Revert "ipc,sem: remove uneeded sem_undo_list lock usage in exit_sem()"
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
b0d17578 73#include <linux/compat.h>
1da177e4
LT
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
1da177e4
LT
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
c59ede7b 82#include <linux/capability.h>
19b4946c 83#include <linux/seq_file.h>
3e148c79 84#include <linux/rwsem.h>
e3893534 85#include <linux/nsproxy.h>
ae5e1b22 86#include <linux/ipc_namespace.h>
84f001e1 87#include <linux/sched/wake_q.h>
ec67aaa4 88#include <linux/nospec.h>
0eb71a9d 89#include <linux/rhashtable.h>
5f921ae9 90
7153e402 91#include <linux/uaccess.h>
1da177e4
LT
92#include "util.h"
93
1a5c1349
EB
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
51d6f263 104 struct pid *sempid;
1a5c1349
EB
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
2a70b787 110 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
e57940d7
MS
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
e57940d7
MS
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
51d6f263 134 struct pid *pid; /* process id of requesting process */
e57940d7
MS
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
ed247b7c 137 struct sembuf *blocking; /* the operation that blocked */
e57940d7 138 int nsops; /* number of operations */
4ce33ec2
DB
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
f74370b8 163 refcount_t refcnt;
e57940d7
MS
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
ed2ddbf8 169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 170
7748dbfa 171static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 173#ifdef CONFIG_PROC_FS
19b4946c 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
9de5ab8a
MS
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
1da177e4 187/*
758a6ba3 188 * Locking:
5864a2fd 189 * a) global sem_lock() for read/write
1da177e4 190 * sem_undo.id_next,
758a6ba3 191 * sem_array.complex_count,
5864a2fd
MS
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
46c0a8ca 194 *
5864a2fd 195 * b) global or semaphore sem_lock() for read/write:
1a233956 196 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
9de5ab8a
MS
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
8116b54e
MS
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
9de5ab8a 211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
8116b54e
MS
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
9de5ab8a
MS
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
8116b54e
MS
220 *
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
223 * required.
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
226 * (for case b).
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229 * (case a above).
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
232 *
233 * 3) current->state:
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
238 *
239 * See also ipc/mqueue.c for more details on the covered races.
1da177e4
LT
240 */
241
e3893534
KK
242#define sc_semmsl sem_ctls[0]
243#define sc_semmns sem_ctls[1]
244#define sc_semopm sem_ctls[2]
245#define sc_semmni sem_ctls[3]
246
eae04d25 247void sem_init_ns(struct ipc_namespace *ns)
e3893534 248{
e3893534
KK
249 ns->sc_semmsl = SEMMSL;
250 ns->sc_semmns = SEMMNS;
251 ns->sc_semopm = SEMOPM;
252 ns->sc_semmni = SEMMNI;
253 ns->used_sems = 0;
eae04d25 254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
255}
256
ae5e1b22 257#ifdef CONFIG_IPC_NS
e3893534
KK
258void sem_exit_ns(struct ipc_namespace *ns)
259{
01b8b07a 260 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 263}
ae5e1b22 264#endif
1da177e4 265
eae04d25 266void __init sem_init(void)
1da177e4 267{
eae04d25 268 sem_init_ns(&init_ipc_ns);
19b4946c
MW
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 271 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
272}
273
f269f40a
MS
274/**
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
277 *
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
280 */
281static void unmerge_queues(struct sem_array *sma)
282{
283 struct sem_queue *q, *tq;
284
285 /* complex operations still around? */
286 if (sma->complex_count)
287 return;
288 /*
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
292 */
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 struct sem *curr;
1a233956 295 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
296
297 list_add_tail(&q->list, &curr->pending_alter);
298 }
299 INIT_LIST_HEAD(&sma->pending_alter);
300}
301
302/**
8001c858 303 * merge_queues - merge single semop queues into global queue
f269f40a
MS
304 * @sma: semaphore array
305 *
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
310 */
311static void merge_queues(struct sem_array *sma)
312{
313 int i;
314 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 315 struct sem *sem = &sma->sems[i];
f269f40a
MS
316
317 list_splice_init(&sem->pending_alter, &sma->pending_alter);
318 }
319}
320
53dad6d3
DB
321static void sem_rcu_free(struct rcu_head *head)
322{
dba4cdd3
MS
323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 325
aefad959 326 security_sem_free(&sma->sem_perm);
e2029dfe 327 kvfree(sma);
53dad6d3
DB
328}
329
5e9d5275 330/*
5864a2fd 331 * Enter the mode suitable for non-simple operations:
5e9d5275 332 * Caller must own sem_perm.lock.
5e9d5275 333 */
5864a2fd 334static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
335{
336 int i;
337 struct sem *sem;
338
9de5ab8a
MS
339 if (sma->use_global_lock > 0) {
340 /*
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
344 */
345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
346 return;
347 }
9de5ab8a 348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 349
5e9d5275 350 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 351 sem = &sma->sems[i];
27d7be18
MS
352 spin_lock(&sem->lock);
353 spin_unlock(&sem->lock);
5e9d5275 354 }
5864a2fd
MS
355}
356
357/*
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
360 */
361static void complexmode_tryleave(struct sem_array *sma)
362{
363 if (sma->complex_count) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
366 */
367 return;
368 }
9de5ab8a 369 if (sma->use_global_lock == 1) {
8116b54e
MS
370
371 /* See SEM_BARRIER_1 for purpose/pairing */
9de5ab8a
MS
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
375 }
5e9d5275
MS
376}
377
5864a2fd 378#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
379/*
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
6062a8dc
RR
385 */
386static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 int nsops)
388{
5e9d5275 389 struct sem *sem;
ec67aaa4 390 int idx;
6062a8dc 391
5e9d5275
MS
392 if (nsops != 1) {
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma->sem_perm);
6062a8dc 395
5864a2fd
MS
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma);
398 return SEM_GLOBAL_LOCK;
5e9d5275
MS
399 }
400
401 /*
402 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
405 *
9de5ab8a 406 * Both facts are tracked by use_global_mode.
5e9d5275 407 */
ec67aaa4
DB
408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 sem = &sma->sems[idx];
6062a8dc 410
5864a2fd 411 /*
9de5ab8a 412 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
413 * no locking, no memory barrier.
414 */
9de5ab8a 415 if (!sma->use_global_lock) {
6062a8dc 416 /*
5e9d5275
MS
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
6062a8dc 419 */
5e9d5275
MS
420 spin_lock(&sem->lock);
421
8116b54e 422 /* see SEM_BARRIER_1 for purpose/pairing */
9de5ab8a 423 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
424 /* fast path successful! */
425 return sops->sem_num;
6062a8dc 426 }
5e9d5275
MS
427 spin_unlock(&sem->lock);
428 }
429
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma->sem_perm);
6062a8dc 432
9de5ab8a
MS
433 if (sma->use_global_lock == 0) {
434 /*
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
437 * with sem->lock.
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 * change.
5e9d5275
MS
442 */
443 spin_lock(&sem->lock);
9de5ab8a 444
5e9d5275
MS
445 ipc_unlock_object(&sma->sem_perm);
446 return sops->sem_num;
6062a8dc 447 } else {
9de5ab8a
MS
448 /*
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
6062a8dc 452 */
5864a2fd 453 return SEM_GLOBAL_LOCK;
6062a8dc 454 }
6062a8dc
RR
455}
456
457static inline void sem_unlock(struct sem_array *sma, int locknum)
458{
5864a2fd 459 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 460 unmerge_queues(sma);
5864a2fd 461 complexmode_tryleave(sma);
cf9d5d78 462 ipc_unlock_object(&sma->sem_perm);
6062a8dc 463 } else {
1a233956 464 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
465 spin_unlock(&sem->lock);
466 }
6062a8dc
RR
467}
468
3e148c79 469/*
d9a605e4 470 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 471 * is not held.
321310ce
LT
472 *
473 * The caller holds the RCU read lock.
