don't reallocate buffer in every audit_sockaddr()
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
20ca73bc
GW
127struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132};
133
134struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140};
141
142struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146};
147
148struct audit_aux_data_mq_getsetattr {
149 struct audit_aux_data d;
150 mqd_t mqdes;
151 struct mq_attr mqstat;
152};
153
1da177e4
LT
154struct audit_aux_data_ipcctl {
155 struct audit_aux_data d;
156 struct ipc_perm p;
157 unsigned long qbytes;
158 uid_t uid;
159 gid_t gid;
160 mode_t mode;
9c7aa6aa 161 u32 osid;
1da177e4
LT
162};
163
473ae30b
AV
164struct audit_aux_data_execve {
165 struct audit_aux_data d;
166 int argc;
167 int envc;
bdf4c48a 168 struct mm_struct *mm;
473ae30b
AV
169};
170
3ec3b2fb
DW
171struct audit_aux_data_socketcall {
172 struct audit_aux_data d;
173 int nargs;
174 unsigned long args[0];
175};
176
db349509
AV
177struct audit_aux_data_fd_pair {
178 struct audit_aux_data d;
179 int fd[2];
180};
181
e54dc243
AG
182struct audit_aux_data_pids {
183 struct audit_aux_data d;
184 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
185 uid_t target_auid[AUDIT_AUX_PIDS];
186 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 187 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 188 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 189 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
190 int pid_count;
191};
192
3fc689e9
EP
193struct audit_aux_data_bprm_fcaps {
194 struct audit_aux_data d;
195 struct audit_cap_data fcap;
196 unsigned int fcap_ver;
197 struct audit_cap_data old_pcap;
198 struct audit_cap_data new_pcap;
199};
200
e68b75a0
EP
201struct audit_aux_data_capset {
202 struct audit_aux_data d;
203 pid_t pid;
204 struct audit_cap_data cap;
205};
206
74c3cbe3
AV
207struct audit_tree_refs {
208 struct audit_tree_refs *next;
209 struct audit_chunk *c[31];
210};
211
1da177e4
LT
212/* The per-task audit context. */
213struct audit_context {
d51374ad 214 int dummy; /* must be the first element */
1da177e4
LT
215 int in_syscall; /* 1 if task is in a syscall */
216 enum audit_state state;
217 unsigned int serial; /* serial number for record */
218 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
219 int major; /* syscall number */
220 unsigned long argv[4]; /* syscall arguments */
221 int return_valid; /* return code is valid */
2fd6f58b 222 long return_code;/* syscall return code */
1da177e4
LT
223 int auditable; /* 1 if record should be written */
224 int name_count;
225 struct audit_names names[AUDIT_NAMES];
5adc8a6a 226 char * filterkey; /* key for rule that triggered record */
44707fdf 227 struct path pwd;
1da177e4
LT
228 struct audit_context *previous; /* For nested syscalls */
229 struct audit_aux_data *aux;
e54dc243 230 struct audit_aux_data *aux_pids;
4f6b434f
AV
231 struct sockaddr_storage *sockaddr;
232 size_t sockaddr_len;
1da177e4 233 /* Save things to print about task_struct */
f46038ff 234 pid_t pid, ppid;
1da177e4
LT
235 uid_t uid, euid, suid, fsuid;
236 gid_t gid, egid, sgid, fsgid;
237 unsigned long personality;
2fd6f58b 238 int arch;
1da177e4 239
a5cb013d 240 pid_t target_pid;
c2a7780e
EP
241 uid_t target_auid;
242 uid_t target_uid;
4746ec5b 243 unsigned int target_sessionid;
a5cb013d 244 u32 target_sid;
c2a7780e 245 char target_comm[TASK_COMM_LEN];
a5cb013d 246
74c3cbe3
AV
247 struct audit_tree_refs *trees, *first_trees;
248 int tree_count;
249
1da177e4
LT
250#if AUDIT_DEBUG
251 int put_count;
252 int ino_count;
253#endif
254};
255
55669bfa
AV
256#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
c4bacefb 267 unsigned n;
1a61c88d 268 if (unlikely(!ctx))
269 return 0;
c4bacefb 270 n = ctx->major;
dbda4c0b 271
55669bfa
AV
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
8b67dca9
AV
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
1a61c88d 312
313 if (unlikely(!ctx))
314 return 0;
315
8b67dca9
AV
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
74c3cbe3
AV
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
337{
338 struct audit_tree_refs *p = ctx->trees;
339 int left = ctx->tree_count;
340 if (likely(left)) {
341 p->c[--left] = chunk;
342 ctx->tree_count = left;
343 return 1;
344 }
345 if (!p)
346 return 0;
347 p = p->next;
348 if (p) {
349 p->c[30] = chunk;
350 ctx->trees = p;
351 ctx->tree_count = 30;
352 return 1;
353 }
354 return 0;
355}
356
357static int grow_tree_refs(struct audit_context *ctx)
358{
359 struct audit_tree_refs *p = ctx->trees;
360 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
361 if (!ctx->trees) {
362 ctx->trees = p;
363 return 0;
364 }
365 if (p)
366 p->next = ctx->trees;
367 else
368 ctx->first_trees = ctx->trees;
369 ctx->tree_count = 31;
370 return 1;
371}
372#endif
373
374static void unroll_tree_refs(struct audit_context *ctx,
375 struct audit_tree_refs *p, int count)
376{
377#ifdef CONFIG_AUDIT_TREE
378 struct audit_tree_refs *q;
379 int n;
380 if (!p) {
381 /* we started with empty chain */
382 p = ctx->first_trees;
383 count = 31;
384 /* if the very first allocation has failed, nothing to do */
385 if (!p)
386 return;
387 }
388 n = count;
389 for (q = p; q != ctx->trees; q = q->next, n = 31) {
390 while (n--) {
391 audit_put_chunk(q->c[n]);
392 q->c[n] = NULL;
393 }
394 }
395 while (n-- > ctx->tree_count) {
396 audit_put_chunk(q->c[n]);
397 q->c[n] = NULL;
398 }
399 ctx->trees = p;
400 ctx->tree_count = count;
401#endif
402}
403
404static void free_tree_refs(struct audit_context *ctx)
405{
406 struct audit_tree_refs *p, *q;
407 for (p = ctx->first_trees; p; p = q) {
408 q = p->next;
409 kfree(p);
410 }
411}
412
413static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
414{
415#ifdef CONFIG_AUDIT_TREE
416 struct audit_tree_refs *p;
417 int n;
418 if (!tree)
419 return 0;
420 /* full ones */
421 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
422 for (n = 0; n < 31; n++)
423 if (audit_tree_match(p->c[n], tree))
424 return 1;
425 }
426 /* partial */
427 if (p) {
428 for (n = ctx->tree_count; n < 31; n++)
429 if (audit_tree_match(p->c[n], tree))
430 return 1;
431 }
432#endif
433 return 0;
434}
435
f368c07d 436/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
437/* Compare a task_struct with an audit_rule. Return 1 on match, 0
438 * otherwise. */
439static int audit_filter_rules(struct task_struct *tsk,
93315ed6 440 struct audit_krule *rule,
1da177e4 441 struct audit_context *ctx,
f368c07d 442 struct audit_names *name,
1da177e4
LT
443 enum audit_state *state)
444{
c69e8d9c 445 const struct cred *cred = get_task_cred(tsk);
2ad312d2 446 int i, j, need_sid = 1;
3dc7e315
DG
447 u32 sid;
448
1da177e4 449 for (i = 0; i < rule->field_count; i++) {
93315ed6 450 struct audit_field *f = &rule->fields[i];
1da177e4
LT
451 int result = 0;
452
93315ed6 453 switch (f->type) {
1da177e4 454 case AUDIT_PID:
93315ed6 455 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 456 break;
3c66251e 457 case AUDIT_PPID:
419c58f1
AV
458 if (ctx) {
459 if (!ctx->ppid)
460 ctx->ppid = sys_getppid();
3c66251e 461 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 462 }
3c66251e 463 break;
1da177e4 464 case AUDIT_UID:
b6dff3ec 465 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
466 break;
467 case AUDIT_EUID:
b6dff3ec 468 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
469 break;
470 case AUDIT_SUID:
b6dff3ec 471 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
472 break;
473 case AUDIT_FSUID:
b6dff3ec 474 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
475 break;
476 case AUDIT_GID:
b6dff3ec 477 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
478 break;
479 case AUDIT_EGID:
b6dff3ec 480 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
481 break;
482 case AUDIT_SGID:
b6dff3ec 483 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
484 break;
485 case AUDIT_FSGID:
b6dff3ec 486 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
487 break;
488 case AUDIT_PERS:
93315ed6 489 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 490 break;
2fd6f58b 491 case AUDIT_ARCH:
9f8dbe9c 492 if (ctx)
93315ed6 493 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 494 break;
1da177e4
LT
495
496 case AUDIT_EXIT:
497 if (ctx && ctx->return_valid)
93315ed6 498 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
499 break;
500 case AUDIT_SUCCESS:
b01f2cc1 501 if (ctx && ctx->return_valid) {
93315ed6
AG
502 if (f->val)
503 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 504 else
93315ed6 505 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 506 }
1da177e4
LT
507 break;
508 case AUDIT_DEVMAJOR:
f368c07d
AG
509 if (name)
510 result = audit_comparator(MAJOR(name->dev),
511 f->op, f->val);
512 else if (ctx) {
1da177e4 513 for (j = 0; j < ctx->name_count; j++) {
93315ed6 514 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
515 ++result;
516 break;
517 }
518 }
519 }
520 break;
521 case AUDIT_DEVMINOR:
f368c07d
AG
522 if (name)
523 result = audit_comparator(MINOR(name->dev),
524 f->op, f->val);
525 else if (ctx) {
1da177e4 526 for (j = 0; j < ctx->name_count; j++) {
93315ed6 527 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
528 ++result;
529 break;
530 }
531 }
532 }
533 break;
534 case AUDIT_INODE:
f368c07d 535 if (name)
9c937dcc 536 result = (name->ino == f->val);
f368c07d 537 else if (ctx) {
1da177e4 538 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 539 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
540 ++result;
541 break;
542 }
543 }
544 }
545 break;
f368c07d
AG
546 case AUDIT_WATCH:
547 if (name && rule->watch->ino != (unsigned long)-1)
