audit: fix event coverage of AUDIT_ANOM_LINK
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
1da177e4
LT
88struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91};
92
93#define AUDIT_AUX_IPCPERM 0
94
e54dc243
AG
95/* Number of target pids per aux struct. */
96#define AUDIT_AUX_PIDS 16
97
473ae30b
AV
98struct audit_aux_data_execve {
99 struct audit_aux_data d;
100 int argc;
101 int envc;
bdf4c48a 102 struct mm_struct *mm;
473ae30b
AV
103};
104
e54dc243
AG
105struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 108 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 109 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 111 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
113 int pid_count;
114};
115
3fc689e9
EP
116struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122};
123
e68b75a0
EP
124struct audit_aux_data_capset {
125 struct audit_aux_data d;
126 pid_t pid;
127 struct audit_cap_data cap;
128};
129
74c3cbe3
AV
130struct audit_tree_refs {
131 struct audit_tree_refs *next;
132 struct audit_chunk *c[31];
133};
134
55669bfa
AV
135static inline int open_arg(int flags, int mask)
136{
137 int n = ACC_MODE(flags);
138 if (flags & (O_TRUNC | O_CREAT))
139 n |= AUDIT_PERM_WRITE;
140 return n & mask;
141}
142
143static int audit_match_perm(struct audit_context *ctx, int mask)
144{
c4bacefb 145 unsigned n;
1a61c88d 146 if (unlikely(!ctx))
147 return 0;
c4bacefb 148 n = ctx->major;
dbda4c0b 149
55669bfa
AV
150 switch (audit_classify_syscall(ctx->arch, n)) {
151 case 0: /* native */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR, n))
160 return 1;
161 return 0;
162 case 1: /* 32bit on biarch */
163 if ((mask & AUDIT_PERM_WRITE) &&
164 audit_match_class(AUDIT_CLASS_WRITE_32, n))
165 return 1;
166 if ((mask & AUDIT_PERM_READ) &&
167 audit_match_class(AUDIT_CLASS_READ_32, n))
168 return 1;
169 if ((mask & AUDIT_PERM_ATTR) &&
170 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
171 return 1;
172 return 0;
173 case 2: /* open */
174 return mask & ACC_MODE(ctx->argv[1]);
175 case 3: /* openat */
176 return mask & ACC_MODE(ctx->argv[2]);
177 case 4: /* socketcall */
178 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
179 case 5: /* execve */
180 return mask & AUDIT_PERM_EXEC;
181 default:
182 return 0;
183 }
184}
185
5ef30ee5 186static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 187{
5195d8e2 188 struct audit_names *n;
5ef30ee5 189 umode_t mode = (umode_t)val;
1a61c88d 190
191 if (unlikely(!ctx))
192 return 0;
193
5195d8e2
EP
194 list_for_each_entry(n, &ctx->names_list, list) {
195 if ((n->ino != -1) &&
196 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
197 return 1;
198 }
5195d8e2 199
5ef30ee5 200 return 0;
8b67dca9
AV
201}
202
74c3cbe3
AV
203/*
204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
205 * ->first_trees points to its beginning, ->trees - to the current end of data.
206 * ->tree_count is the number of free entries in array pointed to by ->trees.
207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
209 * it's going to remain 1-element for almost any setup) until we free context itself.
210 * References in it _are_ dropped - at the same time we free/drop aux stuff.
211 */
212
213#ifdef CONFIG_AUDIT_TREE
679173b7
EP
214static void audit_set_auditable(struct audit_context *ctx)
215{
216 if (!ctx->prio) {
217 ctx->prio = 1;
218 ctx->current_state = AUDIT_RECORD_CONTEXT;
219 }
220}
221
74c3cbe3
AV
222static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223{
224 struct audit_tree_refs *p = ctx->trees;
225 int left = ctx->tree_count;
226 if (likely(left)) {
227 p->c[--left] = chunk;
228 ctx->tree_count = left;
229 return 1;
230 }
231 if (!p)
232 return 0;
233 p = p->next;
234 if (p) {
235 p->c[30] = chunk;
236 ctx->trees = p;
237 ctx->tree_count = 30;
238 return 1;
239 }
240 return 0;
241}
242
243static int grow_tree_refs(struct audit_context *ctx)
244{
245 struct audit_tree_refs *p = ctx->trees;
246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247 if (!ctx->trees) {
248 ctx->trees = p;
249 return 0;
250 }
251 if (p)
252 p->next = ctx->trees;
253 else
254 ctx->first_trees = ctx->trees;
255 ctx->tree_count = 31;
256 return 1;
257}
258#endif
259
260static void unroll_tree_refs(struct audit_context *ctx,
261 struct audit_tree_refs *p, int count)
262{
263#ifdef CONFIG_AUDIT_TREE
264 struct audit_tree_refs *q;
265 int n;
266 if (!p) {
267 /* we started with empty chain */
268 p = ctx->first_trees;
269 count = 31;
270 /* if the very first allocation has failed, nothing to do */
271 if (!p)
272 return;
273 }
274 n = count;
275 for (q = p; q != ctx->trees; q = q->next, n = 31) {
276 while (n--) {
277 audit_put_chunk(q->c[n]);
278 q->c[n] = NULL;
279 }
280 }
281 while (n-- > ctx->tree_count) {
282 audit_put_chunk(q->c[n]);
283 q->c[n] = NULL;
284 }
285 ctx->trees = p;
286 ctx->tree_count = count;
287#endif
288}
289
290static void free_tree_refs(struct audit_context *ctx)
291{
292 struct audit_tree_refs *p, *q;
293 for (p = ctx->first_trees; p; p = q) {
294 q = p->next;
295 kfree(p);
296 }
297}
298
299static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
300{
301#ifdef CONFIG_AUDIT_TREE
302 struct audit_tree_refs *p;
303 int n;
304 if (!tree)
305 return 0;
306 /* full ones */
307 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
308 for (n = 0; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312 /* partial */
313 if (p) {
314 for (n = ctx->tree_count; n < 31; n++)
315 if (audit_tree_match(p->c[n], tree))
316 return 1;
317 }
318#endif
319 return 0;
320}
321
ca57ec0f
EB
322static int audit_compare_uid(kuid_t uid,
323 struct audit_names *name,
324 struct audit_field *f,
325 struct audit_context *ctx)
b34b0393
EP
326{
327 struct audit_names *n;
b34b0393 328 int rc;
ca57ec0f 329
b34b0393 330 if (name) {
ca57ec0f 331 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
332 if (rc)
333 return rc;
334 }
ca57ec0f 335
b34b0393
EP
336 if (ctx) {
337 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
338 rc = audit_uid_comparator(uid, f->op, n->uid);
339 if (rc)
340 return rc;
341 }
342 }
343 return 0;
344}
b34b0393 345
ca57ec0f
EB
346static int audit_compare_gid(kgid_t gid,
347 struct audit_names *name,
348 struct audit_field *f,
349 struct audit_context *ctx)
350{
351 struct audit_names *n;
352 int rc;
353
354 if (name) {
355 rc = audit_gid_comparator(gid, f->op, name->gid);
356 if (rc)
357 return rc;
358 }
359
360 if (ctx) {
361 list_for_each_entry(n, &ctx->names_list, list) {
362 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
363 if (rc)
364 return rc;
365 }
366 }
367 return 0;
368}
369
02d86a56
EP
370static int audit_field_compare(struct task_struct *tsk,
371 const struct cred *cred,
372 struct audit_field *f,
373 struct audit_context *ctx,
374 struct audit_names *name)
375{
02d86a56 376 switch (f->val) {
4a6633ed 377 /* process to file object comparisons */
02d86a56 378 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 379 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 380 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 381 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 382 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 383 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 384 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 385 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 386 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 387 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 388 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 389 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 390 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 391 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 393 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 395 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
396 /* uid comparisons */
397 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 398 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 399 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 400 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 401 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
405 /* auid comparisons */
406 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 407 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 408 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 409 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 410 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 411 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
412 /* euid comparisons */
413 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 414 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 415 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 416 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
417 /* suid comparisons */
418 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 419 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
420 /* gid comparisons */
421 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 422 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 423 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 424 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 425 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 426 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
427 /* egid comparisons */
428 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 429 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 430 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 431 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
432 /* sgid comparison */
433 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 434 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
435 default:
436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
437 return 0;
438 }
439 return 0;
440}
441
f368c07d 442/* Determine if any context name data matches a rule's watch data */
1da177e4 443/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
444 * otherwise.
