audit: clean up AUDITSYSCALL prototypes and stubs
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
473ae30b 66#include <linux/binfmts.h>
a1f8e7f7 67#include <linux/highmem.h>
f46038ff 68#include <linux/syscalls.h>
84db564a 69#include <asm/syscall.h>
851f7ff5 70#include <linux/capability.h>
5ad4e53b 71#include <linux/fs_struct.h>
3dc1c1b2 72#include <linux/compat.h>
3f1c8250 73#include <linux/ctype.h>
fcf22d82 74#include <linux/string.h>
43761473 75#include <linux/uaccess.h>
9dd813c1 76#include <linux/fsnotify_backend.h>
fcf22d82 77#include <uapi/linux/limits.h>
1da177e4 78
fe7752ba 79#include "audit.h"
1da177e4 80
d7e7528b
EP
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
43761473
PM
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
de6bbd1d
EP
88#define MAX_EXECVE_AUDIT_LEN 7500
89
3f1c8250
WR
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
471a5c7c
AV
93/* number of audit rules */
94int audit_n_rules;
95
e54dc243
AG
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
1da177e4
LT
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
e54dc243
AG
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
e54dc243
AG
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 112 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 113 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 115 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
117 int pid_count;
118};
119
3fc689e9
EP
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
74c3cbe3
AV
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
55669bfa
AV
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
c4bacefb 135 unsigned n;
1a61c88d 136 if (unlikely(!ctx))
137 return 0;
c4bacefb 138 n = ctx->major;
dbda4c0b 139
55669bfa
AV
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
5ef30ee5 176static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 177{
5195d8e2 178 struct audit_names *n;
5ef30ee5 179 umode_t mode = (umode_t)val;
1a61c88d 180
181 if (unlikely(!ctx))
182 return 0;
183
5195d8e2 184 list_for_each_entry(n, &ctx->names_list, list) {
84cb777e 185 if ((n->ino != AUDIT_INO_UNSET) &&
5195d8e2 186 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
187 return 1;
188 }
5195d8e2 189
5ef30ee5 190 return 0;
8b67dca9
AV
191}
192
74c3cbe3
AV
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
679173b7
EP
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
74c3cbe3
AV
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
74c3cbe3
AV
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
74c3cbe3
AV
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
74c3cbe3
AV
274}
275
276static void free_tree_refs(struct audit_context *ctx)
277{
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283}
284
285static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286{
74c3cbe3
AV
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
74c3cbe3
AV
303 return 0;
304}
305
ca57ec0f
EB
306static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
b34b0393
EP
310{
311 struct audit_names *n;
b34b0393 312 int rc;
ca57ec0f 313
b34b0393 314 if (name) {
ca57ec0f 315 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
316 if (rc)
317 return rc;
318 }
ca57ec0f 319
b34b0393
EP
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328}
b34b0393 329
ca57ec0f
EB
330static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334{
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352}
353
02d86a56
EP
354static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359{
02d86a56 360 switch (f->val) {
4a6633ed 361 /* process to file object comparisons */
02d86a56 362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 363 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 365 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 367 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 369 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
38f80590 371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
4a6633ed 372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 373 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 375 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
38f80590
RGB
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
10d68360 384 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 386 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 388 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
38f80590
RGB
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
10d68360 394 case AUDIT_COMPARE_AUID_TO_SUID:
38f80590
RGB
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
10d68360 397 case AUDIT_COMPARE_AUID_TO_FSUID:
38f80590
RGB
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
10d68360
PM
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 411 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 413 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 418 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
f368c07d 430/* Determine if any context name data matches a rule's watch data */
1da177e4 431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
1da177e4 438static int audit_filter_rules(struct task_struct *tsk,
93315ed6 439 struct audit_krule *rule,
1da177e4 440 struct audit_context *ctx,
f368c07d 441 struct audit_names *name,
f5629883
TJ
442 enum audit_state *state,
443 bool task_creation)
1da177e4 444{
f5629883 445 const struct cred *cred;
5195d8e2 446 int i, need_sid = 1;
3dc7e315 447 u32 sid;
8fae4770 448 unsigned int sessionid;
3dc7e315 449
f5629883
TJ
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
1da177e4 452 for (i = 0; i < rule->field_count; i++) {
93315ed6 453 struct audit_field *f = &rule->fields[i];
5195d8e2 454 struct audit_names *n;
1da177e4 455 int result = 0;
f1dc4867 456 pid_t pid;
1da177e4 457
93315ed6 458 switch (f->type) {
1da177e4 459 case AUDIT_PID:
fa2bea2f 460 pid = task_tgid_nr(tsk);
f1dc4867 461 result = audit_comparator(pid, f->op, f->val);
1da177e4 462 break;
3c66251e 463 case AUDIT_PPID:
419c58f1
AV
464 if (ctx) {
465 if (!ctx->ppid)
c92cdeb4 466 ctx->ppid = task_ppid_nr(tsk);
3c66251e 467 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 468 }
3c66251e 469 break;
34d99af5
RGB
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
23bcc480
OM
472 if (f->op == Audit_not_equal)
473 result = !result;
34d99af5 474 break;
1da177e4 475 case AUDIT_UID:
ca57ec0f 476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_EUID:
ca57ec0f 479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_SUID:
ca57ec0f 482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_FSUID:
ca57ec0f 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
486 break;
487 case AUDIT_GID:
ca57ec0f 488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
489 if (f->op == Audit_equal) {
490 if (!result)
af85d177 491 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
492 } else if (f->op == Audit_not_equal) {
493 if (result)
af85d177 494 result = !groups_search(cred->group_info, f->gid);
37eebe39 495 }
1da177e4
LT
496 break;
497 case AUDIT_EGID:
ca57ec0f 498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
499 if (f->op == Audit_equal) {
500 if (!result)
af85d177 501 result = groups_search(cred->group_info, f->gid);
37eebe39
MI
502 } else if (f->op == Audit_not_equal) {
503 if (result)
af85d177 504 result = !groups_search(cred->group_info, f->gid);
37eebe39 505 }
1da177e4
LT
506 break;
507 case AUDIT_SGID:
ca57ec0f 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_FSGID:
ca57ec0f 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4 512 break;
8fae4770 513 case AUDIT_SESSIONID:
5b713886 514 sessionid = audit_get_sessionid(tsk);
8fae4770
RGB
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
1da177e4 517 case AUDIT_PERS:
93315ed6 518 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 519 break;
2fd6f58b 520 case AUDIT_ARCH:
9f8dbe9c 521 if (ctx)
93315ed6 522 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 523 break;
1da177e4
LT
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
93315ed6 527 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
528 break;
529 case AUDIT_SUCCESS:
b01f2cc1 530 if (ctx && ctx->return_valid) {
93315ed6
AG
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 533 else
93315ed6 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 535 }
1da177e4
LT
536 break;
537 case AUDIT_DEVMAJOR:
16c174bd
EP
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
5195d8e2 543 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
16c174bd
EP
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
5195d8e2 558 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
f368c07d 568 if (name)
db510fc5 569 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 570 else if (ctx) {
5195d8e2
EP
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
efaffd6e
EP
579 case AUDIT_OBJ_UID:
580 if (name) {
ca57ec0f 581 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
54d3218b
EP
591 case AUDIT_OBJ_GID:
592 if (name) {
ca57ec0f 593 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
f368c07d 603 case AUDIT_WATCH:
ae7b8f41
EP
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 606 break;
74c3cbe3
AV
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
1da177e4 611 case AUDIT_LOGINUID:
38f80590
RGB
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
1da177e4 614 break;
780a7654
EB
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
3a6b9f85
DG
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
3dc7e315
DG
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
04305e4a 628 if (f->lsm_rule) {
2ad312d2 629 if (need_sid) {
2a862b32 630 security_task_getsecid(tsk, &sid);
2ad312d2
SG
631 need_sid = 0;
632 }
d7a96f3a 633 result = security_audit_rule_match(sid, f->type,
3dc7e315 634 f->op,
04305e4a 635 f->lsm_rule,
3dc7e315 636 ctx);
2ad312d2 637 }
3dc7e315 638 break;
6e5a2d1d
DG
639 case AUDIT_OBJ_USER:
640 case AUDIT_OBJ_ROLE:
641 case AUDIT_OBJ_TYPE:
642 case AUDIT_OBJ_LEV_LOW:
643 case AUDIT_OBJ_LEV_HIGH:
644 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
645 also applies here */
04305e4a 646 if (f->lsm_rule) {
6e5a2d1d
DG
647 /* Find files that match */
648 if (name) {
d7a96f3a 649 result = security_audit_rule_match(
6e5a2d1d 650 name->osid, f->type, f->op,
04305e4a 651 f->lsm_rule, ctx);
6e5a2d1d 652 } else if (ctx) {
5195d8e2
EP
653 list_for_each_entry(n, &ctx->names_list, list) {
654 if (security_audit_rule_match(n->osid, f->type,
655 f->op, f->lsm_rule,
656 ctx)) {
6e5a2d1d
DG
657 ++result;
658 break;
659 }
660 }
661 }
662 /* Find ipc objects that match */
a33e6751
AV
663 if (!ctx || ctx->type != AUDIT_IPC)
664 break;
665 if (security_audit_rule_match(ctx->ipc.osid,
666 f->type, f->op,
667 f->lsm_rule, ctx))
668 ++result;
6e5a2d1d
DG
669 }
670 break;
1da177e4
LT
671 case AUDIT_ARG0:
672 case AUDIT_ARG1:
673 case AUDIT_ARG2:
674 case AUDIT_ARG3:
675 if (ctx)
93315ed6 676 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 677 break;
5adc8a6a
AG
678 case AUDIT_FILTERKEY:
679 /* ignore this field for filtering */
680 result = 1;
681 break;
55669bfa
AV
682 case AUDIT_PERM:
683 result = audit_match_perm(ctx, f->val);
684 break;
8b67dca9
AV
685 case AUDIT_FILETYPE:
686 result = audit_match_filetype(ctx, f->val);
687 break;
02d86a56
EP
688 case AUDIT_FIELD_COMPARE:
689 result = audit_field_compare(tsk, cred, f, ctx, name);
690 break;
1da177e4 691 }
f5629883 692 if (!result)
1da177e4
LT
693 return 0;
694 }
0590b933
AV
695
696 if (ctx) {
697 if (rule->prio <= ctx->prio)
698 return 0;
699 if (rule->filterkey) {
700 kfree(ctx->filterkey);
701 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
702 }
703 ctx->prio = rule->prio;
704 }
1da177e4 705 switch (rule->action) {
66b12abc
PM
706 case AUDIT_NEVER:
707 *state = AUDIT_DISABLED;
708 break;
709 case AUDIT_ALWAYS:
710 *state = AUDIT_RECORD_CONTEXT;
711 break;
1da177e4
LT
712 }
713 return 1;
714}
715
716/* At process creation time, we can determine if system-call auditing is
717 * completely disabled for this task. Since we only have the task
718 * structure at this point, we can only check uid and gid.
