2135
e816f370
AV
2136 context->ipc.qbytes = qbytes;
2137 context->ipc.perm_uid = uid;
2138 context->ipc.perm_gid = gid;
2139 context->ipc.perm_mode = mode;
2140 context->ipc.has_perm = 1;
1da177e4 2141}
c2f0c7c3 2142
d9cfea91 2143void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2144{
473ae30b 2145 struct audit_context *context = current->audit_context;
473ae30b 2146
d9cfea91
RGB
2147 context->type = AUDIT_EXECVE;
2148 context->execve.argc = bprm->argc;
473ae30b
AV
2149}
2150
2151
b0dd25a8
RD
2152/**
2153 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2154 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2155 * @args: args array
2156 *
b0dd25a8 2157 */
2950fa9d 2158int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2159{
3ec3b2fb
DW
2160 struct audit_context *context = current->audit_context;
2161
2950fa9d
CG
2162 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2163 return -EINVAL;
f3298dc4
AV
2164 context->type = AUDIT_SOCKETCALL;
2165 context->socketcall.nargs = nargs;
2166 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2167 return 0;
3ec3b2fb
DW
2168}
2169
db349509
AV
2170/**
2171 * __audit_fd_pair - record audit data for pipe and socketpair
2172 * @fd1: the first file descriptor
2173 * @fd2: the second file descriptor
2174 *
db349509 2175 */
157cf649 2176void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2177{
2178 struct audit_context *context = current->audit_context;
157cf649
AV
2179 context->fds[0] = fd1;
2180 context->fds[1] = fd2;
db349509
AV
2181}
2182
b0dd25a8
RD
2183/**
2184 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2185 * @len: data length in user space
2186 * @a: data address in kernel space
2187 *
2188 * Returns 0 for success or NULL context or < 0 on error.
2189 */
07c49417 2190int __audit_sockaddr(int len, void *a)
3ec3b2fb 2191{
3ec3b2fb
DW
2192 struct audit_context *context = current->audit_context;
2193
4f6b434f
AV
2194 if (!context->sockaddr) {
2195 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2196 if (!p)
2197 return -ENOMEM;
2198 context->sockaddr = p;
2199 }
3ec3b2fb 2200
4f6b434f
AV
2201 context->sockaddr_len = len;
2202 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2203 return 0;
2204}
2205
a5cb013d
AV
2206void __audit_ptrace(struct task_struct *t)
2207{
2208 struct audit_context *context = current->audit_context;
2209
2210 context->target_pid = t->pid;
c2a7780e 2211 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2212 context->target_uid = task_uid(t);
4746ec5b 2213 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2214 security_task_getsecid(t, &context->target_sid);
c2a7780e 2215 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2216}
2217
b0dd25a8
RD
2218/**
2219 * audit_signal_info - record signal info for shutting down audit subsystem
2220 * @sig: signal value
2221 * @t: task being signaled
2222 *
2223 * If the audit subsystem is being terminated, record the task (pid)
2224 * and uid that is doing that.
2225 */
e54dc243 2226int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2227{
e54dc243
AG
2228 struct audit_aux_data_pids *axp;
2229 struct task_struct *tsk = current;
2230 struct audit_context *ctx = tsk->audit_context;
cca080d9 2231 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2232
175fc484 2233 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2234 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2235 audit_sig_pid = tsk->pid;
e1760bd5 2236 if (uid_valid(tsk->loginuid))
bfef93a5 2237 audit_sig_uid = tsk->loginuid;
175fc484 2238 else
c69e8d9c 2239 audit_sig_uid = uid;
2a862b32 2240 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2241 }
2242 if (!audit_signals || audit_dummy_context())
2243 return 0;
c2f0c7c3 2244 }
e54dc243 2245
e54dc243
AG
2246 /* optimize the common case by putting first signal recipient directly
2247 * in audit_context */
2248 if (!ctx->target_pid) {
2249 ctx->target_pid = t->tgid;
c2a7780e 2250 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2251 ctx->target_uid = t_uid;
4746ec5b 2252 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2253 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2254 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2255 return 0;
2256 }
2257
2258 axp = (void *)ctx->aux_pids;
2259 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2260 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2261 if (!axp)
2262 return -ENOMEM;
2263
2264 axp->d.type = AUDIT_OBJ_PID;
2265 axp->d.next = ctx->aux_pids;
2266 ctx->aux_pids = (void *)axp;
2267 }
88ae704c 2268 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2269
2270 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2271 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2272 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2273 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2274 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2275 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2276 axp->pid_count++;
2277
2278 return 0;
c2f0c7c3 2279}
0a4ff8c2 2280
3fc689e9
EP
2281/**