445 *
446 * If task_creation is true, this is an explicit indication that we are
447 * filtering a task rule at task creation time. This and tsk == current are
448 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 */
1da177e4 450static int audit_filter_rules(struct task_struct *tsk,
93315ed6 451 struct audit_krule *rule,
1da177e4 452 struct audit_context *ctx,
f368c07d 453 struct audit_names *name,
f5629883
TJ
454 enum audit_state *state,
455 bool task_creation)
1da177e4 456{
f5629883 457 const struct cred *cred;
5195d8e2 458 int i, need_sid = 1;
3dc7e315
DG
459 u32 sid;
460
f5629883
TJ
461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462
1da177e4 463 for (i = 0; i < rule->field_count; i++) {
93315ed6 464 struct audit_field *f = &rule->fields[i];
5195d8e2 465 struct audit_names *n;
1da177e4
LT
466 int result = 0;
467
93315ed6 468 switch (f->type) {
1da177e4 469 case AUDIT_PID:
93315ed6 470 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 471 break;
3c66251e 472 case AUDIT_PPID:
419c58f1
AV
473 if (ctx) {
474 if (!ctx->ppid)
475 ctx->ppid = sys_getppid();
3c66251e 476 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 477 }
3c66251e 478 break;
1da177e4 479 case AUDIT_UID:
ca57ec0f 480 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
481 break;
482 case AUDIT_EUID:
ca57ec0f 483 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
484 break;
485 case AUDIT_SUID:
ca57ec0f 486 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
487 break;
488 case AUDIT_FSUID:
ca57ec0f 489 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
490 break;
491 case AUDIT_GID:
ca57ec0f 492 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_group_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_group_p(f->gid);
499 }
1da177e4
LT
500 break;
501 case AUDIT_EGID:
ca57ec0f 502 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
503 if (f->op == Audit_equal) {
504 if (!result)
505 result = in_egroup_p(f->gid);
506 } else if (f->op == Audit_not_equal) {
507 if (result)
508 result = !in_egroup_p(f->gid);
509 }
1da177e4
LT
510 break;
511 case AUDIT_SGID:
ca57ec0f 512 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
513 break;
514 case AUDIT_FSGID:
ca57ec0f 515 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
516 break;
517 case AUDIT_PERS:
93315ed6 518 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 519 break;
2fd6f58b 520 case AUDIT_ARCH:
9f8dbe9c 521 if (ctx)
93315ed6 522 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 523 break;
1da177e4
LT
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
93315ed6 527 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
528 break;
529 case AUDIT_SUCCESS:
b01f2cc1 530 if (ctx && ctx->return_valid) {
93315ed6
AG
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 533 else
93315ed6 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 535 }
1da177e4
LT
536 break;
537 case AUDIT_DEVMAJOR:
16c174bd
EP
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
5195d8e2 543 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
16c174bd
EP
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
5195d8e2 558 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
f368c07d 568 if (name)
9c937dcc 569 result = (name->ino == f->val);
f368c07d 570 else if (ctx) {
5195d8e2
EP
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
efaffd6e
EP
579 case AUDIT_OBJ_UID:
580 if (name) {
ca57ec0f 581 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
54d3218b
EP
591 case AUDIT_OBJ_GID:
592 if (name) {
ca57ec0f 593 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
f368c07d 603 case AUDIT_WATCH:
ae7b8f41
EP
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 606 break;
74c3cbe3
AV
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
1da177e4
LT
611 case AUDIT_LOGINUID:
612 result = 0;
613 if (ctx)
ca57ec0f 614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 615 break;
3a6b9f85
DG
616 case AUDIT_SUBJ_USER:
617 case AUDIT_SUBJ_ROLE:
618 case AUDIT_SUBJ_TYPE:
619 case AUDIT_SUBJ_SEN:
620 case AUDIT_SUBJ_CLR:
3dc7e315
DG
621 /* NOTE: this may return negative values indicating
622 a temporary error. We simply treat this as a
623 match for now to avoid losing information that
624 may be wanted. An error message will also be
625 logged upon error */
04305e4a 626 if (f->lsm_rule) {
2ad312d2 627 if (need_sid) {
2a862b32 628 security_task_getsecid(tsk, &sid);
2ad312d2
SG
629 need_sid = 0;
630 }
d7a96f3a 631 result = security_audit_rule_match(sid, f->type,
3dc7e315 632 f->op,
04305e4a 633 f->lsm_rule,
3dc7e315 634 ctx);
2ad312d2 635 }
3dc7e315 636 break;
6e5a2d1d
DG
637 case AUDIT_OBJ_USER:
638 case AUDIT_OBJ_ROLE:
639 case AUDIT_OBJ_TYPE:
640 case AUDIT_OBJ_LEV_LOW:
641 case AUDIT_OBJ_LEV_HIGH:
642 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
643 also applies here */
04305e4a 644 if (f->lsm_rule) {
6e5a2d1d
DG
645 /* Find files that match */
646 if (name) {
d7a96f3a 647 result = security_audit_rule_match(
6e5a2d1d 648 name->osid, f->type, f->op,
04305e4a 649 f->lsm_rule, ctx);
6e5a2d1d 650 } else if (ctx) {
5195d8e2
EP
651 list_for_each_entry(n, &ctx->names_list, list) {
652 if (security_audit_rule_match(n->osid, f->type,
653 f->op, f->lsm_rule,
654 ctx)) {
6e5a2d1d
DG
655 ++result;
656 break;
657 }
658 }
659 }
660 /* Find ipc objects that match */
a33e6751
AV
661 if (!ctx || ctx->type != AUDIT_IPC)
662 break;
663 if (security_audit_rule_match(ctx->ipc.osid,
664 f->type, f->op,
665 f->lsm_rule, ctx))
666 ++result;
6e5a2d1d
DG
667 }
668 break;
1da177e4
LT
669 case AUDIT_ARG0:
670 case AUDIT_ARG1:
671 case AUDIT_ARG2:
672 case AUDIT_ARG3:
673 if (ctx)
93315ed6 674 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 675 break;
5adc8a6a
AG
676 case AUDIT_FILTERKEY:
677 /* ignore this field for filtering */
678 result = 1;
679 break;
55669bfa
AV
680 case AUDIT_PERM:
681 result = audit_match_perm(ctx, f->val);
682 break;
8b67dca9
AV
683 case AUDIT_FILETYPE:
684 result = audit_match_filetype(ctx, f->val);
685 break;
02d86a56
EP
686 case AUDIT_FIELD_COMPARE:
687 result = audit_field_compare(tsk, cred, f, ctx, name);
688 break;
1da177e4 689 }
f5629883 690 if (!result)
1da177e4
LT
691 return 0;
692 }
0590b933
AV
693
694 if (ctx) {
695 if (rule->prio <= ctx->prio)
696 return 0;
697 if (rule->filterkey) {
698 kfree(ctx->filterkey);
699 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
700 }
701 ctx->prio = rule->prio;
702 }
1da177e4
LT
703 switch (rule->action) {
704 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
705 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
706 }
707 return 1;
708}
709
710/* At process creation time, we can determine if system-call auditing is
711 * completely disabled for this task. Since we only have the task
712 * structure at this point, we can only check uid and gid.
713 */
e048e02c 714static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
715{
716 struct audit_entry *e;
717 enum audit_state state;
718
719 rcu_read_lock();
0f45aa18 720 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
721 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
722 &state, true)) {
e048e02c
AV
723 if (state == AUDIT_RECORD_CONTEXT)
724 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
725 rcu_read_unlock();
726 return state;
727 }
728 }
729 rcu_read_unlock();
730 return AUDIT_BUILD_CONTEXT;
731}
732
733/* At syscall entry and exit time, this filter is called if the
734 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 735 * also not high enough that we already know we have to write an audit
b0dd25a8 736 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
737 */
738static enum audit_state audit_filter_syscall(struct task_struct *tsk,
739 struct audit_context *ctx,
740 struct list_head *list)
741{
742 struct audit_entry *e;
c3896495 743 enum audit_state state;
1da177e4 744
351bb722 745 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
746 return AUDIT_DISABLED;
747
1da177e4 748 rcu_read_lock();
c3896495 749 if (!list_empty(list)) {
b63862f4
DK
750 int word = AUDIT_WORD(ctx->major);
751 int bit = AUDIT_BIT(ctx->major);
752
753 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
754 if ((e->rule.mask[word] & bit) == bit &&
755 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 756 &state, false)) {
f368c07d 757 rcu_read_unlock();
0590b933 758 ctx->current_state = state;
f368c07d
AG
759 return state;
760 }
761 }
762 }
763 rcu_read_unlock();
764 return AUDIT_BUILD_CONTEXT;
765}
766
5195d8e2
EP
767/*
768 * Given an audit_name check the inode hash table to see if they match.
