ipc/sem: rework task wakeups
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
5f921ae9 85
7153e402 86#include <linux/uaccess.h>
1da177e4
LT
87#include "util.h"
88
e57940d7
MS
89/* One semaphore structure for each semaphore in the system. */
90struct sem {
91 int semval; /* current value */
a5f4db87
DB
92 /*
93 * PID of the process that last modified the semaphore. For
94 * Linux, specifically these are:
95 * - semop
96 * - semctl, via SETVAL and SETALL.
97 * - at task exit when performing undo adjustments (see exit_sem).
98 */
99 int sempid;
6062a8dc 100 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
101 struct list_head pending_alter; /* pending single-sop operations */
102 /* that alter the semaphore */
103 struct list_head pending_const; /* pending single-sop operations */
104 /* that do not alter the semaphore*/
d12e1e50 105 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 106} ____cacheline_aligned_in_smp;
e57940d7
MS
107
108/* One queue for each sleeping process in the system. */
109struct sem_queue {
e57940d7
MS
110 struct list_head list; /* queue of pending operations */
111 struct task_struct *sleeper; /* this process */
112 struct sem_undo *undo; /* undo structure */
113 int pid; /* process id of requesting process */
114 int status; /* completion status of operation */
115 struct sembuf *sops; /* array of pending operations */
ed247b7c 116 struct sembuf *blocking; /* the operation that blocked */
e57940d7
MS
117 int nsops; /* number of operations */
118 int alter; /* does *sops alter the array? */
119};
120
121/* Each task has a list of undo requests. They are executed automatically
122 * when the process exits.
123 */
124struct sem_undo {
125 struct list_head list_proc; /* per-process list: *
126 * all undos from one process
127 * rcu protected */
128 struct rcu_head rcu; /* rcu struct for sem_undo */
129 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
130 struct list_head list_id; /* per semaphore array list:
131 * all undos for one array */
132 int semid; /* semaphore set identifier */
133 short *semadj; /* array of adjustments */
134 /* one per semaphore */
135};
136
137/* sem_undo_list controls shared access to the list of sem_undo structures
138 * that may be shared among all a CLONE_SYSVSEM task group.
139 */
140struct sem_undo_list {
141 atomic_t refcnt;
142 spinlock_t lock;
143 struct list_head list_proc;
144};
145
146
ed2ddbf8 147#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 148
1b531f21 149#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 150
7748dbfa 151static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 152static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 153#ifdef CONFIG_PROC_FS
19b4946c 154static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
155#endif
156
157#define SEMMSL_FAST 256 /* 512 bytes on stack */
158#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
159
160/*
758a6ba3 161 * Locking:
5864a2fd 162 * a) global sem_lock() for read/write
1da177e4 163 * sem_undo.id_next,
758a6ba3 164 * sem_array.complex_count,
5864a2fd
MS
165 * sem_array.complex_mode
166 * sem_array.pending{_alter,_const},
167 * sem_array.sem_undo
46c0a8ca 168 *
5864a2fd 169 * b) global or semaphore sem_lock() for read/write:
758a6ba3 170 * sem_array.sem_base[i].pending_{const,alter}:
5864a2fd
MS
171 * sem_array.complex_mode (for read)
172 *
173 * c) special:
174 * sem_undo_list.list_proc:
175 * * undo_list->lock for write
176 * * rcu for read
1da177e4
LT
177 */
178
e3893534
KK
179#define sc_semmsl sem_ctls[0]
180#define sc_semmns sem_ctls[1]
181#define sc_semopm sem_ctls[2]
182#define sc_semmni sem_ctls[3]
183
ed2ddbf8 184void sem_init_ns(struct ipc_namespace *ns)
e3893534 185{
e3893534
KK
186 ns->sc_semmsl = SEMMSL;
187 ns->sc_semmns = SEMMNS;
188 ns->sc_semopm = SEMOPM;
189 ns->sc_semmni = SEMMNI;
190 ns->used_sems = 0;
ed2ddbf8 191 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
192}
193
ae5e1b22 194#ifdef CONFIG_IPC_NS
e3893534
KK
195void sem_exit_ns(struct ipc_namespace *ns)
196{
01b8b07a 197 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 198 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 199}
ae5e1b22 200#endif
1da177e4 201
239521f3 202void __init sem_init(void)
1da177e4 203{
ed2ddbf8 204 sem_init_ns(&init_ipc_ns);
19b4946c
MW
205 ipc_init_proc_interface("sysvipc/sem",
206 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 207 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
208}
209
f269f40a
MS
210/**
211 * unmerge_queues - unmerge queues, if possible.
212 * @sma: semaphore array
213 *
214 * The function unmerges the wait queues if complex_count is 0.
215 * It must be called prior to dropping the global semaphore array lock.
216 */
217static void unmerge_queues(struct sem_array *sma)
218{
219 struct sem_queue *q, *tq;
220
221 /* complex operations still around? */
222 if (sma->complex_count)
223 return;
224 /*
225 * We will switch back to simple mode.
226 * Move all pending operation back into the per-semaphore
227 * queues.
228 */
229 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
230 struct sem *curr;
231 curr = &sma->sem_base[q->sops[0].sem_num];
232
233 list_add_tail(&q->list, &curr->pending_alter);
234 }
235 INIT_LIST_HEAD(&sma->pending_alter);
236}
237
238/**
8001c858 239 * merge_queues - merge single semop queues into global queue
f269f40a
MS
240 * @sma: semaphore array
241 *
242 * This function merges all per-semaphore queues into the global queue.
243 * It is necessary to achieve FIFO ordering for the pending single-sop
244 * operations when a multi-semop operation must sleep.
245 * Only the alter operations must be moved, the const operations can stay.
246 */
247static void merge_queues(struct sem_array *sma)
248{
249 int i;
250 for (i = 0; i < sma->sem_nsems; i++) {
251 struct sem *sem = sma->sem_base + i;
252
253 list_splice_init(&sem->pending_alter, &sma->pending_alter);
254 }
255}
256
53dad6d3
DB
257static void sem_rcu_free(struct rcu_head *head)
258{
259 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
260 struct sem_array *sma = ipc_rcu_to_struct(p);
261
262 security_sem_free(sma);
263 ipc_rcu_free(head);
264}
265
5e9d5275 266/*
5864a2fd 267 * Enter the mode suitable for non-simple operations:
5e9d5275 268 * Caller must own sem_perm.lock.
5e9d5275 269 */
5864a2fd 270static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
271{
272 int i;
273 struct sem *sem;
274
5864a2fd
MS
275 if (sma->complex_mode) {
276 /* We are already in complex_mode. Nothing to do */
6d07b68c
MS
277 return;
278 }
279
5864a2fd
MS
280 /* We need a full barrier after seting complex_mode:
281 * The write to complex_mode must be visible
282 * before we read the first sem->lock spinlock state.
283 */
284 smp_store_mb(sma->complex_mode, true);
285
5e9d5275
MS
286 for (i = 0; i < sma->sem_nsems; i++) {
287 sem = sma->sem_base + i;
288 spin_unlock_wait(&sem->lock);
289 }
5864a2fd
MS
290 /*
291 * spin_unlock_wait() is not a memory barriers, it is only a
292 * control barrier. The code must pair with spin_unlock(&sem->lock),
293 * thus just the control barrier is insufficient.
294 *
295 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
296 */
297 smp_rmb();
298}
299
300/*
301 * Try to leave the mode that disallows simple operations:
302 * Caller must own sem_perm.lock.
303 */
304static void complexmode_tryleave(struct sem_array *sma)
305{
306 if (sma->complex_count) {
307 /* Complex ops are sleeping.
308 * We must stay in complex mode
309 */
310 return;
311 }
312 /*
313 * Immediately after setting complex_mode to false,
314 * a simple op can start. Thus: all memory writes
315 * performed by the current operation must be visible
316 * before we set complex_mode to false.
317 */
318 smp_store_release(&sma->complex_mode, false);
5e9d5275
MS
319}
320
5864a2fd 321#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
322/*
323 * If the request contains only one semaphore operation, and there are
324 * no complex transactions pending, lock only the semaphore involved.
325 * Otherwise, lock the entire semaphore array, since we either have
326 * multiple semaphores in our own semops, or we need to look at
327 * semaphores from other pending complex operations.
6062a8dc
RR
328 */
329static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
330 int nsops)
331{
5e9d5275 332 struct sem *sem;
6062a8dc 333
5e9d5275
MS
334 if (nsops != 1) {
335 /* Complex operation - acquire a full lock */
336 ipc_lock_object(&sma->sem_perm);
6062a8dc 337
5864a2fd
MS
338 /* Prevent parallel simple ops */
339 complexmode_enter(sma);
340 return SEM_GLOBAL_LOCK;
5e9d5275
MS
341 }
342
343 /*
344 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
345 * Optimized locking is possible if no complex operation
346 * is either enqueued or processed right now.
