netfilter: nf_tables: Audit log setelem reset
[linux-block.git] / kernel / auditsc.c
CommitLineData
d680c6b4 1// SPDX-License-Identifier: GPL-2.0-or-later
85c8721f 2/* auditsc.c -- System-call auditing support
1da177e4
LT
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 7 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
8 * All Rights Reserved.
9 *
1da177e4
LT
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
20ca73bc
GW
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
b63862f4
DK
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
73241ccc
AG
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
8c8570fb
DK
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
30 */
31
f952d10f
RGB
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#include <linux/init.h>
1da177e4 35#include <asm/types.h>
60063497 36#include <linux/atomic.h>
73241ccc
AG
37#include <linux/fs.h>
38#include <linux/namei.h>
1da177e4 39#include <linux/mm.h>
9984de1a 40#include <linux/export.h>
5a0e3ad6 41#include <linux/slab.h>
01116105 42#include <linux/mount.h>
3ec3b2fb 43#include <linux/socket.h>
20ca73bc 44#include <linux/mqueue.h>
1da177e4
LT
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
5bb289b5 48#include <linux/netlink.h>
f5561964 49#include <linux/compiler.h>
1da177e4 50#include <asm/unistd.h>
8c8570fb 51#include <linux/security.h>
fe7752ba 52#include <linux/list.h>
473ae30b 53#include <linux/binfmts.h>
a1f8e7f7 54#include <linux/highmem.h>
f46038ff 55#include <linux/syscalls.h>
84db564a 56#include <asm/syscall.h>
851f7ff5 57#include <linux/capability.h>
5ad4e53b 58#include <linux/fs_struct.h>
3dc1c1b2 59#include <linux/compat.h>
3f1c8250 60#include <linux/ctype.h>
fcf22d82 61#include <linux/string.h>
43761473 62#include <linux/uaccess.h>
9dd813c1 63#include <linux/fsnotify_backend.h>
fcf22d82 64#include <uapi/linux/limits.h>
8e6cf365 65#include <uapi/linux/netfilter/nf_tables.h>
571e5c0e 66#include <uapi/linux/openat2.h> // struct open_how
032bffd4 67#include <uapi/linux/fanotify.h>
1da177e4 68
fe7752ba 69#include "audit.h"
1da177e4 70
d7e7528b
EP
71/* flags stating the success for a syscall */
72#define AUDITSC_INVALID 0
73#define AUDITSC_SUCCESS 1
74#define AUDITSC_FAILURE 2
75
43761473
PM
76/* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
78#define MAX_EXECVE_AUDIT_LEN 7500
79
3f1c8250
WR
80/* max length to print of cmdline/proctitle value during audit */
81#define MAX_PROCTITLE_AUDIT_LEN 128
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
1da177e4
LT
89struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92};
93
e54dc243
AG
94/* Number of target pids per aux struct. */
95#define AUDIT_AUX_PIDS 16
96
e54dc243
AG
97struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 100 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 101 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 103 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
105 int pid_count;
106};
107
3fc689e9
EP
108struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
114};
115
74c3cbe3
AV
116struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
119};
120
c4dad0aa
RGB
121struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
123 const char *s;
124};
125
db9ff6ec 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
8e6cf365
RGB
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
7e9be112 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
8e6cf365 147 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
c4dad0aa
RGB
148};
149
55669bfa
AV
150static int audit_match_perm(struct audit_context *ctx, int mask)
151{
c4bacefb 152 unsigned n;
254c8b96 153
1a61c88d 154 if (unlikely(!ctx))
155 return 0;
c4bacefb 156 n = ctx->major;
dbda4c0b 157
55669bfa 158 switch (audit_classify_syscall(ctx->arch, n)) {
42f355ef 159 case AUDITSC_NATIVE:
55669bfa
AV
160 if ((mask & AUDIT_PERM_WRITE) &&
161 audit_match_class(AUDIT_CLASS_WRITE, n))
162 return 1;
163 if ((mask & AUDIT_PERM_READ) &&
164 audit_match_class(AUDIT_CLASS_READ, n))
165 return 1;
166 if ((mask & AUDIT_PERM_ATTR) &&
167 audit_match_class(AUDIT_CLASS_CHATTR, n))
168 return 1;
169 return 0;
42f355ef 170 case AUDITSC_COMPAT: /* 32bit on biarch */
55669bfa
AV
171 if ((mask & AUDIT_PERM_WRITE) &&
172 audit_match_class(AUDIT_CLASS_WRITE_32, n))
173 return 1;
174 if ((mask & AUDIT_PERM_READ) &&
175 audit_match_class(AUDIT_CLASS_READ_32, n))
176 return 1;
177 if ((mask & AUDIT_PERM_ATTR) &&
178 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
179 return 1;
180 return 0;
42f355ef 181 case AUDITSC_OPEN:
55669bfa 182 return mask & ACC_MODE(ctx->argv[1]);
42f355ef 183 case AUDITSC_OPENAT:
55669bfa 184 return mask & ACC_MODE(ctx->argv[2]);
42f355ef 185 case AUDITSC_SOCKETCALL:
55669bfa 186 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
42f355ef 187 case AUDITSC_EXECVE:
55669bfa 188 return mask & AUDIT_PERM_EXEC;
1c30e3af 189 case AUDITSC_OPENAT2:
7a82f89d 190 return mask & ACC_MODE((u32)ctx->openat2.flags);
55669bfa
AV
191 default:
192 return 0;
193 }
194}
195
5ef30ee5 196static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 197{
5195d8e2 198 struct audit_names *n;
5ef30ee5 199 umode_t mode = (umode_t)val;
1a61c88d 200
201 if (unlikely(!ctx))
202 return 0;
203
5195d8e2 204 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 205 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 206 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
207 return 1;
208 }
5195d8e2 209
5ef30ee5 210 return 0;
8b67dca9
AV
211}
212
74c3cbe3
AV
213/*
214 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
215 * ->first_trees points to its beginning, ->trees - to the current end of data.
216 * ->tree_count is the number of free entries in array pointed to by ->trees.
217 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
218 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
219 * it's going to remain 1-element for almost any setup) until we free context itself.
220 * References in it _are_ dropped - at the same time we free/drop aux stuff.
221 */
222
679173b7
EP
223static void audit_set_auditable(struct audit_context *ctx)
224{
225 if (!ctx->prio) {
226 ctx->prio = 1;
619ed58a 227 ctx->current_state = AUDIT_STATE_RECORD;
679173b7
EP
228 }
229}
230
74c3cbe3
AV
231static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
232{
233 struct audit_tree_refs *p = ctx->trees;
234 int left = ctx->tree_count;
254c8b96 235
74c3cbe3
AV
236 if (likely(left)) {
237 p->c[--left] = chunk;
238 ctx->tree_count = left;
239 return 1;
240 }
241 if (!p)
242 return 0;
243 p = p->next;
244 if (p) {
245 p->c[30] = chunk;
246 ctx->trees = p;
247 ctx->tree_count = 30;
248 return 1;
249 }
250 return 0;
251}
252
253static int grow_tree_refs(struct audit_context *ctx)
254{
255 struct audit_tree_refs *p = ctx->trees;
254c8b96 256
74c3cbe3
AV
257 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
258 if (!ctx->trees) {
259 ctx->trees = p;
260 return 0;
261 }
262 if (p)
263 p->next = ctx->trees;
264 else
265 ctx->first_trees = ctx->trees;
266 ctx->tree_count = 31;
267 return 1;
268}
74c3cbe3
AV
269
270static void unroll_tree_refs(struct audit_context *ctx,
271 struct audit_tree_refs *p, int count)
272{
74c3cbe3
AV
273 struct audit_tree_refs *q;
274 int n;
254c8b96 275
74c3cbe3
AV
276 if (!p) {
277 /* we started with empty chain */
278 p = ctx->first_trees;
279 count = 31;
280 /* if the very first allocation has failed, nothing to do */
281 if (!p)
282 return;
283 }
284 n = count;
285 for (q = p; q != ctx->trees; q = q->next, n = 31) {
286 while (n--) {
287 audit_put_chunk(q->c[n]);
288 q->c[n] = NULL;
289 }
290 }
291 while (n-- > ctx->tree_count) {
292 audit_put_chunk(q->c[n]);
293 q->c[n] = NULL;
294 }
295 ctx->trees = p;
296 ctx->tree_count = count;
74c3cbe3
AV
297}
298
299static void free_tree_refs(struct audit_context *ctx)
300{
301 struct audit_tree_refs *p, *q;
254c8b96 302
74c3cbe3
AV
303 for (p = ctx->first_trees; p; p = q) {
304 q = p->next;
305 kfree(p);
306 }
307}
308
309static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
310{
74c3cbe3
AV
311 struct audit_tree_refs *p;
312 int n;
254c8b96 313
74c3cbe3
AV
314 if (!tree)
315 return 0;
316 /* full ones */
317 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
318 for (n = 0; n < 31; n++)
319 if (audit_tree_match(p->c[n], tree))
320 return 1;
321 }
322 /* partial */
323 if (p) {
324 for (n = ctx->tree_count; n < 31; n++)
325 if (audit_tree_match(p->c[n], tree))
326 return 1;
327 }
74c3cbe3
AV
328 return 0;
329}
330
ca57ec0f
EB
331static int audit_compare_uid(kuid_t uid,
332 struct audit_names *name,
333 struct audit_field *f,
334 struct audit_context *ctx)
b34b0393
EP
335{
336 struct audit_names *n;
b34b0393 337 int rc;
6ddb5680 338
b34b0393 339 if (name) {
ca57ec0f 340 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
341 if (rc)
342 return rc;
343 }
6ddb5680 344
b34b0393
EP
345 if (ctx) {
346 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
347 rc = audit_uid_comparator(uid, f->op, n->uid);
348 if (rc)
349 return rc;
350 }
351 }
352 return 0;
353}
b34b0393 354
ca57ec0f
EB
355static int audit_compare_gid(kgid_t gid,
356 struct audit_names *name,
357 struct audit_field *f,
358 struct audit_context *ctx)
359{
360 struct audit_names *n;
361 int rc;
6ddb5680 362
ca57ec0f
EB
363 if (name) {
364 rc = audit_gid_comparator(gid, f->op, name->gid);
365 if (rc)
366 return rc;
367 }
6ddb5680 368
ca57ec0f
EB
369 if (ctx) {
370 list_for_each_entry(n, &ctx->names_list, list) {
371 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
372 if (rc)
373 return rc;
374 }
375 }
376 return 0;
377}
378
02d86a56
EP
379static int audit_field_compare(struct task_struct *tsk,
380 const struct cred *cred,
381 struct audit_field *f,
382 struct audit_context *ctx,
383 struct audit_names *name)
384{
02d86a56 385 switch (f->val) {
4a6633ed 386 /* process to file object comparisons */
02d86a56 387 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 388 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 389 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 390 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 391 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 392 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 393 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 394 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 395 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 396 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 397 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 398 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 399 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 400 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 401 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 402 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 403 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 404 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
405 /* uid comparisons */
406 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
407 return audit_uid_comparator(cred->uid, f->op,
408 audit_get_loginuid(tsk));
10d68360 409 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 410 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 411 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 412 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 413 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 414 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
415 /* auid comparisons */
416 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
417 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
418 cred->euid);
10d68360 419 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
420 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
421 cred->suid);
10d68360 422 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
423 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
424 cred->fsuid);
10d68360
PM
425 /* euid comparisons */
426 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 427 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 428 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 429 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
430 /* suid comparisons */
431 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 432 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
433 /* gid comparisons */
434 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 435 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 436 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 437 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 438 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 439 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
440 /* egid comparisons */
441 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 442 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 443 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 444 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
445 /* sgid comparison */
446 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 447 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
448 default:
449 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
450 return 0;
451 }
452 return 0;
453}
454
f368c07d 455/* Determine if any context name data matches a rule's watch data */
1da177e4 456/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
457 * otherwise.
458 *
459 * If task_creation is true, this is an explicit indication that we are
460 * filtering a task rule at task creation time. This and tsk == current are
461 * the only situations where tsk->cred may be accessed without an rcu read lock.