769 * Called holding the rcu read lock to protect the use of audit_inode_hash
770 */
771static int audit_filter_inode_name(struct task_struct *tsk,
772 struct audit_names *n,
773 struct audit_context *ctx) {
774 int word, bit;
775 int h = audit_hash_ino((u32)n->ino);
776 struct list_head *list = &audit_inode_hash[h];
777 struct audit_entry *e;
778 enum audit_state state;
779
780 word = AUDIT_WORD(ctx->major);
781 bit = AUDIT_BIT(ctx->major);
782
783 if (list_empty(list))
784 return 0;
785
786 list_for_each_entry_rcu(e, list, list) {
787 if ((e->rule.mask[word] & bit) == bit &&
788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 ctx->current_state = state;
790 return 1;
791 }
792 }
793
794 return 0;
795}
796
797/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 798 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 799 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
801 */
0590b933 802void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 803{
5195d8e2 804 struct audit_names *n;
f368c07d
AG
805
806 if (audit_pid && tsk->tgid == audit_pid)
0590b933 807 return;
f368c07d
AG
808
809 rcu_read_lock();
f368c07d 810
5195d8e2
EP
811 list_for_each_entry(n, &ctx->names_list, list) {
812 if (audit_filter_inode_name(tsk, n, ctx))
813 break;
0f45aa18
DW
814 }
815 rcu_read_unlock();
0f45aa18
DW
816}
817
1da177e4
LT
818static inline struct audit_context *audit_get_context(struct task_struct *tsk,
819 int return_valid,
6d208da8 820 long return_code)
1da177e4
LT
821{
822 struct audit_context *context = tsk->audit_context;
823
56179a6e 824 if (!context)
1da177e4
LT
825 return NULL;
826 context->return_valid = return_valid;
f701b75e
EP
827
828 /*
829 * we need to fix up the return code in the audit logs if the actual
830 * return codes are later going to be fixed up by the arch specific
831 * signal handlers
832 *
833 * This is actually a test for:
834 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
835 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
836 *
837 * but is faster than a bunch of ||
838 */
839 if (unlikely(return_code <= -ERESTARTSYS) &&
840 (return_code >= -ERESTART_RESTARTBLOCK) &&
841 (return_code != -ENOIOCTLCMD))
842 context->return_code = -EINTR;
843 else
844 context->return_code = return_code;
1da177e4 845
0590b933
AV
846 if (context->in_syscall && !context->dummy) {
847 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
848 audit_filter_inodes(tsk, context);
1da177e4
LT
849 }
850
1da177e4
LT
851 tsk->audit_context = NULL;
852 return context;
853}
854
855static inline void audit_free_names(struct audit_context *context)
856{
5195d8e2 857 struct audit_names *n, *next;
1da177e4
LT
858
859#if AUDIT_DEBUG == 2
0590b933 860 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
861 int i = 0;
862
73241ccc 863 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
864 " name_count=%d put_count=%d"
865 " ino_count=%d [NOT freeing]\n",
73241ccc 866 __FILE__, __LINE__,
1da177e4
LT
867 context->serial, context->major, context->in_syscall,
868 context->name_count, context->put_count,
869 context->ino_count);
5195d8e2 870 list_for_each_entry(n, &context->names_list, list) {
34c474de 871 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
91a27b2a 872 n->name, n->name->name ?: "(null)");
8c8570fb 873 }
1da177e4
LT
874 dump_stack();
875 return;
876 }
877#endif
878#if AUDIT_DEBUG
879 context->put_count = 0;
880 context->ino_count = 0;
881#endif
882
5195d8e2
EP
883 list_for_each_entry_safe(n, next, &context->names_list, list) {
884 list_del(&n->list);
885 if (n->name && n->name_put)
65ada7bc 886 final_putname(n->name);
5195d8e2
EP
887 if (n->should_free)
888 kfree(n);
8c8570fb 889 }
1da177e4 890 context->name_count = 0;
44707fdf
JB
891 path_put(&context->pwd);
892 context->pwd.dentry = NULL;
893 context->pwd.mnt = NULL;
1da177e4
LT
894}
895
896static inline void audit_free_aux(struct audit_context *context)
897{
898 struct audit_aux_data *aux;
899
900 while ((aux = context->aux)) {
901 context->aux = aux->next;
902 kfree(aux);
903 }
e54dc243
AG
904 while ((aux = context->aux_pids)) {
905 context->aux_pids = aux->next;
906 kfree(aux);
907 }
1da177e4
LT
908}
909
1da177e4
LT
910static inline struct audit_context *audit_alloc_context(enum audit_state state)
911{
912 struct audit_context *context;
913
17c6ee70
RM
914 context = kzalloc(sizeof(*context), GFP_KERNEL);
915 if (!context)
1da177e4 916 return NULL;
e2c5adc8
AM
917 context->state = state;
918 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 919 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 920 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
921 return context;
922}
923
b0dd25a8
RD
924/**
925 * audit_alloc - allocate an audit context block for a task
926 * @tsk: task
927 *
928 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
929 * if necessary. Doing so turns on system call auditing for the
930 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
931 * needed.
932 */
1da177e4
LT
933int audit_alloc(struct task_struct *tsk)
934{
935 struct audit_context *context;
936 enum audit_state state;
e048e02c 937 char *key = NULL;
1da177e4 938
b593d384 939 if (likely(!audit_ever_enabled))
1da177e4
LT
940 return 0; /* Return if not auditing. */
941
e048e02c 942 state = audit_filter_task(tsk, &key);
56179a6e 943 if (state == AUDIT_DISABLED)
1da177e4
LT
944 return 0;
945
946 if (!(context = audit_alloc_context(state))) {
e048e02c 947 kfree(key);
1da177e4
LT
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
e048e02c 951 context->filterkey = key;
1da177e4 952
1da177e4
LT
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956}
957
958static inline void audit_free_context(struct audit_context *context)
959{
c62d773a
AV
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 kfree(context);
1da177e4
LT
967}
968
e54dc243 969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 970 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 971 u32 sid, char *comm)
e54dc243
AG
972{
973 struct audit_buffer *ab;
2a862b32 974 char *ctx = NULL;
e54dc243
AG
975 u32 len;
976 int rc = 0;
977
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
979 if (!ab)
6246ccab 980 return rc;
e54dc243 981
e1760bd5
EB
982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
983 from_kuid(&init_user_ns, auid),
cca080d9 984 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
985 if (sid) {
986 if (security_secid_to_secctx(sid, &ctx, &len)) {
987 audit_log_format(ab, " obj=(none)");
988 rc = 1;
989 } else {
990 audit_log_format(ab, " obj=%s", ctx);
991 security_release_secctx(ctx, len);
992 }
2a862b32 993 }
c2a7780e
EP
994 audit_log_format(ab, " ocomm=");
995 audit_log_untrustedstring(ab, comm);
e54dc243 996 audit_log_end(ab);
e54dc243
AG
997
998 return rc;
999}
1000
de6bbd1d
EP
1001/*
1002 * to_send and len_sent accounting are very loose estimates. We aren't
1003 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1004 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1005 *
1006 * why snprintf? an int is up to 12 digits long. if we just assumed when
1007 * logging that a[%d]= was going to be 16 characters long we would be wasting
1008 * space in every audit message. In one 7500 byte message we can log up to
1009 * about 1000 min size arguments. That comes down to about 50% waste of space
1010 * if we didn't do the snprintf to find out how long arg_num_len was.
1011 */
1012static int audit_log_single_execve_arg(struct audit_context *context,
1013 struct audit_buffer **ab,
1014 int arg_num,
1015 size_t *len_sent,
1016 const char __user *p,
1017 char *buf)
bdf4c48a 1018{
de6bbd1d
EP
1019 char arg_num_len_buf[12];
1020 const char __user *tmp_p = p;
b87ce6e4
EP
1021 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1022 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1023 size_t len, len_left, to_send;
1024 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1025 unsigned int i, has_cntl = 0, too_long = 0;
1026 int ret;
1027
1028 /* strnlen_user includes the null we don't want to send */
1029 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1030
de6bbd1d
EP
1031 /*
1032 * We just created this mm, if we can't find the strings
1033 * we just copied into it something is _very_ wrong. Similar
1034 * for strings that are too long, we should not have created
1035 * any.
1036 */
b0abcfc1 1037 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1038 WARN_ON(1);
1039 send_sig(SIGKILL, current, 0);
b0abcfc1 1040 return -1;
de6bbd1d 1041 }
040b3a2d 1042
de6bbd1d
EP
1043 /* walk the whole argument looking for non-ascii chars */
1044 do {
1045 if (len_left > MAX_EXECVE_AUDIT_LEN)
1046 to_send = MAX_EXECVE_AUDIT_LEN;
1047 else
1048 to_send = len_left;
1049 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1050 /*
de6bbd1d
EP
1051 * There is no reason for this copy to be short. We just
1052 * copied them here, and the mm hasn't been exposed to user-
1053 * space yet.
bdf4c48a 1054 */
de6bbd1d 1055 if (ret) {
bdf4c48a
PZ
1056 WARN_ON(1);
1057 send_sig(SIGKILL, current, 0);
b0abcfc1 1058 return -1;
bdf4c48a 1059 }
de6bbd1d
EP
1060 buf[to_send] = '\0';
1061 has_cntl = audit_string_contains_control(buf, to_send);
1062 if (has_cntl) {
1063 /*
1064 * hex messages get logged as 2 bytes, so we can only
1065 * send half as much in each message
1066 */
1067 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1068 break;
1069 }
de6bbd1d
EP
1070 len_left -= to_send;
1071 tmp_p += to_send;
1072 } while (len_left > 0);
1073
1074 len_left = len;
1075
1076 if (len > max_execve_audit_len)
1077 too_long = 1;
1078
1079 /* rewalk the argument actually logging the message */
1080 for (i = 0; len_left > 0; i++) {
1081 int room_left;
1082
1083 if (len_left > max_execve_audit_len)
1084 to_send = max_execve_audit_len;
1085 else
1086 to_send = len_left;
1087
1088 /* do we have space left to send this argument in this ab? */
1089 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1090 if (has_cntl)
1091 room_left -= (to_send * 2);
1092 else
1093 room_left -= to_send;
1094 if (room_left < 0) {
1095 *len_sent = 0;
1096 audit_log_end(*ab);
1097 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 return 0;
1100 }
bdf4c48a 1101
bdf4c48a 1102 /*
de6bbd1d
EP
1103 * first record needs to say how long the original string was
1104 * so we can be sure nothing was lost.