3e148c79 474 */
16df3674
DB
475static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
476{
55b7ae50 477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
478
479 if (IS_ERR(ipcp))
480 return ERR_CAST(ipcp);
481
482 return container_of(ipcp, struct sem_array, sem_perm);
483}
484
16df3674
DB
485static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 int id)
487{
488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
489
490 if (IS_ERR(ipcp))
491 return ERR_CAST(ipcp);
b1ed88b4 492
03f02c76 493 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
494}
495
6ff37972
PP
496static inline void sem_lock_and_putref(struct sem_array *sma)
497{
6062a8dc 498 sem_lock(sma, NULL, -1);
dba4cdd3 499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
500}
501
7ca7e564
ND
502static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503{
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
505}
506
101ede01
KC
507static struct sem_array *sem_alloc(size_t nsems)
508{
509 struct sem_array *sma;
101ede01
KC
510
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 return NULL;
513
4a2ae929 514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
101ede01
KC
515 if (unlikely(!sma))
516 return NULL;
517
101ede01
KC
518 return sma;
519}
520
f4566f04
ND
521/**
522 * newary - Create a new semaphore set
523 * @ns: namespace
524 * @params: ptr to the structure that contains key, semflg and nsems
525 *
d9a605e4 526 * Called with sem_ids.rwsem held (as a writer)
f4566f04 527 */
7748dbfa 528static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 529{
1da177e4
LT
530 int retval;
531 struct sem_array *sma;
7748dbfa
ND
532 key_t key = params->key;
533 int nsems = params->u.nsems;
534 int semflg = params->flg;
b97e820f 535 int i;
1da177e4
LT
536
537 if (!nsems)
538 return -EINVAL;
e3893534 539 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
540 return -ENOSPC;
541
101ede01 542 sma = sem_alloc(nsems);
3ab08fe2 543 if (!sma)
1da177e4 544 return -ENOMEM;
3ab08fe2 545
1da177e4
LT
546 sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 sma->sem_perm.key = key;
548
549 sma->sem_perm.security = NULL;
aefad959 550 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 551 if (retval) {
e2029dfe 552 kvfree(sma);
1da177e4
LT
553 return retval;
554 }
555
6062a8dc 556 for (i = 0; i < nsems; i++) {
1a233956
MS
557 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 spin_lock_init(&sma->sems[i].lock);
6062a8dc 560 }
b97e820f
MS
561
562 sma->complex_count = 0;
9de5ab8a 563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
564 INIT_LIST_HEAD(&sma->pending_alter);
565 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 566 INIT_LIST_HEAD(&sma->list_id);
1da177e4 567 sma->sem_nsems = nsems;
e54d02b2 568 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 569
39c96a1b 570 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 if (retval < 0) {
39cfffd7 573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
2ec55f80 574 return retval;
e8577d1f
MS
575 }
576 ns->used_sems += nsems;
577
6062a8dc 578 sem_unlock(sma, -1);
6d49dab8 579 rcu_read_unlock();
1da177e4 580
7ca7e564 581 return sma->sem_perm.id;
1da177e4
LT
582}
583
7748dbfa 584
f4566f04 585/*
d9a605e4 586 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 587 */
03f02c76
ND
588static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
589 struct ipc_params *params)
7748dbfa 590{
03f02c76
ND
591 struct sem_array *sma;
592
593 sma = container_of(ipcp, struct sem_array, sem_perm);
594 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
595 return -EINVAL;
596
597 return 0;
598}
599
69894718 600long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 601{
e3893534 602 struct ipc_namespace *ns;
eb66ec44
MK
603 static const struct ipc_ops sem_ops = {
604 .getnew = newary,
50ab44b1 605 .associate = security_sem_associate,
eb66ec44
MK
606 .more_checks = sem_more_checks,
607 };
7748dbfa 608 struct ipc_params sem_params;
e3893534
KK
609
610 ns = current->nsproxy->ipc_ns;
1da177e4 611
e3893534 612 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 613 return -EINVAL;
7ca7e564 614
7748dbfa
ND
615 sem_params.key = key;
616 sem_params.flg = semflg;
617 sem_params.u.nsems = nsems;
1da177e4 618
7748dbfa 619 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
620}
621
69894718
DB
622SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
623{
624 return ksys_semget(key, nsems, semflg);
625}
626
78f5009c 627/**
4ce33ec2
DB
628 * perform_atomic_semop[_slow] - Attempt to perform semaphore
629 * operations on a given array.
758a6ba3 630 * @sma: semaphore array
d198cd6d 631 * @q: struct sem_queue that describes the operation
758a6ba3 632 *
4ce33ec2
DB
633 * Caller blocking are as follows, based the value
634 * indicated by the semaphore operation (sem_op):
635 *
636 * (1) >0 never blocks.
637 * (2) 0 (wait-for-zero operation): semval is non-zero.
638 * (3) <0 attempting to decrement semval to a value smaller than zero.
639 *
758a6ba3
MS
640 * Returns 0 if the operation was possible.
641 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 642 * Returns <0 for error codes.
1da177e4 643 */
4ce33ec2 644static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 645{
51d6f263
EB
646 int result, sem_op, nsops;
647 struct pid *pid;
1da177e4 648 struct sembuf *sop;
239521f3 649 struct sem *curr;
d198cd6d
MS
650 struct sembuf *sops;
651 struct sem_undo *un;
652
653 sops = q->sops;
654 nsops = q->nsops;
655 un = q->undo;
1da177e4
LT
656
657 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
658 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
659 curr = &sma->sems[idx];
1da177e4
LT
660 sem_op = sop->sem_op;
661 result = curr->semval;
78f5009c 662
1da177e4
LT
663 if (!sem_op && result)
664 goto would_block;
665
666 result += sem_op;
667 if (result < 0)
668 goto would_block;
669 if (result > SEMVMX)
670 goto out_of_range;
78f5009c 671
1da177e4
LT
672 if (sop->sem_flg & SEM_UNDO) {
673 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 674 /* Exceeding the undo range is an error. */
1da177e4
LT
675 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
676 goto out_of_range;
78f5009c 677 un->semadj[sop->sem_num] = undo;
1da177e4 678 }
78f5009c 679
1da177e4
LT
680 curr->semval = result;
681 }
682
683 sop--;
d198cd6d 684 pid = q->pid;
1da177e4 685 while (sop >= sops) {
51d6f263 686 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
687 sop--;
688 }
78f5009c 689
1da177e4
LT
690 return 0;
691
692out_of_range:
693 result = -ERANGE;
694 goto undo;
695
696would_block:
ed247b7c
MS
697 q->blocking = sop;
698
1da177e4
LT
699 if (sop->sem_flg & IPC_NOWAIT)
700 result = -EAGAIN;
701 else
702 result = 1;
703
704undo:
705 sop--;
706 while (sop >= sops) {
78f5009c 707 sem_op = sop->sem_op;
1a233956 708 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
709 if (sop->sem_flg & SEM_UNDO)
710 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
711 sop--;
712 }
713
714 return result;
715}
716
4ce33ec2
DB
717static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
718{
719 int result, sem_op, nsops;
720 struct sembuf *sop;
721 struct sem *curr;
722 struct sembuf *sops;
723 struct sem_undo *un;
724
725 sops = q->sops;
726 nsops = q->nsops;
727 un = q->undo;
728
729 if (unlikely(q->dupsop))
730 return perform_atomic_semop_slow(sma, q);
731
732 /*
733 * We scan the semaphore set twice, first to ensure that the entire
734 * operation can succeed, therefore avoiding any pointless writes
735 * to shared memory and having to undo such changes in order to block
736 * until the operations can go through.
737 */
738 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
739 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
740
741 curr = &sma->sems[idx];
4ce33ec2
DB
742 sem_op = sop->sem_op;
743 result = curr->semval;
744
745 if (!sem_op && result)
746 goto would_block; /* wait-for-zero */
747
748 result += sem_op;
749 if (result < 0)
750 goto would_block;
751
752 if (result > SEMVMX)
753 return -ERANGE;
754
755 if (sop->sem_flg & SEM_UNDO) {
756 int undo = un->semadj[sop->sem_num] - sem_op;
757
758 /* Exceeding the undo range is an error. */
759 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
760 return -ERANGE;
761 }
762 }
763
764 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 765 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
766 sem_op = sop->sem_op;
767 result = curr->semval;
768
769 if (sop->sem_flg & SEM_UNDO) {
770 int undo = un->semadj[sop->sem_num] - sem_op;
771
772 un->semadj[sop->sem_num] = undo;
773 }
774 curr->semval += sem_op;
51d6f263 775 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
776 }
777
778 return 0;
779
780would_block:
781 q->blocking = sop;
782 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
783}
784
9ae949fa
DB
785static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
786 struct wake_q_head *wake_q)
0a2b9d4c 787{
8116b54e
MS
788 get_task_struct(q->sleeper);
789
790 /* see SEM_BARRIER_2 for purpuse/pairing */
791 smp_store_release(&q->status, error);
792
793 wake_q_add_safe(wake_q, q->sleeper);
d4212093
NP
794}
795
b97e820f
MS
796static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
797{
798 list_del(&q->list);
9f1bc2c9 799 if (q->nsops > 1)
b97e820f
MS
800 sma->complex_count--;
801}
802
fd5db422
MS
803/** check_restart(sma, q)
804 * @sma: semaphore array
805 * @q: the operation that just completed
806 *
807 * update_queue is O(N^2) when it restarts scanning the whole queue of
808 * waiting operations. Therefore this function checks if the restart is
809 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
810 * modified the array.
811 * Note that wait-for-zero operations are handled without restart.
fd5db422 812 */
4663d3e8 813static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 814{
1a82e9e1
MS
815 /* pending complex alter operations are too difficult to analyse */
816 if (!list_empty(&sma->pending_alter))
fd5db422
MS
817 return 1;
818
819 /* we were a sleeping complex operation. Too difficult */
820 if (q->nsops > 1)
821 return 1;
822
1a82e9e1
MS
823 /* It is impossible that someone waits for the new value:
824 * - complex operations always restart.
825 * - wait-for-zero are handled seperately.
826 * - q is a previously sleeping simple operation that
827 * altered the array. It must be a decrement, because
828 * simple increments never sleep.
829 * - If there are older (higher priority) decrements
830 * in the queue, then they have observed the original
831 * semval value and couldn't proceed. The operation
832 * decremented to value - thus they won't proceed either.
833 */
834 return 0;
835}
fd5db422 836
1a82e9e1 837/**
8001c858 838 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
839 * @sma: semaphore array.
