Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / include / uapi / linux / if_link.h
CommitLineData
6f52b16c 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
607ca46e
DH
2#ifndef _UAPI_LINUX_IF_LINK_H
3#define _UAPI_LINUX_IF_LINK_H
4
5#include <linux/types.h>
6#include <linux/netlink.h>
7
8/* This struct should be in sync with struct rtnl_link_stats64 */
9struct rtnl_link_stats {
78a3ea55
JK
10 __u32 rx_packets;
11 __u32 tx_packets;
12 __u32 rx_bytes;
13 __u32 tx_bytes;
14 __u32 rx_errors;
15 __u32 tx_errors;
16 __u32 rx_dropped;
17 __u32 tx_dropped;
18 __u32 multicast;
607ca46e 19 __u32 collisions;
607ca46e
DH
20 /* detailed rx_errors: */
21 __u32 rx_length_errors;
78a3ea55
JK
22 __u32 rx_over_errors;
23 __u32 rx_crc_errors;
24 __u32 rx_frame_errors;
25 __u32 rx_fifo_errors;
26 __u32 rx_missed_errors;
607ca46e
DH
27
28 /* detailed tx_errors */
29 __u32 tx_aborted_errors;
30 __u32 tx_carrier_errors;
31 __u32 tx_fifo_errors;
32 __u32 tx_heartbeat_errors;
33 __u32 tx_window_errors;
34
35 /* for cslip etc */
36 __u32 rx_compressed;
37 __u32 tx_compressed;
6e7333d3 38
78a3ea55 39 __u32 rx_nohandler;
607ca46e
DH
40};
41
0db0c34c
JK
42/**
43 * struct rtnl_link_stats64 - The main device statistics structure.
44 *
45 * @rx_packets: Number of good packets received by the interface.
46 * For hardware interfaces counts all good packets received from the device
47 * by the host, including packets which host had to drop at various stages
48 * of processing (even in the driver).
49 *
50 * @tx_packets: Number of packets successfully transmitted.
51 * For hardware interfaces counts packets which host was able to successfully
52 * hand over to the device, which does not necessarily mean that packets
53 * had been successfully transmitted out of the device, only that device
54 * acknowledged it copied them out of host memory.
55 *
56 * @rx_bytes: Number of good received bytes, corresponding to @rx_packets.
57 *
58 * For IEEE 802.3 devices should count the length of Ethernet Frames
59 * excluding the FCS.
60 *
61 * @tx_bytes: Number of good transmitted bytes, corresponding to @tx_packets.
62 *
63 * For IEEE 802.3 devices should count the length of Ethernet Frames
64 * excluding the FCS.
65 *
66 * @rx_errors: Total number of bad packets received on this network device.
67 * This counter must include events counted by @rx_length_errors,
68 * @rx_crc_errors, @rx_frame_errors and other errors not otherwise
69 * counted.
70 *
71 * @tx_errors: Total number of transmit problems.
72 * This counter must include events counter by @tx_aborted_errors,
73 * @tx_carrier_errors, @tx_fifo_errors, @tx_heartbeat_errors,
74 * @tx_window_errors and other errors not otherwise counted.
75 *
76 * @rx_dropped: Number of packets received but not processed,
77 * e.g. due to lack of resources or unsupported protocol.
cf072069
JK
78 * For hardware interfaces this counter may include packets discarded
79 * due to L2 address filtering but should not include packets dropped
80 * by the device due to buffer exhaustion which are counted separately in
0db0c34c
JK
81 * @rx_missed_errors (since procfs folds those two counters together).
82 *
83 * @tx_dropped: Number of packets dropped on their way to transmission,
84 * e.g. due to lack of resources.
85 *
86 * @multicast: Multicast packets received.
87 * For hardware interfaces this statistic is commonly calculated
88 * at the device level (unlike @rx_packets) and therefore may include
89 * packets which did not reach the host.
90 *
91 * For IEEE 802.3 devices this counter may be equivalent to:
92 *
93 * - 30.3.1.1.21 aMulticastFramesReceivedOK
94 *
95 * @collisions: Number of collisions during packet transmissions.
96 *
97 * @rx_length_errors: Number of packets dropped due to invalid length.
98 * Part of aggregate "frame" errors in `/proc/net/dev`.
99 *
100 * For IEEE 802.3 devices this counter should be equivalent to a sum
101 * of the following attributes:
102 *
103 * - 30.3.1.1.23 aInRangeLengthErrors
104 * - 30.3.1.1.24 aOutOfRangeLengthField
105 * - 30.3.1.1.25 aFrameTooLongErrors
106 *
107 * @rx_over_errors: Receiver FIFO overflow event counter.
108 *
109 * Historically the count of overflow events. Such events may be
110 * reported in the receive descriptors or via interrupts, and may
111 * not correspond one-to-one with dropped packets.
112 *
113 * The recommended interpretation for high speed interfaces is -
114 * number of packets dropped because they did not fit into buffers
115 * provided by the host, e.g. packets larger than MTU or next buffer
116 * in the ring was not available for a scatter transfer.
117 *
118 * Part of aggregate "frame" errors in `/proc/net/dev`.
119 *
120 * This statistics was historically used interchangeably with
121 * @rx_fifo_errors.
122 *
123 * This statistic corresponds to hardware events and is not commonly used
124 * on software devices.
125 *
126 * @rx_crc_errors: Number of packets received with a CRC error.
127 * Part of aggregate "frame" errors in `/proc/net/dev`.
128 *
129 * For IEEE 802.3 devices this counter must be equivalent to:
130 *
131 * - 30.3.1.1.6 aFrameCheckSequenceErrors
132 *
133 * @rx_frame_errors: Receiver frame alignment errors.
134 * Part of aggregate "frame" errors in `/proc/net/dev`.
135 *
136 * For IEEE 802.3 devices this counter should be equivalent to:
137 *
138 * - 30.3.1.1.7 aAlignmentErrors
139 *
140 * @rx_fifo_errors: Receiver FIFO error counter.
141 *
142 * Historically the count of overflow events. Those events may be
143 * reported in the receive descriptors or via interrupts, and may
144 * not correspond one-to-one with dropped packets.
145 *
146 * This statistics was used interchangeably with @rx_over_errors.
147 * Not recommended for use in drivers for high speed interfaces.
148 *
149 * This statistic is used on software devices, e.g. to count software
150 * packet queue overflow (can) or sequencing errors (GRE).
151 *
152 * @rx_missed_errors: Count of packets missed by the host.
153 * Folded into the "drop" counter in `/proc/net/dev`.
154 *
155 * Counts number of packets dropped by the device due to lack
156 * of buffer space. This usually indicates that the host interface
157 * is slower than the network interface, or host is not keeping up
158 * with the receive packet rate.
159 *
160 * This statistic corresponds to hardware events and is not used
161 * on software devices.
162 *
163 * @tx_aborted_errors:
164 * Part of aggregate "carrier" errors in `/proc/net/dev`.
165 * For IEEE 802.3 devices capable of half-duplex operation this counter
166 * must be equivalent to:
167 *
168 * - 30.3.1.1.11 aFramesAbortedDueToXSColls
169 *
170 * High speed interfaces may use this counter as a general device
171 * discard counter.
172 *
173 * @tx_carrier_errors: Number of frame transmission errors due to loss
174 * of carrier during transmission.
175 * Part of aggregate "carrier" errors in `/proc/net/dev`.
176 *
177 * For IEEE 802.3 devices this counter must be equivalent to:
178 *
179 * - 30.3.1.1.13 aCarrierSenseErrors
180 *
181 * @tx_fifo_errors: Number of frame transmission errors due to device
182 * FIFO underrun / underflow. This condition occurs when the device
183 * begins transmission of a frame but is unable to deliver the
184 * entire frame to the transmitter in time for transmission.
185 * Part of aggregate "carrier" errors in `/proc/net/dev`.
186 *
187 * @tx_heartbeat_errors: Number of Heartbeat / SQE Test errors for
188 * old half-duplex Ethernet.
189 * Part of aggregate "carrier" errors in `/proc/net/dev`.
190 *
191 * For IEEE 802.3 devices possibly equivalent to:
192 *
193 * - 30.3.2.1.4 aSQETestErrors
194 *
195 * @tx_window_errors: Number of frame transmission errors due
196 * to late collisions (for Ethernet - after the first 64B of transmission).
197 * Part of aggregate "carrier" errors in `/proc/net/dev`.
198 *
199 * For IEEE 802.3 devices this counter must be equivalent to:
200 *
201 * - 30.3.1.1.10 aLateCollisions
202 *
203 * @rx_compressed: Number of correctly received compressed packets.
204 * This counters is only meaningful for interfaces which support
205 * packet compression (e.g. CSLIP, PPP).
206 *
207 * @tx_compressed: Number of transmitted compressed packets.
208 * This counters is only meaningful for interfaces which support
209 * packet compression (e.g. CSLIP, PPP).
210 *
211 * @rx_nohandler: Number of packets received on the interface
212 * but dropped by the networking stack because the device is
213 * not designated to receive packets (e.g. backup link in a bond).
794c24e9
JJ
214 *
215 * @rx_otherhost_dropped: Number of packets dropped due to mismatch
216 * in destination MAC address.
0db0c34c 217 */
607ca46e 218struct rtnl_link_stats64 {
0db0c34c
JK
219 __u64 rx_packets;
220 __u64 tx_packets;
221 __u64 rx_bytes;
222 __u64 tx_bytes;
223 __u64 rx_errors;
224 __u64 tx_errors;
225 __u64 rx_dropped;
226 __u64 tx_dropped;
227 __u64 multicast;
607ca46e
DH
228 __u64 collisions;
229
230 /* detailed rx_errors: */
231 __u64 rx_length_errors;
0db0c34c
JK
232 __u64 rx_over_errors;
233 __u64 rx_crc_errors;
234 __u64 rx_frame_errors;
235 __u64 rx_fifo_errors;
236 __u64 rx_missed_errors;
607ca46e
DH
237
238 /* detailed tx_errors */
239 __u64 tx_aborted_errors;
240 __u64 tx_carrier_errors;
241 __u64 tx_fifo_errors;
242 __u64 tx_heartbeat_errors;
243 __u64 tx_window_errors;
244
245 /* for cslip etc */
246 __u64 rx_compressed;
247 __u64 tx_compressed;
0db0c34c 248 __u64 rx_nohandler;
794c24e9
JJ
249
250 __u64 rx_otherhost_dropped;
607ca46e
DH
251};
252
9309f97a
PM
253/* Subset of link stats useful for in-HW collection. Meaning of the fields is as
254 * for struct rtnl_link_stats64.
255 */
256struct rtnl_hw_stats64 {
257 __u64 rx_packets;
258 __u64 tx_packets;
259 __u64 rx_bytes;
260 __u64 tx_bytes;
261 __u64 rx_errors;
262 __u64 tx_errors;
263 __u64 rx_dropped;
264 __u64 tx_dropped;
265 __u64 multicast;
266};
267
607ca46e
DH
268/* The struct should be in sync with struct ifmap */
269struct rtnl_link_ifmap {
270 __u64 mem_start;
271 __u64 mem_end;
272 __u64 base_addr;
273 __u16 irq;
274 __u8 dma;
275 __u8 port;
276};
277
278/*
279 * IFLA_AF_SPEC
280 * Contains nested attributes for address family specific attributes.
281 * Each address family may create a attribute with the address family
282 * number as type and create its own attribute structure in it.
