Merge tag 'net-next-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev...
[linux-2.6-block.git] / include / uapi / linux / if_link.h
CommitLineData
6f52b16c 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
607ca46e
DH
2#ifndef _UAPI_LINUX_IF_LINK_H
3#define _UAPI_LINUX_IF_LINK_H
4
5#include <linux/types.h>
6#include <linux/netlink.h>
7
8/* This struct should be in sync with struct rtnl_link_stats64 */
9struct rtnl_link_stats {
78a3ea55
JK
10 __u32 rx_packets;
11 __u32 tx_packets;
12 __u32 rx_bytes;
13 __u32 tx_bytes;
14 __u32 rx_errors;
15 __u32 tx_errors;
16 __u32 rx_dropped;
17 __u32 tx_dropped;
18 __u32 multicast;
607ca46e 19 __u32 collisions;
607ca46e
DH
20 /* detailed rx_errors: */
21 __u32 rx_length_errors;
78a3ea55
JK
22 __u32 rx_over_errors;
23 __u32 rx_crc_errors;
24 __u32 rx_frame_errors;
25 __u32 rx_fifo_errors;
26 __u32 rx_missed_errors;
607ca46e
DH
27
28 /* detailed tx_errors */
29 __u32 tx_aborted_errors;
30 __u32 tx_carrier_errors;
31 __u32 tx_fifo_errors;
32 __u32 tx_heartbeat_errors;
33 __u32 tx_window_errors;
34
35 /* for cslip etc */
36 __u32 rx_compressed;
37 __u32 tx_compressed;
6e7333d3 38
78a3ea55 39 __u32 rx_nohandler;
607ca46e
DH
40};
41
0db0c34c
JK
42/**
43 * struct rtnl_link_stats64 - The main device statistics structure.
44 *
45 * @rx_packets: Number of good packets received by the interface.
46 * For hardware interfaces counts all good packets received from the device
47 * by the host, including packets which host had to drop at various stages
48 * of processing (even in the driver).
49 *
50 * @tx_packets: Number of packets successfully transmitted.
51 * For hardware interfaces counts packets which host was able to successfully
52 * hand over to the device, which does not necessarily mean that packets
53 * had been successfully transmitted out of the device, only that device
54 * acknowledged it copied them out of host memory.
55 *
56 * @rx_bytes: Number of good received bytes, corresponding to @rx_packets.
57 *
58 * For IEEE 802.3 devices should count the length of Ethernet Frames
59 * excluding the FCS.
60 *
61 * @tx_bytes: Number of good transmitted bytes, corresponding to @tx_packets.
62 *
63 * For IEEE 802.3 devices should count the length of Ethernet Frames
64 * excluding the FCS.
65 *
66 * @rx_errors: Total number of bad packets received on this network device.
67 * This counter must include events counted by @rx_length_errors,
68 * @rx_crc_errors, @rx_frame_errors and other errors not otherwise
69 * counted.
70 *
71 * @tx_errors: Total number of transmit problems.
72 * This counter must include events counter by @tx_aborted_errors,
73 * @tx_carrier_errors, @tx_fifo_errors, @tx_heartbeat_errors,
74 * @tx_window_errors and other errors not otherwise counted.
75 *
76 * @rx_dropped: Number of packets received but not processed,
77 * e.g. due to lack of resources or unsupported protocol.
cf072069
JK
78 * For hardware interfaces this counter may include packets discarded
79 * due to L2 address filtering but should not include packets dropped
80 * by the device due to buffer exhaustion which are counted separately in
0db0c34c
JK
81 * @rx_missed_errors (since procfs folds those two counters together).
82 *
83 * @tx_dropped: Number of packets dropped on their way to transmission,
84 * e.g. due to lack of resources.
85 *
86 * @multicast: Multicast packets received.
87 * For hardware interfaces this statistic is commonly calculated
88 * at the device level (unlike @rx_packets) and therefore may include
89 * packets which did not reach the host.