840 * @semnum: semaphore that was modified.
9ae949fa 841 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
842 *
843 * wake_const_ops must be called after a semaphore in a semaphore array
844 * was set to 0. If complex const operations are pending, wake_const_ops must
845 * be called with semnum = -1, as well as with the number of each modified
846 * semaphore.
9ae949fa 847 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
848 * is stored in q->pid.
849 * The function returns 1 if at least one operation was completed successfully.
850 */
851static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 852 struct wake_q_head *wake_q)
1a82e9e1 853{
f150f02c 854 struct sem_queue *q, *tmp;
1a82e9e1
MS
855 struct list_head *pending_list;
856 int semop_completed = 0;
857
858 if (semnum == -1)
859 pending_list = &sma->pending_const;
860 else
1a233956 861 pending_list = &sma->sems[semnum].pending_const;
fd5db422 862
f150f02c
DB
863 list_for_each_entry_safe(q, tmp, pending_list, list) {
864 int error = perform_atomic_semop(sma, q);
1a82e9e1 865
f150f02c
DB
866 if (error > 0)
867 continue;
868 /* operation completed, remove from queue & wakeup */
869 unlink_queue(sma, q);
1a82e9e1 870
f150f02c
DB
871 wake_up_sem_queue_prepare(q, error, wake_q);
872 if (error == 0)
873 semop_completed = 1;
1a82e9e1 874 }
f150f02c 875
1a82e9e1
MS
876 return semop_completed;
877}
878
879/**
8001c858 880 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
881 * @sma: semaphore array
882 * @sops: operations that were performed
883 * @nsops: number of operations
9ae949fa 884 * @wake_q: lockless wake-queue head
1a82e9e1 885 *
8001c858
DB
886 * Checks all required queue for wait-for-zero operations, based
887 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
888 * The function returns 1 if at least one operation was completed successfully.
889 */
890static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 891 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
892{
893 int i;
894 int semop_completed = 0;
895 int got_zero = 0;
896
897 /* first: the per-semaphore queues, if known */
898 if (sops) {
899 for (i = 0; i < nsops; i++) {
900 int num = sops[i].sem_num;
901
1a233956 902 if (sma->sems[num].semval == 0) {
1a82e9e1 903 got_zero = 1;
9ae949fa 904 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
905 }
906 }
907 } else {
908 /*
909 * No sops means modified semaphores not known.
910 * Assume all were changed.
fd5db422 911 */
1a82e9e1 912 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 913 if (sma->sems[i].semval == 0) {
1a82e9e1 914 got_zero = 1;
9ae949fa 915 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
916 }
917 }
fd5db422
MS
918 }
919 /*
1a82e9e1
MS
920 * If one of the modified semaphores got 0,
921 * then check the global queue, too.
fd5db422 922 */
1a82e9e1 923 if (got_zero)
9ae949fa 924 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 925
1a82e9e1 926 return semop_completed;
fd5db422
MS
927}
928
636c6be8
MS
929
930/**
8001c858 931 * update_queue - look for tasks that can be completed.
636c6be8
MS
932 * @sma: semaphore array.
933 * @semnum: semaphore that was modified.
9ae949fa 934 * @wake_q: lockless wake-queue head.
636c6be8
MS
935 *
936 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
937 * was modified. If multiple semaphores were modified, update_queue must
938 * be called with semnum = -1, as well as with the number of each modified
939 * semaphore.
9ae949fa 940 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 941 * is stored in q->pid.
1a82e9e1
MS
942 * The function internally checks if const operations can now succeed.
943 *
0a2b9d4c 944 * The function return 1 if at least one semop was completed successfully.
1da177e4 945 */
9ae949fa 946static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 947{
f150f02c 948 struct sem_queue *q, *tmp;
636c6be8 949 struct list_head *pending_list;
0a2b9d4c 950 int semop_completed = 0;
636c6be8 951
9f1bc2c9 952 if (semnum == -1)
1a82e9e1 953 pending_list = &sma->pending_alter;
9f1bc2c9 954 else
1a233956 955 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
956
957again:
f150f02c 958 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 959 int error, restart;
636c6be8 960
d987f8b2
MS
961 /* If we are scanning the single sop, per-semaphore list of
962 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 963 * necessary to scan further: simple increments
d987f8b2
MS
964 * that affect only one entry succeed immediately and cannot
965 * be in the per semaphore pending queue, and decrements
966 * cannot be successful if the value is already 0.
967 */
1a233956 968 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
969 break;
970
d198cd6d 971 error = perform_atomic_semop(sma, q);
1da177e4
LT
972
973 /* Does q->sleeper still need to sleep? */
9cad200c
NP
974 if (error > 0)
975 continue;
976
b97e820f 977 unlink_queue(sma, q);
9cad200c 978
0a2b9d4c 979 if (error) {
fd5db422 980 restart = 0;
0a2b9d4c
MS
981 } else {
982 semop_completed = 1;
9ae949fa 983 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 984 restart = check_restart(sma, q);
0a2b9d4c 985 }
fd5db422 986
9ae949fa 987 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 988 if (restart)
9cad200c 989 goto again;
1da177e4 990 }
0a2b9d4c 991 return semop_completed;
1da177e4
LT
992}
993
0e8c6656 994/**
8001c858 995 * set_semotime - set sem_otime
0e8c6656
MS
996 * @sma: semaphore array
997 * @sops: operations that modified the array, may be NULL
998 *
999 * sem_otime is replicated to avoid cache line trashing.
1000 * This function sets one instance to the current time.
1001 */
1002static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1003{
1004 if (sops == NULL) {
2a70b787 1005 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 1006 } else {
1a233956 1007 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 1008 ktime_get_real_seconds();
0e8c6656
MS
1009 }
1010}
1011
0a2b9d4c 1012/**
8001c858 1013 * do_smart_update - optimized update_queue
fd5db422
MS
1014 * @sma: semaphore array
1015 * @sops: operations that were performed
1016 * @nsops: number of operations
0a2b9d4c 1017 * @otime: force setting otime
9ae949fa 1018 * @wake_q: lockless wake-queue head
fd5db422 1019 *
1a82e9e1
MS
1020 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1021 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1022 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1023 * responsible for calling wake_up_q().
0a2b9d4c 1024 * It is safe to perform this call after dropping all locks.
fd5db422 1025 */
0a2b9d4c 1026static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1027 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1028{
1029 int i;
1030
9ae949fa 1031 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1032
f269f40a
MS
1033 if (!list_empty(&sma->pending_alter)) {
1034 /* semaphore array uses the global queue - just process it. */
9ae949fa 1035 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1036 } else {
1037 if (!sops) {
1038 /*
1039 * No sops, thus the modified semaphores are not
1040 * known. Check all.
1041 */
1042 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1043 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1044 } else {
1045 /*
1046 * Check the semaphores that were increased:
1047 * - No complex ops, thus all sleeping ops are
1048 * decrease.
1049 * - if we decreased the value, then any sleeping
1050 * semaphore ops wont be able to run: If the
1051 * previous value was too small, then the new
1052 * value will be too small, too.
1053 */
1054 for (i = 0; i < nsops; i++) {
1055 if (sops[i].sem_op > 0) {
1056 otime |= update_queue(sma,
9ae949fa 1057 sops[i].sem_num, wake_q);
f269f40a 1058 }
ab465df9 1059 }
9f1bc2c9 1060 }
fd5db422 1061 }
0e8c6656
MS
1062 if (otime)
1063 set_semotime(sma, sops);
fd5db422
MS
1064}
1065
2f2ed41d 1066/*
b220c57a 1067 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1068 */
1069static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1070 bool count_zero)
1071{
b220c57a 1072 struct sembuf *sop = q->blocking;
2f2ed41d 1073
9b44ee2e
MS
1074 /*
1075 * Linux always (since 0.99.10) reported a task as sleeping on all
1076 * semaphores. This violates SUS, therefore it was changed to the
1077 * standard compliant behavior.
1078 * Give the administrators a chance to notice that an application
1079 * might misbehave because it relies on the Linux behavior.
1080 */
1081 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1082 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1083 current->comm, task_pid_nr(current));
1084
b220c57a
MS
1085 if (sop->sem_num != semnum)
1086 return 0;
2f2ed41d 1087
b220c57a
MS
1088 if (count_zero && sop->sem_op == 0)
1089 return 1;
1090 if (!count_zero && sop->sem_op < 0)
1091 return 1;
1092
1093 return 0;
2f2ed41d
MS
1094}
1095
1da177e4
LT
1096/* The following counts are associated to each semaphore:
1097 * semncnt number of tasks waiting on semval being nonzero
1098 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1099 *
1100 * Per definition, a task waits only on the semaphore of the first semop
1101 * that cannot proceed, even if additional operation would block, too.