283 *
284 * Example:
285 * [IFLA_AF_SPEC] = {
286 * [AF_INET] = {
287 * [IFLA_INET_CONF] = ...,
288 * },
289 * [AF_INET6] = {
290 * [IFLA_INET6_FLAGS] = ...,
291 * [IFLA_INET6_CONF] = ...,
292 * }
293 * }
294 */
295
296enum {
297 IFLA_UNSPEC,
298 IFLA_ADDRESS,
299 IFLA_BROADCAST,
300 IFLA_IFNAME,
301 IFLA_MTU,
302 IFLA_LINK,
303 IFLA_QDISC,
304 IFLA_STATS,
305 IFLA_COST,
306#define IFLA_COST IFLA_COST
307 IFLA_PRIORITY,
308#define IFLA_PRIORITY IFLA_PRIORITY
309 IFLA_MASTER,
310#define IFLA_MASTER IFLA_MASTER
311 IFLA_WIRELESS, /* Wireless Extension event - see wireless.h */
312#define IFLA_WIRELESS IFLA_WIRELESS
313 IFLA_PROTINFO, /* Protocol specific information for a link */
314#define IFLA_PROTINFO IFLA_PROTINFO
315 IFLA_TXQLEN,
316#define IFLA_TXQLEN IFLA_TXQLEN
317 IFLA_MAP,
318#define IFLA_MAP IFLA_MAP
319 IFLA_WEIGHT,
320#define IFLA_WEIGHT IFLA_WEIGHT
321 IFLA_OPERSTATE,
322 IFLA_LINKMODE,
323 IFLA_LINKINFO,
324#define IFLA_LINKINFO IFLA_LINKINFO
325 IFLA_NET_NS_PID,
326 IFLA_IFALIAS,
327 IFLA_NUM_VF, /* Number of VFs if device is SR-IOV PF */
328 IFLA_VFINFO_LIST,
329 IFLA_STATS64,
330 IFLA_VF_PORTS,
331 IFLA_PORT_SELF,
332 IFLA_AF_SPEC,
333 IFLA_GROUP, /* Group the device belongs to */
334 IFLA_NET_NS_FD,
335 IFLA_EXT_MASK, /* Extended info mask, VFs, etc */
336 IFLA_PROMISCUITY, /* Promiscuity count: > 0 means acts PROMISC */
337#define IFLA_PROMISCUITY IFLA_PROMISCUITY
338 IFLA_NUM_TX_QUEUES,
339 IFLA_NUM_RX_QUEUES,
9a57247f 340 IFLA_CARRIER,
66cae9ed 341 IFLA_PHYS_PORT_ID,
2d3b479d 342 IFLA_CARRIER_CHANGES,
82f28412 343 IFLA_PHYS_SWITCH_ID,
d37512a2 344 IFLA_LINK_NETNSID,
db24a904 345 IFLA_PHYS_PORT_NAME,
88d6378b 346 IFLA_PROTO_DOWN,
c70ce028
ED
347 IFLA_GSO_MAX_SEGS,
348 IFLA_GSO_MAX_SIZE,
18402843 349 IFLA_PAD,
d1fdd913 350 IFLA_XDP,
3d3ea5af 351 IFLA_EVENT,
6621dd29 352 IFLA_NEW_NETNSID,
79e1ad14 353 IFLA_IF_NETNSID,
19d8f1ad 354 IFLA_TARGET_NETNSID = IFLA_IF_NETNSID, /* new alias */
b2d3bcfa
DD
355 IFLA_CARRIER_UP_COUNT,
356 IFLA_CARRIER_DOWN_COUNT,
38e01b30 357 IFLA_NEW_IFINDEX,
3e7a50ce
SH
358 IFLA_MIN_MTU,
359 IFLA_MAX_MTU,
36fbf1e5
JP
360 IFLA_PROP_LIST,
361 IFLA_ALT_IFNAME, /* Alternative ifname */
f74877a5 362 IFLA_PERM_ADDRESS,
829eb208 363 IFLA_PROTO_DOWN_REASON,
00e77ed8
JB
364
365 /* device (sysfs) name as parent, used instead
366 * of IFLA_LINK where there's no parent netdev
367 */
368 IFLA_PARENT_DEV_NAME,
369 IFLA_PARENT_DEV_BUS_NAME,
eac1b93c 370 IFLA_GRO_MAX_SIZE,
89527be8
ED
371 IFLA_TSO_MAX_SIZE,
372 IFLA_TSO_MAX_SEGS,
7e6e1b57 373 IFLA_ALLMULTI, /* Allmulti count: > 0 means acts ALLMULTI */
00e77ed8 374
dca56c30
JP
375 IFLA_DEVLINK_PORT,
376
9eefedd5
XL
377 IFLA_GSO_IPV4_MAX_SIZE,
378 IFLA_GRO_IPV4_MAX_SIZE,
5f184269 379 IFLA_DPLL_PIN,
f858cc9e 380 IFLA_MAX_PACING_OFFLOAD_HORIZON,
4754affe 381 IFLA_NETNS_IMMUTABLE,
607ca46e
DH
382 __IFLA_MAX
383};
384
385
386#define IFLA_MAX (__IFLA_MAX - 1)
387
829eb208
RP
388enum {
389 IFLA_PROTO_DOWN_REASON_UNSPEC,
390 IFLA_PROTO_DOWN_REASON_MASK, /* u32, mask for reason bits */
391 IFLA_PROTO_DOWN_REASON_VALUE, /* u32, reason bit value */
392
393 __IFLA_PROTO_DOWN_REASON_CNT,
394 IFLA_PROTO_DOWN_REASON_MAX = __IFLA_PROTO_DOWN_REASON_CNT - 1
395};
396
607ca46e
DH
397/* backwards compatibility for userspace */
398#ifndef __KERNEL__
399#define IFLA_RTA(r) ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ifinfomsg))))
400#define IFLA_PAYLOAD(n) NLMSG_PAYLOAD(n,sizeof(struct ifinfomsg))
401#endif
402
403enum {
404 IFLA_INET_UNSPEC,
405 IFLA_INET_CONF,
406 __IFLA_INET_MAX,
407};
408
409#define IFLA_INET_MAX (__IFLA_INET_MAX - 1)
410
411/* ifi_flags.
412
413 IFF_* flags.
414
415 The only change is:
416 IFF_LOOPBACK, IFF_BROADCAST and IFF_POINTOPOINT are
417 more not changeable by user. They describe link media
418 characteristics and set by device driver.
419
420 Comments:
421 - Combination IFF_BROADCAST|IFF_POINTOPOINT is invalid
422 - If neither of these three flags are set;
423 the interface is NBMA.
424
425 - IFF_MULTICAST does not mean anything special:
426 multicasts can be used on all not-NBMA links.
427 IFF_MULTICAST means that this media uses special encapsulation
428 for multicast frames. Apparently, all IFF_POINTOPOINT and
429 IFF_BROADCAST devices are able to use multicasts too.
430 */
431
432/* IFLA_LINK.
433 For usual devices it is equal ifi_index.
434 If it is a "virtual interface" (f.e. tunnel), ifi_link
435 can point to real physical interface (f.e. for bandwidth calculations),
436 or maybe 0, what means, that real media is unknown (usual
437 for IPIP tunnels, when route to endpoint is allowed to change)
438 */
439
440/* Subtype attributes for IFLA_PROTINFO */
441enum {
442 IFLA_INET6_UNSPEC,
443 IFLA_INET6_FLAGS, /* link flags */
444 IFLA_INET6_CONF, /* sysctl parameters */
445 IFLA_INET6_STATS, /* statistics */
446 IFLA_INET6_MCAST, /* MC things. What of them? */
447 IFLA_INET6_CACHEINFO, /* time values and max reasm size */
448 IFLA_INET6_ICMP6STATS, /* statistics (icmpv6) */
f53adae4 449 IFLA_INET6_TOKEN, /* device token */
bc91b0f0 450 IFLA_INET6_ADDR_GEN_MODE, /* implicit address generator mode */
49b99da2 451 IFLA_INET6_RA_MTU, /* mtu carried in the RA message */
607ca46e
DH
452 __IFLA_INET6_MAX
453};
454
455#define IFLA_INET6_MAX (__IFLA_INET6_MAX - 1)
456
bc91b0f0
JP
457enum in6_addr_gen_mode {
458 IN6_ADDR_GEN_MODE_EUI64,
459 IN6_ADDR_GEN_MODE_NONE,
622c81d5 460 IN6_ADDR_GEN_MODE_STABLE_PRIVACY,
cc9da6cc 461 IN6_ADDR_GEN_MODE_RANDOM,
bc91b0f0
JP
462};
463
e5c3ea5c
JP
464/* Bridge section */
465
8ebe0661
HL
466/**
467 * DOC: Bridge enum definition
468 *
469 * Please *note* that the timer values in the following section are expected
470 * in clock_t format, which is seconds multiplied by USER_HZ (generally
471 * defined as 100).
472 *
473 * @IFLA_BR_FORWARD_DELAY
474 * The bridge forwarding delay is the time spent in LISTENING state
475 * (before moving to LEARNING) and in LEARNING state (before moving
476 * to FORWARDING). Only relevant if STP is enabled.
477 *
478 * The valid values are between (2 * USER_HZ) and (30 * USER_HZ).
479 * The default value is (15 * USER_HZ).
480 *
481 * @IFLA_BR_HELLO_TIME
482 * The time between hello packets sent by the bridge, when it is a root
483 * bridge or a designated bridge. Only relevant if STP is enabled.
484 *
485 * The valid values are between (1 * USER_HZ) and (10 * USER_HZ).
486 * The default value is (2 * USER_HZ).
487 *
488 * @IFLA_BR_MAX_AGE
489 * The hello packet timeout is the time until another bridge in the
490 * spanning tree is assumed to be dead, after reception of its last hello
491 * message. Only relevant if STP is enabled.
492 *
493 * The valid values are between (6 * USER_HZ) and (40 * USER_HZ).
494 * The default value is (20 * USER_HZ).
495 *
496 * @IFLA_BR_AGEING_TIME
497 * Configure the bridge's FDB entries aging time. It is the time a MAC
498 * address will be kept in the FDB after a packet has been received from
499 * that address. After this time has passed, entries are cleaned up.
500 * Allow values outside the 802.1 standard specification for special cases:
501 *
502 * * 0 - entry never ages (all permanent)
503 * * 1 - entry disappears (no persistence)
504 *
505 * The default value is (300 * USER_HZ).
506 *
507 * @IFLA_BR_STP_STATE
508 * Turn spanning tree protocol on (*IFLA_BR_STP_STATE* > 0) or off
509 * (*IFLA_BR_STP_STATE* == 0) for this bridge.
510 *
511 * The default value is 0 (disabled).
512 *
513 * @IFLA_BR_PRIORITY
514 * Set this bridge's spanning tree priority, used during STP root bridge
515 * election.
516 *
517 * The valid values are between 0 and 65535.
518 *
519 * @IFLA_BR_VLAN_FILTERING
520 * Turn VLAN filtering on (*IFLA_BR_VLAN_FILTERING* > 0) or off
521 * (*IFLA_BR_VLAN_FILTERING* == 0). When disabled, the bridge will not
522 * consider the VLAN tag when handling packets.
523 *
524 * The default value is 0 (disabled).
525 *
526 * @IFLA_BR_VLAN_PROTOCOL
527 * Set the protocol used for VLAN filtering.
528 *
529 * The valid values are 0x8100(802.1Q) or 0x88A8(802.1AD). The default value
530 * is 0x8100(802.1Q).
531 *
532 * @IFLA_BR_GROUP_FWD_MASK
533 * The group forwarding mask. This is the bitmask that is applied to
534 * decide whether to forward incoming frames destined to link-local
535 * addresses (of the form 01:80:C2:00:00:0X).
536 *
537 * The default value is 0, which means the bridge does not forward any
538 * link-local frames coming on this port.
539 *
540 * @IFLA_BR_ROOT_ID
541 * The bridge root id, read only.
542 *
543 * @IFLA_BR_BRIDGE_ID
544 * The bridge id, read only.
545 *
546 * @IFLA_BR_ROOT_PORT
547 * The bridge root port, read only.
548 *
549 * @IFLA_BR_ROOT_PATH_COST
550 * The bridge root path cost, read only.
551 *
552 * @IFLA_BR_TOPOLOGY_CHANGE
553 * The bridge topology change, read only.
554 *
555 * @IFLA_BR_TOPOLOGY_CHANGE_DETECTED
556 * The bridge topology change detected, read only.