1105 */
1106 if ((i == 0) && (too_long))
ca96a895 1107 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1108 has_cntl ? 2*len : len);
1109
1110 /*
1111 * normally arguments are small enough to fit and we already
1112 * filled buf above when we checked for control characters
1113 * so don't bother with another copy_from_user
bdf4c48a 1114 */
de6bbd1d
EP
1115 if (len >= max_execve_audit_len)
1116 ret = copy_from_user(buf, p, to_send);
1117 else
1118 ret = 0;
040b3a2d 1119 if (ret) {
bdf4c48a
PZ
1120 WARN_ON(1);
1121 send_sig(SIGKILL, current, 0);
b0abcfc1 1122 return -1;
bdf4c48a 1123 }
de6bbd1d
EP
1124 buf[to_send] = '\0';
1125
1126 /* actually log it */
ca96a895 1127 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1128 if (too_long)
1129 audit_log_format(*ab, "[%d]", i);
1130 audit_log_format(*ab, "=");
1131 if (has_cntl)
b556f8ad 1132 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1133 else
9d960985 1134 audit_log_string(*ab, buf);
de6bbd1d
EP
1135
1136 p += to_send;
1137 len_left -= to_send;
1138 *len_sent += arg_num_len;
1139 if (has_cntl)
1140 *len_sent += to_send * 2;
1141 else
1142 *len_sent += to_send;
1143 }
1144 /* include the null we didn't log */
1145 return len + 1;
1146}
1147
1148static void audit_log_execve_info(struct audit_context *context,
1149 struct audit_buffer **ab,
1150 struct audit_aux_data_execve *axi)
1151{
5afb8a3f
XW
1152 int i, len;
1153 size_t len_sent = 0;
de6bbd1d
EP
1154 const char __user *p;
1155 char *buf;
bdf4c48a 1156
de6bbd1d
EP
1157 if (axi->mm != current->mm)
1158 return; /* execve failed, no additional info */
1159
1160 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1161
ca96a895 1162 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1163
1164 /*
1165 * we need some kernel buffer to hold the userspace args. Just
1166 * allocate one big one rather than allocating one of the right size
1167 * for every single argument inside audit_log_single_execve_arg()
1168 * should be <8k allocation so should be pretty safe.
1169 */
1170 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1171 if (!buf) {
1172 audit_panic("out of memory for argv string\n");
1173 return;
bdf4c48a 1174 }
de6bbd1d
EP
1175
1176 for (i = 0; i < axi->argc; i++) {
1177 len = audit_log_single_execve_arg(context, ab, i,
1178 &len_sent, p, buf);
1179 if (len <= 0)
1180 break;
1181 p += len;
1182 }
1183 kfree(buf);
bdf4c48a
PZ
1184}
1185
a33e6751 1186static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1187{
1188 struct audit_buffer *ab;
1189 int i;
1190
1191 ab = audit_log_start(context, GFP_KERNEL, context->type);
1192 if (!ab)
1193 return;
1194
1195 switch (context->type) {
1196 case AUDIT_SOCKETCALL: {
1197 int nargs = context->socketcall.nargs;
1198 audit_log_format(ab, "nargs=%d", nargs);
1199 for (i = 0; i < nargs; i++)
1200 audit_log_format(ab, " a%d=%lx", i,
1201 context->socketcall.args[i]);
1202 break; }
a33e6751
AV
1203 case AUDIT_IPC: {
1204 u32 osid = context->ipc.osid;
1205
2570ebbd 1206 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1207 from_kuid(&init_user_ns, context->ipc.uid),
1208 from_kgid(&init_user_ns, context->ipc.gid),
1209 context->ipc.mode);
a33e6751
AV
1210 if (osid) {
1211 char *ctx = NULL;
1212 u32 len;
1213 if (security_secid_to_secctx(osid, &ctx, &len)) {
1214 audit_log_format(ab, " osid=%u", osid);
1215 *call_panic = 1;
1216 } else {
1217 audit_log_format(ab, " obj=%s", ctx);
1218 security_release_secctx(ctx, len);
1219 }
1220 }
e816f370
AV
1221 if (context->ipc.has_perm) {
1222 audit_log_end(ab);
1223 ab = audit_log_start(context, GFP_KERNEL,
1224 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1225 if (unlikely(!ab))
1226 return;
e816f370 1227 audit_log_format(ab,
2570ebbd 1228 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1229 context->ipc.qbytes,
1230 context->ipc.perm_uid,
1231 context->ipc.perm_gid,
1232 context->ipc.perm_mode);
e816f370 1233 }
a33e6751 1234 break; }
564f6993
AV
1235 case AUDIT_MQ_OPEN: {
1236 audit_log_format(ab,
df0a4283 1237 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1238 "mq_msgsize=%ld mq_curmsgs=%ld",
1239 context->mq_open.oflag, context->mq_open.mode,
1240 context->mq_open.attr.mq_flags,
1241 context->mq_open.attr.mq_maxmsg,
1242 context->mq_open.attr.mq_msgsize,
1243 context->mq_open.attr.mq_curmsgs);
1244 break; }
c32c8af4
AV
1245 case AUDIT_MQ_SENDRECV: {
1246 audit_log_format(ab,
1247 "mqdes=%d msg_len=%zd msg_prio=%u "
1248 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1249 context->mq_sendrecv.mqdes,
1250 context->mq_sendrecv.msg_len,
1251 context->mq_sendrecv.msg_prio,
1252 context->mq_sendrecv.abs_timeout.tv_sec,
1253 context->mq_sendrecv.abs_timeout.tv_nsec);
1254 break; }
20114f71
AV
1255 case AUDIT_MQ_NOTIFY: {
1256 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1257 context->mq_notify.mqdes,
1258 context->mq_notify.sigev_signo);
1259 break; }
7392906e
AV
1260 case AUDIT_MQ_GETSETATTR: {
1261 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1262 audit_log_format(ab,
1263 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1264 "mq_curmsgs=%ld ",
1265 context->mq_getsetattr.mqdes,
1266 attr->mq_flags, attr->mq_maxmsg,
1267 attr->mq_msgsize, attr->mq_curmsgs);
1268 break; }
57f71a0a
AV
1269 case AUDIT_CAPSET: {
1270 audit_log_format(ab, "pid=%d", context->capset.pid);
1271 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1272 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1273 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1274 break; }
120a795d
AV
1275 case AUDIT_MMAP: {
1276 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1277 context->mmap.flags);
1278 break; }
f3298dc4
AV
1279 }
1280 audit_log_end(ab);
1281}
1282
e495149b 1283static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1284{
9c7aa6aa 1285 int i, call_panic = 0;
1da177e4 1286 struct audit_buffer *ab;
7551ced3 1287 struct audit_aux_data *aux;
5195d8e2 1288 struct audit_names *n;
1da177e4 1289
e495149b 1290 /* tsk == current */
3f2792ff 1291 context->personality = tsk->personality;
e495149b
AV
1292
1293 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1294 if (!ab)
1295 return; /* audit_panic has been called */
bccf6ae0
DW
1296 audit_log_format(ab, "arch=%x syscall=%d",
1297 context->arch, context->major);
1da177e4
LT
1298 if (context->personality != PER_LINUX)
1299 audit_log_format(ab, " per=%lx", context->personality);
1300 if (context->return_valid)
9f8dbe9c 1301 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1302 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1303 context->return_code);
eb84a20e 1304
1da177e4 1305 audit_log_format(ab,
e23eb920
PM
1306 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1307 context->argv[0],
1308 context->argv[1],
1309 context->argv[2],
1310 context->argv[3],
1311 context->name_count);
eb84a20e 1312
e495149b 1313 audit_log_task_info(ab, tsk);
9d960985 1314 audit_log_key(ab, context->filterkey);
1da177e4 1315 audit_log_end(ab);
1da177e4 1316
7551ced3 1317 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1318
e495149b 1319 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1320 if (!ab)
1321 continue; /* audit_panic has been called */
1322
1da177e4 1323 switch (aux->type) {
20ca73bc 1324
473ae30b
AV
1325 case AUDIT_EXECVE: {
1326 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1327 audit_log_execve_info(context, &ab, axi);
473ae30b 1328 break; }
073115d6 1329
3fc689e9
EP
1330 case AUDIT_BPRM_FCAPS: {
1331 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1332 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1333 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1334 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1335 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1336 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1337 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1338 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1339 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1340 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1341 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1342 break; }
1343
1da177e4
LT
1344 }
1345 audit_log_end(ab);
1da177e4
LT
1346 }
1347
f3298dc4 1348 if (context->type)
a33e6751 1349 show_special(context, &call_panic);
f3298dc4 1350
157cf649
AV
1351 if (context->fds[0] >= 0) {
1352 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1353 if (ab) {
1354 audit_log_format(ab, "fd0=%d fd1=%d",
1355 context->fds[0], context->fds[1]);
1356 audit_log_end(ab);
1357 }
1358 }
1359
4f6b434f
AV
1360 if (context->sockaddr_len) {
1361 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1362 if (ab) {
1363 audit_log_format(ab, "saddr=");
1364 audit_log_n_hex(ab, (void *)context->sockaddr,
1365 context->sockaddr_len);
1366 audit_log_end(ab);
1367 }
1368 }
1369
e54dc243
AG
1370 for (aux = context->aux_pids; aux; aux = aux->next) {
1371 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1372
1373 for (i = 0; i < axs->pid_count; i++)
1374 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1375 axs->target_auid[i],
1376 axs->target_uid[i],
4746ec5b 1377 axs->target_sessionid[i],
c2a7780e
EP
1378 axs->target_sid[i],
1379 axs->target_comm[i]))
e54dc243 1380 call_panic = 1;
a5cb013d
AV