1da177e4 1102 */
2f2ed41d
MS
1103static int count_semcnt(struct sem_array *sma, ushort semnum,
1104 bool count_zero)
1da177e4 1105{
2f2ed41d 1106 struct list_head *l;
239521f3 1107 struct sem_queue *q;
2f2ed41d 1108 int semcnt;
1da177e4 1109
2f2ed41d
MS
1110 semcnt = 0;
1111 /* First: check the simple operations. They are easy to evaluate */
1112 if (count_zero)
1a233956 1113 l = &sma->sems[semnum].pending_const;
2f2ed41d 1114 else
1a233956 1115 l = &sma->sems[semnum].pending_alter;
1da177e4 1116
2f2ed41d
MS
1117 list_for_each_entry(q, l, list) {
1118 /* all task on a per-semaphore list sleep on exactly
1119 * that semaphore
1120 */
1121 semcnt++;
ebc2e5e6
RR
1122 }
1123
2f2ed41d 1124 /* Then: check the complex operations. */
1994862d 1125 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1126 semcnt += check_qop(sma, semnum, q, count_zero);
1127 }
1128 if (count_zero) {
1129 list_for_each_entry(q, &sma->pending_const, list) {
1130 semcnt += check_qop(sma, semnum, q, count_zero);
1131 }
1994862d 1132 }
2f2ed41d 1133 return semcnt;
1da177e4
LT
1134}
1135
d9a605e4
DB
1136/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1137 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1138 * remains locked on exit.
1da177e4 1139 */
01b8b07a 1140static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1141{
380af1b3
MS
1142 struct sem_undo *un, *tu;
1143 struct sem_queue *q, *tq;
01b8b07a 1144 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1145 int i;
9ae949fa 1146 DEFINE_WAKE_Q(wake_q);
1da177e4 1147
380af1b3 1148 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1149 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1150 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1151 list_del(&un->list_id);
1152 spin_lock(&un->ulp->lock);
1da177e4 1153 un->semid = -1;
380af1b3
MS
1154 list_del_rcu(&un->list_proc);
1155 spin_unlock(&un->ulp->lock);
693a8b6e 1156 kfree_rcu(un, rcu);
380af1b3 1157 }
1da177e4
LT
1158
1159 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1160 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1161 unlink_queue(sma, q);
9ae949fa 1162 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1163 }
1164
1165 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1166 unlink_queue(sma, q);
9ae949fa 1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1168 }
9f1bc2c9 1169 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1170 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1171 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1172 unlink_queue(sma, q);
9ae949fa 1173 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1174 }
1175 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1176 unlink_queue(sma, q);
9ae949fa 1177 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1178 }
51d6f263 1179 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1180 }
1da177e4 1181
7ca7e564
ND
1182 /* Remove the semaphore set from the IDR */
1183 sem_rmid(ns, sma);
6062a8dc 1184 sem_unlock(sma, -1);
6d49dab8 1185 rcu_read_unlock();
1da177e4 1186
9ae949fa 1187 wake_up_q(&wake_q);
e3893534 1188 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1189 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1190}
1191
1192static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1193{
239521f3 1194 switch (version) {
1da177e4
LT
1195 case IPC_64:
1196 return copy_to_user(buf, in, sizeof(*in));
1197 case IPC_OLD:
1198 {
1199 struct semid_ds out;
1200
982f7c2b
DR
1201 memset(&out, 0, sizeof(out));
1202
1da177e4
LT
1203 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1204
1205 out.sem_otime = in->sem_otime;
1206 out.sem_ctime = in->sem_ctime;
1207 out.sem_nsems = in->sem_nsems;
1208
1209 return copy_to_user(buf, &out, sizeof(out));
1210 }
1211 default:
1212 return -EINVAL;
1213 }
1214}
1215
e54d02b2 1216static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1217{
1218 int i;
e54d02b2 1219 time64_t res;
d12e1e50 1220
1a233956 1221 res = sma->sems[0].sem_otime;
d12e1e50 1222 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1223 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1224
1225 if (to > res)
1226 res = to;
1227 }
1228 return res;
1229}
1230
45a4a64a
AV
1231static int semctl_stat(struct ipc_namespace *ns, int semid,
1232 int cmd, struct semid64_ds *semid64)
1da177e4 1233{
1da177e4 1234 struct sem_array *sma;
c2ab975c 1235 time64_t semotime;
45a4a64a 1236 int err;
1da177e4 1237
45a4a64a 1238 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1239
45a4a64a 1240 rcu_read_lock();
a280d6dc 1241 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1242 sma = sem_obtain_object(ns, semid);
1243 if (IS_ERR(sma)) {
1244 err = PTR_ERR(sma);
1245 goto out_unlock;
1246 }
a280d6dc 1247 } else { /* IPC_STAT */
45a4a64a
AV
1248 sma = sem_obtain_object_check(ns, semid);
1249 if (IS_ERR(sma)) {
1250 err = PTR_ERR(sma);
1251 goto out_unlock;
1da177e4 1252 }
1da177e4 1253 }
1da177e4 1254
a280d6dc
DB
1255 /* see comment for SHM_STAT_ANY */
1256 if (cmd == SEM_STAT_ANY)
1257 audit_ipc_obj(&sma->sem_perm);
1258 else {
1259 err = -EACCES;
1260 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1261 goto out_unlock;
1262 }
1da177e4 1263
aefad959 1264 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1265 if (err)
1266 goto out_unlock;
1da177e4 1267
87ad4b0d
PM
1268 ipc_lock_object(&sma->sem_perm);
1269
1270 if (!ipc_valid_object(&sma->sem_perm)) {
1271 ipc_unlock_object(&sma->sem_perm);
1272 err = -EIDRM;
1273 goto out_unlock;
1274 }
1275
45a4a64a 1276 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1277 semotime = get_semotime(sma);
1278 semid64->sem_otime = semotime;
45a4a64a 1279 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1280#ifndef CONFIG_64BIT
1281 semid64->sem_otime_high = semotime >> 32;
1282 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1283#endif
45a4a64a 1284 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d 1285
615c999c
MS
1286 if (cmd == IPC_STAT) {
1287 /*
1288 * As defined in SUS:
1289 * Return 0 on success
1290 */
1291 err = 0;
1292 } else {
1293 /*
1294 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1295 * Return the full id, including the sequence number
1296 */
1297 err = sma->sem_perm.id;
1298 }
87ad4b0d 1299 ipc_unlock_object(&sma->sem_perm);
1da177e4 1300out_unlock:
16df3674 1301 rcu_read_unlock();
1da177e4
LT
1302 return err;
1303}
1304
45a4a64a
AV
1305static int semctl_info(struct ipc_namespace *ns, int semid,
1306 int cmd, void __user *p)
1307{
1308 struct seminfo seminfo;
27c331a1 1309 int max_idx;
45a4a64a
AV
1310 int err;
1311
1312 err = security_sem_semctl(NULL, cmd);
1313 if (err)
1314 return err;
1315
1316 memset(&seminfo, 0, sizeof(seminfo));
1317 seminfo.semmni = ns->sc_semmni;
1318 seminfo.semmns = ns->sc_semmns;
1319 seminfo.semmsl = ns->sc_semmsl;
1320 seminfo.semopm = ns->sc_semopm;
1321 seminfo.semvmx = SEMVMX;
1322 seminfo.semmnu = SEMMNU;
1323 seminfo.semmap = SEMMAP;
1324 seminfo.semume = SEMUME;
1325 down_read(&sem_ids(ns).rwsem);
1326 if (cmd == SEM_INFO) {
1327 seminfo.semusz = sem_ids(ns).in_use;
1328 seminfo.semaem = ns->used_sems;
1329 } else {
1330 seminfo.semusz = SEMUSZ;
1331 seminfo.semaem = SEMAEM;
1332 }
27c331a1 1333 max_idx = ipc_get_maxidx(&sem_ids(ns));
45a4a64a
AV
1334 up_read(&sem_ids(ns).rwsem);
1335 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1336 return -EFAULT;
27c331a1 1337 return (max_idx < 0) ? 0 : max_idx;
45a4a64a
AV
1338}
1339
e1fd1f49 1340static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1341 int val)
e1fd1f49
AV
1342{
1343 struct sem_undo *un;