347 *
348 * Both facts are tracked by complex_mode.
5e9d5275
MS
349 */
350 sem = sma->sem_base + sops->sem_num;
6062a8dc 351
5864a2fd
MS
352 /*
353 * Initial check for complex_mode. Just an optimization,
354 * no locking, no memory barrier.
355 */
356 if (!sma->complex_mode) {
6062a8dc 357 /*
5e9d5275
MS
358 * It appears that no complex operation is around.
359 * Acquire the per-semaphore lock.
6062a8dc 360 */
5e9d5275
MS
361 spin_lock(&sem->lock);
362
5864a2fd
MS
363 /*
364 * See 51d7d5205d33
365 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
366 * A full barrier is required: the write of sem->lock
367 * must be visible before the read is executed
368 */
369 smp_mb();
5e9d5275 370
5864a2fd
MS
371 if (!smp_load_acquire(&sma->complex_mode)) {
372 /* fast path successful! */
373 return sops->sem_num;
6062a8dc 374 }
5e9d5275
MS
375 spin_unlock(&sem->lock);
376 }
377
378 /* slow path: acquire the full lock */
379 ipc_lock_object(&sma->sem_perm);
6062a8dc 380
5e9d5275
MS
381 if (sma->complex_count == 0) {
382 /* False alarm:
383 * There is no complex operation, thus we can switch
384 * back to the fast path.
385 */
386 spin_lock(&sem->lock);
387 ipc_unlock_object(&sma->sem_perm);
388 return sops->sem_num;
6062a8dc 389 } else {
5e9d5275
MS
390 /* Not a false alarm, thus complete the sequence for a
391 * full lock.
6062a8dc 392 */
5864a2fd
MS
393 complexmode_enter(sma);
394 return SEM_GLOBAL_LOCK;
6062a8dc 395 }
6062a8dc
RR
396}
397
398static inline void sem_unlock(struct sem_array *sma, int locknum)
399{
5864a2fd 400 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 401 unmerge_queues(sma);
5864a2fd 402 complexmode_tryleave(sma);
cf9d5d78 403 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
404 } else {
405 struct sem *sem = sma->sem_base + locknum;
406 spin_unlock(&sem->lock);
407 }
6062a8dc
RR
408}
409
3e148c79 410/*
d9a605e4 411 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 412 * is not held.
321310ce
LT
413 *
414 * The caller holds the RCU read lock.
3e148c79 415 */
6062a8dc
RR
416static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
417 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 418{
c460b662
RR
419 struct kern_ipc_perm *ipcp;
420 struct sem_array *sma;
03f02c76 421
55b7ae50 422 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
321310ce
LT
423 if (IS_ERR(ipcp))
424 return ERR_CAST(ipcp);
b1ed88b4 425
6062a8dc
RR
426 sma = container_of(ipcp, struct sem_array, sem_perm);
427 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
428
429 /* ipc_rmid() may have already freed the ID while sem_lock
430 * was spinning: verify that the structure is still valid
431 */
72a8ff2f 432 if (ipc_valid_object(ipcp))
c460b662
RR
433 return container_of(ipcp, struct sem_array, sem_perm);
434
6062a8dc 435 sem_unlock(sma, *locknum);
321310ce 436 return ERR_PTR(-EINVAL);
023a5355
ND
437}
438
16df3674
DB
439static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
440{
55b7ae50 441 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
442
443 if (IS_ERR(ipcp))
444 return ERR_CAST(ipcp);
445
446 return container_of(ipcp, struct sem_array, sem_perm);
447}
448
16df3674
DB
449static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
450 int id)
451{
452 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
453
454 if (IS_ERR(ipcp))
455 return ERR_CAST(ipcp);
b1ed88b4 456
03f02c76 457 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
458}
459
6ff37972
PP
460static inline void sem_lock_and_putref(struct sem_array *sma)
461{
6062a8dc 462 sem_lock(sma, NULL, -1);
9b24fef9 463 ipc_rcu_putref(sma, sem_rcu_free);
6ff37972
PP
464}
465
7ca7e564
ND
466static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
467{
468 ipc_rmid(&sem_ids(ns), &s->sem_perm);
469}
470
f4566f04
ND
471/**
472 * newary - Create a new semaphore set
473 * @ns: namespace
474 * @params: ptr to the structure that contains key, semflg and nsems
475 *
d9a605e4 476 * Called with sem_ids.rwsem held (as a writer)
f4566f04 477 */
7748dbfa 478static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
479{
480 int id;
481 int retval;
482 struct sem_array *sma;
483 int size;
7748dbfa
ND
484 key_t key = params->key;
485 int nsems = params->u.nsems;
486 int semflg = params->flg;
b97e820f 487 int i;
1da177e4
LT
488
489 if (!nsems)
490 return -EINVAL;
e3893534 491 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
492 return -ENOSPC;
493
239521f3 494 size = sizeof(*sma) + nsems * sizeof(struct sem);
1da177e4 495 sma = ipc_rcu_alloc(size);
3ab08fe2 496 if (!sma)
1da177e4 497 return -ENOMEM;
3ab08fe2 498
239521f3 499 memset(sma, 0, size);
1da177e4
LT
500
501 sma->sem_perm.mode = (semflg & S_IRWXUGO);
502 sma->sem_perm.key = key;
503
504 sma->sem_perm.security = NULL;
505 retval = security_sem_alloc(sma);
506 if (retval) {
53dad6d3 507 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
508 return retval;
509 }
510
1da177e4 511 sma->sem_base = (struct sem *) &sma[1];
b97e820f 512
6062a8dc 513 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
514 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
515 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
516 spin_lock_init(&sma->sem_base[i].lock);
517 }
b97e820f
MS
518
519 sma->complex_count = 0;
5864a2fd 520 sma->complex_mode = true; /* dropped by sem_unlock below */
1a82e9e1
MS
521 INIT_LIST_HEAD(&sma->pending_alter);
522 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 523 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
524 sma->sem_nsems = nsems;
525 sma->sem_ctime = get_seconds();
e8577d1f
MS
526
527 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
528 if (id < 0) {
529 ipc_rcu_putref(sma, sem_rcu_free);
530 return id;
531 }
532 ns->used_sems += nsems;
533
6062a8dc 534 sem_unlock(sma, -1);
6d49dab8 535 rcu_read_unlock();
1da177e4 536
7ca7e564 537 return sma->sem_perm.id;
1da177e4
LT
538}
539
7748dbfa 540
f4566f04 541/*
d9a605e4 542 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 543 */
03f02c76 544static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 545{
03f02c76
ND
546 struct sem_array *sma;
547
548 sma = container_of(ipcp, struct sem_array, sem_perm);
549 return security_sem_associate(sma, semflg);
7748dbfa
ND
550}
551
f4566f04 552/*
d9a605e4 553 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 554 */
03f02c76
ND
555static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
556 struct ipc_params *params)
7748dbfa 557{
03f02c76
ND
558 struct sem_array *sma;
559
560 sma = container_of(ipcp, struct sem_array, sem_perm);
561 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
562 return -EINVAL;
563
564 return 0;
565}
566
d5460c99 567SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 568{
e3893534 569 struct ipc_namespace *ns;
eb66ec44
MK
570 static const struct ipc_ops sem_ops = {
571 .getnew = newary,
572 .associate = sem_security,
573 .more_checks = sem_more_checks,
574 };
7748dbfa 575 struct ipc_params sem_params;
e3893534
KK
576
577 ns = current->nsproxy->ipc_ns;
1da177e4 578
e3893534 579 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 580 return -EINVAL;
7ca7e564 581
7748dbfa
ND
582 sem_params.key = key;
583 sem_params.flg = semflg;
584 sem_params.u.nsems = nsems;
1da177e4 585
7748dbfa 586 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
587}
588
78f5009c
PM
589/**
590 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3 591 * @sma: semaphore array
d198cd6d 592 * @q: struct sem_queue that describes the operation
758a6ba3
MS
593 *
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Negative values are error codes.
