ipc/sem.c: fix race in sem_lock()
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
d12e1e50 102 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4
LT
190
191void __init sem_init (void)
192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
5e9d5275
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 */
261static void sem_wait_array(struct sem_array *sma)
262{
263 int i;
264 struct sem *sem;
265
266 for (i = 0; i < sma->sem_nsems; i++) {
267 sem = sma->sem_base + i;
268 spin_unlock_wait(&sem->lock);
269 }
270}
271
6062a8dc
RR
272/*
273 * If the request contains only one semaphore operation, and there are
274 * no complex transactions pending, lock only the semaphore involved.
275 * Otherwise, lock the entire semaphore array, since we either have
276 * multiple semaphores in our own semops, or we need to look at
277 * semaphores from other pending complex operations.
6062a8dc
RR
278 */
279static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
280 int nsops)
281{
5e9d5275 282 struct sem *sem;
6062a8dc 283
5e9d5275
MS
284 if (nsops != 1) {
285 /* Complex operation - acquire a full lock */
286 ipc_lock_object(&sma->sem_perm);
6062a8dc 287
5e9d5275
MS
288 /* And wait until all simple ops that are processed
289 * right now have dropped their locks.
6062a8dc 290 */
5e9d5275
MS
291 sem_wait_array(sma);
292 return -1;
293 }
294
295 /*
296 * Only one semaphore affected - try to optimize locking.
297 * The rules are:
298 * - optimized locking is possible if no complex operation
299 * is either enqueued or processed right now.
300 * - The test for enqueued complex ops is simple:
301 * sma->complex_count != 0
302 * - Testing for complex ops that are processed right now is
303 * a bit more difficult. Complex ops acquire the full lock
304 * and first wait that the running simple ops have completed.
305 * (see above)
306 * Thus: If we own a simple lock and the global lock is free
307 * and complex_count is now 0, then it will stay 0 and
308 * thus just locking sem->lock is sufficient.
309 */
310 sem = sma->sem_base + sops->sem_num;
6062a8dc 311
5e9d5275 312 if (sma->complex_count == 0) {
6062a8dc 313 /*
5e9d5275
MS
314 * It appears that no complex operation is around.
315 * Acquire the per-semaphore lock.
6062a8dc 316 */
5e9d5275
MS
317 spin_lock(&sem->lock);
318
319 /* Then check that the global lock is free */
320 if (!spin_is_locked(&sma->sem_perm.lock)) {
321 /* spin_is_locked() is not a memory barrier */
322 smp_mb();
323
324 /* Now repeat the test of complex_count:
325 * It can't change anymore until we drop sem->lock.
326 * Thus: if is now 0, then it will stay 0.
327 */
328 if (sma->complex_count == 0) {
329 /* fast path successful! */
330 return sops->sem_num;
331 }
6062a8dc 332 }
5e9d5275
MS
333 spin_unlock(&sem->lock);
334 }
335
336 /* slow path: acquire the full lock */
337 ipc_lock_object(&sma->sem_perm);
6062a8dc 338
5e9d5275
MS
339 if (sma->complex_count == 0) {
340 /* False alarm:
341 * There is no complex operation, thus we can switch
342 * back to the fast path.
343 */
344 spin_lock(&sem->lock);
345 ipc_unlock_object(&sma->sem_perm);
346 return sops->sem_num;
6062a8dc 347 } else {
5e9d5275
MS
348 /* Not a false alarm, thus complete the sequence for a
349 * full lock.
6062a8dc 350 */
5e9d5275
MS
351 sem_wait_array(sma);
352 return -1;
6062a8dc 353 }
6062a8dc
RR
354}
355
356static inline void sem_unlock(struct sem_array *sma, int locknum)
357{
358 if (locknum == -1) {
f269f40a 359 unmerge_queues(sma);
cf9d5d78 360 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
361 } else {
362 struct sem *sem = sma->sem_base + locknum;
363 spin_unlock(&sem->lock);
364 }
6062a8dc
RR
365}
366
3e148c79 367/*
d9a605e4 368 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 369 * is not held.
321310ce
LT
370 *
371 * The caller holds the RCU read lock.
3e148c79 372 */
6062a8dc
RR
373static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
374 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 375{
c460b662
RR
376 struct kern_ipc_perm *ipcp;
377 struct sem_array *sma;
03f02c76 378
c460b662 379 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
380 if (IS_ERR(ipcp))
381 return ERR_CAST(ipcp);
b1ed88b4 382
6062a8dc
RR
383 sma = container_of(ipcp, struct sem_array, sem_perm);
384 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
385
386 /* ipc_rmid() may have already freed the ID while sem_lock
387 * was spinning: verify that the structure is still valid
388 */
389 if (!ipcp->deleted)
390 return container_of(ipcp, struct sem_array, sem_perm);
391
6062a8dc 392 sem_unlock(sma, *locknum);
321310ce 393 return ERR_PTR(-EINVAL);
023a5355
ND
394}
395
16df3674
DB
396static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
397{
398 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
399
400 if (IS_ERR(ipcp))
401 return ERR_CAST(ipcp);
402
403 return container_of(ipcp, struct sem_array, sem_perm);
404}
405
16df3674
DB
406static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
407 int id)
408{
409 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
410
411 if (IS_ERR(ipcp))
412 return ERR_CAST(ipcp);
b1ed88b4 413
03f02c76 414 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
415}
416
6ff37972
PP
417static inline void sem_lock_and_putref(struct sem_array *sma)
418{
6062a8dc 419 sem_lock(sma, NULL, -1);
53dad6d3 420 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
421}
422
7ca7e564
ND
423static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
424{
425 ipc_rmid(&sem_ids(ns), &s->sem_perm);
426}
427
1da177e4
LT
428/*
429 * Lockless wakeup algorithm:
430 * Without the check/retry algorithm a lockless wakeup is possible:
431 * - queue.status is initialized to -EINTR before blocking.
432 * - wakeup is performed by
1a82e9e1 433 * * unlinking the queue entry from the pending list
1da177e4
LT
434 * * setting queue.status to IN_WAKEUP
435 * This is the notification for the blocked thread that a
436 * result value is imminent.
437 * * call wake_up_process
438 * * set queue.status to the final value.
439 * - the previously blocked thread checks queue.status:
440 * * if it's IN_WAKEUP, then it must wait until the value changes
441 * * if it's not -EINTR, then the operation was completed by
442 * update_queue. semtimedop can return queue.status without
5f921ae9 443 * performing any operation on the sem array.
1da177e4
LT
444 * * otherwise it must acquire the spinlock and check what's up.
445 *
446 * The two-stage algorithm is necessary to protect against the following
447 * races:
448 * - if queue.status is set after wake_up_process, then the woken up idle
449 * thread could race forward and try (and fail) to acquire sma->lock
450 * before update_queue had a chance to set queue.status
451 * - if queue.status is written before wake_up_process and if the
452 * blocked process is woken up by a signal between writing
453 * queue.status and the wake_up_process, then the woken up
454 * process could return from semtimedop and die by calling
455 * sys_exit before wake_up_process is called. Then wake_up_process
456 * will oops, because the task structure is already invalid.
457 * (yes, this happened on s390 with sysv msg).
