seccomp: audit abnormal end to a process due to seccomp
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
1da177e4 73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
74 * for saving names from getname(). If we get more names we will allocate
75 * a name dynamically and also add those to the list anchored by names_list. */
76#define AUDIT_NAMES 5
1da177e4 77
9c937dcc
AG
78/* Indicates that audit should log the full pathname. */
79#define AUDIT_NAME_FULL -1
80
de6bbd1d
EP
81/* no execve audit message should be longer than this (userspace limits) */
82#define MAX_EXECVE_AUDIT_LEN 7500
83
471a5c7c
AV
84/* number of audit rules */
85int audit_n_rules;
86
e54dc243
AG
87/* determines whether we collect data for signals sent */
88int audit_signals;
89
851f7ff5
EP
90struct audit_cap_data {
91 kernel_cap_t permitted;
92 kernel_cap_t inheritable;
93 union {
94 unsigned int fE; /* effective bit of a file capability */
95 kernel_cap_t effective; /* effective set of a process */
96 };
97};
98
1da177e4
LT
99/* When fs/namei.c:getname() is called, we store the pointer in name and
100 * we don't let putname() free it (instead we free all of the saved
101 * pointers at syscall exit time).
102 *
103 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
104struct audit_names {
5195d8e2 105 struct list_head list; /* audit_context->names_list */
1da177e4
LT
106 const char *name;
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
1b50eed9 113 u32 osid;
851f7ff5
EP
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
5195d8e2
EP
116 int name_len; /* number of name's characters to log */
117 bool name_put; /* call __putname() for this name */
118 /*
119 * This was an allocated audit_names and not from the array of
120 * names allocated in the task audit context. Thus this name
121 * should be freed on syscall exit
122 */
123 bool should_free;
1da177e4
LT
124};
125
126struct audit_aux_data {
127 struct audit_aux_data *next;
128 int type;
129};
130
131#define AUDIT_AUX_IPCPERM 0
132
e54dc243
AG
133/* Number of target pids per aux struct. */
134#define AUDIT_AUX_PIDS 16
135
473ae30b
AV
136struct audit_aux_data_execve {
137 struct audit_aux_data d;
138 int argc;
139 int envc;
bdf4c48a 140 struct mm_struct *mm;
473ae30b
AV
141};
142
e54dc243
AG
143struct audit_aux_data_pids {
144 struct audit_aux_data d;
145 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
146 uid_t target_auid[AUDIT_AUX_PIDS];
147 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 148 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 149 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 150 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
151 int pid_count;
152};
153
3fc689e9
EP
154struct audit_aux_data_bprm_fcaps {
155 struct audit_aux_data d;
156 struct audit_cap_data fcap;
157 unsigned int fcap_ver;
158 struct audit_cap_data old_pcap;
159 struct audit_cap_data new_pcap;
160};
161
e68b75a0
EP
162struct audit_aux_data_capset {
163 struct audit_aux_data d;
164 pid_t pid;
165 struct audit_cap_data cap;
166};
167
74c3cbe3
AV
168struct audit_tree_refs {
169 struct audit_tree_refs *next;
170 struct audit_chunk *c[31];
171};
172
1da177e4
LT
173/* The per-task audit context. */
174struct audit_context {
d51374ad 175 int dummy; /* must be the first element */
1da177e4 176 int in_syscall; /* 1 if task is in a syscall */
0590b933 177 enum audit_state state, current_state;
1da177e4 178 unsigned int serial; /* serial number for record */
1da177e4 179 int major; /* syscall number */
44e51a1b 180 struct timespec ctime; /* time of syscall entry */
1da177e4 181 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 182 long return_code;/* syscall return code */
0590b933 183 u64 prio;
44e51a1b 184 int return_valid; /* return code is valid */
5195d8e2
EP
185 /*
186 * The names_list is the list of all audit_names collected during this
187 * syscall. The first AUDIT_NAMES entries in the names_list will
188 * actually be from the preallocated_names array for performance
189 * reasons. Except during allocation they should never be referenced
190 * through the preallocated_names array and should only be found/used
191 * by running the names_list.
192 */
193 struct audit_names preallocated_names[AUDIT_NAMES];
194 int name_count; /* total records in names_list */
195 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 196 char * filterkey; /* key for rule that triggered record */
44707fdf 197 struct path pwd;
1da177e4
LT
198 struct audit_context *previous; /* For nested syscalls */
199 struct audit_aux_data *aux;
e54dc243 200 struct audit_aux_data *aux_pids;
4f6b434f
AV
201 struct sockaddr_storage *sockaddr;
202 size_t sockaddr_len;
1da177e4 203 /* Save things to print about task_struct */
f46038ff 204 pid_t pid, ppid;
1da177e4
LT
205 uid_t uid, euid, suid, fsuid;
206 gid_t gid, egid, sgid, fsgid;
207 unsigned long personality;
2fd6f58b 208 int arch;
1da177e4 209
a5cb013d 210 pid_t target_pid;
c2a7780e
EP
211 uid_t target_auid;
212 uid_t target_uid;
4746ec5b 213 unsigned int target_sessionid;
a5cb013d 214 u32 target_sid;
c2a7780e 215 char target_comm[TASK_COMM_LEN];
a5cb013d 216
74c3cbe3 217 struct audit_tree_refs *trees, *first_trees;
916d7576 218 struct list_head killed_trees;
44e51a1b 219 int tree_count;
74c3cbe3 220
f3298dc4
AV
221 int type;
222 union {
223 struct {
224 int nargs;
225 long args[6];
226 } socketcall;
a33e6751
AV
227 struct {
228 uid_t uid;
229 gid_t gid;
2570ebbd 230 umode_t mode;
a33e6751 231 u32 osid;
e816f370
AV
232 int has_perm;
233 uid_t perm_uid;
234 gid_t perm_gid;
2570ebbd 235 umode_t perm_mode;
e816f370 236 unsigned long qbytes;
a33e6751 237 } ipc;
7392906e
AV
238 struct {
239 mqd_t mqdes;
240 struct mq_attr mqstat;
241 } mq_getsetattr;
20114f71
AV
242 struct {
243 mqd_t mqdes;
244 int sigev_signo;
245 } mq_notify;
c32c8af4
AV
246 struct {
247 mqd_t mqdes;
248 size_t msg_len;
249 unsigned int msg_prio;
250 struct timespec abs_timeout;
251 } mq_sendrecv;
564f6993
AV
252 struct {
253 int oflag;
df0a4283 254 umode_t mode;
564f6993
AV
255 struct mq_attr attr;
256 } mq_open;
57f71a0a
AV
257 struct {
258 pid_t pid;
259 struct audit_cap_data cap;
260 } capset;
120a795d
AV
261 struct {
262 int fd;
263 int flags;
264 } mmap;
f3298dc4 265 };
157cf649 266 int fds[2];
f3298dc4 267
1da177e4
LT
268#if AUDIT_DEBUG
269 int put_count;
270 int ino_count;
271#endif
272};
273
55669bfa
AV
274static inline int open_arg(int flags, int mask)
275{
276 int n = ACC_MODE(flags);
277 if (flags & (O_TRUNC | O_CREAT))
278 n |= AUDIT_PERM_WRITE;
279 return n & mask;
280}
281
282static int audit_match_perm(struct audit_context *ctx, int mask)
283{
c4bacefb 284 unsigned n;
1a61c88d 285 if (unlikely(!ctx))
286 return 0;
c4bacefb 287 n = ctx->major;
dbda4c0b 288
55669bfa
AV
289 switch (audit_classify_syscall(ctx->arch, n)) {
290 case 0: /* native */
291 if ((mask & AUDIT_PERM_WRITE) &&
292 audit_match_class(AUDIT_CLASS_WRITE, n))
293 return 1;
294 if ((mask & AUDIT_PERM_READ) &&
295 audit_match_class(AUDIT_CLASS_READ, n))
296 return 1;
297 if ((mask & AUDIT_PERM_ATTR) &&
298 audit_match_class(AUDIT_CLASS_CHATTR, n))
299 return 1;
300 return 0;
301 case 1: /* 32bit on biarch */
302 if ((mask & AUDIT_PERM_WRITE) &&
303 audit_match_class(AUDIT_CLASS_WRITE_32, n))
304 return 1;
305 if ((mask & AUDIT_PERM_READ) &&
306 audit_match_class(AUDIT_CLASS_READ_32, n))
307 return 1;
308 if ((mask & AUDIT_PERM_ATTR) &&
309 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
310 return 1;
311 return 0;
312 case 2: /* open */
313 return mask & ACC_MODE(ctx->argv[1]);
314 case 3: /* openat */
315 return mask & ACC_MODE(ctx->argv[2]);
316 case 4: /* socketcall */
317 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
318 case 5: /* execve */
319 return mask & AUDIT_PERM_EXEC;
320 default:
321 return 0;
322 }
323}
324
5ef30ee5 325static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 326{
5195d8e2 327 struct audit_names *n;
5ef30ee5 328 umode_t mode = (umode_t)val;
1a61c88d 329
330 if (unlikely(!ctx))
331 return 0;
332
5195d8e2
EP
333 list_for_each_entry(n, &ctx->names_list, list) {
334 if ((n->ino != -1) &&
335 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
336 return 1;
337 }
5195d8e2 338
5ef30ee5 339 return 0;
8b67dca9
AV
340}
341
74c3cbe3
AV
342/*
343 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
344 * ->first_trees points to its beginning, ->trees - to the current end of data.
345 * ->tree_count is the number of free entries in array pointed to by ->trees.
346 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
347 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
348 * it's going to remain 1-element for almost any setup) until we free context itself.
349 * References in it _are_ dropped - at the same time we free/drop aux stuff.