1344 struct sem_array *sma;
239521f3 1345 struct sem *curr;
45a4a64a 1346 int err;
9ae949fa
DB
1347 DEFINE_WAKE_Q(wake_q);
1348
6062a8dc
RR
1349 if (val > SEMVMX || val < 0)
1350 return -ERANGE;
e1fd1f49 1351
6062a8dc
RR
1352 rcu_read_lock();
1353 sma = sem_obtain_object_check(ns, semid);
1354 if (IS_ERR(sma)) {
1355 rcu_read_unlock();
1356 return PTR_ERR(sma);
1357 }
1358
1359 if (semnum < 0 || semnum >= sma->sem_nsems) {
1360 rcu_read_unlock();
1361 return -EINVAL;
1362 }
1363
1364
1365 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1366 rcu_read_unlock();
1367 return -EACCES;
1368 }
e1fd1f49 1369
aefad959 1370 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1371 if (err) {
1372 rcu_read_unlock();
1373 return -EACCES;
1374 }
e1fd1f49 1375
6062a8dc 1376 sem_lock(sma, NULL, -1);
e1fd1f49 1377
0f3d2b01 1378 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1379 sem_unlock(sma, -1);
1380 rcu_read_unlock();
1381 return -EIDRM;
1382 }
1383
ec67aaa4 1384 semnum = array_index_nospec(semnum, sma->sem_nsems);
1a233956 1385 curr = &sma->sems[semnum];
e1fd1f49 1386
cf9d5d78 1387 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1388 list_for_each_entry(un, &sma->list_id, list_id)
1389 un->semadj[semnum] = 0;
1390
1391 curr->semval = val;
51d6f263 1392 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1393 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1394 /* maybe some queued-up processes were waiting for this */
9ae949fa 1395 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1396 sem_unlock(sma, -1);
6d49dab8 1397 rcu_read_unlock();
9ae949fa 1398 wake_up_q(&wake_q);
6062a8dc 1399 return 0;
e1fd1f49
AV
1400}
1401
e3893534 1402static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1403 int cmd, void __user *p)
1da177e4
LT
1404{
1405 struct sem_array *sma;
239521f3 1406 struct sem *curr;
16df3674 1407 int err, nsems;
1da177e4 1408 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1409 ushort *sem_io = fast_sem_io;
9ae949fa 1410 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1411
1412 rcu_read_lock();
1413 sma = sem_obtain_object_check(ns, semid);
1414 if (IS_ERR(sma)) {
1415 rcu_read_unlock();
023a5355 1416 return PTR_ERR(sma);
16df3674 1417 }
1da177e4
LT
1418
1419 nsems = sma->sem_nsems;
1420
1da177e4 1421 err = -EACCES;
c728b9c8
LT
1422 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1423 goto out_rcu_wakeup;
1da177e4 1424
aefad959 1425 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1426 if (err)
1427 goto out_rcu_wakeup;
1da177e4
LT
1428
1429 err = -EACCES;
1430 switch (cmd) {
1431 case GETALL:
1432 {
e1fd1f49 1433 ushort __user *array = p;
1da177e4
LT
1434 int i;
1435
ce857229 1436 sem_lock(sma, NULL, -1);
0f3d2b01 1437 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1438 err = -EIDRM;
1439 goto out_unlock;
1440 }
239521f3 1441 if (nsems > SEMMSL_FAST) {
dba4cdd3 1442 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1443 err = -EIDRM;
6e224f94 1444 goto out_unlock;
ce857229
AV
1445 }
1446 sem_unlock(sma, -1);
6d49dab8 1447 rcu_read_unlock();
f8dbe8d2
KC
1448 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1449 GFP_KERNEL);
239521f3 1450 if (sem_io == NULL) {
dba4cdd3 1451 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1452 return -ENOMEM;
1453 }
1454
4091fd94 1455 rcu_read_lock();
6ff37972 1456 sem_lock_and_putref(sma);
0f3d2b01 1457 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1458 err = -EIDRM;
6e224f94 1459 goto out_unlock;
1da177e4 1460 }
ce857229 1461 }
1da177e4 1462 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1463 sem_io[i] = sma->sems[i].semval;
6062a8dc 1464 sem_unlock(sma, -1);
6d49dab8 1465 rcu_read_unlock();
1da177e4 1466 err = 0;
239521f3 1467 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1468 err = -EFAULT;
1469 goto out_free;
1470 }
1471 case SETALL:
1472 {
1473 int i;
1474 struct sem_undo *un;
1475
dba4cdd3 1476 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1477 err = -EIDRM;
1478 goto out_rcu_wakeup;
6062a8dc 1479 }
16df3674 1480 rcu_read_unlock();
1da177e4 1481
239521f3 1482 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1483 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1484 GFP_KERNEL);
239521f3 1485 if (sem_io == NULL) {
dba4cdd3 1486 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1487 return -ENOMEM;
1488 }
1489 }
1490
239521f3 1491 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1492 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1493 err = -EFAULT;
1494 goto out_free;
1495 }
1496
1497 for (i = 0; i < nsems; i++) {
1498 if (sem_io[i] > SEMVMX) {
dba4cdd3 1499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1500 err = -ERANGE;
1501 goto out_free;
1502 }
1503 }
4091fd94 1504 rcu_read_lock();
6ff37972 1505 sem_lock_and_putref(sma);
0f3d2b01 1506 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1507 err = -EIDRM;
6e224f94 1508 goto out_unlock;
1da177e4
LT
1509 }
1510
a5f4db87 1511 for (i = 0; i < nsems; i++) {
1a233956 1512 sma->sems[i].semval = sem_io[i];
51d6f263 1513 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1514 }
4daa28f6 1515
cf9d5d78 1516 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1517 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1518 for (i = 0; i < nsems; i++)
1519 un->semadj[i] = 0;
4daa28f6 1520 }
e54d02b2 1521 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1522 /* maybe some queued-up processes were waiting for this */
9ae949fa 1523 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1524 err = 0;
1525 goto out_unlock;
1526 }
e1fd1f49 1527 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1528 }
1529 err = -EINVAL;
c728b9c8
LT
1530 if (semnum < 0 || semnum >= nsems)
1531 goto out_rcu_wakeup;
1da177e4 1532
6062a8dc 1533 sem_lock(sma, NULL, -1);
0f3d2b01 1534 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1535 err = -EIDRM;
1536 goto out_unlock;
1537 }
ec67aaa4
DB
1538
1539 semnum = array_index_nospec(semnum, nsems);
1a233956 1540 curr = &sma->sems[semnum];
1da177e4
LT
1541
1542 switch (cmd) {
1543 case GETVAL:
1544 err = curr->semval;
1545 goto out_unlock;
1546 case GETPID:
51d6f263 1547 err = pid_vnr(curr->sempid);
1da177e4
LT
1548 goto out_unlock;
1549 case GETNCNT:
2f2ed41d 1550 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1551 goto out_unlock;
1552 case GETZCNT:
2f2ed41d 1553 err = count_semcnt(sma, semnum, 1);
1da177e4 1554 goto out_unlock;
1da177e4 1555 }
16df3674 1556
1da177e4 1557out_unlock:
6062a8dc 1558 sem_unlock(sma, -1);
c728b9c8 1559out_rcu_wakeup:
6d49dab8 1560 rcu_read_unlock();
9ae949fa 1561 wake_up_q(&wake_q);
1da177e4 1562out_free:
239521f3 1563 if (sem_io != fast_sem_io)
f8dbe8d2 1564 kvfree(sem_io);
1da177e4
LT
1565 return err;
1566}
1567
016d7132
PP
1568static inline unsigned long
1569copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1570{
239521f3 1571 switch (version) {
1da177e4 1572 case IPC_64:
016d7132 1573 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1574 return -EFAULT;
1da177e4 1575 return 0;
1da177e4
LT
1576 case IPC_OLD:
1577 {
1578 struct semid_ds tbuf_old;
1579
239521f3 1580 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1581 return -EFAULT;
1582
016d7132
PP
1583 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1584 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1585 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1586
1587 return 0;
1588 }
1589 default:
1590 return -EINVAL;
1591 }
1592}
1593
522bb2a2 1594/*
d9a605e4 1595 * This function handles some semctl commands which require the rwsem
522bb2a2 1596 * to be held in write mode.