2282 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2283 * @bprm: pointer to the bprm being processed
2284 * @new: the proposed new credentials
2285 * @old: the old credentials
3fc689e9
EP
2286 *
2287 * Simply check if the proc already has the caps given by the file and if not
2288 * store the priv escalation info for later auditing at the end of the syscall
2289 *
3fc689e9
EP
2290 * -Eric
2291 */
d84f4f99
DH
2292int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2293 const struct cred *new, const struct cred *old)
3fc689e9
EP
2294{
2295 struct audit_aux_data_bprm_fcaps *ax;
2296 struct audit_context *context = current->audit_context;
2297 struct cpu_vfs_cap_data vcaps;
2298 struct dentry *dentry;
2299
2300 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2301 if (!ax)
d84f4f99 2302 return -ENOMEM;
3fc689e9
EP
2303
2304 ax->d.type = AUDIT_BPRM_FCAPS;
2305 ax->d.next = context->aux;
2306 context->aux = (void *)ax;
2307
2308 dentry = dget(bprm->file->f_dentry);
2309 get_vfs_caps_from_disk(dentry, &vcaps);
2310 dput(dentry);
2311
2312 ax->fcap.permitted = vcaps.permitted;
2313 ax->fcap.inheritable = vcaps.inheritable;
2314 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2315 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2316
d84f4f99
DH
2317 ax->old_pcap.permitted = old->cap_permitted;
2318 ax->old_pcap.inheritable = old->cap_inheritable;
2319 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2320
d84f4f99
DH
2321 ax->new_pcap.permitted = new->cap_permitted;
2322 ax->new_pcap.inheritable = new->cap_inheritable;
2323 ax->new_pcap.effective = new->cap_effective;
2324 return 0;
3fc689e9
EP
2325}
2326
e68b75a0
EP
2327/**
2328 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2329 * @new: the new credentials
2330 * @old: the old (current) credentials
e68b75a0
EP
2331 *
2332 * Record the aguments userspace sent to sys_capset for later printing by the
2333 * audit system if applicable
2334 */
ca24a23e 2335void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2336{
e68b75a0 2337 struct audit_context *context = current->audit_context;
ca24a23e 2338 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2339 context->capset.cap.effective = new->cap_effective;
2340 context->capset.cap.inheritable = new->cap_effective;
2341 context->capset.cap.permitted = new->cap_permitted;
2342 context->type = AUDIT_CAPSET;
e68b75a0
EP
2343}
2344
120a795d
AV
2345void __audit_mmap_fd(int fd, int flags)
2346{
2347 struct audit_context *context = current->audit_context;
2348 context->mmap.fd = fd;
2349 context->mmap.flags = flags;
2350 context->type = AUDIT_MMAP;
2351}
2352
7b9205bd 2353static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2354{
cca080d9
EB
2355 kuid_t auid, uid;
2356 kgid_t gid;
85e7bac3 2357 unsigned int sessionid;
ff235f51 2358 struct mm_struct *mm = current->mm;
85e7bac3
EP
2359
2360 auid = audit_get_loginuid(current);
2361 sessionid = audit_get_sessionid(current);
2362 current_uid_gid(&uid, &gid);
2363
2364 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2365 from_kuid(&init_user_ns, auid),
2366 from_kuid(&init_user_ns, uid),
2367 from_kgid(&init_user_ns, gid),
2368 sessionid);
85e7bac3
EP
2369 audit_log_task_context(ab);
2370 audit_log_format(ab, " pid=%d comm=", current->pid);
2371 audit_log_untrustedstring(ab, current->comm);
ff235f51
PD
2372 if (mm) {
2373 down_read(&mm->mmap_sem);
2374 if (mm->exe_file)
2375 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2376 up_read(&mm->mmap_sem);
2377 } else
2378 audit_log_format(ab, " exe=(null)");
7b9205bd
KC
2379}
2380
0a4ff8c2
SG
2381/**
2382 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2383 * @signr: signal value
0a4ff8c2
SG
2384 *
2385 * If a process ends with a core dump, something fishy is going on and we
2386 * should record the event for investigation.
2387 */
2388void audit_core_dumps(long signr)
2389{
2390 struct audit_buffer *ab;
0a4ff8c2
SG
2391
2392 if (!audit_enabled)
2393 return;
2394
2395 if (signr == SIGQUIT) /* don't care for those */
2396 return;
2397
2398 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2399 if (unlikely(!ab))
2400 return;
61c0ee87
PD
2401 audit_log_task(ab);
2402 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2403 audit_log_end(ab);
2404}
0a4ff8c2 2405
3dc1c1b2 2406void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2407{
2408 struct audit_buffer *ab;
2409
7b9205bd
KC
2410 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2411 if (unlikely(!ab))
2412 return;
2413 audit_log_task(ab);
2414 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2415 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2416 audit_log_format(ab, " compat=%d", is_compat_task());
2417 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2418 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2419 audit_log_end(ab);
2420}
916d7576
AV
2421
2422struct list_head *audit_killed_trees(void)
2423{
2424 struct audit_context *ctx = current->audit_context;
2425 if (likely(!ctx || !ctx->in_syscall))
2426 return NULL;
2427 return &ctx->killed_trees;
2428}