350 */
351
352#ifdef CONFIG_AUDIT_TREE
679173b7
EP
353static void audit_set_auditable(struct audit_context *ctx)
354{
355 if (!ctx->prio) {
356 ctx->prio = 1;
357 ctx->current_state = AUDIT_RECORD_CONTEXT;
358 }
359}
360
74c3cbe3
AV
361static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
362{
363 struct audit_tree_refs *p = ctx->trees;
364 int left = ctx->tree_count;
365 if (likely(left)) {
366 p->c[--left] = chunk;
367 ctx->tree_count = left;
368 return 1;
369 }
370 if (!p)
371 return 0;
372 p = p->next;
373 if (p) {
374 p->c[30] = chunk;
375 ctx->trees = p;
376 ctx->tree_count = 30;
377 return 1;
378 }
379 return 0;
380}
381
382static int grow_tree_refs(struct audit_context *ctx)
383{
384 struct audit_tree_refs *p = ctx->trees;
385 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
386 if (!ctx->trees) {
387 ctx->trees = p;
388 return 0;
389 }
390 if (p)
391 p->next = ctx->trees;
392 else
393 ctx->first_trees = ctx->trees;
394 ctx->tree_count = 31;
395 return 1;
396}
397#endif
398
399static void unroll_tree_refs(struct audit_context *ctx,
400 struct audit_tree_refs *p, int count)
401{
402#ifdef CONFIG_AUDIT_TREE
403 struct audit_tree_refs *q;
404 int n;
405 if (!p) {
406 /* we started with empty chain */
407 p = ctx->first_trees;
408 count = 31;
409 /* if the very first allocation has failed, nothing to do */
410 if (!p)
411 return;
412 }
413 n = count;
414 for (q = p; q != ctx->trees; q = q->next, n = 31) {
415 while (n--) {
416 audit_put_chunk(q->c[n]);
417 q->c[n] = NULL;
418 }
419 }
420 while (n-- > ctx->tree_count) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 ctx->trees = p;
425 ctx->tree_count = count;
426#endif
427}
428
429static void free_tree_refs(struct audit_context *ctx)
430{
431 struct audit_tree_refs *p, *q;
432 for (p = ctx->first_trees; p; p = q) {
433 q = p->next;
434 kfree(p);
435 }
436}
437
438static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
439{
440#ifdef CONFIG_AUDIT_TREE
441 struct audit_tree_refs *p;
442 int n;
443 if (!tree)
444 return 0;
445 /* full ones */
446 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
447 for (n = 0; n < 31; n++)
448 if (audit_tree_match(p->c[n], tree))
449 return 1;
450 }
451 /* partial */
452 if (p) {
453 for (n = ctx->tree_count; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457#endif
458 return 0;
459}
460
f368c07d 461/* Determine if any context name data matches a rule's watch data */
1da177e4 462/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
463 * otherwise.
464 *
465 * If task_creation is true, this is an explicit indication that we are
466 * filtering a task rule at task creation time. This and tsk == current are
467 * the only situations where tsk->cred may be accessed without an rcu read lock.
468 */
1da177e4 469static int audit_filter_rules(struct task_struct *tsk,
93315ed6 470 struct audit_krule *rule,
1da177e4 471 struct audit_context *ctx,
f368c07d 472 struct audit_names *name,
f5629883
TJ
473 enum audit_state *state,
474 bool task_creation)
1da177e4 475{
f5629883 476 const struct cred *cred;
5195d8e2 477 int i, need_sid = 1;
3dc7e315
DG
478 u32 sid;
479
f5629883
TJ
480 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
481
1da177e4 482 for (i = 0; i < rule->field_count; i++) {
93315ed6 483 struct audit_field *f = &rule->fields[i];
5195d8e2 484 struct audit_names *n;
1da177e4
LT
485 int result = 0;
486
93315ed6 487 switch (f->type) {
1da177e4 488 case AUDIT_PID:
93315ed6 489 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 490 break;
3c66251e 491 case AUDIT_PPID:
419c58f1
AV
492 if (ctx) {
493 if (!ctx->ppid)
494 ctx->ppid = sys_getppid();
3c66251e 495 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 496 }
3c66251e 497 break;
1da177e4 498 case AUDIT_UID:
b6dff3ec 499 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
500 break;
501 case AUDIT_EUID:
b6dff3ec 502 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
503 break;
504 case AUDIT_SUID:
b6dff3ec 505 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
506 break;
507 case AUDIT_FSUID:
b6dff3ec 508 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
509 break;
510 case AUDIT_GID:
b6dff3ec 511 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
512 break;
513 case AUDIT_EGID:
b6dff3ec 514 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
515 break;
516 case AUDIT_SGID:
b6dff3ec 517 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
518 break;
519 case AUDIT_FSGID:
b6dff3ec 520 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
521 break;
522 case AUDIT_PERS:
93315ed6 523 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 524 break;
2fd6f58b 525 case AUDIT_ARCH:
9f8dbe9c 526 if (ctx)
93315ed6 527 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 528 break;
1da177e4
LT
529
530 case AUDIT_EXIT:
531 if (ctx && ctx->return_valid)
93315ed6 532 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
533 break;
534 case AUDIT_SUCCESS:
b01f2cc1 535 if (ctx && ctx->return_valid) {
93315ed6
AG
536 if (f->val)
537 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 538 else
93315ed6 539 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 540 }
1da177e4
LT
541 break;
542 case AUDIT_DEVMAJOR:
16c174bd
EP
543 if (name) {
544 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
5195d8e2 548 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
549 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
551 ++result;
552 break;
553 }
554 }
555 }
556 break;
557 case AUDIT_DEVMINOR:
16c174bd
EP
558 if (name) {
559 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
560 audit_comparator(MINOR(name->rdev), f->op, f->val))
561 ++result;
562 } else if (ctx) {
5195d8e2 563 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
564 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
565 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
566 ++result;
567 break;
568 }
569 }
570 }
571 break;
572 case AUDIT_INODE:
f368c07d 573 if (name)
9c937dcc 574 result = (name->ino == f->val);
f368c07d 575 else if (ctx) {
5195d8e2
EP
576 list_for_each_entry(n, &ctx->names_list, list) {
577 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
578 ++result;
579 break;
580 }
581 }
582 }
583 break;
f368c07d 584 case AUDIT_WATCH:
ae7b8f41
EP
585 if (name)
586 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 587 break;
74c3cbe3
AV
588 case AUDIT_DIR:
589 if (ctx)
590 result = match_tree_refs(ctx, rule->tree);
591 break;
1da177e4
LT
592 case AUDIT_LOGINUID:
593 result = 0;
594 if (ctx)
bfef93a5 595 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 596 break;
3a6b9f85
DG
597 case AUDIT_SUBJ_USER:
598 case AUDIT_SUBJ_ROLE:
599 case AUDIT_SUBJ_TYPE:
600 case AUDIT_SUBJ_SEN:
601 case AUDIT_SUBJ_CLR:
3dc7e315
DG
602 /* NOTE: this may return negative values indicating
603 a temporary error. We simply treat this as a
604 match for now to avoid losing information that
605 may be wanted. An error message will also be
606 logged upon error */
04305e4a 607 if (f->lsm_rule) {
2ad312d2 608 if (need_sid) {
2a862b32 609 security_task_getsecid(tsk, &sid);
2ad312d2
SG
610 need_sid = 0;
611 }
d7a96f3a 612 result = security_audit_rule_match(sid, f->type,
3dc7e315 613 f->op,
04305e4a 614 f->lsm_rule,
3dc7e315 615 ctx);
2ad312d2 616 }
3dc7e315 617 break;
6e5a2d1d
DG
618 case AUDIT_OBJ_USER:
619 case AUDIT_OBJ_ROLE:
620 case AUDIT_OBJ_TYPE:
621 case AUDIT_OBJ_LEV_LOW:
622 case AUDIT_OBJ_LEV_HIGH:
623 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
624 also applies here */
04305e4a 625 if (f->lsm_rule) {
6e5a2d1d
DG
626 /* Find files that match */
627 if (name) {
d7a96f3a 628 result = security_audit_rule_match(
6e5a2d1d 629 name->osid, f->type, f->op,
04305e4a 630 f->lsm_rule, ctx);
6e5a2d1d 631 } else if (ctx) {
5195d8e2
EP
632 list_for_each_entry(n, &ctx->names_list, list) {
633 if (security_audit_rule_match(n->osid, f->type,
634 f->op, f->lsm_rule,
635 ctx)) {
6e5a2d1d
DG
636 ++result;
637 break;
638 }
639 }
640 }
641 /* Find ipc objects that match */
a33e6751
AV
642 if (!ctx || ctx->type != AUDIT_IPC)
643 break;
644 if (security_audit_rule_match(ctx->ipc.osid,
645 f->type, f->op,
646 f->lsm_rule, ctx))
647 ++result;
6e5a2d1d
DG
648 }
649 break;
1da177e4
LT
650 case AUDIT_ARG0:
651 case AUDIT_ARG1:
652 case AUDIT_ARG2:
653 case AUDIT_ARG3:
654 if (ctx)
93315ed6 655 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 656 break;
5adc8a6a
AG
657 case AUDIT_FILTERKEY:
658 /* ignore this field for filtering */
659 result = 1;
660 break;
55669bfa
AV
661 case AUDIT_PERM:
662 result = audit_match_perm(ctx, f->val);
663 break;
8b67dca9
AV
664 case AUDIT_FILETYPE:
665 result = audit_match_filetype(ctx, f->val);
666 break;
1da177e4
LT
667 }
668
f5629883 669 if (!result)
1da177e4
LT
670 return 0;
671 }
0590b933
AV
672
673 if (ctx) {
674 if (rule->prio <= ctx->prio)
675 return 0;
676 if (rule->filterkey) {
677 kfree(ctx->filterkey);
678 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
679 }
680 ctx->prio = rule->prio;
681 }
1da177e4
LT
682 switch (rule->action) {
683 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
684 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
685 }
686 return 1;
687}
688
689/* At process creation time, we can determine if system-call auditing is
690 * completely disabled for this task. Since we only have the task
691 * structure at this point, we can only check uid and gid.
692 */
e048e02c 693static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
694{
695 struct audit_entry *e;
696 enum audit_state state;
697
698 rcu_read_lock();
0f45aa18 699 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
700 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
701 &state, true)) {
e048e02c
AV
702 if (state == AUDIT_RECORD_CONTEXT)
703 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
704 rcu_read_unlock();
705 return state;
706 }
707 }
708 rcu_read_unlock();
709 return AUDIT_BUILD_CONTEXT;
710}
711
712/* At syscall entry and exit time, this filter is called if the
713 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 714 * also not high enough that we already know we have to write an audit
b0dd25a8 715 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
716 */
717static enum audit_state audit_filter_syscall(struct task_struct *tsk,
718 struct audit_context *ctx,
719 struct list_head *list)
720{
721 struct audit_entry *e;
c3896495 722 enum audit_state state;
1da177e4 723
351bb722 724 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
725 return AUDIT_DISABLED;
726
1da177e4 727 rcu_read_lock();
c3896495 728 if (!list_empty(list)) {
b63862f4
DK
729 int word = AUDIT_WORD(ctx->major);
730 int bit = AUDIT_BIT(ctx->major);
731
732 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
733 if ((e->rule.mask[word] & bit) == bit &&
734 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 735 &state, false)) {
f368c07d 736 rcu_read_unlock();
0590b933 737 ctx->current_state = state;
f368c07d
AG
738 return state;
739 }
740 }
741 }
742 rcu_read_unlock();
743 return AUDIT_BUILD_CONTEXT;
744}
745
5195d8e2
EP
746/*
747 * Given an audit_name check the inode hash table to see if they match.