458 *
459 */
460#define IN_WAKEUP 1
461
f4566f04
ND
462/**
463 * newary - Create a new semaphore set
464 * @ns: namespace
465 * @params: ptr to the structure that contains key, semflg and nsems
466 *
d9a605e4 467 * Called with sem_ids.rwsem held (as a writer)
f4566f04
ND
468 */
469
7748dbfa 470static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
471{
472 int id;
473 int retval;
474 struct sem_array *sma;
475 int size;
7748dbfa
ND
476 key_t key = params->key;
477 int nsems = params->u.nsems;
478 int semflg = params->flg;
b97e820f 479 int i;
1da177e4
LT
480
481 if (!nsems)
482 return -EINVAL;
e3893534 483 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
484 return -ENOSPC;
485
486 size = sizeof (*sma) + nsems * sizeof (struct sem);
487 sma = ipc_rcu_alloc(size);
488 if (!sma) {
489 return -ENOMEM;
490 }
491 memset (sma, 0, size);
492
493 sma->sem_perm.mode = (semflg & S_IRWXUGO);
494 sma->sem_perm.key = key;
495
496 sma->sem_perm.security = NULL;
497 retval = security_sem_alloc(sma);
498 if (retval) {
53dad6d3 499 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
500 return retval;
501 }
502
e3893534 503 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 504 if (id < 0) {
53dad6d3 505 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 506 return id;
1da177e4 507 }
e3893534 508 ns->used_sems += nsems;
1da177e4
LT
509
510 sma->sem_base = (struct sem *) &sma[1];
b97e820f 511
6062a8dc 512 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
513 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
514 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
515 spin_lock_init(&sma->sem_base[i].lock);
516 }
b97e820f
MS
517
518 sma->complex_count = 0;
1a82e9e1
MS
519 INIT_LIST_HEAD(&sma->pending_alter);
520 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 521 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
522 sma->sem_nsems = nsems;
523 sma->sem_ctime = get_seconds();
6062a8dc 524 sem_unlock(sma, -1);
6d49dab8 525 rcu_read_unlock();
1da177e4 526
7ca7e564 527 return sma->sem_perm.id;
1da177e4
LT
528}
529
7748dbfa 530
f4566f04 531/*
d9a605e4 532 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 533 */
03f02c76 534static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 535{
03f02c76
ND
536 struct sem_array *sma;
537
538 sma = container_of(ipcp, struct sem_array, sem_perm);
539 return security_sem_associate(sma, semflg);
7748dbfa
ND
540}
541
f4566f04 542/*
d9a605e4 543 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 544 */
03f02c76
ND
545static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
546 struct ipc_params *params)
7748dbfa 547{
03f02c76
ND
548 struct sem_array *sma;
549
550 sma = container_of(ipcp, struct sem_array, sem_perm);
551 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
552 return -EINVAL;
553
554 return 0;
555}
556
d5460c99 557SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 558{
e3893534 559 struct ipc_namespace *ns;
7748dbfa
ND
560 struct ipc_ops sem_ops;
561 struct ipc_params sem_params;
e3893534
KK
562
563 ns = current->nsproxy->ipc_ns;
1da177e4 564
e3893534 565 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 566 return -EINVAL;
7ca7e564 567
7748dbfa
ND
568 sem_ops.getnew = newary;
569 sem_ops.associate = sem_security;
570 sem_ops.more_checks = sem_more_checks;
571
572 sem_params.key = key;
573 sem_params.flg = semflg;
574 sem_params.u.nsems = nsems;
1da177e4 575
7748dbfa 576 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
577}
578
758a6ba3
MS
579/** perform_atomic_semop - Perform (if possible) a semaphore operation
580 * @sma: semaphore array
581 * @sops: array with operations that should be checked
582 * @nsems: number of sops
583 * @un: undo array
584 * @pid: pid that did the change
585 *
586 * Returns 0 if the operation was possible.
587 * Returns 1 if the operation is impossible, the caller must sleep.
588 * Negative values are error codes.
1da177e4
LT
589 */
590
758a6ba3 591static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
592 int nsops, struct sem_undo *un, int pid)
593{
594 int result, sem_op;
595 struct sembuf *sop;
596 struct sem * curr;
597
598 for (sop = sops; sop < sops + nsops; sop++) {
599 curr = sma->sem_base + sop->sem_num;
600 sem_op = sop->sem_op;
601 result = curr->semval;
602
603 if (!sem_op && result)
604 goto would_block;
605
606 result += sem_op;
607 if (result < 0)
608 goto would_block;
609 if (result > SEMVMX)
610 goto out_of_range;
611 if (sop->sem_flg & SEM_UNDO) {
612 int undo = un->semadj[sop->sem_num] - sem_op;
613 /*
614 * Exceeding the undo range is an error.
615 */
616 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
617 goto out_of_range;
618 }
619 curr->semval = result;
620 }
621
622 sop--;
623 while (sop >= sops) {
624 sma->sem_base[sop->sem_num].sempid = pid;
625 if (sop->sem_flg & SEM_UNDO)
626 un->semadj[sop->sem_num] -= sop->sem_op;
627 sop--;
628 }
629
1da177e4
LT
630 return 0;
631
632out_of_range:
633 result = -ERANGE;
634 goto undo;
635
636would_block:
637 if (sop->sem_flg & IPC_NOWAIT)
638 result = -EAGAIN;
639 else
640 result = 1;
641
642undo:
643 sop--;
644 while (sop >= sops) {
645 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
646 sop--;
647 }
648
649 return result;
650}
651
0a2b9d4c
MS
652/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
653 * @q: queue entry that must be signaled
654 * @error: Error value for the signal
655 *
656 * Prepare the wake-up of the queue entry q.
d4212093 657 */
0a2b9d4c
MS
658static void wake_up_sem_queue_prepare(struct list_head *pt,
659 struct sem_queue *q, int error)
d4212093 660{
0a2b9d4c
MS
661 if (list_empty(pt)) {
662 /*
663 * Hold preempt off so that we don't get preempted and have the
664 * wakee busy-wait until we're scheduled back on.
665 */
666 preempt_disable();
667 }
d4212093 668 q->status = IN_WAKEUP;
0a2b9d4c
MS
669 q->pid = error;
670
9f1bc2c9 671 list_add_tail(&q->list, pt);
0a2b9d4c
MS
672}
673
674/**
675 * wake_up_sem_queue_do(pt) - do the actual wake-up
676 * @pt: list of tasks to be woken up
677 *
678 * Do the actual wake-up.
679 * The function is called without any locks held, thus the semaphore array
680 * could be destroyed already and the tasks can disappear as soon as the
681 * status is set to the actual return code.
682 */
683static void wake_up_sem_queue_do(struct list_head *pt)
684{
685 struct sem_queue *q, *t;
686 int did_something;
687
688 did_something = !list_empty(pt);
9f1bc2c9 689 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
690 wake_up_process(q->sleeper);
691 /* q can disappear immediately after writing q->status. */
692 smp_wmb();
693 q->status = q->pid;
694 }
695 if (did_something)
696 preempt_enable();
d4212093
NP
697}
698
b97e820f
MS
699static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
700{
701 list_del(&q->list);
9f1bc2c9 702 if (q->nsops > 1)
b97e820f
MS
703 sma->complex_count--;
704}
705
fd5db422
MS
706/** check_restart(sma, q)
707 * @sma: semaphore array
708 * @q: the operation that just completed
709 *
710 * update_queue is O(N^2) when it restarts scanning the whole queue of
711 * waiting operations. Therefore this function checks if the restart is
712 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
713 * modified the array.
714 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
715 */
716static int check_restart(struct sem_array *sma, struct sem_queue *q)
717{
1a82e9e1
MS
718 /* pending complex alter operations are too difficult to analyse */
719 if (!list_empty(&sma->pending_alter))
fd5db422
MS
720 return 1;
721
722 /* we were a sleeping complex operation. Too difficult */
723 if (q->nsops > 1)
724 return 1;
725
1a82e9e1
MS
726 /* It is impossible that someone waits for the new value:
727 * - complex operations always restart.
728 * - wait-for-zero are handled seperately.
729 * - q is a previously sleeping simple operation that
730 * altered the array. It must be a decrement, because
731 * simple increments never sleep.
732 * - If there are older (higher priority) decrements
733 * in the queue, then they have observed the original
734 * semval value and couldn't proceed. The operation
735 * decremented to value - thus they won't proceed either.