557 *
558 * @IFLA_BR_HELLO_TIMER
559 * The bridge hello timer, read only.
560 *
561 * @IFLA_BR_TCN_TIMER
562 * The bridge tcn timer, read only.
563 *
564 * @IFLA_BR_TOPOLOGY_CHANGE_TIMER
565 * The bridge topology change timer, read only.
566 *
567 * @IFLA_BR_GC_TIMER
568 * The bridge gc timer, read only.
569 *
570 * @IFLA_BR_GROUP_ADDR
571 * Set the MAC address of the multicast group this bridge uses for STP.
572 * The address must be a link-local address in standard Ethernet MAC address
573 * format. It is an address of the form 01:80:C2:00:00:0X, with X in [0, 4..f].
574 *
575 * The default value is 0.
576 *
577 * @IFLA_BR_FDB_FLUSH
578 * Flush bridge's fdb dynamic entries.
579 *
580 * @IFLA_BR_MCAST_ROUTER
581 * Set bridge's multicast router if IGMP snooping is enabled.
582 * The valid values are:
583 *
584 * * 0 - disabled.
585 * * 1 - automatic (queried).
586 * * 2 - permanently enabled.
587 *
588 * The default value is 1.
589 *
590 * @IFLA_BR_MCAST_SNOOPING
591 * Turn multicast snooping on (*IFLA_BR_MCAST_SNOOPING* > 0) or off
592 * (*IFLA_BR_MCAST_SNOOPING* == 0).
593 *
594 * The default value is 1.
595 *
596 * @IFLA_BR_MCAST_QUERY_USE_IFADDR
597 * If enabled use the bridge's own IP address as source address for IGMP
598 * queries (*IFLA_BR_MCAST_QUERY_USE_IFADDR* > 0) or the default of 0.0.0.0
599 * (*IFLA_BR_MCAST_QUERY_USE_IFADDR* == 0).
600 *
601 * The default value is 0 (disabled).
602 *
603 * @IFLA_BR_MCAST_QUERIER
604 * Enable (*IFLA_BR_MULTICAST_QUERIER* > 0) or disable
605 * (*IFLA_BR_MULTICAST_QUERIER* == 0) IGMP querier, ie sending of multicast
606 * queries by the bridge.
607 *
608 * The default value is 0 (disabled).
609 *
610 * @IFLA_BR_MCAST_HASH_ELASTICITY
611 * Set multicast database hash elasticity, It is the maximum chain length in
612 * the multicast hash table. This attribute is *deprecated* and the value
613 * is always 16.
614 *
615 * @IFLA_BR_MCAST_HASH_MAX
616 * Set maximum size of the multicast hash table
617 *
618 * The default value is 4096, the value must be a power of 2.
619 *
620 * @IFLA_BR_MCAST_LAST_MEMBER_CNT
621 * The Last Member Query Count is the number of Group-Specific Queries
622 * sent before the router assumes there are no local members. The Last
623 * Member Query Count is also the number of Group-and-Source-Specific
624 * Queries sent before the router assumes there are no listeners for a
625 * particular source.
626 *
627 * The default value is 2.
628 *
629 * @IFLA_BR_MCAST_STARTUP_QUERY_CNT
630 * The Startup Query Count is the number of Queries sent out on startup,
631 * separated by the Startup Query Interval.
632 *
633 * The default value is 2.
634 *
635 * @IFLA_BR_MCAST_LAST_MEMBER_INTVL
636 * The Last Member Query Interval is the Max Response Time inserted into
637 * Group-Specific Queries sent in response to Leave Group messages, and
638 * is also the amount of time between Group-Specific Query messages.
639 *
640 * The default value is (1 * USER_HZ).
641 *
642 * @IFLA_BR_MCAST_MEMBERSHIP_INTVL
643 * The interval after which the bridge will leave a group, if no membership
644 * reports for this group are received.
645 *
646 * The default value is (260 * USER_HZ).
647 *
648 * @IFLA_BR_MCAST_QUERIER_INTVL
649 * The interval between queries sent by other routers. if no queries are
650 * seen after this delay has passed, the bridge will start to send its own
651 * queries (as if *IFLA_BR_MCAST_QUERIER_INTVL* was enabled).
652 *
653 * The default value is (255 * USER_HZ).
654 *
655 * @IFLA_BR_MCAST_QUERY_INTVL
656 * The Query Interval is the interval between General Queries sent by
657 * the Querier.
658 *
659 * The default value is (125 * USER_HZ). The minimum value is (1 * USER_HZ).
660 *
661 * @IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
662 * The Max Response Time used to calculate the Max Resp Code inserted
663 * into the periodic General Queries.
664 *
665 * The default value is (10 * USER_HZ).
666 *
667 * @IFLA_BR_MCAST_STARTUP_QUERY_INTVL
668 * The interval between queries in the startup phase.
669 *
670 * The default value is (125 * USER_HZ) / 4. The minimum value is (1 * USER_HZ).
671 *
672 * @IFLA_BR_NF_CALL_IPTABLES
673 * Enable (*NF_CALL_IPTABLES* > 0) or disable (*NF_CALL_IPTABLES* == 0)
674 * iptables hooks on the bridge.
675 *
676 * The default value is 0 (disabled).
677 *
678 * @IFLA_BR_NF_CALL_IP6TABLES
679 * Enable (*NF_CALL_IP6TABLES* > 0) or disable (*NF_CALL_IP6TABLES* == 0)
680 * ip6tables hooks on the bridge.
681 *
682 * The default value is 0 (disabled).
683 *
684 * @IFLA_BR_NF_CALL_ARPTABLES
685 * Enable (*NF_CALL_ARPTABLES* > 0) or disable (*NF_CALL_ARPTABLES* == 0)
686 * arptables hooks on the bridge.
687 *
688 * The default value is 0 (disabled).
689 *
690 * @IFLA_BR_VLAN_DEFAULT_PVID
691 * VLAN ID applied to untagged and priority-tagged incoming packets.
692 *
693 * The default value is 1. Setting to the special value 0 makes all ports of
694 * this bridge not have a PVID by default, which means that they will
695 * not accept VLAN-untagged traffic.
696 *
697 * @IFLA_BR_PAD
698 * Bridge attribute padding type for netlink message.
699 *
700 * @IFLA_BR_VLAN_STATS_ENABLED
701 * Enable (*IFLA_BR_VLAN_STATS_ENABLED* == 1) or disable
702 * (*IFLA_BR_VLAN_STATS_ENABLED* == 0) per-VLAN stats accounting.
703 *
704 * The default value is 0 (disabled).
705 *
706 * @IFLA_BR_MCAST_STATS_ENABLED
707 * Enable (*IFLA_BR_MCAST_STATS_ENABLED* > 0) or disable
708 * (*IFLA_BR_MCAST_STATS_ENABLED* == 0) multicast (IGMP/MLD) stats
709 * accounting.
710 *
711 * The default value is 0 (disabled).
712 *
713 * @IFLA_BR_MCAST_IGMP_VERSION
714 * Set the IGMP version.
715 *
716 * The valid values are 2 and 3. The default value is 2.
717 *
718 * @IFLA_BR_MCAST_MLD_VERSION
719 * Set the MLD version.
720 *
721 * The valid values are 1 and 2. The default value is 1.
722 *
723 * @IFLA_BR_VLAN_STATS_PER_PORT
724 * Enable (*IFLA_BR_VLAN_STATS_PER_PORT* == 1) or disable
725 * (*IFLA_BR_VLAN_STATS_PER_PORT* == 0) per-VLAN per-port stats accounting.
726 * Can be changed only when there are no port VLANs configured.
727 *
728 * The default value is 0 (disabled).
729 *
730 * @IFLA_BR_MULTI_BOOLOPT
731 * The multi_boolopt is used to control new boolean options to avoid adding
732 * new netlink attributes. You can look at ``enum br_boolopt_id`` for those
733 * options.
734 *
735 * @IFLA_BR_MCAST_QUERIER_STATE
736 * Bridge mcast querier states, read only.
737 *
738 * @IFLA_BR_FDB_N_LEARNED
739 * The number of dynamically learned FDB entries for the current bridge,
740 * read only.
741 *
742 * @IFLA_BR_FDB_MAX_LEARNED
743 * Set the number of max dynamically learned FDB entries for the current
744 * bridge.
745 */
e5c3ea5c
JP
746enum {
747 IFLA_BR_UNSPEC,
748 IFLA_BR_FORWARD_DELAY,
749 IFLA_BR_HELLO_TIME,
750 IFLA_BR_MAX_AGE,
af615762
JT
751 IFLA_BR_AGEING_TIME,
752 IFLA_BR_STP_STATE,
753 IFLA_BR_PRIORITY,
a7854037 754 IFLA_BR_VLAN_FILTERING,
d2d427b3 755 IFLA_BR_VLAN_PROTOCOL,
7910228b 756 IFLA_BR_GROUP_FWD_MASK,
5127c81f 757 IFLA_BR_ROOT_ID,
7599a220 758 IFLA_BR_BRIDGE_ID,
8762ba68 759 IFLA_BR_ROOT_PORT,
684dd248 760 IFLA_BR_ROOT_PATH_COST,
ed416309
NA
761 IFLA_BR_TOPOLOGY_CHANGE,
762 IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
d76bd14e
NA
763 IFLA_BR_HELLO_TIMER,
764 IFLA_BR_TCN_TIMER,
765 IFLA_BR_TOPOLOGY_CHANGE_TIMER,
766 IFLA_BR_GC_TIMER,
111189ab 767 IFLA_BR_GROUP_ADDR,
150217c6 768 IFLA_BR_FDB_FLUSH,
a9a6bc70 769 IFLA_BR_MCAST_ROUTER,
89126327 770 IFLA_BR_MCAST_SNOOPING,
295141d9 771 IFLA_BR_MCAST_QUERY_USE_IFADDR,
ba062d7c 772 IFLA_BR_MCAST_QUERIER,
431db3c0 773 IFLA_BR_MCAST_HASH_ELASTICITY,
858079fd 774 IFLA_BR_MCAST_HASH_MAX,
79b859f5 775 IFLA_BR_MCAST_LAST_MEMBER_CNT,
b89e6bab 776 IFLA_BR_MCAST_STARTUP_QUERY_CNT,
7e4df51e
NA
777 IFLA_BR_MCAST_LAST_MEMBER_INTVL,
778 IFLA_BR_MCAST_MEMBERSHIP_INTVL,
779 IFLA_BR_MCAST_QUERIER_INTVL,
780 IFLA_BR_MCAST_QUERY_INTVL,
781 IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
782 IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
93870cc0
NA
783 IFLA_BR_NF_CALL_IPTABLES,
784 IFLA_BR_NF_CALL_IP6TABLES,
785 IFLA_BR_NF_CALL_ARPTABLES,
0f963b75 786 IFLA_BR_VLAN_DEFAULT_PVID,
12a0faa3 787 IFLA_BR_PAD,
6dada9b1 788 IFLA_BR_VLAN_STATS_ENABLED,
1080ab95 789 IFLA_BR_MCAST_STATS_ENABLED,
5e923585 790 IFLA_BR_MCAST_IGMP_VERSION,
aa2ae3e7 791 IFLA_BR_MCAST_MLD_VERSION,
9163a0fc 792 IFLA_BR_VLAN_STATS_PER_PORT,
a428afe8 793 IFLA_BR_MULTI_BOOLOPT,
c7fa1d9b 794 IFLA_BR_MCAST_QUERIER_STATE,
ddd1ad68
JN
795 IFLA_BR_FDB_N_LEARNED,
796 IFLA_BR_FDB_MAX_LEARNED,
e5c3ea5c
JP
797 __IFLA_BR_MAX,
798};
799
800#define IFLA_BR_MAX (__IFLA_BR_MAX - 1)
801
5127c81f
NA
802struct ifla_bridge_id {
803 __u8 prio[2];
804 __u8 addr[6]; /* ETH_ALEN */
805};
806
8c4bafdb
HL
807/**
808 * DOC: Bridge mode enum definition
809 *
810 * @BRIDGE_MODE_HAIRPIN
811 * Controls whether traffic may be sent back out of the port on which it
812 * was received. This option is also called reflective relay mode, and is
813 * used to support basic VEPA (Virtual Ethernet Port Aggregator)
814 * capabilities. By default, this flag is turned off and the bridge will
815 * not forward traffic back out of the receiving port.
