lsm: security_task_getsecid_subj() -> security_current_getsecid_subj()
[linux-block.git] / kernel / auditsc.c
CommitLineData
d680c6b4 1// SPDX-License-Identifier: GPL-2.0-or-later
85c8721f 2/* auditsc.c -- System-call auditing support
1da177e4
LT
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 7 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
8 * All Rights Reserved.
9 *
1da177e4
LT
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
20ca73bc
GW
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
b63862f4
DK
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
73241ccc
AG
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
8c8570fb
DK
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
30 */
31
f952d10f
RGB
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#include <linux/init.h>
1da177e4 35#include <asm/types.h>
60063497 36#include <linux/atomic.h>
73241ccc
AG
37#include <linux/fs.h>
38#include <linux/namei.h>
1da177e4 39#include <linux/mm.h>
9984de1a 40#include <linux/export.h>
5a0e3ad6 41#include <linux/slab.h>
01116105 42#include <linux/mount.h>
3ec3b2fb 43#include <linux/socket.h>
20ca73bc 44#include <linux/mqueue.h>
1da177e4
LT
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
5bb289b5 48#include <linux/netlink.h>
f5561964 49#include <linux/compiler.h>
1da177e4 50#include <asm/unistd.h>
8c8570fb 51#include <linux/security.h>
fe7752ba 52#include <linux/list.h>
473ae30b 53#include <linux/binfmts.h>
a1f8e7f7 54#include <linux/highmem.h>
f46038ff 55#include <linux/syscalls.h>
84db564a 56#include <asm/syscall.h>
851f7ff5 57#include <linux/capability.h>
5ad4e53b 58#include <linux/fs_struct.h>
3dc1c1b2 59#include <linux/compat.h>
3f1c8250 60#include <linux/ctype.h>
fcf22d82 61#include <linux/string.h>
43761473 62#include <linux/uaccess.h>
9dd813c1 63#include <linux/fsnotify_backend.h>
fcf22d82 64#include <uapi/linux/limits.h>
8e6cf365 65#include <uapi/linux/netfilter/nf_tables.h>
571e5c0e 66#include <uapi/linux/openat2.h> // struct open_how
1da177e4 67
fe7752ba 68#include "audit.h"
1da177e4 69
d7e7528b
EP
70/* flags stating the success for a syscall */
71#define AUDITSC_INVALID 0
72#define AUDITSC_SUCCESS 1
73#define AUDITSC_FAILURE 2
74
43761473
PM
75/* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
77#define MAX_EXECVE_AUDIT_LEN 7500
78
3f1c8250
WR
79/* max length to print of cmdline/proctitle value during audit */
80#define MAX_PROCTITLE_AUDIT_LEN 128
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
1da177e4
LT
88struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91};
92
e54dc243
AG
93/* Number of target pids per aux struct. */
94#define AUDIT_AUX_PIDS 16
95
e54dc243
AG
96struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 99 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 100 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 102 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
104 int pid_count;
105};
106
3fc689e9
EP
107struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113};
114
74c3cbe3
AV
115struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118};
119
c4dad0aa
RGB
120struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123};
124
db9ff6ec 125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
8e6cf365
RGB
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
c4dad0aa
RGB
146};
147
55669bfa
AV
148static int audit_match_perm(struct audit_context *ctx, int mask)
149{
c4bacefb 150 unsigned n;
254c8b96 151
1a61c88d 152 if (unlikely(!ctx))
153 return 0;
c4bacefb 154 n = ctx->major;
dbda4c0b 155
55669bfa 156 switch (audit_classify_syscall(ctx->arch, n)) {
42f355ef 157 case AUDITSC_NATIVE:
55669bfa
AV
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
42f355ef 168 case AUDITSC_COMPAT: /* 32bit on biarch */
55669bfa
AV
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
42f355ef 179 case AUDITSC_OPEN:
55669bfa 180 return mask & ACC_MODE(ctx->argv[1]);
42f355ef 181 case AUDITSC_OPENAT:
55669bfa 182 return mask & ACC_MODE(ctx->argv[2]);
42f355ef 183 case AUDITSC_SOCKETCALL:
55669bfa 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
42f355ef 185 case AUDITSC_EXECVE:
55669bfa 186 return mask & AUDIT_PERM_EXEC;
1c30e3af
RGB
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)((struct open_how *)ctx->argv[2])->flags);
55669bfa
AV
189 default:
190 return 0;
191 }
192}
193
5ef30ee5 194static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 195{
5195d8e2 196 struct audit_names *n;
5ef30ee5 197 umode_t mode = (umode_t)val;
1a61c88d 198
199 if (unlikely(!ctx))
200 return 0;
201
5195d8e2 202 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 203 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 204 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
205 return 1;
206 }
5195d8e2 207
5ef30ee5 208 return 0;
8b67dca9
AV
209}
210
74c3cbe3
AV
211/*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
679173b7
EP
221static void audit_set_auditable(struct audit_context *ctx)
222{
223 if (!ctx->prio) {
224 ctx->prio = 1;
619ed58a 225 ctx->current_state = AUDIT_STATE_RECORD;
679173b7
EP
226 }
227}
228
74c3cbe3
AV
229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230{
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
254c8b96 233
74c3cbe3
AV
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249}
250
251static int grow_tree_refs(struct audit_context *ctx)
252{
253 struct audit_tree_refs *p = ctx->trees;
254c8b96 254
74c3cbe3
AV
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266}
74c3cbe3
AV
267
268static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270{
74c3cbe3
AV
271 struct audit_tree_refs *q;
272 int n;
254c8b96 273
74c3cbe3
AV
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
74c3cbe3
AV
295}
296
297static void free_tree_refs(struct audit_context *ctx)
298{
299 struct audit_tree_refs *p, *q;
254c8b96 300
74c3cbe3
AV
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305}
306
307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308{
74c3cbe3
AV
309 struct audit_tree_refs *p;
310 int n;
254c8b96 311
74c3cbe3
AV
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
74c3cbe3
AV
326 return 0;
327}
328
ca57ec0f
EB
329static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
b34b0393
EP
333{
334 struct audit_names *n;
b34b0393 335 int rc;
6ddb5680 336
b34b0393 337 if (name) {
ca57ec0f 338 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
339 if (rc)
340 return rc;
341 }
6ddb5680 342
b34b0393
EP
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351}
b34b0393 352
ca57ec0f
EB
353static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357{
358 struct audit_names *n;
359 int rc;
6ddb5680 360
ca57ec0f
EB
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
6ddb5680 366
ca57ec0f
EB
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375}
376
02d86a56
EP
377static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382{
02d86a56 383 switch (f->val) {
4a6633ed 384 /* process to file object comparisons */
02d86a56 385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 386 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 388 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 390 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 392 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 396 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 398 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 400 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 402 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
10d68360 407 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 409 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 411 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
10d68360 417 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
10d68360 420 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
10d68360
PM
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 426 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 434 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 436 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 441 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451}
452
f368c07d 453/* Determine if any context name data matches a rule's watch data */
1da177e4 454/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
1da177e4 461static int audit_filter_rules(struct task_struct *tsk,
93315ed6 462 struct audit_krule *rule,
1da177e4 463 struct audit_context *ctx,
f368c07d 464 struct audit_names *name,
f5629883
TJ
465 enum audit_state *state,
466 bool task_creation)
1da177e4 467{
f5629883 468 const struct cred *cred;
5195d8e2 469 int i, need_sid = 1;
3dc7e315 470 u32 sid;
8fae4770 471 unsigned int sessionid;
3dc7e315 472
d9516f34
GC
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
f5629883
TJ
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
1da177e4 478 for (i = 0; i < rule->field_count; i++) {
93315ed6 479 struct audit_field *f = &rule->fields[i];
5195d8e2 480 struct audit_names *n;
1da177e4 481 int result = 0;
f1dc4867 482 pid_t pid;
1da177e4 483
93315ed6 484 switch (f->type) {
1da177e4 485 case AUDIT_PID:
fa2bea2f 486 pid = task_tgid_nr(tsk);
f1dc4867 487 result = audit_comparator(pid, f->op, f->val);
1da177e4 488 break;
3c66251e 489 case AUDIT_PPID:
419c58f1
AV
490 if (ctx) {
491 if (!ctx->ppid)
c92cdeb4 492 ctx->ppid = task_ppid_nr(tsk);
3c66251e 493 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 494 }
3c66251e 495 break;
34d99af5
RGB
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
498 if (f->op == Audit_not_equal)
499 result = !result;
34d99af5 500 break;
1da177e4 501 case AUDIT_UID:
ca57ec0f 502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
503 break;
504 case AUDIT_EUID:
ca57ec0f 505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
506 break;
507 case AUDIT_SUID:
ca57ec0f 508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
509 break;
510 case AUDIT_FSUID:
ca57ec0f 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
512 break;
513 case AUDIT_GID:
ca57ec0f 514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
515 if (f->op == Audit_equal) {
516 if (!result)
af85d177 517 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
518 } else if (f->op == Audit_not_equal) {
519 if (result)
af85d177 520 result = !groups_search(cred->group_info, f->gid);
37eebe39 521 }
1da177e4
LT
522 break;
523 case AUDIT_EGID:
ca57ec0f 524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
525 if (f->op == Audit_equal) {
526 if (!result)
af85d177 527 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
528 } else if (f->op == Audit_not_equal) {
529 if (result)
af85d177 530 result = !groups_search(cred->group_info, f->gid);
37eebe39 531 }
1da177e4
LT
532 break;
533 case AUDIT_SGID:
ca57ec0f 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
535 break;
536 case AUDIT_FSGID:
ca57ec0f 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 538 break;
8fae4770 539 case AUDIT_SESSIONID:
5b713886 540 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
1da177e4 543 case AUDIT_PERS:
93315ed6 544 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 545 break;
2fd6f58b 546 case AUDIT_ARCH:
9f8dbe9c 547 if (ctx)
93315ed6 548 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 549 break;
1da177e4
LT
550
551 case AUDIT_EXIT:
ba59eae7 552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
93315ed6 553 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
554 break;
555 case AUDIT_SUCCESS:
ba59eae7 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
93315ed6
AG
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 559 else
93315ed6 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 561 }
1da177e4
LT
562 break;
563 case AUDIT_DEVMAJOR:
16c174bd
EP
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
5195d8e2 569 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
16c174bd