736 */
737 return 0;
738}
fd5db422 739
1a82e9e1
MS
740/**
741 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
742 * @sma: semaphore array.
743 * @semnum: semaphore that was modified.
744 * @pt: list head for the tasks that must be woken up.
745 *
746 * wake_const_ops must be called after a semaphore in a semaphore array
747 * was set to 0. If complex const operations are pending, wake_const_ops must
748 * be called with semnum = -1, as well as with the number of each modified
749 * semaphore.
750 * The tasks that must be woken up are added to @pt. The return code
751 * is stored in q->pid.
752 * The function returns 1 if at least one operation was completed successfully.
753 */
754static int wake_const_ops(struct sem_array *sma, int semnum,
755 struct list_head *pt)
756{
757 struct sem_queue *q;
758 struct list_head *walk;
759 struct list_head *pending_list;
760 int semop_completed = 0;
761
762 if (semnum == -1)
763 pending_list = &sma->pending_const;
764 else
765 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 766
1a82e9e1
MS
767 walk = pending_list->next;
768 while (walk != pending_list) {
769 int error;
770
771 q = container_of(walk, struct sem_queue, list);
772 walk = walk->next;
773
758a6ba3
MS
774 error = perform_atomic_semop(sma, q->sops, q->nsops,
775 q->undo, q->pid);
1a82e9e1
MS
776
777 if (error <= 0) {
778 /* operation completed, remove from queue & wakeup */
779
780 unlink_queue(sma, q);
781
782 wake_up_sem_queue_prepare(pt, q, error);
783 if (error == 0)
784 semop_completed = 1;
785 }
786 }
787 return semop_completed;
788}
789
790/**
791 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
792 * @sma: semaphore array
793 * @sops: operations that were performed
794 * @nsops: number of operations
795 * @pt: list head of the tasks that must be woken up.
796 *
797 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
798 * operations, based on the actual changes that were performed on the
799 * semaphore array.
800 * The function returns 1 if at least one operation was completed successfully.
801 */
802static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
803 int nsops, struct list_head *pt)
804{
805 int i;
806 int semop_completed = 0;
807 int got_zero = 0;
808
809 /* first: the per-semaphore queues, if known */
810 if (sops) {
811 for (i = 0; i < nsops; i++) {
812 int num = sops[i].sem_num;
813
814 if (sma->sem_base[num].semval == 0) {
815 got_zero = 1;
816 semop_completed |= wake_const_ops(sma, num, pt);
817 }
818 }
819 } else {
820 /*
821 * No sops means modified semaphores not known.
822 * Assume all were changed.
fd5db422 823 */
1a82e9e1
MS
824 for (i = 0; i < sma->sem_nsems; i++) {
825 if (sma->sem_base[i].semval == 0) {
826 got_zero = 1;
827 semop_completed |= wake_const_ops(sma, i, pt);
828 }
829 }
fd5db422
MS
830 }
831 /*
1a82e9e1
MS
832 * If one of the modified semaphores got 0,
833 * then check the global queue, too.
fd5db422 834 */
1a82e9e1
MS
835 if (got_zero)
836 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 837
1a82e9e1 838 return semop_completed;
fd5db422
MS
839}
840
636c6be8
MS
841
842/**
843 * update_queue(sma, semnum): Look for tasks that can be completed.
844 * @sma: semaphore array.
845 * @semnum: semaphore that was modified.
0a2b9d4c 846 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
847 *
848 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
849 * was modified. If multiple semaphores were modified, update_queue must
850 * be called with semnum = -1, as well as with the number of each modified
851 * semaphore.
0a2b9d4c
MS
852 * The tasks that must be woken up are added to @pt. The return code
853 * is stored in q->pid.
1a82e9e1
MS
854 * The function internally checks if const operations can now succeed.
855 *
0a2b9d4c 856 * The function return 1 if at least one semop was completed successfully.
1da177e4 857 */
0a2b9d4c 858static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 859{
636c6be8
MS
860 struct sem_queue *q;
861 struct list_head *walk;
862 struct list_head *pending_list;
0a2b9d4c 863 int semop_completed = 0;
636c6be8 864
9f1bc2c9 865 if (semnum == -1)
1a82e9e1 866 pending_list = &sma->pending_alter;
9f1bc2c9 867 else
1a82e9e1 868 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
869
870again:
636c6be8
MS
871 walk = pending_list->next;
872 while (walk != pending_list) {
fd5db422 873 int error, restart;
636c6be8 874
9f1bc2c9 875 q = container_of(walk, struct sem_queue, list);
636c6be8 876 walk = walk->next;
1da177e4 877
d987f8b2
MS
878 /* If we are scanning the single sop, per-semaphore list of
879 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 880 * necessary to scan further: simple increments
d987f8b2
MS
881 * that affect only one entry succeed immediately and cannot
882 * be in the per semaphore pending queue, and decrements
883 * cannot be successful if the value is already 0.
884 */
1a82e9e1 885 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
886 break;
887
758a6ba3 888 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
889 q->undo, q->pid);
890
891 /* Does q->sleeper still need to sleep? */
9cad200c
NP
892 if (error > 0)
893 continue;
894
b97e820f 895 unlink_queue(sma, q);
9cad200c 896
0a2b9d4c 897 if (error) {
fd5db422 898 restart = 0;
0a2b9d4c
MS
899 } else {
900 semop_completed = 1;
1a82e9e1 901 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 902 restart = check_restart(sma, q);
0a2b9d4c 903 }
fd5db422 904
0a2b9d4c 905 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 906 if (restart)
9cad200c 907 goto again;
1da177e4 908 }
0a2b9d4c 909 return semop_completed;
1da177e4
LT
910}
911
0a2b9d4c
MS
912/**
913 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
914 * @sma: semaphore array
915 * @sops: operations that were performed
916 * @nsops: number of operations
0a2b9d4c
MS
917 * @otime: force setting otime
918 * @pt: list head of the tasks that must be woken up.
fd5db422 919 *
1a82e9e1
MS
920 * do_smart_update() does the required calls to update_queue and wakeup_zero,
921 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
922 * Note that the function does not do the actual wake-up: the caller is
923 * responsible for calling wake_up_sem_queue_do(@pt).
924 * It is safe to perform this call after dropping all locks.
fd5db422 925 */
0a2b9d4c
MS
926static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
927 int otime, struct list_head *pt)
fd5db422
MS
928{
929 int i;
930
1a82e9e1
MS
931 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
932
f269f40a
MS
933 if (!list_empty(&sma->pending_alter)) {
934 /* semaphore array uses the global queue - just process it. */
935 otime |= update_queue(sma, -1, pt);
936 } else {
937 if (!sops) {
938 /*
939 * No sops, thus the modified semaphores are not
940 * known. Check all.
941 */
942 for (i = 0; i < sma->sem_nsems; i++)
943 otime |= update_queue(sma, i, pt);
944 } else {
945 /*
946 * Check the semaphores that were increased:
947 * - No complex ops, thus all sleeping ops are
948 * decrease.
949 * - if we decreased the value, then any sleeping
950 * semaphore ops wont be able to run: If the
951 * previous value was too small, then the new
952 * value will be too small, too.
953 */
954 for (i = 0; i < nsops; i++) {
955 if (sops[i].sem_op > 0) {
956 otime |= update_queue(sma,
957 sops[i].sem_num, pt);
958 }
ab465df9 959 }
9f1bc2c9 960 }
fd5db422 961 }
d12e1e50
MS
962 if (otime) {
963 if (sops == NULL) {
964 sma->sem_base[0].sem_otime = get_seconds();
965 } else {
966 sma->sem_base[sops[0].sem_num].sem_otime =
967 get_seconds();
968 }
969 }
fd5db422
MS
970}
971
972
1da177e4
LT
973/* The following counts are associated to each semaphore:
974 * semncnt number of tasks waiting on semval being nonzero
975 * semzcnt number of tasks waiting on semval being zero
976 * This model assumes that a task waits on exactly one semaphore.