462 */
1da177e4 463static int audit_filter_rules(struct task_struct *tsk,
93315ed6 464 struct audit_krule *rule,
1da177e4 465 struct audit_context *ctx,
f368c07d 466 struct audit_names *name,
f5629883
TJ
467 enum audit_state *state,
468 bool task_creation)
1da177e4 469{
f5629883 470 const struct cred *cred;
5195d8e2 471 int i, need_sid = 1;
3dc7e315 472 u32 sid;
8fae4770 473 unsigned int sessionid;
3dc7e315 474
d9516f34
GC
475 if (ctx && rule->prio <= ctx->prio)
476 return 0;
477
f5629883
TJ
478 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
479
1da177e4 480 for (i = 0; i < rule->field_count; i++) {
93315ed6 481 struct audit_field *f = &rule->fields[i];
5195d8e2 482 struct audit_names *n;
1da177e4 483 int result = 0;
f1dc4867 484 pid_t pid;
1da177e4 485
93315ed6 486 switch (f->type) {
1da177e4 487 case AUDIT_PID:
fa2bea2f 488 pid = task_tgid_nr(tsk);
f1dc4867 489 result = audit_comparator(pid, f->op, f->val);
1da177e4 490 break;
3c66251e 491 case AUDIT_PPID:
419c58f1
AV
492 if (ctx) {
493 if (!ctx->ppid)
c92cdeb4 494 ctx->ppid = task_ppid_nr(tsk);
3c66251e 495 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 496 }
3c66251e 497 break;
34d99af5
RGB
498 case AUDIT_EXE:
499 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
500 if (f->op == Audit_not_equal)
501 result = !result;
34d99af5 502 break;
1da177e4 503 case AUDIT_UID:
ca57ec0f 504 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
505 break;
506 case AUDIT_EUID:
ca57ec0f 507 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
508 break;
509 case AUDIT_SUID:
ca57ec0f 510 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
511 break;
512 case AUDIT_FSUID:
ca57ec0f 513 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
514 break;
515 case AUDIT_GID:
ca57ec0f 516 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
517 if (f->op == Audit_equal) {
518 if (!result)
af85d177 519 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
520 } else if (f->op == Audit_not_equal) {
521 if (result)
af85d177 522 result = !groups_search(cred->group_info, f->gid);
37eebe39 523 }
1da177e4
LT
524 break;
525 case AUDIT_EGID:
ca57ec0f 526 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
527 if (f->op == Audit_equal) {
528 if (!result)
af85d177 529 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
530 } else if (f->op == Audit_not_equal) {
531 if (result)
af85d177 532 result = !groups_search(cred->group_info, f->gid);
37eebe39 533 }
1da177e4
LT
534 break;
535 case AUDIT_SGID:
ca57ec0f 536 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
537 break;
538 case AUDIT_FSGID:
ca57ec0f 539 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 540 break;
8fae4770 541 case AUDIT_SESSIONID:
5b713886 542 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
543 result = audit_comparator(sessionid, f->op, f->val);
544 break;
1da177e4 545 case AUDIT_PERS:
93315ed6 546 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 547 break;
2fd6f58b 548 case AUDIT_ARCH:
9f8dbe9c 549 if (ctx)
93315ed6 550 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 551 break;
1da177e4
LT
552
553 case AUDIT_EXIT:
ba59eae7 554 if (ctx && ctx->return_valid != AUDITSC_INVALID)
93315ed6 555 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
556 break;
557 case AUDIT_SUCCESS:
ba59eae7 558 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
93315ed6
AG
559 if (f->val)
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 561 else
93315ed6 562 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 563 }
1da177e4
LT
564 break;
565 case AUDIT_DEVMAJOR:
16c174bd
EP
566 if (name) {
567 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
568 audit_comparator(MAJOR(name->rdev), f->op, f->val))
569 ++result;
570 } else if (ctx) {
5195d8e2 571 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
572 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
573 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
574 ++result;
575 break;
576 }
577 }
578 }
579 break;
580 case AUDIT_DEVMINOR:
16c174bd
EP
581 if (name) {
582 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
583 audit_comparator(MINOR(name->rdev), f->op, f->val))
584 ++result;
585 } else if (ctx) {
5195d8e2 586 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
587 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
588 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
589 ++result;
590 break;
591 }
592 }
593 }
594 break;
595 case AUDIT_INODE:
f368c07d 596 if (name)
db510fc5 597 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 598 else if (ctx) {
5195d8e2
EP
599 list_for_each_entry(n, &ctx->names_list, list) {
600 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
601 ++result;
602 break;
603 }
604 }
605 }
606 break;
efaffd6e
EP
607 case AUDIT_OBJ_UID:
608 if (name) {
ca57ec0f 609 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
610 } else if (ctx) {
611 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 612 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
613 ++result;
614 break;
615 }
616 }
617 }
618 break;
54d3218b
EP
619 case AUDIT_OBJ_GID:
620 if (name) {
ca57ec0f 621 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
622 } else if (ctx) {
623 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 624 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
625 ++result;
626 break;
627 }
628 }
629 }
630 break;
f368c07d 631 case AUDIT_WATCH:
0223fad3
RGB
632 if (name) {
633 result = audit_watch_compare(rule->watch,
634 name->ino,
635 name->dev);
636 if (f->op == Audit_not_equal)
637 result = !result;
638 }
f368c07d 639 break;
74c3cbe3 640 case AUDIT_DIR:
0223fad3 641 if (ctx) {
74c3cbe3 642 result = match_tree_refs(ctx, rule->tree);
0223fad3
RGB
643 if (f->op == Audit_not_equal)
644 result = !result;
645 }
74c3cbe3 646 break;
1da177e4 647 case AUDIT_LOGINUID:
38f80590
RGB
648 result = audit_uid_comparator(audit_get_loginuid(tsk),
649 f->op, f->uid);
1da177e4 650 break;
780a7654
EB
651 case AUDIT_LOGINUID_SET:
652 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
653 break;
bf361231 654 case AUDIT_SADDR_FAM:
6e3ee990 655 if (ctx && ctx->sockaddr)
bf361231
RGB
656 result = audit_comparator(ctx->sockaddr->ss_family,
657 f->op, f->val);
658 break;
3a6b9f85
DG
659 case AUDIT_SUBJ_USER:
660 case AUDIT_SUBJ_ROLE:
661 case AUDIT_SUBJ_TYPE:
662 case AUDIT_SUBJ_SEN:
663 case AUDIT_SUBJ_CLR:
3dc7e315
DG
664 /* NOTE: this may return negative values indicating
665 a temporary error. We simply treat this as a
666 match for now to avoid losing information that
667 may be wanted. An error message will also be
668 logged upon error */
04305e4a 669 if (f->lsm_rule) {
2ad312d2 670 if (need_sid) {
6326948f
PM
671 /* @tsk should always be equal to
672 * @current with the exception of
673 * fork()/copy_process() in which case
674 * the new @tsk creds are still a dup
675 * of @current's creds so we can still
676 * use security_current_getsecid_subj()
677 * here even though it always refs
678 * @current's creds
679 */
680 security_current_getsecid_subj(&sid);
2ad312d2
SG
681 need_sid = 0;
682 }
d7a96f3a 683 result = security_audit_rule_match(sid, f->type,
90462a5b
RGB
684 f->op,
685 f->lsm_rule);
2ad312d2 686 }
3dc7e315 687 break;
6e5a2d1d
DG
688 case AUDIT_OBJ_USER:
689 case AUDIT_OBJ_ROLE:
690 case AUDIT_OBJ_TYPE:
691 case AUDIT_OBJ_LEV_LOW:
692 case AUDIT_OBJ_LEV_HIGH:
693 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
694 also applies here */
04305e4a 695 if (f->lsm_rule) {
6e5a2d1d
DG
696 /* Find files that match */
697 if (name) {
d7a96f3a 698 result = security_audit_rule_match(
90462a5b
RGB
699 name->osid,
700 f->type,
701 f->op,
702 f->lsm_rule);
6e5a2d1d 703 } else if (ctx) {
5195d8e2 704 list_for_each_entry(n, &ctx->names_list, list) {
90462a5b
RGB
705 if (security_audit_rule_match(
706 n->osid,
707 f->type,
708 f->op,
709 f->lsm_rule)) {
6e5a2d1d
DG
710 ++result;
711 break;
712 }
713 }
714 }
715 /* Find ipc objects that match */
a33e6751
AV
716 if (!ctx || ctx->type != AUDIT_IPC)
717 break;
718 if (security_audit_rule_match(ctx->ipc.osid,
719 f->type, f->op,
90462a5b 720 f->lsm_rule))
a33e6751 721 ++result;
6e5a2d1d
DG
722 }
723 break;
1da177e4
LT
724 case AUDIT_ARG0:
725 case AUDIT_ARG1:
726 case AUDIT_ARG2:
727 case AUDIT_ARG3:
728 if (ctx)
93315ed6 729 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 730 break;
5adc8a6a
AG
731 case AUDIT_FILTERKEY:
732 /* ignore this field for filtering */
733 result = 1;
734 break;
55669bfa
AV
735 case AUDIT_PERM:
736 result = audit_match_perm(ctx, f->val);
0223fad3
RGB
737 if (f->op == Audit_not_equal)
738 result = !result;
55669bfa 739 break;
8b67dca9
AV
740 case AUDIT_FILETYPE:
741 result = audit_match_filetype(ctx, f->val);
0223fad3
RGB
742 if (f->op == Audit_not_equal)
743 result = !result;
8b67dca9 744 break;
02d86a56
EP
745 case AUDIT_FIELD_COMPARE:
746 result = audit_field_compare(tsk, cred, f, ctx, name);
747 break;
1da177e4 748 }
f5629883 749 if (!result)
1da177e4
LT
750 return 0;
751 }
0590b933
AV
752
753 if (ctx) {
0590b933
AV
754 if (rule->filterkey) {
755 kfree(ctx->filterkey);
756 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
757 }
758 ctx->prio = rule->prio;
759 }
1da177e4 760 switch (rule->action) {
66b12abc 761 case AUDIT_NEVER:
619ed58a 762 *state = AUDIT_STATE_DISABLED;
66b12abc
PM
763 break;
764 case AUDIT_ALWAYS:
619ed58a 765 *state = AUDIT_STATE_RECORD;
66b12abc 766 break;
1da177e4
LT
767 }
768 return 1;
769}
770
771/* At process creation time, we can determine if system-call auditing is
772 * completely disabled for this task. Since we only have the task
773 * structure at this point, we can only check uid and gid.
774 */
e048e02c 775static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
776{
777 struct audit_entry *e;
778 enum audit_state state;
779
780 rcu_read_lock();
0f45aa18 781 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
782 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
783 &state, true)) {
619ed58a 784 if (state == AUDIT_STATE_RECORD)
e048e02c 785 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
786 rcu_read_unlock();
787 return state;
788 }
789 }
790 rcu_read_unlock();
619ed58a 791 return AUDIT_STATE_BUILD;
1da177e4
LT
792}
793
a3c54931
AL
794static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
795{
796 int word, bit;
797
798 if (val > 0xffffffff)
799 return false;
800
801 word = AUDIT_WORD(val);
802 if (word >= AUDIT_BITMASK_SIZE)
803 return false;
804
805 bit = AUDIT_BIT(val);
806
807 return rule->mask[word] & bit;
808}
809
67daf270 810/**
50979953 811 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
67daf270
PM
812 * @tsk: associated task
813 * @ctx: audit context
50979953
AA
814 * @list: audit filter list
815 * @name: audit_name (can be NULL)
816 * @op: current syscall/uring_op
817 *
818 * Run the udit filters specified in @list against @tsk using @ctx,
819 * @name, and @op, as necessary; the caller is responsible for ensuring
820 * that the call is made while the RCU read lock is held. The @name
821 * parameter can be NULL, but all others must be specified.
822 * Returns 1/true if the filter finds a match, 0/false if none are found.
67daf270 823 */
50979953
AA
824static int __audit_filter_op(struct task_struct *tsk,
825 struct audit_context *ctx,
826 struct list_head *list,
827 struct audit_names *name,
828 unsigned long op)
67daf270
PM
829{
830 struct audit_entry *e;
831 enum audit_state state;
832
50979953
AA
833 list_for_each_entry_rcu(e, list, list) {
834 if (audit_in_mask(&e->rule, op) &&
835 audit_filter_rules(tsk, &e->rule, ctx, name,
836 &state, false)) {
837 ctx->current_state = state;
838 return 1;
839 }
840 }
841 return 0;
842}
843
844/**
845 * audit_filter_uring - apply filters to an io_uring operation
846 * @tsk: associated task
847 * @ctx: audit context
848 */
849static void audit_filter_uring(struct task_struct *tsk,
850 struct audit_context *ctx)
851{
67daf270
PM
852 if (auditd_test_task(tsk))
853 return;
854
855 rcu_read_lock();
50979953
AA
856 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
857 NULL, ctx->uring_op);
67daf270
PM
858 rcu_read_unlock();
859}
860
127c8c5f
YY
861/* At syscall exit time, this filter is called if the audit_state is
862 * not low enough that auditing cannot take place, but is also not
863 * high enough that we already know we have to write an audit record
619ed58a 864 * (i.e., the state is AUDIT_STATE_BUILD).