719 */
e048e02c 720static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
721{
722 struct audit_entry *e;
723 enum audit_state state;
724
725 rcu_read_lock();
0f45aa18 726 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
727 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
728 &state, true)) {
e048e02c
AV
729 if (state == AUDIT_RECORD_CONTEXT)
730 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
731 rcu_read_unlock();
732 return state;
733 }
734 }
735 rcu_read_unlock();
736 return AUDIT_BUILD_CONTEXT;
737}
738
a3c54931
AL
739static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
740{
741 int word, bit;
742
743 if (val > 0xffffffff)
744 return false;
745
746 word = AUDIT_WORD(val);
747 if (word >= AUDIT_BITMASK_SIZE)
748 return false;
749
750 bit = AUDIT_BIT(val);
751
752 return rule->mask[word] & bit;
753}
754
1da177e4
LT
755/* At syscall entry and exit time, this filter is called if the
756 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 757 * also not high enough that we already know we have to write an audit
b0dd25a8 758 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
759 */
760static enum audit_state audit_filter_syscall(struct task_struct *tsk,
761 struct audit_context *ctx,
762 struct list_head *list)
763{
764 struct audit_entry *e;
c3896495 765 enum audit_state state;
1da177e4 766
5b52330b 767 if (auditd_test_task(tsk))
f7056d64
DW
768 return AUDIT_DISABLED;
769
1da177e4 770 rcu_read_lock();
c3896495 771 if (!list_empty(list)) {
b63862f4 772 list_for_each_entry_rcu(e, list, list) {
a3c54931 773 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 774 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 775 &state, false)) {
f368c07d 776 rcu_read_unlock();
0590b933 777 ctx->current_state = state;
f368c07d
AG
778 return state;
779 }
780 }
781 }
782 rcu_read_unlock();
783 return AUDIT_BUILD_CONTEXT;
784}
785
5195d8e2
EP
786/*
787 * Given an audit_name check the inode hash table to see if they match.
788 * Called holding the rcu read lock to protect the use of audit_inode_hash
789 */
790static int audit_filter_inode_name(struct task_struct *tsk,
791 struct audit_names *n,
792 struct audit_context *ctx) {
5195d8e2
EP
793 int h = audit_hash_ino((u32)n->ino);
794 struct list_head *list = &audit_inode_hash[h];
795 struct audit_entry *e;
796 enum audit_state state;
797
5195d8e2
EP
798 if (list_empty(list))
799 return 0;
800
801 list_for_each_entry_rcu(e, list, list) {
a3c54931 802 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
803 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
804 ctx->current_state = state;
805 return 1;
806 }
807 }
808
809 return 0;
810}
811
812/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 813 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 814 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
815 * Regarding audit_state, same rules apply as for audit_filter_syscall().
816 */
0590b933 817void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 818{
5195d8e2 819 struct audit_names *n;
f368c07d 820
5b52330b 821 if (auditd_test_task(tsk))
0590b933 822 return;
f368c07d
AG
823
824 rcu_read_lock();
f368c07d 825
5195d8e2
EP
826 list_for_each_entry(n, &ctx->names_list, list) {
827 if (audit_filter_inode_name(tsk, n, ctx))
828 break;
0f45aa18
DW
829 }
830 rcu_read_unlock();
0f45aa18
DW
831}
832
3f1c8250
WR
833static inline void audit_proctitle_free(struct audit_context *context)
834{
835 kfree(context->proctitle.value);
836 context->proctitle.value = NULL;
837 context->proctitle.len = 0;
838}
839
1da177e4
LT
840static inline void audit_free_names(struct audit_context *context)
841{
5195d8e2 842 struct audit_names *n, *next;
1da177e4 843
5195d8e2
EP
844 list_for_each_entry_safe(n, next, &context->names_list, list) {
845 list_del(&n->list);
55422d0b
PM
846 if (n->name)
847 putname(n->name);
5195d8e2
EP
848 if (n->should_free)
849 kfree(n);
8c8570fb 850 }
1da177e4 851 context->name_count = 0;
44707fdf
JB
852 path_put(&context->pwd);
853 context->pwd.dentry = NULL;
854 context->pwd.mnt = NULL;
1da177e4
LT
855}
856
857static inline void audit_free_aux(struct audit_context *context)
858{
859 struct audit_aux_data *aux;
860
861 while ((aux = context->aux)) {
862 context->aux = aux->next;
863 kfree(aux);
864 }
e54dc243
AG
865 while ((aux = context->aux_pids)) {
866 context->aux_pids = aux->next;
867 kfree(aux);
868 }
1da177e4
LT
869}
870
1da177e4
LT
871static inline struct audit_context *audit_alloc_context(enum audit_state state)
872{
873 struct audit_context *context;
874
17c6ee70
RM
875 context = kzalloc(sizeof(*context), GFP_KERNEL);
876 if (!context)
1da177e4 877 return NULL;
e2c5adc8
AM
878 context->state = state;
879 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 880 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 881 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
882 return context;
883}
884
b0dd25a8
RD
885/**
886 * audit_alloc - allocate an audit context block for a task
887 * @tsk: task
888 *
889 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
890 * if necessary. Doing so turns on system call auditing for the
891 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
892 * needed.