90 *
91 * For IEEE 802.3 devices this counter may be equivalent to:
92 *
93 * - 30.3.1.1.21 aMulticastFramesReceivedOK
94 *
95 * @collisions: Number of collisions during packet transmissions.
96 *
97 * @rx_length_errors: Number of packets dropped due to invalid length.
98 * Part of aggregate "frame" errors in `/proc/net/dev`.
99 *
100 * For IEEE 802.3 devices this counter should be equivalent to a sum
101 * of the following attributes:
102 *
103 * - 30.3.1.1.23 aInRangeLengthErrors
104 * - 30.3.1.1.24 aOutOfRangeLengthField
105 * - 30.3.1.1.25 aFrameTooLongErrors
106 *
107 * @rx_over_errors: Receiver FIFO overflow event counter.
108 *
109 * Historically the count of overflow events. Such events may be
110 * reported in the receive descriptors or via interrupts, and may
111 * not correspond one-to-one with dropped packets.
112 *
113 * The recommended interpretation for high speed interfaces is -
114 * number of packets dropped because they did not fit into buffers
115 * provided by the host, e.g. packets larger than MTU or next buffer
116 * in the ring was not available for a scatter transfer.
117 *
118 * Part of aggregate "frame" errors in `/proc/net/dev`.
119 *
120 * This statistics was historically used interchangeably with
121 * @rx_fifo_errors.
122 *
123 * This statistic corresponds to hardware events and is not commonly used
124 * on software devices.
125 *
126 * @rx_crc_errors: Number of packets received with a CRC error.
127 * Part of aggregate "frame" errors in `/proc/net/dev`.
128 *
129 * For IEEE 802.3 devices this counter must be equivalent to:
130 *
131 * - 30.3.1.1.6 aFrameCheckSequenceErrors
132 *
133 * @rx_frame_errors: Receiver frame alignment errors.
134 * Part of aggregate "frame" errors in `/proc/net/dev`.
135 *
136 * For IEEE 802.3 devices this counter should be equivalent to:
137 *
138 * - 30.3.1.1.7 aAlignmentErrors
139 *
140 * @rx_fifo_errors: Receiver FIFO error counter.
141 *
142 * Historically the count of overflow events. Those events may be
143 * reported in the receive descriptors or via interrupts, and may
144 * not correspond one-to-one with dropped packets.
145 *
146 * This statistics was used interchangeably with @rx_over_errors.
147 * Not recommended for use in drivers for high speed interfaces.
148 *
149 * This statistic is used on software devices, e.g. to count software
150 * packet queue overflow (can) or sequencing errors (GRE).
151 *
152 * @rx_missed_errors: Count of packets missed by the host.
153 * Folded into the "drop" counter in `/proc/net/dev`.
154 *
155 * Counts number of packets dropped by the device due to lack
156 * of buffer space. This usually indicates that the host interface
157 * is slower than the network interface, or host is not keeping up
158 * with the receive packet rate.
159 *
160 * This statistic corresponds to hardware events and is not used
161 * on software devices.
162 *
163 * @tx_aborted_errors:
164 * Part of aggregate "carrier" errors in `/proc/net/dev`.
165 * For IEEE 802.3 devices capable of half-duplex operation this counter
166 * must be equivalent to:
167 *
168 * - 30.3.1.1.11 aFramesAbortedDueToXSColls
169 *
170 * High speed interfaces may use this counter as a general device
171 * discard counter.
172 *
173 * @tx_carrier_errors: Number of frame transmission errors due to loss
174 * of carrier during transmission.
175 * Part of aggregate "carrier" errors in `/proc/net/dev`.
176 *
177 * For IEEE 802.3 devices this counter must be equivalent to:
178 *
179 * - 30.3.1.1.13 aCarrierSenseErrors
180 *
181 * @tx_fifo_errors: Number of frame transmission errors due to device
182 * FIFO underrun / underflow. This condition occurs when the device
183 * begins transmission of a frame but is unable to deliver the
184 * entire frame to the transmitter in time for transmission.