548 result = (name->dev == rule->watch->dev &&
9c937dcc 549 name->ino == rule->watch->ino);
f368c07d 550 break;
74c3cbe3
AV
551 case AUDIT_DIR:
552 if (ctx)
553 result = match_tree_refs(ctx, rule->tree);
554 break;
1da177e4
LT
555 case AUDIT_LOGINUID:
556 result = 0;
557 if (ctx)
bfef93a5 558 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 559 break;
3a6b9f85
DG
560 case AUDIT_SUBJ_USER:
561 case AUDIT_SUBJ_ROLE:
562 case AUDIT_SUBJ_TYPE:
563 case AUDIT_SUBJ_SEN:
564 case AUDIT_SUBJ_CLR:
3dc7e315
DG
565 /* NOTE: this may return negative values indicating
566 a temporary error. We simply treat this as a
567 match for now to avoid losing information that
568 may be wanted. An error message will also be
569 logged upon error */
04305e4a 570 if (f->lsm_rule) {
2ad312d2 571 if (need_sid) {
2a862b32 572 security_task_getsecid(tsk, &sid);
2ad312d2
SG
573 need_sid = 0;
574 }
d7a96f3a 575 result = security_audit_rule_match(sid, f->type,
3dc7e315 576 f->op,
04305e4a 577 f->lsm_rule,
3dc7e315 578 ctx);
2ad312d2 579 }
3dc7e315 580 break;
6e5a2d1d
DG
581 case AUDIT_OBJ_USER:
582 case AUDIT_OBJ_ROLE:
583 case AUDIT_OBJ_TYPE:
584 case AUDIT_OBJ_LEV_LOW:
585 case AUDIT_OBJ_LEV_HIGH:
586 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
587 also applies here */
04305e4a 588 if (f->lsm_rule) {
6e5a2d1d
DG
589 /* Find files that match */
590 if (name) {
d7a96f3a 591 result = security_audit_rule_match(
6e5a2d1d 592 name->osid, f->type, f->op,
04305e4a 593 f->lsm_rule, ctx);
6e5a2d1d
DG
594 } else if (ctx) {
595 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 596 if (security_audit_rule_match(
6e5a2d1d
DG
597 ctx->names[j].osid,
598 f->type, f->op,
04305e4a 599 f->lsm_rule, ctx)) {
6e5a2d1d
DG
600 ++result;
601 break;
602 }
603 }
604 }
605 /* Find ipc objects that match */
606 if (ctx) {
607 struct audit_aux_data *aux;
608 for (aux = ctx->aux; aux;
609 aux = aux->next) {
610 if (aux->type == AUDIT_IPC) {
611 struct audit_aux_data_ipcctl *axi = (void *)aux;
04305e4a 612 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
6e5a2d1d
DG
613 ++result;
614 break;
615 }
616 }
617 }
618 }
619 }
620 break;
1da177e4
LT
621 case AUDIT_ARG0:
622 case AUDIT_ARG1:
623 case AUDIT_ARG2:
624 case AUDIT_ARG3:
625 if (ctx)
93315ed6 626 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 627 break;
5adc8a6a
AG
628 case AUDIT_FILTERKEY:
629 /* ignore this field for filtering */
630 result = 1;
631 break;
55669bfa
AV
632 case AUDIT_PERM:
633 result = audit_match_perm(ctx, f->val);
634 break;
8b67dca9
AV
635 case AUDIT_FILETYPE:
636 result = audit_match_filetype(ctx, f->val);
637 break;
1da177e4
LT
638 }
639
c69e8d9c
DH
640 if (!result) {
641 put_cred(cred);
1da177e4 642 return 0;
c69e8d9c 643 }
1da177e4 644 }
980dfb0d 645 if (rule->filterkey && ctx)
5adc8a6a 646 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
647 switch (rule->action) {
648 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
649 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
650 }
c69e8d9c 651 put_cred(cred);
1da177e4
LT
652 return 1;
653}
654
655/* At process creation time, we can determine if system-call auditing is
656 * completely disabled for this task. Since we only have the task
657 * structure at this point, we can only check uid and gid.
658 */
659static enum audit_state audit_filter_task(struct task_struct *tsk)
660{
661 struct audit_entry *e;
662 enum audit_state state;
663
664 rcu_read_lock();
0f45aa18 665 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 666 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
667 rcu_read_unlock();
668 return state;
669 }
670 }
671 rcu_read_unlock();
672 return AUDIT_BUILD_CONTEXT;
673}
674
675/* At syscall entry and exit time, this filter is called if the
676 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 677 * also not high enough that we already know we have to write an audit
b0dd25a8 678 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
679 */
680static enum audit_state audit_filter_syscall(struct task_struct *tsk,
681 struct audit_context *ctx,
682 struct list_head *list)
683{
684 struct audit_entry *e;
c3896495 685 enum audit_state state;
1da177e4 686
351bb722 687 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
688 return AUDIT_DISABLED;
689
1da177e4 690 rcu_read_lock();
c3896495 691 if (!list_empty(list)) {
b63862f4
DK
692 int word = AUDIT_WORD(ctx->major);
693 int bit = AUDIT_BIT(ctx->major);
694
695 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
696 if ((e->rule.mask[word] & bit) == bit &&
697 audit_filter_rules(tsk, &e->rule, ctx, NULL,
698 &state)) {
699 rcu_read_unlock();
700 return state;
701 }
702 }
703 }
704 rcu_read_unlock();
705 return AUDIT_BUILD_CONTEXT;
706}
707
708/* At syscall exit time, this filter is called if any audit_names[] have been
709 * collected during syscall processing. We only check rules in sublists at hash
710 * buckets applicable to the inode numbers in audit_names[].
711 * Regarding audit_state, same rules apply as for audit_filter_syscall().
712 */
713enum audit_state audit_filter_inodes(struct task_struct *tsk,
714 struct audit_context *ctx)
715{
716 int i;
717 struct audit_entry *e;
718 enum audit_state state;
719
720 if (audit_pid && tsk->tgid == audit_pid)
721 return AUDIT_DISABLED;
722
723 rcu_read_lock();
724 for (i = 0; i < ctx->name_count; i++) {
725 int word = AUDIT_WORD(ctx->major);
726 int bit = AUDIT_BIT(ctx->major);
727 struct audit_names *n = &ctx->names[i];
728 int h = audit_hash_ino((u32)n->ino);
729 struct list_head *list = &audit_inode_hash[h];
730
731 if (list_empty(list))
732 continue;
733
734 list_for_each_entry_rcu(e, list, list) {
735 if ((e->rule.mask[word] & bit) == bit &&
736 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
737 rcu_read_unlock();
738 return state;
739 }
0f45aa18
DW
740 }
741 }
742 rcu_read_unlock();
1da177e4 743 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
744}
745
f368c07d
AG
746void audit_set_auditable(struct audit_context *ctx)
747{
748 ctx->auditable = 1;
749}
750
1da177e4
LT
751static inline struct audit_context *audit_get_context(struct task_struct *tsk,
752 int return_valid,
753 int return_code)
754{
755 struct audit_context *context = tsk->audit_context;
756
757 if (likely(!context))
758 return NULL;
759 context->return_valid = return_valid;
f701b75e
EP
760
761 /*
762 * we need to fix up the return code in the audit logs if the actual
763 * return codes are later going to be fixed up by the arch specific
764 * signal handlers
765 *
766 * This is actually a test for:
767 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
768 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
769 *
770 * but is faster than a bunch of ||
771 */
772 if (unlikely(return_code <= -ERESTARTSYS) &&
773 (return_code >= -ERESTART_RESTARTBLOCK) &&
774 (return_code != -ENOIOCTLCMD))
775 context->return_code = -EINTR;
776 else
777 context->return_code = return_code;
1da177e4 778
d51374ad 779 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 780 enum audit_state state;
f368c07d 781
0f45aa18 782 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
783 if (state == AUDIT_RECORD_CONTEXT) {
784 context->auditable = 1;
785 goto get_context;
786 }
787
788 state = audit_filter_inodes(tsk, context);
1da177e4
LT
789 if (state == AUDIT_RECORD_CONTEXT)
790 context->auditable = 1;
f368c07d 791
1da177e4
LT
792 }
793
f368c07d 794get_context:
3f2792ff 795
1da177e4
LT
796 tsk->audit_context = NULL;
797 return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802 int i;
803
804#if AUDIT_DEBUG == 2
805 if (context->auditable
806 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 807 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
808 " name_count=%d put_count=%d"
809 " ino_count=%d [NOT freeing]\n",
73241ccc 810 __FILE__, __LINE__,
1da177e4
LT
811 context->serial, context->major, context->in_syscall,
812 context->name_count, context->put_count,
813 context->ino_count);
8c8570fb 814 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
815 printk(KERN_ERR "names[%d] = %p = %s\n", i,
816 context->names[i].name,
73241ccc 817 context->names[i].name ?: "(null)");
8c8570fb 818 }
1da177e4
LT
819 dump_stack();
820 return;
821 }
822#endif
823#if AUDIT_DEBUG
824 context->put_count = 0;
825 context->ino_count = 0;
826#endif
827
8c8570fb 828 for (i = 0; i < context->name_count; i++) {
9c937dcc 829 if (context->names[i].name && context->names[i].name_put)
1da177e4 830 __putname(context->names[i].name);
8c8570fb 831 }
1da177e4 832 context->name_count = 0;
44707fdf
JB
833 path_put(&context->pwd);
834 context->pwd.dentry = NULL;
835 context->pwd.mnt = NULL;
1da177e4
LT
836}
837
838static inline void audit_free_aux(struct audit_context *context)
839{
840 struct audit_aux_data *aux;
841
842 while ((aux = context->aux)) {
843 context->aux = aux->next;
844 kfree(aux);
845 }
e54dc243
AG
846 while ((aux = context->aux_pids)) {
847 context->aux_pids = aux->next;
848 kfree(aux);
849 }
1da177e4
LT
850}
851
852static inline void audit_zero_context(struct audit_context *context,
853 enum audit_state state)
854{
1da177e4
LT
855 memset(context, 0, sizeof(*context));
856 context->state = state;
1da177e4
LT
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
866 return context;
867}
868
b0dd25a8
RD
869/**
870 * audit_alloc - allocate an audit context block for a task
871 * @tsk: task
872 *
873 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
874 * if necessary. Doing so turns on system call auditing for the
875 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
876 * needed.