1381 }
1382
e54dc243
AG
1383 if (context->target_pid &&
1384 audit_log_pid_context(context, context->target_pid,
c2a7780e 1385 context->target_auid, context->target_uid,
4746ec5b 1386 context->target_sessionid,
c2a7780e 1387 context->target_sid, context->target_comm))
e54dc243
AG
1388 call_panic = 1;
1389
44707fdf 1390 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1391 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1392 if (ab) {
c158a35c 1393 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1394 audit_log_end(ab);
1395 }
1396 }
73241ccc 1397
5195d8e2
EP
1398 i = 0;
1399 list_for_each_entry(n, &context->names_list, list)
b24a30a7 1400 audit_log_name(context, n, NULL, i++, &call_panic);
c0641f28
EP
1401
1402 /* Send end of event record to help user space know we are finished */
1403 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1404 if (ab)
1405 audit_log_end(ab);
9c7aa6aa
SG
1406 if (call_panic)
1407 audit_panic("error converting sid to string");
1da177e4
LT
1408}
1409
b0dd25a8
RD
1410/**
1411 * audit_free - free a per-task audit context
1412 * @tsk: task whose audit context block to free
1413 *
fa84cb93 1414 * Called from copy_process and do_exit
b0dd25a8 1415 */
a4ff8dba 1416void __audit_free(struct task_struct *tsk)
1da177e4
LT
1417{
1418 struct audit_context *context;
1419
1da177e4 1420 context = audit_get_context(tsk, 0, 0);
56179a6e 1421 if (!context)
1da177e4
LT
1422 return;
1423
1424 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1425 * function (e.g., exit_group), then free context block.
1426 * We use GFP_ATOMIC here because we might be doing this
f5561964 1427 * in the context of the idle thread */
e495149b 1428 /* that can happen only if we are called from do_exit() */
0590b933 1429 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1430 audit_log_exit(context, tsk);
916d7576
AV
1431 if (!list_empty(&context->killed_trees))
1432 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1433
1434 audit_free_context(context);
1435}
1436
b0dd25a8
RD
1437/**
1438 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1439 * @arch: architecture type
1440 * @major: major syscall type (function)
1441 * @a1: additional syscall register 1
1442 * @a2: additional syscall register 2
1443 * @a3: additional syscall register 3
1444 * @a4: additional syscall register 4
1445 *
1446 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1447 * audit context was created when the task was created and the state or
1448 * filters demand the audit context be built. If the state from the
1449 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1450 * then the record will be written at syscall exit time (otherwise, it
1451 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1452 * be written).
1453 */
b05d8447 1454void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1455 unsigned long a1, unsigned long a2,
1456 unsigned long a3, unsigned long a4)
1457{
5411be59 1458 struct task_struct *tsk = current;
1da177e4
LT
1459 struct audit_context *context = tsk->audit_context;
1460 enum audit_state state;
1461
56179a6e 1462 if (!context)
86a1c34a 1463 return;
1da177e4 1464
1da177e4
LT
1465 BUG_ON(context->in_syscall || context->name_count);
1466
1467 if (!audit_enabled)
1468 return;
1469
2fd6f58b 1470 context->arch = arch;
1da177e4
LT
1471 context->major = major;
1472 context->argv[0] = a1;
1473 context->argv[1] = a2;
1474 context->argv[2] = a3;
1475 context->argv[3] = a4;
1476
1477 state = context->state;
d51374ad 1478 context->dummy = !audit_n_rules;
0590b933
AV
1479 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1480 context->prio = 0;
0f45aa18 1481 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1482 }
56179a6e 1483 if (state == AUDIT_DISABLED)
1da177e4
LT
1484 return;
1485
ce625a80 1486 context->serial = 0;
1da177e4
LT
1487 context->ctime = CURRENT_TIME;
1488 context->in_syscall = 1;
0590b933 1489 context->current_state = state;
419c58f1 1490 context->ppid = 0;
1da177e4
LT
1491}
1492
b0dd25a8
RD
1493/**
1494 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1495 * @success: success value of the syscall
1496 * @return_code: return value of the syscall
b0dd25a8
RD
1497 *
1498 * Tear down after system call. If the audit context has been marked as
1da177e4 1499 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1500 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1501 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1502 * free the names stored from getname().
1503 */
d7e7528b 1504void __audit_syscall_exit(int success, long return_code)
1da177e4 1505{
5411be59 1506 struct task_struct *tsk = current;
1da177e4
LT
1507 struct audit_context *context;
1508
d7e7528b
EP
1509 if (success)
1510 success = AUDITSC_SUCCESS;
1511 else
1512 success = AUDITSC_FAILURE;
1da177e4 1513
d7e7528b 1514 context = audit_get_context(tsk, success, return_code);
56179a6e 1515 if (!context)
97e94c45 1516 return;
1da177e4 1517
0590b933 1518 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1519 audit_log_exit(context, tsk);
1da177e4
LT
1520
1521 context->in_syscall = 0;
0590b933 1522 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1523
916d7576
AV
1524 if (!list_empty(&context->killed_trees))
1525 audit_kill_trees(&context->killed_trees);
1526
c62d773a
AV
1527 audit_free_names(context);
1528 unroll_tree_refs(context, NULL, 0);
1529 audit_free_aux(context);
1530 context->aux = NULL;
1531 context->aux_pids = NULL;
1532 context->target_pid = 0;
1533 context->target_sid = 0;
1534 context->sockaddr_len = 0;
1535 context->type = 0;
1536 context->fds[0] = -1;
1537 if (context->state != AUDIT_RECORD_CONTEXT) {
1538 kfree(context->filterkey);
1539 context->filterkey = NULL;
1da177e4 1540 }
c62d773a 1541 tsk->audit_context = context;
1da177e4
LT
1542}
1543
74c3cbe3
AV
1544static inline void handle_one(const struct inode *inode)
1545{
1546#ifdef CONFIG_AUDIT_TREE
1547 struct audit_context *context;
1548 struct audit_tree_refs *p;
1549 struct audit_chunk *chunk;
1550 int count;
e61ce867 1551 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1552 return;
1553 context = current->audit_context;
1554 p = context->trees;
1555 count = context->tree_count;
1556 rcu_read_lock();
1557 chunk = audit_tree_lookup(inode);
1558 rcu_read_unlock();
1559 if (!chunk)
1560 return;
1561 if (likely(put_tree_ref(context, chunk)))
1562 return;
1563 if (unlikely(!grow_tree_refs(context))) {
436c405c 1564 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1565 audit_set_auditable(context);
1566 audit_put_chunk(chunk);
1567 unroll_tree_refs(context, p, count);
1568 return;
1569 }
1570 put_tree_ref(context, chunk);
1571#endif
1572}
1573
1574static void handle_path(const struct dentry *dentry)
1575{
1576#ifdef CONFIG_AUDIT_TREE
1577 struct audit_context *context;
1578 struct audit_tree_refs *p;
1579 const struct dentry *d, *parent;
1580 struct audit_chunk *drop;
1581 unsigned long seq;
1582 int count;
1583
1584 context = current->audit_context;
1585 p = context->trees;
1586 count = context->tree_count;
1587retry:
1588 drop = NULL;
1589 d = dentry;
1590 rcu_read_lock();
1591 seq = read_seqbegin(&rename_lock);
1592 for(;;) {
1593 struct inode *inode = d->d_inode;
e61ce867 1594 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1595 struct audit_chunk *chunk;
1596 chunk = audit_tree_lookup(inode);
1597 if (chunk) {
1598 if (unlikely(!put_tree_ref(context, chunk))) {
1599 drop = chunk;
1600 break;
1601 }
1602 }
1603 }
1604 parent = d->d_parent;
1605 if (parent == d)
1606 break;
1607 d = parent;
1608 }
1609 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1610 rcu_read_unlock();
1611 if (!drop) {
1612 /* just a race with rename */
1613 unroll_tree_refs(context, p, count);
1614 goto retry;
1615 }
1616 audit_put_chunk(drop);
1617 if (grow_tree_refs(context)) {
1618 /* OK, got more space */
1619 unroll_tree_refs(context, p, count);
1620 goto retry;
1621 }
1622 /* too bad */
1623 printk(KERN_WARNING
436c405c 1624 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1625 unroll_tree_refs(context, p, count);
1626 audit_set_auditable(context);
1627 return;
1628 }
1629 rcu_read_unlock();
1630#endif
1631}
1632
78e2e802
JL
1633static struct audit_names *audit_alloc_name(struct audit_context *context,
1634 unsigned char type)
5195d8e2
EP
1635{
1636 struct audit_names *aname;
1637
1638 if (context->name_count < AUDIT_NAMES) {
1639 aname = &context->preallocated_names[context->name_count];
1640 memset(aname, 0, sizeof(*aname));
1641 } else {
1642 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1643 if (!aname)
1644 return NULL;
1645 aname->should_free = true;
1646 }
1647
1648 aname->ino = (unsigned long)-1;
78e2e802 1649 aname->type = type;
5195d8e2
EP
1650 list_add_tail(&aname->list, &context->names_list);
1651
1652 context->name_count++;
1653#if AUDIT_DEBUG
1654 context->ino_count++;
1655#endif
1656 return aname;
1657}
1658
7ac86265
JL
1659/**
1660 * audit_reusename - fill out filename with info from existing entry
1661 * @uptr: userland ptr to pathname
1662 *
1663 * Search the audit_names list for the current audit context. If there is an
1664 * existing entry with a matching "uptr" then return the filename
1665 * associated with that audit_name. If not, return NULL.