1da177e4 597 */
d198cd6d 598static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
1da177e4 599{
d198cd6d 600 int result, sem_op, nsops, pid;
1da177e4 601 struct sembuf *sop;
239521f3 602 struct sem *curr;
d198cd6d
MS
603 struct sembuf *sops;
604 struct sem_undo *un;
605
606 sops = q->sops;
607 nsops = q->nsops;
608 un = q->undo;
1da177e4
LT
609
610 for (sop = sops; sop < sops + nsops; sop++) {
611 curr = sma->sem_base + sop->sem_num;
612 sem_op = sop->sem_op;
613 result = curr->semval;
78f5009c 614
1da177e4
LT
615 if (!sem_op && result)
616 goto would_block;
617
618 result += sem_op;
619 if (result < 0)
620 goto would_block;
621 if (result > SEMVMX)
622 goto out_of_range;
78f5009c 623
1da177e4
LT
624 if (sop->sem_flg & SEM_UNDO) {
625 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 626 /* Exceeding the undo range is an error. */
1da177e4
LT
627 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
628 goto out_of_range;
78f5009c 629 un->semadj[sop->sem_num] = undo;
1da177e4 630 }
78f5009c 631
1da177e4
LT
632 curr->semval = result;
633 }
634
635 sop--;
d198cd6d 636 pid = q->pid;
1da177e4
LT
637 while (sop >= sops) {
638 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
639 sop--;
640 }
78f5009c 641
1da177e4
LT
642 return 0;
643
644out_of_range:
645 result = -ERANGE;
646 goto undo;
647
648would_block:
ed247b7c
MS
649 q->blocking = sop;
650
1da177e4
LT
651 if (sop->sem_flg & IPC_NOWAIT)
652 result = -EAGAIN;
653 else
654 result = 1;
655
656undo:
657 sop--;
658 while (sop >= sops) {
78f5009c
PM
659 sem_op = sop->sem_op;
660 sma->sem_base[sop->sem_num].semval -= sem_op;
661 if (sop->sem_flg & SEM_UNDO)
662 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
663 sop--;
664 }
665
666 return result;
667}
668
9ae949fa
DB
669static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
670 struct wake_q_head *wake_q)
0a2b9d4c 671{
9ae949fa
DB
672 wake_q_add(wake_q, q->sleeper);
673 /*
674 * Rely on the above implicit barrier, such that we can
675 * ensure that we hold reference to the task before setting
676 * q->status. Otherwise we could race with do_exit if the
677 * task is awoken by an external event before calling
678 * wake_up_process().
679 */
680 WRITE_ONCE(q->status, error);
d4212093
NP
681}
682
b97e820f
MS
683static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
684{
685 list_del(&q->list);
9f1bc2c9 686 if (q->nsops > 1)
b97e820f
MS
687 sma->complex_count--;
688}
689
fd5db422
MS
690/** check_restart(sma, q)
691 * @sma: semaphore array
692 * @q: the operation that just completed
693 *
694 * update_queue is O(N^2) when it restarts scanning the whole queue of
695 * waiting operations. Therefore this function checks if the restart is
696 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
697 * modified the array.
698 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
699 */
700static int check_restart(struct sem_array *sma, struct sem_queue *q)
701{
1a82e9e1
MS
702 /* pending complex alter operations are too difficult to analyse */
703 if (!list_empty(&sma->pending_alter))
fd5db422
MS
704 return 1;
705
706 /* we were a sleeping complex operation. Too difficult */
707 if (q->nsops > 1)
708 return 1;
709
1a82e9e1
MS
710 /* It is impossible that someone waits for the new value:
711 * - complex operations always restart.
712 * - wait-for-zero are handled seperately.
713 * - q is a previously sleeping simple operation that
714 * altered the array. It must be a decrement, because
715 * simple increments never sleep.
716 * - If there are older (higher priority) decrements
717 * in the queue, then they have observed the original
718 * semval value and couldn't proceed. The operation
719 * decremented to value - thus they won't proceed either.
720 */
721 return 0;
722}
fd5db422 723
1a82e9e1 724/**
8001c858 725 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
726 * @sma: semaphore array.
727 * @semnum: semaphore that was modified.
9ae949fa 728 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
729 *
730 * wake_const_ops must be called after a semaphore in a semaphore array
731 * was set to 0. If complex const operations are pending, wake_const_ops must
732 * be called with semnum = -1, as well as with the number of each modified
733 * semaphore.
9ae949fa 734 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
735 * is stored in q->pid.
736 * The function returns 1 if at least one operation was completed successfully.
737 */
738static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 739 struct wake_q_head *wake_q)
1a82e9e1
MS
740{
741 struct sem_queue *q;
742 struct list_head *walk;
743 struct list_head *pending_list;
744 int semop_completed = 0;
745
746 if (semnum == -1)
747 pending_list = &sma->pending_const;
748 else
749 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 750
1a82e9e1
MS
751 walk = pending_list->next;
752 while (walk != pending_list) {
753 int error;
754
755 q = container_of(walk, struct sem_queue, list);
756 walk = walk->next;
757
d198cd6d 758 error = perform_atomic_semop(sma, q);
1a82e9e1
MS
759
760 if (error <= 0) {
761 /* operation completed, remove from queue & wakeup */
762
763 unlink_queue(sma, q);
764
9ae949fa 765 wake_up_sem_queue_prepare(q, error, wake_q);
1a82e9e1
MS
766 if (error == 0)
767 semop_completed = 1;
768 }
769 }
770 return semop_completed;
771}
772
773/**
8001c858 774 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
775 * @sma: semaphore array
776 * @sops: operations that were performed
777 * @nsops: number of operations
9ae949fa 778 * @wake_q: lockless wake-queue head
1a82e9e1 779 *
8001c858
DB
780 * Checks all required queue for wait-for-zero operations, based
781 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
782 * The function returns 1 if at least one operation was completed successfully.
783 */
784static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 785 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
786{
787 int i;
788 int semop_completed = 0;
789 int got_zero = 0;
790
791 /* first: the per-semaphore queues, if known */
792 if (sops) {
793 for (i = 0; i < nsops; i++) {
794 int num = sops[i].sem_num;
795
796 if (sma->sem_base[num].semval == 0) {
797 got_zero = 1;
9ae949fa 798 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
799 }
800 }
801 } else {
802 /*
803 * No sops means modified semaphores not known.
804 * Assume all were changed.
fd5db422 805 */
1a82e9e1
MS
806 for (i = 0; i < sma->sem_nsems; i++) {
807 if (sma->sem_base[i].semval == 0) {
808 got_zero = 1;
9ae949fa 809 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
810 }
811 }
fd5db422
MS
812 }
813 /*
1a82e9e1
MS
814 * If one of the modified semaphores got 0,
815 * then check the global queue, too.
fd5db422 816 */
1a82e9e1 817 if (got_zero)
9ae949fa 818 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 819
1a82e9e1 820 return semop_completed;
fd5db422
MS
821}
822
636c6be8
MS
823
824/**
8001c858 825 * update_queue - look for tasks that can be completed.
636c6be8
MS
826 * @sma: semaphore array.
827 * @semnum: semaphore that was modified.
9ae949fa 828 * @wake_q: lockless wake-queue head.
636c6be8
MS
829 *
830 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
831 * was modified. If multiple semaphores were modified, update_queue must
832 * be called with semnum = -1, as well as with the number of each modified
833 * semaphore.
9ae949fa 834 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 835 * is stored in q->pid.
1a82e9e1
MS
836 * The function internally checks if const operations can now succeed.
837 *
0a2b9d4c 838 * The function return 1 if at least one semop was completed successfully.
1da177e4 839 */
9ae949fa 840static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 841{
636c6be8
MS
842 struct sem_queue *q;
843 struct list_head *walk;
844 struct list_head *pending_list;
0a2b9d4c 845 int semop_completed = 0;
636c6be8 846
9f1bc2c9 847 if (semnum == -1)
1a82e9e1 848 pending_list = &sma->pending_alter;
9f1bc2c9 849 else
1a82e9e1 850 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
851
852again:
636c6be8
MS
853 walk = pending_list->next;
854 while (walk != pending_list) {
fd5db422 855 int error, restart;
636c6be8 856
9f1bc2c9 857 q = container_of(walk, struct sem_queue, list);
636c6be8 858 walk = walk->next;
1da177e4 859
d987f8b2
MS
860 /* If we are scanning the single sop, per-semaphore list of
861 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 862 * necessary to scan further: simple increments
d987f8b2
MS
863 * that affect only one entry succeed immediately and cannot
864 * be in the per semaphore pending queue, and decrements
865 * cannot be successful if the value is already 0.
866 */
1a82e9e1 867 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
868 break;
869
d198cd6d 870 error = perform_atomic_semop(sma, q);
1da177e4
LT
871
872 /* Does q->sleeper still need to sleep? */
9cad200c
NP
873 if (error > 0)
874 continue;
875
b97e820f 876 unlink_queue(sma, q);
9cad200c 877
0a2b9d4c 878 if (error) {
fd5db422 879 restart = 0;
0a2b9d4c
MS
880 } else {
881 semop_completed = 1;
9ae949fa 882 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 883 restart = check_restart(sma, q);
0a2b9d4c 884 }
fd5db422 885
9ae949fa 886 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 887 if (restart)
9cad200c 888 goto again;
1da177e4 889 }
0a2b9d4c 890 return semop_completed;
1da177e4
LT
891}
892
0e8c6656 893/**
8001c858 894 * set_semotime - set sem_otime
0e8c6656
MS
895 * @sma: semaphore array
896 * @sops: operations that modified the array, may be NULL
897 *
898 * sem_otime is replicated to avoid cache line trashing.