1da177e4 865 */
127c8c5f 866static void audit_filter_syscall(struct task_struct *tsk,
5504a69a 867 struct audit_context *ctx)
1da177e4 868{
5b52330b 869 if (auditd_test_task(tsk))
127c8c5f 870 return;
f7056d64 871
1da177e4 872 rcu_read_lock();
50979953
AA
873 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
874 NULL, ctx->major);
f368c07d 875 rcu_read_unlock();
f368c07d
AG
876}
877
5195d8e2
EP
878/*
879 * Given an audit_name check the inode hash table to see if they match.
880 * Called holding the rcu read lock to protect the use of audit_inode_hash
881 */
882static int audit_filter_inode_name(struct task_struct *tsk,
883 struct audit_names *n,
884 struct audit_context *ctx) {
5195d8e2
EP
885 int h = audit_hash_ino((u32)n->ino);
886 struct list_head *list = &audit_inode_hash[h];
5195d8e2 887
50979953 888 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
5195d8e2
EP
889}
890
891/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 892 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 893 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
894 * Regarding audit_state, same rules apply as for audit_filter_syscall().
895 */
0590b933 896void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 897{
5195d8e2 898 struct audit_names *n;
f368c07d 899
5b52330b 900 if (auditd_test_task(tsk))
0590b933 901 return;
f368c07d
AG
902
903 rcu_read_lock();
f368c07d 904
5195d8e2
EP
905 list_for_each_entry(n, &ctx->names_list, list) {
906 if (audit_filter_inode_name(tsk, n, ctx))
907 break;
0f45aa18
DW
908 }
909 rcu_read_unlock();
0f45aa18
DW
910}
911
3f1c8250
WR
912static inline void audit_proctitle_free(struct audit_context *context)
913{
914 kfree(context->proctitle.value);
915 context->proctitle.value = NULL;
916 context->proctitle.len = 0;
917}
918
95e0b46f
LR
919static inline void audit_free_module(struct audit_context *context)
920{
921 if (context->type == AUDIT_KERN_MODULE) {
922 kfree(context->module.name);
923 context->module.name = NULL;
924 }
925}
1da177e4
LT
926static inline void audit_free_names(struct audit_context *context)
927{
5195d8e2 928 struct audit_names *n, *next;
1da177e4 929
5195d8e2
EP
930 list_for_each_entry_safe(n, next, &context->names_list, list) {
931 list_del(&n->list);
55422d0b
PM
932 if (n->name)
933 putname(n->name);
5195d8e2
EP
934 if (n->should_free)
935 kfree(n);
8c8570fb 936 }
1da177e4 937 context->name_count = 0;
44707fdf
JB
938 path_put(&context->pwd);
939 context->pwd.dentry = NULL;
940 context->pwd.mnt = NULL;
1da177e4
LT
941}
942
943static inline void audit_free_aux(struct audit_context *context)
944{
945 struct audit_aux_data *aux;
946
947 while ((aux = context->aux)) {
948 context->aux = aux->next;
949 kfree(aux);
950 }
12c5e81d 951 context->aux = NULL;
e54dc243
AG
952 while ((aux = context->aux_pids)) {
953 context->aux_pids = aux->next;
954 kfree(aux);
955 }
12c5e81d
PM
956 context->aux_pids = NULL;
957}
958
959/**
960 * audit_reset_context - reset a audit_context structure
961 * @ctx: the audit_context to reset
962 *
963 * All fields in the audit_context will be reset to an initial state, all
964 * references held by fields will be dropped, and private memory will be
965 * released. When this function returns the audit_context will be suitable
966 * for reuse, so long as the passed context is not NULL or a dummy context.
967 */
968static void audit_reset_context(struct audit_context *ctx)
969{
970 if (!ctx)
971 return;
972
e84d9f52 973 /* if ctx is non-null, reset the "ctx->context" regardless */
12c5e81d
PM
974 ctx->context = AUDIT_CTX_UNUSED;
975 if (ctx->dummy)
976 return;
977
978 /*
979 * NOTE: It shouldn't matter in what order we release the fields, so
980 * release them in the order in which they appear in the struct;
981 * this gives us some hope of quickly making sure we are
982 * resetting the audit_context properly.
983 *
984 * Other things worth mentioning:
985 * - we don't reset "dummy"
986 * - we don't reset "state", we do reset "current_state"
987 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
988 * - much of this is likely overkill, but play it safe for now
989 * - we really need to work on improving the audit_context struct
990 */
991
992 ctx->current_state = ctx->state;
993 ctx->serial = 0;
994 ctx->major = 0;
5bd2182d 995 ctx->uring_op = 0;
12c5e81d
PM
996 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
997 memset(ctx->argv, 0, sizeof(ctx->argv));
998 ctx->return_code = 0;
999 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1000 ctx->return_valid = AUDITSC_INVALID;
1001 audit_free_names(ctx);
1002 if (ctx->state != AUDIT_STATE_RECORD) {
1003 kfree(ctx->filterkey);
1004 ctx->filterkey = NULL;
1005 }
1006 audit_free_aux(ctx);
1007 kfree(ctx->sockaddr);
1008 ctx->sockaddr = NULL;
1009 ctx->sockaddr_len = 0;
e84d9f52 1010 ctx->ppid = 0;
12c5e81d
PM
1011 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1012 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1013 ctx->personality = 0;
1014 ctx->arch = 0;
1015 ctx->target_pid = 0;
1016 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1017 ctx->target_sessionid = 0;
1018 ctx->target_sid = 0;
1019 ctx->target_comm[0] = '\0';
1020 unroll_tree_refs(ctx, NULL, 0);
1021 WARN_ON(!list_empty(&ctx->killed_trees));
12c5e81d
PM
1022 audit_free_module(ctx);
1023 ctx->fds[0] = -1;
ef79c396 1024 ctx->type = 0; /* reset last for audit_free_*() */
1da177e4
LT
1025}
1026
1da177e4
LT
1027static inline struct audit_context *audit_alloc_context(enum audit_state state)
1028{
1029 struct audit_context *context;
1030
17c6ee70
RM
1031 context = kzalloc(sizeof(*context), GFP_KERNEL);
1032 if (!context)
1da177e4 1033 return NULL;
12c5e81d 1034 context->context = AUDIT_CTX_UNUSED;
e2c5adc8 1035 context->state = state;
619ed58a 1036 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
916d7576 1037 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1038 INIT_LIST_HEAD(&context->names_list);
6d915476 1039 context->fds[0] = -1;
ba59eae7 1040 context->return_valid = AUDITSC_INVALID;
1da177e4
LT
1041 return context;
1042}
1043
b0dd25a8
RD
1044/**
1045 * audit_alloc - allocate an audit context block for a task
1046 * @tsk: task
1047 *
1048 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1049 * if necessary. Doing so turns on system call auditing for the
1050 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1051 * needed.
1052 */
1da177e4
LT
1053int audit_alloc(struct task_struct *tsk)
1054{
1055 struct audit_context *context;
1056 enum audit_state state;
e048e02c 1057 char *key = NULL;
1da177e4 1058
b593d384 1059 if (likely(!audit_ever_enabled))
12c5e81d 1060 return 0;
1da177e4 1061
e048e02c 1062 state = audit_filter_task(tsk, &key);
619ed58a 1063 if (state == AUDIT_STATE_DISABLED) {
785dc4eb 1064 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4 1065 return 0;
d48d8051 1066 }
1da177e4
LT
1067
1068 if (!(context = audit_alloc_context(state))) {
e048e02c 1069 kfree(key);
1da177e4
LT
1070 audit_log_lost("out of memory in audit_alloc");
1071 return -ENOMEM;
1072 }
e048e02c 1073 context->filterkey = key;
1da177e4 1074
c0b0ae8a 1075 audit_set_context(tsk, context);
785dc4eb 1076 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4
LT
1077 return 0;
1078}
1079
1080static inline void audit_free_context(struct audit_context *context)
1081{
12c5e81d
PM
1082 /* resetting is extra work, but it is likely just noise */
1083 audit_reset_context(context);
c3f3ea8a 1084 audit_proctitle_free(context);
c62d773a 1085 free_tree_refs(context);
c62d773a 1086 kfree(context->filterkey);
c62d773a 1087 kfree(context);
1da177e4
LT
1088}
1089
e54dc243 1090static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1091 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1092 u32 sid, char *comm)
e54dc243
AG
1093{
1094 struct audit_buffer *ab;
2a862b32 1095 char *ctx = NULL;
e54dc243
AG
1096 u32 len;
1097 int rc = 0;
1098
1099 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1100 if (!ab)
6246ccab 1101 return rc;
e54dc243 1102
e1760bd5
EB
1103 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1104 from_kuid(&init_user_ns, auid),
cca080d9 1105 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
1106 if (sid) {
1107 if (security_secid_to_secctx(sid, &ctx, &len)) {
1108 audit_log_format(ab, " obj=(none)");
1109 rc = 1;
1110 } else {
1111 audit_log_format(ab, " obj=%s", ctx);
1112 security_release_secctx(ctx, len);
1113 }
2a862b32 1114 }
c2a7780e
EP
1115 audit_log_format(ab, " ocomm=");
1116 audit_log_untrustedstring(ab, comm);
e54dc243 1117 audit_log_end(ab);
e54dc243
AG
1118
1119 return rc;
1120}
1121
43761473
PM
1122static void audit_log_execve_info(struct audit_context *context,
1123 struct audit_buffer **ab)
bdf4c48a 1124{
43761473
PM
1125 long len_max;
1126 long len_rem;
1127 long len_full;
1128 long len_buf;
8443075e 1129 long len_abuf = 0;
43761473
PM
1130 long len_tmp;
1131 bool require_data;
1132 bool encode;
1133 unsigned int iter;
1134 unsigned int arg;
1135 char *buf_head;
1136 char *buf;
1137 const char __user *p = (const char __user *)current->mm->arg_start;
1138
1139 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1140 * data we put in the audit record for this argument (see the
1141 * code below) ... at this point in time 96 is plenty */
1142 char abuf[96];
1143
1144 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1145 * current value of 7500 is not as important as the fact that it
1146 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1147 * room if we go over a little bit in the logging below */
1148 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1149 len_max = MAX_EXECVE_AUDIT_LEN;
1150
1151 /* scratch buffer to hold the userspace args */
1152 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1153 if (!buf_head) {
1154 audit_panic("out of memory for argv string");
1155 return;
de6bbd1d 1156 }
43761473 1157 buf = buf_head;
040b3a2d 1158
43761473 1159 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1160
43761473
PM
1161 len_rem = len_max;
1162 len_buf = 0;
1163 len_full = 0;
1164 require_data = true;
1165 encode = false;
1166 iter = 0;
1167 arg = 0;
de6bbd1d 1168 do {
43761473
PM
1169 /* NOTE: we don't ever want to trust this value for anything
1170 * serious, but the audit record format insists we
1171 * provide an argument length for really long arguments,
1172 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1173 * to use strncpy_from_user() to obtain this value for
1174 * recording in the log, although we don't use it
1175 * anywhere here to avoid a double-fetch problem */
1176 if (len_full == 0)
1177 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1178
1179 /* read more data from userspace */
1180 if (require_data) {
1181 /* can we make more room in the buffer? */
1182 if (buf != buf_head) {
1183 memmove(buf_head, buf, len_buf);
1184 buf = buf_head;
1185 }
1186
1187 /* fetch as much as we can of the argument */
1188 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1189 len_max - len_buf);
1190 if (len_tmp == -EFAULT) {
1191 /* unable to copy from userspace */
1192 send_sig(SIGKILL, current, 0);
1193 goto out;
1194 } else if (len_tmp == (len_max - len_buf)) {
1195 /* buffer is not large enough */
1196 require_data = true;
1197 /* NOTE: if we are going to span multiple
1198 * buffers force the encoding so we stand
1199 * a chance at a sane len_full value and
1200 * consistent record encoding */
1201 encode = true;
1202 len_full = len_full * 2;
1203 p += len_tmp;
1204 } else {
1205 require_data = false;
1206 if (!encode)
1207 encode = audit_string_contains_control(
1208 buf, len_tmp);
1209 /* try to use a trusted value for len_full */
1210 if (len_full < len_max)
1211 len_full = (encode ?