977 * Since semaphore operations are to be performed atomically, tasks actually
978 * wait on a whole sequence of semaphores simultaneously.
979 * The counts we return here are a rough approximation, but still
980 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
981 */
982static int count_semncnt (struct sem_array * sma, ushort semnum)
983{
984 int semncnt;
985 struct sem_queue * q;
986
987 semncnt = 0;
1a82e9e1 988 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
de2657f9
RR
989 struct sembuf * sops = q->sops;
990 BUG_ON(sops->sem_num != semnum);
991 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
992 semncnt++;
993 }
994
1a82e9e1 995 list_for_each_entry(q, &sma->pending_alter, list) {
1da177e4
LT
996 struct sembuf * sops = q->sops;
997 int nsops = q->nsops;
998 int i;
999 for (i = 0; i < nsops; i++)
1000 if (sops[i].sem_num == semnum
1001 && (sops[i].sem_op < 0)
1002 && !(sops[i].sem_flg & IPC_NOWAIT))
1003 semncnt++;
1004 }
1005 return semncnt;
1006}
a1193f8e 1007
1da177e4
LT
1008static int count_semzcnt (struct sem_array * sma, ushort semnum)
1009{
1010 int semzcnt;
1011 struct sem_queue * q;
1012
1013 semzcnt = 0;
1a82e9e1 1014 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
ebc2e5e6
RR
1015 struct sembuf * sops = q->sops;
1016 BUG_ON(sops->sem_num != semnum);
1017 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1018 semzcnt++;
1019 }
1020
1a82e9e1 1021 list_for_each_entry(q, &sma->pending_const, list) {
1da177e4
LT
1022 struct sembuf * sops = q->sops;
1023 int nsops = q->nsops;
1024 int i;
1025 for (i = 0; i < nsops; i++)
1026 if (sops[i].sem_num == semnum
1027 && (sops[i].sem_op == 0)
1028 && !(sops[i].sem_flg & IPC_NOWAIT))
1029 semzcnt++;
1030 }
1031 return semzcnt;
1032}
1033
d9a605e4
DB
1034/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1035 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1036 * remains locked on exit.
1da177e4 1037 */
01b8b07a 1038static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1039{
380af1b3
MS
1040 struct sem_undo *un, *tu;
1041 struct sem_queue *q, *tq;
01b8b07a 1042 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1043 struct list_head tasks;
9f1bc2c9 1044 int i;
1da177e4 1045
380af1b3 1046 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1047 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1048 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1049 list_del(&un->list_id);
1050 spin_lock(&un->ulp->lock);
1da177e4 1051 un->semid = -1;
380af1b3
MS
1052 list_del_rcu(&un->list_proc);
1053 spin_unlock(&un->ulp->lock);
693a8b6e 1054 kfree_rcu(un, rcu);
380af1b3 1055 }
1da177e4
LT
1056
1057 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1058 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1059 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1060 unlink_queue(sma, q);
1061 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1062 }
1063
1064 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1065 unlink_queue(sma, q);
0a2b9d4c 1066 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1067 }
9f1bc2c9
RR
1068 for (i = 0; i < sma->sem_nsems; i++) {
1069 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1070 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1071 unlink_queue(sma, q);
1072 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1073 }
1074 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1075 unlink_queue(sma, q);
1076 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1077 }
1078 }
1da177e4 1079
7ca7e564
ND
1080 /* Remove the semaphore set from the IDR */
1081 sem_rmid(ns, sma);
6062a8dc 1082 sem_unlock(sma, -1);
6d49dab8 1083 rcu_read_unlock();
1da177e4 1084
0a2b9d4c 1085 wake_up_sem_queue_do(&tasks);
e3893534 1086 ns->used_sems -= sma->sem_nsems;
53dad6d3 1087 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1088}
1089
1090static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1091{
1092 switch(version) {
1093 case IPC_64:
1094 return copy_to_user(buf, in, sizeof(*in));
1095 case IPC_OLD:
1096 {
1097 struct semid_ds out;
1098
982f7c2b
DR
1099 memset(&out, 0, sizeof(out));
1100
1da177e4
LT
1101 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1102
1103 out.sem_otime = in->sem_otime;
1104 out.sem_ctime = in->sem_ctime;
1105 out.sem_nsems = in->sem_nsems;
1106
1107 return copy_to_user(buf, &out, sizeof(out));
1108 }
1109 default:
1110 return -EINVAL;
1111 }
1112}
1113
d12e1e50
MS
1114static time_t get_semotime(struct sem_array *sma)
1115{
1116 int i;
1117 time_t res;
1118
1119 res = sma->sem_base[0].sem_otime;
1120 for (i = 1; i < sma->sem_nsems; i++) {
1121 time_t to = sma->sem_base[i].sem_otime;
1122
1123 if (to > res)
1124 res = to;
1125 }
1126 return res;
1127}
1128
4b9fcb0e 1129static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1130 int cmd, int version, void __user *p)
1da177e4 1131{
e5cc9c7b 1132 int err;
1da177e4
LT
1133 struct sem_array *sma;
1134
1135 switch(cmd) {
1136 case IPC_INFO:
1137 case SEM_INFO:
1138 {
1139 struct seminfo seminfo;
1140 int max_id;
1141
1142 err = security_sem_semctl(NULL, cmd);
1143 if (err)
1144 return err;
1145
1146 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
1147 seminfo.semmni = ns->sc_semmni;
1148 seminfo.semmns = ns->sc_semmns;
1149 seminfo.semmsl = ns->sc_semmsl;
1150 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1151 seminfo.semvmx = SEMVMX;
1152 seminfo.semmnu = SEMMNU;
1153 seminfo.semmap = SEMMAP;
1154 seminfo.semume = SEMUME;
d9a605e4 1155 down_read(&sem_ids(ns).rwsem);
1da177e4 1156 if (cmd == SEM_INFO) {
e3893534
KK
1157 seminfo.semusz = sem_ids(ns).in_use;
1158 seminfo.semaem = ns->used_sems;
1da177e4
LT
1159 } else {
1160 seminfo.semusz = SEMUSZ;
1161 seminfo.semaem = SEMAEM;
1162 }
7ca7e564 1163 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1164 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1165 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
1166 return -EFAULT;
1167 return (max_id < 0) ? 0: max_id;
1168 }
4b9fcb0e 1169 case IPC_STAT:
1da177e4
LT
1170 case SEM_STAT:
1171 {
1172 struct semid64_ds tbuf;
16df3674
DB
1173 int id = 0;
1174
1175 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1176
941b0304 1177 rcu_read_lock();
4b9fcb0e 1178 if (cmd == SEM_STAT) {
16df3674
DB
1179 sma = sem_obtain_object(ns, semid);
1180 if (IS_ERR(sma)) {
1181 err = PTR_ERR(sma);
1182 goto out_unlock;
1183 }
4b9fcb0e
PP
1184 id = sma->sem_perm.id;
1185 } else {
16df3674
DB
1186 sma = sem_obtain_object_check(ns, semid);
1187 if (IS_ERR(sma)) {
1188 err = PTR_ERR(sma);
1189 goto out_unlock;
1190 }
4b9fcb0e 1191 }
1da177e4
LT
1192
1193 err = -EACCES;
b0e77598 1194 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1195 goto out_unlock;
1196
1197 err = security_sem_semctl(sma, cmd);
1198 if (err)
1199 goto out_unlock;
1200
1da177e4 1201 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1202 tbuf.sem_otime = get_semotime(sma);
1203 tbuf.sem_ctime = sma->sem_ctime;
1204 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1205 rcu_read_unlock();
e1fd1f49 1206 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1207 return -EFAULT;
1208 return id;
1209 }
1210 default:
1211 return -EINVAL;
1212 }
1da177e4 1213out_unlock:
16df3674 1214 rcu_read_unlock();
1da177e4
LT
1215 return err;
1216}
1217
e1fd1f49
AV
1218static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1219 unsigned long arg)
1220{
1221 struct sem_undo *un;
1222 struct sem_array *sma;
1223 struct sem* curr;
1224 int err;
e1fd1f49
AV
1225 struct list_head tasks;
1226 int val;
1227#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1228 /* big-endian 64bit */
1229 val = arg >> 32;
1230#else
1231 /* 32bit or little-endian 64bit */
1232 val = arg;
1233#endif
1234
6062a8dc
RR
1235 if (val > SEMVMX || val < 0)
1236 return -ERANGE;
e1fd1f49
AV
1237
1238 INIT_LIST_HEAD(&tasks);
e1fd1f49 1239
6062a8dc
RR
1240 rcu_read_lock();
1241 sma = sem_obtain_object_check(ns, semid);
1242 if (IS_ERR(sma)) {
1243 rcu_read_unlock();
1244 return PTR_ERR(sma);
1245 }
1246
1247 if (semnum < 0 || semnum >= sma->sem_nsems) {
1248 rcu_read_unlock();
1249 return -EINVAL;
1250 }
1251
1252
1253 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1254 rcu_read_unlock();
1255 return -EACCES;
1256 }
e1fd1f49
AV
1257
1258 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1259 if (err) {
1260 rcu_read_unlock();
1261 return -EACCES;
1262 }
e1fd1f49 1263
6062a8dc 1264 sem_lock(sma, NULL, -1);
e1fd1f49
AV
1265
1266 curr = &sma->sem_base[semnum];
1267
cf9d5d78 1268 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1269 list_for_each_entry(un, &sma->list_id, list_id)
1270 un->semadj[semnum] = 0;
1271
1272 curr->semval = val;
1273 curr->sempid = task_tgid_vnr(current);
1274 sma->sem_ctime = get_seconds();
1275 /* maybe some queued-up processes were waiting for this */
1276 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1277 sem_unlock(sma, -1);
6d49dab8 1278 rcu_read_unlock();
e1fd1f49 1279 wake_up_sem_queue_do(&tasks);
6062a8dc 1280 return 0;
e1fd1f49
AV
1281}
1282
e3893534 1283static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1284 int cmd, void __user *p)
1da177e4
LT
1285{
1286 struct sem_array *sma;
1287 struct sem* curr;
16df3674 1288 int err, nsems;
1da177e4
LT
1289 ushort fast_sem_io[SEMMSL_FAST];
1290 ushort* sem_io = fast_sem_io;
0a2b9d4c 1291 struct list_head tasks;
1da177e4 1292
16df3674
DB
1293 INIT_LIST_HEAD(&tasks);
1294
1295 rcu_read_lock();
1296 sma = sem_obtain_object_check(ns, semid);
1297 if (IS_ERR(sma)) {
1298 rcu_read_unlock();
023a5355 1299 return PTR_ERR(sma);
16df3674 1300 }
1da177e4
LT
1301
1302 nsems = sma->sem_nsems;
1303
1da177e4 1304 err = -EACCES;
c728b9c8
LT
1305 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1306 goto out_rcu_wakeup;
1da177e4
LT
1307
1308 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1309 if (err)
1310 goto out_rcu_wakeup;
1da177e4
LT
1311
1312 err = -EACCES;
1313 switch (cmd) {
1314 case GETALL:
1315 {
e1fd1f49 1316 ushort __user *array = p;
1da177e4
LT
1317 int i;
1318
ce857229 1319 sem_lock(sma, NULL, -1);
1da177e4 1320 if(nsems > SEMMSL_FAST) {
ce857229
AV
1321 if (!ipc_rcu_getref(sma)) {
1322 sem_unlock(sma, -1);
6d49dab8 1323 rcu_read_unlock();
ce857229
AV
1324 err = -EIDRM;
1325 goto out_free;
1326 }
1327 sem_unlock(sma, -1);
6d49dab8 1328 rcu_read_unlock();
1da177e4
LT
1329 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1330 if(sem_io == NULL) {
53dad6d3 1331 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1332 return -ENOMEM;
1333 }
1334
4091fd94 1335 rcu_read_lock();
6ff37972 1336 sem_lock_and_putref(sma);
1da177e4 1337 if (sma->sem_perm.deleted) {
6062a8dc 1338 sem_unlock(sma, -1);
6d49dab8 1339 rcu_read_unlock();
1da177e4
LT
1340 err = -EIDRM;
1341 goto out_free;
1342 }
ce857229 1343 }
1da177e4
LT
1344 for (i = 0; i < sma->sem_nsems; i++)
1345 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1346 sem_unlock(sma, -1);
6d49dab8 1347 rcu_read_unlock();
1da177e4
LT
1348 err = 0;
1349 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1350 err = -EFAULT;
1351 goto out_free;
1352 }
1353 case SETALL:
1354 {
1355 int i;
1356 struct sem_undo *un;
1357
6062a8dc
RR
1358 if (!ipc_rcu_getref(sma)) {
1359 rcu_read_unlock();
1360 return -EIDRM;
1361 }
16df3674 1362 rcu_read_unlock();
1da177e4
LT
1363
1364 if(nsems > SEMMSL_FAST) {
1365 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1366 if(sem_io == NULL) {
53dad6d3 1367 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1368 return -ENOMEM;
1369 }
1370 }
1371
e1fd1f49 1372 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
53dad6d3 1373 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1374 err = -EFAULT;
1375 goto out_free;
1376 }
1377
1378 for (i = 0; i < nsems; i++) {
1379 if (sem_io[i] > SEMVMX) {
53dad6d3 1380 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1381 err = -ERANGE;
1382 goto out_free;
1383 }
1384 }
4091fd94 1385 rcu_read_lock();
6ff37972 1386 sem_lock_and_putref(sma);
1da177e4 1387 if (sma->sem_perm.deleted) {
6062a8dc 1388 sem_unlock(sma, -1);
6d49dab8 1389 rcu_read_unlock();
1da177e4
LT
1390 err = -EIDRM;
1391 goto out_free;
1392 }
1393
1394 for (i = 0; i < nsems; i++)
1395 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1396
cf9d5d78 1397 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1398 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1399 for (i = 0; i < nsems; i++)
1400 un->semadj[i] = 0;
4daa28f6 1401 }
1da177e4
LT
1402 sma->sem_ctime = get_seconds();
1403 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1404 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1405 err = 0;
1406 goto out_unlock;
1407 }
e1fd1f49 1408 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1409 }
1410 err = -EINVAL;
c728b9c8
LT
1411 if (semnum < 0 || semnum >= nsems)
1412 goto out_rcu_wakeup;
1da177e4 1413
6062a8dc 1414 sem_lock(sma, NULL, -1);
1da177e4
LT
1415 curr = &sma->sem_base[semnum];
1416
1417 switch (cmd) {
1418 case GETVAL:
1419 err = curr->semval;
1420 goto out_unlock;
1421 case GETPID:
1422 err = curr->sempid;
1423 goto out_unlock;
1424 case GETNCNT:
1425 err = count_semncnt(sma,semnum);
1426 goto out_unlock;
1427 case GETZCNT:
1428 err = count_semzcnt(sma,semnum);
1429 goto out_unlock;
1da177e4 1430 }
16df3674 1431
1da177e4 1432out_unlock:
6062a8dc 1433 sem_unlock(sma, -1);
c728b9c8 1434out_rcu_wakeup:
6d49dab8 1435 rcu_read_unlock();
0a2b9d4c 1436 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1437out_free:
1438 if(sem_io != fast_sem_io)
1439 ipc_free(sem_io, sizeof(ushort)*nsems);
1440 return err;
1441}
1442
016d7132
PP
1443static inline unsigned long
1444copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1445{
1446 switch(version) {
1447 case IPC_64:
016d7132 1448 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1449 return -EFAULT;
1da177e4 1450 return 0;
1da177e4
LT
1451 case IPC_OLD:
1452 {
1453 struct semid_ds tbuf_old;
1454
1455 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1456 return -EFAULT;
1457
016d7132
PP
1458 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1459 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1460 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1461
1462 return 0;
1463 }
1464 default:
1465 return -EINVAL;
1466 }
1467}
1468
522bb2a2 1469/*
d9a605e4 1470 * This function handles some semctl commands which require the rwsem
522bb2a2 1471 * to be held in write mode.