748 * Called holding the rcu read lock to protect the use of audit_inode_hash
749 */
750static int audit_filter_inode_name(struct task_struct *tsk,
751 struct audit_names *n,
752 struct audit_context *ctx) {
753 int word, bit;
754 int h = audit_hash_ino((u32)n->ino);
755 struct list_head *list = &audit_inode_hash[h];
756 struct audit_entry *e;
757 enum audit_state state;
758
759 word = AUDIT_WORD(ctx->major);
760 bit = AUDIT_BIT(ctx->major);
761
762 if (list_empty(list))
763 return 0;
764
765 list_for_each_entry_rcu(e, list, list) {
766 if ((e->rule.mask[word] & bit) == bit &&
767 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
768 ctx->current_state = state;
769 return 1;
770 }
771 }
772
773 return 0;
774}
775
776/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 777 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 778 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
779 * Regarding audit_state, same rules apply as for audit_filter_syscall().
780 */
0590b933 781void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 782{
5195d8e2 783 struct audit_names *n;
f368c07d
AG
784
785 if (audit_pid && tsk->tgid == audit_pid)
0590b933 786 return;
f368c07d
AG
787
788 rcu_read_lock();
f368c07d 789
5195d8e2
EP
790 list_for_each_entry(n, &ctx->names_list, list) {
791 if (audit_filter_inode_name(tsk, n, ctx))
792 break;
0f45aa18
DW
793 }
794 rcu_read_unlock();
0f45aa18
DW
795}
796
1da177e4
LT
797static inline struct audit_context *audit_get_context(struct task_struct *tsk,
798 int return_valid,
6d208da8 799 long return_code)
1da177e4
LT
800{
801 struct audit_context *context = tsk->audit_context;
802
803 if (likely(!context))
804 return NULL;
805 context->return_valid = return_valid;
f701b75e
EP
806
807 /*
808 * we need to fix up the return code in the audit logs if the actual
809 * return codes are later going to be fixed up by the arch specific
810 * signal handlers
811 *
812 * This is actually a test for:
813 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
814 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
815 *
816 * but is faster than a bunch of ||
817 */
818 if (unlikely(return_code <= -ERESTARTSYS) &&
819 (return_code >= -ERESTART_RESTARTBLOCK) &&
820 (return_code != -ENOIOCTLCMD))
821 context->return_code = -EINTR;
822 else
823 context->return_code = return_code;
1da177e4 824
0590b933
AV
825 if (context->in_syscall && !context->dummy) {
826 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
827 audit_filter_inodes(tsk, context);
1da177e4
LT
828 }
829
1da177e4
LT
830 tsk->audit_context = NULL;
831 return context;
832}
833
834static inline void audit_free_names(struct audit_context *context)
835{
5195d8e2 836 struct audit_names *n, *next;
1da177e4
LT
837
838#if AUDIT_DEBUG == 2
0590b933 839 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 840 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
841 " name_count=%d put_count=%d"
842 " ino_count=%d [NOT freeing]\n",
73241ccc 843 __FILE__, __LINE__,
1da177e4
LT
844 context->serial, context->major, context->in_syscall,
845 context->name_count, context->put_count,
846 context->ino_count);
5195d8e2 847 list_for_each_entry(n, &context->names_list, list) {
1da177e4 848 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 849 n->name, n->name ?: "(null)");
8c8570fb 850 }
1da177e4
LT
851 dump_stack();
852 return;
853 }
854#endif
855#if AUDIT_DEBUG
856 context->put_count = 0;
857 context->ino_count = 0;
858#endif
859
5195d8e2
EP
860 list_for_each_entry_safe(n, next, &context->names_list, list) {
861 list_del(&n->list);
862 if (n->name && n->name_put)
863 __putname(n->name);
864 if (n->should_free)
865 kfree(n);
8c8570fb 866 }
1da177e4 867 context->name_count = 0;
44707fdf
JB
868 path_put(&context->pwd);
869 context->pwd.dentry = NULL;
870 context->pwd.mnt = NULL;
1da177e4
LT
871}
872
873static inline void audit_free_aux(struct audit_context *context)
874{
875 struct audit_aux_data *aux;
876
877 while ((aux = context->aux)) {
878 context->aux = aux->next;
879 kfree(aux);
880 }
e54dc243
AG
881 while ((aux = context->aux_pids)) {
882 context->aux_pids = aux->next;
883 kfree(aux);
884 }
1da177e4
LT
885}
886
887static inline void audit_zero_context(struct audit_context *context,
888 enum audit_state state)
889{
1da177e4
LT
890 memset(context, 0, sizeof(*context));
891 context->state = state;
0590b933 892 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
893}
894
895static inline struct audit_context *audit_alloc_context(enum audit_state state)
896{
897 struct audit_context *context;
898
899 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
900 return NULL;
901 audit_zero_context(context, state);
916d7576 902 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 903 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
904 return context;
905}
906
b0dd25a8
RD
907/**
908 * audit_alloc - allocate an audit context block for a task
909 * @tsk: task
910 *
911 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
912 * if necessary. Doing so turns on system call auditing for the
913 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
914 * needed.
915 */
1da177e4
LT
916int audit_alloc(struct task_struct *tsk)
917{
918 struct audit_context *context;
919 enum audit_state state;
e048e02c 920 char *key = NULL;
1da177e4 921
b593d384 922 if (likely(!audit_ever_enabled))
1da177e4
LT
923 return 0; /* Return if not auditing. */
924
e048e02c 925 state = audit_filter_task(tsk, &key);
1da177e4
LT
926 if (likely(state == AUDIT_DISABLED))
927 return 0;
928
929 if (!(context = audit_alloc_context(state))) {
e048e02c 930 kfree(key);
1da177e4
LT
931 audit_log_lost("out of memory in audit_alloc");
932 return -ENOMEM;
933 }
e048e02c 934 context->filterkey = key;
1da177e4 935
1da177e4
LT
936 tsk->audit_context = context;
937 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
938 return 0;
939}
940
941static inline void audit_free_context(struct audit_context *context)
942{
943 struct audit_context *previous;
944 int count = 0;
945
946 do {
947 previous = context->previous;
948 if (previous || (count && count < 10)) {
949 ++count;
950 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
951 " freeing multiple contexts (%d)\n",
952 context->serial, context->major,
953 context->name_count, count);
954 }
955 audit_free_names(context);
74c3cbe3
AV
956 unroll_tree_refs(context, NULL, 0);
957 free_tree_refs(context);
1da177e4 958 audit_free_aux(context);
5adc8a6a 959 kfree(context->filterkey);
4f6b434f 960 kfree(context->sockaddr);
1da177e4
LT
961 kfree(context);
962 context = previous;
963 } while (context);
964 if (count >= 10)
965 printk(KERN_ERR "audit: freed %d contexts\n", count);
966}
967
161a09e7 968void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
969{
970 char *ctx = NULL;
c4823bce
AV
971 unsigned len;
972 int error;
973 u32 sid;
974
2a862b32 975 security_task_getsecid(current, &sid);
c4823bce
AV
976 if (!sid)
977 return;
8c8570fb 978
2a862b32 979 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
980 if (error) {
981 if (error != -EINVAL)
8c8570fb
DK
982 goto error_path;
983 return;
984 }
985
8c8570fb 986 audit_log_format(ab, " subj=%s", ctx);
2a862b32 987 security_release_secctx(ctx, len);
7306a0b9 988 return;
8c8570fb
DK
989
990error_path:
7306a0b9 991 audit_panic("error in audit_log_task_context");
8c8570fb
DK
992 return;
993}
994
161a09e7
JL
995EXPORT_SYMBOL(audit_log_task_context);
996
e495149b 997static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 998{
45d9bb0e
AV
999 char name[sizeof(tsk->comm)];
1000 struct mm_struct *mm = tsk->mm;
219f0817
SS
1001 struct vm_area_struct *vma;
1002
e495149b
AV
1003 /* tsk == current */
1004
45d9bb0e 1005 get_task_comm(name, tsk);
99e45eea
DW
1006 audit_log_format(ab, " comm=");
1007 audit_log_untrustedstring(ab, name);
219f0817 1008
e495149b
AV
1009 if (mm) {
1010 down_read(&mm->mmap_sem);
1011 vma = mm->mmap;
1012 while (vma) {
1013 if ((vma->vm_flags & VM_EXECUTABLE) &&
1014 vma->vm_file) {
1015 audit_log_d_path(ab, "exe=",
44707fdf 1016 &vma->vm_file->f_path);
e495149b
AV
1017 break;
1018 }
1019 vma = vma->vm_next;
219f0817 1020 }
e495149b 1021 up_read(&mm->mmap_sem);
219f0817 1022 }
e495149b 1023 audit_log_task_context(ab);
219f0817
SS
1024}
1025
e54dc243 1026static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1027 uid_t auid, uid_t uid, unsigned int sessionid,
1028 u32 sid, char *comm)
e54dc243
AG
1029{
1030 struct audit_buffer *ab;
2a862b32 1031 char *ctx = NULL;
e54dc243
AG
1032 u32 len;
1033 int rc = 0;
1034
1035 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1036 if (!ab)
6246ccab 1037 return rc;
e54dc243 1038
4746ec5b
EP
1039 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1040 uid, sessionid);
2a862b32 1041 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1042 audit_log_format(ab, " obj=(none)");
e54dc243 1043 rc = 1;
2a862b32
AD
1044 } else {
1045 audit_log_format(ab, " obj=%s", ctx);
1046 security_release_secctx(ctx, len);
1047 }
c2a7780e
EP
1048 audit_log_format(ab, " ocomm=");
1049 audit_log_untrustedstring(ab, comm);
e54dc243 1050 audit_log_end(ab);
e54dc243
AG
1051
1052 return rc;
1053}
1054
de6bbd1d
EP
1055/*
1056 * to_send and len_sent accounting are very loose estimates. We aren't
1057 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1058 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1059 *
1060 * why snprintf? an int is up to 12 digits long. if we just assumed when
1061 * logging that a[%d]= was going to be 16 characters long we would be wasting
1062 * space in every audit message. In one 7500 byte message we can log up to
1063 * about 1000 min size arguments. That comes down to about 50% waste of space
1064 * if we didn't do the snprintf to find out how long arg_num_len was.