1212 len_tmp * 2 : len_tmp);
1213 p += len_tmp + 1;
1214 }
1215 len_buf += len_tmp;
1216 buf_head[len_buf] = '\0';
bdf4c48a 1217
43761473
PM
1218 /* length of the buffer in the audit record? */
1219 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1220 }
de6bbd1d 1221
43761473 1222 /* write as much as we can to the audit log */
ea956d8b 1223 if (len_buf >= 0) {
43761473
PM
1224 /* NOTE: some magic numbers here - basically if we
1225 * can't fit a reasonable amount of data into the
1226 * existing audit buffer, flush it and start with
1227 * a new buffer */
1228 if ((sizeof(abuf) + 8) > len_rem) {
1229 len_rem = len_max;
1230 audit_log_end(*ab);
1231 *ab = audit_log_start(context,
1232 GFP_KERNEL, AUDIT_EXECVE);
1233 if (!*ab)
1234 goto out;
1235 }
bdf4c48a 1236
43761473
PM
1237 /* create the non-arg portion of the arg record */
1238 len_tmp = 0;
1239 if (require_data || (iter > 0) ||
1240 ((len_abuf + sizeof(abuf)) > len_rem)) {
1241 if (iter == 0) {
1242 len_tmp += snprintf(&abuf[len_tmp],
1243 sizeof(abuf) - len_tmp,
1244 " a%d_len=%lu",
1245 arg, len_full);
1246 }
1247 len_tmp += snprintf(&abuf[len_tmp],
1248 sizeof(abuf) - len_tmp,
1249 " a%d[%d]=", arg, iter++);
1250 } else
1251 len_tmp += snprintf(&abuf[len_tmp],
1252 sizeof(abuf) - len_tmp,
1253 " a%d=", arg);
1254 WARN_ON(len_tmp >= sizeof(abuf));
1255 abuf[sizeof(abuf) - 1] = '\0';
1256
1257 /* log the arg in the audit record */
1258 audit_log_format(*ab, "%s", abuf);
1259 len_rem -= len_tmp;
1260 len_tmp = len_buf;
1261 if (encode) {
1262 if (len_abuf > len_rem)
1263 len_tmp = len_rem / 2; /* encoding */
1264 audit_log_n_hex(*ab, buf, len_tmp);
1265 len_rem -= len_tmp * 2;
1266 len_abuf -= len_tmp * 2;
1267 } else {
1268 if (len_abuf > len_rem)
1269 len_tmp = len_rem - 2; /* quotes */
1270 audit_log_n_string(*ab, buf, len_tmp);
1271 len_rem -= len_tmp + 2;
1272 /* don't subtract the "2" because we still need
1273 * to add quotes to the remaining string */
1274 len_abuf -= len_tmp;
1275 }
1276 len_buf -= len_tmp;
1277 buf += len_tmp;
1278 }
bdf4c48a 1279
43761473
PM
1280 /* ready to move to the next argument? */
1281 if ((len_buf == 0) && !require_data) {
1282 arg++;
1283 iter = 0;
1284 len_full = 0;
1285 require_data = true;
1286 encode = false;
1287 }
1288 } while (arg < context->execve.argc);
de6bbd1d 1289
43761473 1290 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1291
43761473
PM
1292out:
1293 kfree(buf_head);
bdf4c48a
PZ
1294}
1295
2efa48fe
Y
1296static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1297 kernel_cap_t *cap)
5f3d544f 1298{
5f3d544f
RGB
1299 if (cap_isclear(*cap)) {
1300 audit_log_format(ab, " %s=0", prefix);
1301 return;
1302 }
f122a08b 1303 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
5f3d544f
RGB
1304}
1305
1306static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1307{
1308 if (name->fcap_ver == -1) {
1309 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1310 return;
1311 }
1312 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1313 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1314 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1315 name->fcap.fE, name->fcap_ver,
1316 from_kuid(&init_user_ns, name->fcap.rootid));
1317}
1318
272ceeae
RGB
1319static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1320{
1321 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1322 const struct timespec64 *tk = &context->time.tk_injoffset;
1323 static const char * const ntp_name[] = {
1324 "offset",
1325 "freq",
1326 "status",
1327 "tai",
1328 "tick",
1329 "adjust",
1330 };
1331 int type;
1332
1333 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1334 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1335 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1336 if (!*ab) {
1337 *ab = audit_log_start(context,
1338 GFP_KERNEL,
1339 AUDIT_TIME_ADJNTPVAL);
1340 if (!*ab)
1341 return;
1342 }
1343 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1344 ntp_name[type],
1345 ntp->vals[type].oldval,
1346 ntp->vals[type].newval);
1347 audit_log_end(*ab);
1348 *ab = NULL;
1349 }
1350 }
1351 }
1352 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1353 if (!*ab) {
1354 *ab = audit_log_start(context, GFP_KERNEL,
1355 AUDIT_TIME_INJOFFSET);
1356 if (!*ab)
1357 return;
1358 }
1359 audit_log_format(*ab, "sec=%lli nsec=%li",
1360 (long long)tk->tv_sec, tk->tv_nsec);
1361 audit_log_end(*ab);
1362 *ab = NULL;
1363 }
1364}
1365
a33e6751 1366static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1367{
1368 struct audit_buffer *ab;
1369 int i;
1370
1371 ab = audit_log_start(context, GFP_KERNEL, context->type);
1372 if (!ab)
1373 return;
1374
1375 switch (context->type) {
1376 case AUDIT_SOCKETCALL: {
1377 int nargs = context->socketcall.nargs;
254c8b96 1378
f3298dc4
AV
1379 audit_log_format(ab, "nargs=%d", nargs);
1380 for (i = 0; i < nargs; i++)
1381 audit_log_format(ab, " a%d=%lx", i,
1382 context->socketcall.args[i]);
1383 break; }
a33e6751
AV
1384 case AUDIT_IPC: {
1385 u32 osid = context->ipc.osid;
1386
2570ebbd 1387 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1388 from_kuid(&init_user_ns, context->ipc.uid),
1389 from_kgid(&init_user_ns, context->ipc.gid),
1390 context->ipc.mode);
a33e6751
AV
1391 if (osid) {
1392 char *ctx = NULL;
1393 u32 len;
254c8b96 1394
a33e6751
AV
1395 if (security_secid_to_secctx(osid, &ctx, &len)) {
1396 audit_log_format(ab, " osid=%u", osid);
1397 *call_panic = 1;
1398 } else {
1399 audit_log_format(ab, " obj=%s", ctx);
1400 security_release_secctx(ctx, len);
1401 }
1402 }
e816f370
AV
1403 if (context->ipc.has_perm) {
1404 audit_log_end(ab);
1405 ab = audit_log_start(context, GFP_KERNEL,
1406 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1407 if (unlikely(!ab))
1408 return;
e816f370 1409 audit_log_format(ab,
2570ebbd 1410 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1411 context->ipc.qbytes,
1412 context->ipc.perm_uid,
1413 context->ipc.perm_gid,
1414 context->ipc.perm_mode);
e816f370 1415 }
a33e6751 1416 break; }
fe8e52b9 1417 case AUDIT_MQ_OPEN:
564f6993 1418 audit_log_format(ab,
df0a4283 1419 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1420 "mq_msgsize=%ld mq_curmsgs=%ld",
1421 context->mq_open.oflag, context->mq_open.mode,
1422 context->mq_open.attr.mq_flags,
1423 context->mq_open.attr.mq_maxmsg,
1424 context->mq_open.attr.mq_msgsize,
1425 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1426 break;
1427 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1428 audit_log_format(ab,
1429 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1430 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1431 context->mq_sendrecv.mqdes,
1432 context->mq_sendrecv.msg_len,
1433 context->mq_sendrecv.msg_prio,
b9047726 1434 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1435 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1436 break;
1437 case AUDIT_MQ_NOTIFY:
20114f71
AV
1438 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1439 context->mq_notify.mqdes,
1440 context->mq_notify.sigev_signo);
fe8e52b9 1441 break;
7392906e
AV
1442 case AUDIT_MQ_GETSETATTR: {
1443 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
254c8b96 1444
7392906e
AV
1445 audit_log_format(ab,
1446 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1447 "mq_curmsgs=%ld ",
1448 context->mq_getsetattr.mqdes,
1449 attr->mq_flags, attr->mq_maxmsg,
1450 attr->mq_msgsize, attr->mq_curmsgs);
1451 break; }
fe8e52b9 1452 case AUDIT_CAPSET:
57f71a0a
AV
1453 audit_log_format(ab, "pid=%d", context->capset.pid);
1454 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1455 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1456 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1457 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1458 break;
1459 case AUDIT_MMAP:
120a795d
AV
1460 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1461 context->mmap.flags);
fe8e52b9 1462 break;
571e5c0e
RGB
1463 case AUDIT_OPENAT2:
1464 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1465 context->openat2.flags,
1466 context->openat2.mode,
1467 context->openat2.resolve);
1468 break;
fe8e52b9 1469 case AUDIT_EXECVE:
d9cfea91 1470 audit_log_execve_info(context, &ab);
fe8e52b9 1471 break;
ca86cad7
RGB
1472 case AUDIT_KERN_MODULE:
1473 audit_log_format(ab, "name=");
b305f7ed
YW
1474 if (context->module.name) {
1475 audit_log_untrustedstring(ab, context->module.name);
b305f7ed
YW
1476 } else
1477 audit_log_format(ab, "(null)");
1478
ca86cad7 1479 break;
272ceeae
RGB
1480 case AUDIT_TIME_ADJNTPVAL:
1481 case AUDIT_TIME_INJOFFSET:
1482 /* this call deviates from the rest, eating the buffer */
1483 audit_log_time(context, &ab);
1484 break;
f3298dc4
AV
1485 }
1486 audit_log_end(ab);
1487}
1488
3f1c8250
WR
1489static inline int audit_proctitle_rtrim(char *proctitle, int len)
1490{
1491 char *end = proctitle + len - 1;
254c8b96 1492
3f1c8250
WR
1493 while (end > proctitle && !isprint(*end))
1494 end--;
1495
1496 /* catch the case where proctitle is only 1 non-print character */
1497 len = end - proctitle + 1;
1498 len -= isprint(proctitle[len-1]) == 0;
1499 return len;
1500}
1501
5f3d544f
RGB
1502/*
1503 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1504 * @context: audit_context for the task
1505 * @n: audit_names structure with reportable details
1506 * @path: optional path to report instead of audit_names->name
1507 * @record_num: record number to report when handling a list of names
1508 * @call_panic: optional pointer to int that will be updated if secid fails
1509 */
1510static void audit_log_name(struct audit_context *context, struct audit_names *n,
1511 const struct path *path, int record_num, int *call_panic)
1512{
1513 struct audit_buffer *ab;
1514
1515 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1516 if (!ab)
1517 return;
1518
1519 audit_log_format(ab, "item=%d", record_num);
1520
1521 if (path)
1522 audit_log_d_path(ab, " name=", path);
1523 else if (n->name) {
1524 switch (n->name_len) {
1525 case AUDIT_NAME_FULL:
1526 /* log the full path */
1527 audit_log_format(ab, " name=");
1528 audit_log_untrustedstring(ab, n->name->name);
1529 break;
1530 case 0:
1531 /* name was specified as a relative path and the
1532 * directory component is the cwd
1533 */
6d915476
RGB
1534 if (context->pwd.dentry && context->pwd.mnt)
1535 audit_log_d_path(ab, " name=", &context->pwd);
1536 else
1537 audit_log_format(ab, " name=(null)");
5f3d544f
RGB
1538 break;
1539 default:
1540 /* log the name's directory component */
1541 audit_log_format(ab, " name=");
1542 audit_log_n_untrustedstring(ab, n->name->name,
1543 n->name_len);
1544 }
1545 } else
1546 audit_log_format(ab, " name=(null)");
1547
1548 if (n->ino != AUDIT_INO_UNSET)
1549 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1550 n->ino,
1551 MAJOR(n->dev),
1552 MINOR(n->dev),
1553 n->mode,
1554 from_kuid(&init_user_ns, n->uid),
1555 from_kgid(&init_user_ns, n->gid),
1556 MAJOR(n->rdev),
1557 MINOR(n->rdev));
1558 if (n->osid != 0) {
1559 char *ctx = NULL;
1560 u32 len;
1561
1562 if (security_secid_to_secctx(
1563 n->osid, &ctx, &len)) {
1564 audit_log_format(ab, " osid=%u", n->osid);
1565 if (call_panic)
1566 *call_panic = 2;
1567 } else {
1568 audit_log_format(ab, " obj=%s", ctx);
1569 security_release_secctx(ctx, len);
1570 }
1571 }
1572
1573 /* log the audit_names record type */
1574 switch (n->type) {
1575 case AUDIT_TYPE_NORMAL:
1576 audit_log_format(ab, " nametype=NORMAL");
1577 break;
1578 case AUDIT_TYPE_PARENT:
1579 audit_log_format(ab, " nametype=PARENT");
1580 break;
1581 case AUDIT_TYPE_CHILD_DELETE:
1582 audit_log_format(ab, " nametype=DELETE");
1583 break;
1584 case AUDIT_TYPE_CHILD_CREATE:
1585 audit_log_format(ab, " nametype=CREATE");
1586 break;
1587 default:
1588 audit_log_format(ab, " nametype=UNKNOWN");
1589 break;
1590 }
1591
1592 audit_log_fcaps(ab, n);
1593 audit_log_end(ab);
1594}
1595
2a1fe215 1596static void audit_log_proctitle(void)
3f1c8250
WR
1597{
1598 int res;
1599 char *buf;
1600 char *msg = "(null)";
1601 int len = strlen(msg);
2a1fe215 1602 struct audit_context *context = audit_context();
3f1c8250
WR
1603 struct audit_buffer *ab;
1604
1605 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1606 if (!ab)
1607 return; /* audit_panic or being filtered */
1608
1609 audit_log_format(ab, "proctitle=");
1610
1611 /* Not cached */
1612 if (!context->proctitle.value) {
1613 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1614 if (!buf)
1615 goto out;
1616 /* Historically called this from procfs naming */
2a1fe215 1617 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1618 if (res == 0) {
1619 kfree(buf);
1620 goto out;
1621 }
1622 res = audit_proctitle_rtrim(buf, res);
1623 if (res == 0) {
1624 kfree(buf);
1625 goto out;
1626 }
1627 context->proctitle.value = buf;
1628 context->proctitle.len = res;
1629 }
1630 msg = context->proctitle.value;
1631 len = context->proctitle.len;
1632out:
1633 audit_log_n_untrustedstring(ab, msg, len);
1634 audit_log_end(ab);
1635}
1636
5bd2182d
PM
1637/**
1638 * audit_log_uring - generate a AUDIT_URINGOP record
1639 * @ctx: the audit context
1640 */
1641static void audit_log_uring(struct audit_context *ctx)
1642{
1643 struct audit_buffer *ab;
1644 const struct cred *cred;
1645
1646 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1647 if (!ab)
1648 return;
1649 cred = current_cred();
1650 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1651 if (ctx->return_valid != AUDITSC_INVALID)
1652 audit_log_format(ab, " success=%s exit=%ld",
1653 (ctx->return_valid == AUDITSC_SUCCESS ?