d9a605e4 1472 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1473 */
21a4826a 1474static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1475 int cmd, int version, void __user *p)
1da177e4
LT
1476{
1477 struct sem_array *sma;
1478 int err;
016d7132 1479 struct semid64_ds semid64;
1da177e4
LT
1480 struct kern_ipc_perm *ipcp;
1481
1482 if(cmd == IPC_SET) {
e1fd1f49 1483 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1484 return -EFAULT;
1da177e4 1485 }
073115d6 1486
d9a605e4 1487 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1488 rcu_read_lock();
1489
16df3674
DB
1490 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1491 &semid64.sem_perm, 0);
7b4cc5d8
DB
1492 if (IS_ERR(ipcp)) {
1493 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1494 goto out_unlock1;
1495 }
073115d6 1496
a5f75e7f 1497 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1498
1499 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1500 if (err)
1501 goto out_unlock1;
1da177e4 1502
7b4cc5d8 1503 switch (cmd) {
1da177e4 1504 case IPC_RMID:
6062a8dc 1505 sem_lock(sma, NULL, -1);
7b4cc5d8 1506 /* freeary unlocks the ipc object and rcu */
01b8b07a 1507 freeary(ns, ipcp);
522bb2a2 1508 goto out_up;
1da177e4 1509 case IPC_SET:
6062a8dc 1510 sem_lock(sma, NULL, -1);
1efdb69b
EB
1511 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1512 if (err)
7b4cc5d8 1513 goto out_unlock0;
1da177e4 1514 sma->sem_ctime = get_seconds();
1da177e4
LT
1515 break;
1516 default:
1da177e4 1517 err = -EINVAL;
7b4cc5d8 1518 goto out_unlock1;
1da177e4 1519 }
1da177e4 1520
7b4cc5d8 1521out_unlock0:
6062a8dc 1522 sem_unlock(sma, -1);
7b4cc5d8 1523out_unlock1:
6d49dab8 1524 rcu_read_unlock();
522bb2a2 1525out_up:
d9a605e4 1526 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1527 return err;
1528}
1529
e1fd1f49 1530SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1531{
1da177e4 1532 int version;
e3893534 1533 struct ipc_namespace *ns;
e1fd1f49 1534 void __user *p = (void __user *)arg;
1da177e4
LT
1535
1536 if (semid < 0)
1537 return -EINVAL;
1538
1539 version = ipc_parse_version(&cmd);
e3893534 1540 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1541
1542 switch(cmd) {
1543 case IPC_INFO:
1544 case SEM_INFO:
4b9fcb0e 1545 case IPC_STAT:
1da177e4 1546 case SEM_STAT:
e1fd1f49 1547 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1548 case GETALL:
1549 case GETVAL:
1550 case GETPID:
1551 case GETNCNT:
1552 case GETZCNT:
1da177e4 1553 case SETALL:
e1fd1f49
AV
1554 return semctl_main(ns, semid, semnum, cmd, p);
1555 case SETVAL:
1556 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1557 case IPC_RMID:
1558 case IPC_SET:
e1fd1f49 1559 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1560 default:
1561 return -EINVAL;
1562 }
1563}
1564
1da177e4
LT
1565/* If the task doesn't already have a undo_list, then allocate one
1566 * here. We guarantee there is only one thread using this undo list,
1567 * and current is THE ONE
1568 *
1569 * If this allocation and assignment succeeds, but later
1570 * portions of this code fail, there is no need to free the sem_undo_list.
1571 * Just let it stay associated with the task, and it'll be freed later
1572 * at exit time.
1573 *
1574 * This can block, so callers must hold no locks.
1575 */
1576static inline int get_undo_list(struct sem_undo_list **undo_listp)
1577{
1578 struct sem_undo_list *undo_list;
1da177e4
LT
1579
1580 undo_list = current->sysvsem.undo_list;
1581 if (!undo_list) {
2453a306 1582 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1583 if (undo_list == NULL)
1584 return -ENOMEM;
00a5dfdb 1585 spin_lock_init(&undo_list->lock);
1da177e4 1586 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1587 INIT_LIST_HEAD(&undo_list->list_proc);
1588
1da177e4
LT
1589 current->sysvsem.undo_list = undo_list;
1590 }
1591 *undo_listp = undo_list;
1592 return 0;
1593}
1594
bf17bb71 1595static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1596{
bf17bb71 1597 struct sem_undo *un;
4daa28f6 1598
bf17bb71
NP
1599 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1600 if (un->semid == semid)
1601 return un;
1da177e4 1602 }
4daa28f6 1603 return NULL;
1da177e4
LT
1604}
1605
bf17bb71
NP
1606static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1607{
1608 struct sem_undo *un;
1609
1610 assert_spin_locked(&ulp->lock);
1611
1612 un = __lookup_undo(ulp, semid);
1613 if (un) {
1614 list_del_rcu(&un->list_proc);
1615 list_add_rcu(&un->list_proc, &ulp->list_proc);
1616 }
1617 return un;
1618}
1619
4daa28f6
MS
1620/**
1621 * find_alloc_undo - Lookup (and if not present create) undo array
1622 * @ns: namespace
1623 * @semid: semaphore array id
1624 *
1625 * The function looks up (and if not present creates) the undo structure.
1626 * The size of the undo structure depends on the size of the semaphore
1627 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1628 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1629 * performs a rcu_read_lock().
4daa28f6
MS
1630 */
1631static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1632{
1633 struct sem_array *sma;
1634 struct sem_undo_list *ulp;
1635 struct sem_undo *un, *new;
6062a8dc 1636 int nsems, error;
1da177e4
LT
1637
1638 error = get_undo_list(&ulp);
1639 if (error)
1640 return ERR_PTR(error);
1641
380af1b3 1642 rcu_read_lock();
c530c6ac 1643 spin_lock(&ulp->lock);
1da177e4 1644 un = lookup_undo(ulp, semid);
c530c6ac 1645 spin_unlock(&ulp->lock);
1da177e4
LT
1646 if (likely(un!=NULL))
1647 goto out;
1648
1649 /* no undo structure around - allocate one. */
4daa28f6 1650 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1651 sma = sem_obtain_object_check(ns, semid);
1652 if (IS_ERR(sma)) {
1653 rcu_read_unlock();
4de85cd6 1654 return ERR_CAST(sma);
16df3674 1655 }
023a5355 1656
1da177e4 1657 nsems = sma->sem_nsems;
6062a8dc
RR
1658 if (!ipc_rcu_getref(sma)) {
1659 rcu_read_unlock();
1660 un = ERR_PTR(-EIDRM);
1661 goto out;
1662 }
16df3674 1663 rcu_read_unlock();
1da177e4 1664
4daa28f6 1665 /* step 2: allocate new undo structure */
4668edc3 1666 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1667 if (!new) {
53dad6d3 1668 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1669 return ERR_PTR(-ENOMEM);
1670 }
1da177e4 1671
380af1b3 1672 /* step 3: Acquire the lock on semaphore array */
4091fd94 1673 rcu_read_lock();
6ff37972 1674 sem_lock_and_putref(sma);
1da177e4 1675 if (sma->sem_perm.deleted) {
6062a8dc 1676 sem_unlock(sma, -1);
6d49dab8 1677 rcu_read_unlock();
1da177e4
LT
1678 kfree(new);
1679 un = ERR_PTR(-EIDRM);
1680 goto out;
1681 }
380af1b3
MS
1682 spin_lock(&ulp->lock);
1683
1684 /*
1685 * step 4: check for races: did someone else allocate the undo struct?