EP
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
5195d8e2 584 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
f368c07d 594 if (name)
db510fc5 595 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 596 else if (ctx) {
5195d8e2
EP
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
efaffd6e
EP
605 case AUDIT_OBJ_UID:
606 if (name) {
ca57ec0f 607 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
54d3218b
EP
617 case AUDIT_OBJ_GID:
618 if (name) {
ca57ec0f 619 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
f368c07d 629 case AUDIT_WATCH:
0223fad3
RGB
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
f368c07d 637 break;
74c3cbe3 638 case AUDIT_DIR:
0223fad3 639 if (ctx) {
74c3cbe3 640 result = match_tree_refs(ctx, rule->tree);
0223fad3
RGB
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
74c3cbe3 644 break;
1da177e4 645 case AUDIT_LOGINUID:
38f80590
RGB
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
1da177e4 648 break;
780a7654
EB
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
bf361231 652 case AUDIT_SADDR_FAM:
6e3ee990 653 if (ctx && ctx->sockaddr)
bf361231
RGB
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
3a6b9f85
DG
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
3dc7e315
DG
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
04305e4a 667 if (f->lsm_rule) {
2ad312d2 668 if (need_sid) {
6326948f
PM
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
676 * @current's creds
677 */
678 security_current_getsecid_subj(&sid);
2ad312d2
SG
679 need_sid = 0;
680 }
d7a96f3a 681 result = security_audit_rule_match(sid, f->type,
90462a5b
RGB
682 f->op,
683 f->lsm_rule);
2ad312d2 684 }
3dc7e315 685 break;
6e5a2d1d
DG
686 case AUDIT_OBJ_USER:
687 case AUDIT_OBJ_ROLE:
688 case AUDIT_OBJ_TYPE:
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 also applies here */
04305e4a 693 if (f->lsm_rule) {
6e5a2d1d
DG
694 /* Find files that match */
695 if (name) {
d7a96f3a 696 result = security_audit_rule_match(
90462a5b
RGB
697 name->osid,
698 f->type,
699 f->op,
700 f->lsm_rule);
6e5a2d1d 701 } else if (ctx) {
5195d8e2 702 list_for_each_entry(n, &ctx->names_list, list) {
90462a5b
RGB
703 if (security_audit_rule_match(
704 n->osid,
705 f->type,
706 f->op,
707 f->lsm_rule)) {
6e5a2d1d
DG
708 ++result;
709 break;
710 }
711 }
712 }
713 /* Find ipc objects that match */
a33e6751
AV
714 if (!ctx || ctx->type != AUDIT_IPC)
715 break;
716 if (security_audit_rule_match(ctx->ipc.osid,
717 f->type, f->op,
90462a5b 718 f->lsm_rule))
a33e6751 719 ++result;
6e5a2d1d
DG
720 }
721 break;
1da177e4
LT
722 case AUDIT_ARG0:
723 case AUDIT_ARG1:
724 case AUDIT_ARG2:
725 case AUDIT_ARG3:
726 if (ctx)
93315ed6 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 728 break;
5adc8a6a
AG
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
731 result = 1;
732 break;
55669bfa
AV
733 case AUDIT_PERM:
734 result = audit_match_perm(ctx, f->val);
0223fad3
RGB
735 if (f->op == Audit_not_equal)
736 result = !result;
55669bfa 737 break;
8b67dca9
AV
738 case AUDIT_FILETYPE:
739 result = audit_match_filetype(ctx, f->val);
0223fad3
RGB
740 if (f->op == Audit_not_equal)
741 result = !result;
8b67dca9 742 break;
02d86a56
EP
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
745 break;
1da177e4 746 }
f5629883 747 if (!result)
1da177e4
LT
748 return 0;
749 }
0590b933
AV
750
751 if (ctx) {
0590b933
AV
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
1da177e4 758 switch (rule->action) {
66b12abc 759 case AUDIT_NEVER:
619ed58a 760 *state = AUDIT_STATE_DISABLED;
66b12abc
PM
761 break;
762 case AUDIT_ALWAYS:
619ed58a 763 *state = AUDIT_STATE_RECORD;
66b12abc 764 break;
1da177e4
LT
765 }
766 return 1;
767}
768
769/* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
e048e02c 773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
774{
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
0f45aa18 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
619ed58a 782 if (state == AUDIT_STATE_RECORD)
e048e02c 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
619ed58a 789 return AUDIT_STATE_BUILD;
1da177e4
LT
790}
791
a3c54931
AL
792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793{
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806}
807
67daf270
PM
808/**
809 * audit_filter_uring - apply filters to an io_uring operation
810 * @tsk: associated task
811 * @ctx: audit context
812 */
813static void audit_filter_uring(struct task_struct *tsk,
814 struct audit_context *ctx)
815{
816 struct audit_entry *e;
817 enum audit_state state;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
824 list) {
825 if (audit_in_mask(&e->rule, ctx->uring_op) &&
826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
827 false)) {
828 rcu_read_unlock();
829 ctx->current_state = state;
830 return;
831 }
832 }
833 rcu_read_unlock();
834}
835
127c8c5f
YY
836/* At syscall exit time, this filter is called if the audit_state is
837 * not low enough that auditing cannot take place, but is also not
838 * high enough that we already know we have to write an audit record
619ed58a 839 * (i.e., the state is AUDIT_STATE_BUILD).
1da177e4 840 */
127c8c5f 841static void audit_filter_syscall(struct task_struct *tsk,
5504a69a 842 struct audit_context *ctx)
1da177e4
LT
843{
844 struct audit_entry *e;
c3896495 845 enum audit_state state;
1da177e4 846
5b52330b 847 if (auditd_test_task(tsk))
127c8c5f 848 return;
f7056d64 849
1da177e4 850 rcu_read_lock();
5504a69a 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
699c1868
RGB
852 if (audit_in_mask(&e->rule, ctx->major) &&
853 audit_filter_rules(tsk, &e->rule, ctx, NULL,
854 &state, false)) {
855 rcu_read_unlock();
856 ctx->current_state = state;
127c8c5f 857 return;
f368c07d
AG
858 }
859 }
860 rcu_read_unlock();
127c8c5f 861 return;
f368c07d
AG
862}
863
5195d8e2
EP
864/*
865 * Given an audit_name check the inode hash table to see if they match.
866 * Called holding the rcu read lock to protect the use of audit_inode_hash
867 */
868static int audit_filter_inode_name(struct task_struct *tsk,
869 struct audit_names *n,
870 struct audit_context *ctx) {
5195d8e2
EP
871 int h = audit_hash_ino((u32)n->ino);
872 struct list_head *list = &audit_inode_hash[h];
873 struct audit_entry *e;
874 enum audit_state state;
875
5195d8e2 876 list_for_each_entry_rcu(e, list, list) {
a3c54931 877 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
879 ctx->current_state = state;
880 return 1;
881 }
882 }
5195d8e2
EP
883 return 0;
884}
885
886/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 887 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 888 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
889 * Regarding audit_state, same rules apply as for audit_filter_syscall().
890 */
0590b933 891void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 892{
5195d8e2 893 struct audit_names *n;
f368c07d 894
5b52330b 895 if (auditd_test_task(tsk))
0590b933 896 return;
f368c07d
AG
897
898 rcu_read_lock();
f368c07d 899
5195d8e2
EP
900 list_for_each_entry(n, &ctx->names_list, list) {
901 if (audit_filter_inode_name(tsk, n, ctx))
902 break;
0f45aa18
DW
903 }
904 rcu_read_unlock();
0f45aa18
DW
905}
906
3f1c8250
WR
907static inline void audit_proctitle_free(struct audit_context *context)
908{
909 kfree(context->proctitle.value);
910 context->proctitle.value = NULL;
911 context->proctitle.len = 0;
912}
913
95e0b46f
LR
914static inline void audit_free_module(struct audit_context *context)
915{
916 if (context->type == AUDIT_KERN_MODULE) {
917 kfree(context->module.name);
918 context->module.name = NULL;
919 }
920}
1da177e4
LT
921static inline void audit_free_names(struct audit_context *context)
922{
5195d8e2 923 struct audit_names *n, *next;
1da177e4 924
5195d8e2
EP
925 list_for_each_entry_safe(n, next, &context->names_list, list) {
926 list_del(&n->list);
55422d0b
PM
927 if (n->name)
928 putname(n->name);
5195d8e2
EP
929 if (n->should_free)
930 kfree(n);
8c8570fb 931 }
1da177e4 932 context->name_count = 0;
44707fdf
JB
933 path_put(&context->pwd);
934 context->pwd.dentry = NULL;
935 context->pwd.mnt = NULL;
1da177e4
LT
936}
937
938static inline void audit_free_aux(struct audit_context *context)
939{
940 struct audit_aux_data *aux;
941
942 while ((aux = context->aux)) {
943 context->aux = aux->next;
944 kfree(aux);
945 }
12c5e81d 946 context->aux = NULL;
e54dc243
AG
947 while ((aux = context->aux_pids)) {
948 context->aux_pids = aux->next;
949 kfree(aux);
950 }
12c5e81d
PM
951 context->aux_pids = NULL;
952}
953
954/**
955 * audit_reset_context - reset a audit_context structure
956 * @ctx: the audit_context to reset
957 *
958 * All fields in the audit_context will be reset to an initial state, all
959 * references held by fields will be dropped, and private memory will be
960 * released. When this function returns the audit_context will be suitable
961 * for reuse, so long as the passed context is not NULL or a dummy context.
962 */
963static void audit_reset_context(struct audit_context *ctx)
964{
965 if (!ctx)
966 return;
967
968 /* if ctx is non-null, reset the "ctx->state" regardless */
969 ctx->context = AUDIT_CTX_UNUSED;
970 if (ctx->dummy)
971 return;
972
973 /*
974 * NOTE: It shouldn't matter in what order we release the fields, so
975 * release them in the order in which they appear in the struct;
976 * this gives us some hope of quickly making sure we are
977 * resetting the audit_context properly.
978 *
979 * Other things worth mentioning:
980 * - we don't reset "dummy"
981 * - we don't reset "state", we do reset "current_state"
982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
983 * - much of this is likely overkill, but play it safe for now
984 * - we really need to work on improving the audit_context struct
985 */
986
987 ctx->current_state = ctx->state;
988 ctx->serial = 0;
989 ctx->major = 0;
5bd2182d 990 ctx->uring_op = 0;
12c5e81d
PM
991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
992 memset(ctx->argv, 0, sizeof(ctx->argv));
993 ctx->return_code = 0;
994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
995 ctx->return_valid = AUDITSC_INVALID;
996 audit_free_names(ctx);
997 if (ctx->state != AUDIT_STATE_RECORD) {
998 kfree(ctx->filterkey);
999 ctx->filterkey = NULL;
1000 }
1001 audit_free_aux(ctx);
1002 kfree(ctx->sockaddr);
1003 ctx->sockaddr = NULL;
1004 ctx->sockaddr_len = 0;
1005 ctx->pid = ctx->ppid = 0;
1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1008 ctx->personality = 0;
1009 ctx->arch = 0;
1010 ctx->target_pid = 0;
1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1012 ctx->target_sessionid = 0;
1013 ctx->target_sid = 0;
1014 ctx->target_comm[0] = '\0';
1015 unroll_tree_refs(ctx, NULL, 0);
1016 WARN_ON(!list_empty(&ctx->killed_trees));
1017 ctx->type = 0;
1018 audit_free_module(ctx);
1019 ctx->fds[0] = -1;
1020 audit_proctitle_free(ctx);
1da177e4
LT
1021}
1022
1da177e4
LT
1023static inline struct audit_context *audit_alloc_context(enum audit_state state)
1024{
1025 struct audit_context *context;
1026
17c6ee70
RM
1027 context = kzalloc(sizeof(*context), GFP_KERNEL);
1028 if (!context)
1da177e4 1029 return NULL;
12c5e81d 1030 context->context = AUDIT_CTX_UNUSED;
e2c5adc8 1031 context->state = state;
619ed58a 1032 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
916d7576 1033 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1034 INIT_LIST_HEAD(&context->names_list);
6d915476 1035 context->fds[0] = -1;
ba59eae7 1036 context->return_valid = AUDITSC_INVALID;
1da177e4
LT
1037 return context;
1038}
1039
b0dd25a8
RD
1040/**
1041 * audit_alloc - allocate an audit context block for a task
1042 * @tsk: task
1043 *
1044 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1045 * if necessary. Doing so turns on system call auditing for the
1046 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1047 * needed.