1654 "yes" : "no"),
1655 ctx->return_code);
1656 audit_log_format(ab,
1657 " items=%d"
1658 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1659 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1660 ctx->name_count,
1661 task_ppid_nr(current), task_tgid_nr(current),
1662 from_kuid(&init_user_ns, cred->uid),
1663 from_kgid(&init_user_ns, cred->gid),
1664 from_kuid(&init_user_ns, cred->euid),
1665 from_kuid(&init_user_ns, cred->suid),
1666 from_kuid(&init_user_ns, cred->fsuid),
1667 from_kgid(&init_user_ns, cred->egid),
1668 from_kgid(&init_user_ns, cred->sgid),
1669 from_kgid(&init_user_ns, cred->fsgid));
1670 audit_log_task_context(ab);
1671 audit_log_key(ab, ctx->filterkey);
1672 audit_log_end(ab);
1673}
1674
2a1fe215 1675static void audit_log_exit(void)
1da177e4 1676{
9c7aa6aa 1677 int i, call_panic = 0;
2a1fe215 1678 struct audit_context *context = audit_context();
1da177e4 1679 struct audit_buffer *ab;
7551ced3 1680 struct audit_aux_data *aux;
5195d8e2 1681 struct audit_names *n;
1da177e4 1682
2a1fe215 1683 context->personality = current->personality;
e495149b 1684
12c5e81d
PM
1685 switch (context->context) {
1686 case AUDIT_CTX_SYSCALL:
1687 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1688 if (!ab)
1689 return;
1690 audit_log_format(ab, "arch=%x syscall=%d",
1691 context->arch, context->major);
1692 if (context->personality != PER_LINUX)
1693 audit_log_format(ab, " per=%lx", context->personality);
1694 if (context->return_valid != AUDITSC_INVALID)
1695 audit_log_format(ab, " success=%s exit=%ld",
1696 (context->return_valid == AUDITSC_SUCCESS ?
1697 "yes" : "no"),
1698 context->return_code);
1699 audit_log_format(ab,
1700 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1701 context->argv[0],
1702 context->argv[1],
1703 context->argv[2],
1704 context->argv[3],
1705 context->name_count);
1706 audit_log_task_info(ab);
1707 audit_log_key(ab, context->filterkey);
1708 audit_log_end(ab);
1709 break;
5bd2182d
PM
1710 case AUDIT_CTX_URING:
1711 audit_log_uring(context);
1712 break;
12c5e81d
PM
1713 default:
1714 BUG();
1715 break;
1716 }
1da177e4 1717
7551ced3 1718 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1719
e495149b 1720 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1721 if (!ab)
1722 continue; /* audit_panic has been called */
1723
1da177e4 1724 switch (aux->type) {
20ca73bc 1725
3fc689e9
EP
1726 case AUDIT_BPRM_FCAPS: {
1727 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
254c8b96 1728
3fc689e9
EP
1729 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1730 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1731 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1732 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1733 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1734 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1735 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1736 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1737 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1738 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1739 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1740 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1741 audit_log_format(ab, " frootid=%d",
1742 from_kuid(&init_user_ns,
1743 axs->fcap.rootid));
3fc689e9
EP
1744 break; }
1745
1da177e4
LT
1746 }
1747 audit_log_end(ab);
1da177e4
LT
1748 }
1749
f3298dc4 1750 if (context->type)
a33e6751 1751 show_special(context, &call_panic);
f3298dc4 1752
157cf649
AV
1753 if (context->fds[0] >= 0) {
1754 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1755 if (ab) {
1756 audit_log_format(ab, "fd0=%d fd1=%d",
1757 context->fds[0], context->fds[1]);
1758 audit_log_end(ab);
1759 }
1760 }
1761
4f6b434f
AV
1762 if (context->sockaddr_len) {
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1764 if (ab) {
1765 audit_log_format(ab, "saddr=");
1766 audit_log_n_hex(ab, (void *)context->sockaddr,
1767 context->sockaddr_len);
1768 audit_log_end(ab);
1769 }
1770 }
1771
e54dc243
AG
1772 for (aux = context->aux_pids; aux; aux = aux->next) {
1773 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1774
1775 for (i = 0; i < axs->pid_count; i++)
1776 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1777 axs->target_auid[i],
1778 axs->target_uid[i],
4746ec5b 1779 axs->target_sessionid[i],
c2a7780e
EP
1780 axs->target_sid[i],
1781 axs->target_comm[i]))
e54dc243 1782 call_panic = 1;
a5cb013d
AV
1783 }
1784
e54dc243
AG
1785 if (context->target_pid &&
1786 audit_log_pid_context(context, context->target_pid,
c2a7780e 1787 context->target_auid, context->target_uid,
4746ec5b 1788 context->target_sessionid,
c2a7780e 1789 context->target_sid, context->target_comm))
e54dc243
AG
1790 call_panic = 1;
1791
44707fdf 1792 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1793 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1794 if (ab) {
0b7a0fdb 1795 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1796 audit_log_end(ab);
1797 }
1798 }
73241ccc 1799
5195d8e2 1800 i = 0;
79f6530c
JL
1801 list_for_each_entry(n, &context->names_list, list) {
1802 if (n->hidden)
1803 continue;
b24a30a7 1804 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1805 }
c0641f28 1806
12c5e81d
PM
1807 if (context->context == AUDIT_CTX_SYSCALL)
1808 audit_log_proctitle();
3f1c8250 1809
c0641f28
EP
1810 /* Send end of event record to help user space know we are finished */
1811 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1812 if (ab)
1813 audit_log_end(ab);
9c7aa6aa 1814 if (call_panic)
12c5e81d 1815 audit_panic("error in audit_log_exit()");
1da177e4
LT
1816}
1817
b0dd25a8 1818/**
196a5085 1819 * __audit_free - free a per-task audit context
b0dd25a8
RD
1820 * @tsk: task whose audit context block to free
1821 *
67daf270 1822 * Called from copy_process, do_exit, and the io_uring code
b0dd25a8 1823 */
a4ff8dba 1824void __audit_free(struct task_struct *tsk)
1da177e4 1825{
2a1fe215 1826 struct audit_context *context = tsk->audit_context;
1da177e4 1827
56179a6e 1828 if (!context)
1da177e4
LT
1829 return;
1830
12c5e81d 1831 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
1832 if (!list_empty(&context->killed_trees))
1833 audit_kill_trees(context);
1834
2a1fe215
PM
1835 /* We are called either by do_exit() or the fork() error handling code;
1836 * in the former case tsk == current and in the latter tsk is a
0351dc57 1837 * random task_struct that doesn't have any meaningful data we
2a1fe215
PM
1838 * need to log via audit_log_exit().
1839 */
67daf270 1840 if (tsk == current && !context->dummy) {
ba59eae7 1841 context->return_valid = AUDITSC_INVALID;
2a1fe215 1842 context->return_code = 0;
67daf270
PM
1843 if (context->context == AUDIT_CTX_SYSCALL) {
1844 audit_filter_syscall(tsk, context);
1845 audit_filter_inodes(tsk, context);
1846 if (context->current_state == AUDIT_STATE_RECORD)
1847 audit_log_exit();
1848 } else if (context->context == AUDIT_CTX_URING) {
1849 /* TODO: verify this case is real and valid */
1850 audit_filter_uring(tsk, context);
1851 audit_filter_inodes(tsk, context);
1852 if (context->current_state == AUDIT_STATE_RECORD)
1853 audit_log_uring(context);
1854 }
2a1fe215
PM
1855 }
1856
2a1fe215 1857 audit_set_context(tsk, NULL);
1da177e4
LT
1858 audit_free_context(context);
1859}
1860
12c5e81d
PM
1861/**
1862 * audit_return_fixup - fixup the return codes in the audit_context
1863 * @ctx: the audit_context
1864 * @success: true/false value to indicate if the operation succeeded or not
1865 * @code: operation return code
1866 *
1867 * We need to fixup the return code in the audit logs if the actual return
1868 * codes are later going to be fixed by the arch specific signal handlers.
1869 */
1870static void audit_return_fixup(struct audit_context *ctx,
1871 int success, long code)
1872{
1873 /*
1874 * This is actually a test for:
1875 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1876 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1877 *
1878 * but is faster than a bunch of ||
1879 */
1880 if (unlikely(code <= -ERESTARTSYS) &&
1881 (code >= -ERESTART_RESTARTBLOCK) &&
1882 (code != -ENOIOCTLCMD))
1883 ctx->return_code = -EINTR;
1884 else
1885 ctx->return_code = code;
1886 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1887}
1888
5bd2182d
PM
1889/**
1890 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1891 * @op: the io_uring opcode
1892 *
1893 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1894 * operations. This function should only ever be called from
1895 * audit_uring_entry() as we rely on the audit context checking present in that
1896 * function.
1897 */
1898void __audit_uring_entry(u8 op)
1899{
1900 struct audit_context *ctx = audit_context();
1901
1902 if (ctx->state == AUDIT_STATE_DISABLED)
1903 return;
1904
1905 /*
1906 * NOTE: It's possible that we can be called from the process' context
1907 * before it returns to userspace, and before audit_syscall_exit()
1908 * is called. In this case there is not much to do, just record
1909 * the io_uring details and return.
1910 */
1911 ctx->uring_op = op;
1912 if (ctx->context == AUDIT_CTX_SYSCALL)
1913 return;
1914
1915 ctx->dummy = !audit_n_rules;
1916 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1917 ctx->prio = 0;
1918
1919 ctx->context = AUDIT_CTX_URING;
1920 ctx->current_state = ctx->state;
1921 ktime_get_coarse_real_ts64(&ctx->ctime);
1922}
1923
1924/**
1925 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1926 * @success: true/false value to indicate if the operation succeeded or not
1927 * @code: operation return code
1928 *
1929 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1930 * operations. This function should only ever be called from
1931 * audit_uring_exit() as we rely on the audit context checking present in that
1932 * function.
1933 */
1934void __audit_uring_exit(int success, long code)
1935{
1936 struct audit_context *ctx = audit_context();
1937
69e9cd66
JO
1938 if (ctx->dummy) {
1939 if (ctx->context != AUDIT_CTX_URING)
1940 return;
1941 goto out;
1942 }
1943
d4fefa48 1944 audit_return_fixup(ctx, success, code);
5bd2182d
PM
1945 if (ctx->context == AUDIT_CTX_SYSCALL) {
1946 /*
1947 * NOTE: See the note in __audit_uring_entry() about the case
1948 * where we may be called from process context before we
1949 * return to userspace via audit_syscall_exit(). In this
1950 * case we simply emit a URINGOP record and bail, the
1951 * normal syscall exit handling will take care of
1952 * everything else.