899 * This function sets one instance to the current time.
900 */
901static void set_semotime(struct sem_array *sma, struct sembuf *sops)
902{
903 if (sops == NULL) {
904 sma->sem_base[0].sem_otime = get_seconds();
905 } else {
906 sma->sem_base[sops[0].sem_num].sem_otime =
907 get_seconds();
908 }
909}
910
0a2b9d4c 911/**
8001c858 912 * do_smart_update - optimized update_queue
fd5db422
MS
913 * @sma: semaphore array
914 * @sops: operations that were performed
915 * @nsops: number of operations
0a2b9d4c 916 * @otime: force setting otime
9ae949fa 917 * @wake_q: lockless wake-queue head
fd5db422 918 *
1a82e9e1
MS
919 * do_smart_update() does the required calls to update_queue and wakeup_zero,
920 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 921 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 922 * responsible for calling wake_up_q().
0a2b9d4c 923 * It is safe to perform this call after dropping all locks.
fd5db422 924 */
0a2b9d4c 925static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 926 int otime, struct wake_q_head *wake_q)
fd5db422
MS
927{
928 int i;
929
9ae949fa 930 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 931
f269f40a
MS
932 if (!list_empty(&sma->pending_alter)) {
933 /* semaphore array uses the global queue - just process it. */
9ae949fa 934 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
935 } else {
936 if (!sops) {
937 /*
938 * No sops, thus the modified semaphores are not
939 * known. Check all.
940 */
941 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 942 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
943 } else {
944 /*
945 * Check the semaphores that were increased:
946 * - No complex ops, thus all sleeping ops are
947 * decrease.
948 * - if we decreased the value, then any sleeping
949 * semaphore ops wont be able to run: If the
950 * previous value was too small, then the new
951 * value will be too small, too.
952 */
953 for (i = 0; i < nsops; i++) {
954 if (sops[i].sem_op > 0) {
955 otime |= update_queue(sma,
9ae949fa 956 sops[i].sem_num, wake_q);
f269f40a 957 }
ab465df9 958 }
9f1bc2c9 959 }
fd5db422 960 }
0e8c6656
MS
961 if (otime)
962 set_semotime(sma, sops);
fd5db422
MS
963}
964
2f2ed41d 965/*
b220c57a 966 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
967 */
968static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
969 bool count_zero)
970{
b220c57a 971 struct sembuf *sop = q->blocking;
2f2ed41d 972
9b44ee2e
MS
973 /*
974 * Linux always (since 0.99.10) reported a task as sleeping on all
975 * semaphores. This violates SUS, therefore it was changed to the
976 * standard compliant behavior.
977 * Give the administrators a chance to notice that an application
978 * might misbehave because it relies on the Linux behavior.
979 */
980 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
981 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
982 current->comm, task_pid_nr(current));
983
b220c57a
MS
984 if (sop->sem_num != semnum)
985 return 0;
2f2ed41d 986
b220c57a
MS
987 if (count_zero && sop->sem_op == 0)
988 return 1;
989 if (!count_zero && sop->sem_op < 0)
990 return 1;
991
992 return 0;
2f2ed41d
MS
993}
994
1da177e4
LT
995/* The following counts are associated to each semaphore:
996 * semncnt number of tasks waiting on semval being nonzero
997 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
998 *
999 * Per definition, a task waits only on the semaphore of the first semop
1000 * that cannot proceed, even if additional operation would block, too.
1da177e4 1001 */
2f2ed41d
MS
1002static int count_semcnt(struct sem_array *sma, ushort semnum,
1003 bool count_zero)
1da177e4 1004{
2f2ed41d 1005 struct list_head *l;
239521f3 1006 struct sem_queue *q;
2f2ed41d 1007 int semcnt;
1da177e4 1008
2f2ed41d
MS
1009 semcnt = 0;
1010 /* First: check the simple operations. They are easy to evaluate */
1011 if (count_zero)
1012 l = &sma->sem_base[semnum].pending_const;
1013 else
1014 l = &sma->sem_base[semnum].pending_alter;
1da177e4 1015
2f2ed41d
MS
1016 list_for_each_entry(q, l, list) {
1017 /* all task on a per-semaphore list sleep on exactly
1018 * that semaphore
1019 */
1020 semcnt++;
ebc2e5e6
RR
1021 }
1022
2f2ed41d 1023 /* Then: check the complex operations. */
1994862d 1024 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1025 semcnt += check_qop(sma, semnum, q, count_zero);
1026 }
1027 if (count_zero) {
1028 list_for_each_entry(q, &sma->pending_const, list) {
1029 semcnt += check_qop(sma, semnum, q, count_zero);
1030 }
1994862d 1031 }
2f2ed41d 1032 return semcnt;
1da177e4
LT
1033}
1034
d9a605e4
DB
1035/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1036 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1037 * remains locked on exit.
1da177e4 1038 */
01b8b07a 1039static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1040{
380af1b3
MS
1041 struct sem_undo *un, *tu;
1042 struct sem_queue *q, *tq;
01b8b07a 1043 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1044 int i;
9ae949fa 1045 DEFINE_WAKE_Q(wake_q);
1da177e4 1046
380af1b3 1047 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1048 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1049 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1050 list_del(&un->list_id);
1051 spin_lock(&un->ulp->lock);
1da177e4 1052 un->semid = -1;
380af1b3
MS
1053 list_del_rcu(&un->list_proc);
1054 spin_unlock(&un->ulp->lock);
693a8b6e 1055 kfree_rcu(un, rcu);
380af1b3 1056 }
1da177e4
LT
1057
1058 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1059 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1060 unlink_queue(sma, q);
9ae949fa 1061 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1062 }
1063
1064 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1065 unlink_queue(sma, q);
9ae949fa 1066 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1067 }
9f1bc2c9
RR
1068 for (i = 0; i < sma->sem_nsems; i++) {
1069 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1070 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1071 unlink_queue(sma, q);
9ae949fa 1072 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1073 }
1074 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1075 unlink_queue(sma, q);
9ae949fa 1076 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1077 }
1078 }
1da177e4 1079
7ca7e564
ND
1080 /* Remove the semaphore set from the IDR */
1081 sem_rmid(ns, sma);
6062a8dc 1082 sem_unlock(sma, -1);
6d49dab8 1083 rcu_read_unlock();
1da177e4 1084
9ae949fa 1085 wake_up_q(&wake_q);
e3893534 1086 ns->used_sems -= sma->sem_nsems;
53dad6d3 1087 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1088}
1089
1090static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1091{
239521f3 1092 switch (version) {
1da177e4
LT
1093 case IPC_64:
1094 return copy_to_user(buf, in, sizeof(*in));
1095 case IPC_OLD:
1096 {
1097 struct semid_ds out;
1098
982f7c2b
DR
1099 memset(&out, 0, sizeof(out));
1100
1da177e4
LT
1101 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1102
1103 out.sem_otime = in->sem_otime;
1104 out.sem_ctime = in->sem_ctime;
1105 out.sem_nsems = in->sem_nsems;
1106
1107 return copy_to_user(buf, &out, sizeof(out));
1108 }
1109 default:
1110 return -EINVAL;
1111 }
1112}
1113
d12e1e50
MS
1114static time_t get_semotime(struct sem_array *sma)
1115{
1116 int i;
1117 time_t res;
1118
1119 res = sma->sem_base[0].sem_otime;
1120 for (i = 1; i < sma->sem_nsems; i++) {
1121 time_t to = sma->sem_base[i].sem_otime;
1122
1123 if (to > res)
1124 res = to;
1125 }
1126 return res;
1127}
1128
4b9fcb0e 1129static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1130 int cmd, int version, void __user *p)
1da177e4 1131{
e5cc9c7b 1132 int err;
1da177e4
LT
1133 struct sem_array *sma;
1134
239521f3 1135 switch (cmd) {
1da177e4
LT
1136 case IPC_INFO:
1137 case SEM_INFO:
1138 {
1139 struct seminfo seminfo;
1140 int max_id;
1141
1142 err = security_sem_semctl(NULL, cmd);
1143 if (err)
1144 return err;
46c0a8ca 1145
239521f3 1146 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1147 seminfo.semmni = ns->sc_semmni;
1148 seminfo.semmns = ns->sc_semmns;
1149 seminfo.semmsl = ns->sc_semmsl;
1150 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1151 seminfo.semvmx = SEMVMX;
1152 seminfo.semmnu = SEMMNU;
1153 seminfo.semmap = SEMMAP;
1154 seminfo.semume = SEMUME;
d9a605e4 1155 down_read(&sem_ids(ns).rwsem);
1da177e4 1156 if (cmd == SEM_INFO) {
e3893534
KK
1157 seminfo.semusz = sem_ids(ns).in_use;
1158 seminfo.semaem = ns->used_sems;
1da177e4
LT
1159 } else {
1160 seminfo.semusz = SEMUSZ;
1161 seminfo.semaem = SEMAEM;
1162 }
7ca7e564 1163 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1164 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1165 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1166 return -EFAULT;
239521f3 1167 return (max_id < 0) ? 0 : max_id;
1da177e4 1168 }
4b9fcb0e 1169 case IPC_STAT:
1da177e4
LT
1170 case SEM_STAT:
1171 {
1172 struct semid64_ds tbuf;
16df3674
DB
1173 int id = 0;
1174
1175 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1176
941b0304 1177 rcu_read_lock();
4b9fcb0e 1178 if (cmd == SEM_STAT) {
16df3674
DB
1179 sma = sem_obtain_object(ns, semid);
1180 if (IS_ERR(sma)) {
1181 err = PTR_ERR(sma);
1182 goto out_unlock;
1183 }
4b9fcb0e
PP
1184 id = sma->sem_perm.id;
1185 } else {
16df3674
DB
1186 sma = sem_obtain_object_check(ns, semid);
1187 if (IS_ERR(sma)) {
1188 err = PTR_ERR(sma);
1189 goto out_unlock;
1190 }
4b9fcb0e 1191 }
1da177e4
LT
1192
1193 err = -EACCES;
b0e77598 1194 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1195 goto out_unlock;
1196
1197 err = security_sem_semctl(sma, cmd);
1198 if (err)
1199 goto out_unlock;
1200
1da177e4 1201 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1202 tbuf.sem_otime = get_semotime(sma);
1203 tbuf.sem_ctime = sma->sem_ctime;
1204 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1205 rcu_read_unlock();
e1fd1f49 1206 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1207 return -EFAULT;
1208 return id;
1209 }
1210 default:
1211 return -EINVAL;
1212 }
1da177e4 1213out_unlock:
16df3674 1214 rcu_read_unlock();
1da177e4
LT
1215 return err;
1216}
1217
e1fd1f49
AV
1218static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1219 unsigned long arg)
1220{
1221 struct sem_undo *un;
1222 struct sem_array *sma;
239521f3 1223 struct sem *curr;
9ae949fa
DB
1224 int err, val;
1225 DEFINE_WAKE_Q(wake_q);
1226
e1fd1f49
AV
1227#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1228 /* big-endian 64bit */
1229 val = arg >> 32;
1230#else
1231 /* 32bit or little-endian 64bit */
1232 val = arg;
1233#endif
1234
6062a8dc
RR
1235 if (val > SEMVMX || val < 0)
1236 return -ERANGE;
e1fd1f49 1237
6062a8dc
RR
1238 rcu_read_lock();
1239 sma = sem_obtain_object_check(ns, semid);
1240 if (IS_ERR(sma)) {
1241 rcu_read_unlock();
1242 return PTR_ERR(sma);
1243 }
1244
1245 if (semnum < 0 || semnum >= sma->sem_nsems) {
1246 rcu_read_unlock();
1247 return -EINVAL;
1248 }
1249
1250
1251 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1252 rcu_read_unlock();
1253 return -EACCES;
1254 }
e1fd1f49
AV
1255
1256 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1257 if (err) {
1258 rcu_read_unlock();
1259 return -EACCES;
1260 }
e1fd1f49 1261
6062a8dc 1262 sem_lock(sma, NULL, -1);
e1fd1f49 1263
0f3d2b01 1264 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1265 sem_unlock(sma, -1);
1266 rcu_read_unlock();
1267 return -EIDRM;
1268 }
1269
e1fd1f49
AV
1270 curr = &sma->sem_base[semnum];
1271
cf9d5d78 1272 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1273 list_for_each_entry(un, &sma->list_id, list_id)
1274 un->semadj[semnum] = 0;
1275
1276 curr->semval = val;
1277 curr->sempid = task_tgid_vnr(current);
1278 sma->sem_ctime = get_seconds();
1279 /* maybe some queued-up processes were waiting for this */
9ae949fa 1280 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1281 sem_unlock(sma, -1);
6d49dab8 1282 rcu_read_unlock();
9ae949fa 1283 wake_up_q(&wake_q);
6062a8dc 1284 return 0;
e1fd1f49
AV
1285}
1286
e3893534 1287static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1288 int cmd, void __user *p)
1da177e4
LT
1289{
1290 struct sem_array *sma;
239521f3 1291 struct sem *curr;
16df3674 1292 int err, nsems;
1da177e4 1293 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1294 ushort *sem_io = fast_sem_io;
9ae949fa 1295 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1296
1297 rcu_read_lock();
1298 sma = sem_obtain_object_check(ns, semid);
1299 if (IS_ERR(sma)) {
1300 rcu_read_unlock();
023a5355 1301 return PTR_ERR(sma);
16df3674 1302 }
1da177e4
LT
1303
1304 nsems = sma->sem_nsems;
1305
1da177e4 1306 err = -EACCES;
c728b9c8
LT
1307 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1308 goto out_rcu_wakeup;
1da177e4
LT
1309
1310 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1311 if (err)
1312 goto out_rcu_wakeup;
1da177e4
LT
1313
1314 err = -EACCES;
1315 switch (cmd) {
1316 case GETALL:
1317 {
e1fd1f49 1318 ushort __user *array = p;
1da177e4
LT
1319 int i;
1320
ce857229 1321 sem_lock(sma, NULL, -1);
0f3d2b01 1322 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1323 err = -EIDRM;
1324 goto out_unlock;
1325 }
239521f3 1326 if (nsems > SEMMSL_FAST) {
ce857229 1327 if (!ipc_rcu_getref(sma)) {
ce857229 1328 err = -EIDRM;
6e224f94 1329 goto out_unlock;
ce857229
AV
1330 }
1331 sem_unlock(sma, -1);
6d49dab8 1332 rcu_read_unlock();
1da177e4 1333 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1334 if (sem_io == NULL) {
9b24fef9 1335 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1336 return -ENOMEM;
1337 }
1338
4091fd94 1339 rcu_read_lock();
6ff37972 1340 sem_lock_and_putref(sma);
0f3d2b01 1341 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1342 err = -EIDRM;
6e224f94 1343 goto out_unlock;
1da177e4 1344 }
ce857229 1345 }
1da177e4
LT
1346 for (i = 0; i < sma->sem_nsems; i++)
1347 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1348 sem_unlock(sma, -1);
6d49dab8 1349 rcu_read_unlock();
1da177e4 1350 err = 0;
239521f3 1351 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1352 err = -EFAULT;
1353 goto out_free;
1354 }
1355 case SETALL:
1356 {
1357 int i;
1358 struct sem_undo *un;
1359
6062a8dc 1360 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1361 err = -EIDRM;
1362 goto out_rcu_wakeup;
6062a8dc 1363 }
16df3674 1364 rcu_read_unlock();
1da177e4 1365
239521f3 1366 if (nsems > SEMMSL_FAST) {
1da177e4 1367 sem_io = ipc_alloc(sizeof(ushort)*nsems);
239521f3 1368 if (sem_io == NULL) {
9b24fef9 1369 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1370 return -ENOMEM;
1371 }
1372 }
1373
239521f3 1374 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
9b24fef9 1375 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1376 err = -EFAULT;
1377 goto out_free;
1378 }
1379
1380 for (i = 0; i < nsems; i++) {
1381 if (sem_io[i] > SEMVMX) {
9b24fef9 1382 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1383 err = -ERANGE;
1384 goto out_free;
1385 }
1386 }
4091fd94 1387 rcu_read_lock();
6ff37972 1388 sem_lock_and_putref(sma);
0f3d2b01 1389 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1390 err = -EIDRM;
6e224f94 1391 goto out_unlock;
1da177e4
LT
1392 }
1393
a5f4db87 1394 for (i = 0; i < nsems; i++) {
1da177e4 1395 sma->sem_base[i].semval = sem_io[i];
a5f4db87
DB
1396 sma->sem_base[i].sempid = task_tgid_vnr(current);
1397 }
4daa28f6 1398
cf9d5d78 1399 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1400 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1401 for (i = 0; i < nsems; i++)
1402 un->semadj[i] = 0;
4daa28f6 1403 }
1da177e4
LT
1404 sma->sem_ctime = get_seconds();
1405 /* maybe some queued-up processes were waiting for this */
9ae949fa 1406 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1407 err = 0;
1408 goto out_unlock;
1409 }
e1fd1f49 1410 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1411 }
1412 err = -EINVAL;
c728b9c8
LT
1413 if (semnum < 0 || semnum >= nsems)
1414 goto out_rcu_wakeup;
1da177e4 1415
6062a8dc 1416 sem_lock(sma, NULL, -1);
0f3d2b01 1417 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1418 err = -EIDRM;
1419 goto out_unlock;
1420 }
1da177e4
LT
1421 curr = &sma->sem_base[semnum];
1422
1423 switch (cmd) {
1424 case GETVAL:
1425 err = curr->semval;
1426 goto out_unlock;
1427 case GETPID:
1428 err = curr->sempid;
1429 goto out_unlock;
1430 case GETNCNT:
2f2ed41d 1431 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1432 goto out_unlock;
1433 case GETZCNT:
2f2ed41d 1434 err = count_semcnt(sma, semnum, 1);
1da177e4 1435 goto out_unlock;
1da177e4 1436 }
16df3674 1437
1da177e4 1438out_unlock:
6062a8dc 1439 sem_unlock(sma, -1);
c728b9c8 1440out_rcu_wakeup:
6d49dab8 1441 rcu_read_unlock();
9ae949fa 1442 wake_up_q(&wake_q);
1da177e4 1443out_free:
239521f3 1444 if (sem_io != fast_sem_io)
1d5cfdb0 1445 ipc_free(sem_io);
1da177e4
LT
1446 return err;
1447}
1448
016d7132
PP
1449static inline unsigned long
1450copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1451{
239521f3 1452 switch (version) {
1da177e4 1453 case IPC_64:
016d7132 1454 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1455 return -EFAULT;
1da177e4 1456 return 0;
1da177e4
LT
1457 case IPC_OLD:
1458 {
1459 struct semid_ds tbuf_old;
1460
239521f3 1461 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1462 return -EFAULT;
1463
016d7132
PP
1464 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1465 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1466 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1467
1468 return 0;
1469 }
1470 default:
1471 return -EINVAL;
1472 }
1473}
1474
522bb2a2 1475/*
d9a605e4 1476 * This function handles some semctl commands which require the rwsem
522bb2a2 1477 * to be held in write mode.