1048 */
1da177e4
LT
1049int audit_alloc(struct task_struct *tsk)
1050{
1051 struct audit_context *context;
1052 enum audit_state state;
e048e02c 1053 char *key = NULL;
1da177e4 1054
b593d384 1055 if (likely(!audit_ever_enabled))
12c5e81d 1056 return 0;
1da177e4 1057
e048e02c 1058 state = audit_filter_task(tsk, &key);
619ed58a 1059 if (state == AUDIT_STATE_DISABLED) {
785dc4eb 1060 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4 1061 return 0;
d48d8051 1062 }
1da177e4
LT
1063
1064 if (!(context = audit_alloc_context(state))) {
e048e02c 1065 kfree(key);
1da177e4
LT
1066 audit_log_lost("out of memory in audit_alloc");
1067 return -ENOMEM;
1068 }
e048e02c 1069 context->filterkey = key;
1da177e4 1070
c0b0ae8a 1071 audit_set_context(tsk, context);
785dc4eb 1072 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1da177e4
LT
1073 return 0;
1074}
1075
5bd2182d
PM
1076/**
1077 * audit_alloc_kernel - allocate an audit_context for a kernel task
1078 * @tsk: the kernel task
1079 *
1080 * Similar to the audit_alloc() function, but intended for kernel private
1081 * threads. Returns zero on success, negative values on failure.
1082 */
1083int audit_alloc_kernel(struct task_struct *tsk)
1084{
1085 /*
1086 * At the moment we are just going to call into audit_alloc() to
1087 * simplify the code, but there two things to keep in mind with this
1088 * approach:
1089 *
1090 * 1. Filtering internal kernel tasks is a bit laughable in almost all
1091 * cases, but there is at least one case where there is a benefit:
1092 * the '-a task,never' case allows the admin to effectively disable
1093 * task auditing at runtime.
1094 *
1095 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect
1096 * on these internal kernel tasks, but they probably don't hurt either.
1097 */
1098 return audit_alloc(tsk);
1099}
1100
1da177e4
LT
1101static inline void audit_free_context(struct audit_context *context)
1102{
12c5e81d
PM
1103 /* resetting is extra work, but it is likely just noise */
1104 audit_reset_context(context);
c62d773a 1105 free_tree_refs(context);
c62d773a 1106 kfree(context->filterkey);
c62d773a 1107 kfree(context);
1da177e4
LT
1108}
1109
e54dc243 1110static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1111 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1112 u32 sid, char *comm)
e54dc243
AG
1113{
1114 struct audit_buffer *ab;
2a862b32 1115 char *ctx = NULL;
e54dc243
AG
1116 u32 len;
1117 int rc = 0;
1118
1119 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1120 if (!ab)
6246ccab 1121 return rc;
e54dc243 1122
e1760bd5
EB
1123 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1124 from_kuid(&init_user_ns, auid),
cca080d9 1125 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
1126 if (sid) {
1127 if (security_secid_to_secctx(sid, &ctx, &len)) {
1128 audit_log_format(ab, " obj=(none)");
1129 rc = 1;
1130 } else {
1131 audit_log_format(ab, " obj=%s", ctx);
1132 security_release_secctx(ctx, len);
1133 }
2a862b32 1134 }
c2a7780e
EP
1135 audit_log_format(ab, " ocomm=");
1136 audit_log_untrustedstring(ab, comm);
e54dc243 1137 audit_log_end(ab);
e54dc243
AG
1138
1139 return rc;
1140}
1141
43761473
PM
1142static void audit_log_execve_info(struct audit_context *context,
1143 struct audit_buffer **ab)
bdf4c48a 1144{
43761473
PM
1145 long len_max;
1146 long len_rem;
1147 long len_full;
1148 long len_buf;
8443075e 1149 long len_abuf = 0;
43761473
PM
1150 long len_tmp;
1151 bool require_data;
1152 bool encode;
1153 unsigned int iter;
1154 unsigned int arg;
1155 char *buf_head;
1156 char *buf;
1157 const char __user *p = (const char __user *)current->mm->arg_start;
1158
1159 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1160 * data we put in the audit record for this argument (see the
1161 * code below) ... at this point in time 96 is plenty */
1162 char abuf[96];
1163
1164 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1165 * current value of 7500 is not as important as the fact that it
1166 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1167 * room if we go over a little bit in the logging below */
1168 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1169 len_max = MAX_EXECVE_AUDIT_LEN;
1170
1171 /* scratch buffer to hold the userspace args */
1172 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173 if (!buf_head) {
1174 audit_panic("out of memory for argv string");
1175 return;
de6bbd1d 1176 }
43761473 1177 buf = buf_head;
040b3a2d 1178
43761473 1179 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1180
43761473
PM
1181 len_rem = len_max;
1182 len_buf = 0;
1183 len_full = 0;
1184 require_data = true;
1185 encode = false;
1186 iter = 0;
1187 arg = 0;
de6bbd1d 1188 do {
43761473
PM
1189 /* NOTE: we don't ever want to trust this value for anything
1190 * serious, but the audit record format insists we
1191 * provide an argument length for really long arguments,
1192 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1193 * to use strncpy_from_user() to obtain this value for
1194 * recording in the log, although we don't use it
1195 * anywhere here to avoid a double-fetch problem */
1196 if (len_full == 0)
1197 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1198
1199 /* read more data from userspace */
1200 if (require_data) {
1201 /* can we make more room in the buffer? */
1202 if (buf != buf_head) {
1203 memmove(buf_head, buf, len_buf);
1204 buf = buf_head;
1205 }
1206
1207 /* fetch as much as we can of the argument */
1208 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1209 len_max - len_buf);
1210 if (len_tmp == -EFAULT) {
1211 /* unable to copy from userspace */
1212 send_sig(SIGKILL, current, 0);
1213 goto out;
1214 } else if (len_tmp == (len_max - len_buf)) {
1215 /* buffer is not large enough */
1216 require_data = true;
1217 /* NOTE: if we are going to span multiple
1218 * buffers force the encoding so we stand
1219 * a chance at a sane len_full value and
1220 * consistent record encoding */
1221 encode = true;
1222 len_full = len_full * 2;
1223 p += len_tmp;
1224 } else {
1225 require_data = false;
1226 if (!encode)
1227 encode = audit_string_contains_control(
1228 buf, len_tmp);
1229 /* try to use a trusted value for len_full */
1230 if (len_full < len_max)
1231 len_full = (encode ?
1232 len_tmp * 2 : len_tmp);
1233 p += len_tmp + 1;
1234 }
1235 len_buf += len_tmp;
1236 buf_head[len_buf] = '\0';
bdf4c48a 1237
43761473
PM
1238 /* length of the buffer in the audit record? */
1239 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1240 }
de6bbd1d 1241
43761473 1242 /* write as much as we can to the audit log */
ea956d8b 1243 if (len_buf >= 0) {
43761473
PM
1244 /* NOTE: some magic numbers here - basically if we
1245 * can't fit a reasonable amount of data into the
1246 * existing audit buffer, flush it and start with
1247 * a new buffer */
1248 if ((sizeof(abuf) + 8) > len_rem) {
1249 len_rem = len_max;
1250 audit_log_end(*ab);
1251 *ab = audit_log_start(context,
1252 GFP_KERNEL, AUDIT_EXECVE);
1253 if (!*ab)
1254 goto out;
1255 }
bdf4c48a 1256
43761473
PM
1257 /* create the non-arg portion of the arg record */
1258 len_tmp = 0;
1259 if (require_data || (iter > 0) ||
1260 ((len_abuf + sizeof(abuf)) > len_rem)) {
1261 if (iter == 0) {
1262 len_tmp += snprintf(&abuf[len_tmp],
1263 sizeof(abuf) - len_tmp,
1264 " a%d_len=%lu",
1265 arg, len_full);
1266 }
1267 len_tmp += snprintf(&abuf[len_tmp],
1268 sizeof(abuf) - len_tmp,
1269 " a%d[%d]=", arg, iter++);
1270 } else
1271 len_tmp += snprintf(&abuf[len_tmp],
1272 sizeof(abuf) - len_tmp,
1273 " a%d=", arg);
1274 WARN_ON(len_tmp >= sizeof(abuf));
1275 abuf[sizeof(abuf) - 1] = '\0';
1276
1277 /* log the arg in the audit record */
1278 audit_log_format(*ab, "%s", abuf);
1279 len_rem -= len_tmp;
1280 len_tmp = len_buf;
1281 if (encode) {
1282 if (len_abuf > len_rem)
1283 len_tmp = len_rem / 2; /* encoding */
1284 audit_log_n_hex(*ab, buf, len_tmp);
1285 len_rem -= len_tmp * 2;
1286 len_abuf -= len_tmp * 2;
1287 } else {
1288 if (len_abuf > len_rem)
1289 len_tmp = len_rem - 2; /* quotes */
1290 audit_log_n_string(*ab, buf, len_tmp);
1291 len_rem -= len_tmp + 2;
1292 /* don't subtract the "2" because we still need
1293 * to add quotes to the remaining string */
1294 len_abuf -= len_tmp;
1295 }
1296 len_buf -= len_tmp;
1297 buf += len_tmp;
1298 }
bdf4c48a 1299
43761473
PM
1300 /* ready to move to the next argument? */
1301 if ((len_buf == 0) && !require_data) {
1302 arg++;
1303 iter = 0;
1304 len_full = 0;
1305 require_data = true;
1306 encode = false;
1307 }
1308 } while (arg < context->execve.argc);
de6bbd1d 1309
43761473 1310 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1311
43761473
PM
1312out:
1313 kfree(buf_head);
bdf4c48a
PZ
1314}
1315
2efa48fe
Y
1316static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1317 kernel_cap_t *cap)
5f3d544f
RGB
1318{
1319 int i;
1320
1321 if (cap_isclear(*cap)) {
1322 audit_log_format(ab, " %s=0", prefix);
1323 return;
1324 }
1325 audit_log_format(ab, " %s=", prefix);
1326 CAP_FOR_EACH_U32(i)
1327 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1328}
1329
1330static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1331{
1332 if (name->fcap_ver == -1) {
1333 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1334 return;
1335 }
1336 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1337 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1338 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1339 name->fcap.fE, name->fcap_ver,
1340 from_kuid(&init_user_ns, name->fcap.rootid));
1341}
1342
a33e6751 1343static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1344{
1345 struct audit_buffer *ab;
1346 int i;
1347
1348 ab = audit_log_start(context, GFP_KERNEL, context->type);
1349 if (!ab)
1350 return;
1351
1352 switch (context->type) {
1353 case AUDIT_SOCKETCALL: {
1354 int nargs = context->socketcall.nargs;
254c8b96 1355
f3298dc4
AV
1356 audit_log_format(ab, "nargs=%d", nargs);
1357 for (i = 0; i < nargs; i++)
1358 audit_log_format(ab, " a%d=%lx", i,
1359 context->socketcall.args[i]);