d9a605e4 1597 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1598 */
21a4826a 1599static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1600 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1601{
1602 struct sem_array *sma;
1603 int err;
1da177e4
LT
1604 struct kern_ipc_perm *ipcp;
1605
d9a605e4 1606 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1607 rcu_read_lock();
1608
4241c1a3 1609 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1610 &semid64->sem_perm, 0);
7b4cc5d8
DB
1611 if (IS_ERR(ipcp)) {
1612 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1613 goto out_unlock1;
1614 }
073115d6 1615
a5f75e7f 1616 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1617
aefad959 1618 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1619 if (err)
1620 goto out_unlock1;
1da177e4 1621
7b4cc5d8 1622 switch (cmd) {
1da177e4 1623 case IPC_RMID:
6062a8dc 1624 sem_lock(sma, NULL, -1);
7b4cc5d8 1625 /* freeary unlocks the ipc object and rcu */
01b8b07a 1626 freeary(ns, ipcp);
522bb2a2 1627 goto out_up;
1da177e4 1628 case IPC_SET:
6062a8dc 1629 sem_lock(sma, NULL, -1);
45a4a64a 1630 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1631 if (err)
7b4cc5d8 1632 goto out_unlock0;
e54d02b2 1633 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1634 break;
1635 default:
1da177e4 1636 err = -EINVAL;
7b4cc5d8 1637 goto out_unlock1;
1da177e4 1638 }
1da177e4 1639
7b4cc5d8 1640out_unlock0:
6062a8dc 1641 sem_unlock(sma, -1);
7b4cc5d8 1642out_unlock1:
6d49dab8 1643 rcu_read_unlock();
522bb2a2 1644out_up:
d9a605e4 1645 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1646 return err;
1647}
1648
275f2214 1649static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1da177e4 1650{
e3893534 1651 struct ipc_namespace *ns;
e1fd1f49 1652 void __user *p = (void __user *)arg;
45a4a64a
AV
1653 struct semid64_ds semid64;
1654 int err;
1da177e4
LT
1655
1656 if (semid < 0)
1657 return -EINVAL;
1658
e3893534 1659 ns = current->nsproxy->ipc_ns;
1da177e4 1660
239521f3 1661 switch (cmd) {
1da177e4
LT
1662 case IPC_INFO:
1663 case SEM_INFO:
45a4a64a 1664 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1665 case IPC_STAT:
1da177e4 1666 case SEM_STAT:
a280d6dc 1667 case SEM_STAT_ANY:
45a4a64a
AV
1668 err = semctl_stat(ns, semid, cmd, &semid64);
1669 if (err < 0)
1670 return err;
1671 if (copy_semid_to_user(p, &semid64, version))
1672 err = -EFAULT;
1673 return err;
1da177e4
LT
1674 case GETALL:
1675 case GETVAL:
1676 case GETPID:
1677 case GETNCNT:
1678 case GETZCNT:
1da177e4 1679 case SETALL:
e1fd1f49 1680 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1681 case SETVAL: {
1682 int val;
1683#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1684 /* big-endian 64bit */
1685 val = arg >> 32;
1686#else
1687 /* 32bit or little-endian 64bit */
1688 val = arg;
1689#endif
1690 return semctl_setval(ns, semid, semnum, val);
1691 }
1da177e4 1692 case IPC_SET:
45a4a64a
AV
1693 if (copy_semid_from_user(&semid64, p, version))
1694 return -EFAULT;
667da6a2 1695 /* fall through */
45a4a64a
AV
1696 case IPC_RMID:
1697 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1698 default:
1699 return -EINVAL;
1700 }
1701}
1702
d969c6fa
DB
1703SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1704{
275f2214 1705 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa
DB
1706}
1707
275f2214
AB
1708#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1709long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1710{
1711 int version = ipc_parse_version(&cmd);
1712
1713 return ksys_semctl(semid, semnum, cmd, arg, version);
1714}
1715
1716SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1717{
1718 return ksys_old_semctl(semid, semnum, cmd, arg);
1719}
1720#endif
1721
c0ebccb6
AV
1722#ifdef CONFIG_COMPAT
1723
1724struct compat_semid_ds {
1725 struct compat_ipc_perm sem_perm;
9afc5eee
AB
1726 old_time32_t sem_otime;
1727 old_time32_t sem_ctime;
c0ebccb6
AV
1728 compat_uptr_t sem_base;
1729 compat_uptr_t sem_pending;
1730 compat_uptr_t sem_pending_last;
1731 compat_uptr_t undo;
1732 unsigned short sem_nsems;
1733};
1734
1735static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1736 int version)
1737{
1738 memset(out, 0, sizeof(*out));
1739 if (version == IPC_64) {
6aa211e8 1740 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1741 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1742 } else {
6aa211e8 1743 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1744 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1745 }
1746}
1747
1748static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1749 int version)
1750{
1751 if (version == IPC_64) {
1752 struct compat_semid64_ds v;
1753 memset(&v, 0, sizeof(v));
1754 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1755 v.sem_otime = lower_32_bits(in->sem_otime);
1756 v.sem_otime_high = upper_32_bits(in->sem_otime);
1757 v.sem_ctime = lower_32_bits(in->sem_ctime);
1758 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1759 v.sem_nsems = in->sem_nsems;
1760 return copy_to_user(buf, &v, sizeof(v));
1761 } else {
1762 struct compat_semid_ds v;
1763 memset(&v, 0, sizeof(v));
1764 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1765 v.sem_otime = in->sem_otime;
1766 v.sem_ctime = in->sem_ctime;
1767 v.sem_nsems = in->sem_nsems;
1768 return copy_to_user(buf, &v, sizeof(v));
1769 }
1770}
1771
275f2214 1772static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
c0ebccb6
AV
1773{
1774 void __user *p = compat_ptr(arg);
1775 struct ipc_namespace *ns;
1776 struct semid64_ds semid64;
c0ebccb6
AV
1777 int err;
1778
1779 ns = current->nsproxy->ipc_ns;
1780
1781 if (semid < 0)
1782 return -EINVAL;
1783
1784 switch (cmd & (~IPC_64)) {
1785 case IPC_INFO:
1786 case SEM_INFO:
1787 return semctl_info(ns, semid, cmd, p);
1788 case IPC_STAT:
1789 case SEM_STAT:
a280d6dc 1790 case SEM_STAT_ANY:
c0ebccb6
AV
1791 err = semctl_stat(ns, semid, cmd, &semid64);
1792 if (err < 0)
1793 return err;
1794 if (copy_compat_semid_to_user(p, &semid64, version))
1795 err = -EFAULT;
1796 return err;
1797 case GETVAL:
1798 case GETPID:
1799 case GETNCNT:
1800 case GETZCNT:
1801 case GETALL:
1da177e4 1802 case SETALL:
e1fd1f49
AV
1803 return semctl_main(ns, semid, semnum, cmd, p);
1804 case SETVAL:
1805 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1806 case IPC_SET:
c0ebccb6
AV
1807 if (copy_compat_semid_from_user(&semid64, p, version))
1808 return -EFAULT;
1809 /* fallthru */
1810 case IPC_RMID:
1811 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1812 default:
1813 return -EINVAL;
1814 }
1815}
d969c6fa
DB
1816
1817COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1818{
275f2214 1819 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa 1820}
275f2214
AB
1821
1822#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1823long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1824{
1825 int version = compat_ipc_parse_version(&cmd);
1826
1827 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1828}
1829
1830COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1831{
1832 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1833}
1834#endif
c0ebccb6 1835#endif
1da177e4 1836
1da177e4
LT
1837/* If the task doesn't already have a undo_list, then allocate one
1838 * here. We guarantee there is only one thread using this undo list,
1839 * and current is THE ONE
1840 *
1841 * If this allocation and assignment succeeds, but later
1842 * portions of this code fail, there is no need to free the sem_undo_list.
1843 * Just let it stay associated with the task, and it'll be freed later
1844 * at exit time.
1845 *
1846 * This can block, so callers must hold no locks.
1847 */
1848static inline int get_undo_list(struct sem_undo_list **undo_listp)
1849{
1850 struct sem_undo_list *undo_list;
1da177e4
LT
1851
1852 undo_list = current->sysvsem.undo_list;
1853 if (!undo_list) {
2453a306 1854 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1855 if (undo_list == NULL)
1856 return -ENOMEM;
00a5dfdb 1857 spin_lock_init(&undo_list->lock);
f74370b8 1858 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1859 INIT_LIST_HEAD(&undo_list->list_proc);
1860
1da177e4
LT
1861 current->sysvsem.undo_list = undo_list;
1862 }
1863 *undo_listp = undo_list;
1864 return 0;
1865}
1866
bf17bb71 1867static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1868{
bf17bb71 1869 struct sem_undo *un;
4daa28f6 1870
984035ad
JFG
1871 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1872 spin_is_locked(&ulp->lock)) {
bf17bb71
NP
1873 if (un->semid == semid)
1874 return un;
1da177e4 1875 }
4daa28f6 1876 return NULL;
1da177e4
LT
1877}
1878
bf17bb71
NP
1879static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1880{
1881 struct sem_undo *un;
1882
239521f3 1883 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1884
1885 un = __lookup_undo(ulp, semid);
1886 if (un) {
1887 list_del_rcu(&un->list_proc);
1888 list_add_rcu(&un->list_proc, &ulp->list_proc);
1889 }
1890 return un;
1891}
1892
4daa28f6 1893/**
8001c858 1894 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1895 * @ns: namespace
1896 * @semid: semaphore array id
1897 *
1898 * The function looks up (and if not present creates) the undo structure.
1899 * The size of the undo structure depends on the size of the semaphore
1900 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1901 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1902 * performs a rcu_read_lock().
4daa28f6
MS
1903 */
1904static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1905{
1906 struct sem_array *sma;
1907 struct sem_undo_list *ulp;
1908 struct sem_undo *un, *new;
6062a8dc 1909 int nsems, error;
1da177e4
LT
1910
1911 error = get_undo_list(&ulp);
1912 if (error)
1913 return ERR_PTR(error);
1914
380af1b3 1915 rcu_read_lock();
c530c6ac 1916 spin_lock(&ulp->lock);
1da177e4 1917 un = lookup_undo(ulp, semid);
c530c6ac 1918 spin_unlock(&ulp->lock);
239521f3 1919 if (likely(un != NULL))
1da177e4
LT
1920 goto out;
1921
1922 /* no undo structure around - allocate one. */
4daa28f6 1923 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1924 sma = sem_obtain_object_check(ns, semid);
1925 if (IS_ERR(sma)) {
1926 rcu_read_unlock();
4de85cd6 1927 return ERR_CAST(sma);
16df3674 1928 }
023a5355 1929
1da177e4 1930 nsems = sma->sem_nsems;
dba4cdd3 1931 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1932 rcu_read_unlock();
1933 un = ERR_PTR(-EIDRM);
1934 goto out;
1935 }
16df3674 1936 rcu_read_unlock();
1da177e4 1937
4daa28f6 1938 /* step 2: allocate new undo structure */
4668edc3 1939 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1940 if (!new) {
dba4cdd3 1941 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1942 return ERR_PTR(-ENOMEM);
1943 }
1da177e4 1944
380af1b3 1945 /* step 3: Acquire the lock on semaphore array */
4091fd94 1946 rcu_read_lock();
6ff37972 1947 sem_lock_and_putref(sma);
0f3d2b01 1948 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1949 sem_unlock(sma, -1);
6d49dab8 1950 rcu_read_unlock();
1da177e4
LT
1951 kfree(new);
1952 un = ERR_PTR(-EIDRM);
1953 goto out;
1954 }
380af1b3
MS
1955 spin_lock(&ulp->lock);
1956
1957 /*
1958 * step 4: check for races: did someone else allocate the undo struct?