893 */
1da177e4
LT
894int audit_alloc(struct task_struct *tsk)
895{
896 struct audit_context *context;
897 enum audit_state state;
e048e02c 898 char *key = NULL;
1da177e4 899
b593d384 900 if (likely(!audit_ever_enabled))
1da177e4
LT
901 return 0; /* Return if not auditing. */
902
e048e02c 903 state = audit_filter_task(tsk, &key);
d48d8051
ON
904 if (state == AUDIT_DISABLED) {
905 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 906 return 0;
d48d8051 907 }
1da177e4
LT
908
909 if (!(context = audit_alloc_context(state))) {
e048e02c 910 kfree(key);
1da177e4
LT
911 audit_log_lost("out of memory in audit_alloc");
912 return -ENOMEM;
913 }
e048e02c 914 context->filterkey = key;
1da177e4 915
c0b0ae8a 916 audit_set_context(tsk, context);
1da177e4
LT
917 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
918 return 0;
919}
920
921static inline void audit_free_context(struct audit_context *context)
922{
c62d773a
AV
923 audit_free_names(context);
924 unroll_tree_refs(context, NULL, 0);
925 free_tree_refs(context);
926 audit_free_aux(context);
927 kfree(context->filterkey);
928 kfree(context->sockaddr);
3f1c8250 929 audit_proctitle_free(context);
c62d773a 930 kfree(context);
1da177e4
LT
931}
932
e54dc243 933static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 934 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 935 u32 sid, char *comm)
e54dc243
AG
936{
937 struct audit_buffer *ab;
2a862b32 938 char *ctx = NULL;
e54dc243
AG
939 u32 len;
940 int rc = 0;
941
942 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
943 if (!ab)
6246ccab 944 return rc;
e54dc243 945
e1760bd5
EB
946 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
947 from_kuid(&init_user_ns, auid),
cca080d9 948 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
949 if (sid) {
950 if (security_secid_to_secctx(sid, &ctx, &len)) {
951 audit_log_format(ab, " obj=(none)");
952 rc = 1;
953 } else {
954 audit_log_format(ab, " obj=%s", ctx);
955 security_release_secctx(ctx, len);
956 }
2a862b32 957 }
c2a7780e
EP
958 audit_log_format(ab, " ocomm=");
959 audit_log_untrustedstring(ab, comm);
e54dc243 960 audit_log_end(ab);
e54dc243
AG
961
962 return rc;
963}
964
43761473
PM
965static void audit_log_execve_info(struct audit_context *context,
966 struct audit_buffer **ab)
bdf4c48a 967{
43761473
PM
968 long len_max;
969 long len_rem;
970 long len_full;
971 long len_buf;
8443075e 972 long len_abuf = 0;
43761473
PM
973 long len_tmp;
974 bool require_data;
975 bool encode;
976 unsigned int iter;
977 unsigned int arg;
978 char *buf_head;
979 char *buf;
980 const char __user *p = (const char __user *)current->mm->arg_start;
981
982 /* NOTE: this buffer needs to be large enough to hold all the non-arg
983 * data we put in the audit record for this argument (see the
984 * code below) ... at this point in time 96 is plenty */
985 char abuf[96];
986
987 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
988 * current value of 7500 is not as important as the fact that it
989 * is less than 8k, a setting of 7500 gives us plenty of wiggle
990 * room if we go over a little bit in the logging below */
991 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
992 len_max = MAX_EXECVE_AUDIT_LEN;
993
994 /* scratch buffer to hold the userspace args */
995 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
996 if (!buf_head) {
997 audit_panic("out of memory for argv string");
998 return;
de6bbd1d 999 }
43761473 1000 buf = buf_head;
040b3a2d 1001
43761473 1002 audit_log_format(*ab, "argc=%d", context->execve.argc);
040b3a2d 1003
43761473
PM
1004 len_rem = len_max;
1005 len_buf = 0;
1006 len_full = 0;
1007 require_data = true;
1008 encode = false;
1009 iter = 0;
1010 arg = 0;
de6bbd1d 1011 do {
43761473
PM
1012 /* NOTE: we don't ever want to trust this value for anything
1013 * serious, but the audit record format insists we
1014 * provide an argument length for really long arguments,
1015 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1016 * to use strncpy_from_user() to obtain this value for
1017 * recording in the log, although we don't use it
1018 * anywhere here to avoid a double-fetch problem */
1019 if (len_full == 0)
1020 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1021
1022 /* read more data from userspace */
1023 if (require_data) {
1024 /* can we make more room in the buffer? */
1025 if (buf != buf_head) {
1026 memmove(buf_head, buf, len_buf);
1027 buf = buf_head;
1028 }
1029
1030 /* fetch as much as we can of the argument */
1031 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1032 len_max - len_buf);
1033 if (len_tmp == -EFAULT) {
1034 /* unable to copy from userspace */
1035 send_sig(SIGKILL, current, 0);
1036 goto out;
1037 } else if (len_tmp == (len_max - len_buf)) {
1038 /* buffer is not large enough */
1039 require_data = true;
1040 /* NOTE: if we are going to span multiple
1041 * buffers force the encoding so we stand
1042 * a chance at a sane len_full value and
1043 * consistent record encoding */
1044 encode = true;
1045 len_full = len_full * 2;
1046 p += len_tmp;
1047 } else {
1048 require_data = false;
1049 if (!encode)
1050 encode = audit_string_contains_control(
1051 buf, len_tmp);
1052 /* try to use a trusted value for len_full */
1053 if (len_full < len_max)
1054 len_full = (encode ?
1055 len_tmp * 2 : len_tmp);
1056 p += len_tmp + 1;
1057 }
1058 len_buf += len_tmp;
1059 buf_head[len_buf] = '\0';
bdf4c48a 1060
43761473
PM
1061 /* length of the buffer in the audit record? */
1062 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
bdf4c48a 1063 }
de6bbd1d 1064
43761473 1065 /* write as much as we can to the audit log */
ea956d8b 1066 if (len_buf >= 0) {
43761473
PM
1067 /* NOTE: some magic numbers here - basically if we
1068 * can't fit a reasonable amount of data into the
1069 * existing audit buffer, flush it and start with
1070 * a new buffer */
1071 if ((sizeof(abuf) + 8) > len_rem) {
1072 len_rem = len_max;
1073 audit_log_end(*ab);
1074 *ab = audit_log_start(context,
1075 GFP_KERNEL, AUDIT_EXECVE);
1076 if (!*ab)
1077 goto out;
1078 }
bdf4c48a 1079
43761473
PM
1080 /* create the non-arg portion of the arg record */
1081 len_tmp = 0;
1082 if (require_data || (iter > 0) ||
1083 ((len_abuf + sizeof(abuf)) > len_rem)) {
1084 if (iter == 0) {
1085 len_tmp += snprintf(&abuf[len_tmp],
1086 sizeof(abuf) - len_tmp,
1087 " a%d_len=%lu",
1088 arg, len_full);
1089 }
1090 len_tmp += snprintf(&abuf[len_tmp],
1091 sizeof(abuf) - len_tmp,
1092 " a%d[%d]=", arg, iter++);
1093 } else
1094 len_tmp += snprintf(&abuf[len_tmp],
1095 sizeof(abuf) - len_tmp,
1096 " a%d=", arg);
1097 WARN_ON(len_tmp >= sizeof(abuf));
1098 abuf[sizeof(abuf) - 1] = '\0';
1099
1100 /* log the arg in the audit record */
1101 audit_log_format(*ab, "%s", abuf);
1102 len_rem -= len_tmp;
1103 len_tmp = len_buf;
1104 if (encode) {
1105 if (len_abuf > len_rem)
1106 len_tmp = len_rem / 2; /* encoding */
1107 audit_log_n_hex(*ab, buf, len_tmp);
1108 len_rem -= len_tmp * 2;
1109 len_abuf -= len_tmp * 2;
1110 } else {
1111 if (len_abuf > len_rem)
1112 len_tmp = len_rem - 2; /* quotes */
1113 audit_log_n_string(*ab, buf, len_tmp);
1114 len_rem -= len_tmp + 2;
1115 /* don't subtract the "2" because we still need
1116 * to add quotes to the remaining string */
1117 len_abuf -= len_tmp;
1118 }
1119 len_buf -= len_tmp;
1120 buf += len_tmp;
1121 }
bdf4c48a 1122
43761473
PM
1123 /* ready to move to the next argument? */
1124 if ((len_buf == 0) && !require_data) {
1125 arg++;
1126 iter = 0;
1127 len_full = 0;
1128 require_data = true;
1129 encode = false;
1130 }
1131 } while (arg < context->execve.argc);
de6bbd1d 1132
43761473 1133 /* NOTE: the caller handles the final audit_log_end() call */
de6bbd1d 1134
43761473
PM
1135out:
1136 kfree(buf_head);
bdf4c48a
PZ
1137}
1138
a33e6751 1139static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1140{
1141 struct audit_buffer *ab;
1142 int i;
1143
1144 ab = audit_log_start(context, GFP_KERNEL, context->type);
1145 if (!ab)
1146 return;
1147
1148 switch (context->type) {
1149 case AUDIT_SOCKETCALL: {
1150 int nargs = context->socketcall.nargs;
1151 audit_log_format(ab, "nargs=%d", nargs);
1152 for (i = 0; i < nargs; i++)
1153 audit_log_format(ab, " a%d=%lx", i,
1154 context->socketcall.args[i]);
1155 break; }
a33e6751
AV
1156 case AUDIT_IPC: {
1157 u32 osid = context->ipc.osid;
1158
2570ebbd 1159 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1160 from_kuid(&init_user_ns, context->ipc.uid),
1161 from_kgid(&init_user_ns, context->ipc.gid),
1162 context->ipc.mode);
a33e6751
AV
1163 if (osid) {
1164 char *ctx = NULL;
1165 u32 len;
1166 if (security_secid_to_secctx(osid, &ctx, &len)) {
1167 audit_log_format(ab, " osid=%u", osid);
1168 *call_panic = 1;
1169 } else {
1170 audit_log_format(ab, " obj=%s", ctx);
1171 security_release_secctx(ctx, len);
1172 }
1173 }
e816f370
AV
1174 if (context->ipc.has_perm) {
1175 audit_log_end(ab);
1176 ab = audit_log_start(context, GFP_KERNEL,
1177 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1178 if (unlikely(!ab))
1179 return;
e816f370 1180 audit_log_format(ab,
2570ebbd 1181 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1182 context->ipc.qbytes,
1183 context->ipc.perm_uid,
1184 context->ipc.perm_gid,
1185 context->ipc.perm_mode);
e816f370 1186 }
a33e6751 1187 break; }
fe8e52b9 1188 case AUDIT_MQ_OPEN:
564f6993 1189 audit_log_format(ab,
df0a4283 1190 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1191 "mq_msgsize=%ld mq_curmsgs=%ld",
1192 context->mq_open.oflag, context->mq_open.mode,
1193 context->mq_open.attr.mq_flags,
1194 context->mq_open.attr.mq_maxmsg,
1195 context->mq_open.attr.mq_msgsize,
1196 context->mq_open.attr.mq_curmsgs);
fe8e52b9
PM
1197 break;
1198 case AUDIT_MQ_SENDRECV:
c32c8af4
AV
1199 audit_log_format(ab,
1200 "mqdes=%d msg_len=%zd msg_prio=%u "
b9047726 1201 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
c32c8af4
AV
1202 context->mq_sendrecv.mqdes,
1203 context->mq_sendrecv.msg_len,
1204 context->mq_sendrecv.msg_prio,
b9047726 1205 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
c32c8af4 1206 context->mq_sendrecv.abs_timeout.tv_nsec);
fe8e52b9
PM
1207 break;
1208 case AUDIT_MQ_NOTIFY:
20114f71
AV
1209 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1210 context->mq_notify.mqdes,
1211 context->mq_notify.sigev_signo);
fe8e52b9 1212 break;
7392906e
AV
1213 case AUDIT_MQ_GETSETATTR: {
1214 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1215 audit_log_format(ab,
1216 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1217 "mq_curmsgs=%ld ",
1218 context->mq_getsetattr.mqdes,
1219 attr->mq_flags, attr->mq_maxmsg,
1220 attr->mq_msgsize, attr->mq_curmsgs);
1221 break; }
fe8e52b9 1222 case AUDIT_CAPSET:
57f71a0a
AV
1223 audit_log_format(ab, "pid=%d", context->capset.pid);
1224 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1225 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1226 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
7786f6b6 1227 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
fe8e52b9
PM
1228 break;
1229 case AUDIT_MMAP:
120a795d
AV
1230 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1231 context->mmap.flags);
fe8e52b9
PM
1232 break;
1233 case AUDIT_EXECVE:
d9cfea91 1234 audit_log_execve_info(context, &ab);
fe8e52b9 1235 break;
ca86cad7
RGB
1236 case AUDIT_KERN_MODULE:
1237 audit_log_format(ab, "name=");
b305f7ed
YW
1238 if (context->module.name) {
1239 audit_log_untrustedstring(ab, context->module.name);
1240 kfree(context->module.name);
1241 } else
1242 audit_log_format(ab, "(null)");
1243
ca86cad7 1244 break;
f3298dc4
AV
1245 }
1246 audit_log_end(ab);
1247}
1248
3f1c8250
WR
1249static inline int audit_proctitle_rtrim(char *proctitle, int len)
1250{
1251 char *end = proctitle + len - 1;
1252 while (end > proctitle && !isprint(*end))
1253 end--;
1254
1255 /* catch the case where proctitle is only 1 non-print character */
1256 len = end - proctitle + 1;
1257 len -= isprint(proctitle[len-1]) == 0;
1258 return len;
1259}
1260
2a1fe215 1261static void audit_log_proctitle(void)
3f1c8250
WR
1262{
1263 int res;
1264 char *buf;
1265 char *msg = "(null)";
1266 int len = strlen(msg);
2a1fe215 1267 struct audit_context *context = audit_context();
3f1c8250
WR
1268 struct audit_buffer *ab;
1269
2a1fe215
PM
1270 if (!context || context->dummy)
1271 return;
1272
3f1c8250
WR
1273 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1274 if (!ab)
1275 return; /* audit_panic or being filtered */
1276
1277 audit_log_format(ab, "proctitle=");
1278
1279 /* Not cached */
1280 if (!context->proctitle.value) {
1281 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1282 if (!buf)
1283 goto out;
1284 /* Historically called this from procfs naming */
2a1fe215 1285 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
3f1c8250
WR
1286 if (res == 0) {
1287 kfree(buf);
1288 goto out;
1289 }
1290 res = audit_proctitle_rtrim(buf, res);
1291 if (res == 0) {
1292 kfree(buf);
1293 goto out;
1294 }
1295 context->proctitle.value = buf;
1296 context->proctitle.len = res;
1297 }
1298 msg = context->proctitle.value;
1299 len = context->proctitle.len;
1300out:
1301 audit_log_n_untrustedstring(ab, msg, len);
1302 audit_log_end(ab);
1303}
1304
2a1fe215 1305static void audit_log_exit(void)
1da177e4 1306{
9c7aa6aa 1307 int i, call_panic = 0;
2a1fe215 1308 struct audit_context *context = audit_context();
1da177e4 1309 struct audit_buffer *ab;
7551ced3 1310 struct audit_aux_data *aux;
5195d8e2 1311 struct audit_names *n;
1da177e4 1312
2a1fe215 1313 context->personality = current->personality;
e495149b
AV
1314
1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1316 if (!ab)
1317 return; /* audit_panic has been called */
bccf6ae0
DW
1318 audit_log_format(ab, "arch=%x syscall=%d",
1319 context->arch, context->major);
1da177e4
LT
1320 if (context->personality != PER_LINUX)
1321 audit_log_format(ab, " per=%lx", context->personality);
1322 if (context->return_valid)
9f8dbe9c 1323 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1324 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1325 context->return_code);
eb84a20e 1326
1da177e4 1327 audit_log_format(ab,
e23eb920
PM
1328 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1329 context->argv[0],
1330 context->argv[1],
1331 context->argv[2],
1332 context->argv[3],
1333 context->name_count);
eb84a20e 1334
2a1fe215 1335 audit_log_task_info(ab);
9d960985 1336 audit_log_key(ab, context->filterkey);
1da177e4 1337 audit_log_end(ab);
1da177e4 1338
7551ced3 1339 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1340
e495149b 1341 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1342 if (!ab)
1343 continue; /* audit_panic has been called */
1344
1da177e4 1345 switch (aux->type) {
20ca73bc 1346
3fc689e9
EP
1347 case AUDIT_BPRM_FCAPS: {
1348 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1349 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1350 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1351 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1352 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1353 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1354 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1355 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
7786f6b6
RGB
1356 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1357 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1358 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1359 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1360 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
2fec30e2
RGB
1361 audit_log_format(ab, " frootid=%d",
1362 from_kuid(&init_user_ns,
1363 axs->fcap.rootid));
3fc689e9
EP
1364 break; }
1365
1da177e4
LT
1366 }
1367 audit_log_end(ab);
1da177e4
LT
1368 }
1369
f3298dc4 1370 if (context->type)
a33e6751 1371 show_special(context, &call_panic);
f3298dc4 1372
157cf649
AV
1373 if (context->fds[0] >= 0) {
1374 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1375 if (ab) {
1376 audit_log_format(ab, "fd0=%d fd1=%d",
1377 context->fds[0], context->fds[1]);
1378 audit_log_end(ab);
1379 }
1380 }
1381
4f6b434f
AV
1382 if (context->sockaddr_len) {
1383 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1384 if (ab) {
1385 audit_log_format(ab, "saddr=");
1386 audit_log_n_hex(ab, (void *)context->sockaddr,
1387 context->sockaddr_len);
1388 audit_log_end(ab);
1389 }
1390 }
1391
e54dc243
AG
1392 for (aux = context->aux_pids; aux; aux = aux->next) {
1393 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1394
1395 for (i = 0; i < axs->pid_count; i++)
1396 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1397 axs->target_auid[i],
1398 axs->target_uid[i],
4746ec5b 1399 axs->target_sessionid[i],
c2a7780e
EP
1400 axs->target_sid[i],
1401 axs->target_comm[i]))
e54dc243 1402 call_panic = 1;
a5cb013d
AV
1403 }
1404
e54dc243
AG
1405 if (context->target_pid &&
1406 audit_log_pid_context(context, context->target_pid,
c2a7780e 1407 context->target_auid, context->target_uid,
4746ec5b 1408 context->target_sessionid,
c2a7780e 1409 context->target_sid, context->target_comm))
e54dc243
AG
1410 call_panic = 1;
1411
44707fdf 1412 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1414 if (ab) {
0b7a0fdb 1415 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1416 audit_log_end(ab);
1417 }
1418 }
73241ccc 1419
5195d8e2 1420 i = 0;
79f6530c
JL
1421 list_for_each_entry(n, &context->names_list, list) {
1422 if (n->hidden)
1423 continue;
b24a30a7 1424 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1425 }
c0641f28 1426
2a1fe215 1427 audit_log_proctitle();
3f1c8250 1428
c0641f28
EP
1429 /* Send end of event record to help user space know we are finished */
1430 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1431 if (ab)
1432 audit_log_end(ab);
9c7aa6aa
SG
1433 if (call_panic)
1434 audit_panic("error converting sid to string");
1da177e4
LT
1435}
1436
b0dd25a8 1437/**
196a5085 1438 * __audit_free - free a per-task audit context
b0dd25a8
RD
1439 * @tsk: task whose audit context block to free
1440 *
fa84cb93 1441 * Called from copy_process and do_exit
b0dd25a8 1442 */
a4ff8dba 1443void __audit_free(struct task_struct *tsk)
1da177e4 1444{
2a1fe215 1445 struct audit_context *context = tsk->audit_context;
1da177e4 1446
56179a6e 1447 if (!context)
1da177e4
LT
1448 return;
1449
9e36a5d4
RGB
1450 if (!list_empty(&context->killed_trees))
1451 audit_kill_trees(context);
1452
2a1fe215
PM
1453 /* We are called either by do_exit() or the fork() error handling code;
1454 * in the former case tsk == current and in the latter tsk is a
1455 * random task_struct that doesn't doesn't have any meaningful data we
1456 * need to log via audit_log_exit().