1360 break; }
a33e6751
AV
1361 case AUDIT_IPC: {
1362 u32 osid = context->ipc.osid;
1363
2570ebbd 1364 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1365 from_kuid(&init_user_ns, context->ipc.uid),
1366 from_kgid(&init_user_ns, context->ipc.gid),
1367 context->ipc.mode);
a33e6751
AV
1368 if (osid) {
1369 char *ctx = NULL;
1370 u32 len;
254c8b96 1371
a33e6751
AV
1372 if (security_secid_to_secctx(osid, &ctx, &len)) {
1373 audit_log_format(ab, " osid=%u", osid);
1374 *call_panic = 1;
1375 } else {
1376 audit_log_format(ab, " obj=%s", ctx);
1377 security_release_secctx(ctx, len);
1378 }
1379 }
e816f370
AV
1380 if (context->ipc.has_perm) {
1381 audit_log_end(ab);
1382 ab = audit_log_start(context, GFP_KERNEL,
1383 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1384 if (unlikely(!ab))
1385 return;
e816f370 1386 audit_log_format(ab,
2570ebbd 1387 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1388 context->ipc.qbytes,
1389 context->ipc.perm_uid,
1390 context->ipc.perm_gid,
1391 context->ipc.perm_mode);
e816f370 1392 }
a33e6751 1393 break; }
fe8e52b9 1394 case AUDIT_MQ_OPEN:
564f6993 1395 audit_log_format(ab,
df0a4283 1396 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1397 "mq_msgsize=%ld mq_curmsgs=%ld",
1398 context->mq_open.oflag, context->mq_open.mode,
1399 context->mq_open.attr.mq_flags,
1400 context->mq_open.attr.mq_maxmsg,
1401 context->mq_open.attr.mq_msgsize,
1402 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1403 break;
1404 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1405 audit_log_format(ab,
1406 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1407 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1408 context->mq_sendrecv.mqdes,
1409 context->mq_sendrecv.msg_len,
1410 context->mq_sendrecv.msg_prio,
b9047726 1411 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1412 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1413 break;
1414 case AUDIT_MQ_NOTIFY:
20114f71
AV
1415 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1416 context->mq_notify.mqdes,
1417 context->mq_notify.sigev_signo);
fe8e52b9 1418 break;
7392906e
AV
1419 case AUDIT_MQ_GETSETATTR: {
1420 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
254c8b96 1421
7392906e
AV
1422 audit_log_format(ab,
1423 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1424 "mq_curmsgs=%ld ",
1425 context->mq_getsetattr.mqdes,
1426 attr->mq_flags, attr->mq_maxmsg,
1427 attr->mq_msgsize, attr->mq_curmsgs);
1428 break; }
fe8e52b9 1429 case AUDIT_CAPSET:
57f71a0a
AV
1430 audit_log_format(ab, "pid=%d", context->capset.pid);
1431 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1432 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1433 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1434 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1435 break;
1436 case AUDIT_MMAP:
120a795d
AV
1437 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1438 context->mmap.flags);
fe8e52b9 1439 break;
571e5c0e
RGB
1440 case AUDIT_OPENAT2:
1441 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1442 context->openat2.flags,
1443 context->openat2.mode,
1444 context->openat2.resolve);
1445 break;
fe8e52b9 1446 case AUDIT_EXECVE:
d9cfea91 1447 audit_log_execve_info(context, &ab);
fe8e52b9 1448 break;
ca86cad7
RGB
1449 case AUDIT_KERN_MODULE:
1450 audit_log_format(ab, "name=");
b305f7ed
YW
1451 if (context->module.name) {
1452 audit_log_untrustedstring(ab, context->module.name);
b305f7ed
YW
1453 } else
1454 audit_log_format(ab, "(null)");
1455
ca86cad7 1456 break;
f3298dc4
AV
1457 }
1458 audit_log_end(ab);
1459}
1460
3f1c8250
WR
1461static inline int audit_proctitle_rtrim(char *proctitle, int len)
1462{
1463 char *end = proctitle + len - 1;
254c8b96 1464
3f1c8250
WR
1465 while (end > proctitle && !isprint(*end))
1466 end--;
1467
1468 /* catch the case where proctitle is only 1 non-print character */
1469 len = end - proctitle + 1;
1470 len -= isprint(proctitle[len-1]) == 0;
1471 return len;
1472}
1473
5f3d544f
RGB
1474/*
1475 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1476 * @context: audit_context for the task
1477 * @n: audit_names structure with reportable details
1478 * @path: optional path to report instead of audit_names->name
1479 * @record_num: record number to report when handling a list of names
1480 * @call_panic: optional pointer to int that will be updated if secid fails
1481 */
1482static void audit_log_name(struct audit_context *context, struct audit_names *n,
1483 const struct path *path, int record_num, int *call_panic)
1484{
1485 struct audit_buffer *ab;
1486
1487 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1488 if (!ab)
1489 return;
1490
1491 audit_log_format(ab, "item=%d", record_num);
1492
1493 if (path)
1494 audit_log_d_path(ab, " name=", path);
1495 else if (n->name) {
1496 switch (n->name_len) {
1497 case AUDIT_NAME_FULL:
1498 /* log the full path */
1499 audit_log_format(ab, " name=");
1500 audit_log_untrustedstring(ab, n->name->name);
1501 break;
1502 case 0:
1503 /* name was specified as a relative path and the
1504 * directory component is the cwd
1505 */
6d915476
RGB
1506 if (context->pwd.dentry && context->pwd.mnt)
1507 audit_log_d_path(ab, " name=", &context->pwd);
1508 else
1509 audit_log_format(ab, " name=(null)");
5f3d544f
RGB
1510 break;
1511 default:
1512 /* log the name's directory component */
1513 audit_log_format(ab, " name=");
1514 audit_log_n_untrustedstring(ab, n->name->name,
1515 n->name_len);
1516 }
1517 } else
1518 audit_log_format(ab, " name=(null)");
1519
1520 if (n->ino != AUDIT_INO_UNSET)
1521 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1522 n->ino,
1523 MAJOR(n->dev),
1524 MINOR(n->dev),
1525 n->mode,
1526 from_kuid(&init_user_ns, n->uid),
1527 from_kgid(&init_user_ns, n->gid),
1528 MAJOR(n->rdev),
1529 MINOR(n->rdev));
1530 if (n->osid != 0) {
1531 char *ctx = NULL;
1532 u32 len;
1533
1534 if (security_secid_to_secctx(
1535 n->osid, &ctx, &len)) {
1536 audit_log_format(ab, " osid=%u", n->osid);
1537 if (call_panic)
1538 *call_panic = 2;
1539 } else {
1540 audit_log_format(ab, " obj=%s", ctx);
1541 security_release_secctx(ctx, len);
1542 }
1543 }
1544
1545 /* log the audit_names record type */
1546 switch (n->type) {
1547 case AUDIT_TYPE_NORMAL:
1548 audit_log_format(ab, " nametype=NORMAL");
1549 break;
1550 case AUDIT_TYPE_PARENT:
1551 audit_log_format(ab, " nametype=PARENT");
1552 break;
1553 case AUDIT_TYPE_CHILD_DELETE:
1554 audit_log_format(ab, " nametype=DELETE");
1555 break;
1556 case AUDIT_TYPE_CHILD_CREATE:
1557 audit_log_format(ab, " nametype=CREATE");
1558 break;
1559 default:
1560 audit_log_format(ab, " nametype=UNKNOWN");
1561 break;
1562 }
1563
1564 audit_log_fcaps(ab, n);
1565 audit_log_end(ab);
1566}
1567
2a1fe215 1568static void audit_log_proctitle(void)
3f1c8250
WR
1569{
1570 int res;
1571 char *buf;
1572 char *msg = "(null)";
1573 int len = strlen(msg);
2a1fe215 1574 struct audit_context *context = audit_context();
3f1c8250
WR
1575 struct audit_buffer *ab;
1576
1577 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1578 if (!ab)
1579 return; /* audit_panic or being filtered */
1580
1581 audit_log_format(ab, "proctitle=");
1582
1583 /* Not cached */
1584 if (!context->proctitle.value) {
1585 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1586 if (!buf)
1587 goto out;
1588 /* Historically called this from procfs naming */
2a1fe215 1589 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1590 if (res == 0) {
1591 kfree(buf);
1592 goto out;
1593 }
1594 res = audit_proctitle_rtrim(buf, res);
1595 if (res == 0) {
1596 kfree(buf);
1597 goto out;
1598 }
1599 context->proctitle.value = buf;
1600 context->proctitle.len = res;
1601 }
1602 msg = context->proctitle.value;
1603 len = context->proctitle.len;
1604out:
1605 audit_log_n_untrustedstring(ab, msg, len);
1606 audit_log_end(ab);
1607}
1608
5bd2182d
PM
1609/**
1610 * audit_log_uring - generate a AUDIT_URINGOP record
1611 * @ctx: the audit context
1612 */
1613static void audit_log_uring(struct audit_context *ctx)
1614{
1615 struct audit_buffer *ab;
1616 const struct cred *cred;
1617
1618 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1619 if (!ab)
1620 return;
1621 cred = current_cred();
1622 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1623 if (ctx->return_valid != AUDITSC_INVALID)
1624 audit_log_format(ab, " success=%s exit=%ld",
1625 (ctx->return_valid == AUDITSC_SUCCESS ?
1626 "yes" : "no"),
1627 ctx->return_code);
1628 audit_log_format(ab,
1629 " items=%d"
1630 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1631 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1632 ctx->name_count,
1633 task_ppid_nr(current), task_tgid_nr(current),
1634 from_kuid(&init_user_ns, cred->uid),
1635 from_kgid(&init_user_ns, cred->gid),
1636 from_kuid(&init_user_ns, cred->euid),
1637 from_kuid(&init_user_ns, cred->suid),
1638 from_kuid(&init_user_ns, cred->fsuid),
1639 from_kgid(&init_user_ns, cred->egid),
1640 from_kgid(&init_user_ns, cred->sgid),
1641 from_kgid(&init_user_ns, cred->fsgid));
1642 audit_log_task_context(ab);
1643 audit_log_key(ab, ctx->filterkey);
1644 audit_log_end(ab);
1645}
1646
2a1fe215 1647static void audit_log_exit(void)
1da177e4 1648{
9c7aa6aa 1649 int i, call_panic = 0;
2a1fe215 1650 struct audit_context *context = audit_context();
1da177e4 1651 struct audit_buffer *ab;
7551ced3 1652 struct audit_aux_data *aux;
5195d8e2 1653 struct audit_names *n;
1da177e4 1654
2a1fe215 1655 context->personality = current->personality;
e495149b 1656
12c5e81d
PM
1657 switch (context->context) {
1658 case AUDIT_CTX_SYSCALL:
1659 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1660 if (!ab)
1661 return;
1662 audit_log_format(ab, "arch=%x syscall=%d",
1663 context->arch, context->major);
1664 if (context->personality != PER_LINUX)
1665 audit_log_format(ab, " per=%lx", context->personality);
1666 if (context->return_valid != AUDITSC_INVALID)
1667 audit_log_format(ab, " success=%s exit=%ld",
1668 (context->return_valid == AUDITSC_SUCCESS ?