1959 */
1960 un = lookup_undo(ulp, semid);
1961 if (un) {
1962 kfree(new);
1963 goto success;
1964 }
4daa28f6
MS
1965 /* step 5: initialize & link new undo structure */
1966 new->semadj = (short *) &new[1];
380af1b3 1967 new->ulp = ulp;
4daa28f6
MS
1968 new->semid = semid;
1969 assert_spin_locked(&ulp->lock);
380af1b3 1970 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1971 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1972 list_add(&new->list_id, &sma->list_id);
380af1b3 1973 un = new;
4daa28f6 1974
380af1b3 1975success:
c530c6ac 1976 spin_unlock(&ulp->lock);
6062a8dc 1977 sem_unlock(sma, -1);
1da177e4
LT
1978out:
1979 return un;
1980}
1981
44ee4546 1982static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1983 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1984{
1985 int error = -EINVAL;
1986 struct sem_array *sma;
1987 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1988 struct sembuf *sops = fast_sops, *sop;
1da177e4 1989 struct sem_undo *un;
4ce33ec2
DB
1990 int max, locknum;
1991 bool undos = false, alter = false, dupsop = false;
1da177e4 1992 struct sem_queue queue;
4ce33ec2 1993 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1994 struct ipc_namespace *ns;
1995
1996 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1997
1998 if (nsops < 1 || semid < 0)
1999 return -EINVAL;
e3893534 2000 if (nsops > ns->sc_semopm)
1da177e4 2001 return -E2BIG;
239521f3 2002 if (nsops > SEMOPM_FAST) {
344476e1 2003 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
239521f3 2004 if (sops == NULL)
1da177e4
LT
2005 return -ENOMEM;
2006 }
4ce33ec2 2007
239521f3
MS
2008 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2009 error = -EFAULT;
1da177e4
LT
2010 goto out_free;
2011 }
4ce33ec2 2012
1da177e4 2013 if (timeout) {
44ee4546
AV
2014 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2015 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
2016 error = -EINVAL;
2017 goto out_free;
2018 }
3ef56dc2 2019 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 2020 }
4ce33ec2 2021
1da177e4
LT
2022 max = 0;
2023 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
2024 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2025
1da177e4
LT
2026 if (sop->sem_num >= max)
2027 max = sop->sem_num;
2028 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
2029 undos = true;
2030 if (dup & mask) {
2031 /*
2032 * There was a previous alter access that appears
2033 * to have accessed the same semaphore, thus use
2034 * the dupsop logic. "appears", because the detection
2035 * can only check % BITS_PER_LONG.
2036 */
2037 dupsop = true;
2038 }
2039 if (sop->sem_op != 0) {
2040 alter = true;
2041 dup |= mask;
2042 }
1da177e4 2043 }
1da177e4 2044
1da177e4 2045 if (undos) {
6062a8dc 2046 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 2047 un = find_alloc_undo(ns, semid);
1da177e4
LT
2048 if (IS_ERR(un)) {
2049 error = PTR_ERR(un);
2050 goto out_free;
2051 }
6062a8dc 2052 } else {
1da177e4 2053 un = NULL;
6062a8dc
RR
2054 rcu_read_lock();
2055 }
1da177e4 2056
16df3674 2057 sma = sem_obtain_object_check(ns, semid);
023a5355 2058 if (IS_ERR(sma)) {
6062a8dc 2059 rcu_read_unlock();
023a5355 2060 error = PTR_ERR(sma);
1da177e4 2061 goto out_free;
023a5355
ND
2062 }
2063
16df3674 2064 error = -EFBIG;
248e7357
DB
2065 if (max >= sma->sem_nsems) {
2066 rcu_read_unlock();
2067 goto out_free;
2068 }
16df3674
DB
2069
2070 error = -EACCES;
248e7357
DB
2071 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2072 rcu_read_unlock();
2073 goto out_free;
2074 }
16df3674 2075
aefad959 2076 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2077 if (error) {
2078 rcu_read_unlock();
2079 goto out_free;
2080 }
16df3674 2081
6e224f94
MS
2082 error = -EIDRM;
2083 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2084 /*
2085 * We eventually might perform the following check in a lockless
2086 * fashion, considering ipc_valid_object() locking constraints.
2087 * If nsops == 1 and there is no contention for sem_perm.lock, then
2088 * only a per-semaphore lock is held and it's OK to proceed with the
2089 * check below. More details on the fine grained locking scheme
2090 * entangled here and why it's RMID race safe on comments at sem_lock()
2091 */
2092 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 2093 goto out_unlock_free;
1da177e4 2094 /*
4daa28f6 2095 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2096 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2097 * and now a new array with received the same id. Check and fail.
25985edc 2098 * This case can be detected checking un->semid. The existence of
380af1b3 2099 * "un" itself is guaranteed by rcu.
1da177e4 2100 */
6062a8dc
RR
2101 if (un && un->semid == -1)
2102 goto out_unlock_free;
4daa28f6 2103
d198cd6d
MS
2104 queue.sops = sops;
2105 queue.nsops = nsops;
2106 queue.undo = un;
51d6f263 2107 queue.pid = task_tgid(current);
d198cd6d 2108 queue.alter = alter;
4ce33ec2 2109 queue.dupsop = dupsop;
d198cd6d
MS
2110
2111 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
2112 if (error == 0) { /* non-blocking succesfull path */
2113 DEFINE_WAKE_Q(wake_q);
2114
2115 /*
2116 * If the operation was successful, then do
0e8c6656
MS
2117 * the required updates.
2118 */
2119 if (alter)
9ae949fa 2120 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2121 else
2122 set_semotime(sma, sops);
9ae949fa
DB
2123
2124 sem_unlock(sma, locknum);
2125 rcu_read_unlock();
2126 wake_up_q(&wake_q);
2127
2128 goto out_free;
1da177e4 2129 }
9ae949fa 2130 if (error < 0) /* non-blocking error path */
0e8c6656 2131 goto out_unlock_free;
1da177e4 2132
9ae949fa
DB
2133 /*
2134 * We need to sleep on this operation, so we put the current
1da177e4
LT
2135 * task into the pending queue and go to sleep.
2136 */
b97e820f
MS
2137 if (nsops == 1) {
2138 struct sem *curr;
ec67aaa4
DB
2139 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2140 curr = &sma->sems[idx];
b97e820f 2141
f269f40a
MS
2142 if (alter) {
2143 if (sma->complex_count) {
2144 list_add_tail(&queue.list,
2145 &sma->pending_alter);
2146 } else {
2147
2148 list_add_tail(&queue.list,
2149 &curr->pending_alter);
2150 }
2151 } else {
1a82e9e1 2152 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2153 }
b97e820f 2154 } else {
f269f40a
MS
2155 if (!sma->complex_count)
2156 merge_queues(sma);
2157
9f1bc2c9 2158 if (alter)
1a82e9e1 2159 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2160 else
1a82e9e1
MS
2161 list_add_tail(&queue.list, &sma->pending_const);
2162
b97e820f
MS
2163 sma->complex_count++;
2164 }
2165
b5fa01a2 2166 do {
8116b54e 2167 /* memory ordering ensured by the lock in sem_lock() */
f075faa3 2168 WRITE_ONCE(queue.status, -EINTR);
b5fa01a2 2169 queue.sleeper = current;
0b0577f6 2170
8116b54e 2171 /* memory ordering is ensured by the lock in sem_lock() */
b5fa01a2
DB
2172 __set_current_state(TASK_INTERRUPTIBLE);
2173 sem_unlock(sma, locknum);
2174 rcu_read_unlock();
1da177e4 2175
b5fa01a2
DB
2176 if (timeout)
2177 jiffies_left = schedule_timeout(jiffies_left);
2178 else
2179 schedule();
1da177e4 2180
9ae949fa 2181 /*
b5fa01a2
DB
2182 * fastpath: the semop has completed, either successfully or
2183 * not, from the syscall pov, is quite irrelevant to us at this
2184 * point; we're done.
2185 *
2186 * We _do_ care, nonetheless, about being awoken by a signal or
2187 * spuriously. The queue.status is checked again in the
2188 * slowpath (aka after taking sem_lock), such that we can detect
2189 * scenarios where we were awakened externally, during the
2190 * window between wake_q_add() and wake_up_q().
c61284e9 2191 */
b5fa01a2
DB
2192 error = READ_ONCE(queue.status);
2193 if (error != -EINTR) {
8116b54e
MS
2194 /* see SEM_BARRIER_2 for purpose/pairing */
2195 smp_acquire__after_ctrl_dep();
b5fa01a2
DB
2196 goto out_free;
2197 }
d694ad62 2198
b5fa01a2 2199 rcu_read_lock();
c626bc46 2200 locknum = sem_lock(sma, sops, nsops);
1da177e4 2201
370b262c
DB
2202 if (!ipc_valid_object(&sma->sem_perm))
2203 goto out_unlock_free;
2204
8116b54e
MS
2205 /*
2206 * No necessity for any barrier: We are protect by sem_lock()
2207 */
370b262c 2208 error = READ_ONCE(queue.status);
1da177e4 2209
b5fa01a2
DB
2210 /*
2211 * If queue.status != -EINTR we are woken up by another process.