1457 */
1458 if (tsk == current && !context->dummy && context->in_syscall) {
1459 context->return_valid = 0;
1460 context->return_code = 0;
1461
1462 audit_filter_syscall(tsk, context,
1463 &audit_filter_list[AUDIT_FILTER_EXIT]);
1464 audit_filter_inodes(tsk, context);
1465 if (context->current_state == AUDIT_RECORD_CONTEXT)
1466 audit_log_exit();
1467 }
1468
2a1fe215 1469 audit_set_context(tsk, NULL);
1da177e4
LT
1470 audit_free_context(context);
1471}
1472
b0dd25a8 1473/**
196a5085 1474 * __audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1475 * @major: major syscall type (function)
1476 * @a1: additional syscall register 1
1477 * @a2: additional syscall register 2
1478 * @a3: additional syscall register 3
1479 * @a4: additional syscall register 4
1480 *
1481 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1482 * audit context was created when the task was created and the state or
1483 * filters demand the audit context be built. If the state from the
1484 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1485 * then the record will be written at syscall exit time (otherwise, it
1486 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1487 * be written).
1488 */
b4f0d375
RGB
1489void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1490 unsigned long a3, unsigned long a4)
1da177e4 1491{
cdfb6b34 1492 struct audit_context *context = audit_context();
1da177e4
LT
1493 enum audit_state state;
1494
94d14e3e 1495 if (!audit_enabled || !context)
86a1c34a 1496 return;
1da177e4 1497
1da177e4
LT
1498 BUG_ON(context->in_syscall || context->name_count);
1499
1da177e4 1500 state = context->state;
5260ecc2
RGB
1501 if (state == AUDIT_DISABLED)
1502 return;
1503
d51374ad 1504 context->dummy = !audit_n_rules;
0590b933
AV
1505 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1506 context->prio = 0;
cdfb6b34 1507 if (auditd_test_task(current))
5260ecc2 1508 return;
0590b933 1509 }
1da177e4 1510
5260ecc2
RGB
1511 context->arch = syscall_get_arch();
1512 context->major = major;
1513 context->argv[0] = a1;
1514 context->argv[1] = a2;
1515 context->argv[2] = a3;
1516 context->argv[3] = a4;
ce625a80 1517 context->serial = 0;
1da177e4 1518 context->in_syscall = 1;
0590b933 1519 context->current_state = state;
419c58f1 1520 context->ppid = 0;
290e44b7 1521 ktime_get_coarse_real_ts64(&context->ctime);
1da177e4
LT
1522}
1523
b0dd25a8 1524/**
196a5085 1525 * __audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1526 * @success: success value of the syscall
1527 * @return_code: return value of the syscall
b0dd25a8
RD
1528 *
1529 * Tear down after system call. If the audit context has been marked as
1da177e4 1530 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1531 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1532 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1533 * free the names stored from getname().
1534 */
d7e7528b 1535void __audit_syscall_exit(int success, long return_code)
1da177e4
LT
1536{
1537 struct audit_context *context;
1538
2a1fe215 1539 context = audit_context();
56179a6e 1540 if (!context)
97e94c45 1541 return;
1da177e4 1542
9e36a5d4
RGB
1543 if (!list_empty(&context->killed_trees))
1544 audit_kill_trees(context);
1545
2a1fe215
PM
1546 if (!context->dummy && context->in_syscall) {
1547 if (success)
1548 context->return_valid = AUDITSC_SUCCESS;
1549 else
1550 context->return_valid = AUDITSC_FAILURE;
1551
1552 /*
1553 * we need to fix up the return code in the audit logs if the
1554 * actual return codes are later going to be fixed up by the
1555 * arch specific signal handlers
1556 *
1557 * This is actually a test for:
1558 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1559 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1560 *
1561 * but is faster than a bunch of ||
1562 */
1563 if (unlikely(return_code <= -ERESTARTSYS) &&
1564 (return_code >= -ERESTART_RESTARTBLOCK) &&
1565 (return_code != -ENOIOCTLCMD))
1566 context->return_code = -EINTR;
1567 else
1568 context->return_code = return_code;
1569
1570 audit_filter_syscall(current, context,
1571 &audit_filter_list[AUDIT_FILTER_EXIT]);
1572 audit_filter_inodes(current, context);
1573 if (context->current_state == AUDIT_RECORD_CONTEXT)
1574 audit_log_exit();
1575 }
1da177e4
LT
1576
1577 context->in_syscall = 0;
0590b933 1578 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1579
c62d773a
AV
1580 audit_free_names(context);
1581 unroll_tree_refs(context, NULL, 0);
1582 audit_free_aux(context);
1583 context->aux = NULL;
1584 context->aux_pids = NULL;
1585 context->target_pid = 0;
1586 context->target_sid = 0;
1587 context->sockaddr_len = 0;
1588 context->type = 0;
1589 context->fds[0] = -1;
1590 if (context->state != AUDIT_RECORD_CONTEXT) {
1591 kfree(context->filterkey);
1592 context->filterkey = NULL;
1da177e4 1593 }
1da177e4
LT
1594}
1595
74c3cbe3
AV
1596static inline void handle_one(const struct inode *inode)
1597{
74c3cbe3
AV
1598 struct audit_context *context;
1599 struct audit_tree_refs *p;
1600 struct audit_chunk *chunk;
1601 int count;
08991e83 1602 if (likely(!inode->i_fsnotify_marks))
74c3cbe3 1603 return;
cdfb6b34 1604 context = audit_context();
74c3cbe3
AV
1605 p = context->trees;
1606 count = context->tree_count;
1607 rcu_read_lock();
1608 chunk = audit_tree_lookup(inode);
1609 rcu_read_unlock();
1610 if (!chunk)
1611 return;
1612 if (likely(put_tree_ref(context, chunk)))
1613 return;
1614 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1615 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1616 audit_set_auditable(context);
1617 audit_put_chunk(chunk);
1618 unroll_tree_refs(context, p, count);
1619 return;
1620 }
1621 put_tree_ref(context, chunk);
74c3cbe3
AV
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
74c3cbe3
AV
1626 struct audit_context *context;
1627 struct audit_tree_refs *p;
1628 const struct dentry *d, *parent;
1629 struct audit_chunk *drop;
1630 unsigned long seq;
1631 int count;
1632
cdfb6b34 1633 context = audit_context();
74c3cbe3
AV
1634 p = context->trees;
1635 count = context->tree_count;
1636retry:
1637 drop = NULL;
1638 d = dentry;
1639 rcu_read_lock();
1640 seq = read_seqbegin(&rename_lock);
1641 for(;;) {
3b362157 1642 struct inode *inode = d_backing_inode(d);
08991e83 1643 if (inode && unlikely(inode->i_fsnotify_marks)) {
74c3cbe3
AV
1644 struct audit_chunk *chunk;
1645 chunk = audit_tree_lookup(inode);
1646 if (chunk) {
1647 if (unlikely(!put_tree_ref(context, chunk))) {
1648 drop = chunk;
1649 break;
1650 }
1651 }
1652 }
1653 parent = d->d_parent;
1654 if (parent == d)
1655 break;
1656 d = parent;
1657 }
1658 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1659 rcu_read_unlock();
1660 if (!drop) {
1661 /* just a race with rename */
1662 unroll_tree_refs(context, p, count);
1663 goto retry;
1664 }
1665 audit_put_chunk(drop);
1666 if (grow_tree_refs(context)) {
1667 /* OK, got more space */
1668 unroll_tree_refs(context, p, count);
1669 goto retry;
1670 }
1671 /* too bad */
f952d10f 1672 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1673 unroll_tree_refs(context, p, count);
1674 audit_set_auditable(context);
1675 return;
1676 }
1677 rcu_read_unlock();
74c3cbe3
AV
1678}
1679
78e2e802
JL
1680static struct audit_names *audit_alloc_name(struct audit_context *context,
1681 unsigned char type)
5195d8e2
EP
1682{
1683 struct audit_names *aname;
1684
1685 if (context->name_count < AUDIT_NAMES) {
1686 aname = &context->preallocated_names[context->name_count];
1687 memset(aname, 0, sizeof(*aname));
1688 } else {
1689 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1690 if (!aname)
1691 return NULL;
1692 aname->should_free = true;
1693 }
1694
84cb777e 1695 aname->ino = AUDIT_INO_UNSET;
78e2e802 1696 aname->type = type;
5195d8e2
EP
1697 list_add_tail(&aname->list, &context->names_list);
1698
1699 context->name_count++;
5195d8e2
EP
1700 return aname;
1701}
1702
7ac86265 1703/**
196a5085 1704 * __audit_reusename - fill out filename with info from existing entry
7ac86265
JL
1705 * @uptr: userland ptr to pathname
1706 *
1707 * Search the audit_names list for the current audit context. If there is an
1708 * existing entry with a matching "uptr" then return the filename
1709 * associated with that audit_name. If not, return NULL.