1669 "yes" : "no"),
1670 context->return_code);
1671 audit_log_format(ab,
1672 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1673 context->argv[0],
1674 context->argv[1],
1675 context->argv[2],
1676 context->argv[3],
1677 context->name_count);
1678 audit_log_task_info(ab);
1679 audit_log_key(ab, context->filterkey);
1680 audit_log_end(ab);
1681 break;
5bd2182d
PM
1682 case AUDIT_CTX_URING:
1683 audit_log_uring(context);
1684 break;
12c5e81d
PM
1685 default:
1686 BUG();
1687 break;
1688 }
1da177e4 1689
7551ced3 1690 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1691
e495149b 1692 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1693 if (!ab)
1694 continue; /* audit_panic has been called */
1695
1da177e4 1696 switch (aux->type) {
20ca73bc 1697
3fc689e9
EP
1698 case AUDIT_BPRM_FCAPS: {
1699 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
254c8b96 1700
3fc689e9
EP
1701 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1702 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1703 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1704 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1705 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1706 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1707 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1708 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1709 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1710 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1711 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1712 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1713 audit_log_format(ab, " frootid=%d",
1714 from_kuid(&init_user_ns,
1715 axs->fcap.rootid));
3fc689e9
EP
1716 break; }
1717
1da177e4
LT
1718 }
1719 audit_log_end(ab);
1da177e4
LT
1720 }
1721
f3298dc4 1722 if (context->type)
a33e6751 1723 show_special(context, &call_panic);
f3298dc4 1724
157cf649
AV
1725 if (context->fds[0] >= 0) {
1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1727 if (ab) {
1728 audit_log_format(ab, "fd0=%d fd1=%d",
1729 context->fds[0], context->fds[1]);
1730 audit_log_end(ab);
1731 }
1732 }
1733
4f6b434f
AV
1734 if (context->sockaddr_len) {
1735 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1736 if (ab) {
1737 audit_log_format(ab, "saddr=");
1738 audit_log_n_hex(ab, (void *)context->sockaddr,
1739 context->sockaddr_len);
1740 audit_log_end(ab);
1741 }
1742 }
1743
e54dc243
AG
1744 for (aux = context->aux_pids; aux; aux = aux->next) {
1745 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1746
1747 for (i = 0; i < axs->pid_count; i++)
1748 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1749 axs->target_auid[i],
1750 axs->target_uid[i],
4746ec5b 1751 axs->target_sessionid[i],
c2a7780e
EP
1752 axs->target_sid[i],
1753 axs->target_comm[i]))
e54dc243 1754 call_panic = 1;
a5cb013d
AV
1755 }
1756
e54dc243
AG
1757 if (context->target_pid &&
1758 audit_log_pid_context(context, context->target_pid,
c2a7780e 1759 context->target_auid, context->target_uid,
4746ec5b 1760 context->target_sessionid,
c2a7780e 1761 context->target_sid, context->target_comm))
e54dc243
AG
1762 call_panic = 1;
1763
44707fdf 1764 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1766 if (ab) {
0b7a0fdb 1767 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1768 audit_log_end(ab);
1769 }
1770 }
73241ccc 1771
5195d8e2 1772 i = 0;
79f6530c
JL
1773 list_for_each_entry(n, &context->names_list, list) {
1774 if (n->hidden)
1775 continue;
b24a30a7 1776 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1777 }
c0641f28 1778
12c5e81d
PM
1779 if (context->context == AUDIT_CTX_SYSCALL)
1780 audit_log_proctitle();
3f1c8250 1781
c0641f28
EP
1782 /* Send end of event record to help user space know we are finished */
1783 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1784 if (ab)
1785 audit_log_end(ab);
9c7aa6aa 1786 if (call_panic)
12c5e81d 1787 audit_panic("error in audit_log_exit()");
1da177e4
LT
1788}
1789
b0dd25a8 1790/**
196a5085 1791 * __audit_free - free a per-task audit context
b0dd25a8
RD
1792 * @tsk: task whose audit context block to free
1793 *
67daf270 1794 * Called from copy_process, do_exit, and the io_uring code
b0dd25a8 1795 */
a4ff8dba 1796void __audit_free(struct task_struct *tsk)
1da177e4 1797{
2a1fe215 1798 struct audit_context *context = tsk->audit_context;
1da177e4 1799
56179a6e 1800 if (!context)
1da177e4
LT
1801 return;
1802
12c5e81d 1803 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
1804 if (!list_empty(&context->killed_trees))
1805 audit_kill_trees(context);
1806
2a1fe215
PM
1807 /* We are called either by do_exit() or the fork() error handling code;
1808 * in the former case tsk == current and in the latter tsk is a
1809 * random task_struct that doesn't doesn't have any meaningful data we
1810 * need to log via audit_log_exit().
1811 */
67daf270 1812 if (tsk == current && !context->dummy) {
ba59eae7 1813 context->return_valid = AUDITSC_INVALID;
2a1fe215 1814 context->return_code = 0;
67daf270
PM
1815 if (context->context == AUDIT_CTX_SYSCALL) {
1816 audit_filter_syscall(tsk, context);
1817 audit_filter_inodes(tsk, context);
1818 if (context->current_state == AUDIT_STATE_RECORD)
1819 audit_log_exit();
1820 } else if (context->context == AUDIT_CTX_URING) {
1821 /* TODO: verify this case is real and valid */
1822 audit_filter_uring(tsk, context);
1823 audit_filter_inodes(tsk, context);
1824 if (context->current_state == AUDIT_STATE_RECORD)
1825 audit_log_uring(context);
1826 }
2a1fe215
PM
1827 }
1828
2a1fe215 1829 audit_set_context(tsk, NULL);
1da177e4
LT
1830 audit_free_context(context);
1831}
1832
12c5e81d
PM
1833/**
1834 * audit_return_fixup - fixup the return codes in the audit_context
1835 * @ctx: the audit_context
1836 * @success: true/false value to indicate if the operation succeeded or not
1837 * @code: operation return code
1838 *
1839 * We need to fixup the return code in the audit logs if the actual return
1840 * codes are later going to be fixed by the arch specific signal handlers.
1841 */
1842static void audit_return_fixup(struct audit_context *ctx,
1843 int success, long code)
1844{
1845 /*
1846 * This is actually a test for:
1847 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1848 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1849 *
1850 * but is faster than a bunch of ||
1851 */
1852 if (unlikely(code <= -ERESTARTSYS) &&
1853 (code >= -ERESTART_RESTARTBLOCK) &&
1854 (code != -ENOIOCTLCMD))
1855 ctx->return_code = -EINTR;
1856 else
1857 ctx->return_code = code;
1858 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1859}
1860
5bd2182d
PM
1861/**
1862 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1863 * @op: the io_uring opcode
1864 *
1865 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1866 * operations. This function should only ever be called from
1867 * audit_uring_entry() as we rely on the audit context checking present in that
1868 * function.
1869 */
1870void __audit_uring_entry(u8 op)
1871{
1872 struct audit_context *ctx = audit_context();
1873
1874 if (ctx->state == AUDIT_STATE_DISABLED)
1875 return;
1876
1877 /*
1878 * NOTE: It's possible that we can be called from the process' context
1879 * before it returns to userspace, and before audit_syscall_exit()
1880 * is called. In this case there is not much to do, just record
1881 * the io_uring details and return.
1882 */
1883 ctx->uring_op = op;
1884 if (ctx->context == AUDIT_CTX_SYSCALL)
1885 return;
1886
1887 ctx->dummy = !audit_n_rules;
1888 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1889 ctx->prio = 0;
1890
1891 ctx->context = AUDIT_CTX_URING;
1892 ctx->current_state = ctx->state;
1893 ktime_get_coarse_real_ts64(&ctx->ctime);
1894}
1895
1896/**
1897 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1898 * @success: true/false value to indicate if the operation succeeded or not
1899 * @code: operation return code
1900 *
1901 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1902 * operations. This function should only ever be called from
1903 * audit_uring_exit() as we rely on the audit context checking present in that
1904 * function.
1905 */
1906void __audit_uring_exit(int success, long code)
1907{
1908 struct audit_context *ctx = audit_context();
1909
5bd2182d
PM
1910 if (ctx->context == AUDIT_CTX_SYSCALL) {
1911 /*
1912 * NOTE: See the note in __audit_uring_entry() about the case
1913 * where we may be called from process context before we
1914 * return to userspace via audit_syscall_exit(). In this
1915 * case we simply emit a URINGOP record and bail, the
1916 * normal syscall exit handling will take care of
1917 * everything else.
1918 * It is also worth mentioning that when we are called,
1919 * the current process creds may differ from the creds
1920 * used during the normal syscall processing; keep that
1921 * in mind if/when we move the record generation code.
1922 */
1923
1924 /*
1925 * We need to filter on the syscall info here to decide if we
1926 * should emit a URINGOP record. I know it seems odd but this
1927 * solves the problem where users have a filter to block *all*
1928 * syscall records in the "exit" filter; we want to preserve
1929 * the behavior here.
1930 */
1931 audit_filter_syscall(current, ctx);
67daf270
PM
1932 if (ctx->current_state != AUDIT_STATE_RECORD)
1933 audit_filter_uring(current, ctx);
5bd2182d
PM
1934 audit_filter_inodes(current, ctx);
1935 if (ctx->current_state != AUDIT_STATE_RECORD)
1936 return;
1937
1938 audit_log_uring(ctx);
1939 return;
1940 }
1941
1942 /* this may generate CONFIG_CHANGE records */
1943 if (!list_empty(&ctx->killed_trees))
1944 audit_kill_trees(ctx);
1945
67daf270
PM
1946 /* run through both filters to ensure we set the filterkey properly */
1947 audit_filter_uring(current, ctx);
5bd2182d
PM
1948 audit_filter_inodes(current, ctx);
1949 if (ctx->current_state != AUDIT_STATE_RECORD)
1950 goto out;
1951 audit_return_fixup(ctx, success, code);
1952 audit_log_exit();
1953
1954out:
1955 audit_reset_context(ctx);
1956}
1957
b0dd25a8 1958/**
196a5085 1959 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1960 * @major: major syscall type (function)
1961 * @a1: additional syscall register 1
1962 * @a2: additional syscall register 2
1963 * @a3: additional syscall register 3
1964 * @a4: additional syscall register 4
1965 *
1966 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1967 * audit context was created when the task was created and the state or
1968 * filters demand the audit context be built. If the state from the
619ed58a 1969 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1da177e4
LT
1970 * then the record will be written at syscall exit time (otherwise, it
1971 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1972 * be written).
1973 */
b4f0d375
RGB
1974void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1975 unsigned long a3, unsigned long a4)
1da177e4 1976{
cdfb6b34 1977 struct audit_context *context = audit_context();
1da177e4
LT
1978 enum audit_state state;
1979
94d14e3e 1980 if (!audit_enabled || !context)
86a1c34a 1981 return;
1da177e4 1982
12c5e81d
PM
1983 WARN_ON(context->context != AUDIT_CTX_UNUSED);
1984 WARN_ON(context->name_count);
1985 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
1986 audit_panic("unrecoverable error in audit_syscall_entry()");
1987 return;
1988 }
1da177e4 1989
1da177e4 1990 state = context->state;
619ed58a 1991 if (state == AUDIT_STATE_DISABLED)
5260ecc2
RGB
1992 return;
1993
d51374ad 1994 context->dummy = !audit_n_rules;
619ed58a 1995 if (!context->dummy && state == AUDIT_STATE_BUILD) {
0590b933 1996 context->prio = 0;
cdfb6b34 1997 if (auditd_test_task(current))
5260ecc2 1998 return;
0590b933 1999 }
1da177e4 2000
16add411 2001 context->arch = syscall_get_arch(current);
5260ecc2
RGB
2002 context->major = major;
2003 context->argv[0] = a1;
2004 context->argv[1] = a2;
2005 context->argv[2] = a3;
2006 context->argv[3] = a4;
12c5e81d 2007 context->context = AUDIT_CTX_SYSCALL;
0590b933 2008 context->current_state = state;
290e44b7 2009 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
2010}
2011
b0dd25a8 2012/**
196a5085 2013 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
2014 * @success: success value of the syscall
2015 * @return_code: return value of the syscall
b0dd25a8
RD
2016 *
2017 * Tear down after system call. If the audit context has been marked as
619ed58a 2018 * auditable (either because of the AUDIT_STATE_RECORD state from
42ae610c 2019 * filtering, or because some other part of the kernel wrote an audit
1da177e4 2020 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
2021 * free the names stored from getname().