877 */
1da177e4
LT
878int audit_alloc(struct task_struct *tsk)
879{
880 struct audit_context *context;
881 enum audit_state state;
882
b593d384 883 if (likely(!audit_ever_enabled))
1da177e4
LT
884 return 0; /* Return if not auditing. */
885
886 state = audit_filter_task(tsk);
887 if (likely(state == AUDIT_DISABLED))
888 return 0;
889
890 if (!(context = audit_alloc_context(state))) {
891 audit_log_lost("out of memory in audit_alloc");
892 return -ENOMEM;
893 }
894
1da177e4
LT
895 tsk->audit_context = context;
896 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
897 return 0;
898}
899
900static inline void audit_free_context(struct audit_context *context)
901{
902 struct audit_context *previous;
903 int count = 0;
904
905 do {
906 previous = context->previous;
907 if (previous || (count && count < 10)) {
908 ++count;
909 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
910 " freeing multiple contexts (%d)\n",
911 context->serial, context->major,
912 context->name_count, count);
913 }
914 audit_free_names(context);
74c3cbe3
AV
915 unroll_tree_refs(context, NULL, 0);
916 free_tree_refs(context);
1da177e4 917 audit_free_aux(context);
5adc8a6a 918 kfree(context->filterkey);
4f6b434f 919 kfree(context->sockaddr);
1da177e4
LT
920 kfree(context);
921 context = previous;
922 } while (context);
923 if (count >= 10)
924 printk(KERN_ERR "audit: freed %d contexts\n", count);
925}
926
161a09e7 927void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
928{
929 char *ctx = NULL;
c4823bce
AV
930 unsigned len;
931 int error;
932 u32 sid;
933
2a862b32 934 security_task_getsecid(current, &sid);
c4823bce
AV
935 if (!sid)
936 return;
8c8570fb 937
2a862b32 938 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
939 if (error) {
940 if (error != -EINVAL)
8c8570fb
DK
941 goto error_path;
942 return;
943 }
944
8c8570fb 945 audit_log_format(ab, " subj=%s", ctx);
2a862b32 946 security_release_secctx(ctx, len);
7306a0b9 947 return;
8c8570fb
DK
948
949error_path:
7306a0b9 950 audit_panic("error in audit_log_task_context");
8c8570fb
DK
951 return;
952}
953
161a09e7
JL
954EXPORT_SYMBOL(audit_log_task_context);
955
e495149b 956static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 957{
45d9bb0e
AV
958 char name[sizeof(tsk->comm)];
959 struct mm_struct *mm = tsk->mm;
219f0817
SS
960 struct vm_area_struct *vma;
961
e495149b
AV
962 /* tsk == current */
963
45d9bb0e 964 get_task_comm(name, tsk);
99e45eea
DW
965 audit_log_format(ab, " comm=");
966 audit_log_untrustedstring(ab, name);
219f0817 967
e495149b
AV
968 if (mm) {
969 down_read(&mm->mmap_sem);
970 vma = mm->mmap;
971 while (vma) {
972 if ((vma->vm_flags & VM_EXECUTABLE) &&
973 vma->vm_file) {
974 audit_log_d_path(ab, "exe=",
44707fdf 975 &vma->vm_file->f_path);
e495149b
AV
976 break;
977 }
978 vma = vma->vm_next;
219f0817 979 }
e495149b 980 up_read(&mm->mmap_sem);
219f0817 981 }
e495149b 982 audit_log_task_context(ab);
219f0817
SS
983}
984
e54dc243 985static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
986 uid_t auid, uid_t uid, unsigned int sessionid,
987 u32 sid, char *comm)
e54dc243
AG
988{
989 struct audit_buffer *ab;
2a862b32 990 char *ctx = NULL;
e54dc243
AG
991 u32 len;
992 int rc = 0;
993
994 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
995 if (!ab)
6246ccab 996 return rc;
e54dc243 997
4746ec5b
EP
998 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
999 uid, sessionid);
2a862b32 1000 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1001 audit_log_format(ab, " obj=(none)");
e54dc243 1002 rc = 1;
2a862b32
AD
1003 } else {
1004 audit_log_format(ab, " obj=%s", ctx);
1005 security_release_secctx(ctx, len);
1006 }
c2a7780e
EP
1007 audit_log_format(ab, " ocomm=");
1008 audit_log_untrustedstring(ab, comm);
e54dc243 1009 audit_log_end(ab);
e54dc243
AG
1010
1011 return rc;
1012}
1013
de6bbd1d
EP
1014/*
1015 * to_send and len_sent accounting are very loose estimates. We aren't
1016 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1017 * within about 500 bytes (next page boundry)
1018 *
1019 * why snprintf? an int is up to 12 digits long. if we just assumed when
1020 * logging that a[%d]= was going to be 16 characters long we would be wasting
1021 * space in every audit message. In one 7500 byte message we can log up to
1022 * about 1000 min size arguments. That comes down to about 50% waste of space
1023 * if we didn't do the snprintf to find out how long arg_num_len was.
1024 */
1025static int audit_log_single_execve_arg(struct audit_context *context,
1026 struct audit_buffer **ab,
1027 int arg_num,
1028 size_t *len_sent,
1029 const char __user *p,
1030 char *buf)
bdf4c48a 1031{
de6bbd1d
EP
1032 char arg_num_len_buf[12];
1033 const char __user *tmp_p = p;
1034 /* how many digits are in arg_num? 3 is the length of a=\n */
1035 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1036 size_t len, len_left, to_send;
1037 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1038 unsigned int i, has_cntl = 0, too_long = 0;
1039 int ret;
1040
1041 /* strnlen_user includes the null we don't want to send */
1042 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1043
de6bbd1d
EP
1044 /*
1045 * We just created this mm, if we can't find the strings
1046 * we just copied into it something is _very_ wrong. Similar
1047 * for strings that are too long, we should not have created
1048 * any.
1049 */
b0abcfc1 1050 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1051 WARN_ON(1);
1052 send_sig(SIGKILL, current, 0);
b0abcfc1 1053 return -1;
de6bbd1d 1054 }
040b3a2d 1055
de6bbd1d
EP
1056 /* walk the whole argument looking for non-ascii chars */
1057 do {
1058 if (len_left > MAX_EXECVE_AUDIT_LEN)
1059 to_send = MAX_EXECVE_AUDIT_LEN;
1060 else
1061 to_send = len_left;
1062 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1063 /*
de6bbd1d
EP
1064 * There is no reason for this copy to be short. We just
1065 * copied them here, and the mm hasn't been exposed to user-
1066 * space yet.
bdf4c48a 1067 */
de6bbd1d 1068 if (ret) {
bdf4c48a
PZ
1069 WARN_ON(1);
1070 send_sig(SIGKILL, current, 0);
b0abcfc1 1071 return -1;
bdf4c48a 1072 }
de6bbd1d
EP
1073 buf[to_send] = '\0';
1074 has_cntl = audit_string_contains_control(buf, to_send);
1075 if (has_cntl) {
1076 /*
1077 * hex messages get logged as 2 bytes, so we can only
1078 * send half as much in each message
1079 */
1080 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1081 break;
1082 }
de6bbd1d
EP
1083 len_left -= to_send;
1084 tmp_p += to_send;
1085 } while (len_left > 0);
1086
1087 len_left = len;
1088
1089 if (len > max_execve_audit_len)
1090 too_long = 1;
1091
1092 /* rewalk the argument actually logging the message */
1093 for (i = 0; len_left > 0; i++) {
1094 int room_left;
1095
1096 if (len_left > max_execve_audit_len)
1097 to_send = max_execve_audit_len;
1098 else
1099 to_send = len_left;
1100
1101 /* do we have space left to send this argument in this ab? */
1102 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1103 if (has_cntl)
1104 room_left -= (to_send * 2);
1105 else
1106 room_left -= to_send;
1107 if (room_left < 0) {
1108 *len_sent = 0;
1109 audit_log_end(*ab);
1110 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1111 if (!*ab)
1112 return 0;
1113 }
bdf4c48a 1114
bdf4c48a 1115 /*
de6bbd1d
EP
1116 * first record needs to say how long the original string was
1117 * so we can be sure nothing was lost.