1065 */
1066static int audit_log_single_execve_arg(struct audit_context *context,
1067 struct audit_buffer **ab,
1068 int arg_num,
1069 size_t *len_sent,
1070 const char __user *p,
1071 char *buf)
bdf4c48a 1072{
de6bbd1d
EP
1073 char arg_num_len_buf[12];
1074 const char __user *tmp_p = p;
b87ce6e4
EP
1075 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1076 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1077 size_t len, len_left, to_send;
1078 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1079 unsigned int i, has_cntl = 0, too_long = 0;
1080 int ret;
1081
1082 /* strnlen_user includes the null we don't want to send */
1083 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1084
de6bbd1d
EP
1085 /*
1086 * We just created this mm, if we can't find the strings
1087 * we just copied into it something is _very_ wrong. Similar
1088 * for strings that are too long, we should not have created
1089 * any.
1090 */
b0abcfc1 1091 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1092 WARN_ON(1);
1093 send_sig(SIGKILL, current, 0);
b0abcfc1 1094 return -1;
de6bbd1d 1095 }
040b3a2d 1096
de6bbd1d
EP
1097 /* walk the whole argument looking for non-ascii chars */
1098 do {
1099 if (len_left > MAX_EXECVE_AUDIT_LEN)
1100 to_send = MAX_EXECVE_AUDIT_LEN;
1101 else
1102 to_send = len_left;
1103 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1104 /*
de6bbd1d
EP
1105 * There is no reason for this copy to be short. We just
1106 * copied them here, and the mm hasn't been exposed to user-
1107 * space yet.
bdf4c48a 1108 */
de6bbd1d 1109 if (ret) {
bdf4c48a
PZ
1110 WARN_ON(1);
1111 send_sig(SIGKILL, current, 0);
b0abcfc1 1112 return -1;
bdf4c48a 1113 }
de6bbd1d
EP
1114 buf[to_send] = '\0';
1115 has_cntl = audit_string_contains_control(buf, to_send);
1116 if (has_cntl) {
1117 /*
1118 * hex messages get logged as 2 bytes, so we can only
1119 * send half as much in each message
1120 */
1121 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1122 break;
1123 }
de6bbd1d
EP
1124 len_left -= to_send;
1125 tmp_p += to_send;
1126 } while (len_left > 0);
1127
1128 len_left = len;
1129
1130 if (len > max_execve_audit_len)
1131 too_long = 1;
1132
1133 /* rewalk the argument actually logging the message */
1134 for (i = 0; len_left > 0; i++) {
1135 int room_left;
1136
1137 if (len_left > max_execve_audit_len)
1138 to_send = max_execve_audit_len;
1139 else
1140 to_send = len_left;
1141
1142 /* do we have space left to send this argument in this ab? */
1143 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1144 if (has_cntl)
1145 room_left -= (to_send * 2);
1146 else
1147 room_left -= to_send;
1148 if (room_left < 0) {
1149 *len_sent = 0;
1150 audit_log_end(*ab);
1151 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1152 if (!*ab)
1153 return 0;
1154 }
bdf4c48a 1155
bdf4c48a 1156 /*
de6bbd1d
EP
1157 * first record needs to say how long the original string was
1158 * so we can be sure nothing was lost.
1159 */
1160 if ((i == 0) && (too_long))
ca96a895 1161 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1162 has_cntl ? 2*len : len);
1163
1164 /*
1165 * normally arguments are small enough to fit and we already
1166 * filled buf above when we checked for control characters
1167 * so don't bother with another copy_from_user
bdf4c48a 1168 */
de6bbd1d
EP
1169 if (len >= max_execve_audit_len)
1170 ret = copy_from_user(buf, p, to_send);
1171 else
1172 ret = 0;
040b3a2d 1173 if (ret) {
bdf4c48a
PZ
1174 WARN_ON(1);
1175 send_sig(SIGKILL, current, 0);
b0abcfc1 1176 return -1;
bdf4c48a 1177 }
de6bbd1d
EP
1178 buf[to_send] = '\0';
1179
1180 /* actually log it */
ca96a895 1181 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1182 if (too_long)
1183 audit_log_format(*ab, "[%d]", i);
1184 audit_log_format(*ab, "=");
1185 if (has_cntl)
b556f8ad 1186 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1187 else
9d960985 1188 audit_log_string(*ab, buf);
de6bbd1d
EP
1189
1190 p += to_send;
1191 len_left -= to_send;
1192 *len_sent += arg_num_len;
1193 if (has_cntl)
1194 *len_sent += to_send * 2;
1195 else
1196 *len_sent += to_send;
1197 }
1198 /* include the null we didn't log */
1199 return len + 1;
1200}
1201
1202static void audit_log_execve_info(struct audit_context *context,
1203 struct audit_buffer **ab,
1204 struct audit_aux_data_execve *axi)
1205{
1206 int i;
1207 size_t len, len_sent = 0;
1208 const char __user *p;
1209 char *buf;
bdf4c48a 1210
de6bbd1d
EP
1211 if (axi->mm != current->mm)
1212 return; /* execve failed, no additional info */
1213
1214 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1215
ca96a895 1216 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1217
1218 /*
1219 * we need some kernel buffer to hold the userspace args. Just
1220 * allocate one big one rather than allocating one of the right size
1221 * for every single argument inside audit_log_single_execve_arg()
1222 * should be <8k allocation so should be pretty safe.
1223 */
1224 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1225 if (!buf) {
1226 audit_panic("out of memory for argv string\n");
1227 return;
bdf4c48a 1228 }
de6bbd1d
EP
1229
1230 for (i = 0; i < axi->argc; i++) {
1231 len = audit_log_single_execve_arg(context, ab, i,
1232 &len_sent, p, buf);
1233 if (len <= 0)
1234 break;
1235 p += len;
1236 }
1237 kfree(buf);
bdf4c48a
PZ
1238}
1239
851f7ff5
EP
1240static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1241{
1242 int i;
1243
1244 audit_log_format(ab, " %s=", prefix);
1245 CAP_FOR_EACH_U32(i) {
1246 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1247 }
1248}
1249
1250static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1251{
1252 kernel_cap_t *perm = &name->fcap.permitted;
1253 kernel_cap_t *inh = &name->fcap.inheritable;
1254 int log = 0;
1255
1256 if (!cap_isclear(*perm)) {
1257 audit_log_cap(ab, "cap_fp", perm);
1258 log = 1;
1259 }
1260 if (!cap_isclear(*inh)) {
1261 audit_log_cap(ab, "cap_fi", inh);
1262 log = 1;
1263 }
1264
1265 if (log)
1266 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1267}
1268
a33e6751 1269static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1270{
1271 struct audit_buffer *ab;
1272 int i;
1273
1274 ab = audit_log_start(context, GFP_KERNEL, context->type);
1275 if (!ab)
1276 return;
1277
1278 switch (context->type) {
1279 case AUDIT_SOCKETCALL: {
1280 int nargs = context->socketcall.nargs;
1281 audit_log_format(ab, "nargs=%d", nargs);
1282 for (i = 0; i < nargs; i++)
1283 audit_log_format(ab, " a%d=%lx", i,
1284 context->socketcall.args[i]);
1285 break; }
a33e6751
AV
1286 case AUDIT_IPC: {
1287 u32 osid = context->ipc.osid;
1288
2570ebbd 1289 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1290 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1291 if (osid) {
1292 char *ctx = NULL;
1293 u32 len;
1294 if (security_secid_to_secctx(osid, &ctx, &len)) {
1295 audit_log_format(ab, " osid=%u", osid);
1296 *call_panic = 1;
1297 } else {
1298 audit_log_format(ab, " obj=%s", ctx);
1299 security_release_secctx(ctx, len);
1300 }
1301 }
e816f370
AV
1302 if (context->ipc.has_perm) {
1303 audit_log_end(ab);
1304 ab = audit_log_start(context, GFP_KERNEL,
1305 AUDIT_IPC_SET_PERM);
1306 audit_log_format(ab,
2570ebbd 1307 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1308 context->ipc.qbytes,
1309 context->ipc.perm_uid,
1310 context->ipc.perm_gid,
1311 context->ipc.perm_mode);
1312 if (!ab)
1313 return;
1314 }
a33e6751 1315 break; }
564f6993
AV
1316 case AUDIT_MQ_OPEN: {
1317 audit_log_format(ab,
df0a4283 1318 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1319 "mq_msgsize=%ld mq_curmsgs=%ld",
1320 context->mq_open.oflag, context->mq_open.mode,
1321 context->mq_open.attr.mq_flags,
1322 context->mq_open.attr.mq_maxmsg,
1323 context->mq_open.attr.mq_msgsize,
1324 context->mq_open.attr.mq_curmsgs);
1325 break; }
c32c8af4
AV
1326 case AUDIT_MQ_SENDRECV: {
1327 audit_log_format(ab,
1328 "mqdes=%d msg_len=%zd msg_prio=%u "
1329 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1330 context->mq_sendrecv.mqdes,
1331 context->mq_sendrecv.msg_len,
1332 context->mq_sendrecv.msg_prio,
1333 context->mq_sendrecv.abs_timeout.tv_sec,
1334 context->mq_sendrecv.abs_timeout.tv_nsec);
1335 break; }
20114f71
AV
1336 case AUDIT_MQ_NOTIFY: {
1337 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1338 context->mq_notify.mqdes,
1339 context->mq_notify.sigev_signo);
1340 break; }
7392906e
AV
1341 case AUDIT_MQ_GETSETATTR: {
1342 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1343 audit_log_format(ab,
1344 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1345 "mq_curmsgs=%ld ",
1346 context->mq_getsetattr.mqdes,
1347 attr->mq_flags, attr->mq_maxmsg,
1348 attr->mq_msgsize, attr->mq_curmsgs);
1349 break; }
57f71a0a
AV
1350 case AUDIT_CAPSET: {
1351 audit_log_format(ab, "pid=%d", context->capset.pid);
1352 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1353 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1354 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1355 break; }
120a795d
AV
1356 case AUDIT_MMAP: {
1357 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1358 context->mmap.flags);
1359 break; }
f3298dc4
AV
1360 }
1361 audit_log_end(ab);
1362}
1363
5195d8e2
EP
1364static void audit_log_name(struct audit_context *context, struct audit_names *n,
1365 int record_num, int *call_panic)
1366{
1367 struct audit_buffer *ab;
1368 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1369 if (!ab)
1370 return; /* audit_panic has been called */
1371
1372 audit_log_format(ab, "item=%d", record_num);
1373
1374 if (n->name) {
1375 switch (n->name_len) {
1376 case AUDIT_NAME_FULL:
1377 /* log the full path */
1378 audit_log_format(ab, " name=");
1379 audit_log_untrustedstring(ab, n->name);
1380 break;
1381 case 0:
1382 /* name was specified as a relative path and the
1383 * directory component is the cwd */
1384 audit_log_d_path(ab, "name=", &context->pwd);
1385 break;
1386 default:
1387 /* log the name's directory component */
1388 audit_log_format(ab, " name=");
1389 audit_log_n_untrustedstring(ab, n->name,
1390 n->name_len);
1391 }
1392 } else
1393 audit_log_format(ab, " name=(null)");
1394
1395 if (n->ino != (unsigned long)-1) {
1396 audit_log_format(ab, " inode=%lu"
1397 " dev=%02x:%02x mode=%#ho"
1398 " ouid=%u ogid=%u rdev=%02x:%02x",
1399 n->ino,
1400 MAJOR(n->dev),
1401 MINOR(n->dev),
1402 n->mode,
1403 n->uid,
1404 n->gid,
1405 MAJOR(n->rdev),
1406 MINOR(n->rdev));
1407 }
1408 if (n->osid != 0) {
1409 char *ctx = NULL;
1410 u32 len;
1411 if (security_secid_to_secctx(
1412 n->osid, &ctx, &len)) {
1413 audit_log_format(ab, " osid=%u", n->osid);
1414 *call_panic = 2;
1415 } else {
1416 audit_log_format(ab, " obj=%s", ctx);
1417 security_release_secctx(ctx, len);
1418 }
1419 }
1420
1421 audit_log_fcaps(ab, n);
1422
1423 audit_log_end(ab);
1424}
1425
e495149b 1426static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1427{
c69e8d9c 1428 const struct cred *cred;
9c7aa6aa 1429 int i, call_panic = 0;
1da177e4 1430 struct audit_buffer *ab;
7551ced3 1431 struct audit_aux_data *aux;
a6c043a8 1432 const char *tty;
5195d8e2 1433 struct audit_names *n;
1da177e4 1434
e495149b 1435 /* tsk == current */
3f2792ff 1436 context->pid = tsk->pid;
419c58f1
AV
1437 if (!context->ppid)
1438 context->ppid = sys_getppid();
c69e8d9c
DH
1439 cred = current_cred();
1440 context->uid = cred->uid;
1441 context->gid = cred->gid;
1442 context->euid = cred->euid;
1443 context->suid = cred->suid;
b6dff3ec 1444 context->fsuid = cred->fsuid;
c69e8d9c
DH
1445 context->egid = cred->egid;
1446 context->sgid = cred->sgid;
b6dff3ec 1447 context->fsgid = cred->fsgid;
3f2792ff 1448 context->personality = tsk->personality;
e495149b
AV
1449
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1451 if (!ab)
1452 return; /* audit_panic has been called */
bccf6ae0
DW
1453 audit_log_format(ab, "arch=%x syscall=%d",
1454 context->arch, context->major);
1da177e4
LT
1455 if (context->personality != PER_LINUX)
1456 audit_log_format(ab, " per=%lx", context->personality);
1457 if (context->return_valid)
9f8dbe9c 1458 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1459 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1460 context->return_code);
eb84a20e 1461
dbda4c0b 1462 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1463 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1464 tty = tsk->signal->tty->name;
a6c043a8
SG
1465 else
1466 tty = "(none)";
dbda4c0b
AC
1467 spin_unlock_irq(&tsk->sighand->siglock);
1468
1da177e4
LT
1469 audit_log_format(ab,
1470 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1471 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1472 " euid=%u suid=%u fsuid=%u"
4746ec5b 1473 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1474 context->argv[0],
1475 context->argv[1],
1476 context->argv[2],
1477 context->argv[3],
1478 context->name_count,
f46038ff 1479 context->ppid,
1da177e4 1480 context->pid,
bfef93a5 1481 tsk->loginuid,
1da177e4
LT
1482 context->uid,
1483 context->gid,
1484 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1485 context->egid, context->sgid, context->fsgid, tty,
1486 tsk->sessionid);
eb84a20e 1487
eb84a20e 1488
e495149b 1489 audit_log_task_info(ab, tsk);
9d960985 1490 audit_log_key(ab, context->filterkey);
1da177e4 1491 audit_log_end(ab);
1da177e4 1492
7551ced3 1493 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1494
e495149b 1495 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1496 if (!ab)
1497 continue; /* audit_panic has been called */
1498
1da177e4 1499 switch (aux->type) {
20ca73bc 1500
473ae30b
AV
1501 case AUDIT_EXECVE: {
1502 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1503 audit_log_execve_info(context, &ab, axi);
473ae30b 1504 break; }
073115d6 1505
3fc689e9
EP
1506 case AUDIT_BPRM_FCAPS: {
1507 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1508 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1509 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1510 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1511 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1512 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1513 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1514 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1515 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1516 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1517 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1518 break; }
1519
1da177e4
LT
1520 }
1521 audit_log_end(ab);
1da177e4
LT
1522 }
1523
f3298dc4 1524 if (context->type)
a33e6751 1525 show_special(context, &call_panic);
f3298dc4 1526
157cf649
AV
1527 if (context->fds[0] >= 0) {
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1529 if (ab) {
1530 audit_log_format(ab, "fd0=%d fd1=%d",
1531 context->fds[0], context->fds[1]);
1532 audit_log_end(ab);
1533 }
1534 }
1535
4f6b434f
AV
1536 if (context->sockaddr_len) {
1537 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1538 if (ab) {
1539 audit_log_format(ab, "saddr=");
1540 audit_log_n_hex(ab, (void *)context->sockaddr,
1541 context->sockaddr_len);
1542 audit_log_end(ab);
1543 }
1544 }
1545
e54dc243
AG
1546 for (aux = context->aux_pids; aux; aux = aux->next) {
1547 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1548
1549 for (i = 0; i < axs->pid_count; i++)
1550 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1551 axs->target_auid[i],
1552 axs->target_uid[i],
4746ec5b 1553 axs->target_sessionid[i],
c2a7780e
EP
1554 axs->target_sid[i],
1555 axs->target_comm[i]))
e54dc243 1556 call_panic = 1;
a5cb013d
AV
1557 }
1558
e54dc243
AG
1559 if (context->target_pid &&
1560 audit_log_pid_context(context, context->target_pid,
c2a7780e 1561 context->target_auid, context->target_uid,
4746ec5b 1562 context->target_sessionid,
c2a7780e 1563 context->target_sid, context->target_comm))
e54dc243
AG
1564 call_panic = 1;
1565
44707fdf 1566 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1567 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1568 if (ab) {
44707fdf 1569 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1570 audit_log_end(ab);
1571 }
1572 }
73241ccc 1573
5195d8e2
EP
1574 i = 0;
1575 list_for_each_entry(n, &context->names_list, list)
1576 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1577
1578 /* Send end of event record to help user space know we are finished */
1579 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1580 if (ab)
1581 audit_log_end(ab);
9c7aa6aa
SG
1582 if (call_panic)
1583 audit_panic("error converting sid to string");
1da177e4
LT
1584}
1585
b0dd25a8
RD
1586/**
1587 * audit_free - free a per-task audit context
1588 * @tsk: task whose audit context block to free
1589 *
fa84cb93 1590 * Called from copy_process and do_exit
b0dd25a8 1591 */
1da177e4
LT
1592void audit_free(struct task_struct *tsk)
1593{
1594 struct audit_context *context;
1595
1da177e4 1596 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1597 if (likely(!context))
1598 return;
1599
1600 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1601 * function (e.g., exit_group), then free context block.
1602 * We use GFP_ATOMIC here because we might be doing this
f5561964 1603 * in the context of the idle thread */
e495149b 1604 /* that can happen only if we are called from do_exit() */
0590b933 1605 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1606 audit_log_exit(context, tsk);
916d7576
AV
1607 if (!list_empty(&context->killed_trees))
1608 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1609
1610 audit_free_context(context);
1611}
1612
b0dd25a8
RD
1613/**
1614 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1615 * @arch: architecture type
1616 * @major: major syscall type (function)
1617 * @a1: additional syscall register 1
1618 * @a2: additional syscall register 2
1619 * @a3: additional syscall register 3
1620 * @a4: additional syscall register 4
1621 *
1622 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1623 * audit context was created when the task was created and the state or
1624 * filters demand the audit context be built. If the state from the
1625 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1626 * then the record will be written at syscall exit time (otherwise, it
1627 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1628 * be written).
1629 */
5411be59 1630void audit_syscall_entry(int arch, int major,
1da177e4
LT
1631 unsigned long a1, unsigned long a2,
1632 unsigned long a3, unsigned long a4)
1633{
5411be59 1634 struct task_struct *tsk = current;
1da177e4
LT
1635 struct audit_context *context = tsk->audit_context;
1636 enum audit_state state;
1637
86a1c34a
RM
1638 if (unlikely(!context))
1639 return;
1da177e4 1640
b0dd25a8
RD
1641 /*
1642 * This happens only on certain architectures that make system
1da177e4
LT
1643 * calls in kernel_thread via the entry.S interface, instead of
1644 * with direct calls. (If you are porting to a new
1645 * architecture, hitting this condition can indicate that you
1646 * got the _exit/_leave calls backward in entry.S.)
1647 *
1648 * i386 no
1649 * x86_64 no
2ef9481e 1650 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1651 *
1652 * This also happens with vm86 emulation in a non-nested manner
1653 * (entries without exits), so this case must be caught.