1686 */
1687 un = lookup_undo(ulp, semid);
1688 if (un) {
1689 kfree(new);
1690 goto success;
1691 }
4daa28f6
MS
1692 /* step 5: initialize & link new undo structure */
1693 new->semadj = (short *) &new[1];
380af1b3 1694 new->ulp = ulp;
4daa28f6
MS
1695 new->semid = semid;
1696 assert_spin_locked(&ulp->lock);
380af1b3 1697 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1698 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1699 list_add(&new->list_id, &sma->list_id);
380af1b3 1700 un = new;
4daa28f6 1701
380af1b3 1702success:
c530c6ac 1703 spin_unlock(&ulp->lock);
6062a8dc 1704 sem_unlock(sma, -1);
1da177e4
LT
1705out:
1706 return un;
1707}
1708
c61284e9
MS
1709
1710/**
1711 * get_queue_result - Retrieve the result code from sem_queue
1712 * @q: Pointer to queue structure
1713 *
1714 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1715 * q->status, then we must loop until the value is replaced with the final
1716 * value: This may happen if a task is woken up by an unrelated event (e.g.
1717 * signal) and in parallel the task is woken up by another task because it got
1718 * the requested semaphores.
1719 *
1720 * The function can be called with or without holding the semaphore spinlock.
1721 */
1722static int get_queue_result(struct sem_queue *q)
1723{
1724 int error;
1725
1726 error = q->status;
1727 while (unlikely(error == IN_WAKEUP)) {
1728 cpu_relax();
1729 error = q->status;
1730 }
1731
1732 return error;
1733}
1734
d5460c99
HC
1735SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1736 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1737{
1738 int error = -EINVAL;
1739 struct sem_array *sma;
1740 struct sembuf fast_sops[SEMOPM_FAST];
1741 struct sembuf* sops = fast_sops, *sop;
1742 struct sem_undo *un;
6062a8dc 1743 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1744 struct sem_queue queue;
1745 unsigned long jiffies_left = 0;
e3893534 1746 struct ipc_namespace *ns;
0a2b9d4c 1747 struct list_head tasks;
e3893534
KK
1748
1749 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1750
1751 if (nsops < 1 || semid < 0)
1752 return -EINVAL;
e3893534 1753 if (nsops > ns->sc_semopm)
1da177e4
LT
1754 return -E2BIG;
1755 if(nsops > SEMOPM_FAST) {
1756 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1757 if(sops==NULL)
1758 return -ENOMEM;
1759 }
1760 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1761 error=-EFAULT;
1762 goto out_free;
1763 }
1764 if (timeout) {
1765 struct timespec _timeout;
1766 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1767 error = -EFAULT;
1768 goto out_free;
1769 }
1770 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1771 _timeout.tv_nsec >= 1000000000L) {
1772 error = -EINVAL;
1773 goto out_free;
1774 }
1775 jiffies_left = timespec_to_jiffies(&_timeout);
1776 }
1777 max = 0;
1778 for (sop = sops; sop < sops + nsops; sop++) {
1779 if (sop->sem_num >= max)
1780 max = sop->sem_num;
1781 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1782 undos = 1;
1783 if (sop->sem_op != 0)
1da177e4
LT
1784 alter = 1;
1785 }
1da177e4 1786
6062a8dc
RR
1787 INIT_LIST_HEAD(&tasks);
1788
1da177e4 1789 if (undos) {
6062a8dc 1790 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1791 un = find_alloc_undo(ns, semid);
1da177e4
LT
1792 if (IS_ERR(un)) {
1793 error = PTR_ERR(un);
1794 goto out_free;
1795 }
6062a8dc 1796 } else {
1da177e4 1797 un = NULL;
6062a8dc
RR
1798 rcu_read_lock();
1799 }
1da177e4 1800
16df3674 1801 sma = sem_obtain_object_check(ns, semid);
023a5355 1802 if (IS_ERR(sma)) {
6062a8dc 1803 rcu_read_unlock();
023a5355 1804 error = PTR_ERR(sma);
1da177e4 1805 goto out_free;
023a5355
ND
1806 }
1807
16df3674 1808 error = -EFBIG;
c728b9c8
LT
1809 if (max >= sma->sem_nsems)
1810 goto out_rcu_wakeup;
16df3674
DB
1811
1812 error = -EACCES;
c728b9c8
LT
1813 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1814 goto out_rcu_wakeup;
16df3674
DB
1815
1816 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1817 if (error)
1818 goto out_rcu_wakeup;
16df3674 1819
1da177e4 1820 /*
4daa28f6 1821 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1822 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1823 * and now a new array with received the same id. Check and fail.
25985edc 1824 * This case can be detected checking un->semid. The existence of
380af1b3 1825 * "un" itself is guaranteed by rcu.
1da177e4 1826 */
4daa28f6 1827 error = -EIDRM;
6062a8dc
RR
1828 locknum = sem_lock(sma, sops, nsops);
1829 if (un && un->semid == -1)
1830 goto out_unlock_free;
4daa28f6 1831
758a6ba3
MS
1832 error = perform_atomic_semop(sma, sops, nsops, un,
1833 task_tgid_vnr(current));
1da177e4
LT
1834 if (error <= 0) {
1835 if (alter && error == 0)
0a2b9d4c 1836 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1837
1da177e4
LT
1838 goto out_unlock_free;
1839 }
1840
1841 /* We need to sleep on this operation, so we put the current
1842 * task into the pending queue and go to sleep.
1843 */
1844
1da177e4
LT
1845 queue.sops = sops;
1846 queue.nsops = nsops;
1847 queue.undo = un;
b488893a 1848 queue.pid = task_tgid_vnr(current);
1da177e4 1849 queue.alter = alter;
1da177e4 1850
b97e820f
MS
1851 if (nsops == 1) {
1852 struct sem *curr;
1853 curr = &sma->sem_base[sops->sem_num];
1854
f269f40a
MS
1855 if (alter) {
1856 if (sma->complex_count) {
1857 list_add_tail(&queue.list,
1858 &sma->pending_alter);
1859 } else {
1860
1861 list_add_tail(&queue.list,
1862 &curr->pending_alter);
1863 }
1864 } else {
1a82e9e1 1865 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1866 }
b97e820f 1867 } else {
f269f40a
MS
1868 if (!sma->complex_count)
1869 merge_queues(sma);
1870
9f1bc2c9 1871 if (alter)
1a82e9e1 1872 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1873 else
1a82e9e1
MS
1874 list_add_tail(&queue.list, &sma->pending_const);
1875
b97e820f
MS
1876 sma->complex_count++;
1877 }
1878
1da177e4
LT
1879 queue.status = -EINTR;
1880 queue.sleeper = current;
0b0577f6
MS
1881
1882sleep_again:
1da177e4 1883 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1884 sem_unlock(sma, locknum);
6d49dab8 1885 rcu_read_unlock();
1da177e4
LT
1886
1887 if (timeout)
1888 jiffies_left = schedule_timeout(jiffies_left);
1889 else
1890 schedule();
1891
c61284e9 1892 error = get_queue_result(&queue);
1da177e4
LT
1893
1894 if (error != -EINTR) {
1895 /* fast path: update_queue already obtained all requested
c61284e9
MS
1896 * resources.