1118 */
1119 if ((i == 0) && (too_long))
422b03cf 1120 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1121 has_cntl ? 2*len : len);
1122
1123 /*
1124 * normally arguments are small enough to fit and we already
1125 * filled buf above when we checked for control characters
1126 * so don't bother with another copy_from_user
bdf4c48a 1127 */
de6bbd1d
EP
1128 if (len >= max_execve_audit_len)
1129 ret = copy_from_user(buf, p, to_send);
1130 else
1131 ret = 0;
040b3a2d 1132 if (ret) {
bdf4c48a
PZ
1133 WARN_ON(1);
1134 send_sig(SIGKILL, current, 0);
b0abcfc1 1135 return -1;
bdf4c48a 1136 }
de6bbd1d
EP
1137 buf[to_send] = '\0';
1138
1139 /* actually log it */
1140 audit_log_format(*ab, "a%d", arg_num);
1141 if (too_long)
1142 audit_log_format(*ab, "[%d]", i);
1143 audit_log_format(*ab, "=");
1144 if (has_cntl)
b556f8ad 1145 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1146 else
1147 audit_log_format(*ab, "\"%s\"", buf);
1148 audit_log_format(*ab, "\n");
1149
1150 p += to_send;
1151 len_left -= to_send;
1152 *len_sent += arg_num_len;
1153 if (has_cntl)
1154 *len_sent += to_send * 2;
1155 else
1156 *len_sent += to_send;
1157 }
1158 /* include the null we didn't log */
1159 return len + 1;
1160}
1161
1162static void audit_log_execve_info(struct audit_context *context,
1163 struct audit_buffer **ab,
1164 struct audit_aux_data_execve *axi)
1165{
1166 int i;
1167 size_t len, len_sent = 0;
1168 const char __user *p;
1169 char *buf;
bdf4c48a 1170
de6bbd1d
EP
1171 if (axi->mm != current->mm)
1172 return; /* execve failed, no additional info */
1173
1174 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1175
de6bbd1d
EP
1176 audit_log_format(*ab, "argc=%d ", axi->argc);
1177
1178 /*
1179 * we need some kernel buffer to hold the userspace args. Just
1180 * allocate one big one rather than allocating one of the right size
1181 * for every single argument inside audit_log_single_execve_arg()
1182 * should be <8k allocation so should be pretty safe.
1183 */
1184 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 if (!buf) {
1186 audit_panic("out of memory for argv string\n");
1187 return;
bdf4c48a 1188 }
de6bbd1d
EP
1189
1190 for (i = 0; i < axi->argc; i++) {
1191 len = audit_log_single_execve_arg(context, ab, i,
1192 &len_sent, p, buf);
1193 if (len <= 0)
1194 break;
1195 p += len;
1196 }
1197 kfree(buf);
bdf4c48a
PZ
1198}
1199
851f7ff5
EP
1200static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1201{
1202 int i;
1203
1204 audit_log_format(ab, " %s=", prefix);
1205 CAP_FOR_EACH_U32(i) {
1206 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1207 }
1208}
1209
1210static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1211{
1212 kernel_cap_t *perm = &name->fcap.permitted;
1213 kernel_cap_t *inh = &name->fcap.inheritable;
1214 int log = 0;
1215
1216 if (!cap_isclear(*perm)) {
1217 audit_log_cap(ab, "cap_fp", perm);
1218 log = 1;
1219 }
1220 if (!cap_isclear(*inh)) {
1221 audit_log_cap(ab, "cap_fi", inh);
1222 log = 1;
1223 }
1224
1225 if (log)
1226 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1227}
1228
e495149b 1229static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1230{
c69e8d9c 1231 const struct cred *cred;
9c7aa6aa 1232 int i, call_panic = 0;
1da177e4 1233 struct audit_buffer *ab;
7551ced3 1234 struct audit_aux_data *aux;
a6c043a8 1235 const char *tty;
1da177e4 1236
e495149b 1237 /* tsk == current */
3f2792ff 1238 context->pid = tsk->pid;
419c58f1
AV
1239 if (!context->ppid)
1240 context->ppid = sys_getppid();
c69e8d9c
DH
1241 cred = current_cred();
1242 context->uid = cred->uid;
1243 context->gid = cred->gid;
1244 context->euid = cred->euid;
1245 context->suid = cred->suid;
b6dff3ec 1246 context->fsuid = cred->fsuid;
c69e8d9c
DH
1247 context->egid = cred->egid;
1248 context->sgid = cred->sgid;
b6dff3ec 1249 context->fsgid = cred->fsgid;
3f2792ff 1250 context->personality = tsk->personality;
e495149b
AV
1251
1252 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1253 if (!ab)
1254 return; /* audit_panic has been called */
bccf6ae0
DW
1255 audit_log_format(ab, "arch=%x syscall=%d",
1256 context->arch, context->major);
1da177e4
LT
1257 if (context->personality != PER_LINUX)
1258 audit_log_format(ab, " per=%lx", context->personality);
1259 if (context->return_valid)
9f8dbe9c 1260 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1261 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1262 context->return_code);
eb84a20e 1263
dbda4c0b 1264 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1265 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1266 tty = tsk->signal->tty->name;
a6c043a8
SG
1267 else
1268 tty = "(none)";
dbda4c0b
AC
1269 spin_unlock_irq(&tsk->sighand->siglock);
1270
1da177e4
LT
1271 audit_log_format(ab,
1272 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1273 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1274 " euid=%u suid=%u fsuid=%u"
4746ec5b 1275 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1276 context->argv[0],
1277 context->argv[1],
1278 context->argv[2],
1279 context->argv[3],
1280 context->name_count,
f46038ff 1281 context->ppid,
1da177e4 1282 context->pid,
bfef93a5 1283 tsk->loginuid,
1da177e4
LT
1284 context->uid,
1285 context->gid,
1286 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1287 context->egid, context->sgid, context->fsgid, tty,
1288 tsk->sessionid);
eb84a20e 1289
eb84a20e 1290
e495149b 1291 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1292 if (context->filterkey) {
1293 audit_log_format(ab, " key=");
1294 audit_log_untrustedstring(ab, context->filterkey);
1295 } else
1296 audit_log_format(ab, " key=(null)");
1da177e4 1297 audit_log_end(ab);
1da177e4 1298
7551ced3 1299 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1300
e495149b 1301 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1302 if (!ab)
1303 continue; /* audit_panic has been called */
1304
1da177e4 1305 switch (aux->type) {
20ca73bc
GW
1306 case AUDIT_MQ_OPEN: {
1307 struct audit_aux_data_mq_open *axi = (void *)aux;
1308 audit_log_format(ab,
1309 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1310 "mq_msgsize=%ld mq_curmsgs=%ld",
1311 axi->oflag, axi->mode, axi->attr.mq_flags,
1312 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1313 axi->attr.mq_curmsgs);
1314 break; }
1315
1316 case AUDIT_MQ_SENDRECV: {
1317 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1318 audit_log_format(ab,
1319 "mqdes=%d msg_len=%zd msg_prio=%u "
1320 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1321 axi->mqdes, axi->msg_len, axi->msg_prio,
1322 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1323 break; }
1324
1325 case AUDIT_MQ_NOTIFY: {
1326 struct audit_aux_data_mq_notify *axi = (void *)aux;
1327 audit_log_format(ab,
1328 "mqdes=%d sigev_signo=%d",
1329 axi->mqdes,
1330 axi->notification.sigev_signo);
1331 break; }
1332
1333 case AUDIT_MQ_GETSETATTR: {
1334 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1335 audit_log_format(ab,
1336 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1337 "mq_curmsgs=%ld ",
1338 axi->mqdes,
1339 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1340 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1341 break; }
1342
c0404993 1343 case AUDIT_IPC: {
1da177e4
LT
1344 struct audit_aux_data_ipcctl *axi = (void *)aux;
1345 audit_log_format(ab,
5b9a4262 1346 "ouid=%u ogid=%u mode=%#o",
ac03221a 1347 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1348 if (axi->osid != 0) {
1349 char *ctx = NULL;
1350 u32 len;
2a862b32 1351 if (security_secid_to_secctx(
9c7aa6aa 1352 axi->osid, &ctx, &len)) {
ce29b682 1353 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1354 axi->osid);
1355 call_panic = 1;
2a862b32 1356 } else {
9c7aa6aa 1357 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1358 security_release_secctx(ctx, len);
1359 }
9c7aa6aa 1360 }
3ec3b2fb
DW
1361 break; }
1362
073115d6
SG
1363 case AUDIT_IPC_SET_PERM: {
1364 struct audit_aux_data_ipcctl *axi = (void *)aux;
1365 audit_log_format(ab,
5b9a4262 1366 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1367 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1368 break; }
ac03221a 1369
473ae30b
AV
1370 case AUDIT_EXECVE: {
1371 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1372 audit_log_execve_info(context, &ab, axi);
473ae30b 1373 break; }
073115d6 1374
3ec3b2fb 1375 case AUDIT_SOCKETCALL: {
3ec3b2fb
DW
1376 struct audit_aux_data_socketcall *axs = (void *)aux;
1377 audit_log_format(ab, "nargs=%d", axs->nargs);
1378 for (i=0; i<axs->nargs; i++)
1379 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1380 break; }
1381
db349509
AV
1382 case AUDIT_FD_PAIR: {
1383 struct audit_aux_data_fd_pair *axs = (void *)aux;
1384 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1385 break; }
1386
3fc689e9
EP
1387 case AUDIT_BPRM_FCAPS: {
1388 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1399 break; }
1400
e68b75a0
EP
1401 case AUDIT_CAPSET: {
1402 struct audit_aux_data_capset *axs = (void *)aux;
1403 audit_log_format(ab, "pid=%d", axs->pid);
1404 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1405 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1406 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1407 break; }
1408
1da177e4
LT
1409 }
1410 audit_log_end(ab);
1da177e4
LT
1411 }
1412
4f6b434f
AV
1413 if (context->sockaddr_len) {
1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1415 if (ab) {
1416 audit_log_format(ab, "saddr=");
1417 audit_log_n_hex(ab, (void *)context->sockaddr,
1418 context->sockaddr_len);
1419 audit_log_end(ab);
1420 }
1421 }
1422
e54dc243
AG
1423 for (aux = context->aux_pids; aux; aux = aux->next) {
1424 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1425
1426 for (i = 0; i < axs->pid_count; i++)
1427 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1428 axs->target_auid[i],
1429 axs->target_uid[i],
4746ec5b 1430 axs->target_sessionid[i],
c2a7780e
EP
1431 axs->target_sid[i],
1432 axs->target_comm[i]))
e54dc243 1433 call_panic = 1;
a5cb013d
AV
1434 }
1435
e54dc243
AG
1436 if (context->target_pid &&
1437 audit_log_pid_context(context, context->target_pid,
c2a7780e 1438 context->target_auid, context->target_uid,
4746ec5b 1439 context->target_sessionid,
c2a7780e 1440 context->target_sid, context->target_comm))
e54dc243
AG
1441 call_panic = 1;
1442
44707fdf 1443 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1444 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1445 if (ab) {
44707fdf 1446 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1447 audit_log_end(ab);
1448 }
1449 }
1da177e4 1450 for (i = 0; i < context->name_count; i++) {
9c937dcc 1451 struct audit_names *n = &context->names[i];
73241ccc 1452
e495149b 1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1454 if (!ab)