185 * Part of aggregate "carrier" errors in `/proc/net/dev`.
186 *
187 * @tx_heartbeat_errors: Number of Heartbeat / SQE Test errors for
188 * old half-duplex Ethernet.
189 * Part of aggregate "carrier" errors in `/proc/net/dev`.
190 *
191 * For IEEE 802.3 devices possibly equivalent to:
192 *
193 * - 30.3.2.1.4 aSQETestErrors
194 *
195 * @tx_window_errors: Number of frame transmission errors due
196 * to late collisions (for Ethernet - after the first 64B of transmission).
197 * Part of aggregate "carrier" errors in `/proc/net/dev`.
198 *
199 * For IEEE 802.3 devices this counter must be equivalent to:
200 *
201 * - 30.3.1.1.10 aLateCollisions
202 *
203 * @rx_compressed: Number of correctly received compressed packets.
204 * This counters is only meaningful for interfaces which support
205 * packet compression (e.g. CSLIP, PPP).
206 *
207 * @tx_compressed: Number of transmitted compressed packets.
208 * This counters is only meaningful for interfaces which support
209 * packet compression (e.g. CSLIP, PPP).
210 *
211 * @rx_nohandler: Number of packets received on the interface
212 * but dropped by the networking stack because the device is
213 * not designated to receive packets (e.g. backup link in a bond).
794c24e9
JJ
214 *
215 * @rx_otherhost_dropped: Number of packets dropped due to mismatch
216 * in destination MAC address.
0db0c34c 217 */
607ca46e 218struct rtnl_link_stats64 {
0db0c34c
JK
219 __u64 rx_packets;
220 __u64 tx_packets;
221 __u64 rx_bytes;
222 __u64 tx_bytes;
223 __u64 rx_errors;
224 __u64 tx_errors;
225 __u64 rx_dropped;
226 __u64 tx_dropped;
227 __u64 multicast;
607ca46e
DH
228 __u64 collisions;
229
230 /* detailed rx_errors: */
231 __u64 rx_length_errors;
0db0c34c
JK
232 __u64 rx_over_errors;
233 __u64 rx_crc_errors;
234 __u64 rx_frame_errors;
235 __u64 rx_fifo_errors;
236 __u64 rx_missed_errors;
607ca46e
DH
237
238 /* detailed tx_errors */
239 __u64 tx_aborted_errors;
240 __u64 tx_carrier_errors;
241 __u64 tx_fifo_errors;
242 __u64 tx_heartbeat_errors;
243 __u64 tx_window_errors;
244
245 /* for cslip etc */
246 __u64 rx_compressed;
247 __u64 tx_compressed;
0db0c34c 248 __u64 rx_nohandler;
794c24e9
JJ
249
250 __u64 rx_otherhost_dropped;
607ca46e
DH
251};
252
9309f97a
PM
253/* Subset of link stats useful for in-HW collection. Meaning of the fields is as
254 * for struct rtnl_link_stats64.
255 */
256struct rtnl_hw_stats64 {
257 __u64 rx_packets;
258 __u64 tx_packets;
259 __u64 rx_bytes;
260 __u64 tx_bytes;
261 __u64 rx_errors;
262 __u64 tx_errors;
263 __u64 rx_dropped;
264 __u64 tx_dropped;
265 __u64 multicast;
266};
267
607ca46e
DH
268/* The struct should be in sync with struct ifmap */
269struct rtnl_link_ifmap {
270 __u64 mem_start;
271 __u64 mem_end;
272 __u64 base_addr;
273 __u16 irq;
274 __u8 dma;
275 __u8 port;
276};
277
278/*
279 * IFLA_AF_SPEC
280 * Contains nested attributes for address family specific attributes.
281 * Each address family may create a attribute with the address family
282 * number as type and create its own attribute structure in it.