2022 */
d7e7528b 2023void __audit_syscall_exit(int success, long return_code)
1da177e4 2024{
12c5e81d 2025 struct audit_context *context = audit_context();
1da177e4 2026
12c5e81d
PM
2027 if (!context || context->dummy ||
2028 context->context != AUDIT_CTX_SYSCALL)
2029 goto out;
1da177e4 2030
12c5e81d 2031 /* this may generate CONFIG_CHANGE records */
9e36a5d4
RGB
2032 if (!list_empty(&context->killed_trees))
2033 audit_kill_trees(context);
2034
12c5e81d
PM
2035 /* run through both filters to ensure we set the filterkey properly */
2036 audit_filter_syscall(current, context);
2037 audit_filter_inodes(current, context);
2038 if (context->current_state < AUDIT_STATE_RECORD)
2039 goto out;
2a1fe215 2040
12c5e81d
PM
2041 audit_return_fixup(context, success, return_code);
2042 audit_log_exit();
2fd6f58b 2043
12c5e81d
PM
2044out:
2045 audit_reset_context(context);
1da177e4
LT
2046}
2047
74c3cbe3
AV
2048static inline void handle_one(const struct inode *inode)
2049{
74c3cbe3
AV
2050 struct audit_context *context;
2051 struct audit_tree_refs *p;
2052 struct audit_chunk *chunk;
2053 int count;
254c8b96 2054
08991e83 2055 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 2056 return;
cdfb6b34 2057 context = audit_context();
74c3cbe3
AV
2058 p = context->trees;
2059 count = context->tree_count;
2060 rcu_read_lock();
2061 chunk = audit_tree_lookup(inode);
2062 rcu_read_unlock();
2063 if (!chunk)
2064 return;
2065 if (likely(put_tree_ref(context, chunk)))
2066 return;
2067 if (unlikely(!grow_tree_refs(context))) {
f952d10f 2068 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2069 audit_set_auditable(context);
2070 audit_put_chunk(chunk);
2071 unroll_tree_refs(context, p, count);
2072 return;
2073 }
2074 put_tree_ref(context, chunk);
74c3cbe3
AV
2075}
2076
2077static void handle_path(const struct dentry *dentry)
2078{
74c3cbe3
AV
2079 struct audit_context *context;
2080 struct audit_tree_refs *p;
2081 const struct dentry *d, *parent;
2082 struct audit_chunk *drop;
2083 unsigned long seq;
2084 int count;
2085
cdfb6b34 2086 context = audit_context();
74c3cbe3
AV
2087 p = context->trees;
2088 count = context->tree_count;
2089retry:
2090 drop = NULL;
2091 d = dentry;
2092 rcu_read_lock();
2093 seq = read_seqbegin(&rename_lock);
2094 for(;;) {
3b362157 2095 struct inode *inode = d_backing_inode(d);
254c8b96 2096
08991e83 2097 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3 2098 struct audit_chunk *chunk;
254c8b96 2099
74c3cbe3
AV
2100 chunk = audit_tree_lookup(inode);
2101 if (chunk) {
2102 if (unlikely(!put_tree_ref(context, chunk))) {
2103 drop = chunk;
2104 break;
2105 }
2106 }
2107 }
2108 parent = d->d_parent;
2109 if (parent == d)
2110 break;
2111 d = parent;
2112 }
2113 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2114 rcu_read_unlock();
2115 if (!drop) {
2116 /* just a race with rename */
2117 unroll_tree_refs(context, p, count);
2118 goto retry;
2119 }
2120 audit_put_chunk(drop);
2121 if (grow_tree_refs(context)) {
2122 /* OK, got more space */
2123 unroll_tree_refs(context, p, count);
2124 goto retry;
2125 }
2126 /* too bad */
f952d10f 2127 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
2128 unroll_tree_refs(context, p, count);
2129 audit_set_auditable(context);
2130 return;
2131 }
2132 rcu_read_unlock();
74c3cbe3
AV
2133}
2134
78e2e802
JL
2135static struct audit_names *audit_alloc_name(struct audit_context *context,
2136 unsigned char type)
5195d8e2
EP
2137{
2138 struct audit_names *aname;
2139
2140 if (context->name_count < AUDIT_NAMES) {
2141 aname = &context->preallocated_names[context->name_count];
2142 memset(aname, 0, sizeof(*aname));
2143 } else {
2144 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2145 if (!aname)
2146 return NULL;
2147 aname->should_free = true;
2148 }
2149
84cb777e 2150 aname->ino = AUDIT_INO_UNSET;
78e2e802 2151 aname->type = type;
5195d8e2
EP
2152 list_add_tail(&aname->list, &context->names_list);
2153
2154 context->name_count++;
6d915476
RGB
2155 if (!context->pwd.dentry)
2156 get_fs_pwd(current->fs, &context->pwd);
5195d8e2
EP
2157 return aname;
2158}
2159
7ac86265 2160/**
196a5085 2161 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
2162 * @uptr: userland ptr to pathname
2163 *
2164 * Search the audit_names list for the current audit context. If there is an
2165 * existing entry with a matching "uptr" then return the filename
2166 * associated with that audit_name. If not, return NULL.
2167 */
2168struct filename *
2169__audit_reusename(const __user char *uptr)
2170{
cdfb6b34 2171 struct audit_context *context = audit_context();
7ac86265
JL
2172 struct audit_names *n;
2173
2174 list_for_each_entry(n, &context->names_list, list) {
2175 if (!n->name)
2176 continue;
55422d0b
PM
2177 if (n->name->uptr == uptr) {
2178 n->name->refcnt++;
7ac86265 2179 return n->name;
55422d0b 2180 }
7ac86265
JL
2181 }
2182 return NULL;
2183}
2184
b0dd25a8 2185/**
196a5085 2186 * __audit_getname - add a name to the list
b0dd25a8
RD
2187 * @name: name to add
2188 *
2189 * Add a name to the list of audit names for this context.
2190 * Called from fs/namei.c:getname().
2191 */
91a27b2a 2192void __audit_getname(struct filename *name)
1da177e4 2193{
cdfb6b34 2194 struct audit_context *context = audit_context();
5195d8e2 2195 struct audit_names *n;
1da177e4 2196
12c5e81d 2197 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2198 return;
91a27b2a 2199
78e2e802 2200 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2201 if (!n)
2202 return;
2203
2204 n->name = name;
2205 n->name_len = AUDIT_NAME_FULL;
adb5c247 2206 name->aname = n;
55422d0b 2207 name->refcnt++;
1da177e4
LT
2208}
2209
5f3d544f
RGB
2210static inline int audit_copy_fcaps(struct audit_names *name,
2211 const struct dentry *dentry)
2212{
2213 struct cpu_vfs_cap_data caps;
2214 int rc;
2215
2216 if (!dentry)
2217 return 0;
2218
71bc356f 2219 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
5f3d544f
RGB
2220 if (rc)
2221 return rc;
2222
2223 name->fcap.permitted = caps.permitted;
2224 name->fcap.inheritable = caps.inheritable;
2225 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2226 name->fcap.rootid = caps.rootid;
2227 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2228 VFS_CAP_REVISION_SHIFT;
2229
2230 return 0;
2231}
2232
2233/* Copy inode data into an audit_names. */
2efa48fe
Y
2234static void audit_copy_inode(struct audit_names *name,
2235 const struct dentry *dentry,
2236 struct inode *inode, unsigned int flags)
5f3d544f
RGB
2237{
2238 name->ino = inode->i_ino;
2239 name->dev = inode->i_sb->s_dev;
2240 name->mode = inode->i_mode;
2241 name->uid = inode->i_uid;
2242 name->gid = inode->i_gid;
2243 name->rdev = inode->i_rdev;
2244 security_inode_getsecid(inode, &name->osid);
2245 if (flags & AUDIT_INODE_NOEVAL) {
2246 name->fcap_ver = -1;
2247 return;
2248 }
2249 audit_copy_fcaps(name, dentry);
2250}
2251
b0dd25a8 2252/**
bfcec708 2253 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2254 * @name: name being audited
481968f4 2255 * @dentry: dentry being audited
79f6530c 2256 * @flags: attributes for this particular entry
b0dd25a8 2257 */
adb5c247 2258void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 2259 unsigned int flags)
1da177e4 2260{
cdfb6b34 2261 struct audit_context *context = audit_context();
d6335d77 2262 struct inode *inode = d_backing_inode(dentry);
5195d8e2 2263 struct audit_names *n;
79f6530c 2264 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
2265 struct audit_entry *e;
2266 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2267 int i;
1da177e4 2268
12c5e81d 2269 if (context->context == AUDIT_CTX_UNUSED)
1da177e4 2270 return;
5195d8e2 2271
a252f56a 2272 rcu_read_lock();
699c1868
RGB
2273 list_for_each_entry_rcu(e, list, list) {
2274 for (i = 0; i < e->rule.field_count; i++) {
2275 struct audit_field *f = &e->rule.fields[i];
2276
2277 if (f->type == AUDIT_FSTYPE
2278 && audit_comparator(inode->i_sb->s_magic,
2279 f->op, f->val)
2280 && e->rule.action == AUDIT_NEVER) {
2281 rcu_read_unlock();
2282 return;
a252f56a
RGB
2283 }
2284 }
2285 }
2286 rcu_read_unlock();
2287
9cec9d68
JL
2288 if (!name)
2289 goto out_alloc;
2290
adb5c247
JL
2291 /*
2292 * If we have a pointer to an audit_names entry already, then we can
2293 * just use it directly if the type is correct.