d9a605e4 1478 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1479 */
21a4826a 1480static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1481 int cmd, int version, void __user *p)
1da177e4
LT
1482{
1483 struct sem_array *sma;
1484 int err;
016d7132 1485 struct semid64_ds semid64;
1da177e4
LT
1486 struct kern_ipc_perm *ipcp;
1487
239521f3 1488 if (cmd == IPC_SET) {
e1fd1f49 1489 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1490 return -EFAULT;
1da177e4 1491 }
073115d6 1492
d9a605e4 1493 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1494 rcu_read_lock();
1495
16df3674
DB
1496 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1497 &semid64.sem_perm, 0);
7b4cc5d8
DB
1498 if (IS_ERR(ipcp)) {
1499 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1500 goto out_unlock1;
1501 }
073115d6 1502
a5f75e7f 1503 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1504
1505 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1506 if (err)
1507 goto out_unlock1;
1da177e4 1508
7b4cc5d8 1509 switch (cmd) {
1da177e4 1510 case IPC_RMID:
6062a8dc 1511 sem_lock(sma, NULL, -1);
7b4cc5d8 1512 /* freeary unlocks the ipc object and rcu */
01b8b07a 1513 freeary(ns, ipcp);
522bb2a2 1514 goto out_up;
1da177e4 1515 case IPC_SET:
6062a8dc 1516 sem_lock(sma, NULL, -1);
1efdb69b
EB
1517 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1518 if (err)
7b4cc5d8 1519 goto out_unlock0;
1da177e4 1520 sma->sem_ctime = get_seconds();
1da177e4
LT
1521 break;
1522 default:
1da177e4 1523 err = -EINVAL;
7b4cc5d8 1524 goto out_unlock1;
1da177e4 1525 }
1da177e4 1526
7b4cc5d8 1527out_unlock0:
6062a8dc 1528 sem_unlock(sma, -1);
7b4cc5d8 1529out_unlock1:
6d49dab8 1530 rcu_read_unlock();
522bb2a2 1531out_up:
d9a605e4 1532 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1533 return err;
1534}
1535
e1fd1f49 1536SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1537{
1da177e4 1538 int version;
e3893534 1539 struct ipc_namespace *ns;
e1fd1f49 1540 void __user *p = (void __user *)arg;
1da177e4
LT
1541
1542 if (semid < 0)
1543 return -EINVAL;
1544
1545 version = ipc_parse_version(&cmd);
e3893534 1546 ns = current->nsproxy->ipc_ns;
1da177e4 1547
239521f3 1548 switch (cmd) {
1da177e4
LT
1549 case IPC_INFO:
1550 case SEM_INFO:
4b9fcb0e 1551 case IPC_STAT:
1da177e4 1552 case SEM_STAT:
e1fd1f49 1553 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1554 case GETALL:
1555 case GETVAL:
1556 case GETPID:
1557 case GETNCNT:
1558 case GETZCNT:
1da177e4 1559 case SETALL:
e1fd1f49
AV
1560 return semctl_main(ns, semid, semnum, cmd, p);
1561 case SETVAL:
1562 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1563 case IPC_RMID:
1564 case IPC_SET:
e1fd1f49 1565 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1566 default:
1567 return -EINVAL;
1568 }
1569}
1570
1da177e4
LT
1571/* If the task doesn't already have a undo_list, then allocate one
1572 * here. We guarantee there is only one thread using this undo list,
1573 * and current is THE ONE
1574 *
1575 * If this allocation and assignment succeeds, but later
1576 * portions of this code fail, there is no need to free the sem_undo_list.
1577 * Just let it stay associated with the task, and it'll be freed later
1578 * at exit time.
1579 *
1580 * This can block, so callers must hold no locks.
1581 */
1582static inline int get_undo_list(struct sem_undo_list **undo_listp)
1583{
1584 struct sem_undo_list *undo_list;
1da177e4
LT
1585
1586 undo_list = current->sysvsem.undo_list;
1587 if (!undo_list) {
2453a306 1588 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1589 if (undo_list == NULL)
1590 return -ENOMEM;
00a5dfdb 1591 spin_lock_init(&undo_list->lock);
1da177e4 1592 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1593 INIT_LIST_HEAD(&undo_list->list_proc);
1594
1da177e4
LT
1595 current->sysvsem.undo_list = undo_list;
1596 }
1597 *undo_listp = undo_list;
1598 return 0;
1599}
1600
bf17bb71 1601static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1602{
bf17bb71 1603 struct sem_undo *un;
4daa28f6 1604
bf17bb71
NP
1605 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1606 if (un->semid == semid)
1607 return un;
1da177e4 1608 }
4daa28f6 1609 return NULL;
1da177e4
LT
1610}
1611
bf17bb71
NP
1612static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1613{
1614 struct sem_undo *un;
1615
239521f3 1616 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1617
1618 un = __lookup_undo(ulp, semid);
1619 if (un) {
1620 list_del_rcu(&un->list_proc);
1621 list_add_rcu(&un->list_proc, &ulp->list_proc);
1622 }
1623 return un;
1624}
1625
4daa28f6 1626/**
8001c858 1627 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1628 * @ns: namespace
1629 * @semid: semaphore array id
1630 *
1631 * The function looks up (and if not present creates) the undo structure.
1632 * The size of the undo structure depends on the size of the semaphore
1633 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1634 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1635 * performs a rcu_read_lock().
4daa28f6
MS
1636 */
1637static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1638{
1639 struct sem_array *sma;
1640 struct sem_undo_list *ulp;
1641 struct sem_undo *un, *new;
6062a8dc 1642 int nsems, error;
1da177e4
LT
1643
1644 error = get_undo_list(&ulp);
1645 if (error)
1646 return ERR_PTR(error);
1647
380af1b3 1648 rcu_read_lock();
c530c6ac 1649 spin_lock(&ulp->lock);
1da177e4 1650 un = lookup_undo(ulp, semid);
c530c6ac 1651 spin_unlock(&ulp->lock);
239521f3 1652 if (likely(un != NULL))
1da177e4
LT
1653 goto out;
1654
1655 /* no undo structure around - allocate one. */
4daa28f6 1656 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1657 sma = sem_obtain_object_check(ns, semid);
1658 if (IS_ERR(sma)) {
1659 rcu_read_unlock();
4de85cd6 1660 return ERR_CAST(sma);
16df3674 1661 }
023a5355 1662
1da177e4 1663 nsems = sma->sem_nsems;
6062a8dc
RR
1664 if (!ipc_rcu_getref(sma)) {
1665 rcu_read_unlock();
1666 un = ERR_PTR(-EIDRM);
1667 goto out;
1668 }
16df3674 1669 rcu_read_unlock();
1da177e4 1670
4daa28f6 1671 /* step 2: allocate new undo structure */
4668edc3 1672 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1673 if (!new) {
9b24fef9 1674 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1675 return ERR_PTR(-ENOMEM);
1676 }
1da177e4 1677
380af1b3 1678 /* step 3: Acquire the lock on semaphore array */
4091fd94 1679 rcu_read_lock();
6ff37972 1680 sem_lock_and_putref(sma);
0f3d2b01 1681 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1682 sem_unlock(sma, -1);
6d49dab8 1683 rcu_read_unlock();
1da177e4
LT
1684 kfree(new);
1685 un = ERR_PTR(-EIDRM);
1686 goto out;
1687 }
380af1b3
MS
1688 spin_lock(&ulp->lock);
1689
1690 /*
1691 * step 4: check for races: did someone else allocate the undo struct?