1455 continue; /* audit_panic has been called */
8f37d47c 1456
1da177e4 1457 audit_log_format(ab, "item=%d", i);
73241ccc 1458
9c937dcc
AG
1459 if (n->name) {
1460 switch(n->name_len) {
1461 case AUDIT_NAME_FULL:
1462 /* log the full path */
1463 audit_log_format(ab, " name=");
1464 audit_log_untrustedstring(ab, n->name);
1465 break;
1466 case 0:
1467 /* name was specified as a relative path and the
1468 * directory component is the cwd */
44707fdf 1469 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1470 break;
1471 default:
1472 /* log the name's directory component */
1473 audit_log_format(ab, " name=");
b556f8ad
EP
1474 audit_log_n_untrustedstring(ab, n->name,
1475 n->name_len);
9c937dcc
AG
1476 }
1477 } else
1478 audit_log_format(ab, " name=(null)");
1479
1480 if (n->ino != (unsigned long)-1) {
1481 audit_log_format(ab, " inode=%lu"
1482 " dev=%02x:%02x mode=%#o"
1483 " ouid=%u ogid=%u rdev=%02x:%02x",
1484 n->ino,
1485 MAJOR(n->dev),
1486 MINOR(n->dev),
1487 n->mode,
1488 n->uid,
1489 n->gid,
1490 MAJOR(n->rdev),
1491 MINOR(n->rdev));
1492 }
1493 if (n->osid != 0) {
1b50eed9
SG
1494 char *ctx = NULL;
1495 u32 len;
2a862b32 1496 if (security_secid_to_secctx(
9c937dcc
AG
1497 n->osid, &ctx, &len)) {
1498 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1499 call_panic = 2;
2a862b32 1500 } else {
1b50eed9 1501 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1502 security_release_secctx(ctx, len);
1503 }
8c8570fb
DK
1504 }
1505
851f7ff5
EP
1506 audit_log_fcaps(ab, n);
1507
1da177e4
LT
1508 audit_log_end(ab);
1509 }
c0641f28
EP
1510
1511 /* Send end of event record to help user space know we are finished */
1512 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1513 if (ab)
1514 audit_log_end(ab);
9c7aa6aa
SG
1515 if (call_panic)
1516 audit_panic("error converting sid to string");
1da177e4
LT
1517}
1518
b0dd25a8
RD
1519/**
1520 * audit_free - free a per-task audit context
1521 * @tsk: task whose audit context block to free
1522 *
fa84cb93 1523 * Called from copy_process and do_exit
b0dd25a8 1524 */
1da177e4
LT
1525void audit_free(struct task_struct *tsk)
1526{
1527 struct audit_context *context;
1528
1da177e4 1529 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1530 if (likely(!context))
1531 return;
1532
1533 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1534 * function (e.g., exit_group), then free context block.
1535 * We use GFP_ATOMIC here because we might be doing this
f5561964 1536 * in the context of the idle thread */
e495149b 1537 /* that can happen only if we are called from do_exit() */
f7056d64 1538 if (context->in_syscall && context->auditable)
e495149b 1539 audit_log_exit(context, tsk);
1da177e4
LT
1540
1541 audit_free_context(context);
1542}
1543
b0dd25a8
RD
1544/**
1545 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1546 * @arch: architecture type
1547 * @major: major syscall type (function)
1548 * @a1: additional syscall register 1
1549 * @a2: additional syscall register 2
1550 * @a3: additional syscall register 3
1551 * @a4: additional syscall register 4
1552 *
1553 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1554 * audit context was created when the task was created and the state or
1555 * filters demand the audit context be built. If the state from the
1556 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1557 * then the record will be written at syscall exit time (otherwise, it
1558 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1559 * be written).
1560 */
5411be59 1561void audit_syscall_entry(int arch, int major,
1da177e4
LT
1562 unsigned long a1, unsigned long a2,
1563 unsigned long a3, unsigned long a4)
1564{
5411be59 1565 struct task_struct *tsk = current;
1da177e4
LT
1566 struct audit_context *context = tsk->audit_context;
1567 enum audit_state state;
1568
86a1c34a
RM
1569 if (unlikely(!context))
1570 return;
1da177e4 1571
b0dd25a8
RD
1572 /*
1573 * This happens only on certain architectures that make system
1da177e4
LT
1574 * calls in kernel_thread via the entry.S interface, instead of
1575 * with direct calls. (If you are porting to a new
1576 * architecture, hitting this condition can indicate that you
1577 * got the _exit/_leave calls backward in entry.S.)
1578 *
1579 * i386 no
1580 * x86_64 no
2ef9481e 1581 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1582 *
1583 * This also happens with vm86 emulation in a non-nested manner
1584 * (entries without exits), so this case must be caught.
1585 */
1586 if (context->in_syscall) {
1587 struct audit_context *newctx;
1588
1da177e4
LT
1589#if AUDIT_DEBUG
1590 printk(KERN_ERR
1591 "audit(:%d) pid=%d in syscall=%d;"
1592 " entering syscall=%d\n",
1593 context->serial, tsk->pid, context->major, major);
1594#endif
1595 newctx = audit_alloc_context(context->state);
1596 if (newctx) {
1597 newctx->previous = context;
1598 context = newctx;
1599 tsk->audit_context = newctx;
1600 } else {
1601 /* If we can't alloc a new context, the best we
1602 * can do is to leak memory (any pending putname
1603 * will be lost). The only other alternative is
1604 * to abandon auditing. */
1605 audit_zero_context(context, context->state);
1606 }
1607 }
1608 BUG_ON(context->in_syscall || context->name_count);
1609
1610 if (!audit_enabled)
1611 return;
1612
2fd6f58b 1613 context->arch = arch;
1da177e4
LT
1614 context->major = major;
1615 context->argv[0] = a1;
1616 context->argv[1] = a2;
1617 context->argv[2] = a3;
1618 context->argv[3] = a4;
1619
1620 state = context->state;
d51374ad
AV
1621 context->dummy = !audit_n_rules;
1622 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1623 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1624 if (likely(state == AUDIT_DISABLED))
1625 return;
1626
ce625a80 1627 context->serial = 0;
1da177e4
LT
1628 context->ctime = CURRENT_TIME;
1629 context->in_syscall = 1;
1630 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1631 context->ppid = 0;
1da177e4
LT
1632}
1633
a64e6494
AV
1634void audit_finish_fork(struct task_struct *child)
1635{
1636 struct audit_context *ctx = current->audit_context;
1637 struct audit_context *p = child->audit_context;
1638 if (!p || !ctx || !ctx->auditable)
1639 return;
1640 p->arch = ctx->arch;
1641 p->major = ctx->major;
1642 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1643 p->ctime = ctx->ctime;
1644 p->dummy = ctx->dummy;
1645 p->auditable = ctx->auditable;
1646 p->in_syscall = ctx->in_syscall;
1647 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1648 p->ppid = current->pid;
1649}
1650
b0dd25a8
RD
1651/**
1652 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1653 * @valid: success/failure flag
1654 * @return_code: syscall return value
1655 *
1656 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1657 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1658 * filtering, or because some other part of the kernel write an audit
1659 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1660 * free the names stored from getname().
1661 */
5411be59 1662void audit_syscall_exit(int valid, long return_code)
1da177e4 1663{
5411be59 1664 struct task_struct *tsk = current;
1da177e4
LT
1665 struct audit_context *context;
1666
2fd6f58b 1667 context = audit_get_context(tsk, valid, return_code);
1da177e4 1668
1da177e4 1669 if (likely(!context))
97e94c45 1670 return;
1da177e4 1671
f7056d64 1672 if (context->in_syscall && context->auditable)
e495149b 1673 audit_log_exit(context, tsk);
1da177e4
LT
1674
1675 context->in_syscall = 0;
1676 context->auditable = 0;
2fd6f58b 1677
1da177e4
LT
1678 if (context->previous) {
1679 struct audit_context *new_context = context->previous;
1680 context->previous = NULL;
1681 audit_free_context(context);
1682 tsk->audit_context = new_context;
1683 } else {
1684 audit_free_names(context);
74c3cbe3 1685 unroll_tree_refs(context, NULL, 0);
1da177e4 1686 audit_free_aux(context);
e54dc243
AG
1687 context->aux = NULL;
1688 context->aux_pids = NULL;
a5cb013d 1689 context->target_pid = 0;
e54dc243 1690 context->target_sid = 0;
4f6b434f 1691 context->sockaddr_len = 0;
5adc8a6a
AG
1692 kfree(context->filterkey);
1693 context->filterkey = NULL;
1da177e4
LT
1694 tsk->audit_context = context;
1695 }
1da177e4
LT
1696}
1697
74c3cbe3
AV
1698static inline void handle_one(const struct inode *inode)
1699{
1700#ifdef CONFIG_AUDIT_TREE
1701 struct audit_context *context;
1702 struct audit_tree_refs *p;
1703 struct audit_chunk *chunk;
1704 int count;
1705 if (likely(list_empty(&inode->inotify_watches)))
1706 return;
1707 context = current->audit_context;
1708 p = context->trees;
1709 count = context->tree_count;
1710 rcu_read_lock();
1711 chunk = audit_tree_lookup(inode);
1712 rcu_read_unlock();
1713 if (!chunk)
1714 return;
1715 if (likely(put_tree_ref(context, chunk)))
1716 return;
1717 if (unlikely(!grow_tree_refs(context))) {
436c405c 1718 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1719 audit_set_auditable(context);
1720 audit_put_chunk(chunk);
1721 unroll_tree_refs(context, p, count);
1722 return;
1723 }
1724 put_tree_ref(context, chunk);
1725#endif
1726}
1727
1728static void handle_path(const struct dentry *dentry)
1729{
1730#ifdef CONFIG_AUDIT_TREE
1731 struct audit_context *context;
1732 struct audit_tree_refs *p;
1733 const struct dentry *d, *parent;
1734 struct audit_chunk *drop;
1735 unsigned long seq;
1736 int count;
1737
1738 context = current->audit_context;
1739 p = context->trees;
1740 count = context->tree_count;
1741retry:
1742 drop = NULL;
1743 d = dentry;
1744 rcu_read_lock();
1745 seq = read_seqbegin(&rename_lock);
1746 for(;;) {
1747 struct inode *inode = d->d_inode;
1748 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1749 struct audit_chunk *chunk;
1750 chunk = audit_tree_lookup(inode);
1751 if (chunk) {
1752 if (unlikely(!put_tree_ref(context, chunk))) {
1753 drop = chunk;
1754 break;
1755 }
1756 }
1757 }
1758 parent = d->d_parent;
1759 if (parent == d)
1760 break;
1761 d = parent;
1762 }
1763 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1764 rcu_read_unlock();
1765 if (!drop) {
1766 /* just a race with rename */
1767 unroll_tree_refs(context, p, count);
1768 goto retry;
1769 }
1770 audit_put_chunk(drop);
1771 if (grow_tree_refs(context)) {
1772 /* OK, got more space */
1773 unroll_tree_refs(context, p, count);
1774 goto retry;
1775 }
1776 /* too bad */
1777 printk(KERN_WARNING
436c405c 1778 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1779 unroll_tree_refs(context, p, count);
1780 audit_set_auditable(context);
1781 return;
1782 }
1783 rcu_read_unlock();
1784#endif
1785}
1786
b0dd25a8
RD
1787/**
1788 * audit_getname - add a name to the list
1789 * @name: name to add
1790 *
1791 * Add a name to the list of audit names for this context.