1953 * It is also worth mentioning that when we are called,
1954 * the current process creds may differ from the creds
1955 * used during the normal syscall processing; keep that
1956 * in mind if/when we move the record generation code.
1957 */
1958
1959 /*
1960 * We need to filter on the syscall info here to decide if we
1961 * should emit a URINGOP record. I know it seems odd but this
1962 * solves the problem where users have a filter to block *all*
1963 * syscall records in the "exit" filter; we want to preserve
1964 * the behavior here.
1965 */
1966 audit_filter_syscall(current, ctx);
67daf270
PM
1967 if (ctx->current_state != AUDIT_STATE_RECORD)
1968 audit_filter_uring(current, ctx);
5bd2182d
PM
1969 audit_filter_inodes(current, ctx);
1970 if (ctx->current_state != AUDIT_STATE_RECORD)
1971 return;
1972
1973 audit_log_uring(ctx);
1974 return;
1975 }
1976
1977 /* this may generate CONFIG_CHANGE records */
1978 if (!list_empty(&ctx->killed_trees))
1979 audit_kill_trees(ctx);
1980
67daf270
PM
1981 /* run through both filters to ensure we set the filterkey properly */
1982 audit_filter_uring(current, ctx);
5bd2182d
PM
1983 audit_filter_inodes(current, ctx);
1984 if (ctx->current_state != AUDIT_STATE_RECORD)
1985 goto out;
5bd2182d
PM
1986 audit_log_exit();
1987
1988out:
1989 audit_reset_context(ctx);
1990}
1991
b0dd25a8 1992/**
196a5085 1993 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1994 * @major: major syscall type (function)
1995 * @a1: additional syscall register 1
1996 * @a2: additional syscall register 2
1997 * @a3: additional syscall register 3
1998 * @a4: additional syscall register 4
1999 *
2000 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
2001 * audit context was created when the task was created and the state or
2002 * filters demand the audit context be built. If the state from the
619ed58a 2003 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1da177e4
LT
2004 * then the record will be written at syscall exit time (otherwise, it
2005 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
2006 * be written).
2007 */
b4f0d375
RGB
2008void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2009 unsigned long a3, unsigned long a4)
1da177e4 2010{
cdfb6b34 2011 struct audit_context *context = audit_context();
1da177e4
LT
2012 enum audit_state state;
2013
94d14e3e 2014 if (!audit_enabled || !context)
86a1c34a 2015 return;
1da177e4 2016
12c5e81d
PM
2017 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2018 WARN_ON(context->name_count);
2019 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2020 audit_panic("unrecoverable error in audit_syscall_entry()");
2021 return;
2022 }
1da177e4 2023
1da177e4 2024 state = context->state;
619ed58a 2025 if (state == AUDIT_STATE_DISABLED)
5260ecc2
RGB
2026 return;
2027
d51374ad 2028 context->dummy = !audit_n_rules;
619ed58a 2029 if (!context->dummy && state == AUDIT_STATE_BUILD) {
0590b933 2030 context->prio = 0;
cdfb6b34 2031 if (auditd_test_task(current))
5260ecc2 2032 return;
0590b933 2033 }
1da177e4 2034
16add411 2035 context->arch = syscall_get_arch(current);
5260ecc2
RGB
2036 context->major = major;
2037 context->argv[0] = a1;
2038 context->argv[1] = a2;
2039 context->argv[2] = a3;
2040 context->argv[3] = a4;
12c5e81d 2041 context->context = AUDIT_CTX_SYSCALL;
0590b933 2042 context->current_state = state;
290e44b7 2043 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
2044}
2045
b0dd25a8 2046/**
196a5085 2047 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
2048 * @success: success value of the syscall
2049 * @return_code: return value of the syscall
b0dd25a8
RD
2050 *
2051 * Tear down after system call. If the audit context has been marked as
619ed58a 2052 * auditable (either because of the AUDIT_STATE_RECORD state from
42ae610c 2053 * filtering, or because some other part of the kernel wrote an audit
1da177e4 2054 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
2055 * free the names stored from getname().
2056 */
d7e7528b 2057void __audit_syscall_exit(int success, long return_code)
1da177e4 2058{
12c5e81d 2059 struct audit_context *context = audit_context();
1da177e4 2060
12c5e81d
PM
2061 if (!context || context->dummy ||
2062 context->context != AUDIT_CTX_SYSCALL)
2063 goto out;
1da177e4 2064
12c5e81d 2065 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
2066 if (!list_empty(&context->killed_trees))
2067 audit_kill_trees(context);
2068
d4fefa48 2069 audit_return_fixup(context, success, return_code);
12c5e81d
PM
2070 /* run through both filters to ensure we set the filterkey properly */
2071 audit_filter_syscall(current, context);
2072 audit_filter_inodes(current, context);
3ed66951 2073 if (context->current_state != AUDIT_STATE_RECORD)
12c5e81d 2074 goto out;
2a1fe215 2075
12c5e81d 2076 audit_log_exit();
2fd6f58b 2077
12c5e81d
PM
2078out:
2079 audit_reset_context(context);
1da177e4
LT
2080}
2081
74c3cbe3
AV
2082static inline void handle_one(const struct inode *inode)
2083{
74c3cbe3
AV
2084 struct audit_context *context;
2085 struct audit_tree_refs *p;
2086 struct audit_chunk *chunk;
2087 int count;
254c8b96 2088
08991e83 2089 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 2090 return;
cdfb6b34 2091 context = audit_context();
74c3cbe3
AV
2092 p = context->trees;
2093 count = context->tree_count;
2094 rcu_read_lock();
2095 chunk = audit_tree_lookup(inode);
2096 rcu_read_unlock();
2097 if (!chunk)
2098 return;
2099 if (likely(put_tree_ref(context, chunk)))
2100 return;
2101 if (unlikely(!grow_tree_refs(context))) {
f952d10f 2102 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2103 audit_set_auditable(context);
2104 audit_put_chunk(chunk);
2105 unroll_tree_refs(context, p, count);
2106 return;
2107 }
2108 put_tree_ref(context, chunk);
74c3cbe3
AV
2109}
2110
2111static void handle_path(const struct dentry *dentry)
2112{
74c3cbe3
AV
2113 struct audit_context *context;
2114 struct audit_tree_refs *p;
2115 const struct dentry *d, *parent;
2116 struct audit_chunk *drop;
2117 unsigned long seq;
2118 int count;
2119
cdfb6b34 2120 context = audit_context();
74c3cbe3
AV
2121 p = context->trees;
2122 count = context->tree_count;
2123retry:
2124 drop = NULL;
2125 d = dentry;
2126 rcu_read_lock();
2127 seq = read_seqbegin(&rename_lock);
2128 for(;;) {
3b362157 2129 struct inode *inode = d_backing_inode(d);
254c8b96 2130
08991e83 2131 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3 2132 struct audit_chunk *chunk;
254c8b96 2133
74c3cbe3
AV
2134 chunk = audit_tree_lookup(inode);
2135 if (chunk) {
2136 if (unlikely(!put_tree_ref(context, chunk))) {
2137 drop = chunk;
2138 break;
2139 }
2140 }
2141 }
2142 parent = d->d_parent;
2143 if (parent == d)
2144 break;
2145 d = parent;
2146 }
2147 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2148 rcu_read_unlock();
2149 if (!drop) {
2150 /* just a race with rename */
2151 unroll_tree_refs(context, p, count);
2152 goto retry;
2153 }
2154 audit_put_chunk(drop);
2155 if (grow_tree_refs(context)) {
2156 /* OK, got more space */
2157 unroll_tree_refs(context, p, count);
2158 goto retry;
2159 }
2160 /* too bad */
f952d10f 2161 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2162 unroll_tree_refs(context, p, count);
2163 audit_set_auditable(context);
2164 return;
2165 }
2166 rcu_read_unlock();
74c3cbe3
AV
2167}
2168
78e2e802
JL
2169static struct audit_names *audit_alloc_name(struct audit_context *context,
2170 unsigned char type)
5195d8e2
EP
2171{
2172 struct audit_names *aname;
2173
2174 if (context->name_count < AUDIT_NAMES) {
2175 aname = &context->preallocated_names[context->name_count];
2176 memset(aname, 0, sizeof(*aname));
2177 } else {
2178 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2179 if (!aname)
2180 return NULL;
2181 aname->should_free = true;
2182 }
2183
84cb777e 2184 aname->ino = AUDIT_INO_UNSET;
78e2e802 2185 aname->type = type;
5195d8e2
EP
2186 list_add_tail(&aname->list, &context->names_list);
2187
2188 context->name_count++;
6d915476
RGB
2189 if (!context->pwd.dentry)
2190 get_fs_pwd(current->fs, &context->pwd);
5195d8e2
EP
2191 return aname;
2192}
2193
7ac86265 2194/**
196a5085 2195 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
2196 * @uptr: userland ptr to pathname
2197 *
2198 * Search the audit_names list for the current audit context. If there is an
2199 * existing entry with a matching "uptr" then return the filename
2200 * associated with that audit_name. If not, return NULL.
2201 */
2202struct filename *
2203__audit_reusename(const __user char *uptr)
2204{
cdfb6b34 2205 struct audit_context *context = audit_context();
7ac86265
JL
2206 struct audit_names *n;
2207
2208 list_for_each_entry(n, &context->names_list, list) {
2209 if (!n->name)
2210 continue;
55422d0b
PM
2211 if (n->name->uptr == uptr) {
2212 n->name->refcnt++;
7ac86265 2213 return n->name;
55422d0b 2214 }
7ac86265
JL
2215 }
2216 return NULL;
2217}
2218
b0dd25a8 2219/**
196a5085 2220 * __audit_getname - add a name to the list
b0dd25a8
RD
2221 * @name: name to add
2222 *
2223 * Add a name to the list of audit names for this context.
2224 * Called from fs/namei.c:getname().
2225 */
91a27b2a 2226void __audit_getname(struct filename *name)
1da177e4 2227{
cdfb6b34 2228 struct audit_context *context = audit_context();
5195d8e2 2229 struct audit_names *n;
1da177e4 2230
12c5e81d 2231 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2232 return;
91a27b2a 2233
78e2e802 2234 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2235 if (!n)
2236 return;
2237
2238 n->name = name;
2239 n->name_len = AUDIT_NAME_FULL;
adb5c247 2240 name->aname = n;
55422d0b 2241 name->refcnt++;
1da177e4
LT
2242}
2243
5f3d544f
RGB
2244static inline int audit_copy_fcaps(struct audit_names *name,
2245 const struct dentry *dentry)
2246{
2247 struct cpu_vfs_cap_data caps;
2248 int rc;
2249
2250 if (!dentry)
2251 return 0;
2252
39f60c1c 2253 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
5f3d544f
RGB
2254 if (rc)
2255 return rc;
2256
2257 name->fcap.permitted = caps.permitted;
2258 name->fcap.inheritable = caps.inheritable;
2259 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2260 name->fcap.rootid = caps.rootid;
2261 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2262 VFS_CAP_REVISION_SHIFT;
2263
2264 return 0;
2265}
2266
2267/* Copy inode data into an audit_names. */
2efa48fe
Y
2268static void audit_copy_inode(struct audit_names *name,
2269 const struct dentry *dentry,
2270 struct inode *inode, unsigned int flags)
5f3d544f
RGB
2271{
2272 name->ino = inode->i_ino;
2273 name->dev = inode->i_sb->s_dev;
2274 name->mode = inode->i_mode;
2275 name->uid = inode->i_uid;
2276 name->gid = inode->i_gid;
2277 name->rdev = inode->i_rdev;
2278 security_inode_getsecid(inode, &name->osid);
2279 if (flags & AUDIT_INODE_NOEVAL) {
2280 name->fcap_ver = -1;
2281 return;
2282 }
2283 audit_copy_fcaps(name, dentry);
2284}
2285
b0dd25a8 2286/**
bfcec708 2287 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2288 * @name: name being audited
481968f4 2289 * @dentry: dentry being audited
79f6530c 2290 * @flags: attributes for this particular entry
b0dd25a8 2291 */
adb5c247 2292void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 2293 unsigned int flags)
1da177e4 2294{
cdfb6b34 2295 struct audit_context *context = audit_context();
d6335d77 2296 struct inode *inode = d_backing_inode(dentry);
5195d8e2 2297 struct audit_names *n;
79f6530c 2298 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
2299 struct audit_entry *e;
2300 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2301 int i;
1da177e4 2302
12c5e81d 2303 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2304 return;
5195d8e2 2305
a252f56a 2306 rcu_read_lock();
699c1868
RGB
2307 list_for_each_entry_rcu(e, list, list) {
2308 for (i = 0; i < e->rule.field_count; i++) {
2309 struct audit_field *f = &e->rule.fields[i];
2310
2311 if (f->type == AUDIT_FSTYPE
2312 && audit_comparator(inode->i_sb->s_magic,
2313 f->op, f->val)
2314 && e->rule.action == AUDIT_NEVER) {
2315 rcu_read_unlock();
2316 return;
a252f56a
RGB
2317 }
2318 }
2319 }
2320 rcu_read_unlock();
2321
9cec9d68
JL
2322 if (!name)
2323 goto out_alloc;
2324
adb5c247
JL
2325 /*
2326 * If we have a pointer to an audit_names entry already, then we can
2327 * just use it directly if the type is correct.