283 *
284 * Example:
285 * [IFLA_AF_SPEC] = {
286 * [AF_INET] = {
287 * [IFLA_INET_CONF] = ...,
288 * },
289 * [AF_INET6] = {
290 * [IFLA_INET6_FLAGS] = ...,
291 * [IFLA_INET6_CONF] = ...,
292 * }
293 * }
294 */
295
296enum {
297 IFLA_UNSPEC,
298 IFLA_ADDRESS,
299 IFLA_BROADCAST,
300 IFLA_IFNAME,
301 IFLA_MTU,
302 IFLA_LINK,
303 IFLA_QDISC,
304 IFLA_STATS,
305 IFLA_COST,
306#define IFLA_COST IFLA_COST
307 IFLA_PRIORITY,
308#define IFLA_PRIORITY IFLA_PRIORITY
309 IFLA_MASTER,
310#define IFLA_MASTER IFLA_MASTER
311 IFLA_WIRELESS, /* Wireless Extension event - see wireless.h */
312#define IFLA_WIRELESS IFLA_WIRELESS
313 IFLA_PROTINFO, /* Protocol specific information for a link */
314#define IFLA_PROTINFO IFLA_PROTINFO
315 IFLA_TXQLEN,
316#define IFLA_TXQLEN IFLA_TXQLEN
317 IFLA_MAP,
318#define IFLA_MAP IFLA_MAP
319 IFLA_WEIGHT,
320#define IFLA_WEIGHT IFLA_WEIGHT
321 IFLA_OPERSTATE,
322 IFLA_LINKMODE,
323 IFLA_LINKINFO,
324#define IFLA_LINKINFO IFLA_LINKINFO
325 IFLA_NET_NS_PID,
326 IFLA_IFALIAS,
327 IFLA_NUM_VF, /* Number of VFs if device is SR-IOV PF */
328 IFLA_VFINFO_LIST,
329 IFLA_STATS64,
330 IFLA_VF_PORTS,
331 IFLA_PORT_SELF,
332 IFLA_AF_SPEC,
333 IFLA_GROUP, /* Group the device belongs to */
334 IFLA_NET_NS_FD,
335 IFLA_EXT_MASK, /* Extended info mask, VFs, etc */
336 IFLA_PROMISCUITY, /* Promiscuity count: > 0 means acts PROMISC */
337#define IFLA_PROMISCUITY IFLA_PROMISCUITY
338 IFLA_NUM_TX_QUEUES,
339 IFLA_NUM_RX_QUEUES,
9a57247f 340 IFLA_CARRIER,
66cae9ed 341 IFLA_PHYS_PORT_ID,
2d3b479d 342 IFLA_CARRIER_CHANGES,
82f28412 343 IFLA_PHYS_SWITCH_ID,
d37512a2 344 IFLA_LINK_NETNSID,
db24a904 345 IFLA_PHYS_PORT_NAME,
88d6378b 346 IFLA_PROTO_DOWN,
c70ce028
ED
347 IFLA_GSO_MAX_SEGS,
348 IFLA_GSO_MAX_SIZE,
18402843 349 IFLA_PAD,
d1fdd913 350 IFLA_XDP,
3d3ea5af 351 IFLA_EVENT,
6621dd29 352 IFLA_NEW_NETNSID,
79e1ad14 353 IFLA_IF_NETNSID,
19d8f1ad 354 IFLA_TARGET_NETNSID = IFLA_IF_NETNSID, /* new alias */
b2d3bcfa
DD
355 IFLA_CARRIER_UP_COUNT,
356 IFLA_CARRIER_DOWN_COUNT,
38e01b30 357 IFLA_NEW_IFINDEX,
3e7a50ce
SH
358 IFLA_MIN_MTU,
359 IFLA_MAX_MTU,
36fbf1e5
JP
360 IFLA_PROP_LIST,
361 IFLA_ALT_IFNAME, /* Alternative ifname */
f74877a5 362 IFLA_PERM_ADDRESS,
829eb208 363 IFLA_PROTO_DOWN_REASON,
00e77ed8
JB
364
365 /* device (sysfs) name as parent, used instead
366 * of IFLA_LINK where there's no parent netdev
367 */
368 IFLA_PARENT_DEV_NAME,
369 IFLA_PARENT_DEV_BUS_NAME,
eac1b93c 370 IFLA_GRO_MAX_SIZE,
89527be8
ED
371 IFLA_TSO_MAX_SIZE,
372 IFLA_TSO_MAX_SEGS,
7e6e1b57 373 IFLA_ALLMULTI, /* Allmulti count: > 0 means acts ALLMULTI */
00e77ed8 374
dca56c30
JP
375 IFLA_DEVLINK_PORT,
376
9eefedd5
XL
377 IFLA_GSO_IPV4_MAX_SIZE,
378 IFLA_GRO_IPV4_MAX_SIZE,
5f184269 379 IFLA_DPLL_PIN,
607ca46e
DH
380 __IFLA_MAX
381};
382
383
384#define IFLA_MAX (__IFLA_MAX - 1)
385
829eb208
RP
386enum {