816 */
25c71c75 817enum {
818 BRIDGE_MODE_UNSPEC,
819 BRIDGE_MODE_HAIRPIN,
820};
821
8c4bafdb
HL
822/**
823 * DOC: Bridge port enum definition
824 *
825 * @IFLA_BRPORT_STATE
826 * The operation state of the port. Here are the valid values.
827 *
828 * * 0 - port is in STP *DISABLED* state. Make this port completely
829 * inactive for STP. This is also called BPDU filter and could be used
830 * to disable STP on an untrusted port, like a leaf virtual device.
831 * The traffic forwarding is also stopped on this port.
832 * * 1 - port is in STP *LISTENING* state. Only valid if STP is enabled
833 * on the bridge. In this state the port listens for STP BPDUs and
834 * drops all other traffic frames.
835 * * 2 - port is in STP *LEARNING* state. Only valid if STP is enabled on
836 * the bridge. In this state the port will accept traffic only for the
837 * purpose of updating MAC address tables.
838 * * 3 - port is in STP *FORWARDING* state. Port is fully active.
839 * * 4 - port is in STP *BLOCKING* state. Only valid if STP is enabled on
840 * the bridge. This state is used during the STP election process.
841 * In this state, port will only process STP BPDUs.
842 *
843 * @IFLA_BRPORT_PRIORITY
844 * The STP port priority. The valid values are between 0 and 255.
845 *
846 * @IFLA_BRPORT_COST
847 * The STP path cost of the port. The valid values are between 1 and 65535.
848 *
849 * @IFLA_BRPORT_MODE
850 * Set the bridge port mode. See *BRIDGE_MODE_HAIRPIN* for more details.
851 *
852 * @IFLA_BRPORT_GUARD
853 * Controls whether STP BPDUs will be processed by the bridge port. By
854 * default, the flag is turned off to allow BPDU processing. Turning this
855 * flag on will disable the bridge port if a STP BPDU packet is received.
856 *
857 * If the bridge has Spanning Tree enabled, hostile devices on the network
858 * may send BPDU on a port and cause network failure. Setting *guard on*
859 * will detect and stop this by disabling the port. The port will be
860 * restarted if the link is brought down, or removed and reattached.
861 *
862 * @IFLA_BRPORT_PROTECT
863 * Controls whether a given port is allowed to become a root port or not.
864 * Only used when STP is enabled on the bridge. By default the flag is off.
865 *
866 * This feature is also called root port guard. If BPDU is received from a
867 * leaf (edge) port, it should not be elected as root port. This could
868 * be used if using STP on a bridge and the downstream bridges are not fully
869 * trusted; this prevents a hostile guest from rerouting traffic.
870 *
871 * @IFLA_BRPORT_FAST_LEAVE
872 * This flag allows the bridge to immediately stop multicast traffic
873 * forwarding on a port that receives an IGMP Leave message. It is only used
874 * when IGMP snooping is enabled on the bridge. By default the flag is off.
875 *
876 * @IFLA_BRPORT_LEARNING
877 * Controls whether a given port will learn *source* MAC addresses from
878 * received traffic or not. Also controls whether dynamic FDB entries
879 * (which can also be added by software) will be refreshed by incoming
880 * traffic. By default this flag is on.
881 *
882 * @IFLA_BRPORT_UNICAST_FLOOD
883 * Controls whether unicast traffic for which there is no FDB entry will
884 * be flooded towards this port. By default this flag is on.
885 *
886 * @IFLA_BRPORT_PROXYARP
887 * Enable proxy ARP on this port.
888 *
889 * @IFLA_BRPORT_LEARNING_SYNC
890 * Controls whether a given port will sync MAC addresses learned on device
891 * port to bridge FDB.
892 *
893 * @IFLA_BRPORT_PROXYARP_WIFI
894 * Enable proxy ARP on this port which meets extended requirements by
895 * IEEE 802.11 and Hotspot 2.0 specifications.
896 *
897 * @IFLA_BRPORT_ROOT_ID
898 *
899 * @IFLA_BRPORT_BRIDGE_ID
900 *
901 * @IFLA_BRPORT_DESIGNATED_PORT
902 *
903 * @IFLA_BRPORT_DESIGNATED_COST
904 *
905 * @IFLA_BRPORT_ID
906 *
907 * @IFLA_BRPORT_NO
908 *
909 * @IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
910 *
911 * @IFLA_BRPORT_CONFIG_PENDING
912 *
913 * @IFLA_BRPORT_MESSAGE_AGE_TIMER
914 *
915 * @IFLA_BRPORT_FORWARD_DELAY_TIMER
916 *
917 * @IFLA_BRPORT_HOLD_TIMER
918 *
919 * @IFLA_BRPORT_FLUSH
920 * Flush bridge ports' fdb dynamic entries.
921 *
922 * @IFLA_BRPORT_MULTICAST_ROUTER
923 * Configure the port's multicast router presence. A port with
924 * a multicast router will receive all multicast traffic.
925 * The valid values are:
926 *
927 * * 0 disable multicast routers on this port
928 * * 1 let the system detect the presence of routers (default)
929 * * 2 permanently enable multicast traffic forwarding on this port
930 * * 3 enable multicast routers temporarily on this port, not depending
931 * on incoming queries.
932 *
933 * @IFLA_BRPORT_PAD
934 *
935 * @IFLA_BRPORT_MCAST_FLOOD
936 * Controls whether a given port will flood multicast traffic for which
937 * there is no MDB entry. By default this flag is on.
938 *
939 * @IFLA_BRPORT_MCAST_TO_UCAST
940 * Controls whether a given port will replicate packets using unicast
941 * instead of multicast. By default this flag is off.
942 *
943 * This is done by copying the packet per host and changing the multicast
944 * destination MAC to a unicast one accordingly.
945 *
946 * *mcast_to_unicast* works on top of the multicast snooping feature of the
947 * bridge. Which means unicast copies are only delivered to hosts which
948 * are interested in unicast and signaled this via IGMP/MLD reports previously.
949 *
950 * This feature is intended for interface types which have a more reliable
951 * and/or efficient way to deliver unicast packets than broadcast ones
952 * (e.g. WiFi).
953 *
954 * However, it should only be enabled on interfaces where no IGMPv2/MLDv1
955 * report suppression takes place. IGMP/MLD report suppression issue is
956 * usually overcome by the network daemon (supplicant) enabling AP isolation
957 * and by that separating all STAs.
958 *
959 * Delivery of STA-to-STA IP multicast is made possible again by enabling
960 * and utilizing the bridge hairpin mode, which considers the incoming port
961 * as a potential outgoing port, too (see *BRIDGE_MODE_HAIRPIN* option).
962 * Hairpin mode is performed after multicast snooping, therefore leading
963 * to only deliver reports to STAs running a multicast router.
964 *
965 * @IFLA_BRPORT_VLAN_TUNNEL
966 * Controls whether vlan to tunnel mapping is enabled on the port.
967 * By default this flag is off.
968 *
969 * @IFLA_BRPORT_BCAST_FLOOD
970 * Controls flooding of broadcast traffic on the given port. By default
971 * this flag is on.
972 *
973 * @IFLA_BRPORT_GROUP_FWD_MASK
974 * Set the group forward mask. This is a bitmask that is applied to
975 * decide whether to forward incoming frames destined to link-local
976 * addresses. The addresses of the form are 01:80:C2:00:00:0X (defaults
977 * to 0, which means the bridge does not forward any link-local frames
978 * coming on this port).
979 *
980 * @IFLA_BRPORT_NEIGH_SUPPRESS
981 * Controls whether neighbor discovery (arp and nd) proxy and suppression
982 * is enabled on the port. By default this flag is off.
983 *
984 * @IFLA_BRPORT_ISOLATED
985 * Controls whether a given port will be isolated, which means it will be
986 * able to communicate with non-isolated ports only. By default this
987 * flag is off.
988 *
989 * @IFLA_BRPORT_BACKUP_PORT
990 * Set a backup port. If the port loses carrier all traffic will be
991 * redirected to the configured backup port. Set the value to 0 to disable
992 * it.
993 *
994 * @IFLA_BRPORT_MRP_RING_OPEN
995 *
996 * @IFLA_BRPORT_MRP_IN_OPEN
997 *
998 * @IFLA_BRPORT_MCAST_EHT_HOSTS_LIMIT
999 * The number of per-port EHT hosts limit. The default value is 512.
1000 * Setting to 0 is not allowed.
1001 *
1002 * @IFLA_BRPORT_MCAST_EHT_HOSTS_CNT
1003 * The current number of tracked hosts, read only.
1004 *
1005 * @IFLA_BRPORT_LOCKED
1006 * Controls whether a port will be locked, meaning that hosts behind the
1007 * port will not be able to communicate through the port unless an FDB
1008 * entry with the unit's MAC address is in the FDB. The common use case is
1009 * that hosts are allowed access through authentication with the IEEE 802.1X
1010 * protocol or based on whitelists. By default this flag is off.
1011 *
1012 * Please note that secure 802.1X deployments should always use the
1013 * *BR_BOOLOPT_NO_LL_LEARN* flag, to not permit the bridge to populate its
1014 * FDB based on link-local (EAPOL) traffic received on the port.
1015 *
1016 * @IFLA_BRPORT_MAB
1017 * Controls whether a port will use MAC Authentication Bypass (MAB), a
1018 * technique through which select MAC addresses may be allowed on a locked
1019 * port, without using 802.1X authentication. Packets with an unknown source
1020 * MAC address generates a "locked" FDB entry on the incoming bridge port.
1021 * The common use case is for user space to react to these bridge FDB
1022 * notifications and optionally replace the locked FDB entry with a normal
1023 * one, allowing traffic to pass for whitelisted MAC addresses.
1024 *
1025 * Setting this flag also requires *IFLA_BRPORT_LOCKED* and
1026 * *IFLA_BRPORT_LEARNING*. *IFLA_BRPORT_LOCKED* ensures that unauthorized
1027 * data packets are dropped, and *IFLA_BRPORT_LEARNING* allows the dynamic
1028 * FDB entries installed by user space (as replacements for the locked FDB
1029 * entries) to be refreshed and/or aged out.
1030 *
1031 * @IFLA_BRPORT_MCAST_N_GROUPS
1032 *
1033 * @IFLA_BRPORT_MCAST_MAX_GROUPS
1034 * Sets the maximum number of MDB entries that can be registered for a
1035 * given port. Attempts to register more MDB entries at the port than this
1036 * limit allows will be rejected, whether they are done through netlink
1037 * (e.g. the bridge tool), or IGMP or MLD membership reports. Setting a
1038 * limit of 0 disables the limit. The default value is 0.
1039 *
1040 * @IFLA_BRPORT_NEIGH_VLAN_SUPPRESS
1041 * Controls whether neighbor discovery (arp and nd) proxy and suppression is
1042 * enabled for a given port. By default this flag is off.
1043 *
1044 * Note that this option only takes effect when *IFLA_BRPORT_NEIGH_SUPPRESS*
1045 * is enabled for a given port.
1046 *
1047 * @IFLA_BRPORT_BACKUP_NHID
1048 * The FDB nexthop object ID to attach to packets being redirected to a
1049 * backup port that has VLAN tunnel mapping enabled (via the
1050 * *IFLA_BRPORT_VLAN_TUNNEL* option). Setting a value of 0 (default) has
1051 * the effect of not attaching any ID.