2212 * Leave without unlink_queue(), but with sem_unlock().
2213 */
2214 if (error != -EINTR)
2215 goto out_unlock_free;
0b0577f6 2216
b5fa01a2
DB
2217 /*
2218 * If an interrupt occurred we have to clean up the queue.
2219 */
2220 if (timeout && jiffies_left == 0)
2221 error = -EAGAIN;
2222 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2223
b97e820f 2224 unlink_queue(sma, &queue);
1da177e4
LT
2225
2226out_unlock_free:
6062a8dc 2227 sem_unlock(sma, locknum);
6d49dab8 2228 rcu_read_unlock();
1da177e4 2229out_free:
239521f3 2230 if (sops != fast_sops)
e4243b80 2231 kvfree(sops);
1da177e4
LT
2232 return error;
2233}
2234
41f4f0e2 2235long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2236 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2237{
2238 if (timeout) {
3ef56dc2
DD
2239 struct timespec64 ts;
2240 if (get_timespec64(&ts, timeout))
44ee4546
AV
2241 return -EFAULT;
2242 return do_semtimedop(semid, tsops, nsops, &ts);
2243 }
2244 return do_semtimedop(semid, tsops, nsops, NULL);
2245}
2246
41f4f0e2 2247SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2248 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2249{
2250 return ksys_semtimedop(semid, tsops, nsops, timeout);
2251}
2252
b0d17578 2253#ifdef CONFIG_COMPAT_32BIT_TIME
41f4f0e2
DB
2254long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2255 unsigned int nsops,
9afc5eee 2256 const struct old_timespec32 __user *timeout)
44ee4546
AV
2257{
2258 if (timeout) {
3ef56dc2 2259 struct timespec64 ts;
9afc5eee 2260 if (get_old_timespec32(&ts, timeout))
44ee4546
AV
2261 return -EFAULT;
2262 return do_semtimedop(semid, tsems, nsops, &ts);
2263 }
2264 return do_semtimedop(semid, tsems, nsops, NULL);
2265}
41f4f0e2 2266
8dabe724 2267SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
41f4f0e2 2268 unsigned int, nsops,
9afc5eee 2269 const struct old_timespec32 __user *, timeout)
41f4f0e2
DB
2270{
2271 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2272}
44ee4546
AV
2273#endif
2274
d5460c99
HC
2275SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2276 unsigned, nsops)
1da177e4 2277{
44ee4546 2278 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2279}
2280
2281/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2282 * parent and child tasks.
1da177e4
LT
2283 */
2284
2285int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2286{
2287 struct sem_undo_list *undo_list;
2288 int error;
2289
2290 if (clone_flags & CLONE_SYSVSEM) {
2291 error = get_undo_list(&undo_list);
2292 if (error)
2293 return error;
f74370b8 2294 refcount_inc(&undo_list->refcnt);
1da177e4 2295 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2296 } else
1da177e4
LT
2297 tsk->sysvsem.undo_list = NULL;
2298
2299 return 0;
2300}
2301
2302/*
2303 * add semadj values to semaphores, free undo structures.
2304 * undo structures are not freed when semaphore arrays are destroyed
2305 * so some of them may be out of date.
2306 * IMPLEMENTATION NOTE: There is some confusion over whether the
2307 * set of adjustments that needs to be done should be done in an atomic
2308 * manner or not. That is, if we are attempting to decrement the semval
2309 * should we queue up and wait until we can do so legally?
2310 * The original implementation attempted to do this (queue and wait).
2311 * The current implementation does not do so. The POSIX standard
2312 * and SVID should be consulted to determine what behavior is mandated.
2313 */
2314void exit_sem(struct task_struct *tsk)
2315{
4daa28f6 2316 struct sem_undo_list *ulp;
1da177e4 2317
4daa28f6
MS
2318 ulp = tsk->sysvsem.undo_list;
2319 if (!ulp)
1da177e4 2320 return;
9edff4ab 2321 tsk->sysvsem.undo_list = NULL;
1da177e4 2322
f74370b8 2323 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2324 return;
2325
380af1b3 2326 for (;;) {
1da177e4 2327 struct sem_array *sma;
380af1b3 2328 struct sem_undo *un;
6062a8dc 2329 int semid, i;
9ae949fa 2330 DEFINE_WAKE_Q(wake_q);
4daa28f6 2331
2a1613a5
NB
2332 cond_resched();
2333
380af1b3 2334 rcu_read_lock();
05725f7e
JP
2335 un = list_entry_rcu(ulp->list_proc.next,
2336 struct sem_undo, list_proc);
602b8593
HK
2337 if (&un->list_proc == &ulp->list_proc) {
2338 /*
2339 * We must wait for freeary() before freeing this ulp,
2340 * in case we raced with last sem_undo. There is a small
2341 * possibility where we exit while freeary() didn't
2342 * finish unlocking sem_undo_list.
2343 */
e0892e08
PM
2344 spin_lock(&ulp->lock);
2345 spin_unlock(&ulp->lock);
602b8593
HK
2346 rcu_read_unlock();
2347 break;
2348 }
2349 spin_lock(&ulp->lock);
2350 semid = un->semid;
2351 spin_unlock(&ulp->lock);
4daa28f6 2352
602b8593 2353 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2354 if (semid == -1) {
2355 rcu_read_unlock();
602b8593 2356 continue;
6062a8dc 2357 }
1da177e4 2358
602b8593 2359 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2360 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2361 if (IS_ERR(sma)) {
2362 rcu_read_unlock();
380af1b3 2363 continue;
6062a8dc 2364 }
1da177e4 2365
6062a8dc 2366 sem_lock(sma, NULL, -1);
6e224f94 2367 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2368 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2369 sem_unlock(sma, -1);
2370 rcu_read_unlock();
2371 continue;
2372 }
bf17bb71 2373 un = __lookup_undo(ulp, semid);
380af1b3
MS
2374 if (un == NULL) {
2375 /* exit_sem raced with IPC_RMID+semget() that created
2376 * exactly the same semid. Nothing to do.
2377 */
6062a8dc 2378 sem_unlock(sma, -1);
6d49dab8 2379 rcu_read_unlock();
380af1b3
MS
2380 continue;
2381 }
2382
2383 /* remove un from the linked lists */
cf9d5d78 2384 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2385 list_del(&un->list_id);
2386
edf28f40 2387 spin_lock(&ulp->lock);
380af1b3 2388 list_del_rcu(&un->list_proc);
edf28f40 2389 spin_unlock(&ulp->lock);
380af1b3 2390
4daa28f6
MS
2391 /* perform adjustments registered in un */
2392 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2393 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2394 if (un->semadj[i]) {
2395 semaphore->semval += un->semadj[i];
1da177e4
LT
2396 /*
2397 * Range checks of the new semaphore value,
2398 * not defined by sus:
2399 * - Some unices ignore the undo entirely
2400 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2401 * - some cap the value (e.g. FreeBSD caps
2402 * at 0, but doesn't enforce SEMVMX)
2403 *
2404 * Linux caps the semaphore value, both at 0
2405 * and at SEMVMX.
2406 *
239521f3 2407 * Manfred <manfred@colorfullife.com>
1da177e4 2408 */
5f921ae9
IM
2409 if (semaphore->semval < 0)
2410 semaphore->semval = 0;
2411 if (semaphore->semval > SEMVMX)
2412 semaphore->semval = SEMVMX;
51d6f263 2413 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2414 }
2415 }
1da177e4 2416 /* maybe some queued-up processes were waiting for this */
9ae949fa 2417 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2418 sem_unlock(sma, -1);
6d49dab8 2419 rcu_read_unlock();
9ae949fa 2420 wake_up_q(&wake_q);
380af1b3 2421
693a8b6e 2422 kfree_rcu(un, rcu);
1da177e4 2423 }
4daa28f6 2424 kfree(ulp);
1da177e4
LT
2425}
2426
2427#ifdef CONFIG_PROC_FS
19b4946c 2428static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2429{
1efdb69b 2430 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2431 struct kern_ipc_perm *ipcp = it;
2432 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2433 time64_t sem_otime;
d12e1e50 2434
d8c63376
MS
2435 /*
2436 * The proc interface isn't aware of sem_lock(), it calls
2437 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2438 * In order to stay compatible with sem_lock(), we must
2439 * enter / leave complex_mode.
d8c63376 2440 */
5864a2fd 2441 complexmode_enter(sma);
d8c63376 2442
d12e1e50 2443 sem_otime = get_semotime(sma);
19b4946c 2444
7f032d6e 2445 seq_printf(s,
e54d02b2 2446 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2447 sma->sem_perm.key,
2448 sma->sem_perm.id,
2449 sma->sem_perm.mode,
2450 sma->sem_nsems,
2451 from_kuid_munged(user_ns, sma->sem_perm.uid),
2452 from_kgid_munged(user_ns, sma->sem_perm.gid),
2453 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2454 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2455 sem_otime,
2456 sma->sem_ctime);
2457
5864a2fd
MS
2458 complexmode_tryleave(sma);
2459
7f032d6e 2460 return 0;
1da177e4
LT
2461}
2462#endif