1666 */
1667struct filename *
1668__audit_reusename(const __user char *uptr)
1669{
1670 struct audit_context *context = current->audit_context;
1671 struct audit_names *n;
1672
1673 list_for_each_entry(n, &context->names_list, list) {
1674 if (!n->name)
1675 continue;
1676 if (n->name->uptr == uptr)
1677 return n->name;
1678 }
1679 return NULL;
1680}
1681
b0dd25a8
RD
1682/**
1683 * audit_getname - add a name to the list
1684 * @name: name to add
1685 *
1686 * Add a name to the list of audit names for this context.
1687 * Called from fs/namei.c:getname().
1688 */
91a27b2a 1689void __audit_getname(struct filename *name)
1da177e4
LT
1690{
1691 struct audit_context *context = current->audit_context;
5195d8e2 1692 struct audit_names *n;
1da177e4 1693
1da177e4
LT
1694 if (!context->in_syscall) {
1695#if AUDIT_DEBUG == 2
1696 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1697 __FILE__, __LINE__, context->serial, name);
1698 dump_stack();
1699#endif
1700 return;
1701 }
5195d8e2 1702
91a27b2a
JL
1703#if AUDIT_DEBUG
1704 /* The filename _must_ have a populated ->name */
1705 BUG_ON(!name->name);
1706#endif
1707
78e2e802 1708 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1709 if (!n)
1710 return;
1711
1712 n->name = name;
1713 n->name_len = AUDIT_NAME_FULL;
1714 n->name_put = true;
adb5c247 1715 name->aname = n;
5195d8e2 1716
f7ad3c6b
MS
1717 if (!context->pwd.dentry)
1718 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1719}
1720
b0dd25a8
RD
1721/* audit_putname - intercept a putname request
1722 * @name: name to intercept and delay for putname
1723 *
1724 * If we have stored the name from getname in the audit context,
1725 * then we delay the putname until syscall exit.
1726 * Called from include/linux/fs.h:putname().
1727 */
91a27b2a 1728void audit_putname(struct filename *name)
1da177e4
LT
1729{
1730 struct audit_context *context = current->audit_context;
1731
1732 BUG_ON(!context);
1733 if (!context->in_syscall) {
1734#if AUDIT_DEBUG == 2
65ada7bc 1735 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1736 __FILE__, __LINE__, context->serial, name);
1737 if (context->name_count) {
5195d8e2 1738 struct audit_names *n;
34c474de 1739 int i = 0;
5195d8e2
EP
1740
1741 list_for_each_entry(n, &context->names_list, list)
34c474de 1742 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
91a27b2a 1743 n->name, n->name->name ?: "(null)");
5195d8e2 1744 }
1da177e4 1745#endif
65ada7bc 1746 final_putname(name);
1da177e4
LT
1747 }
1748#if AUDIT_DEBUG
1749 else {
1750 ++context->put_count;
1751 if (context->put_count > context->name_count) {
1752 printk(KERN_ERR "%s:%d(:%d): major=%d"
1753 " in_syscall=%d putname(%p) name_count=%d"
1754 " put_count=%d\n",
1755 __FILE__, __LINE__,
1756 context->serial, context->major,
91a27b2a
JL
1757 context->in_syscall, name->name,
1758 context->name_count, context->put_count);
1da177e4
LT
1759 dump_stack();
1760 }
1761 }
1762#endif
1763}
1764
b0dd25a8 1765/**
bfcec708 1766 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1767 * @name: name being audited
481968f4 1768 * @dentry: dentry being audited
bfcec708 1769 * @parent: does this dentry represent the parent?
b0dd25a8 1770 */
adb5c247 1771void __audit_inode(struct filename *name, const struct dentry *dentry,
bfcec708 1772 unsigned int parent)
1da177e4 1773{
1da177e4 1774 struct audit_context *context = current->audit_context;
74c3cbe3 1775 const struct inode *inode = dentry->d_inode;
5195d8e2 1776 struct audit_names *n;
1da177e4
LT
1777
1778 if (!context->in_syscall)
1779 return;
5195d8e2 1780
9cec9d68
JL
1781 if (!name)
1782 goto out_alloc;
1783
adb5c247
JL
1784#if AUDIT_DEBUG
1785 /* The struct filename _must_ have a populated ->name */
1786 BUG_ON(!name->name);
1787#endif
1788 /*
1789 * If we have a pointer to an audit_names entry already, then we can
1790 * just use it directly if the type is correct.
1791 */
1792 n = name->aname;
1793 if (n) {
1794 if (parent) {
1795 if (n->type == AUDIT_TYPE_PARENT ||
1796 n->type == AUDIT_TYPE_UNKNOWN)
1797 goto out;
1798 } else {
1799 if (n->type != AUDIT_TYPE_PARENT)
1800 goto out;
1801 }
1802 }
1803
5195d8e2 1804 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1805 /* does the name pointer match? */
adb5c247 1806 if (!n->name || n->name->name != name->name)
bfcec708
JL
1807 continue;
1808
1809 /* match the correct record type */
1810 if (parent) {
1811 if (n->type == AUDIT_TYPE_PARENT ||
1812 n->type == AUDIT_TYPE_UNKNOWN)
1813 goto out;
1814 } else {
1815 if (n->type != AUDIT_TYPE_PARENT)
1816 goto out;
1817 }
1da177e4 1818 }
5195d8e2 1819
9cec9d68 1820out_alloc:
bfcec708
JL
1821 /* unable to find the name from a previous getname(). Allocate a new
1822 * anonymous entry.
1823 */
78e2e802 1824 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1825 if (!n)
1826 return;
1827out:
bfcec708 1828 if (parent) {
91a27b2a 1829 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708
JL
1830 n->type = AUDIT_TYPE_PARENT;
1831 } else {
1832 n->name_len = AUDIT_NAME_FULL;
1833 n->type = AUDIT_TYPE_NORMAL;
1834 }
74c3cbe3 1835 handle_path(dentry);
5195d8e2 1836 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1837}
1838
1839/**
c43a25ab 1840 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1841 * @parent: inode of dentry parent
c43a25ab 1842 * @dentry: dentry being audited
4fa6b5ec 1843 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1844 *
1845 * For syscalls that create or remove filesystem objects, audit_inode
1846 * can only collect information for the filesystem object's parent.
1847 * This call updates the audit context with the child's information.
1848 * Syscalls that create a new filesystem object must be hooked after
1849 * the object is created. Syscalls that remove a filesystem object
1850 * must be hooked prior, in order to capture the target inode during
1851 * unsuccessful attempts.
1852 */
c43a25ab 1853void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1854 const struct dentry *dentry,
1855 const unsigned char type)
73241ccc 1856{
73241ccc 1857 struct audit_context *context = current->audit_context;
5a190ae6 1858 const struct inode *inode = dentry->d_inode;
cccc6bba 1859 const char *dname = dentry->d_name.name;
4fa6b5ec 1860 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1861
1862 if (!context->in_syscall)
1863 return;
1864
74c3cbe3
AV
1865 if (inode)
1866 handle_one(inode);
73241ccc 1867
4fa6b5ec 1868 /* look for a parent entry first */
5195d8e2 1869 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1870 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1871 continue;
1872
1873 if (n->ino == parent->i_ino &&
91a27b2a 1874 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1875 found_parent = n;
1876 break;
f368c07d 1877 }
5712e88f 1878 }
73241ccc 1879
4fa6b5ec 1880 /* is there a matching child entry? */
5195d8e2 1881 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1882 /* can only match entries that have a name */
1883 if (!n->name || n->type != type)
1884 continue;
1885
1886 /* if we found a parent, make sure this one is a child of it */
1887 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1888 continue;
1889
91a27b2a
JL
1890 if (!strcmp(dname, n->name->name) ||
1891 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1892 found_parent ?