387 IFLA_PROTO_DOWN_REASON_UNSPEC,
388 IFLA_PROTO_DOWN_REASON_MASK, /* u32, mask for reason bits */
389 IFLA_PROTO_DOWN_REASON_VALUE, /* u32, reason bit value */
390
391 __IFLA_PROTO_DOWN_REASON_CNT,
392 IFLA_PROTO_DOWN_REASON_MAX = __IFLA_PROTO_DOWN_REASON_CNT - 1
393};
394
607ca46e
DH
395/* backwards compatibility for userspace */
396#ifndef __KERNEL__
397#define IFLA_RTA(r) ((struct rtattr*)(((char*)(r)) + NLMSG_ALIGN(sizeof(struct ifinfomsg))))
398#define IFLA_PAYLOAD(n) NLMSG_PAYLOAD(n,sizeof(struct ifinfomsg))
399#endif
400
401enum {
402 IFLA_INET_UNSPEC,
403 IFLA_INET_CONF,
404 __IFLA_INET_MAX,
405};
406
407#define IFLA_INET_MAX (__IFLA_INET_MAX - 1)
408
409/* ifi_flags.
410
411 IFF_* flags.
412
413 The only change is:
414 IFF_LOOPBACK, IFF_BROADCAST and IFF_POINTOPOINT are
415 more not changeable by user. They describe link media
416 characteristics and set by device driver.
417
418 Comments:
419 - Combination IFF_BROADCAST|IFF_POINTOPOINT is invalid
420 - If neither of these three flags are set;
421 the interface is NBMA.
422
423 - IFF_MULTICAST does not mean anything special:
424 multicasts can be used on all not-NBMA links.
425 IFF_MULTICAST means that this media uses special encapsulation
426 for multicast frames. Apparently, all IFF_POINTOPOINT and
427 IFF_BROADCAST devices are able to use multicasts too.
428 */
429
430/* IFLA_LINK.
431 For usual devices it is equal ifi_index.
432 If it is a "virtual interface" (f.e. tunnel), ifi_link
433 can point to real physical interface (f.e. for bandwidth calculations),
434 or maybe 0, what means, that real media is unknown (usual
435 for IPIP tunnels, when route to endpoint is allowed to change)
436 */
437
438/* Subtype attributes for IFLA_PROTINFO */
439enum {
440 IFLA_INET6_UNSPEC,
441 IFLA_INET6_FLAGS, /* link flags */
442 IFLA_INET6_CONF, /* sysctl parameters */
443 IFLA_INET6_STATS, /* statistics */
444 IFLA_INET6_MCAST, /* MC things. What of them? */
445 IFLA_INET6_CACHEINFO, /* time values and max reasm size */
446 IFLA_INET6_ICMP6STATS, /* statistics (icmpv6) */
f53adae4 447 IFLA_INET6_TOKEN, /* device token */
bc91b0f0 448 IFLA_INET6_ADDR_GEN_MODE, /* implicit address generator mode */
49b99da2 449 IFLA_INET6_RA_MTU, /* mtu carried in the RA message */
607ca46e
DH
450 __IFLA_INET6_MAX
451};
452
453#define IFLA_INET6_MAX (__IFLA_INET6_MAX - 1)
454
bc91b0f0
JP
455enum in6_addr_gen_mode {
456 IN6_ADDR_GEN_MODE_EUI64,
457 IN6_ADDR_GEN_MODE_NONE,
622c81d5 458 IN6_ADDR_GEN_MODE_STABLE_PRIVACY,
cc9da6cc 459 IN6_ADDR_GEN_MODE_RANDOM,
bc91b0f0
JP
460};
461
e5c3ea5c
JP
462/* Bridge section */
463
8ebe0661
HL
464/**
465 * DOC: Bridge enum definition
466 *
467 * Please *note* that the timer values in the following section are expected
468 * in clock_t format, which is seconds multiplied by USER_HZ (generally
469 * defined as 100).