2294 */
2295 n = name->aname;
2296 if (n) {
2297 if (parent) {
2298 if (n->type == AUDIT_TYPE_PARENT ||
2299 n->type == AUDIT_TYPE_UNKNOWN)
2300 goto out;
2301 } else {
2302 if (n->type != AUDIT_TYPE_PARENT)
2303 goto out;
2304 }
2305 }
2306
5195d8e2 2307 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
2308 if (n->ino) {
2309 /* valid inode number, use that for the comparison */
2310 if (n->ino != inode->i_ino ||
2311 n->dev != inode->i_sb->s_dev)
2312 continue;
2313 } else if (n->name) {
2314 /* inode number has not been set, check the name */
2315 if (strcmp(n->name->name, name->name))
2316 continue;
2317 } else
2318 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
2319 continue;
2320
2321 /* match the correct record type */
2322 if (parent) {
2323 if (n->type == AUDIT_TYPE_PARENT ||
2324 n->type == AUDIT_TYPE_UNKNOWN)
2325 goto out;
2326 } else {
2327 if (n->type != AUDIT_TYPE_PARENT)
2328 goto out;
2329 }
1da177e4 2330 }
5195d8e2 2331
9cec9d68 2332out_alloc:
4a928436
PM
2333 /* unable to find an entry with both a matching name and type */
2334 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2335 if (!n)
2336 return;
fcf22d82 2337 if (name) {
fd3522fd 2338 n->name = name;
55422d0b 2339 name->refcnt++;
fcf22d82 2340 }
4a928436 2341
5195d8e2 2342out:
bfcec708 2343 if (parent) {
91a27b2a 2344 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 2345 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
2346 if (flags & AUDIT_INODE_HIDDEN)
2347 n->hidden = true;
bfcec708
JL
2348 } else {
2349 n->name_len = AUDIT_NAME_FULL;
2350 n->type = AUDIT_TYPE_NORMAL;
2351 }
74c3cbe3 2352 handle_path(dentry);
57d46577 2353 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
73241ccc
AG
2354}
2355
9f45f5bf
AV
2356void __audit_file(const struct file *file)
2357{
2358 __audit_inode(NULL, file->f_path.dentry, 0);
2359}
2360
73241ccc 2361/**
c43a25ab 2362 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2363 * @parent: inode of dentry parent
c43a25ab 2364 * @dentry: dentry being audited
4fa6b5ec 2365 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2366 *
2367 * For syscalls that create or remove filesystem objects, audit_inode
2368 * can only collect information for the filesystem object's parent.
2369 * This call updates the audit context with the child's information.
2370 * Syscalls that create a new filesystem object must be hooked after
2371 * the object is created. Syscalls that remove a filesystem object
2372 * must be hooked prior, in order to capture the target inode during
2373 * unsuccessful attempts.
2374 */
d6335d77 2375void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
2376 const struct dentry *dentry,
2377 const unsigned char type)
73241ccc 2378{
cdfb6b34 2379 struct audit_context *context = audit_context();
d6335d77 2380 struct inode *inode = d_backing_inode(dentry);
795d673a 2381 const struct qstr *dname = &dentry->d_name;
4fa6b5ec 2382 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
2383 struct audit_entry *e;
2384 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2385 int i;
73241ccc 2386
12c5e81d 2387 if (context->context == AUDIT_CTX_UNUSED)
73241ccc
AG
2388 return;
2389
42d5e376 2390 rcu_read_lock();
699c1868
RGB
2391 list_for_each_entry_rcu(e, list, list) {
2392 for (i = 0; i < e->rule.field_count; i++) {
2393 struct audit_field *f = &e->rule.fields[i];
2394
2395 if (f->type == AUDIT_FSTYPE
2396 && audit_comparator(parent->i_sb->s_magic,
2397 f->op, f->val)
2398 && e->rule.action == AUDIT_NEVER) {
2399 rcu_read_unlock();
2400 return;
42d5e376
RGB
2401 }
2402 }
2403 }
2404 rcu_read_unlock();
2405
74c3cbe3
AV
2406 if (inode)
2407 handle_one(inode);
73241ccc 2408
4fa6b5ec 2409 /* look for a parent entry first */
5195d8e2 2410 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
2411 if (!n->name ||
2412 (n->type != AUDIT_TYPE_PARENT &&
2413 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2414 continue;
2415
57c59f58
PM
2416 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2417 !audit_compare_dname_path(dname,
2418 n->name->name, n->name_len)) {
2419 if (n->type == AUDIT_TYPE_UNKNOWN)
2420 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
2421 found_parent = n;
2422 break;
f368c07d 2423 }
5712e88f 2424 }
73241ccc 2425
4fa6b5ec 2426 /* is there a matching child entry? */
5195d8e2 2427 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2428 /* can only match entries that have a name */
57c59f58
PM
2429 if (!n->name ||
2430 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
2431 continue;
2432
795d673a 2433 if (!strcmp(dname->name, n->name->name) ||
91a27b2a 2434 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2435 found_parent ?
2436 found_parent->name_len :
e3d6b07b 2437 AUDIT_NAME_FULL)) {
57c59f58
PM
2438 if (n->type == AUDIT_TYPE_UNKNOWN)
2439 n->type = type;
4fa6b5ec
JL
2440 found_child = n;
2441 break;
5712e88f 2442 }
ac9910ce 2443 }
5712e88f 2444
5712e88f 2445 if (!found_parent) {
4fa6b5ec
JL
2446 /* create a new, "anonymous" parent record */
2447 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2448 if (!n)
ac9910ce 2449 return;
57d46577 2450 audit_copy_inode(n, NULL, parent, 0);
73d3ec5a 2451 }
5712e88f
AG
2452
2453 if (!found_child) {
4fa6b5ec
JL
2454 found_child = audit_alloc_name(context, type);
2455 if (!found_child)
5712e88f 2456 return;
5712e88f
AG
2457
2458 /* Re-use the name belonging to the slot for a matching parent
2459 * directory. All names for this context are relinquished in
2460 * audit_free_names() */
2461 if (found_parent) {
4fa6b5ec
JL
2462 found_child->name = found_parent->name;
2463 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 2464 found_child->name->refcnt++;
5712e88f 2465 }
5712e88f 2466 }
57c59f58 2467
4fa6b5ec 2468 if (inode)
57d46577 2469 audit_copy_inode(found_child, dentry, inode, 0);
4fa6b5ec 2470 else
84cb777e 2471 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 2472}
50e437d5 2473EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2474
b0dd25a8
RD
2475/**
2476 * auditsc_get_stamp - get local copies of audit_context values
2477 * @ctx: audit_context for the task
2115bb25 2478 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
2479 * @serial: serial value that is recorded in the audit_context
2480 *
2481 * Also sets the context as auditable.
2482 */
48887e63 2483int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 2484 struct timespec64 *t, unsigned int *serial)
1da177e4 2485{
12c5e81d 2486 if (ctx->context == AUDIT_CTX_UNUSED)
48887e63 2487 return 0;
ce625a80
DW
2488 if (!ctx->serial)
2489 ctx->serial = audit_serial();
bfb4496e
DW
2490 t->tv_sec = ctx->ctime.tv_sec;
2491 t->tv_nsec = ctx->ctime.tv_nsec;
2492 *serial = ctx->serial;
0590b933
AV
2493 if (!ctx->prio) {
2494 ctx->prio = 1;
619ed58a 2495 ctx->current_state = AUDIT_STATE_RECORD;
0590b933 2496 }
48887e63 2497 return 1;
1da177e4
LT
2498}
2499
20ca73bc
GW
2500/**
2501 * __audit_mq_open - record audit data for a POSIX MQ open
2502 * @oflag: open flag
2503 * @mode: mode bits
6b962559 2504 * @attr: queue attributes
20ca73bc 2505 *
20ca73bc 2506 */
df0a4283 2507void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2508{
cdfb6b34 2509 struct audit_context *context = audit_context();
20ca73bc 2510
564f6993
AV
2511 if (attr)
2512 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2513 else
2514 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2515
564f6993
AV
2516 context->mq_open.oflag = oflag;
2517 context->mq_open.mode = mode;
20ca73bc 2518
564f6993 2519 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2520}
2521
2522/**
c32c8af4 2523 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2524 * @mqdes: MQ descriptor
2525 * @msg_len: Message length
2526 * @msg_prio: Message priority
c32c8af4 2527 * @abs_timeout: Message timeout in absolute time
20ca73bc 2528 *
20ca73bc 2529 */
c32c8af4 2530void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2531 const struct timespec64 *abs_timeout)
20ca73bc 2532{
cdfb6b34 2533 struct audit_context *context = audit_context();
b9047726 2534 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2535
c32c8af4 2536 if (abs_timeout)
b9047726 2537 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2538 else
b9047726 2539 memset(p, 0, sizeof(*p));
20ca73bc 2540
c32c8af4
AV
2541 context->mq_sendrecv.mqdes = mqdes;
2542 context->mq_sendrecv.msg_len = msg_len;
2543 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2544
c32c8af4 2545 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2546}
2547
2548/**
2549 * __audit_mq_notify - record audit data for a POSIX MQ notify
2550 * @mqdes: MQ descriptor
6b962559 2551 * @notification: Notification event
20ca73bc 2552 *
20ca73bc
GW
2553 */
2554
20114f71 2555void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2556{
cdfb6b34 2557 struct audit_context *context = audit_context();
20ca73bc 2558
20114f71
AV
2559 if (notification)
2560 context->mq_notify.sigev_signo = notification->sigev_signo;
2561 else
2562 context->mq_notify.sigev_signo = 0;
20ca73bc 2563
20114f71
AV
2564 context->mq_notify.mqdes = mqdes;
2565 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2566}
2567
2568/**
2569 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2570 * @mqdes: MQ descriptor
2571 * @mqstat: MQ flags
2572 *
20ca73bc 2573 */
7392906e 2574void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2575{
cdfb6b34 2576 struct audit_context *context = audit_context();
254c8b96 2577
7392906e
AV
2578 context->mq_getsetattr.mqdes = mqdes;
2579 context->mq_getsetattr.mqstat = *mqstat;
2580 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2581}
2582
b0dd25a8 2583/**
196a5085 2584 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2585 * @ipcp: ipc permissions
2586 *
073115d6 2587 */
a33e6751 2588void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2589{
cdfb6b34 2590 struct audit_context *context = audit_context();
254c8b96 2591
a33e6751
AV
2592 context->ipc.uid = ipcp->uid;
2593 context->ipc.gid = ipcp->gid;
2594 context->ipc.mode = ipcp->mode;
e816f370 2595 context->ipc.has_perm = 0;
a33e6751
AV
2596 security_ipc_getsecid(ipcp, &context->ipc.osid);
2597 context->type = AUDIT_IPC;
073115d6
SG
2598}
2599
2600/**
196a5085 2601 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2602 * @qbytes: msgq bytes
2603 * @uid: msgq user id
2604 * @gid: msgq group id
2605 * @mode: msgq mode (permissions)
2606 *
e816f370 2607 * Called only after audit_ipc_obj().
b0dd25a8 2608 */
2570ebbd 2609void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2610{
cdfb6b34 2611 struct audit_context *context = audit_context();
1da177e4 2612
e816f370
AV
2613 context->ipc.qbytes = qbytes;
2614 context->ipc.perm_uid = uid;
2615 context->ipc.perm_gid = gid;
2616 context->ipc.perm_mode = mode;
2617 context->ipc.has_perm = 1;
1da177e4 2618}
c2f0c7c3 2619
d9cfea91 2620void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2621{
cdfb6b34 2622 struct audit_context *context = audit_context();
473ae30b 2623
d9cfea91
RGB
2624 context->type = AUDIT_EXECVE;
2625 context->execve.argc = bprm->argc;
473ae30b
AV
2626}
2627
2628
b0dd25a8 2629/**
196a5085 2630 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2631 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2632 * @args: args array
2633 *
b0dd25a8 2634 */
2950fa9d 2635int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2636{
cdfb6b34 2637 struct audit_context *context = audit_context();
3ec3b2fb 2638
2950fa9d
CG
2639 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2640 return -EINVAL;
f3298dc4
AV
2641 context->type = AUDIT_SOCKETCALL;
2642 context->socketcall.nargs = nargs;
2643 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2644 return 0;
3ec3b2fb
DW
2645}
2646
db349509
AV
2647/**
2648 * __audit_fd_pair - record audit data for pipe and socketpair
2649 * @fd1: the first file descriptor
2650 * @fd2: the second file descriptor
2651 *
db349509 2652 */
157cf649 2653void __audit_fd_pair(int fd1, int fd2)
db349509 2654{
cdfb6b34 2655 struct audit_context *context = audit_context();
254c8b96 2656
157cf649
AV
2657 context->fds[0] = fd1;
2658 context->fds[1] = fd2;
db349509
AV
2659}
2660
b0dd25a8 2661/**
196a5085 2662 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2663 * @len: data length in user space
2664 * @a: data address in kernel space
2665 *
2666 * Returns 0 for success or NULL context or < 0 on error.