1692 */
1693 un = lookup_undo(ulp, semid);
1694 if (un) {
1695 kfree(new);
1696 goto success;
1697 }
4daa28f6
MS
1698 /* step 5: initialize & link new undo structure */
1699 new->semadj = (short *) &new[1];
380af1b3 1700 new->ulp = ulp;
4daa28f6
MS
1701 new->semid = semid;
1702 assert_spin_locked(&ulp->lock);
380af1b3 1703 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1704 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1705 list_add(&new->list_id, &sma->list_id);
380af1b3 1706 un = new;
4daa28f6 1707
380af1b3 1708success:
c530c6ac 1709 spin_unlock(&ulp->lock);
6062a8dc 1710 sem_unlock(sma, -1);
1da177e4
LT
1711out:
1712 return un;
1713}
1714
d5460c99
HC
1715SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1716 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1717{
1718 int error = -EINVAL;
1719 struct sem_array *sma;
1720 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1721 struct sembuf *sops = fast_sops, *sop;
1da177e4 1722 struct sem_undo *un;
6062a8dc 1723 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1724 struct sem_queue queue;
1725 unsigned long jiffies_left = 0;
e3893534
KK
1726 struct ipc_namespace *ns;
1727
1728 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1729
1730 if (nsops < 1 || semid < 0)
1731 return -EINVAL;
e3893534 1732 if (nsops > ns->sc_semopm)
1da177e4 1733 return -E2BIG;
239521f3
MS
1734 if (nsops > SEMOPM_FAST) {
1735 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1736 if (sops == NULL)
1da177e4
LT
1737 return -ENOMEM;
1738 }
239521f3
MS
1739 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1740 error = -EFAULT;
1da177e4
LT
1741 goto out_free;
1742 }
1743 if (timeout) {
1744 struct timespec _timeout;
1745 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1746 error = -EFAULT;
1747 goto out_free;
1748 }
1749 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1750 _timeout.tv_nsec >= 1000000000L) {
1751 error = -EINVAL;
1752 goto out_free;
1753 }
1754 jiffies_left = timespec_to_jiffies(&_timeout);
1755 }
1756 max = 0;
1757 for (sop = sops; sop < sops + nsops; sop++) {
1758 if (sop->sem_num >= max)
1759 max = sop->sem_num;
1760 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1761 undos = 1;
1762 if (sop->sem_op != 0)
1da177e4
LT
1763 alter = 1;
1764 }
1da177e4 1765
6062a8dc 1766
1da177e4 1767 if (undos) {
6062a8dc 1768 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1769 un = find_alloc_undo(ns, semid);
1da177e4
LT
1770 if (IS_ERR(un)) {
1771 error = PTR_ERR(un);
1772 goto out_free;
1773 }
6062a8dc 1774 } else {
1da177e4 1775 un = NULL;
6062a8dc
RR
1776 rcu_read_lock();
1777 }
1da177e4 1778
16df3674 1779 sma = sem_obtain_object_check(ns, semid);
023a5355 1780 if (IS_ERR(sma)) {
6062a8dc 1781 rcu_read_unlock();
023a5355 1782 error = PTR_ERR(sma);
1da177e4 1783 goto out_free;
023a5355
ND
1784 }
1785
16df3674 1786 error = -EFBIG;
248e7357
DB
1787 if (max >= sma->sem_nsems) {
1788 rcu_read_unlock();
1789 goto out_free;
1790 }
16df3674
DB
1791
1792 error = -EACCES;
248e7357
DB
1793 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1794 rcu_read_unlock();
1795 goto out_free;
1796 }
16df3674
DB
1797
1798 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1799 if (error) {
1800 rcu_read_unlock();
1801 goto out_free;
1802 }
16df3674 1803
6e224f94
MS
1804 error = -EIDRM;
1805 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1806 /*
1807 * We eventually might perform the following check in a lockless
1808 * fashion, considering ipc_valid_object() locking constraints.
1809 * If nsops == 1 and there is no contention for sem_perm.lock, then
1810 * only a per-semaphore lock is held and it's OK to proceed with the
1811 * check below. More details on the fine grained locking scheme
1812 * entangled here and why it's RMID race safe on comments at sem_lock()
1813 */
1814 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1815 goto out_unlock_free;
1da177e4 1816 /*
4daa28f6 1817 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1818 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1819 * and now a new array with received the same id. Check and fail.
25985edc 1820 * This case can be detected checking un->semid. The existence of
380af1b3 1821 * "un" itself is guaranteed by rcu.
1da177e4 1822 */
6062a8dc
RR
1823 if (un && un->semid == -1)
1824 goto out_unlock_free;
4daa28f6 1825
d198cd6d
MS
1826 queue.sops = sops;
1827 queue.nsops = nsops;
1828 queue.undo = un;
1829 queue.pid = task_tgid_vnr(current);
1830 queue.alter = alter;
1831
1832 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1833 if (error == 0) { /* non-blocking succesfull path */
1834 DEFINE_WAKE_Q(wake_q);
1835
1836 /*
1837 * If the operation was successful, then do
0e8c6656
MS
1838 * the required updates.
1839 */
1840 if (alter)
9ae949fa 1841 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1842 else
1843 set_semotime(sma, sops);
9ae949fa
DB
1844
1845 sem_unlock(sma, locknum);
1846 rcu_read_unlock();
1847 wake_up_q(&wake_q);
1848
1849 goto out_free;
1da177e4 1850 }
9ae949fa 1851 if (error < 0) /* non-blocking error path */
0e8c6656 1852 goto out_unlock_free;
1da177e4 1853
9ae949fa
DB
1854 /*
1855 * We need to sleep on this operation, so we put the current
1da177e4
LT
1856 * task into the pending queue and go to sleep.
1857 */
b97e820f
MS
1858 if (nsops == 1) {
1859 struct sem *curr;
1860 curr = &sma->sem_base[sops->sem_num];
1861
f269f40a
MS
1862 if (alter) {
1863 if (sma->complex_count) {
1864 list_add_tail(&queue.list,
1865 &sma->pending_alter);
1866 } else {
1867
1868 list_add_tail(&queue.list,
1869 &curr->pending_alter);
1870 }
1871 } else {
1a82e9e1 1872 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1873 }
b97e820f 1874 } else {
f269f40a
MS
1875 if (!sma->complex_count)
1876 merge_queues(sma);
1877
9f1bc2c9 1878 if (alter)
1a82e9e1 1879 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1880 else
1a82e9e1
MS
1881 list_add_tail(&queue.list, &sma->pending_const);
1882
b97e820f
MS
1883 sma->complex_count++;
1884 }
1885
9ae949fa 1886sleep_again:
1da177e4
LT
1887 queue.status = -EINTR;
1888 queue.sleeper = current;
0b0577f6 1889
52644c9a 1890 __set_current_state(TASK_INTERRUPTIBLE);
6062a8dc 1891 sem_unlock(sma, locknum);
6d49dab8 1892 rcu_read_unlock();
1da177e4
LT
1893
1894 if (timeout)
1895 jiffies_left = schedule_timeout(jiffies_left);
1896 else
1897 schedule();
1898
9ae949fa
DB
1899 /*
1900 * fastpath: the semop has completed, either successfully or not, from
1901 * the syscall pov, is quite irrelevant to us at this point; we're done.
1902 *
1903 * We _do_ care, nonetheless, about being awoken by a signal or
1904 * spuriously. The queue.status is checked again in the slowpath (aka
1905 * after taking sem_lock), such that we can detect scenarios where we
1906 * were awakened externally, during the window between wake_q_add() and
1907 * wake_up_q().