1710 */
1711struct filename *
1712__audit_reusename(const __user char *uptr)
1713{
cdfb6b34 1714 struct audit_context *context = audit_context();
7ac86265
JL
1715 struct audit_names *n;
1716
1717 list_for_each_entry(n, &context->names_list, list) {
1718 if (!n->name)
1719 continue;
55422d0b
PM
1720 if (n->name->uptr == uptr) {
1721 n->name->refcnt++;
7ac86265 1722 return n->name;
55422d0b 1723 }
7ac86265
JL
1724 }
1725 return NULL;
1726}
1727
b0dd25a8 1728/**
196a5085 1729 * __audit_getname - add a name to the list
b0dd25a8
RD
1730 * @name: name to add
1731 *
1732 * Add a name to the list of audit names for this context.
1733 * Called from fs/namei.c:getname().
1734 */
91a27b2a 1735void __audit_getname(struct filename *name)
1da177e4 1736{
cdfb6b34 1737 struct audit_context *context = audit_context();
5195d8e2 1738 struct audit_names *n;
1da177e4 1739
55422d0b 1740 if (!context->in_syscall)
1da177e4 1741 return;
91a27b2a 1742
78e2e802 1743 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1744 if (!n)
1745 return;
1746
1747 n->name = name;
1748 n->name_len = AUDIT_NAME_FULL;
adb5c247 1749 name->aname = n;
55422d0b 1750 name->refcnt++;
5195d8e2 1751
f7ad3c6b
MS
1752 if (!context->pwd.dentry)
1753 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1754}
1755
b0dd25a8 1756/**
bfcec708 1757 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1758 * @name: name being audited
481968f4 1759 * @dentry: dentry being audited
79f6530c 1760 * @flags: attributes for this particular entry
b0dd25a8 1761 */
adb5c247 1762void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1763 unsigned int flags)
1da177e4 1764{
cdfb6b34 1765 struct audit_context *context = audit_context();
d6335d77 1766 struct inode *inode = d_backing_inode(dentry);
5195d8e2 1767 struct audit_names *n;
79f6530c 1768 bool parent = flags & AUDIT_INODE_PARENT;
a252f56a
RGB
1769 struct audit_entry *e;
1770 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1771 int i;
1da177e4
LT
1772
1773 if (!context->in_syscall)
1774 return;
5195d8e2 1775
a252f56a
RGB
1776 rcu_read_lock();
1777 if (!list_empty(list)) {
1778 list_for_each_entry_rcu(e, list, list) {
1779 for (i = 0; i < e->rule.field_count; i++) {
1780 struct audit_field *f = &e->rule.fields[i];
1781
1782 if (f->type == AUDIT_FSTYPE
1783 && audit_comparator(inode->i_sb->s_magic,
1784 f->op, f->val)
1785 && e->rule.action == AUDIT_NEVER) {
1786 rcu_read_unlock();
1787 return;
1788 }
1789 }
1790 }
1791 }
1792 rcu_read_unlock();
1793
9cec9d68
JL
1794 if (!name)
1795 goto out_alloc;
1796
adb5c247
JL
1797 /*
1798 * If we have a pointer to an audit_names entry already, then we can
1799 * just use it directly if the type is correct.
1800 */
1801 n = name->aname;
1802 if (n) {
1803 if (parent) {
1804 if (n->type == AUDIT_TYPE_PARENT ||
1805 n->type == AUDIT_TYPE_UNKNOWN)
1806 goto out;
1807 } else {
1808 if (n->type != AUDIT_TYPE_PARENT)
1809 goto out;
1810 }
1811 }
1812
5195d8e2 1813 list_for_each_entry_reverse(n, &context->names_list, list) {
57c59f58
PM
1814 if (n->ino) {
1815 /* valid inode number, use that for the comparison */
1816 if (n->ino != inode->i_ino ||
1817 n->dev != inode->i_sb->s_dev)
1818 continue;
1819 } else if (n->name) {
1820 /* inode number has not been set, check the name */
1821 if (strcmp(n->name->name, name->name))
1822 continue;
1823 } else
1824 /* no inode and no name (?!) ... this is odd ... */
bfcec708
JL
1825 continue;
1826
1827 /* match the correct record type */
1828 if (parent) {
1829 if (n->type == AUDIT_TYPE_PARENT ||
1830 n->type == AUDIT_TYPE_UNKNOWN)
1831 goto out;
1832 } else {
1833 if (n->type != AUDIT_TYPE_PARENT)
1834 goto out;
1835 }
1da177e4 1836 }
5195d8e2 1837
9cec9d68 1838out_alloc:
4a928436
PM
1839 /* unable to find an entry with both a matching name and type */
1840 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1841 if (!n)
1842 return;
fcf22d82 1843 if (name) {
fd3522fd 1844 n->name = name;
55422d0b 1845 name->refcnt++;
fcf22d82 1846 }
4a928436 1847
5195d8e2 1848out:
bfcec708 1849 if (parent) {
91a27b2a 1850 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1851 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1852 if (flags & AUDIT_INODE_HIDDEN)
1853 n->hidden = true;
bfcec708
JL
1854 } else {
1855 n->name_len = AUDIT_NAME_FULL;
1856 n->type = AUDIT_TYPE_NORMAL;
1857 }
74c3cbe3 1858 handle_path(dentry);
5195d8e2 1859 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1860}
1861
9f45f5bf
AV
1862void __audit_file(const struct file *file)
1863{
1864 __audit_inode(NULL, file->f_path.dentry, 0);
1865}
1866
73241ccc 1867/**
c43a25ab 1868 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1869 * @parent: inode of dentry parent
c43a25ab 1870 * @dentry: dentry being audited
4fa6b5ec 1871 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1872 *
1873 * For syscalls that create or remove filesystem objects, audit_inode
1874 * can only collect information for the filesystem object's parent.
1875 * This call updates the audit context with the child's information.
1876 * Syscalls that create a new filesystem object must be hooked after
1877 * the object is created. Syscalls that remove a filesystem object
1878 * must be hooked prior, in order to capture the target inode during
1879 * unsuccessful attempts.
1880 */
d6335d77 1881void __audit_inode_child(struct inode *parent,
4fa6b5ec
JL
1882 const struct dentry *dentry,
1883 const unsigned char type)
73241ccc 1884{
cdfb6b34 1885 struct audit_context *context = audit_context();
d6335d77 1886 struct inode *inode = d_backing_inode(dentry);
cccc6bba 1887 const char *dname = dentry->d_name.name;
4fa6b5ec 1888 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
42d5e376
RGB
1889 struct audit_entry *e;
1890 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1891 int i;
73241ccc
AG
1892
1893 if (!context->in_syscall)
1894 return;
1895
42d5e376
RGB
1896 rcu_read_lock();
1897 if (!list_empty(list)) {
1898 list_for_each_entry_rcu(e, list, list) {
1899 for (i = 0; i < e->rule.field_count; i++) {
1900 struct audit_field *f = &e->rule.fields[i];
1901
a252f56a
RGB
1902 if (f->type == AUDIT_FSTYPE
1903 && audit_comparator(parent->i_sb->s_magic,
1904 f->op, f->val)
1905 && e->rule.action == AUDIT_NEVER) {
1906 rcu_read_unlock();
1907 return;
42d5e376
RGB
1908 }
1909 }
1910 }
1911 }
1912 rcu_read_unlock();
1913
74c3cbe3
AV
1914 if (inode)
1915 handle_one(inode);
73241ccc 1916
4fa6b5ec 1917 /* look for a parent entry first */
5195d8e2 1918 list_for_each_entry(n, &context->names_list, list) {
57c59f58
PM
1919 if (!n->name ||
1920 (n->type != AUDIT_TYPE_PARENT &&
1921 n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1922 continue;
1923
57c59f58
PM
1924 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1925 !audit_compare_dname_path(dname,
1926 n->name->name, n->name_len)) {
1927 if (n->type == AUDIT_TYPE_UNKNOWN)
1928 n->type = AUDIT_TYPE_PARENT;
4fa6b5ec
JL
1929 found_parent = n;
1930 break;
f368c07d 1931 }
5712e88f 1932 }
73241ccc 1933
4fa6b5ec 1934 /* is there a matching child entry? */
5195d8e2 1935 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1936 /* can only match entries that have a name */
57c59f58
PM
1937 if (!n->name ||
1938 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
5712e88f
AG
1939 continue;
1940
91a27b2a
JL
1941 if (!strcmp(dname, n->name->name) ||
1942 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1943 found_parent ?