2328 */
2329 n = name->aname;
2330 if (n) {
2331 if (parent) {
2332 if (n->type == AUDIT_TYPE_PARENT ||
2333 n->type == AUDIT_TYPE_UNKNOWN)
2334 goto out;
2335 } else {
2336 if (n->type != AUDIT_TYPE_PARENT)
2337 goto out;
2338 }
2339 }
2340
5195d8e2 2341 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
2342 if (n->ino) {
2343 /* valid inode number, use that for the comparison */
2344 if (n->ino != inode->i_ino ||
2345 n->dev != inode->i_sb->s_dev)
2346 continue;
2347 } else if (n->name) {
2348 /* inode number has not been set, check the name */
2349 if (strcmp(n->name->name, name->name))
2350 continue;
2351 } else
2352 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
2353 continue;
2354
2355 /* match the correct record type */
2356 if (parent) {
2357 if (n->type == AUDIT_TYPE_PARENT ||
2358 n->type == AUDIT_TYPE_UNKNOWN)
2359 goto out;
2360 } else {
2361 if (n->type != AUDIT_TYPE_PARENT)
2362 goto out;
2363 }
1da177e4 2364 }
5195d8e2 2365
9cec9d68 2366out_alloc:
4a928436
PM
2367 /* unable to find an entry with both a matching name and type */
2368 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2369 if (!n)
2370 return;
fcf22d82 2371 if (name) {
fd3522fd 2372 n->name = name;
55422d0b 2373 name->refcnt++;
fcf22d82 2374 }
4a928436 2375
5195d8e2 2376out:
bfcec708 2377 if (parent) {
91a27b2a 2378 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 2379 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
2380 if (flags & AUDIT_INODE_HIDDEN)
2381 n->hidden = true;
bfcec708
JL
2382 } else {
2383 n->name_len = AUDIT_NAME_FULL;
2384 n->type = AUDIT_TYPE_NORMAL;
2385 }
74c3cbe3 2386 handle_path(dentry);
57d46577 2387 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
73241ccc
AG
2388}
2389
9f45f5bf
AV
2390void __audit_file(const struct file *file)
2391{
2392 __audit_inode(NULL, file->f_path.dentry, 0);
2393}
2394
73241ccc 2395/**
c43a25ab 2396 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2397 * @parent: inode of dentry parent
c43a25ab 2398 * @dentry: dentry being audited
4fa6b5ec 2399 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2400 *
2401 * For syscalls that create or remove filesystem objects, audit_inode
2402 * can only collect information for the filesystem object's parent.
2403 * This call updates the audit context with the child's information.
2404 * Syscalls that create a new filesystem object must be hooked after
2405 * the object is created. Syscalls that remove a filesystem object
2406 * must be hooked prior, in order to capture the target inode during
2407 * unsuccessful attempts.
2408 */
d6335d77 2409void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
2410 const struct dentry *dentry,
2411 const unsigned char type)
73241ccc 2412{
cdfb6b34 2413 struct audit_context *context = audit_context();
d6335d77 2414 struct inode *inode = d_backing_inode(dentry);
795d673a 2415 const struct qstr *dname = &dentry->d_name;
4fa6b5ec 2416 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
2417 struct audit_entry *e;
2418 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2419 int i;
73241ccc 2420
12c5e81d 2421 if (context->context == AUDIT_CTX_UNUSED)
73241ccc
AG
2422 return;
2423
42d5e376 2424 rcu_read_lock();
699c1868
RGB
2425 list_for_each_entry_rcu(e, list, list) {
2426 for (i = 0; i < e->rule.field_count; i++) {
2427 struct audit_field *f = &e->rule.fields[i];
2428
2429 if (f->type == AUDIT_FSTYPE
2430 && audit_comparator(parent->i_sb->s_magic,
2431 f->op, f->val)
2432 && e->rule.action == AUDIT_NEVER) {
2433 rcu_read_unlock();
2434 return;
42d5e376
RGB
2435 }
2436 }
2437 }
2438 rcu_read_unlock();
2439
74c3cbe3
AV
2440 if (inode)
2441 handle_one(inode);
73241ccc 2442
4fa6b5ec 2443 /* look for a parent entry first */
5195d8e2 2444 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
2445 if (!n->name ||
2446 (n->type != AUDIT_TYPE_PARENT &&
2447 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2448 continue;
2449
57c59f58
PM
2450 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2451 !audit_compare_dname_path(dname,
2452 n->name->name, n->name_len)) {
2453 if (n->type == AUDIT_TYPE_UNKNOWN)
2454 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
2455 found_parent = n;
2456 break;
f368c07d 2457 }
5712e88f 2458 }
73241ccc 2459
4fa6b5ec 2460 /* is there a matching child entry? */
5195d8e2 2461 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2462 /* can only match entries that have a name */
57c59f58
PM
2463 if (!n->name ||
2464 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2465 continue;
2466
795d673a 2467 if (!strcmp(dname->name, n->name->name) ||
91a27b2a 2468 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2469 found_parent ?
2470 found_parent->name_len :
e3d6b07b 2471 AUDIT_NAME_FULL)) {
57c59f58
PM
2472 if (n->type == AUDIT_TYPE_UNKNOWN)
2473 n->type = type;
4fa6b5ec
JL
2474 found_child = n;
2475 break;
5712e88f 2476 }
ac9910ce 2477 }
5712e88f 2478
5712e88f 2479 if (!found_parent) {
4fa6b5ec
JL
2480 /* create a new, "anonymous" parent record */
2481 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2482 if (!n)
ac9910ce 2483 return;
57d46577 2484 audit_copy_inode(n, NULL, parent, 0);
73d3ec5a 2485 }
5712e88f
AG
2486
2487 if (!found_child) {
4fa6b5ec
JL
2488 found_child = audit_alloc_name(context, type);
2489 if (!found_child)
5712e88f 2490 return;
5712e88f
AG
2491
2492 /* Re-use the name belonging to the slot for a matching parent
2493 * directory. All names for this context are relinquished in
2494 * audit_free_names() */
2495 if (found_parent) {
4fa6b5ec
JL
2496 found_child->name = found_parent->name;
2497 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 2498 found_child->name->refcnt++;
5712e88f 2499 }
5712e88f 2500 }
57c59f58 2501
4fa6b5ec 2502 if (inode)
57d46577 2503 audit_copy_inode(found_child, dentry, inode, 0);
4fa6b5ec 2504 else
84cb777e 2505 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 2506}
50e437d5 2507EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2508
b0dd25a8
RD
2509/**
2510 * auditsc_get_stamp - get local copies of audit_context values
2511 * @ctx: audit_context for the task
2115bb25 2512 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
2513 * @serial: serial value that is recorded in the audit_context
2514 *
2515 * Also sets the context as auditable.
2516 */
48887e63 2517int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 2518 struct timespec64 *t, unsigned int *serial)
1da177e4 2519{
12c5e81d 2520 if (ctx->context == AUDIT_CTX_UNUSED)
48887e63 2521 return 0;
ce625a80
DW
2522 if (!ctx->serial)
2523 ctx->serial = audit_serial();
bfb4496e
DW
2524 t->tv_sec = ctx->ctime.tv_sec;
2525 t->tv_nsec = ctx->ctime.tv_nsec;
2526 *serial = ctx->serial;
0590b933
AV
2527 if (!ctx->prio) {
2528 ctx->prio = 1;
619ed58a 2529 ctx->current_state = AUDIT_STATE_RECORD;
0590b933 2530 }
48887e63 2531 return 1;
1da177e4
LT
2532}
2533
20ca73bc
GW
2534/**
2535 * __audit_mq_open - record audit data for a POSIX MQ open
2536 * @oflag: open flag
2537 * @mode: mode bits
6b962559 2538 * @attr: queue attributes
20ca73bc 2539 *
20ca73bc 2540 */
df0a4283 2541void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2542{
cdfb6b34 2543 struct audit_context *context = audit_context();
20ca73bc 2544
564f6993
AV
2545 if (attr)
2546 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2547 else
2548 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2549
564f6993
AV
2550 context->mq_open.oflag = oflag;
2551 context->mq_open.mode = mode;
20ca73bc 2552
564f6993 2553 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2554}
2555
2556/**
c32c8af4 2557 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2558 * @mqdes: MQ descriptor
2559 * @msg_len: Message length
2560 * @msg_prio: Message priority
c32c8af4 2561 * @abs_timeout: Message timeout in absolute time
20ca73bc 2562 *
20ca73bc 2563 */
c32c8af4 2564void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2565 const struct timespec64 *abs_timeout)
20ca73bc 2566{
cdfb6b34 2567 struct audit_context *context = audit_context();
b9047726 2568 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2569
c32c8af4 2570 if (abs_timeout)
b9047726 2571 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2572 else
b9047726 2573 memset(p, 0, sizeof(*p));
20ca73bc 2574
c32c8af4
AV
2575 context->mq_sendrecv.mqdes = mqdes;
2576 context->mq_sendrecv.msg_len = msg_len;
2577 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2578
c32c8af4 2579 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2580}
2581
2582/**
2583 * __audit_mq_notify - record audit data for a POSIX MQ notify
2584 * @mqdes: MQ descriptor
6b962559 2585 * @notification: Notification event
20ca73bc 2586 *
20ca73bc
GW
2587 */
2588
20114f71 2589void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2590{
cdfb6b34 2591 struct audit_context *context = audit_context();
20ca73bc 2592
20114f71
AV
2593 if (notification)
2594 context->mq_notify.sigev_signo = notification->sigev_signo;
2595 else
2596 context->mq_notify.sigev_signo = 0;
20ca73bc 2597
20114f71
AV
2598 context->mq_notify.mqdes = mqdes;
2599 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2600}
2601
2602/**
2603 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2604 * @mqdes: MQ descriptor
2605 * @mqstat: MQ flags
2606 *
20ca73bc 2607 */
7392906e 2608void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2609{
cdfb6b34 2610 struct audit_context *context = audit_context();
254c8b96 2611
7392906e
AV
2612 context->mq_getsetattr.mqdes = mqdes;
2613 context->mq_getsetattr.mqstat = *mqstat;
2614 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2615}
2616
b0dd25a8 2617/**
196a5085 2618 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2619 * @ipcp: ipc permissions
2620 *
073115d6 2621 */
a33e6751 2622void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2623{
cdfb6b34 2624 struct audit_context *context = audit_context();
254c8b96 2625
a33e6751
AV
2626 context->ipc.uid = ipcp->uid;
2627 context->ipc.gid = ipcp->gid;
2628 context->ipc.mode = ipcp->mode;
e816f370 2629 context->ipc.has_perm = 0;
a33e6751
AV
2630 security_ipc_getsecid(ipcp, &context->ipc.osid);
2631 context->type = AUDIT_IPC;
073115d6
SG
2632}
2633
2634/**
196a5085 2635 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2636 * @qbytes: msgq bytes
2637 * @uid: msgq user id
2638 * @gid: msgq group id
2639 * @mode: msgq mode (permissions)
2640 *
e816f370 2641 * Called only after audit_ipc_obj().
b0dd25a8 2642 */
2570ebbd 2643void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2644{
cdfb6b34 2645 struct audit_context *context = audit_context();
1da177e4 2646
e816f370
AV
2647 context->ipc.qbytes = qbytes;
2648 context->ipc.perm_uid = uid;
2649 context->ipc.perm_gid = gid;
2650 context->ipc.perm_mode = mode;
2651 context->ipc.has_perm = 1;
1da177e4 2652}
c2f0c7c3 2653
d9cfea91 2654void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2655{
cdfb6b34 2656 struct audit_context *context = audit_context();
473ae30b 2657
d9cfea91
RGB
2658 context->type = AUDIT_EXECVE;
2659 context->execve.argc = bprm->argc;
473ae30b
AV
2660}
2661
2662
b0dd25a8 2663/**
196a5085 2664 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2665 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2666 * @args: args array
2667 *
b0dd25a8 2668 */
2950fa9d 2669int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2670{
cdfb6b34 2671 struct audit_context *context = audit_context();
3ec3b2fb 2672
2950fa9d
CG
2673 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2674 return -EINVAL;
f3298dc4
AV
2675 context->type = AUDIT_SOCKETCALL;
2676 context->socketcall.nargs = nargs;
2677 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2678 return 0;
3ec3b2fb
DW
2679}
2680
db349509
AV
2681/**
2682 * __audit_fd_pair - record audit data for pipe and socketpair
2683 * @fd1: the first file descriptor
2684 * @fd2: the second file descriptor
2685 *
db349509 2686 */
157cf649 2687void __audit_fd_pair(int fd1, int fd2)
db349509 2688{
cdfb6b34 2689 struct audit_context *context = audit_context();
254c8b96 2690
157cf649
AV
2691 context->fds[0] = fd1;
2692 context->fds[1] = fd2;
db349509
AV
2693}
2694
b0dd25a8 2695/**
196a5085 2696 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2697 * @len: data length in user space
2698 * @a: data address in kernel space
2699 *
2700 * Returns 0 for success or NULL context or < 0 on error.