470 *
471 * @IFLA_BR_FORWARD_DELAY
472 * The bridge forwarding delay is the time spent in LISTENING state
473 * (before moving to LEARNING) and in LEARNING state (before moving
474 * to FORWARDING). Only relevant if STP is enabled.
475 *
476 * The valid values are between (2 * USER_HZ) and (30 * USER_HZ).
477 * The default value is (15 * USER_HZ).
478 *
479 * @IFLA_BR_HELLO_TIME
480 * The time between hello packets sent by the bridge, when it is a root
481 * bridge or a designated bridge. Only relevant if STP is enabled.
482 *
483 * The valid values are between (1 * USER_HZ) and (10 * USER_HZ).
484 * The default value is (2 * USER_HZ).
485 *
486 * @IFLA_BR_MAX_AGE
487 * The hello packet timeout is the time until another bridge in the
488 * spanning tree is assumed to be dead, after reception of its last hello
489 * message. Only relevant if STP is enabled.
490 *
491 * The valid values are between (6 * USER_HZ) and (40 * USER_HZ).
492 * The default value is (20 * USER_HZ).
493 *
494 * @IFLA_BR_AGEING_TIME
495 * Configure the bridge's FDB entries aging time. It is the time a MAC
496 * address will be kept in the FDB after a packet has been received from
497 * that address. After this time has passed, entries are cleaned up.
498 * Allow values outside the 802.1 standard specification for special cases:
499 *
500 * * 0 - entry never ages (all permanent)
501 * * 1 - entry disappears (no persistence)
502 *
503 * The default value is (300 * USER_HZ).
504 *
505 * @IFLA_BR_STP_STATE
506 * Turn spanning tree protocol on (*IFLA_BR_STP_STATE* > 0) or off
507 * (*IFLA_BR_STP_STATE* == 0) for this bridge.
508 *
509 * The default value is 0 (disabled).
510 *
511 * @IFLA_BR_PRIORITY
512 * Set this bridge's spanning tree priority, used during STP root bridge
513 * election.
514 *
515 * The valid values are between 0 and 65535.
516 *
517 * @IFLA_BR_VLAN_FILTERING
518 * Turn VLAN filtering on (*IFLA_BR_VLAN_FILTERING* > 0) or off
519 * (*IFLA_BR_VLAN_FILTERING* == 0). When disabled, the bridge will not
520 * consider the VLAN tag when handling packets.
521 *
522 * The default value is 0 (disabled).
523 *
524 * @IFLA_BR_VLAN_PROTOCOL
525 * Set the protocol used for VLAN filtering.
526 *
527 * The valid values are 0x8100(802.1Q) or 0x88A8(802.1AD). The default value
528 * is 0x8100(802.1Q).
529 *
530 * @IFLA_BR_GROUP_FWD_MASK
531 * The group forwarding mask. This is the bitmask that is applied to
532 * decide whether to forward incoming frames destined to link-local
533 * addresses (of the form 01:80:C2:00:00:0X).
534 *
535 * The default value is 0, which means the bridge does not forward any
536 * link-local frames coming on this port.