1052 */
25c71c75 1053enum {
1054 IFLA_BRPORT_UNSPEC,
1055 IFLA_BRPORT_STATE, /* Spanning tree state */
1056 IFLA_BRPORT_PRIORITY, /* " priority */
1057 IFLA_BRPORT_COST, /* " cost */
1058 IFLA_BRPORT_MODE, /* mode (hairpin) */
a2e01a65 1059 IFLA_BRPORT_GUARD, /* bpdu guard */
1007dd1a 1060 IFLA_BRPORT_PROTECT, /* root port protection */
c2d3babf 1061 IFLA_BRPORT_FAST_LEAVE, /* multicast fast leave */
9ba18891 1062 IFLA_BRPORT_LEARNING, /* mac learning */
867a5943 1063 IFLA_BRPORT_UNICAST_FLOOD, /* flood unicast traffic */
95850116 1064 IFLA_BRPORT_PROXYARP, /* proxy ARP */
efacacda 1065 IFLA_BRPORT_LEARNING_SYNC, /* mac learning sync from device */
842a9ae0 1066 IFLA_BRPORT_PROXYARP_WIFI, /* proxy ARP for Wi-Fi */
4ebc7660 1067 IFLA_BRPORT_ROOT_ID, /* designated root */
80df9a26 1068 IFLA_BRPORT_BRIDGE_ID, /* designated bridge */
96f94e7f
NA
1069 IFLA_BRPORT_DESIGNATED_PORT,
1070 IFLA_BRPORT_DESIGNATED_COST,
42d452c4
NA
1071 IFLA_BRPORT_ID,
1072 IFLA_BRPORT_NO,
e08e838a
NA
1073 IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
1074 IFLA_BRPORT_CONFIG_PENDING,
61c0a9a8
NA
1075 IFLA_BRPORT_MESSAGE_AGE_TIMER,
1076 IFLA_BRPORT_FORWARD_DELAY_TIMER,
1077 IFLA_BRPORT_HOLD_TIMER,
9b0c6e4d 1078 IFLA_BRPORT_FLUSH,
5d6ae479 1079 IFLA_BRPORT_MULTICAST_ROUTER,
12a0faa3 1080 IFLA_BRPORT_PAD,
b6cb5ac8 1081 IFLA_BRPORT_MCAST_FLOOD,
6db6f0ea 1082 IFLA_BRPORT_MCAST_TO_UCAST,
b3c7ef0a 1083 IFLA_BRPORT_VLAN_TUNNEL,
99f906e9 1084 IFLA_BRPORT_BCAST_FLOOD,
5af48b59 1085 IFLA_BRPORT_GROUP_FWD_MASK,
821f1b21 1086 IFLA_BRPORT_NEIGH_SUPPRESS,
7d850abd 1087 IFLA_BRPORT_ISOLATED,
2756f68c 1088 IFLA_BRPORT_BACKUP_PORT,
3e54442c 1089 IFLA_BRPORT_MRP_RING_OPEN,
ffb3adba 1090 IFLA_BRPORT_MRP_IN_OPEN,
2dba407f
NA
1091 IFLA_BRPORT_MCAST_EHT_HOSTS_LIMIT,
1092 IFLA_BRPORT_MCAST_EHT_HOSTS_CNT,
a21d9a67 1093 IFLA_BRPORT_LOCKED,
a35ec8e3 1094 IFLA_BRPORT_MAB,
a1aee20d
PM
1095 IFLA_BRPORT_MCAST_N_GROUPS,
1096 IFLA_BRPORT_MCAST_MAX_GROUPS,
160656d7 1097 IFLA_BRPORT_NEIGH_VLAN_SUPPRESS,
29cfb2aa 1098 IFLA_BRPORT_BACKUP_NHID,
25c71c75 1099 __IFLA_BRPORT_MAX
1100};
1101#define IFLA_BRPORT_MAX (__IFLA_BRPORT_MAX - 1)
1102
607ca46e
DH
1103struct ifla_cacheinfo {
1104 __u32 max_reasm_len;
1105 __u32 tstamp; /* ipv6InterfaceTable updated timestamp */
1106 __u32 reachable_time;
1107 __u32 retrans_time;
1108};
1109
1110enum {
1111 IFLA_INFO_UNSPEC,
1112 IFLA_INFO_KIND,
1113 IFLA_INFO_DATA,
1114 IFLA_INFO_XSTATS,
ba7d49b1
JP
1115 IFLA_INFO_SLAVE_KIND,
1116 IFLA_INFO_SLAVE_DATA,
607ca46e
DH
1117 __IFLA_INFO_MAX,
1118};
1119
1120#define IFLA_INFO_MAX (__IFLA_INFO_MAX - 1)
1121
1122/* VLAN section */
1123
1124enum {
1125 IFLA_VLAN_UNSPEC,
1126 IFLA_VLAN_ID,
1127 IFLA_VLAN_FLAGS,
1128 IFLA_VLAN_EGRESS_QOS,
1129 IFLA_VLAN_INGRESS_QOS,
8ad227ff 1130 IFLA_VLAN_PROTOCOL,
607ca46e
DH
1131 __IFLA_VLAN_MAX,
1132};
1133
1134#define IFLA_VLAN_MAX (__IFLA_VLAN_MAX - 1)
1135
1136struct ifla_vlan_flags {
1137 __u32 flags;
1138 __u32 mask;
1139};
1140
1141enum {
1142 IFLA_VLAN_QOS_UNSPEC,
1143 IFLA_VLAN_QOS_MAPPING,
1144 __IFLA_VLAN_QOS_MAX
1145};
1146
1147#define IFLA_VLAN_QOS_MAX (__IFLA_VLAN_QOS_MAX - 1)
1148
1149struct ifla_vlan_qos_mapping {
1150 __u32 from;
1151 __u32 to;
1152};
1153
1154/* MACVLAN section */
1155enum {
1156 IFLA_MACVLAN_UNSPEC,
1157 IFLA_MACVLAN_MODE,
1158 IFLA_MACVLAN_FLAGS,
79cf79ab
MB
1159 IFLA_MACVLAN_MACADDR_MODE,
1160 IFLA_MACVLAN_MACADDR,
1161 IFLA_MACVLAN_MACADDR_DATA,
1162 IFLA_MACVLAN_MACADDR_COUNT,
d4bff72c
TK
1163 IFLA_MACVLAN_BC_QUEUE_LEN,
1164 IFLA_MACVLAN_BC_QUEUE_LEN_USED,
954d1fa1 1165 IFLA_MACVLAN_BC_CUTOFF,
607ca46e
DH
1166 __IFLA_MACVLAN_MAX,
1167};
1168
1169#define IFLA_MACVLAN_MAX (__IFLA_MACVLAN_MAX - 1)
1170
1171enum macvlan_mode {
1172 MACVLAN_MODE_PRIVATE = 1, /* don't talk to other macvlans */
1173 MACVLAN_MODE_VEPA = 2, /* talk to other ports through ext bridge */
1174 MACVLAN_MODE_BRIDGE = 4, /* talk to bridge ports directly */
1175 MACVLAN_MODE_PASSTHRU = 8,/* take over the underlying device */
79cf79ab
MB
1176 MACVLAN_MODE_SOURCE = 16,/* use source MAC address list to assign */
1177};
1178
1179enum macvlan_macaddr_mode {
1180 MACVLAN_MACADDR_ADD,
1181 MACVLAN_MACADDR_DEL,
1182 MACVLAN_MACADDR_FLUSH,
1183 MACVLAN_MACADDR_SET,
607ca46e
DH
1184};
1185
1186#define MACVLAN_FLAG_NOPROMISC 1
427f0c8c 1187#define MACVLAN_FLAG_NODST 2 /* skip dst macvlan if matching src macvlan */
607ca46e 1188
4e3c8992
DA
1189/* VRF section */
1190enum {
1191 IFLA_VRF_UNSPEC,
1192 IFLA_VRF_TABLE,
1193 __IFLA_VRF_MAX
1194};
1195
1196#define IFLA_VRF_MAX (__IFLA_VRF_MAX - 1)
1197
67eb0331
DA
1198enum {
1199 IFLA_VRF_PORT_UNSPEC,
1200 IFLA_VRF_PORT_TABLE,
1201 __IFLA_VRF_PORT_MAX
1202};
1203
1204#define IFLA_VRF_PORT_MAX (__IFLA_VRF_PORT_MAX - 1)
1205
dece8d2b
SD
1206/* MACSEC section */
1207enum {
1208 IFLA_MACSEC_UNSPEC,
1209 IFLA_MACSEC_SCI,
1210 IFLA_MACSEC_PORT,
1211 IFLA_MACSEC_ICV_LEN,
1212 IFLA_MACSEC_CIPHER_SUITE,
1213 IFLA_MACSEC_WINDOW,
1214 IFLA_MACSEC_ENCODING_SA,
1215 IFLA_MACSEC_ENCRYPT,
1216 IFLA_MACSEC_PROTECT,
1217 IFLA_MACSEC_INC_SCI,
1218 IFLA_MACSEC_ES,
1219 IFLA_MACSEC_SCB,
1220 IFLA_MACSEC_REPLAY_PROTECT,
1221 IFLA_MACSEC_VALIDATION,
f60d94c0 1222 IFLA_MACSEC_PAD,
791bb3fc 1223 IFLA_MACSEC_OFFLOAD,
dece8d2b
SD
1224 __IFLA_MACSEC_MAX,
1225};
1226
1227#define IFLA_MACSEC_MAX (__IFLA_MACSEC_MAX - 1)
1228
f203b76d
SK
1229/* XFRM section */
1230enum {
1231 IFLA_XFRM_UNSPEC,
1232 IFLA_XFRM_LINK,
1233 IFLA_XFRM_IF_ID,
abc340b3 1234 IFLA_XFRM_COLLECT_METADATA,
f203b76d
SK
1235 __IFLA_XFRM_MAX
1236};
1237
1238#define IFLA_XFRM_MAX (__IFLA_XFRM_MAX - 1)
dece8d2b
SD
1239
1240enum macsec_validation_type {
1241 MACSEC_VALIDATE_DISABLED = 0,
1242 MACSEC_VALIDATE_CHECK = 1,
1243 MACSEC_VALIDATE_STRICT = 2,
1244 __MACSEC_VALIDATE_END,
1245 MACSEC_VALIDATE_MAX = __MACSEC_VALIDATE_END - 1,
1246};
1247
76564261
AT
1248enum macsec_offload {
1249 MACSEC_OFFLOAD_OFF = 0,
1250 MACSEC_OFFLOAD_PHY = 1,
21114b7f 1251 MACSEC_OFFLOAD_MAC = 2,
76564261
AT
1252 __MACSEC_OFFLOAD_END,
1253 MACSEC_OFFLOAD_MAX = __MACSEC_OFFLOAD_END - 1,
1254};
1255
2ad7bf36
MB
1256/* IPVLAN section */
1257enum {
1258 IFLA_IPVLAN_UNSPEC,
1259 IFLA_IPVLAN_MODE,
a190d04d 1260 IFLA_IPVLAN_FLAGS,
2ad7bf36
MB
1261 __IFLA_IPVLAN_MAX
1262};
1263
1264#define IFLA_IPVLAN_MAX (__IFLA_IPVLAN_MAX - 1)
1265
1266enum ipvlan_mode {
1267 IPVLAN_MODE_L2 = 0,
1268 IPVLAN_MODE_L3,
4fbae7d8 1269 IPVLAN_MODE_L3S,
2ad7bf36
MB
1270 IPVLAN_MODE_MAX
1271};
1272
a190d04d 1273#define IPVLAN_F_PRIVATE 0x01
fe89aa6b 1274#define IPVLAN_F_VEPA 0x02
a190d04d 1275
7b8135f4
RP
1276/* Tunnel RTM header */
1277struct tunnel_msg {
1278 __u8 family;
445b2f36 1279 __u8 flags;
7b8135f4
RP
1280 __u16 reserved2;
1281 __u32 ifindex;
1282};
1283
35dfaad7
DB
1284/* netkit section */
1285enum netkit_action {
1286 NETKIT_NEXT = -1,
1287 NETKIT_PASS = 0,
1288 NETKIT_DROP = 2,
1289 NETKIT_REDIRECT = 7,
1290};
1291
1292enum netkit_mode {
1293 NETKIT_L2,
1294 NETKIT_L3,
1295};
1296
83134ef4
DB
1297/* NETKIT_SCRUB_NONE leaves clearing skb->{mark,priority} up to
1298 * the BPF program if attached. This also means the latter can
1299 * consume the two fields if they were populated earlier.