1893 found_parent->name_len :
e3d6b07b 1894 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1895 found_child = n;
1896 break;
5712e88f 1897 }
ac9910ce 1898 }
5712e88f 1899
5712e88f 1900 if (!found_parent) {
4fa6b5ec
JL
1901 /* create a new, "anonymous" parent record */
1902 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1903 if (!n)
ac9910ce 1904 return;
5195d8e2 1905 audit_copy_inode(n, NULL, parent);
73d3ec5a 1906 }
5712e88f
AG
1907
1908 if (!found_child) {
4fa6b5ec
JL
1909 found_child = audit_alloc_name(context, type);
1910 if (!found_child)
5712e88f 1911 return;
5712e88f
AG
1912
1913 /* Re-use the name belonging to the slot for a matching parent
1914 * directory. All names for this context are relinquished in
1915 * audit_free_names() */
1916 if (found_parent) {
4fa6b5ec
JL
1917 found_child->name = found_parent->name;
1918 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1919 /* don't call __putname() */
4fa6b5ec 1920 found_child->name_put = false;
5712e88f 1921 }
5712e88f 1922 }
4fa6b5ec
JL
1923 if (inode)
1924 audit_copy_inode(found_child, dentry, inode);
1925 else
1926 found_child->ino = (unsigned long)-1;
3e2efce0 1927}
50e437d5 1928EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1929
b0dd25a8
RD
1930/**
1931 * auditsc_get_stamp - get local copies of audit_context values
1932 * @ctx: audit_context for the task
1933 * @t: timespec to store time recorded in the audit_context
1934 * @serial: serial value that is recorded in the audit_context
1935 *
1936 * Also sets the context as auditable.
1937 */
48887e63 1938int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1939 struct timespec *t, unsigned int *serial)
1da177e4 1940{
48887e63
AV
1941 if (!ctx->in_syscall)
1942 return 0;
ce625a80
DW
1943 if (!ctx->serial)
1944 ctx->serial = audit_serial();
bfb4496e
DW
1945 t->tv_sec = ctx->ctime.tv_sec;
1946 t->tv_nsec = ctx->ctime.tv_nsec;
1947 *serial = ctx->serial;
0590b933
AV
1948 if (!ctx->prio) {
1949 ctx->prio = 1;
1950 ctx->current_state = AUDIT_RECORD_CONTEXT;
1951 }
48887e63 1952 return 1;
1da177e4
LT
1953}
1954
4746ec5b
EP
1955/* global counter which is incremented every time something logs in */
1956static atomic_t session_id = ATOMIC_INIT(0);
1957
b0dd25a8 1958/**
0a300be6 1959 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
1960 * @loginuid: loginuid value
1961 *
1962 * Returns 0.
1963 *
1964 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1965 */
e1760bd5 1966int audit_set_loginuid(kuid_t loginuid)
1da177e4 1967{
0a300be6 1968 struct task_struct *task = current;
41757106 1969 struct audit_context *context = task->audit_context;
633b4545 1970 unsigned int sessionid;
41757106 1971
633b4545 1972#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
e1760bd5 1973 if (uid_valid(task->loginuid))
633b4545
EP
1974 return -EPERM;
1975#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1976 if (!capable(CAP_AUDIT_CONTROL))
1977 return -EPERM;
1978#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1979
1980 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
1981 if (context && context->in_syscall) {
1982 struct audit_buffer *ab;
1983
1984 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1985 if (ab) {
1986 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1987 "old auid=%u new auid=%u"
1988 " old ses=%u new ses=%u",
cca080d9
EB
1989 task->pid,
1990 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
1991 from_kuid(&init_user_ns, task->loginuid),
1992 from_kuid(&init_user_ns, loginuid),
4746ec5b 1993 task->sessionid, sessionid);
bfef93a5 1994 audit_log_end(ab);
c0404993 1995 }
1da177e4 1996 }
4746ec5b 1997 task->sessionid = sessionid;
bfef93a5 1998 task->loginuid = loginuid;
1da177e4
LT
1999 return 0;
2000}
2001
20ca73bc
GW
2002/**
2003 * __audit_mq_open - record audit data for a POSIX MQ open
2004 * @oflag: open flag
2005 * @mode: mode bits
6b962559 2006 * @attr: queue attributes
20ca73bc 2007 *
20ca73bc 2008 */
df0a4283 2009void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2010{
20ca73bc
GW
2011 struct audit_context *context = current->audit_context;
2012
564f6993
AV
2013 if (attr)
2014 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2015 else
2016 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2017
564f6993
AV
2018 context->mq_open.oflag = oflag;
2019 context->mq_open.mode = mode;
20ca73bc 2020
564f6993 2021 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2022}
2023
2024/**
c32c8af4 2025 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2026 * @mqdes: MQ descriptor
2027 * @msg_len: Message length
2028 * @msg_prio: Message priority
c32c8af4 2029 * @abs_timeout: Message timeout in absolute time
20ca73bc 2030 *
20ca73bc 2031 */
c32c8af4
AV
2032void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2033 const struct timespec *abs_timeout)
20ca73bc 2034{
20ca73bc 2035 struct audit_context *context = current->audit_context;
c32c8af4 2036 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2037
c32c8af4
AV
2038 if (abs_timeout)
2039 memcpy(p, abs_timeout, sizeof(struct timespec));
2040 else
2041 memset(p, 0, sizeof(struct timespec));
20ca73bc 2042
c32c8af4
AV
2043 context->mq_sendrecv.mqdes = mqdes;
2044 context->mq_sendrecv.msg_len = msg_len;
2045 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2046
c32c8af4 2047 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2048}
2049
2050/**
2051 * __audit_mq_notify - record audit data for a POSIX MQ notify
2052 * @mqdes: MQ descriptor
6b962559 2053 * @notification: Notification event
20ca73bc 2054 *
20ca73bc
GW
2055 */
2056
20114f71 2057void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2058{
20ca73bc
GW
2059 struct audit_context *context = current->audit_context;
2060
20114f71
AV
2061 if (notification)
2062 context->mq_notify.sigev_signo = notification->sigev_signo;
2063 else
2064 context->mq_notify.sigev_signo = 0;
20ca73bc 2065
20114f71
AV
2066 context->mq_notify.mqdes = mqdes;
2067 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2068}
2069
2070/**
2071 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2072 * @mqdes: MQ descriptor
2073 * @mqstat: MQ flags
2074 *
20ca73bc 2075 */
7392906e 2076void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2077{
20ca73bc 2078 struct audit_context *context = current->audit_context;
7392906e
AV
2079 context->mq_getsetattr.mqdes = mqdes;
2080 context->mq_getsetattr.mqstat = *mqstat;
2081 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2082}
2083
b0dd25a8 2084/**
073115d6
SG
2085 * audit_ipc_obj - record audit data for ipc object
2086 * @ipcp: ipc permissions
2087 *
073115d6 2088 */
a33e6751 2089void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2090{
073115d6 2091 struct audit_context *context = current->audit_context;
a33e6751
AV
2092 context->ipc.uid = ipcp->uid;
2093 context->ipc.gid = ipcp->gid;
2094 context->ipc.mode = ipcp->mode;
e816f370 2095 context->ipc.has_perm = 0;
a33e6751
AV
2096 security_ipc_getsecid(ipcp, &context->ipc.osid);
2097 context->type = AUDIT_IPC;
073115d6
SG
2098}
2099
2100/**
2101 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2102 * @qbytes: msgq bytes
2103 * @uid: msgq user id
2104 * @gid: msgq group id
2105 * @mode: msgq mode (permissions)
2106 *
e816f370 2107 * Called only after audit_ipc_obj().
b0dd25a8 2108 */
2570ebbd 2109void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2110{
1da177e4
LT
2111 struct audit_context *context = current->audit_context;
2112
e816f370
AV
2113 context->ipc.qbytes = qbytes;
2114 context->ipc.perm_uid = uid;
2115 context->ipc.perm_gid = gid;
2116 context->ipc.perm_mode = mode;
2117 context->ipc.has_perm = 1;
1da177e4 2118}
c2f0c7c3 2119
07c49417 2120int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2121{
2122 struct audit_aux_data_execve *ax;
2123 struct audit_context *context = current->audit_context;
473ae30b 2124
bdf4c48a 2125 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2126 if (!ax)
2127 return -ENOMEM;
2128
2129 ax->argc = bprm->argc;
2130 ax->envc = bprm->envc;
bdf4c48a 2131 ax->mm = bprm->mm;
473ae30b
AV
2132 ax->d.type = AUDIT_EXECVE;
2133 ax->d.next = context->aux;
2134 context->aux = (void *)ax;
2135 return 0;
2136}
2137
2138
b0dd25a8
RD
2139/**
2140 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2141 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2142 * @args: args array
2143 *
b0dd25a8 2144 */
2950fa9d 2145int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2146{
3ec3b2fb
DW
2147 struct audit_context *context = current->audit_context;
2148
2950fa9d
CG
2149 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2150 return -EINVAL;
f3298dc4
AV
2151 context->type = AUDIT_SOCKETCALL;
2152 context->socketcall.nargs = nargs;
2153 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2154 return 0;
3ec3b2fb
DW
2155}
2156
db349509
AV
2157/**
2158 * __audit_fd_pair - record audit data for pipe and socketpair
2159 * @fd1: the first file descriptor
2160 * @fd2: the second file descriptor
2161 *
db349509 2162 */
157cf649 2163void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2164{
2165 struct audit_context *context = current->audit_context;
157cf649
AV
2166 context->fds[0] = fd1;
2167 context->fds[1] = fd2;
db349509
AV
2168}
2169
b0dd25a8
RD
2170/**
2171 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2172 * @len: data length in user space
2173 * @a: data address in kernel space
2174 *
2175 * Returns 0 for success or NULL context or < 0 on error.