1654 */
1655 if (context->in_syscall) {
1656 struct audit_context *newctx;
1657
1da177e4
LT
1658#if AUDIT_DEBUG
1659 printk(KERN_ERR
1660 "audit(:%d) pid=%d in syscall=%d;"
1661 " entering syscall=%d\n",
1662 context->serial, tsk->pid, context->major, major);
1663#endif
1664 newctx = audit_alloc_context(context->state);
1665 if (newctx) {
1666 newctx->previous = context;
1667 context = newctx;
1668 tsk->audit_context = newctx;
1669 } else {
1670 /* If we can't alloc a new context, the best we
1671 * can do is to leak memory (any pending putname
1672 * will be lost). The only other alternative is
1673 * to abandon auditing. */
1674 audit_zero_context(context, context->state);
1675 }
1676 }
1677 BUG_ON(context->in_syscall || context->name_count);
1678
1679 if (!audit_enabled)
1680 return;
1681
2fd6f58b 1682 context->arch = arch;
1da177e4
LT
1683 context->major = major;
1684 context->argv[0] = a1;
1685 context->argv[1] = a2;
1686 context->argv[2] = a3;
1687 context->argv[3] = a4;
1688
1689 state = context->state;
d51374ad 1690 context->dummy = !audit_n_rules;
0590b933
AV
1691 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1692 context->prio = 0;
0f45aa18 1693 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1694 }
1da177e4
LT
1695 if (likely(state == AUDIT_DISABLED))
1696 return;
1697
ce625a80 1698 context->serial = 0;
1da177e4
LT
1699 context->ctime = CURRENT_TIME;
1700 context->in_syscall = 1;
0590b933 1701 context->current_state = state;
419c58f1 1702 context->ppid = 0;
1da177e4
LT
1703}
1704
a64e6494
AV
1705void audit_finish_fork(struct task_struct *child)
1706{
1707 struct audit_context *ctx = current->audit_context;
1708 struct audit_context *p = child->audit_context;
0590b933
AV
1709 if (!p || !ctx)
1710 return;
1711 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1712 return;
1713 p->arch = ctx->arch;
1714 p->major = ctx->major;
1715 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1716 p->ctime = ctx->ctime;
1717 p->dummy = ctx->dummy;
a64e6494
AV
1718 p->in_syscall = ctx->in_syscall;
1719 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1720 p->ppid = current->pid;
0590b933
AV
1721 p->prio = ctx->prio;
1722 p->current_state = ctx->current_state;
a64e6494
AV
1723}
1724
b0dd25a8
RD
1725/**
1726 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1727 * @valid: success/failure flag
1728 * @return_code: syscall return value
1729 *
1730 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1731 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1732 * filtering, or because some other part of the kernel write an audit
1733 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1734 * free the names stored from getname().
1735 */
5411be59 1736void audit_syscall_exit(int valid, long return_code)
1da177e4 1737{
5411be59 1738 struct task_struct *tsk = current;
1da177e4
LT
1739 struct audit_context *context;
1740
2fd6f58b 1741 context = audit_get_context(tsk, valid, return_code);
1da177e4 1742
1da177e4 1743 if (likely(!context))
97e94c45 1744 return;
1da177e4 1745
0590b933 1746 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1747 audit_log_exit(context, tsk);
1da177e4
LT
1748
1749 context->in_syscall = 0;
0590b933 1750 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1751
916d7576
AV
1752 if (!list_empty(&context->killed_trees))
1753 audit_kill_trees(&context->killed_trees);
1754
1da177e4
LT
1755 if (context->previous) {
1756 struct audit_context *new_context = context->previous;
1757 context->previous = NULL;
1758 audit_free_context(context);
1759 tsk->audit_context = new_context;
1760 } else {
1761 audit_free_names(context);
74c3cbe3 1762 unroll_tree_refs(context, NULL, 0);
1da177e4 1763 audit_free_aux(context);
e54dc243
AG
1764 context->aux = NULL;
1765 context->aux_pids = NULL;
a5cb013d 1766 context->target_pid = 0;
e54dc243 1767 context->target_sid = 0;
4f6b434f 1768 context->sockaddr_len = 0;
f3298dc4 1769 context->type = 0;
157cf649 1770 context->fds[0] = -1;
e048e02c
AV
1771 if (context->state != AUDIT_RECORD_CONTEXT) {
1772 kfree(context->filterkey);
1773 context->filterkey = NULL;
1774 }
1da177e4
LT
1775 tsk->audit_context = context;
1776 }
1da177e4
LT
1777}
1778
74c3cbe3
AV
1779static inline void handle_one(const struct inode *inode)
1780{
1781#ifdef CONFIG_AUDIT_TREE
1782 struct audit_context *context;
1783 struct audit_tree_refs *p;
1784 struct audit_chunk *chunk;
1785 int count;
e61ce867 1786 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1787 return;
1788 context = current->audit_context;
1789 p = context->trees;
1790 count = context->tree_count;
1791 rcu_read_lock();
1792 chunk = audit_tree_lookup(inode);
1793 rcu_read_unlock();
1794 if (!chunk)
1795 return;
1796 if (likely(put_tree_ref(context, chunk)))
1797 return;
1798 if (unlikely(!grow_tree_refs(context))) {
436c405c 1799 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1800 audit_set_auditable(context);
1801 audit_put_chunk(chunk);
1802 unroll_tree_refs(context, p, count);
1803 return;
1804 }
1805 put_tree_ref(context, chunk);
1806#endif
1807}
1808
1809static void handle_path(const struct dentry *dentry)
1810{
1811#ifdef CONFIG_AUDIT_TREE
1812 struct audit_context *context;
1813 struct audit_tree_refs *p;
1814 const struct dentry *d, *parent;
1815 struct audit_chunk *drop;
1816 unsigned long seq;
1817 int count;
1818
1819 context = current->audit_context;
1820 p = context->trees;
1821 count = context->tree_count;
1822retry:
1823 drop = NULL;
1824 d = dentry;
1825 rcu_read_lock();
1826 seq = read_seqbegin(&rename_lock);
1827 for(;;) {
1828 struct inode *inode = d->d_inode;
e61ce867 1829 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1830 struct audit_chunk *chunk;
1831 chunk = audit_tree_lookup(inode);
1832 if (chunk) {
1833 if (unlikely(!put_tree_ref(context, chunk))) {
1834 drop = chunk;
1835 break;
1836 }
1837 }
1838 }
1839 parent = d->d_parent;
1840 if (parent == d)
1841 break;
1842 d = parent;
1843 }
1844 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1845 rcu_read_unlock();
1846 if (!drop) {
1847 /* just a race with rename */
1848 unroll_tree_refs(context, p, count);
1849 goto retry;
1850 }
1851 audit_put_chunk(drop);
1852 if (grow_tree_refs(context)) {
1853 /* OK, got more space */
1854 unroll_tree_refs(context, p, count);
1855 goto retry;
1856 }
1857 /* too bad */
1858 printk(KERN_WARNING
436c405c 1859 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1860 unroll_tree_refs(context, p, count);
1861 audit_set_auditable(context);
1862 return;
1863 }
1864 rcu_read_unlock();
1865#endif
1866}
1867
5195d8e2
EP
1868static struct audit_names *audit_alloc_name(struct audit_context *context)
1869{
1870 struct audit_names *aname;
1871
1872 if (context->name_count < AUDIT_NAMES) {
1873 aname = &context->preallocated_names[context->name_count];
1874 memset(aname, 0, sizeof(*aname));
1875 } else {
1876 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1877 if (!aname)
1878 return NULL;
1879 aname->should_free = true;
1880 }
1881
1882 aname->ino = (unsigned long)-1;
1883 list_add_tail(&aname->list, &context->names_list);
1884
1885 context->name_count++;
1886#if AUDIT_DEBUG
1887 context->ino_count++;
1888#endif
1889 return aname;
1890}
1891
b0dd25a8
RD
1892/**
1893 * audit_getname - add a name to the list
1894 * @name: name to add
1895 *
1896 * Add a name to the list of audit names for this context.
1897 * Called from fs/namei.c:getname().
1898 */
d8945bb5 1899void __audit_getname(const char *name)
1da177e4
LT
1900{
1901 struct audit_context *context = current->audit_context;
5195d8e2 1902 struct audit_names *n;
1da177e4 1903
d8945bb5 1904 if (IS_ERR(name) || !name)
1da177e4
LT
1905 return;
1906
1907 if (!context->in_syscall) {
1908#if AUDIT_DEBUG == 2
1909 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1910 __FILE__, __LINE__, context->serial, name);
1911 dump_stack();
1912#endif
1913 return;
1914 }
5195d8e2
EP
1915
1916 n = audit_alloc_name(context);
1917 if (!n)
1918 return;
1919
1920 n->name = name;
1921 n->name_len = AUDIT_NAME_FULL;
1922 n->name_put = true;
1923
f7ad3c6b
MS
1924 if (!context->pwd.dentry)
1925 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1926}
1927
b0dd25a8
RD
1928/* audit_putname - intercept a putname request
1929 * @name: name to intercept and delay for putname
1930 *
1931 * If we have stored the name from getname in the audit context,
1932 * then we delay the putname until syscall exit.
1933 * Called from include/linux/fs.h:putname().
1934 */
1da177e4
LT
1935void audit_putname(const char *name)
1936{
1937 struct audit_context *context = current->audit_context;
1938
1939 BUG_ON(!context);
1940 if (!context->in_syscall) {
1941#if AUDIT_DEBUG == 2
1942 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1943 __FILE__, __LINE__, context->serial, name);
1944 if (context->name_count) {
5195d8e2 1945 struct audit_names *n;
1da177e4 1946 int i;
5195d8e2
EP
1947
1948 list_for_each_entry(n, &context->names_list, list)
1da177e4 1949 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
1950 n->name, n->name ?: "(null)");
1951 }
1da177e4
LT
1952#endif
1953 __putname(name);
1954 }
1955#if AUDIT_DEBUG
1956 else {
1957 ++context->put_count;
1958 if (context->put_count > context->name_count) {
1959 printk(KERN_ERR "%s:%d(:%d): major=%d"
1960 " in_syscall=%d putname(%p) name_count=%d"
1961 " put_count=%d\n",
1962 __FILE__, __LINE__,
1963 context->serial, context->major,
1964 context->in_syscall, name, context->name_count,
1965 context->put_count);
1966 dump_stack();
1967 }
1968 }
1969#endif
1970}
1971
851f7ff5
EP
1972static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1973{
1974 struct cpu_vfs_cap_data caps;
1975 int rc;
1976
851f7ff5
EP
1977 if (!dentry)
1978 return 0;
1979
1980 rc = get_vfs_caps_from_disk(dentry, &caps);
1981 if (rc)
1982 return rc;
1983
1984 name->fcap.permitted = caps.permitted;
1985 name->fcap.inheritable = caps.inheritable;
1986 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1987 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1988
1989 return 0;
1990}
1991
1992
3e2efce0 1993/* Copy inode data into an audit_names. */
851f7ff5
EP
1994static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1995 const struct inode *inode)
8c8570fb 1996{
3e2efce0
AG
1997 name->ino = inode->i_ino;
1998 name->dev = inode->i_sb->s_dev;
1999 name->mode = inode->i_mode;
2000 name->uid = inode->i_uid;
2001 name->gid = inode->i_gid;
2002 name->rdev = inode->i_rdev;
2a862b32 2003 security_inode_getsecid(inode, &name->osid);
851f7ff5 2004 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2005}
2006
b0dd25a8
RD
2007/**
2008 * audit_inode - store the inode and device from a lookup
2009 * @name: name being audited
481968f4 2010 * @dentry: dentry being audited
b0dd25a8
RD
2011 *
2012 * Called from fs/namei.c:path_lookup().