1792 * Called from fs/namei.c:getname().
1793 */
d8945bb5 1794void __audit_getname(const char *name)
1da177e4
LT
1795{
1796 struct audit_context *context = current->audit_context;
1797
d8945bb5 1798 if (IS_ERR(name) || !name)
1da177e4
LT
1799 return;
1800
1801 if (!context->in_syscall) {
1802#if AUDIT_DEBUG == 2
1803 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1804 __FILE__, __LINE__, context->serial, name);
1805 dump_stack();
1806#endif
1807 return;
1808 }
1809 BUG_ON(context->name_count >= AUDIT_NAMES);
1810 context->names[context->name_count].name = name;
9c937dcc
AG
1811 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1812 context->names[context->name_count].name_put = 1;
1da177e4 1813 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1814 context->names[context->name_count].osid = 0;
1da177e4 1815 ++context->name_count;
44707fdf 1816 if (!context->pwd.dentry) {
8f37d47c 1817 read_lock(&current->fs->lock);
44707fdf
JB
1818 context->pwd = current->fs->pwd;
1819 path_get(&current->fs->pwd);
8f37d47c
DW
1820 read_unlock(&current->fs->lock);
1821 }
9f8dbe9c 1822
1da177e4
LT
1823}
1824
b0dd25a8
RD
1825/* audit_putname - intercept a putname request
1826 * @name: name to intercept and delay for putname
1827 *
1828 * If we have stored the name from getname in the audit context,
1829 * then we delay the putname until syscall exit.
1830 * Called from include/linux/fs.h:putname().
1831 */
1da177e4
LT
1832void audit_putname(const char *name)
1833{
1834 struct audit_context *context = current->audit_context;
1835
1836 BUG_ON(!context);
1837 if (!context->in_syscall) {
1838#if AUDIT_DEBUG == 2
1839 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1840 __FILE__, __LINE__, context->serial, name);
1841 if (context->name_count) {
1842 int i;
1843 for (i = 0; i < context->name_count; i++)
1844 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1845 context->names[i].name,
73241ccc 1846 context->names[i].name ?: "(null)");
1da177e4
LT
1847 }
1848#endif
1849 __putname(name);
1850 }
1851#if AUDIT_DEBUG
1852 else {
1853 ++context->put_count;
1854 if (context->put_count > context->name_count) {
1855 printk(KERN_ERR "%s:%d(:%d): major=%d"
1856 " in_syscall=%d putname(%p) name_count=%d"
1857 " put_count=%d\n",
1858 __FILE__, __LINE__,
1859 context->serial, context->major,
1860 context->in_syscall, name, context->name_count,
1861 context->put_count);
1862 dump_stack();
1863 }
1864 }
1865#endif
1866}
1867
5712e88f
AG
1868static int audit_inc_name_count(struct audit_context *context,
1869 const struct inode *inode)
1870{
1871 if (context->name_count >= AUDIT_NAMES) {
1872 if (inode)
1873 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1874 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1875 MAJOR(inode->i_sb->s_dev),
1876 MINOR(inode->i_sb->s_dev),
1877 inode->i_ino);
1878
1879 else
436c405c 1880 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1881 return 1;
1882 }
1883 context->name_count++;
1884#if AUDIT_DEBUG
1885 context->ino_count++;
1886#endif
1887 return 0;
1888}
1889
851f7ff5
EP
1890
1891static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1892{
1893 struct cpu_vfs_cap_data caps;
1894 int rc;
1895
1896 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1897 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1898 name->fcap.fE = 0;
1899 name->fcap_ver = 0;
1900
1901 if (!dentry)
1902 return 0;
1903
1904 rc = get_vfs_caps_from_disk(dentry, &caps);
1905 if (rc)
1906 return rc;
1907
1908 name->fcap.permitted = caps.permitted;
1909 name->fcap.inheritable = caps.inheritable;
1910 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1911 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1912
1913 return 0;
1914}
1915
1916
3e2efce0 1917/* Copy inode data into an audit_names. */
851f7ff5
EP
1918static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1919 const struct inode *inode)
8c8570fb 1920{
3e2efce0
AG
1921 name->ino = inode->i_ino;
1922 name->dev = inode->i_sb->s_dev;
1923 name->mode = inode->i_mode;
1924 name->uid = inode->i_uid;
1925 name->gid = inode->i_gid;
1926 name->rdev = inode->i_rdev;
2a862b32 1927 security_inode_getsecid(inode, &name->osid);
851f7ff5 1928 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1929}
1930
b0dd25a8
RD
1931/**
1932 * audit_inode - store the inode and device from a lookup
1933 * @name: name being audited
481968f4 1934 * @dentry: dentry being audited
b0dd25a8
RD
1935 *
1936 * Called from fs/namei.c:path_lookup().
1937 */
5a190ae6 1938void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1939{
1940 int idx;
1941 struct audit_context *context = current->audit_context;
74c3cbe3 1942 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1943
1944 if (!context->in_syscall)
1945 return;
1946 if (context->name_count
1947 && context->names[context->name_count-1].name
1948 && context->names[context->name_count-1].name == name)
1949 idx = context->name_count - 1;
1950 else if (context->name_count > 1
1951 && context->names[context->name_count-2].name
1952 && context->names[context->name_count-2].name == name)
1953 idx = context->name_count - 2;
1954 else {
1955 /* FIXME: how much do we care about inodes that have no
1956 * associated name? */
5712e88f 1957 if (audit_inc_name_count(context, inode))
1da177e4 1958 return;
5712e88f 1959 idx = context->name_count - 1;
1da177e4 1960 context->names[idx].name = NULL;
1da177e4 1961 }
74c3cbe3 1962 handle_path(dentry);
851f7ff5 1963 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1964}
1965
1966/**
1967 * audit_inode_child - collect inode info for created/removed objects
1968 * @dname: inode's dentry name
481968f4 1969 * @dentry: dentry being audited
73d3ec5a 1970 * @parent: inode of dentry parent
73241ccc
AG
1971 *
1972 * For syscalls that create or remove filesystem objects, audit_inode
1973 * can only collect information for the filesystem object's parent.
1974 * This call updates the audit context with the child's information.
1975 * Syscalls that create a new filesystem object must be hooked after
1976 * the object is created. Syscalls that remove a filesystem object
1977 * must be hooked prior, in order to capture the target inode during
1978 * unsuccessful attempts.
1979 */
5a190ae6 1980void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1981 const struct inode *parent)
73241ccc
AG
1982{
1983 int idx;
1984 struct audit_context *context = current->audit_context;
5712e88f 1985 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1986 const struct inode *inode = dentry->d_inode;
9c937dcc 1987 int dirlen = 0;
73241ccc
AG
1988
1989 if (!context->in_syscall)
1990 return;
1991
74c3cbe3
AV
1992 if (inode)
1993 handle_one(inode);
73241ccc 1994 /* determine matching parent */
f368c07d 1995 if (!dname)
5712e88f 1996 goto add_names;
73241ccc 1997
5712e88f
AG
1998 /* parent is more likely, look for it first */
1999 for (idx = 0; idx < context->name_count; idx++) {
2000 struct audit_names *n = &context->names[idx];
f368c07d 2001
5712e88f
AG
2002 if (!n->name)
2003 continue;
2004
2005 if (n->ino == parent->i_ino &&
2006 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2007 n->name_len = dirlen; /* update parent data in place */
2008 found_parent = n->name;
2009 goto add_names;
f368c07d 2010 }
5712e88f 2011 }
73241ccc 2012
5712e88f
AG
2013 /* no matching parent, look for matching child */
2014 for (idx = 0; idx < context->name_count; idx++) {
2015 struct audit_names *n = &context->names[idx];
2016
2017 if (!n->name)
2018 continue;
2019
2020 /* strcmp() is the more likely scenario */
2021 if (!strcmp(dname, n->name) ||
2022 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2023 if (inode)
851f7ff5 2024 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2025 else
2026 n->ino = (unsigned long)-1;
2027 found_child = n->name;
2028 goto add_names;
2029 }
ac9910ce 2030 }
5712e88f
AG
2031
2032add_names:
2033 if (!found_parent) {
2034 if (audit_inc_name_count(context, parent))
ac9910ce 2035 return;
5712e88f
AG
2036 idx = context->name_count - 1;
2037 context->names[idx].name = NULL;
851f7ff5 2038 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2039 }
5712e88f
AG
2040
2041 if (!found_child) {
2042 if (audit_inc_name_count(context, inode))
2043 return;
2044 idx = context->name_count - 1;
2045
2046 /* Re-use the name belonging to the slot for a matching parent
2047 * directory. All names for this context are relinquished in
2048 * audit_free_names() */
2049 if (found_parent) {
2050 context->names[idx].name = found_parent;
2051 context->names[idx].name_len = AUDIT_NAME_FULL;
2052 /* don't call __putname() */
2053 context->names[idx].name_put = 0;
2054 } else {
2055 context->names[idx].name = NULL;
2056 }
2057
2058 if (inode)
851f7ff5 2059 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2060 else
2061 context->names[idx].ino = (unsigned long)-1;
2062 }
3e2efce0 2063}
50e437d5 2064EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2065
b0dd25a8
RD
2066/**
2067 * auditsc_get_stamp - get local copies of audit_context values
2068 * @ctx: audit_context for the task
2069 * @t: timespec to store time recorded in the audit_context
2070 * @serial: serial value that is recorded in the audit_context
2071 *
2072 * Also sets the context as auditable.