2176 */
07c49417 2177int __audit_sockaddr(int len, void *a)
3ec3b2fb 2178{
3ec3b2fb
DW
2179 struct audit_context *context = current->audit_context;
2180
4f6b434f
AV
2181 if (!context->sockaddr) {
2182 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2183 if (!p)
2184 return -ENOMEM;
2185 context->sockaddr = p;
2186 }
3ec3b2fb 2187
4f6b434f
AV
2188 context->sockaddr_len = len;
2189 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2190 return 0;
2191}
2192
a5cb013d
AV
2193void __audit_ptrace(struct task_struct *t)
2194{
2195 struct audit_context *context = current->audit_context;
2196
2197 context->target_pid = t->pid;
c2a7780e 2198 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2199 context->target_uid = task_uid(t);
4746ec5b 2200 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2201 security_task_getsecid(t, &context->target_sid);
c2a7780e 2202 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2203}
2204
b0dd25a8
RD
2205/**
2206 * audit_signal_info - record signal info for shutting down audit subsystem
2207 * @sig: signal value
2208 * @t: task being signaled
2209 *
2210 * If the audit subsystem is being terminated, record the task (pid)
2211 * and uid that is doing that.
2212 */
e54dc243 2213int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2214{
e54dc243
AG
2215 struct audit_aux_data_pids *axp;
2216 struct task_struct *tsk = current;
2217 struct audit_context *ctx = tsk->audit_context;
cca080d9 2218 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2219
175fc484 2220 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2221 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2222 audit_sig_pid = tsk->pid;
e1760bd5 2223 if (uid_valid(tsk->loginuid))
bfef93a5 2224 audit_sig_uid = tsk->loginuid;
175fc484 2225 else
c69e8d9c 2226 audit_sig_uid = uid;
2a862b32 2227 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2228 }
2229 if (!audit_signals || audit_dummy_context())
2230 return 0;
c2f0c7c3 2231 }
e54dc243 2232
e54dc243
AG
2233 /* optimize the common case by putting first signal recipient directly
2234 * in audit_context */
2235 if (!ctx->target_pid) {
2236 ctx->target_pid = t->tgid;
c2a7780e 2237 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2238 ctx->target_uid = t_uid;
4746ec5b 2239 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2240 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2241 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2242 return 0;
2243 }
2244
2245 axp = (void *)ctx->aux_pids;
2246 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2247 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2248 if (!axp)
2249 return -ENOMEM;
2250
2251 axp->d.type = AUDIT_OBJ_PID;
2252 axp->d.next = ctx->aux_pids;
2253 ctx->aux_pids = (void *)axp;
2254 }
88ae704c 2255 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2256
2257 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2258 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2259 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2260 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2261 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2262 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2263 axp->pid_count++;
2264
2265 return 0;
c2f0c7c3 2266}
0a4ff8c2 2267
3fc689e9
EP
2268/**
2269 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2270 * @bprm: pointer to the bprm being processed
2271 * @new: the proposed new credentials
2272 * @old: the old credentials
3fc689e9
EP
2273 *
2274 * Simply check if the proc already has the caps given by the file and if not
2275 * store the priv escalation info for later auditing at the end of the syscall
2276 *
3fc689e9
EP
2277 * -Eric
2278 */
d84f4f99
DH
2279int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2280 const struct cred *new, const struct cred *old)
3fc689e9
EP
2281{
2282 struct audit_aux_data_bprm_fcaps *ax;
2283 struct audit_context *context = current->audit_context;
2284 struct cpu_vfs_cap_data vcaps;
2285 struct dentry *dentry;
2286
2287 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2288 if (!ax)
d84f4f99 2289 return -ENOMEM;
3fc689e9
EP
2290
2291 ax->d.type = AUDIT_BPRM_FCAPS;
2292 ax->d.next = context->aux;
2293 context->aux = (void *)ax;
2294
2295 dentry = dget(bprm->file->f_dentry);
2296 get_vfs_caps_from_disk(dentry, &vcaps);
2297 dput(dentry);
2298
2299 ax->fcap.permitted = vcaps.permitted;
2300 ax->fcap.inheritable = vcaps.inheritable;
2301 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2302 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2303
d84f4f99
DH
2304 ax->old_pcap.permitted = old->cap_permitted;
2305 ax->old_pcap.inheritable = old->cap_inheritable;
2306 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2307
d84f4f99
DH
2308 ax->new_pcap.permitted = new->cap_permitted;
2309 ax->new_pcap.inheritable = new->cap_inheritable;
2310 ax->new_pcap.effective = new->cap_effective;
2311 return 0;
3fc689e9
EP
2312}
2313
e68b75a0
EP
2314/**
2315 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2316 * @pid: target pid of the capset call
2317 * @new: the new credentials
2318 * @old: the old (current) credentials
e68b75a0
EP
2319 *
2320 * Record the aguments userspace sent to sys_capset for later printing by the
2321 * audit system if applicable
2322 */
57f71a0a 2323void __audit_log_capset(pid_t pid,
d84f4f99 2324 const struct cred *new, const struct cred *old)
e68b75a0 2325{
e68b75a0 2326 struct audit_context *context = current->audit_context;
57f71a0a
AV
2327 context->capset.pid = pid;
2328 context->capset.cap.effective = new->cap_effective;
2329 context->capset.cap.inheritable = new->cap_effective;
2330 context->capset.cap.permitted = new->cap_permitted;
2331 context->type = AUDIT_CAPSET;
e68b75a0
EP
2332}
2333
120a795d
AV
2334void __audit_mmap_fd(int fd, int flags)
2335{
2336 struct audit_context *context = current->audit_context;
2337 context->mmap.fd = fd;
2338 context->mmap.flags = flags;
2339 context->type = AUDIT_MMAP;
2340}
2341
7b9205bd 2342static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2343{
cca080d9
EB
2344 kuid_t auid, uid;
2345 kgid_t gid;
85e7bac3
EP
2346 unsigned int sessionid;
2347
2348 auid = audit_get_loginuid(current);
2349 sessionid = audit_get_sessionid(current);
2350 current_uid_gid(&uid, &gid);
2351
2352 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2353 from_kuid(&init_user_ns, auid),
2354 from_kuid(&init_user_ns, uid),
2355 from_kgid(&init_user_ns, gid),
2356 sessionid);
85e7bac3
EP
2357 audit_log_task_context(ab);
2358 audit_log_format(ab, " pid=%d comm=", current->pid);
2359 audit_log_untrustedstring(ab, current->comm);
7b9205bd
KC
2360}
2361
2362static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2363{
2364 audit_log_task(ab);
85e7bac3
EP
2365 audit_log_format(ab, " reason=");
2366 audit_log_string(ab, reason);
2367 audit_log_format(ab, " sig=%ld", signr);
2368}
0a4ff8c2
SG
2369/**
2370 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2371 * @signr: signal value
0a4ff8c2
SG
2372 *
2373 * If a process ends with a core dump, something fishy is going on and we
2374 * should record the event for investigation.
2375 */
2376void audit_core_dumps(long signr)
2377{
2378 struct audit_buffer *ab;
0a4ff8c2
SG
2379
2380 if (!audit_enabled)
2381 return;
2382
2383 if (signr == SIGQUIT) /* don't care for those */
2384 return;
2385
2386 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2387 if (unlikely(!ab))
2388 return;
85e7bac3
EP
2389 audit_log_abend(ab, "memory violation", signr);
2390 audit_log_end(ab);
2391}
0a4ff8c2 2392
3dc1c1b2 2393void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2394{
2395 struct audit_buffer *ab;
2396
7b9205bd
KC
2397 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2398 if (unlikely(!ab))
2399 return;
2400 audit_log_task(ab);
2401 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2402 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2403 audit_log_format(ab, " compat=%d", is_compat_task());
2404 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2405 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2406 audit_log_end(ab);
2407}
916d7576
AV
2408
2409struct list_head *audit_killed_trees(void)
2410{
2411 struct audit_context *ctx = current->audit_context;
2412 if (likely(!ctx || !ctx->in_syscall))
2413 return NULL;
2414 return &ctx->killed_trees;
2415}