2701 */
07c49417 2702int __audit_sockaddr(int len, void *a)
3ec3b2fb 2703{
cdfb6b34 2704 struct audit_context *context = audit_context();
3ec3b2fb 2705
4f6b434f
AV
2706 if (!context->sockaddr) {
2707 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
254c8b96 2708
4f6b434f
AV
2709 if (!p)
2710 return -ENOMEM;
2711 context->sockaddr = p;
2712 }
3ec3b2fb 2713
4f6b434f
AV
2714 context->sockaddr_len = len;
2715 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2716 return 0;
2717}
2718
a5cb013d
AV
2719void __audit_ptrace(struct task_struct *t)
2720{
cdfb6b34 2721 struct audit_context *context = audit_context();
a5cb013d 2722
fa2bea2f 2723 context->target_pid = task_tgid_nr(t);
c2a7780e 2724 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2725 context->target_uid = task_uid(t);
4746ec5b 2726 context->target_sessionid = audit_get_sessionid(t);
4ebd7651 2727 security_task_getsecid_obj(t, &context->target_sid);
c2a7780e 2728 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2729}
2730
b0dd25a8 2731/**
b48345aa 2732 * audit_signal_info_syscall - record signal info for syscalls
b0dd25a8
RD
2733 * @t: task being signaled
2734 *
2735 * If the audit subsystem is being terminated, record the task (pid)
2736 * and uid that is doing that.
2737 */
b48345aa 2738int audit_signal_info_syscall(struct task_struct *t)
c2f0c7c3 2739{
e54dc243 2740 struct audit_aux_data_pids *axp;
cdfb6b34 2741 struct audit_context *ctx = audit_context();
b48345aa 2742 kuid_t t_uid = task_uid(t);
e54dc243 2743
ab6434a1
PM
2744 if (!audit_signals || audit_dummy_context())
2745 return 0;
2746
e54dc243
AG
2747 /* optimize the common case by putting first signal recipient directly
2748 * in audit_context */
2749 if (!ctx->target_pid) {
f1dc4867 2750 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2751 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2752 ctx->target_uid = t_uid;
4746ec5b 2753 ctx->target_sessionid = audit_get_sessionid(t);
4ebd7651 2754 security_task_getsecid_obj(t, &ctx->target_sid);
c2a7780e 2755 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2756 return 0;
2757 }
2758
2759 axp = (void *)ctx->aux_pids;
2760 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2761 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2762 if (!axp)
2763 return -ENOMEM;
2764
2765 axp->d.type = AUDIT_OBJ_PID;
2766 axp->d.next = ctx->aux_pids;
2767 ctx->aux_pids = (void *)axp;
2768 }
88ae704c 2769 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2770
f1dc4867 2771 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2772 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2773 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2774 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
4ebd7651 2775 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2776 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2777 axp->pid_count++;
2778
2779 return 0;
c2f0c7c3 2780}
0a4ff8c2 2781
3fc689e9
EP
2782/**
2783 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2784 * @bprm: pointer to the bprm being processed
2785 * @new: the proposed new credentials
2786 * @old: the old credentials
3fc689e9
EP
2787 *
2788 * Simply check if the proc already has the caps given by the file and if not
2789 * store the priv escalation info for later auditing at the end of the syscall
2790 *
3fc689e9
EP
2791 * -Eric
2792 */
d84f4f99
DH
2793int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2794 const struct cred *new, const struct cred *old)
3fc689e9
EP
2795{
2796 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2797 struct audit_context *context = audit_context();
3fc689e9 2798 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2799
2800 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2801 if (!ax)
d84f4f99 2802 return -ENOMEM;
3fc689e9
EP
2803
2804 ax->d.type = AUDIT_BPRM_FCAPS;
2805 ax->d.next = context->aux;
2806 context->aux = (void *)ax;
2807
39f60c1c 2808 get_vfs_caps_from_disk(&nop_mnt_idmap,
71bc356f 2809 bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2810
2811 ax->fcap.permitted = vcaps.permitted;
2812 ax->fcap.inheritable = vcaps.inheritable;
2813 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2814 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2815 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2816
d84f4f99
DH
2817 ax->old_pcap.permitted = old->cap_permitted;
2818 ax->old_pcap.inheritable = old->cap_inheritable;
2819 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2820 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2821
d84f4f99
DH
2822 ax->new_pcap.permitted = new->cap_permitted;
2823 ax->new_pcap.inheritable = new->cap_inheritable;
2824 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2825 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2826 return 0;
3fc689e9
EP
2827}
2828
e68b75a0
EP
2829/**
2830 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2831 * @new: the new credentials
2832 * @old: the old (current) credentials
e68b75a0 2833 *
da3dae54 2834 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2835 * audit system if applicable
2836 */
ca24a23e 2837void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2838{
cdfb6b34 2839 struct audit_context *context = audit_context();
254c8b96 2840
fa2bea2f 2841 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2842 context->capset.cap.effective = new->cap_effective;
2843 context->capset.cap.inheritable = new->cap_effective;
2844 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2845 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2846 context->type = AUDIT_CAPSET;
e68b75a0
EP
2847}
2848
120a795d
AV
2849void __audit_mmap_fd(int fd, int flags)
2850{
cdfb6b34 2851 struct audit_context *context = audit_context();
254c8b96 2852
120a795d
AV
2853 context->mmap.fd = fd;
2854 context->mmap.flags = flags;
2855 context->type = AUDIT_MMAP;
2856}
2857
571e5c0e
RGB
2858void __audit_openat2_how(struct open_how *how)
2859{
2860 struct audit_context *context = audit_context();
2861
2862 context->openat2.flags = how->flags;
2863 context->openat2.mode = how->mode;
2864 context->openat2.resolve = how->resolve;
2865 context->type = AUDIT_OPENAT2;
2866}
2867
ca86cad7
RGB
2868void __audit_log_kern_module(char *name)
2869{
cdfb6b34 2870 struct audit_context *context = audit_context();
ca86cad7 2871
b305f7ed
YW
2872 context->module.name = kstrdup(name, GFP_KERNEL);
2873 if (!context->module.name)
2874 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2875 context->type = AUDIT_KERN_MODULE;
2876}
2877
032bffd4 2878void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
de8cd83e 2879{
032bffd4
RGB
2880 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2881 switch (friar->hdr.type) {
2882 case FAN_RESPONSE_INFO_NONE:
2883 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2884 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2885 response, FAN_RESPONSE_INFO_NONE);
2886 break;
2887 case FAN_RESPONSE_INFO_AUDIT_RULE:
2888 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2889 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2890 response, friar->hdr.type, friar->rule_number,
2891 friar->subj_trust, friar->obj_trust);
2892 }
de8cd83e
SG
2893}
2894
2d87a067
OM
2895void __audit_tk_injoffset(struct timespec64 offset)
2896{
272ceeae 2897 struct audit_context *context = audit_context();
7e8eda73 2898
272ceeae
RGB
2899 /* only set type if not already set by NTP */
2900 if (!context->type)
2901 context->type = AUDIT_TIME_INJOFFSET;
2902 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
7e8eda73
OM
2903}
2904
2905void __audit_ntp_log(const struct audit_ntp_data *ad)
2906{
272ceeae
RGB
2907 struct audit_context *context = audit_context();
2908 int type;
2909
2910 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2911 if (ad->vals[type].newval != ad->vals[type].oldval) {
2912 /* unconditionally set type, overwriting TK */
2913 context->type = AUDIT_TIME_ADJNTPVAL;
2914 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2915 break;
2916 }
7e8eda73
OM
2917}
2918
c4dad0aa 2919void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
14224039 2920 enum audit_nfcfgop op, gfp_t gfp)
c4dad0aa
RGB
2921{
2922 struct audit_buffer *ab;
9d44a121 2923 char comm[sizeof(current->comm)];
c4dad0aa 2924
14224039 2925 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
c4dad0aa
RGB
2926 if (!ab)
2927 return;
2928 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2929 name, af, nentries, audit_nfcfgs[op].s);
9d44a121
RGB
2930
2931 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2932 audit_log_task_context(ab); /* subj= */
2933 audit_log_format(ab, " comm=");
2934 audit_log_untrustedstring(ab, get_task_comm(comm, current));
c4dad0aa
RGB
2935 audit_log_end(ab);
2936}
2937EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2938
7b9205bd 2939static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2940{
cca080d9
EB
2941 kuid_t auid, uid;
2942 kgid_t gid;
85e7bac3 2943 unsigned int sessionid;
9eab339b 2944 char comm[sizeof(current->comm)];
85e7bac3
EP
2945
2946 auid = audit_get_loginuid(current);
2947 sessionid = audit_get_sessionid(current);
2948 current_uid_gid(&uid, &gid);
2949
2950 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2951 from_kuid(&init_user_ns, auid),
2952 from_kuid(&init_user_ns, uid),
2953 from_kgid(&init_user_ns, gid),
2954 sessionid);
85e7bac3 2955 audit_log_task_context(ab);
fa2bea2f 2956 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2957 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2958 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2959}
2960
0a4ff8c2
SG
2961/**
2962 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2963 * @signr: signal value
0a4ff8c2
SG
2964 *
2965 * If a process ends with a core dump, something fishy is going on and we
2966 * should record the event for investigation.
2967 */
2968void audit_core_dumps(long signr)
2969{
2970 struct audit_buffer *ab;
0a4ff8c2
SG
2971
2972 if (!audit_enabled)
2973 return;
2974
2975 if (signr == SIGQUIT) /* don't care for those */
2976 return;
2977
d87de4a8 2978 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2979 if (unlikely(!ab))
2980 return;
61c0ee87 2981 audit_log_task(ab);
89670aff 2982 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2983 audit_log_end(ab);
2984}
0a4ff8c2 2985
326bee02
TH
2986/**
2987 * audit_seccomp - record information about a seccomp action
2988 * @syscall: syscall number
2989 * @signr: signal value
2990 * @code: the seccomp action
2991 *
2992 * Record the information associated with a seccomp action. Event filtering for
2993 * seccomp actions that are not to be logged is done in seccomp_log().
2994 * Therefore, this function forces auditing independent of the audit_enabled
2995 * and dummy context state because seccomp actions should be logged even when
2996 * audit is not in use.
2997 */
2998void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2999{
3000 struct audit_buffer *ab;
3001
9b8753ff 3002 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
3003 if (unlikely(!ab))
3004 return;
3005 audit_log_task(ab);
84db564a 3006 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
16add411 3007 signr, syscall_get_arch(current), syscall,
efbc0fbf 3008 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
3009 audit_log_end(ab);
3010}
916d7576 3011
ea6eca77
TH
3012void audit_seccomp_actions_logged(const char *names, const char *old_names,
3013 int res)
3014{
3015 struct audit_buffer *ab;
3016
3017 if (!audit_enabled)
3018 return;
3019
8982a1fb 3020 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
3021 AUDIT_CONFIG_CHANGE);
3022 if (unlikely(!ab))
3023 return;
3024
d0a3f18a
PM
3025 audit_log_format(ab,
3026 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3027 names, old_names, res);
ea6eca77
TH
3028 audit_log_end(ab);
3029}
3030
916d7576
AV
3031struct list_head *audit_killed_trees(void)
3032{
cdfb6b34 3033 struct audit_context *ctx = audit_context();
12c5e81d 3034 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
916d7576
AV
3035 return NULL;
3036 return &ctx->killed_trees;
3037}