2073 */
48887e63 2074int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2075 struct timespec *t, unsigned int *serial)
1da177e4 2076{
48887e63
AV
2077 if (!ctx->in_syscall)
2078 return 0;
ce625a80
DW
2079 if (!ctx->serial)
2080 ctx->serial = audit_serial();
bfb4496e
DW
2081 t->tv_sec = ctx->ctime.tv_sec;
2082 t->tv_nsec = ctx->ctime.tv_nsec;
2083 *serial = ctx->serial;
2084 ctx->auditable = 1;
48887e63 2085 return 1;
1da177e4
LT
2086}
2087
4746ec5b
EP
2088/* global counter which is incremented every time something logs in */
2089static atomic_t session_id = ATOMIC_INIT(0);
2090
b0dd25a8
RD
2091/**
2092 * audit_set_loginuid - set a task's audit_context loginuid
2093 * @task: task whose audit context is being modified
2094 * @loginuid: loginuid value
2095 *
2096 * Returns 0.
2097 *
2098 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2099 */
456be6cd 2100int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2101{
4746ec5b 2102 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2103 struct audit_context *context = task->audit_context;
2104
bfef93a5
AV
2105 if (context && context->in_syscall) {
2106 struct audit_buffer *ab;
2107
2108 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2109 if (ab) {
2110 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2111 "old auid=%u new auid=%u"
2112 " old ses=%u new ses=%u",
c69e8d9c 2113 task->pid, task_uid(task),
4746ec5b
EP
2114 task->loginuid, loginuid,
2115 task->sessionid, sessionid);
bfef93a5 2116 audit_log_end(ab);
c0404993 2117 }
1da177e4 2118 }
4746ec5b 2119 task->sessionid = sessionid;
bfef93a5 2120 task->loginuid = loginuid;
1da177e4
LT
2121 return 0;
2122}
2123
20ca73bc
GW
2124/**
2125 * __audit_mq_open - record audit data for a POSIX MQ open
2126 * @oflag: open flag
2127 * @mode: mode bits
2128 * @u_attr: queue attributes
2129 *
2130 * Returns 0 for success or NULL context or < 0 on error.
2131 */
2132int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2133{
2134 struct audit_aux_data_mq_open *ax;
2135 struct audit_context *context = current->audit_context;
2136
2137 if (!audit_enabled)
2138 return 0;
2139
2140 if (likely(!context))
2141 return 0;
2142
2143 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2144 if (!ax)
2145 return -ENOMEM;
2146
2147 if (u_attr != NULL) {
2148 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2149 kfree(ax);
2150 return -EFAULT;
2151 }
2152 } else
2153 memset(&ax->attr, 0, sizeof(ax->attr));
2154
2155 ax->oflag = oflag;
2156 ax->mode = mode;
2157
2158 ax->d.type = AUDIT_MQ_OPEN;
2159 ax->d.next = context->aux;
2160 context->aux = (void *)ax;
2161 return 0;
2162}
2163
2164/**
2165 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2166 * @mqdes: MQ descriptor
2167 * @msg_len: Message length
2168 * @msg_prio: Message priority
1dbe83c3 2169 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2170 *
2171 * Returns 0 for success or NULL context or < 0 on error.
2172 */
2173int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2174 const struct timespec __user *u_abs_timeout)
2175{
2176 struct audit_aux_data_mq_sendrecv *ax;
2177 struct audit_context *context = current->audit_context;
2178
2179 if (!audit_enabled)
2180 return 0;
2181
2182 if (likely(!context))
2183 return 0;
2184
2185 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2186 if (!ax)
2187 return -ENOMEM;
2188
2189 if (u_abs_timeout != NULL) {
2190 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2191 kfree(ax);
2192 return -EFAULT;
2193 }
2194 } else
2195 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2196
2197 ax->mqdes = mqdes;
2198 ax->msg_len = msg_len;
2199 ax->msg_prio = msg_prio;
2200
2201 ax->d.type = AUDIT_MQ_SENDRECV;
2202 ax->d.next = context->aux;
2203 context->aux = (void *)ax;
2204 return 0;
2205}
2206
2207/**
2208 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2209 * @mqdes: MQ descriptor
2210 * @msg_len: Message length
1dbe83c3
RD
2211 * @u_msg_prio: Message priority
2212 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2213 *
2214 * Returns 0 for success or NULL context or < 0 on error.
2215 */
2216int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2217 unsigned int __user *u_msg_prio,
2218 const struct timespec __user *u_abs_timeout)
2219{
2220 struct audit_aux_data_mq_sendrecv *ax;
2221 struct audit_context *context = current->audit_context;
2222
2223 if (!audit_enabled)
2224 return 0;
2225
2226 if (likely(!context))
2227 return 0;
2228
2229 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2230 if (!ax)
2231 return -ENOMEM;
2232
2233 if (u_msg_prio != NULL) {
2234 if (get_user(ax->msg_prio, u_msg_prio)) {
2235 kfree(ax);
2236 return -EFAULT;
2237 }
2238 } else
2239 ax->msg_prio = 0;
2240
2241 if (u_abs_timeout != NULL) {
2242 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2243 kfree(ax);
2244 return -EFAULT;
2245 }
2246 } else
2247 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2248
2249 ax->mqdes = mqdes;
2250 ax->msg_len = msg_len;
2251
2252 ax->d.type = AUDIT_MQ_SENDRECV;
2253 ax->d.next = context->aux;
2254 context->aux = (void *)ax;
2255 return 0;
2256}
2257
2258/**
2259 * __audit_mq_notify - record audit data for a POSIX MQ notify
2260 * @mqdes: MQ descriptor
2261 * @u_notification: Notification event
2262 *
2263 * Returns 0 for success or NULL context or < 0 on error.
2264 */
2265
2266int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2267{
2268 struct audit_aux_data_mq_notify *ax;
2269 struct audit_context *context = current->audit_context;
2270
2271 if (!audit_enabled)
2272 return 0;
2273
2274 if (likely(!context))
2275 return 0;
2276
2277 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2278 if (!ax)
2279 return -ENOMEM;
2280
2281 if (u_notification != NULL) {
2282 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2283 kfree(ax);
2284 return -EFAULT;
2285 }
2286 } else
2287 memset(&ax->notification, 0, sizeof(ax->notification));
2288
2289 ax->mqdes = mqdes;
2290
2291 ax->d.type = AUDIT_MQ_NOTIFY;
2292 ax->d.next = context->aux;
2293 context->aux = (void *)ax;
2294 return 0;
2295}
2296
2297/**
2298 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2299 * @mqdes: MQ descriptor
2300 * @mqstat: MQ flags
2301 *
2302 * Returns 0 for success or NULL context or < 0 on error.
2303 */
2304int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2305{
2306 struct audit_aux_data_mq_getsetattr *ax;
2307 struct audit_context *context = current->audit_context;
2308
2309 if (!audit_enabled)
2310 return 0;
2311
2312 if (likely(!context))
2313 return 0;
2314
2315 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2316 if (!ax)
2317 return -ENOMEM;
2318
2319 ax->mqdes = mqdes;
2320 ax->mqstat = *mqstat;
2321
2322 ax->d.type = AUDIT_MQ_GETSETATTR;
2323 ax->d.next = context->aux;
2324 context->aux = (void *)ax;
2325 return 0;
2326}
2327
b0dd25a8 2328/**
073115d6
SG
2329 * audit_ipc_obj - record audit data for ipc object
2330 * @ipcp: ipc permissions
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
d8945bb5 2334int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2335{
2336 struct audit_aux_data_ipcctl *ax;
2337 struct audit_context *context = current->audit_context;
2338
073115d6
SG
2339 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2340 if (!ax)
2341 return -ENOMEM;
2342
2343 ax->uid = ipcp->uid;
2344 ax->gid = ipcp->gid;
2345 ax->mode = ipcp->mode;
2a862b32 2346 security_ipc_getsecid(ipcp, &ax->osid);
073115d6
SG
2347 ax->d.type = AUDIT_IPC;
2348 ax->d.next = context->aux;
2349 context->aux = (void *)ax;
2350 return 0;
2351}
2352
2353/**
2354 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2355 * @qbytes: msgq bytes
2356 * @uid: msgq user id
2357 * @gid: msgq group id
2358 * @mode: msgq mode (permissions)
2359 *
2360 * Returns 0 for success or NULL context or < 0 on error.