1897 * Perform a smp_mb(): User space could assume that semop()
1898 * is a memory barrier: Without the mb(), the cpu could
1899 * speculatively read in user space stale data that was
1900 * overwritten by the previous owner of the semaphore.
1901 */
1902 smp_mb();
1903
1da177e4
LT
1904 goto out_free;
1905 }
1906
321310ce 1907 rcu_read_lock();
6062a8dc 1908 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1909
1910 /*
1911 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1912 */
1913 error = get_queue_result(&queue);
1914
1915 /*
1916 * Array removed? If yes, leave without sem_unlock().
1917 */
023a5355 1918 if (IS_ERR(sma)) {
321310ce 1919 rcu_read_unlock();
1da177e4
LT
1920 goto out_free;
1921 }
1922
c61284e9 1923
1da177e4 1924 /*
d694ad62
MS
1925 * If queue.status != -EINTR we are woken up by another process.
1926 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1927 */
c61284e9 1928
1da177e4
LT
1929 if (error != -EINTR) {
1930 goto out_unlock_free;
1931 }
1932
1933 /*
1934 * If an interrupt occurred we have to clean up the queue
1935 */
1936 if (timeout && jiffies_left == 0)
1937 error = -EAGAIN;
0b0577f6
MS
1938
1939 /*
1940 * If the wakeup was spurious, just retry
1941 */
1942 if (error == -EINTR && !signal_pending(current))
1943 goto sleep_again;
1944
b97e820f 1945 unlink_queue(sma, &queue);
1da177e4
LT
1946
1947out_unlock_free:
6062a8dc 1948 sem_unlock(sma, locknum);
c728b9c8 1949out_rcu_wakeup:
6d49dab8 1950 rcu_read_unlock();
0a2b9d4c 1951 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1952out_free:
1953 if(sops != fast_sops)
1954 kfree(sops);
1955 return error;
1956}
1957
d5460c99
HC
1958SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1959 unsigned, nsops)
1da177e4
LT
1960{
1961 return sys_semtimedop(semid, tsops, nsops, NULL);
1962}
1963
1964/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1965 * parent and child tasks.
1da177e4
LT
1966 */
1967
1968int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1969{
1970 struct sem_undo_list *undo_list;
1971 int error;
1972
1973 if (clone_flags & CLONE_SYSVSEM) {
1974 error = get_undo_list(&undo_list);
1975 if (error)
1976 return error;
1da177e4
LT
1977 atomic_inc(&undo_list->refcnt);
1978 tsk->sysvsem.undo_list = undo_list;
1979 } else
1980 tsk->sysvsem.undo_list = NULL;
1981
1982 return 0;
1983}
1984
1985/*
1986 * add semadj values to semaphores, free undo structures.
1987 * undo structures are not freed when semaphore arrays are destroyed
1988 * so some of them may be out of date.
1989 * IMPLEMENTATION NOTE: There is some confusion over whether the
1990 * set of adjustments that needs to be done should be done in an atomic
1991 * manner or not. That is, if we are attempting to decrement the semval
1992 * should we queue up and wait until we can do so legally?
1993 * The original implementation attempted to do this (queue and wait).
1994 * The current implementation does not do so. The POSIX standard
1995 * and SVID should be consulted to determine what behavior is mandated.
1996 */
1997void exit_sem(struct task_struct *tsk)
1998{
4daa28f6 1999 struct sem_undo_list *ulp;
1da177e4 2000
4daa28f6
MS
2001 ulp = tsk->sysvsem.undo_list;
2002 if (!ulp)
1da177e4 2003 return;
9edff4ab 2004 tsk->sysvsem.undo_list = NULL;
1da177e4 2005
4daa28f6 2006 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2007 return;
2008
380af1b3 2009 for (;;) {
1da177e4 2010 struct sem_array *sma;
380af1b3 2011 struct sem_undo *un;
0a2b9d4c 2012 struct list_head tasks;
6062a8dc 2013 int semid, i;
4daa28f6 2014
380af1b3 2015 rcu_read_lock();
05725f7e
JP
2016 un = list_entry_rcu(ulp->list_proc.next,
2017 struct sem_undo, list_proc);
380af1b3
MS
2018 if (&un->list_proc == &ulp->list_proc)
2019 semid = -1;
2020 else
2021 semid = un->semid;
4daa28f6 2022
6062a8dc
RR
2023 if (semid == -1) {
2024 rcu_read_unlock();
380af1b3 2025 break;
6062a8dc 2026 }
1da177e4 2027
6062a8dc 2028 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2029 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2030 if (IS_ERR(sma)) {
2031 rcu_read_unlock();
380af1b3 2032 continue;
6062a8dc 2033 }
1da177e4 2034
6062a8dc 2035 sem_lock(sma, NULL, -1);
bf17bb71 2036 un = __lookup_undo(ulp, semid);
380af1b3
MS
2037 if (un == NULL) {
2038 /* exit_sem raced with IPC_RMID+semget() that created
2039 * exactly the same semid. Nothing to do.
2040 */
6062a8dc 2041 sem_unlock(sma, -1);
6d49dab8 2042 rcu_read_unlock();
380af1b3
MS
2043 continue;
2044 }
2045
2046 /* remove un from the linked lists */
cf9d5d78 2047 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2048 list_del(&un->list_id);
2049
380af1b3
MS
2050 spin_lock(&ulp->lock);
2051 list_del_rcu(&un->list_proc);
2052 spin_unlock(&ulp->lock);
2053
4daa28f6
MS
2054 /* perform adjustments registered in un */
2055 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 2056 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
2057 if (un->semadj[i]) {
2058 semaphore->semval += un->semadj[i];
1da177e4
LT
2059 /*
2060 * Range checks of the new semaphore value,
2061 * not defined by sus:
2062 * - Some unices ignore the undo entirely
2063 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2064 * - some cap the value (e.g. FreeBSD caps
2065 * at 0, but doesn't enforce SEMVMX)
2066 *
2067 * Linux caps the semaphore value, both at 0
2068 * and at SEMVMX.
2069 *
2070 * Manfred <manfred@colorfullife.com>
2071 */
5f921ae9
IM
2072 if (semaphore->semval < 0)
2073 semaphore->semval = 0;
2074 if (semaphore->semval > SEMVMX)
2075 semaphore->semval = SEMVMX;
b488893a 2076 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2077 }
2078 }
1da177e4 2079 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2080 INIT_LIST_HEAD(&tasks);
2081 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2082 sem_unlock(sma, -1);
6d49dab8 2083 rcu_read_unlock();
0a2b9d4c 2084 wake_up_sem_queue_do(&tasks);
380af1b3 2085
693a8b6e 2086 kfree_rcu(un, rcu);
1da177e4 2087 }
4daa28f6 2088 kfree(ulp);
1da177e4
LT
2089}
2090
2091#ifdef CONFIG_PROC_FS
19b4946c 2092static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2093{
1efdb69b 2094 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2095 struct sem_array *sma = it;
d12e1e50
MS
2096 time_t sem_otime;
2097
2098 sem_otime = get_semotime(sma);
19b4946c
MW
2099
2100 return seq_printf(s,
b97e820f 2101 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2102 sma->sem_perm.key,
7ca7e564 2103 sma->sem_perm.id,
19b4946c
MW
2104 sma->sem_perm.mode,
2105 sma->sem_nsems,
1efdb69b
EB
2106 from_kuid_munged(user_ns, sma->sem_perm.uid),
2107 from_kgid_munged(user_ns, sma->sem_perm.gid),
2108 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2109 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2110 sem_otime,
19b4946c 2111 sma->sem_ctime);
1da177e4
LT
2112}
2113#endif