1908 */
1909 error = READ_ONCE(queue.status);
1da177e4 1910 if (error != -EINTR) {
9ae949fa
DB
1911 /*
1912 * User space could assume that semop() is a memory barrier:
1913 * Without the mb(), the cpu could speculatively read in user
1914 * space stale data that was overwritten by the previous owner
1915 * of the semaphore.
c61284e9
MS
1916 */
1917 smp_mb();
1da177e4
LT
1918 goto out_free;
1919 }
1920
321310ce 1921 rcu_read_lock();
6062a8dc 1922 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
9ae949fa 1923 error = READ_ONCE(queue.status);
d694ad62
MS
1924
1925 /*
1926 * Array removed? If yes, leave without sem_unlock().
1927 */
023a5355 1928 if (IS_ERR(sma)) {
321310ce 1929 rcu_read_unlock();
1da177e4
LT
1930 goto out_free;
1931 }
1932
1933 /*
d694ad62
MS
1934 * If queue.status != -EINTR we are woken up by another process.
1935 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1936 */
3ab08fe2 1937 if (error != -EINTR)
1da177e4 1938 goto out_unlock_free;
1da177e4
LT
1939
1940 /*
9ae949fa 1941 * If an interrupt occurred we have to clean up the queue.
1da177e4
LT
1942 */
1943 if (timeout && jiffies_left == 0)
1944 error = -EAGAIN;
0b0577f6
MS
1945
1946 /*
9ae949fa 1947 * If the wakeup was spurious, just retry.
0b0577f6
MS
1948 */
1949 if (error == -EINTR && !signal_pending(current))
1950 goto sleep_again;
1951
b97e820f 1952 unlink_queue(sma, &queue);
1da177e4
LT
1953
1954out_unlock_free:
6062a8dc 1955 sem_unlock(sma, locknum);
6d49dab8 1956 rcu_read_unlock();
1da177e4 1957out_free:
239521f3 1958 if (sops != fast_sops)
1da177e4
LT
1959 kfree(sops);
1960 return error;
1961}
1962
d5460c99
HC
1963SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1964 unsigned, nsops)
1da177e4
LT
1965{
1966 return sys_semtimedop(semid, tsops, nsops, NULL);
1967}
1968
1969/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1970 * parent and child tasks.
1da177e4
LT
1971 */
1972
1973int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1974{
1975 struct sem_undo_list *undo_list;
1976 int error;
1977
1978 if (clone_flags & CLONE_SYSVSEM) {
1979 error = get_undo_list(&undo_list);
1980 if (error)
1981 return error;
1da177e4
LT
1982 atomic_inc(&undo_list->refcnt);
1983 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 1984 } else
1da177e4
LT
1985 tsk->sysvsem.undo_list = NULL;
1986
1987 return 0;
1988}
1989
1990/*
1991 * add semadj values to semaphores, free undo structures.
1992 * undo structures are not freed when semaphore arrays are destroyed
1993 * so some of them may be out of date.
1994 * IMPLEMENTATION NOTE: There is some confusion over whether the
1995 * set of adjustments that needs to be done should be done in an atomic
1996 * manner or not. That is, if we are attempting to decrement the semval
1997 * should we queue up and wait until we can do so legally?
1998 * The original implementation attempted to do this (queue and wait).
1999 * The current implementation does not do so. The POSIX standard
2000 * and SVID should be consulted to determine what behavior is mandated.
2001 */
2002void exit_sem(struct task_struct *tsk)
2003{
4daa28f6 2004 struct sem_undo_list *ulp;
1da177e4 2005
4daa28f6
MS
2006 ulp = tsk->sysvsem.undo_list;
2007 if (!ulp)
1da177e4 2008 return;
9edff4ab 2009 tsk->sysvsem.undo_list = NULL;
1da177e4 2010
4daa28f6 2011 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2012 return;
2013
380af1b3 2014 for (;;) {
1da177e4 2015 struct sem_array *sma;
380af1b3 2016 struct sem_undo *un;
6062a8dc 2017 int semid, i;
9ae949fa 2018 DEFINE_WAKE_Q(wake_q);
4daa28f6 2019
2a1613a5
NB
2020 cond_resched();
2021
380af1b3 2022 rcu_read_lock();
05725f7e
JP
2023 un = list_entry_rcu(ulp->list_proc.next,
2024 struct sem_undo, list_proc);
602b8593
HK
2025 if (&un->list_proc == &ulp->list_proc) {
2026 /*
2027 * We must wait for freeary() before freeing this ulp,
2028 * in case we raced with last sem_undo. There is a small
2029 * possibility where we exit while freeary() didn't
2030 * finish unlocking sem_undo_list.
2031 */
2032 spin_unlock_wait(&ulp->lock);
2033 rcu_read_unlock();
2034 break;
2035 }
2036 spin_lock(&ulp->lock);
2037 semid = un->semid;
2038 spin_unlock(&ulp->lock);
4daa28f6 2039
602b8593 2040 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2041 if (semid == -1) {
2042 rcu_read_unlock();
602b8593 2043 continue;
6062a8dc 2044 }
1da177e4 2045
602b8593 2046 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2047 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2048 if (IS_ERR(sma)) {
2049 rcu_read_unlock();
380af1b3 2050 continue;
6062a8dc 2051 }
1da177e4 2052
6062a8dc 2053 sem_lock(sma, NULL, -1);
6e224f94 2054 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2055 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2056 sem_unlock(sma, -1);
2057 rcu_read_unlock();
2058 continue;
2059 }
bf17bb71 2060 un = __lookup_undo(ulp, semid);
380af1b3
MS
2061 if (un == NULL) {
2062 /* exit_sem raced with IPC_RMID+semget() that created
2063 * exactly the same semid. Nothing to do.
2064 */
6062a8dc 2065 sem_unlock(sma, -1);
6d49dab8 2066 rcu_read_unlock();
380af1b3
MS
2067 continue;
2068 }
2069
2070 /* remove un from the linked lists */
cf9d5d78 2071 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2072 list_del(&un->list_id);
2073
a9795584
HK
2074 /* we are the last process using this ulp, acquiring ulp->lock
2075 * isn't required. Besides that, we are also protected against
2076 * IPC_RMID as we hold sma->sem_perm lock now
2077 */
380af1b3 2078 list_del_rcu(&un->list_proc);
380af1b3 2079
4daa28f6
MS
2080 /* perform adjustments registered in un */
2081 for (i = 0; i < sma->sem_nsems; i++) {
239521f3 2082 struct sem *semaphore = &sma->sem_base[i];
4daa28f6
MS
2083 if (un->semadj[i]) {
2084 semaphore->semval += un->semadj[i];
1da177e4
LT
2085 /*
2086 * Range checks of the new semaphore value,
2087 * not defined by sus:
2088 * - Some unices ignore the undo entirely
2089 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2090 * - some cap the value (e.g. FreeBSD caps
2091 * at 0, but doesn't enforce SEMVMX)
2092 *
2093 * Linux caps the semaphore value, both at 0
2094 * and at SEMVMX.
2095 *
239521f3 2096 * Manfred <manfred@colorfullife.com>
1da177e4 2097 */
5f921ae9
IM
2098 if (semaphore->semval < 0)
2099 semaphore->semval = 0;
2100 if (semaphore->semval > SEMVMX)
2101 semaphore->semval = SEMVMX;
b488893a 2102 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2103 }
2104 }
1da177e4 2105 /* maybe some queued-up processes were waiting for this */
9ae949fa 2106 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2107 sem_unlock(sma, -1);
6d49dab8 2108 rcu_read_unlock();
9ae949fa 2109 wake_up_q(&wake_q);
380af1b3 2110
693a8b6e 2111 kfree_rcu(un, rcu);
1da177e4 2112 }
4daa28f6 2113 kfree(ulp);
1da177e4
LT
2114}
2115
2116#ifdef CONFIG_PROC_FS
19b4946c 2117static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2118{
1efdb69b 2119 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2120 struct sem_array *sma = it;
d12e1e50
MS
2121 time_t sem_otime;
2122
d8c63376
MS
2123 /*
2124 * The proc interface isn't aware of sem_lock(), it calls
2125 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2126 * In order to stay compatible with sem_lock(), we must
2127 * enter / leave complex_mode.
d8c63376 2128 */
5864a2fd 2129 complexmode_enter(sma);
d8c63376 2130
d12e1e50 2131 sem_otime = get_semotime(sma);
19b4946c 2132
7f032d6e
JP
2133 seq_printf(s,
2134 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2135 sma->sem_perm.key,
2136 sma->sem_perm.id,
2137 sma->sem_perm.mode,
2138 sma->sem_nsems,
2139 from_kuid_munged(user_ns, sma->sem_perm.uid),
2140 from_kgid_munged(user_ns, sma->sem_perm.gid),
2141 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2142 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2143 sem_otime,
2144 sma->sem_ctime);
2145
5864a2fd
MS
2146 complexmode_tryleave(sma);
2147
7f032d6e 2148 return 0;
1da177e4
LT
2149}
2150#endif