1944 found_parent->name_len :
e3d6b07b 1945 AUDIT_NAME_FULL)) {
57c59f58
PM
1946 if (n->type == AUDIT_TYPE_UNKNOWN)
1947 n->type = type;
4fa6b5ec
JL
1948 found_child = n;
1949 break;
5712e88f 1950 }
ac9910ce 1951 }
5712e88f 1952
5712e88f 1953 if (!found_parent) {
4fa6b5ec
JL
1954 /* create a new, "anonymous" parent record */
1955 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1956 if (!n)
ac9910ce 1957 return;
5195d8e2 1958 audit_copy_inode(n, NULL, parent);
73d3ec5a 1959 }
5712e88f
AG
1960
1961 if (!found_child) {
4fa6b5ec
JL
1962 found_child = audit_alloc_name(context, type);
1963 if (!found_child)
5712e88f 1964 return;
5712e88f
AG
1965
1966 /* Re-use the name belonging to the slot for a matching parent
1967 * directory. All names for this context are relinquished in
1968 * audit_free_names() */
1969 if (found_parent) {
4fa6b5ec
JL
1970 found_child->name = found_parent->name;
1971 found_child->name_len = AUDIT_NAME_FULL;
55422d0b 1972 found_child->name->refcnt++;
5712e88f 1973 }
5712e88f 1974 }
57c59f58 1975
4fa6b5ec
JL
1976 if (inode)
1977 audit_copy_inode(found_child, dentry, inode);
1978 else
84cb777e 1979 found_child->ino = AUDIT_INO_UNSET;
3e2efce0 1980}
50e437d5 1981EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1982
b0dd25a8
RD
1983/**
1984 * auditsc_get_stamp - get local copies of audit_context values
1985 * @ctx: audit_context for the task
2115bb25 1986 * @t: timespec64 to store time recorded in the audit_context
b0dd25a8
RD
1987 * @serial: serial value that is recorded in the audit_context
1988 *
1989 * Also sets the context as auditable.
1990 */
48887e63 1991int auditsc_get_stamp(struct audit_context *ctx,
2115bb25 1992 struct timespec64 *t, unsigned int *serial)
1da177e4 1993{
48887e63
AV
1994 if (!ctx->in_syscall)
1995 return 0;
ce625a80
DW
1996 if (!ctx->serial)
1997 ctx->serial = audit_serial();
bfb4496e
DW
1998 t->tv_sec = ctx->ctime.tv_sec;
1999 t->tv_nsec = ctx->ctime.tv_nsec;
2000 *serial = ctx->serial;
0590b933
AV
2001 if (!ctx->prio) {
2002 ctx->prio = 1;
2003 ctx->current_state = AUDIT_RECORD_CONTEXT;
2004 }
48887e63 2005 return 1;
1da177e4
LT
2006}
2007
20ca73bc
GW
2008/**
2009 * __audit_mq_open - record audit data for a POSIX MQ open
2010 * @oflag: open flag
2011 * @mode: mode bits
6b962559 2012 * @attr: queue attributes
20ca73bc 2013 *
20ca73bc 2014 */
df0a4283 2015void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2016{
cdfb6b34 2017 struct audit_context *context = audit_context();
20ca73bc 2018
564f6993
AV
2019 if (attr)
2020 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2021 else
2022 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2023
564f6993
AV
2024 context->mq_open.oflag = oflag;
2025 context->mq_open.mode = mode;
20ca73bc 2026
564f6993 2027 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2028}
2029
2030/**
c32c8af4 2031 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2032 * @mqdes: MQ descriptor
2033 * @msg_len: Message length
2034 * @msg_prio: Message priority
c32c8af4 2035 * @abs_timeout: Message timeout in absolute time
20ca73bc 2036 *
20ca73bc 2037 */
c32c8af4 2038void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
b9047726 2039 const struct timespec64 *abs_timeout)
20ca73bc 2040{
cdfb6b34 2041 struct audit_context *context = audit_context();
b9047726 2042 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2043
c32c8af4 2044 if (abs_timeout)
b9047726 2045 memcpy(p, abs_timeout, sizeof(*p));
c32c8af4 2046 else
b9047726 2047 memset(p, 0, sizeof(*p));
20ca73bc 2048
c32c8af4
AV
2049 context->mq_sendrecv.mqdes = mqdes;
2050 context->mq_sendrecv.msg_len = msg_len;
2051 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2052
c32c8af4 2053 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2054}
2055
2056/**
2057 * __audit_mq_notify - record audit data for a POSIX MQ notify
2058 * @mqdes: MQ descriptor
6b962559 2059 * @notification: Notification event
20ca73bc 2060 *
20ca73bc
GW
2061 */
2062
20114f71 2063void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2064{
cdfb6b34 2065 struct audit_context *context = audit_context();
20ca73bc 2066
20114f71
AV
2067 if (notification)
2068 context->mq_notify.sigev_signo = notification->sigev_signo;
2069 else
2070 context->mq_notify.sigev_signo = 0;
20ca73bc 2071
20114f71
AV
2072 context->mq_notify.mqdes = mqdes;
2073 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2074}
2075
2076/**
2077 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2078 * @mqdes: MQ descriptor
2079 * @mqstat: MQ flags
2080 *
20ca73bc 2081 */
7392906e 2082void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2083{
cdfb6b34 2084 struct audit_context *context = audit_context();
7392906e
AV
2085 context->mq_getsetattr.mqdes = mqdes;
2086 context->mq_getsetattr.mqstat = *mqstat;
2087 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2088}
2089
b0dd25a8 2090/**
196a5085 2091 * __audit_ipc_obj - record audit data for ipc object
073115d6
SG
2092 * @ipcp: ipc permissions
2093 *
073115d6 2094 */
a33e6751 2095void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2096{
cdfb6b34 2097 struct audit_context *context = audit_context();
a33e6751
AV
2098 context->ipc.uid = ipcp->uid;
2099 context->ipc.gid = ipcp->gid;
2100 context->ipc.mode = ipcp->mode;
e816f370 2101 context->ipc.has_perm = 0;
a33e6751
AV
2102 security_ipc_getsecid(ipcp, &context->ipc.osid);
2103 context->type = AUDIT_IPC;
073115d6
SG
2104}
2105
2106/**
196a5085 2107 * __audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2108 * @qbytes: msgq bytes
2109 * @uid: msgq user id
2110 * @gid: msgq group id
2111 * @mode: msgq mode (permissions)
2112 *
e816f370 2113 * Called only after audit_ipc_obj().
b0dd25a8 2114 */
2570ebbd 2115void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2116{
cdfb6b34 2117 struct audit_context *context = audit_context();
1da177e4 2118
e816f370
AV
2119 context->ipc.qbytes = qbytes;
2120 context->ipc.perm_uid = uid;
2121 context->ipc.perm_gid = gid;
2122 context->ipc.perm_mode = mode;
2123 context->ipc.has_perm = 1;
1da177e4 2124}
c2f0c7c3 2125
d9cfea91 2126void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2127{
cdfb6b34 2128 struct audit_context *context = audit_context();
473ae30b 2129
d9cfea91
RGB
2130 context->type = AUDIT_EXECVE;
2131 context->execve.argc = bprm->argc;
473ae30b
AV
2132}
2133
2134
b0dd25a8 2135/**
196a5085 2136 * __audit_socketcall - record audit data for sys_socketcall
2950fa9d 2137 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2138 * @args: args array
2139 *
b0dd25a8 2140 */
2950fa9d 2141int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2142{
cdfb6b34 2143 struct audit_context *context = audit_context();
3ec3b2fb 2144
2950fa9d
CG
2145 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2146 return -EINVAL;
f3298dc4
AV
2147 context->type = AUDIT_SOCKETCALL;
2148 context->socketcall.nargs = nargs;
2149 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2150 return 0;
3ec3b2fb
DW
2151}
2152
db349509
AV
2153/**
2154 * __audit_fd_pair - record audit data for pipe and socketpair
2155 * @fd1: the first file descriptor
2156 * @fd2: the second file descriptor
2157 *
db349509 2158 */
157cf649 2159void __audit_fd_pair(int fd1, int fd2)
db349509 2160{
cdfb6b34 2161 struct audit_context *context = audit_context();
157cf649
AV
2162 context->fds[0] = fd1;
2163 context->fds[1] = fd2;
db349509
AV
2164}
2165
b0dd25a8 2166/**
196a5085 2167 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
b0dd25a8
RD
2168 * @len: data length in user space
2169 * @a: data address in kernel space
2170 *
2171 * Returns 0 for success or NULL context or < 0 on error.
2172 */
07c49417 2173int __audit_sockaddr(int len, void *a)
3ec3b2fb 2174{
cdfb6b34 2175 struct audit_context *context = audit_context();
3ec3b2fb 2176
4f6b434f
AV
2177 if (!context->sockaddr) {
2178 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2179 if (!p)
2180 return -ENOMEM;
2181 context->sockaddr = p;
2182 }
3ec3b2fb 2183
4f6b434f
AV
2184 context->sockaddr_len = len;
2185 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2186 return 0;
2187}
2188
a5cb013d
AV
2189void __audit_ptrace(struct task_struct *t)
2190{
cdfb6b34 2191 struct audit_context *context = audit_context();
a5cb013d 2192
fa2bea2f 2193 context->target_pid = task_tgid_nr(t);
c2a7780e 2194 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2195 context->target_uid = task_uid(t);
4746ec5b 2196 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2197 security_task_getsecid(t, &context->target_sid);
c2a7780e 2198 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2199}
2200
b0dd25a8
RD
2201/**
2202 * audit_signal_info - record signal info for shutting down audit subsystem
2203 * @sig: signal value
2204 * @t: task being signaled
2205 *
2206 * If the audit subsystem is being terminated, record the task (pid)
2207 * and uid that is doing that.