2013 */
5a190ae6 2014void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2015{
1da177e4 2016 struct audit_context *context = current->audit_context;
74c3cbe3 2017 const struct inode *inode = dentry->d_inode;
5195d8e2 2018 struct audit_names *n;
1da177e4
LT
2019
2020 if (!context->in_syscall)
2021 return;
5195d8e2
EP
2022
2023 list_for_each_entry_reverse(n, &context->names_list, list) {
2024 if (n->name && (n->name == name))
2025 goto out;
1da177e4 2026 }
5195d8e2
EP
2027
2028 /* unable to find the name from a previous getname() */
2029 n = audit_alloc_name(context);
2030 if (!n)
2031 return;
2032out:
74c3cbe3 2033 handle_path(dentry);
5195d8e2 2034 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2035}
2036
2037/**
2038 * audit_inode_child - collect inode info for created/removed objects
481968f4 2039 * @dentry: dentry being audited
73d3ec5a 2040 * @parent: inode of dentry parent
73241ccc
AG
2041 *
2042 * For syscalls that create or remove filesystem objects, audit_inode
2043 * can only collect information for the filesystem object's parent.
2044 * This call updates the audit context with the child's information.
2045 * Syscalls that create a new filesystem object must be hooked after
2046 * the object is created. Syscalls that remove a filesystem object
2047 * must be hooked prior, in order to capture the target inode during
2048 * unsuccessful attempts.
2049 */
cccc6bba 2050void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2051 const struct inode *parent)
73241ccc 2052{
73241ccc 2053 struct audit_context *context = current->audit_context;
5712e88f 2054 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2055 const struct inode *inode = dentry->d_inode;
cccc6bba 2056 const char *dname = dentry->d_name.name;
5195d8e2 2057 struct audit_names *n;
9c937dcc 2058 int dirlen = 0;
73241ccc
AG
2059
2060 if (!context->in_syscall)
2061 return;
2062
74c3cbe3
AV
2063 if (inode)
2064 handle_one(inode);
73241ccc 2065
5712e88f 2066 /* parent is more likely, look for it first */
5195d8e2 2067 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2068 if (!n->name)
2069 continue;
2070
2071 if (n->ino == parent->i_ino &&
2072 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2073 n->name_len = dirlen; /* update parent data in place */
2074 found_parent = n->name;
2075 goto add_names;
f368c07d 2076 }
5712e88f 2077 }
73241ccc 2078
5712e88f 2079 /* no matching parent, look for matching child */
5195d8e2 2080 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2081 if (!n->name)
2082 continue;
2083
2084 /* strcmp() is the more likely scenario */
2085 if (!strcmp(dname, n->name) ||
2086 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2087 if (inode)
851f7ff5 2088 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2089 else
2090 n->ino = (unsigned long)-1;
2091 found_child = n->name;
2092 goto add_names;
2093 }
ac9910ce 2094 }
5712e88f
AG
2095
2096add_names:
2097 if (!found_parent) {
5195d8e2
EP
2098 n = audit_alloc_name(context);
2099 if (!n)
ac9910ce 2100 return;
5195d8e2 2101 audit_copy_inode(n, NULL, parent);
73d3ec5a 2102 }
5712e88f
AG
2103
2104 if (!found_child) {
5195d8e2
EP
2105 n = audit_alloc_name(context);
2106 if (!n)
5712e88f 2107 return;
5712e88f
AG
2108
2109 /* Re-use the name belonging to the slot for a matching parent
2110 * directory. All names for this context are relinquished in
2111 * audit_free_names() */
2112 if (found_parent) {
5195d8e2
EP
2113 n->name = found_parent;
2114 n->name_len = AUDIT_NAME_FULL;
5712e88f 2115 /* don't call __putname() */
5195d8e2 2116 n->name_put = false;
5712e88f
AG
2117 }
2118
2119 if (inode)
5195d8e2 2120 audit_copy_inode(n, NULL, inode);
5712e88f 2121 }
3e2efce0 2122}
50e437d5 2123EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2124
b0dd25a8
RD
2125/**
2126 * auditsc_get_stamp - get local copies of audit_context values
2127 * @ctx: audit_context for the task
2128 * @t: timespec to store time recorded in the audit_context
2129 * @serial: serial value that is recorded in the audit_context
2130 *
2131 * Also sets the context as auditable.
2132 */
48887e63 2133int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2134 struct timespec *t, unsigned int *serial)
1da177e4 2135{
48887e63
AV
2136 if (!ctx->in_syscall)
2137 return 0;
ce625a80
DW
2138 if (!ctx->serial)
2139 ctx->serial = audit_serial();
bfb4496e
DW
2140 t->tv_sec = ctx->ctime.tv_sec;
2141 t->tv_nsec = ctx->ctime.tv_nsec;
2142 *serial = ctx->serial;
0590b933
AV
2143 if (!ctx->prio) {
2144 ctx->prio = 1;
2145 ctx->current_state = AUDIT_RECORD_CONTEXT;
2146 }
48887e63 2147 return 1;
1da177e4
LT
2148}
2149
4746ec5b
EP
2150/* global counter which is incremented every time something logs in */
2151static atomic_t session_id = ATOMIC_INIT(0);
2152
b0dd25a8
RD
2153/**
2154 * audit_set_loginuid - set a task's audit_context loginuid
2155 * @task: task whose audit context is being modified
2156 * @loginuid: loginuid value
2157 *
2158 * Returns 0.
2159 *
2160 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2161 */
456be6cd 2162int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2163{
4746ec5b 2164 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2165 struct audit_context *context = task->audit_context;
2166
bfef93a5
AV
2167 if (context && context->in_syscall) {
2168 struct audit_buffer *ab;
2169
2170 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2171 if (ab) {
2172 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2173 "old auid=%u new auid=%u"
2174 " old ses=%u new ses=%u",
c69e8d9c 2175 task->pid, task_uid(task),
4746ec5b
EP
2176 task->loginuid, loginuid,
2177 task->sessionid, sessionid);
bfef93a5 2178 audit_log_end(ab);
c0404993 2179 }
1da177e4 2180 }
4746ec5b 2181 task->sessionid = sessionid;
bfef93a5 2182 task->loginuid = loginuid;
1da177e4
LT
2183 return 0;
2184}
2185
20ca73bc
GW
2186/**
2187 * __audit_mq_open - record audit data for a POSIX MQ open
2188 * @oflag: open flag
2189 * @mode: mode bits
6b962559 2190 * @attr: queue attributes
20ca73bc 2191 *
20ca73bc 2192 */
df0a4283 2193void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2194{
20ca73bc
GW
2195 struct audit_context *context = current->audit_context;
2196
564f6993
AV
2197 if (attr)
2198 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199 else
2200 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2201
564f6993
AV
2202 context->mq_open.oflag = oflag;
2203 context->mq_open.mode = mode;
20ca73bc 2204
564f6993 2205 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2206}
2207
2208/**
c32c8af4 2209 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2210 * @mqdes: MQ descriptor
2211 * @msg_len: Message length
2212 * @msg_prio: Message priority
c32c8af4 2213 * @abs_timeout: Message timeout in absolute time
20ca73bc 2214 *
20ca73bc 2215 */
c32c8af4
AV
2216void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217 const struct timespec *abs_timeout)
20ca73bc 2218{
20ca73bc 2219 struct audit_context *context = current->audit_context;
c32c8af4 2220 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2221
c32c8af4
AV
2222 if (abs_timeout)
2223 memcpy(p, abs_timeout, sizeof(struct timespec));
2224 else
2225 memset(p, 0, sizeof(struct timespec));
20ca73bc 2226
c32c8af4
AV
2227 context->mq_sendrecv.mqdes = mqdes;
2228 context->mq_sendrecv.msg_len = msg_len;
2229 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2230
c32c8af4 2231 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2232}
2233
2234/**
2235 * __audit_mq_notify - record audit data for a POSIX MQ notify
2236 * @mqdes: MQ descriptor
6b962559 2237 * @notification: Notification event
20ca73bc 2238 *
20ca73bc
GW
2239 */
2240
20114f71 2241void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2242{
20ca73bc
GW
2243 struct audit_context *context = current->audit_context;
2244
20114f71
AV
2245 if (notification)
2246 context->mq_notify.sigev_signo = notification->sigev_signo;
2247 else
2248 context->mq_notify.sigev_signo = 0;
20ca73bc 2249
20114f71
AV
2250 context->mq_notify.mqdes = mqdes;
2251 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2252}
2253
2254/**
2255 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2256 * @mqdes: MQ descriptor
2257 * @mqstat: MQ flags
2258 *
20ca73bc 2259 */
7392906e 2260void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2261{
20ca73bc 2262 struct audit_context *context = current->audit_context;
7392906e
AV
2263 context->mq_getsetattr.mqdes = mqdes;
2264 context->mq_getsetattr.mqstat = *mqstat;
2265 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2266}
2267
b0dd25a8 2268/**
073115d6
SG
2269 * audit_ipc_obj - record audit data for ipc object
2270 * @ipcp: ipc permissions
2271 *
073115d6 2272 */
a33e6751 2273void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2274{
073115d6 2275 struct audit_context *context = current->audit_context;
a33e6751
AV
2276 context->ipc.uid = ipcp->uid;
2277 context->ipc.gid = ipcp->gid;
2278 context->ipc.mode = ipcp->mode;
e816f370 2279 context->ipc.has_perm = 0;
a33e6751
AV
2280 security_ipc_getsecid(ipcp, &context->ipc.osid);
2281 context->type = AUDIT_IPC;
073115d6
SG
2282}
2283
2284/**
2285 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2286 * @qbytes: msgq bytes
2287 * @uid: msgq user id
2288 * @gid: msgq group id
2289 * @mode: msgq mode (permissions)
2290 *
e816f370 2291 * Called only after audit_ipc_obj().