1300 *
1301 * NETKIT_SCRUB_DEFAULT zeroes skb->{mark,priority} fields before
1302 * invoking the attached BPF program when the peer device resides
1303 * in a different network namespace. This is the default behavior.
1304 */
1305enum netkit_scrub {
1306 NETKIT_SCRUB_NONE,
1307 NETKIT_SCRUB_DEFAULT,
1308};
1309
35dfaad7
DB
1310enum {
1311 IFLA_NETKIT_UNSPEC,
1312 IFLA_NETKIT_PEER_INFO,
1313 IFLA_NETKIT_PRIMARY,
1314 IFLA_NETKIT_POLICY,
1315 IFLA_NETKIT_PEER_POLICY,
1316 IFLA_NETKIT_MODE,
83134ef4
DB
1317 IFLA_NETKIT_SCRUB,
1318 IFLA_NETKIT_PEER_SCRUB,
b9ed315d
DB
1319 IFLA_NETKIT_HEADROOM,
1320 IFLA_NETKIT_TAILROOM,
35dfaad7
DB
1321 __IFLA_NETKIT_MAX,
1322};
1323#define IFLA_NETKIT_MAX (__IFLA_NETKIT_MAX - 1)
1324
607ca46e 1325/* VXLAN section */
445b2f36
NA
1326
1327/* include statistics in the dump */
1328#define TUNNEL_MSG_FLAG_STATS 0x01
1329
1330#define TUNNEL_MSG_VALID_USER_FLAGS TUNNEL_MSG_FLAG_STATS
1331
1332/* Embedded inside VXLAN_VNIFILTER_ENTRY_STATS */
1333enum {
1334 VNIFILTER_ENTRY_STATS_UNSPEC,
1335 VNIFILTER_ENTRY_STATS_RX_BYTES,
1336 VNIFILTER_ENTRY_STATS_RX_PKTS,
1337 VNIFILTER_ENTRY_STATS_RX_DROPS,
1338 VNIFILTER_ENTRY_STATS_RX_ERRORS,
1339 VNIFILTER_ENTRY_STATS_TX_BYTES,
1340 VNIFILTER_ENTRY_STATS_TX_PKTS,
1341 VNIFILTER_ENTRY_STATS_TX_DROPS,
1342 VNIFILTER_ENTRY_STATS_TX_ERRORS,
1343 VNIFILTER_ENTRY_STATS_PAD,
1344 __VNIFILTER_ENTRY_STATS_MAX
1345};
1346#define VNIFILTER_ENTRY_STATS_MAX (__VNIFILTER_ENTRY_STATS_MAX - 1)
1347
7b8135f4
RP
1348enum {
1349 VXLAN_VNIFILTER_ENTRY_UNSPEC,
1350 VXLAN_VNIFILTER_ENTRY_START,
1351 VXLAN_VNIFILTER_ENTRY_END,
1352 VXLAN_VNIFILTER_ENTRY_GROUP,
1353 VXLAN_VNIFILTER_ENTRY_GROUP6,
445b2f36 1354 VXLAN_VNIFILTER_ENTRY_STATS,
7b8135f4
RP
1355 __VXLAN_VNIFILTER_ENTRY_MAX
1356};
1357#define VXLAN_VNIFILTER_ENTRY_MAX (__VXLAN_VNIFILTER_ENTRY_MAX - 1)
1358
1359enum {
1360 VXLAN_VNIFILTER_UNSPEC,
1361 VXLAN_VNIFILTER_ENTRY,
1362 __VXLAN_VNIFILTER_MAX
1363};
1364#define VXLAN_VNIFILTER_MAX (__VXLAN_VNIFILTER_MAX - 1)
1365
607ca46e
DH
1366enum {
1367 IFLA_VXLAN_UNSPEC,
1368 IFLA_VXLAN_ID,
5d174dd8 1369 IFLA_VXLAN_GROUP, /* group or remote address */
607ca46e
DH
1370 IFLA_VXLAN_LINK,
1371 IFLA_VXLAN_LOCAL,
1372 IFLA_VXLAN_TTL,
1373 IFLA_VXLAN_TOS,
1374 IFLA_VXLAN_LEARNING,
1375 IFLA_VXLAN_AGEING,
1376 IFLA_VXLAN_LIMIT,
823aa873 1377 IFLA_VXLAN_PORT_RANGE, /* source port */
e4f67add
DS
1378 IFLA_VXLAN_PROXY,
1379 IFLA_VXLAN_RSC,
1380 IFLA_VXLAN_L2MISS,
1381 IFLA_VXLAN_L3MISS,
823aa873 1382 IFLA_VXLAN_PORT, /* destination port */
e4c7ed41
CW
1383 IFLA_VXLAN_GROUP6,
1384 IFLA_VXLAN_LOCAL6,
359a0ea9
TH
1385 IFLA_VXLAN_UDP_CSUM,
1386 IFLA_VXLAN_UDP_ZERO_CSUM6_TX,
1387 IFLA_VXLAN_UDP_ZERO_CSUM6_RX,
dfd8645e
TH
1388 IFLA_VXLAN_REMCSUM_TX,
1389 IFLA_VXLAN_REMCSUM_RX,
3511494c 1390 IFLA_VXLAN_GBP,
0ace2ca8 1391 IFLA_VXLAN_REMCSUM_NOPARTIAL,
f8a9b1bc 1392 IFLA_VXLAN_COLLECT_METADATA,
e7f70af1 1393 IFLA_VXLAN_LABEL,
e1e5314d 1394 IFLA_VXLAN_GPE,
72f6d71e 1395 IFLA_VXLAN_TTL_INHERIT,
b4d30697 1396 IFLA_VXLAN_DF,
7b8135f4 1397 IFLA_VXLAN_VNIFILTER, /* only applicable with COLLECT_METADATA mode */
69474a8a 1398 IFLA_VXLAN_LOCALBYPASS,
c6e9dba3 1399 IFLA_VXLAN_LABEL_POLICY, /* IPv6 flow label policy; ifla_vxlan_label_policy */
6c11379b 1400 IFLA_VXLAN_RESERVED_BITS,
607ca46e
DH
1401 __IFLA_VXLAN_MAX
1402};
1403#define IFLA_VXLAN_MAX (__IFLA_VXLAN_MAX - 1)
1404
1405struct ifla_vxlan_port_range {
1406 __be16 low;
1407 __be16 high;
1408};
1409
b4d30697
SB
1410enum ifla_vxlan_df {
1411 VXLAN_DF_UNSET = 0,
1412 VXLAN_DF_SET,
1413 VXLAN_DF_INHERIT,
1414 __VXLAN_DF_END,
1415 VXLAN_DF_MAX = __VXLAN_DF_END - 1,
1416};
1417
c6e9dba3
AL
1418enum ifla_vxlan_label_policy {
1419 VXLAN_LABEL_FIXED = 0,
1420 VXLAN_LABEL_INHERIT = 1,
1421 __VXLAN_LABEL_END,
1422 VXLAN_LABEL_MAX = __VXLAN_LABEL_END - 1,
1423};
1424
2d07dc79
JL
1425/* GENEVE section */
1426enum {
1427 IFLA_GENEVE_UNSPEC,
1428 IFLA_GENEVE_ID,
1429 IFLA_GENEVE_REMOTE,
8760ce58 1430 IFLA_GENEVE_TTL,
d8951125 1431 IFLA_GENEVE_TOS,
cd7918b3 1432 IFLA_GENEVE_PORT, /* destination port */
e305ac6c 1433 IFLA_GENEVE_COLLECT_METADATA,
8ed66f0e 1434 IFLA_GENEVE_REMOTE6,
abe492b4
TH
1435 IFLA_GENEVE_UDP_CSUM,
1436 IFLA_GENEVE_UDP_ZERO_CSUM6_TX,
1437 IFLA_GENEVE_UDP_ZERO_CSUM6_RX,
8eb3b995 1438 IFLA_GENEVE_LABEL,
52d0d404 1439 IFLA_GENEVE_TTL_INHERIT,
a025fb5f 1440 IFLA_GENEVE_DF,
435fe1c0 1441 IFLA_GENEVE_INNER_PROTO_INHERIT,
e1f95b19 1442 IFLA_GENEVE_PORT_RANGE,
2d07dc79
JL
1443 __IFLA_GENEVE_MAX
1444};
1445#define IFLA_GENEVE_MAX (__IFLA_GENEVE_MAX - 1)
1446
a025fb5f
SB
1447enum ifla_geneve_df {
1448 GENEVE_DF_UNSET = 0,
1449 GENEVE_DF_SET,
1450 GENEVE_DF_INHERIT,
1451 __GENEVE_DF_END,
1452 GENEVE_DF_MAX = __GENEVE_DF_END - 1,
1453};
1454
e1f95b19
DB
1455struct ifla_geneve_port_range {
1456 __be16 low;
1457 __be16 high;
1458};
1459
571912c6
MV
1460/* Bareudp section */
1461enum {
1462 IFLA_BAREUDP_UNSPEC,
1463 IFLA_BAREUDP_PORT,
1464 IFLA_BAREUDP_ETHERTYPE,
1465 IFLA_BAREUDP_SRCPORT_MIN,
4b5f6723 1466 IFLA_BAREUDP_MULTIPROTO_MODE,
571912c6
MV
1467 __IFLA_BAREUDP_MAX
1468};
1469
1470#define IFLA_BAREUDP_MAX (__IFLA_BAREUDP_MAX - 1)
1471
96d934c7
GN
1472/* PPP section */
1473enum {
1474 IFLA_PPP_UNSPEC,
1475 IFLA_PPP_DEV_FD,
1476 __IFLA_PPP_MAX
1477};
1478#define IFLA_PPP_MAX (__IFLA_PPP_MAX - 1)
1479
459aa660 1480/* GTP section */
91ed81f9
JB
1481
1482enum ifla_gtp_role {
1483 GTP_ROLE_GGSN = 0,
1484 GTP_ROLE_SGSN,
1485};
1486
459aa660
PN
1487enum {
1488 IFLA_GTP_UNSPEC,
1489 IFLA_GTP_FD0,
1490 IFLA_GTP_FD1,
1491 IFLA_GTP_PDP_HASHSIZE,
91ed81f9 1492 IFLA_GTP_ROLE,
b20dc3c6 1493 IFLA_GTP_CREATE_SOCKETS,
9af41cc3 1494 IFLA_GTP_RESTART_COUNT,
999cb275
PNA
1495 IFLA_GTP_LOCAL,
1496 IFLA_GTP_LOCAL6,
459aa660
PN
1497 __IFLA_GTP_MAX,
1498};
1499#define IFLA_GTP_MAX (__IFLA_GTP_MAX - 1)
1500
90af2311
JP
1501/* Bonding section */
1502
1503enum {
1504 IFLA_BOND_UNSPEC,
1505 IFLA_BOND_MODE,
ec76aa49 1506 IFLA_BOND_ACTIVE_SLAVE,
eecdaa6e 1507 IFLA_BOND_MIIMON,
25852e29 1508 IFLA_BOND_UPDELAY,
c7461f9b 1509 IFLA_BOND_DOWNDELAY,
9f53e14e 1510 IFLA_BOND_USE_CARRIER,
06151dbc 1511 IFLA_BOND_ARP_INTERVAL,
7f28fa10 1512 IFLA_BOND_ARP_IP_TARGET,
29c49482 1513 IFLA_BOND_ARP_VALIDATE,
d5c84254 1514 IFLA_BOND_ARP_ALL_TARGETS,
0a98a0d1 1515 IFLA_BOND_PRIMARY,
8a41ae44 1516 IFLA_BOND_PRIMARY_RESELECT,
89901972 1517 IFLA_BOND_FAIL_OVER_MAC,
f70161c6 1518 IFLA_BOND_XMIT_HASH_POLICY,
d8838de7 1519 IFLA_BOND_RESEND_IGMP,
2c9839c1 1520 IFLA_BOND_NUM_PEER_NOTIF,
1cc0b1e3 1521 IFLA_BOND_ALL_SLAVES_ACTIVE,
7d101008 1522 IFLA_BOND_MIN_LINKS,
8d836d09 1523 IFLA_BOND_LP_INTERVAL,
c13ab3ff 1524 IFLA_BOND_PACKETS_PER_SLAVE,
998e40bb 1525 IFLA_BOND_AD_LACP_RATE,
ec029fac 1526 IFLA_BOND_AD_SELECT,
4ee7ac75 1527 IFLA_BOND_AD_INFO,
171a42c3
AG
1528 IFLA_BOND_AD_ACTOR_SYS_PRIO,
1529 IFLA_BOND_AD_USER_PORT_KEY,
1530 IFLA_BOND_AD_ACTOR_SYSTEM,
0f7bffd9 1531 IFLA_BOND_TLB_DYNAMIC_LB,
07a4ddec 1532 IFLA_BOND_PEER_NOTIF_DELAY,
3a755cd8 1533 IFLA_BOND_AD_LACP_ACTIVE,
5944b5ab 1534 IFLA_BOND_MISSED_MAX,
129e3c1b 1535 IFLA_BOND_NS_IP6_TARGET,
240fd405 1536 IFLA_BOND_COUPLED_CONTROL,
90af2311
JP
1537 __IFLA_BOND_MAX,
1538};
1539
1540#define IFLA_BOND_MAX (__IFLA_BOND_MAX - 1)
1541
4ee7ac75 1542enum {
237266f7 1543 IFLA_BOND_AD_INFO_UNSPEC,