2361 */
d8945bb5 2362int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2363{
2364 struct audit_aux_data_ipcctl *ax;
2365 struct audit_context *context = current->audit_context;
2366
8c8570fb 2367 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2368 if (!ax)
2369 return -ENOMEM;
2370
2371 ax->qbytes = qbytes;
2372 ax->uid = uid;
2373 ax->gid = gid;
2374 ax->mode = mode;
2375
073115d6 2376 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2377 ax->d.next = context->aux;
2378 context->aux = (void *)ax;
2379 return 0;
2380}
c2f0c7c3 2381
473ae30b
AV
2382int audit_bprm(struct linux_binprm *bprm)
2383{
2384 struct audit_aux_data_execve *ax;
2385 struct audit_context *context = current->audit_context;
473ae30b 2386
5ac3a9c2 2387 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2388 return 0;
2389
bdf4c48a 2390 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2391 if (!ax)
2392 return -ENOMEM;
2393
2394 ax->argc = bprm->argc;
2395 ax->envc = bprm->envc;
bdf4c48a 2396 ax->mm = bprm->mm;
473ae30b
AV
2397 ax->d.type = AUDIT_EXECVE;
2398 ax->d.next = context->aux;
2399 context->aux = (void *)ax;
2400 return 0;
2401}
2402
2403
b0dd25a8
RD
2404/**
2405 * audit_socketcall - record audit data for sys_socketcall
2406 * @nargs: number of args
2407 * @args: args array
2408 *
2409 * Returns 0 for success or NULL context or < 0 on error.
2410 */
3ec3b2fb
DW
2411int audit_socketcall(int nargs, unsigned long *args)
2412{
2413 struct audit_aux_data_socketcall *ax;
2414 struct audit_context *context = current->audit_context;
2415
5ac3a9c2 2416 if (likely(!context || context->dummy))
3ec3b2fb
DW
2417 return 0;
2418
2419 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2420 if (!ax)
2421 return -ENOMEM;
2422
2423 ax->nargs = nargs;
2424 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2425
2426 ax->d.type = AUDIT_SOCKETCALL;
2427 ax->d.next = context->aux;
2428 context->aux = (void *)ax;
2429 return 0;
2430}
2431
db349509
AV
2432/**
2433 * __audit_fd_pair - record audit data for pipe and socketpair
2434 * @fd1: the first file descriptor
2435 * @fd2: the second file descriptor
2436 *
2437 * Returns 0 for success or NULL context or < 0 on error.
2438 */
2439int __audit_fd_pair(int fd1, int fd2)
2440{
2441 struct audit_context *context = current->audit_context;
2442 struct audit_aux_data_fd_pair *ax;
2443
2444 if (likely(!context)) {
2445 return 0;
2446 }
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax) {
2450 return -ENOMEM;
2451 }
2452
2453 ax->fd[0] = fd1;
2454 ax->fd[1] = fd2;
2455
2456 ax->d.type = AUDIT_FD_PAIR;
2457 ax->d.next = context->aux;
2458 context->aux = (void *)ax;
2459 return 0;
2460}
2461
b0dd25a8
RD
2462/**
2463 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2464 * @len: data length in user space
2465 * @a: data address in kernel space
2466 *
2467 * Returns 0 for success or NULL context or < 0 on error.
2468 */
3ec3b2fb
DW
2469int audit_sockaddr(int len, void *a)
2470{
3ec3b2fb
DW
2471 struct audit_context *context = current->audit_context;
2472
5ac3a9c2 2473 if (likely(!context || context->dummy))
3ec3b2fb
DW
2474 return 0;
2475
4f6b434f
AV
2476 if (!context->sockaddr) {
2477 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2478 if (!p)
2479 return -ENOMEM;
2480 context->sockaddr = p;
2481 }
3ec3b2fb 2482
4f6b434f
AV
2483 context->sockaddr_len = len;
2484 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2485 return 0;
2486}
2487
a5cb013d
AV
2488void __audit_ptrace(struct task_struct *t)
2489{
2490 struct audit_context *context = current->audit_context;
2491
2492 context->target_pid = t->pid;
c2a7780e 2493 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2494 context->target_uid = task_uid(t);
4746ec5b 2495 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2496 security_task_getsecid(t, &context->target_sid);
c2a7780e 2497 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2498}
2499
b0dd25a8
RD
2500/**
2501 * audit_signal_info - record signal info for shutting down audit subsystem
2502 * @sig: signal value
2503 * @t: task being signaled
2504 *
2505 * If the audit subsystem is being terminated, record the task (pid)
2506 * and uid that is doing that.
2507 */
e54dc243 2508int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2509{
e54dc243
AG
2510 struct audit_aux_data_pids *axp;
2511 struct task_struct *tsk = current;
2512 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2513 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2514
175fc484 2515 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2516 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2517 audit_sig_pid = tsk->pid;
bfef93a5
AV
2518 if (tsk->loginuid != -1)
2519 audit_sig_uid = tsk->loginuid;
175fc484 2520 else
c69e8d9c 2521 audit_sig_uid = uid;
2a862b32 2522 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2523 }
2524 if (!audit_signals || audit_dummy_context())
2525 return 0;
c2f0c7c3 2526 }
e54dc243 2527
e54dc243
AG
2528 /* optimize the common case by putting first signal recipient directly
2529 * in audit_context */
2530 if (!ctx->target_pid) {
2531 ctx->target_pid = t->tgid;
c2a7780e 2532 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2533 ctx->target_uid = t_uid;
4746ec5b 2534 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2535 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2536 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2537 return 0;
2538 }
2539
2540 axp = (void *)ctx->aux_pids;
2541 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2542 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2543 if (!axp)
2544 return -ENOMEM;
2545
2546 axp->d.type = AUDIT_OBJ_PID;
2547 axp->d.next = ctx->aux_pids;
2548 ctx->aux_pids = (void *)axp;
2549 }
88ae704c 2550 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2551
2552 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2553 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2554 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2555 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2556 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2557 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2558 axp->pid_count++;
2559
2560 return 0;
c2f0c7c3 2561}
0a4ff8c2 2562
3fc689e9
EP
2563/**
2564 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2565 * @bprm: pointer to the bprm being processed
2566 * @new: the proposed new credentials
2567 * @old: the old credentials
3fc689e9
EP
2568 *
2569 * Simply check if the proc already has the caps given by the file and if not
2570 * store the priv escalation info for later auditing at the end of the syscall
2571 *
3fc689e9
EP
2572 * -Eric
2573 */
d84f4f99
DH
2574int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2575 const struct cred *new, const struct cred *old)
3fc689e9
EP
2576{
2577 struct audit_aux_data_bprm_fcaps *ax;
2578 struct audit_context *context = current->audit_context;
2579 struct cpu_vfs_cap_data vcaps;
2580 struct dentry *dentry;
2581
2582 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2583 if (!ax)
d84f4f99 2584 return -ENOMEM;
3fc689e9
EP
2585
2586 ax->d.type = AUDIT_BPRM_FCAPS;
2587 ax->d.next = context->aux;
2588 context->aux = (void *)ax;
2589
2590 dentry = dget(bprm->file->f_dentry);
2591 get_vfs_caps_from_disk(dentry, &vcaps);
2592 dput(dentry);
2593
2594 ax->fcap.permitted = vcaps.permitted;
2595 ax->fcap.inheritable = vcaps.inheritable;
2596 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2597 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2598
d84f4f99
DH
2599 ax->old_pcap.permitted = old->cap_permitted;
2600 ax->old_pcap.inheritable = old->cap_inheritable;
2601 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2602
d84f4f99
DH
2603 ax->new_pcap.permitted = new->cap_permitted;
2604 ax->new_pcap.inheritable = new->cap_inheritable;
2605 ax->new_pcap.effective = new->cap_effective;
2606 return 0;
3fc689e9
EP
2607}
2608
e68b75a0
EP
2609/**
2610 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2611 * @pid: target pid of the capset call
2612 * @new: the new credentials
2613 * @old: the old (current) credentials
e68b75a0
EP
2614 *
2615 * Record the aguments userspace sent to sys_capset for later printing by the
2616 * audit system if applicable
2617 */
d84f4f99
DH
2618int __audit_log_capset(pid_t pid,
2619 const struct cred *new, const struct cred *old)
e68b75a0
EP
2620{
2621 struct audit_aux_data_capset *ax;
2622 struct audit_context *context = current->audit_context;
2623
2624 if (likely(!audit_enabled || !context || context->dummy))
2625 return 0;
2626
2627 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2628 if (!ax)
2629 return -ENOMEM;
2630
2631 ax->d.type = AUDIT_CAPSET;
2632 ax->d.next = context->aux;
2633 context->aux = (void *)ax;
2634
2635 ax->pid = pid;
d84f4f99
DH
2636 ax->cap.effective = new->cap_effective;
2637 ax->cap.inheritable = new->cap_effective;
2638 ax->cap.permitted = new->cap_permitted;
e68b75a0
EP
2639
2640 return 0;
2641}
2642
0a4ff8c2
SG
2643/**
2644 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2645 * @signr: signal value
0a4ff8c2
SG
2646 *
2647 * If a process ends with a core dump, something fishy is going on and we
2648 * should record the event for investigation.
2649 */
2650void audit_core_dumps(long signr)
2651{
2652 struct audit_buffer *ab;
2653 u32 sid;
76aac0e9
DH
2654 uid_t auid = audit_get_loginuid(current), uid;
2655 gid_t gid;
4746ec5b 2656 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2657
2658 if (!audit_enabled)
2659 return;
2660
2661 if (signr == SIGQUIT) /* don't care for those */
2662 return;
2663
2664 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2665 current_uid_gid(&uid, &gid);
4746ec5b 2666 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2667 auid, uid, gid, sessionid);
2a862b32 2668 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2669 if (sid) {
2670 char *ctx = NULL;
2671 u32 len;
2672
2a862b32 2673 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2674 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2675 else {
0a4ff8c2 2676 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2677 security_release_secctx(ctx, len);
2678 }
0a4ff8c2
SG
2679 }
2680 audit_log_format(ab, " pid=%d comm=", current->pid);
2681 audit_log_untrustedstring(ab, current->comm);
2682 audit_log_format(ab, " sig=%ld", signr);
2683 audit_log_end(ab);
2684}