2667 */
07c49417 2668int __audit_sockaddr(int len, void *a)
3ec3b2fb 2669{
cdfb6b34 2670 struct audit_context *context = audit_context();
3ec3b2fb 2671
4f6b434f
AV
2672 if (!context->sockaddr) {
2673 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
254c8b96 2674
4f6b434f
AV
2675 if (!p)
2676 return -ENOMEM;
2677 context->sockaddr = p;
2678 }
3ec3b2fb 2679
4f6b434f
AV
2680 context->sockaddr_len = len;
2681 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2682 return 0;
2683}
2684
a5cb013d
AV
2685void __audit_ptrace(struct task_struct *t)
2686{
cdfb6b34 2687 struct audit_context *context = audit_context();
a5cb013d 2688
fa2bea2f 2689 context->target_pid = task_tgid_nr(t);
c2a7780e 2690 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2691 context->target_uid = task_uid(t);
4746ec5b 2692 context->target_sessionid = audit_get_sessionid(t);
4ebd7651 2693 security_task_getsecid_obj(t, &context->target_sid);
c2a7780e 2694 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2695}
2696
b0dd25a8 2697/**
b48345aa 2698 * audit_signal_info_syscall - record signal info for syscalls
b0dd25a8
RD
2699 * @t: task being signaled
2700 *
2701 * If the audit subsystem is being terminated, record the task (pid)
2702 * and uid that is doing that.
2703 */
b48345aa 2704int audit_signal_info_syscall(struct task_struct *t)
c2f0c7c3 2705{
e54dc243 2706 struct audit_aux_data_pids *axp;
cdfb6b34 2707 struct audit_context *ctx = audit_context();
b48345aa 2708 kuid_t t_uid = task_uid(t);
e54dc243 2709
ab6434a1
PM
2710 if (!audit_signals || audit_dummy_context())
2711 return 0;
2712
e54dc243
AG
2713 /* optimize the common case by putting first signal recipient directly
2714 * in audit_context */
2715 if (!ctx->target_pid) {
f1dc4867 2716 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2717 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2718 ctx->target_uid = t_uid;
4746ec5b 2719 ctx->target_sessionid = audit_get_sessionid(t);
4ebd7651 2720 security_task_getsecid_obj(t, &ctx->target_sid);
c2a7780e 2721 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2722 return 0;
2723 }
2724
2725 axp = (void *)ctx->aux_pids;
2726 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2727 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2728 if (!axp)
2729 return -ENOMEM;
2730
2731 axp->d.type = AUDIT_OBJ_PID;
2732 axp->d.next = ctx->aux_pids;
2733 ctx->aux_pids = (void *)axp;
2734 }
88ae704c 2735 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2736
f1dc4867 2737 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2738 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2739 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2740 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
4ebd7651 2741 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2742 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2743 axp->pid_count++;
2744
2745 return 0;
c2f0c7c3 2746}
0a4ff8c2 2747
3fc689e9
EP
2748/**
2749 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2750 * @bprm: pointer to the bprm being processed
2751 * @new: the proposed new credentials
2752 * @old: the old credentials
3fc689e9
EP
2753 *
2754 * Simply check if the proc already has the caps given by the file and if not
2755 * store the priv escalation info for later auditing at the end of the syscall
2756 *
3fc689e9
EP
2757 * -Eric
2758 */
d84f4f99
DH
2759int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2760 const struct cred *new, const struct cred *old)
3fc689e9
EP
2761{
2762 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2763 struct audit_context *context = audit_context();
3fc689e9 2764 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2765
2766 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2767 if (!ax)
d84f4f99 2768 return -ENOMEM;
3fc689e9
EP
2769
2770 ax->d.type = AUDIT_BPRM_FCAPS;
2771 ax->d.next = context->aux;
2772 context->aux = (void *)ax;
2773
71bc356f
CB
2774 get_vfs_caps_from_disk(&init_user_ns,
2775 bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2776
2777 ax->fcap.permitted = vcaps.permitted;
2778 ax->fcap.inheritable = vcaps.inheritable;
2779 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2780 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2781 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2782
d84f4f99
DH
2783 ax->old_pcap.permitted = old->cap_permitted;
2784 ax->old_pcap.inheritable = old->cap_inheritable;
2785 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2786 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2787
d84f4f99
DH
2788 ax->new_pcap.permitted = new->cap_permitted;
2789 ax->new_pcap.inheritable = new->cap_inheritable;
2790 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2791 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2792 return 0;
3fc689e9
EP
2793}
2794
e68b75a0
EP
2795/**
2796 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2797 * @new: the new credentials
2798 * @old: the old (current) credentials
e68b75a0 2799 *
da3dae54 2800 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2801 * audit system if applicable
2802 */
ca24a23e 2803void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2804{
cdfb6b34 2805 struct audit_context *context = audit_context();
254c8b96 2806
fa2bea2f 2807 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2808 context->capset.cap.effective = new->cap_effective;
2809 context->capset.cap.inheritable = new->cap_effective;
2810 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2811 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2812 context->type = AUDIT_CAPSET;
e68b75a0
EP
2813}
2814
120a795d
AV
2815void __audit_mmap_fd(int fd, int flags)
2816{
cdfb6b34 2817 struct audit_context *context = audit_context();
254c8b96 2818
120a795d
AV
2819 context->mmap.fd = fd;
2820 context->mmap.flags = flags;
2821 context->type = AUDIT_MMAP;
2822}
2823
571e5c0e
RGB
2824void __audit_openat2_how(struct open_how *how)
2825{
2826 struct audit_context *context = audit_context();
2827
2828 context->openat2.flags = how->flags;
2829 context->openat2.mode = how->mode;
2830 context->openat2.resolve = how->resolve;
2831 context->type = AUDIT_OPENAT2;
2832}
2833
ca86cad7
RGB
2834void __audit_log_kern_module(char *name)
2835{
cdfb6b34 2836 struct audit_context *context = audit_context();
ca86cad7 2837
b305f7ed
YW
2838 context->module.name = kstrdup(name, GFP_KERNEL);
2839 if (!context->module.name)
2840 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2841 context->type = AUDIT_KERN_MODULE;
2842}
2843
de8cd83e
SG
2844void __audit_fanotify(unsigned int response)
2845{
cdfb6b34 2846 audit_log(audit_context(), GFP_KERNEL,
de8cd83e
SG
2847 AUDIT_FANOTIFY, "resp=%u", response);
2848}
2849
2d87a067
OM
2850void __audit_tk_injoffset(struct timespec64 offset)
2851{
2852 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2853 "sec=%lli nsec=%li",
2854 (long long)offset.tv_sec, offset.tv_nsec);
2855}
2856
7e8eda73
OM
2857static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2858 const char *op, enum audit_ntp_type type)
2859{
2860 const struct audit_ntp_val *val = &ad->vals[type];
2861
2862 if (val->newval == val->oldval)
2863 return;
2864
2865 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2866 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2867}
2868
2869void __audit_ntp_log(const struct audit_ntp_data *ad)
2870{
2871 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2872 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2873 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2874 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2875 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2876 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2877}
2878
c4dad0aa 2879void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
14224039 2880 enum audit_nfcfgop op, gfp_t gfp)
c4dad0aa
RGB
2881{
2882 struct audit_buffer *ab;
9d44a121 2883 char comm[sizeof(current->comm)];
c4dad0aa 2884
14224039 2885 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
c4dad0aa
RGB
2886 if (!ab)
2887 return;
2888 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2889 name, af, nentries, audit_nfcfgs[op].s);
9d44a121
RGB
2890
2891 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2892 audit_log_task_context(ab); /* subj= */
2893 audit_log_format(ab, " comm=");
2894 audit_log_untrustedstring(ab, get_task_comm(comm, current));
c4dad0aa
RGB
2895 audit_log_end(ab);
2896}
2897EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2898
7b9205bd 2899static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2900{
cca080d9
EB
2901 kuid_t auid, uid;
2902 kgid_t gid;
85e7bac3 2903 unsigned int sessionid;
9eab339b 2904 char comm[sizeof(current->comm)];
85e7bac3
EP
2905
2906 auid = audit_get_loginuid(current);
2907 sessionid = audit_get_sessionid(current);
2908 current_uid_gid(&uid, &gid);
2909
2910 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2911 from_kuid(&init_user_ns, auid),
2912 from_kuid(&init_user_ns, uid),
2913 from_kgid(&init_user_ns, gid),
2914 sessionid);
85e7bac3 2915 audit_log_task_context(ab);
fa2bea2f 2916 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2917 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2918 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2919}
2920
0a4ff8c2
SG
2921/**
2922 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2923 * @signr: signal value
0a4ff8c2
SG
2924 *
2925 * If a process ends with a core dump, something fishy is going on and we
2926 * should record the event for investigation.
2927 */
2928void audit_core_dumps(long signr)
2929{
2930 struct audit_buffer *ab;
0a4ff8c2
SG
2931
2932 if (!audit_enabled)
2933 return;
2934
2935 if (signr == SIGQUIT) /* don't care for those */
2936 return;
2937
d87de4a8 2938 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2939 if (unlikely(!ab))
2940 return;
61c0ee87 2941 audit_log_task(ab);
89670aff 2942 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2943 audit_log_end(ab);
2944}
0a4ff8c2 2945
326bee02
TH
2946/**
2947 * audit_seccomp - record information about a seccomp action
2948 * @syscall: syscall number
2949 * @signr: signal value
2950 * @code: the seccomp action
2951 *
2952 * Record the information associated with a seccomp action. Event filtering for
2953 * seccomp actions that are not to be logged is done in seccomp_log().
2954 * Therefore, this function forces auditing independent of the audit_enabled
2955 * and dummy context state because seccomp actions should be logged even when
2956 * audit is not in use.
2957 */
2958void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2959{
2960 struct audit_buffer *ab;
2961
9b8753ff 2962 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
2963 if (unlikely(!ab))
2964 return;
2965 audit_log_task(ab);
84db564a 2966 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
16add411 2967 signr, syscall_get_arch(current), syscall,
efbc0fbf 2968 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2969 audit_log_end(ab);
2970}
916d7576 2971
ea6eca77
TH
2972void audit_seccomp_actions_logged(const char *names, const char *old_names,
2973 int res)
2974{
2975 struct audit_buffer *ab;
2976
2977 if (!audit_enabled)
2978 return;
2979
8982a1fb 2980 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
2981 AUDIT_CONFIG_CHANGE);
2982 if (unlikely(!ab))
2983 return;
2984
d0a3f18a
PM
2985 audit_log_format(ab,
2986 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2987 names, old_names, res);
ea6eca77
TH
2988 audit_log_end(ab);
2989}
2990
916d7576
AV
2991struct list_head *audit_killed_trees(void)
2992{
cdfb6b34 2993 struct audit_context *ctx = audit_context();
12c5e81d 2994 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
916d7576
AV
2995 return NULL;
2996 return &ctx->killed_trees;
2997}