2208 */
ab6434a1 2209int audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2210{
e54dc243 2211 struct audit_aux_data_pids *axp;
cdfb6b34 2212 struct audit_context *ctx = audit_context();
38f80590 2213 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
e1396065 2214
ab6434a1
PM
2215 if (auditd_test_task(t) &&
2216 (sig == SIGTERM || sig == SIGHUP ||
2217 sig == SIGUSR1 || sig == SIGUSR2)) {
cdfb6b34 2218 audit_sig_pid = task_tgid_nr(current);
38f80590
RGB
2219 auid = audit_get_loginuid(current);
2220 if (uid_valid(auid))
2221 audit_sig_uid = auid;
ab6434a1
PM
2222 else
2223 audit_sig_uid = uid;
cdfb6b34 2224 security_task_getsecid(current, &audit_sig_sid);
c2f0c7c3 2225 }
e54dc243 2226
ab6434a1
PM
2227 if (!audit_signals || audit_dummy_context())
2228 return 0;
2229
e54dc243
AG
2230 /* optimize the common case by putting first signal recipient directly
2231 * in audit_context */
2232 if (!ctx->target_pid) {
f1dc4867 2233 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2234 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2235 ctx->target_uid = t_uid;
4746ec5b 2236 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2237 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2238 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2239 return 0;
2240 }
2241
2242 axp = (void *)ctx->aux_pids;
2243 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2244 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2245 if (!axp)
2246 return -ENOMEM;
2247
2248 axp->d.type = AUDIT_OBJ_PID;
2249 axp->d.next = ctx->aux_pids;
2250 ctx->aux_pids = (void *)axp;
2251 }
88ae704c 2252 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2253
f1dc4867 2254 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2255 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2256 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2257 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2258 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2259 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2260 axp->pid_count++;
2261
2262 return 0;
c2f0c7c3 2263}
0a4ff8c2 2264
3fc689e9
EP
2265/**
2266 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2267 * @bprm: pointer to the bprm being processed
2268 * @new: the proposed new credentials
2269 * @old: the old credentials
3fc689e9
EP
2270 *
2271 * Simply check if the proc already has the caps given by the file and if not
2272 * store the priv escalation info for later auditing at the end of the syscall
2273 *
3fc689e9
EP
2274 * -Eric
2275 */
d84f4f99
DH
2276int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2277 const struct cred *new, const struct cred *old)
3fc689e9
EP
2278{
2279 struct audit_aux_data_bprm_fcaps *ax;
cdfb6b34 2280 struct audit_context *context = audit_context();
3fc689e9 2281 struct cpu_vfs_cap_data vcaps;
3fc689e9
EP
2282
2283 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2284 if (!ax)
d84f4f99 2285 return -ENOMEM;
3fc689e9
EP
2286
2287 ax->d.type = AUDIT_BPRM_FCAPS;
2288 ax->d.next = context->aux;
2289 context->aux = (void *)ax;
2290
f4a4a8b1 2291 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
3fc689e9
EP
2292
2293 ax->fcap.permitted = vcaps.permitted;
2294 ax->fcap.inheritable = vcaps.inheritable;
2295 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2fec30e2 2296 ax->fcap.rootid = vcaps.rootid;
3fc689e9
EP
2297 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2298
d84f4f99
DH
2299 ax->old_pcap.permitted = old->cap_permitted;
2300 ax->old_pcap.inheritable = old->cap_inheritable;
2301 ax->old_pcap.effective = old->cap_effective;
7786f6b6 2302 ax->old_pcap.ambient = old->cap_ambient;
3fc689e9 2303
d84f4f99
DH
2304 ax->new_pcap.permitted = new->cap_permitted;
2305 ax->new_pcap.inheritable = new->cap_inheritable;
2306 ax->new_pcap.effective = new->cap_effective;
7786f6b6 2307 ax->new_pcap.ambient = new->cap_ambient;
d84f4f99 2308 return 0;
3fc689e9
EP
2309}
2310
e68b75a0
EP
2311/**
2312 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2313 * @new: the new credentials
2314 * @old: the old (current) credentials
e68b75a0 2315 *
da3dae54 2316 * Record the arguments userspace sent to sys_capset for later printing by the
e68b75a0
EP
2317 * audit system if applicable
2318 */
ca24a23e 2319void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2320{
cdfb6b34 2321 struct audit_context *context = audit_context();
fa2bea2f 2322 context->capset.pid = task_tgid_nr(current);
57f71a0a
AV
2323 context->capset.cap.effective = new->cap_effective;
2324 context->capset.cap.inheritable = new->cap_effective;
2325 context->capset.cap.permitted = new->cap_permitted;
7786f6b6 2326 context->capset.cap.ambient = new->cap_ambient;
57f71a0a 2327 context->type = AUDIT_CAPSET;
e68b75a0
EP
2328}
2329
120a795d
AV
2330void __audit_mmap_fd(int fd, int flags)
2331{
cdfb6b34 2332 struct audit_context *context = audit_context();
120a795d
AV
2333 context->mmap.fd = fd;
2334 context->mmap.flags = flags;
2335 context->type = AUDIT_MMAP;
2336}
2337
ca86cad7
RGB
2338void __audit_log_kern_module(char *name)
2339{
cdfb6b34 2340 struct audit_context *context = audit_context();
ca86cad7 2341
b305f7ed
YW
2342 context->module.name = kstrdup(name, GFP_KERNEL);
2343 if (!context->module.name)
2344 audit_log_lost("out of memory in __audit_log_kern_module");
ca86cad7
RGB
2345 context->type = AUDIT_KERN_MODULE;
2346}
2347
de8cd83e
SG
2348void __audit_fanotify(unsigned int response)
2349{
cdfb6b34 2350 audit_log(audit_context(), GFP_KERNEL,
de8cd83e
SG
2351 AUDIT_FANOTIFY, "resp=%u", response);
2352}
2353
7b9205bd 2354static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2355{
cca080d9
EB
2356 kuid_t auid, uid;
2357 kgid_t gid;
85e7bac3 2358 unsigned int sessionid;
9eab339b 2359 char comm[sizeof(current->comm)];
85e7bac3
EP
2360
2361 auid = audit_get_loginuid(current);
2362 sessionid = audit_get_sessionid(current);
2363 current_uid_gid(&uid, &gid);
2364
2365 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2366 from_kuid(&init_user_ns, auid),
2367 from_kuid(&init_user_ns, uid),
2368 from_kgid(&init_user_ns, gid),
2369 sessionid);
85e7bac3 2370 audit_log_task_context(ab);
fa2bea2f 2371 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
9eab339b 2372 audit_log_untrustedstring(ab, get_task_comm(comm, current));
4766b199 2373 audit_log_d_path_exe(ab, current->mm);
7b9205bd
KC
2374}
2375
0a4ff8c2
SG
2376/**
2377 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2378 * @signr: signal value
0a4ff8c2
SG
2379 *
2380 * If a process ends with a core dump, something fishy is going on and we
2381 * should record the event for investigation.
2382 */
2383void audit_core_dumps(long signr)
2384{
2385 struct audit_buffer *ab;
0a4ff8c2
SG
2386
2387 if (!audit_enabled)
2388 return;
2389
2390 if (signr == SIGQUIT) /* don't care for those */
2391 return;
2392
d87de4a8 2393 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2394 if (unlikely(!ab))
2395 return;
61c0ee87 2396 audit_log_task(ab);
89670aff 2397 audit_log_format(ab, " sig=%ld res=1", signr);
85e7bac3
EP
2398 audit_log_end(ab);
2399}
0a4ff8c2 2400
326bee02
TH
2401/**
2402 * audit_seccomp - record information about a seccomp action
2403 * @syscall: syscall number
2404 * @signr: signal value
2405 * @code: the seccomp action
2406 *
2407 * Record the information associated with a seccomp action. Event filtering for
2408 * seccomp actions that are not to be logged is done in seccomp_log().
2409 * Therefore, this function forces auditing independent of the audit_enabled
2410 * and dummy context state because seccomp actions should be logged even when
2411 * audit is not in use.
2412 */
2413void audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2414{
2415 struct audit_buffer *ab;
2416
9b8753ff 2417 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
7b9205bd
KC
2418 if (unlikely(!ab))
2419 return;
2420 audit_log_task(ab);
84db564a 2421 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
efbc0fbf
AL
2422 signr, syscall_get_arch(), syscall,
2423 in_compat_syscall(), KSTK_EIP(current), code);
0a4ff8c2
SG
2424 audit_log_end(ab);
2425}
916d7576 2426
ea6eca77
TH
2427void audit_seccomp_actions_logged(const char *names, const char *old_names,
2428 int res)
2429{
2430 struct audit_buffer *ab;
2431
2432 if (!audit_enabled)
2433 return;
2434
8982a1fb 2435 ab = audit_log_start(audit_context(), GFP_KERNEL,
ea6eca77
TH
2436 AUDIT_CONFIG_CHANGE);
2437 if (unlikely(!ab))
2438 return;
2439
d0a3f18a
PM
2440 audit_log_format(ab,
2441 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2442 names, old_names, res);
ea6eca77
TH
2443 audit_log_end(ab);
2444}
2445
916d7576
AV
2446struct list_head *audit_killed_trees(void)
2447{
cdfb6b34 2448 struct audit_context *ctx = audit_context();
916d7576
AV
2449 if (likely(!ctx || !ctx->in_syscall))
2450 return NULL;
2451 return &ctx->killed_trees;
2452}