b0dd25a8 2292 */
2570ebbd 2293void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2294{
1da177e4
LT
2295 struct audit_context *context = current->audit_context;
2296
e816f370
AV
2297 context->ipc.qbytes = qbytes;
2298 context->ipc.perm_uid = uid;
2299 context->ipc.perm_gid = gid;
2300 context->ipc.perm_mode = mode;
2301 context->ipc.has_perm = 1;
1da177e4 2302}
c2f0c7c3 2303
473ae30b
AV
2304int audit_bprm(struct linux_binprm *bprm)
2305{
2306 struct audit_aux_data_execve *ax;
2307 struct audit_context *context = current->audit_context;
473ae30b 2308
5ac3a9c2 2309 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2310 return 0;
2311
bdf4c48a 2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2313 if (!ax)
2314 return -ENOMEM;
2315
2316 ax->argc = bprm->argc;
2317 ax->envc = bprm->envc;
bdf4c48a 2318 ax->mm = bprm->mm;
473ae30b
AV
2319 ax->d.type = AUDIT_EXECVE;
2320 ax->d.next = context->aux;
2321 context->aux = (void *)ax;
2322 return 0;
2323}
2324
2325
b0dd25a8
RD
2326/**
2327 * audit_socketcall - record audit data for sys_socketcall
2328 * @nargs: number of args
2329 * @args: args array
2330 *
b0dd25a8 2331 */
f3298dc4 2332void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2333{
3ec3b2fb
DW
2334 struct audit_context *context = current->audit_context;
2335
5ac3a9c2 2336 if (likely(!context || context->dummy))
f3298dc4 2337 return;
3ec3b2fb 2338
f3298dc4
AV
2339 context->type = AUDIT_SOCKETCALL;
2340 context->socketcall.nargs = nargs;
2341 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2342}
2343
db349509
AV
2344/**
2345 * __audit_fd_pair - record audit data for pipe and socketpair
2346 * @fd1: the first file descriptor
2347 * @fd2: the second file descriptor
2348 *
db349509 2349 */
157cf649 2350void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2351{
2352 struct audit_context *context = current->audit_context;
157cf649
AV
2353 context->fds[0] = fd1;
2354 context->fds[1] = fd2;
db349509
AV
2355}
2356
b0dd25a8
RD
2357/**
2358 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2359 * @len: data length in user space
2360 * @a: data address in kernel space
2361 *
2362 * Returns 0 for success or NULL context or < 0 on error.
2363 */
3ec3b2fb
DW
2364int audit_sockaddr(int len, void *a)
2365{
3ec3b2fb
DW
2366 struct audit_context *context = current->audit_context;
2367
5ac3a9c2 2368 if (likely(!context || context->dummy))
3ec3b2fb
DW
2369 return 0;
2370
4f6b434f
AV
2371 if (!context->sockaddr) {
2372 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2373 if (!p)
2374 return -ENOMEM;
2375 context->sockaddr = p;
2376 }
3ec3b2fb 2377
4f6b434f
AV
2378 context->sockaddr_len = len;
2379 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2380 return 0;
2381}
2382
a5cb013d
AV
2383void __audit_ptrace(struct task_struct *t)
2384{
2385 struct audit_context *context = current->audit_context;
2386
2387 context->target_pid = t->pid;
c2a7780e 2388 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2389 context->target_uid = task_uid(t);
4746ec5b 2390 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2391 security_task_getsecid(t, &context->target_sid);
c2a7780e 2392 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2393}
2394
b0dd25a8
RD
2395/**
2396 * audit_signal_info - record signal info for shutting down audit subsystem
2397 * @sig: signal value
2398 * @t: task being signaled
2399 *
2400 * If the audit subsystem is being terminated, record the task (pid)
2401 * and uid that is doing that.
2402 */
e54dc243 2403int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2404{
e54dc243
AG
2405 struct audit_aux_data_pids *axp;
2406 struct task_struct *tsk = current;
2407 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2408 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2409
175fc484 2410 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2411 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2412 audit_sig_pid = tsk->pid;
bfef93a5
AV
2413 if (tsk->loginuid != -1)
2414 audit_sig_uid = tsk->loginuid;
175fc484 2415 else
c69e8d9c 2416 audit_sig_uid = uid;
2a862b32 2417 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2418 }
2419 if (!audit_signals || audit_dummy_context())
2420 return 0;
c2f0c7c3 2421 }
e54dc243 2422
e54dc243
AG
2423 /* optimize the common case by putting first signal recipient directly
2424 * in audit_context */
2425 if (!ctx->target_pid) {
2426 ctx->target_pid = t->tgid;
c2a7780e 2427 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2428 ctx->target_uid = t_uid;
4746ec5b 2429 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2430 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2431 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2432 return 0;
2433 }
2434
2435 axp = (void *)ctx->aux_pids;
2436 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2437 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2438 if (!axp)
2439 return -ENOMEM;
2440
2441 axp->d.type = AUDIT_OBJ_PID;
2442 axp->d.next = ctx->aux_pids;
2443 ctx->aux_pids = (void *)axp;
2444 }
88ae704c 2445 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2446
2447 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2448 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2449 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2450 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2451 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2452 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2453 axp->pid_count++;
2454
2455 return 0;
c2f0c7c3 2456}
0a4ff8c2 2457
3fc689e9
EP
2458/**
2459 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2460 * @bprm: pointer to the bprm being processed
2461 * @new: the proposed new credentials
2462 * @old: the old credentials
3fc689e9
EP
2463 *
2464 * Simply check if the proc already has the caps given by the file and if not
2465 * store the priv escalation info for later auditing at the end of the syscall
2466 *
3fc689e9
EP
2467 * -Eric
2468 */
d84f4f99
DH
2469int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2470 const struct cred *new, const struct cred *old)
3fc689e9
EP
2471{
2472 struct audit_aux_data_bprm_fcaps *ax;
2473 struct audit_context *context = current->audit_context;
2474 struct cpu_vfs_cap_data vcaps;
2475 struct dentry *dentry;
2476
2477 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2478 if (!ax)
d84f4f99 2479 return -ENOMEM;
3fc689e9
EP
2480
2481 ax->d.type = AUDIT_BPRM_FCAPS;
2482 ax->d.next = context->aux;
2483 context->aux = (void *)ax;
2484
2485 dentry = dget(bprm->file->f_dentry);
2486 get_vfs_caps_from_disk(dentry, &vcaps);
2487 dput(dentry);
2488
2489 ax->fcap.permitted = vcaps.permitted;
2490 ax->fcap.inheritable = vcaps.inheritable;
2491 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2492 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2493
d84f4f99
DH
2494 ax->old_pcap.permitted = old->cap_permitted;
2495 ax->old_pcap.inheritable = old->cap_inheritable;
2496 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2497
d84f4f99
DH
2498 ax->new_pcap.permitted = new->cap_permitted;
2499 ax->new_pcap.inheritable = new->cap_inheritable;
2500 ax->new_pcap.effective = new->cap_effective;
2501 return 0;
3fc689e9
EP
2502}
2503
e68b75a0
EP
2504/**
2505 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2506 * @pid: target pid of the capset call
2507 * @new: the new credentials
2508 * @old: the old (current) credentials
e68b75a0
EP
2509 *
2510 * Record the aguments userspace sent to sys_capset for later printing by the
2511 * audit system if applicable
2512 */
57f71a0a 2513void __audit_log_capset(pid_t pid,
d84f4f99 2514 const struct cred *new, const struct cred *old)
e68b75a0 2515{
e68b75a0 2516 struct audit_context *context = current->audit_context;
57f71a0a
AV
2517 context->capset.pid = pid;
2518 context->capset.cap.effective = new->cap_effective;
2519 context->capset.cap.inheritable = new->cap_effective;
2520 context->capset.cap.permitted = new->cap_permitted;
2521 context->type = AUDIT_CAPSET;
e68b75a0
EP
2522}
2523
120a795d
AV
2524void __audit_mmap_fd(int fd, int flags)
2525{
2526 struct audit_context *context = current->audit_context;
2527 context->mmap.fd = fd;
2528 context->mmap.flags = flags;
2529 context->type = AUDIT_MMAP;
2530}
2531
85e7bac3
EP
2532static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2533{
2534 uid_t auid, uid;
2535 gid_t gid;
2536 unsigned int sessionid;
2537
2538 auid = audit_get_loginuid(current);
2539 sessionid = audit_get_sessionid(current);
2540 current_uid_gid(&uid, &gid);
2541
2542 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2543 auid, uid, gid, sessionid);
2544 audit_log_task_context(ab);
2545 audit_log_format(ab, " pid=%d comm=", current->pid);
2546 audit_log_untrustedstring(ab, current->comm);
2547 audit_log_format(ab, " reason=");
2548 audit_log_string(ab, reason);
2549 audit_log_format(ab, " sig=%ld", signr);
2550}
0a4ff8c2
SG
2551/**
2552 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2553 * @signr: signal value
0a4ff8c2
SG
2554 *
2555 * If a process ends with a core dump, something fishy is going on and we
2556 * should record the event for investigation.
2557 */
2558void audit_core_dumps(long signr)
2559{
2560 struct audit_buffer *ab;
0a4ff8c2
SG
2561
2562 if (!audit_enabled)
2563 return;
2564
2565 if (signr == SIGQUIT) /* don't care for those */
2566 return;
2567
2568 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2569 audit_log_abend(ab, "memory violation", signr);
2570 audit_log_end(ab);
2571}
0a4ff8c2 2572
85e7bac3
EP
2573void __audit_seccomp(unsigned long syscall)
2574{
2575 struct audit_buffer *ab;
2576
2577 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2578 audit_log_abend(ab, "seccomp", SIGKILL);
2579 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2580 audit_log_end(ab);
2581}
916d7576
AV
2582
2583struct list_head *audit_killed_trees(void)
2584{
2585 struct audit_context *ctx = current->audit_context;
2586 if (likely(!ctx || !ctx->in_syscall))
2587 return NULL;
2588 return &ctx->killed_trees;
2589}