4ee7ac75 1544 IFLA_BOND_AD_INFO_AGGREGATOR,
1545 IFLA_BOND_AD_INFO_NUM_PORTS,
1546 IFLA_BOND_AD_INFO_ACTOR_KEY,
1547 IFLA_BOND_AD_INFO_PARTNER_KEY,
1548 IFLA_BOND_AD_INFO_PARTNER_MAC,
1549 __IFLA_BOND_AD_INFO_MAX,
1550};
1551
1552#define IFLA_BOND_AD_INFO_MAX (__IFLA_BOND_AD_INFO_MAX - 1)
1553
1d3ee88a 1554enum {
df7dbcbb
JP
1555 IFLA_BOND_SLAVE_UNSPEC,
1556 IFLA_BOND_SLAVE_STATE,
1557 IFLA_BOND_SLAVE_MII_STATUS,
1558 IFLA_BOND_SLAVE_LINK_FAILURE_COUNT,
1559 IFLA_BOND_SLAVE_PERM_HWADDR,
1560 IFLA_BOND_SLAVE_QUEUE_ID,
1561 IFLA_BOND_SLAVE_AD_AGGREGATOR_ID,
254cb6db 1562 IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE,
46ea297e 1563 IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE,
0a2ff7cc 1564 IFLA_BOND_SLAVE_PRIO,
df7dbcbb 1565 __IFLA_BOND_SLAVE_MAX,
1d3ee88a 1566};
1567
df7dbcbb 1568#define IFLA_BOND_SLAVE_MAX (__IFLA_BOND_SLAVE_MAX - 1)
1d3ee88a 1569
607ca46e
DH
1570/* SR-IOV virtual function management section */
1571
1572enum {
1573 IFLA_VF_INFO_UNSPEC,
1574 IFLA_VF_INFO,
1575 __IFLA_VF_INFO_MAX,
1576};
1577
1578#define IFLA_VF_INFO_MAX (__IFLA_VF_INFO_MAX - 1)
1579
1580enum {
1581 IFLA_VF_UNSPEC,
1582 IFLA_VF_MAC, /* Hardware queue specific attributes */
79aab093 1583 IFLA_VF_VLAN, /* VLAN ID and QoS */
ed616689 1584 IFLA_VF_TX_RATE, /* Max TX Bandwidth Allocation */
607ca46e 1585 IFLA_VF_SPOOFCHK, /* Spoof Checking on/off switch */
1d8faf48 1586 IFLA_VF_LINK_STATE, /* link state enable/disable/auto switch */
ed616689 1587 IFLA_VF_RATE, /* Min and Max TX Bandwidth Allocation */
01a3d796
VZ
1588 IFLA_VF_RSS_QUERY_EN, /* RSS Redirection Table and Hash Key query
1589 * on/off switch
1590 */
3b766cd8 1591 IFLA_VF_STATS, /* network device statistics */
dd461d6a 1592 IFLA_VF_TRUST, /* Trust VF */
cc8e27cc
EC
1593 IFLA_VF_IB_NODE_GUID, /* VF Infiniband node GUID */
1594 IFLA_VF_IB_PORT_GUID, /* VF Infiniband port GUID */
79aab093 1595 IFLA_VF_VLAN_LIST, /* nested list of vlans, option for QinQ */
75345f88 1596 IFLA_VF_BROADCAST, /* VF broadcast */
607ca46e
DH
1597 __IFLA_VF_MAX,
1598};
1599
1600#define IFLA_VF_MAX (__IFLA_VF_MAX - 1)
1601
1602struct ifla_vf_mac {
1603 __u32 vf;
1604 __u8 mac[32]; /* MAX_ADDR_LEN */
1605};
1606
75345f88
DK
1607struct ifla_vf_broadcast {
1608 __u8 broadcast[32];
1609};
1610
607ca46e
DH
1611struct ifla_vf_vlan {
1612 __u32 vf;
1613 __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
1614 __u32 qos;
1615};
1616
79aab093
MS
1617enum {
1618 IFLA_VF_VLAN_INFO_UNSPEC,
1619 IFLA_VF_VLAN_INFO, /* VLAN ID, QoS and VLAN protocol */
1620 __IFLA_VF_VLAN_INFO_MAX,
1621};
1622
1623#define IFLA_VF_VLAN_INFO_MAX (__IFLA_VF_VLAN_INFO_MAX - 1)
1624#define MAX_VLAN_LIST_LEN 1
1625
1626struct ifla_vf_vlan_info {
1627 __u32 vf;
1628 __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
1629 __u32 qos;
1630 __be16 vlan_proto; /* VLAN protocol either 802.1Q or 802.1ad */
1631};
1632
607ca46e
DH
1633struct ifla_vf_tx_rate {
1634 __u32 vf;
1635 __u32 rate; /* Max TX bandwidth in Mbps, 0 disables throttling */
1636};
1637
ed616689
SC
1638struct ifla_vf_rate {
1639 __u32 vf;
1640 __u32 min_tx_rate; /* Min Bandwidth in Mbps */
1641 __u32 max_tx_rate; /* Max Bandwidth in Mbps */
1642};
1643
607ca46e
DH
1644struct ifla_vf_spoofchk {
1645 __u32 vf;
1646 __u32 setting;
1647};
1648
cc8e27cc
EC
1649struct ifla_vf_guid {
1650 __u32 vf;
1651 __u64 guid;
1652};
1653
1d8faf48
RE
1654enum {
1655 IFLA_VF_LINK_STATE_AUTO, /* link state of the uplink */
1656 IFLA_VF_LINK_STATE_ENABLE, /* link always up */
1657 IFLA_VF_LINK_STATE_DISABLE, /* link always down */
1658 __IFLA_VF_LINK_STATE_MAX,
1659};
1660
1661struct ifla_vf_link_state {
1662 __u32 vf;
1663 __u32 link_state;
1664};
1665
01a3d796
VZ
1666struct ifla_vf_rss_query_en {
1667 __u32 vf;
1668 __u32 setting;
1669};
1670
3b766cd8
EBE
1671enum {
1672 IFLA_VF_STATS_RX_PACKETS,
1673 IFLA_VF_STATS_TX_PACKETS,
1674 IFLA_VF_STATS_RX_BYTES,
1675 IFLA_VF_STATS_TX_BYTES,
1676 IFLA_VF_STATS_BROADCAST,
1677 IFLA_VF_STATS_MULTICAST,
343a6d8e 1678 IFLA_VF_STATS_PAD,
c5a9f6f0
EE
1679 IFLA_VF_STATS_RX_DROPPED,
1680 IFLA_VF_STATS_TX_DROPPED,
3b766cd8
EBE
1681 __IFLA_VF_STATS_MAX,
1682};
1683
1684#define IFLA_VF_STATS_MAX (__IFLA_VF_STATS_MAX - 1)
1685
dd461d6a
HS
1686struct ifla_vf_trust {
1687 __u32 vf;
1688 __u32 setting;
1689};
1690
607ca46e
DH
1691/* VF ports management section
1692 *
1693 * Nested layout of set/get msg is:
1694 *
1695 * [IFLA_NUM_VF]
1696 * [IFLA_VF_PORTS]
1697 * [IFLA_VF_PORT]
1698 * [IFLA_PORT_*], ...
1699 * [IFLA_VF_PORT]
1700 * [IFLA_PORT_*], ...
1701 * ...
1702 * [IFLA_PORT_SELF]
1703 * [IFLA_PORT_*], ...
1704 */
1705
1706enum {
1707 IFLA_VF_PORT_UNSPEC,
1708 IFLA_VF_PORT, /* nest */
1709 __IFLA_VF_PORT_MAX,
1710};
1711
1712#define IFLA_VF_PORT_MAX (__IFLA_VF_PORT_MAX - 1)
1713
1714enum {
1715 IFLA_PORT_UNSPEC,
1716 IFLA_PORT_VF, /* __u32 */
1717 IFLA_PORT_PROFILE, /* string */
1718 IFLA_PORT_VSI_TYPE, /* 802.1Qbg (pre-)standard VDP */
1719 IFLA_PORT_INSTANCE_UUID, /* binary UUID */
1720 IFLA_PORT_HOST_UUID, /* binary UUID */
1721 IFLA_PORT_REQUEST, /* __u8 */
1722 IFLA_PORT_RESPONSE, /* __u16, output only */
1723 __IFLA_PORT_MAX,
1724};
1725
1726#define IFLA_PORT_MAX (__IFLA_PORT_MAX - 1)
1727
1728#define PORT_PROFILE_MAX 40
1729#define PORT_UUID_MAX 16
1730#define PORT_SELF_VF -1
1731
1732enum {
1733 PORT_REQUEST_PREASSOCIATE = 0,
1734 PORT_REQUEST_PREASSOCIATE_RR,
1735 PORT_REQUEST_ASSOCIATE,
1736 PORT_REQUEST_DISASSOCIATE,
1737};
1738
1739enum {
1740 PORT_VDP_RESPONSE_SUCCESS = 0,
1741 PORT_VDP_RESPONSE_INVALID_FORMAT,
1742 PORT_VDP_RESPONSE_INSUFFICIENT_RESOURCES,
1743 PORT_VDP_RESPONSE_UNUSED_VTID,
1744 PORT_VDP_RESPONSE_VTID_VIOLATION,
1745 PORT_VDP_RESPONSE_VTID_VERSION_VIOALTION,
1746 PORT_VDP_RESPONSE_OUT_OF_SYNC,
1747 /* 0x08-0xFF reserved for future VDP use */
1748 PORT_PROFILE_RESPONSE_SUCCESS = 0x100,
1749 PORT_PROFILE_RESPONSE_INPROGRESS,
1750 PORT_PROFILE_RESPONSE_INVALID,
1751 PORT_PROFILE_RESPONSE_BADSTATE,
1752 PORT_PROFILE_RESPONSE_INSUFFICIENT_RESOURCES,
1753 PORT_PROFILE_RESPONSE_ERROR,
1754};
1755
1756struct ifla_port_vsi {
1757 __u8 vsi_mgr_id;
1758 __u8 vsi_type_id[3];
1759 __u8 vsi_type_version;
1760 __u8 pad[3];
1761};
1762
1763
1764/* IPoIB section */
1765
1766enum {
1767 IFLA_IPOIB_UNSPEC,
1768 IFLA_IPOIB_PKEY,
1769 IFLA_IPOIB_MODE,
1770 IFLA_IPOIB_UMCAST,
1771 __IFLA_IPOIB_MAX
1772};
1773
1774enum {
1775 IPOIB_MODE_DATAGRAM = 0, /* using unreliable datagram QPs */
1776 IPOIB_MODE_CONNECTED = 1, /* using connected QPs */
1777};
1778
1779#define IFLA_IPOIB_MAX (__IFLA_IPOIB_MAX - 1)
1780
f421436a 1781
8f4c0e01
MK
1782/* HSR/PRP section, both uses same interface */
1783
1784/* Different redundancy protocols for hsr device */
1785enum {
1786 HSR_PROTOCOL_HSR,
1787 HSR_PROTOCOL_PRP,
1788 HSR_PROTOCOL_MAX,
1789};
f421436a
AB
1790
1791enum {
1792 IFLA_HSR_UNSPEC,
1793 IFLA_HSR_SLAVE1,
1794 IFLA_HSR_SLAVE2,
98bf8362
AB
1795 IFLA_HSR_MULTICAST_SPEC, /* Last byte of supervision addr */
1796 IFLA_HSR_SUPERVISION_ADDR, /* Supervision frame multicast addr */
1797 IFLA_HSR_SEQ_NR,
b84e9307 1798 IFLA_HSR_VERSION, /* HSR version */
8f4c0e01
MK
1799 IFLA_HSR_PROTOCOL, /* Indicate different protocol than
1800 * HSR. For example PRP.
1801 */
5055cccf 1802 IFLA_HSR_INTERLINK, /* HSR interlink network device */
f421436a
AB
1803 __IFLA_HSR_MAX,
1804};
1805
1806#define IFLA_HSR_MAX (__IFLA_HSR_MAX - 1)
1807
10c9ead9
RP
1808/* STATS section */
1809
1810struct if_stats_msg {
1811 __u8 family;
1812 __u8 pad1;
1813 __u16 pad2;
1814 __u32 ifindex;
1815 __u32 filter_mask;
1816};
1817
1818/* A stats attribute can be netdev specific or a global stat.
1819 * For netdev stats, lets use the prefix IFLA_STATS_LINK_*
1820 */
1821enum {
1822 IFLA_STATS_UNSPEC, /* also used as 64bit pad attribute */
1823 IFLA_STATS_LINK_64,
97a47fac 1824 IFLA_STATS_LINK_XSTATS,
80e73cc5 1825 IFLA_STATS_LINK_XSTATS_SLAVE,
69ae6ad2 1826 IFLA_STATS_LINK_OFFLOAD_XSTATS,
aefb4d4a 1827 IFLA_STATS_AF_SPEC,
10c9ead9
RP
1828 __IFLA_STATS_MAX,
1829};
1830
1831#define IFLA_STATS_MAX (__IFLA_STATS_MAX - 1)
1832
1833#define IFLA_STATS_FILTER_BIT(ATTR) (1 << (ATTR - 1))
1834
46efc97b
PM
1835enum {
1836 IFLA_STATS_GETSET_UNSPEC,
1837 IFLA_STATS_GET_FILTERS, /* Nest of IFLA_STATS_LINK_xxx, each a u32 with
1838 * a filter mask for the corresponding group.
1839 */
5fd0b838 1840 IFLA_STATS_SET_OFFLOAD_XSTATS_L3_STATS, /* 0 or 1 as u8 */
46efc97b
PM
1841 __IFLA_STATS_GETSET_MAX,
1842};
1843
1844#define IFLA_STATS_GETSET_MAX (__IFLA_STATS_GETSET_MAX - 1)
1845
97a47fac
NA
1846/* These are embedded into IFLA_STATS_LINK_XSTATS:
1847 * [IFLA_STATS_LINK_XSTATS]
1848 * -> [LINK_XSTATS_TYPE_xxx]
1849 * -> [rtnl link type specific attributes]
1850 */
1851enum {
1852 LINK_XSTATS_TYPE_UNSPEC,
a60c0903 1853 LINK_XSTATS_TYPE_BRIDGE,
a258aeac 1854 LINK_XSTATS_TYPE_BOND,
97a47fac
NA
1855 __LINK_XSTATS_TYPE_MAX
1856};
1857#define LINK_XSTATS_TYPE_MAX (__LINK_XSTATS_TYPE_MAX - 1)
1858
69ae6ad2
NF
1859/* These are stats embedded into IFLA_STATS_LINK_OFFLOAD_XSTATS */
1860enum {
1861 IFLA_OFFLOAD_XSTATS_UNSPEC,
1862 IFLA_OFFLOAD_XSTATS_CPU_HIT, /* struct rtnl_link_stats64 */
0e7788fd
PM
1863 IFLA_OFFLOAD_XSTATS_HW_S_INFO, /* HW stats info. A nest */
1864 IFLA_OFFLOAD_XSTATS_L3_STATS, /* struct rtnl_hw_stats64 */
69ae6ad2
NF
1865 __IFLA_OFFLOAD_XSTATS_MAX
1866};
1867#define IFLA_OFFLOAD_XSTATS_MAX (__IFLA_OFFLOAD_XSTATS_MAX - 1)
1868
0e7788fd
PM
1869enum {
1870 IFLA_OFFLOAD_XSTATS_HW_S_INFO_UNSPEC,
1871 IFLA_OFFLOAD_XSTATS_HW_S_INFO_REQUEST, /* u8 */
1872 IFLA_OFFLOAD_XSTATS_HW_S_INFO_USED, /* u8 */
1873 __IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX,
1874};
1875#define IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX \
1876 (__IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX - 1)
1877
d1fdd913
BB
1878/* XDP section */
1879
85de8576 1880#define XDP_FLAGS_UPDATE_IF_NOEXIST (1U << 0)
0489df9a
DB
1881#define XDP_FLAGS_SKB_MODE (1U << 1)
1882#define XDP_FLAGS_DRV_MODE (1U << 2)
ee5d032f 1883#define XDP_FLAGS_HW_MODE (1U << 3)
92234c8f 1884#define XDP_FLAGS_REPLACE (1U << 4)
ee5d032f
JK
1885#define XDP_FLAGS_MODES (XDP_FLAGS_SKB_MODE | \
1886 XDP_FLAGS_DRV_MODE | \
1887 XDP_FLAGS_HW_MODE)
b5cdae32 1888#define XDP_FLAGS_MASK (XDP_FLAGS_UPDATE_IF_NOEXIST | \
92234c8f 1889 XDP_FLAGS_MODES | XDP_FLAGS_REPLACE)
85de8576 1890
d67b9cd2
DB
1891/* These are stored into IFLA_XDP_ATTACHED on dump. */
1892enum {
1893 XDP_ATTACHED_NONE = 0,
1894 XDP_ATTACHED_DRV,
1895 XDP_ATTACHED_SKB,
ce158e58 1896 XDP_ATTACHED_HW,
a25717d2 1897 XDP_ATTACHED_MULTI,
d67b9cd2
DB
1898};
1899
d1fdd913
BB
1900enum {
1901 IFLA_XDP_UNSPEC,
1902 IFLA_XDP_FD,
1903 IFLA_XDP_ATTACHED,
85de8576 1904 IFLA_XDP_FLAGS,
58038695 1905 IFLA_XDP_PROG_ID,
4f91da26
JK
1906 IFLA_XDP_DRV_PROG_ID,
1907 IFLA_XDP_SKB_PROG_ID,
1908 IFLA_XDP_HW_PROG_ID,
92234c8f 1909 IFLA_XDP_EXPECTED_FD,
d1fdd913
BB
1910 __IFLA_XDP_MAX,
1911};
1912
1913#define IFLA_XDP_MAX (__IFLA_XDP_MAX - 1)
1914
3d3ea5af
VY
1915enum {
1916 IFLA_EVENT_NONE,
1917 IFLA_EVENT_REBOOT, /* internal reset / reboot */
1918 IFLA_EVENT_FEATURES, /* change in offload features */
1919 IFLA_EVENT_BONDING_FAILOVER, /* change in active slave */
1920 IFLA_EVENT_NOTIFY_PEERS, /* re-sent grat. arp/ndisc */
1921 IFLA_EVENT_IGMP_RESEND, /* re-sent IGMP JOIN */
1922 IFLA_EVENT_BONDING_OPTIONS, /* change in bonding options */
1923};
1924
1ec010e7
SD
1925/* tun section */
1926
1927enum {
1928 IFLA_TUN_UNSPEC,
1929 IFLA_TUN_OWNER,
1930 IFLA_TUN_GROUP,
1931 IFLA_TUN_TYPE,
1932 IFLA_TUN_PI,
1933 IFLA_TUN_VNET_HDR,
1934 IFLA_TUN_PERSIST,
1935 IFLA_TUN_MULTI_QUEUE,
1936 IFLA_TUN_NUM_QUEUES,
1937 IFLA_TUN_NUM_DISABLED_QUEUES,
1938 __IFLA_TUN_MAX,
1939};
1940
1941#define IFLA_TUN_MAX (__IFLA_TUN_MAX - 1)
1942
14452ca3
SAK
1943/* rmnet section */
1944
1945#define RMNET_FLAGS_INGRESS_DEAGGREGATION (1U << 0)
1946#define RMNET_FLAGS_INGRESS_MAP_COMMANDS (1U << 1)
1947#define RMNET_FLAGS_INGRESS_MAP_CKSUMV4 (1U << 2)
1948#define RMNET_FLAGS_EGRESS_MAP_CKSUMV4 (1U << 3)
e1d9a90a 1949#define RMNET_FLAGS_INGRESS_MAP_CKSUMV5 (1U << 4)
b6e5d27e 1950#define RMNET_FLAGS_EGRESS_MAP_CKSUMV5 (1U << 5)
14452ca3
SAK
1951
1952enum {
1953 IFLA_RMNET_UNSPEC,
1954 IFLA_RMNET_MUX_ID,
1955 IFLA_RMNET_FLAGS,
1956 __IFLA_RMNET_MAX,
1957};
1958
1959#define IFLA_RMNET_MAX (__IFLA_RMNET_MAX - 1)
1960
1961struct ifla_rmnet_flags {
1962 __u32 flags;
1963 __u32 mask;
1964};
1965
583be982
JK
1966/* MCTP section */
1967
1968enum {
1969 IFLA_MCTP_UNSPEC,
1970 IFLA_MCTP_NET,
580db513 1971 IFLA_MCTP_PHYS_BINDING,
583be982
JK
1972 __IFLA_MCTP_MAX,
1973};
1974
1975#define IFLA_MCTP_MAX (__IFLA_MCTP_MAX - 1)
1976
95f510d0
VO
1977/* DSA section */
1978
1979enum {
1980 IFLA_DSA_UNSPEC,
87cd8371
FF
1981 IFLA_DSA_CONDUIT,
1982 /* Deprecated, use IFLA_DSA_CONDUIT instead */
1983 IFLA_DSA_MASTER = IFLA_DSA_CONDUIT,
95f510d0
VO
1984 __IFLA_DSA_MAX,
1985};
1986
1987#define IFLA_DSA_MAX (__IFLA_DSA_MAX - 1)
1988
c2d950c4
AQ
1989/* OVPN section */
1990
1991enum ovpn_mode {
1992 OVPN_MODE_P2P,
1993 OVPN_MODE_MP,
1994};
1995
1996enum {
1997 IFLA_OVPN_UNSPEC,
1998 IFLA_OVPN_MODE,
1999 __IFLA_OVPN_MAX,
2000};
2001
2002#define IFLA_OVPN_MAX (__IFLA_OVPN_MAX - 1)
2003
607ca46e 2004#endif /* _UAPI_LINUX_IF_LINK_H */