537 *
538 * @IFLA_BR_ROOT_ID
539 * The bridge root id, read only.
540 *
541 * @IFLA_BR_BRIDGE_ID
542 * The bridge id, read only.
543 *
544 * @IFLA_BR_ROOT_PORT
545 * The bridge root port, read only.
546 *
547 * @IFLA_BR_ROOT_PATH_COST
548 * The bridge root path cost, read only.
549 *
550 * @IFLA_BR_TOPOLOGY_CHANGE
551 * The bridge topology change, read only.
552 *
553 * @IFLA_BR_TOPOLOGY_CHANGE_DETECTED
554 * The bridge topology change detected, read only.
555 *
556 * @IFLA_BR_HELLO_TIMER
557 * The bridge hello timer, read only.
558 *
559 * @IFLA_BR_TCN_TIMER
560 * The bridge tcn timer, read only.
561 *
562 * @IFLA_BR_TOPOLOGY_CHANGE_TIMER
563 * The bridge topology change timer, read only.
564 *
565 * @IFLA_BR_GC_TIMER
566 * The bridge gc timer, read only.
567 *
568 * @IFLA_BR_GROUP_ADDR
569 * Set the MAC address of the multicast group this bridge uses for STP.
570 * The address must be a link-local address in standard Ethernet MAC address
571 * format. It is an address of the form 01:80:C2:00:00:0X, with X in [0, 4..f].
572 *
573 * The default value is 0.
574 *
575 * @IFLA_BR_FDB_FLUSH
576 * Flush bridge's fdb dynamic entries.
577 *
578 * @IFLA_BR_MCAST_ROUTER
579 * Set bridge's multicast router if IGMP snooping is enabled.
580 * The valid values are:
581 *
582 * * 0 - disabled.
583 * * 1 - automatic (queried).
584 * * 2 - permanently enabled.
585 *
586 * The default value is 1.
587 *
588 * @IFLA_BR_MCAST_SNOOPING
589 * Turn multicast snooping on (*IFLA_BR_MCAST_SNOOPING* > 0) or off
590 * (*IFLA_BR_MCAST_SNOOPING* == 0).
591 *
592 * The default value is 1.
593 *
594 * @IFLA_BR_MCAST_QUERY_USE_IFADDR
595 * If enabled use the bridge's own IP address as source address for IGMP
596 * queries (*IFLA_BR_MCAST_QUERY_USE_IFADDR* > 0) or the default of 0.0.0.0
597 * (*IFLA_BR_MCAST_QUERY_USE_IFADDR* == 0).
598 *
599 * The default value is 0 (disabled).
600 *
601 * @IFLA_BR_MCAST_QUERIER
602 * Enable (*IFLA_BR_MULTICAST_QUERIER* > 0) or disable
603 * (*IFLA_BR_MULTICAST_QUERIER* == 0) IGMP querier, ie sending of multicast
604 * queries by the bridge.
605 *
606 * The default value is 0 (disabled).
607 *
608 * @IFLA_BR_MCAST_HASH_ELASTICITY
609 * Set multicast database hash elasticity, It is the maximum chain length in
610 * the multicast hash table. This attribute is *deprecated* and the value
611 * is always 16.
612 *
613 * @IFLA_BR_MCAST_HASH_MAX
614 * Set maximum size of the multicast hash table
615 *
616 * The default value is 4096, the value must be a power of 2.
617 *
618 * @IFLA_BR_MCAST_LAST_MEMBER_CNT
619 * The Last Member Query Count is the number of Group-Specific Queries
620 * sent before the router assumes there are no local members. The Last
621 * Member Query Count is also the number of Group-and-Source-Specific
622 * Queries sent before the router assumes there are no listeners for a
623 * particular source.
624 *
625 * The default value is 2.
626 *
627 * @IFLA_BR_MCAST_STARTUP_QUERY_CNT
628 * The Startup Query Count is the number of Queries sent out on startup,
629 * separated by the Startup Query Interval.
630 *
631 * The default value is 2.
632 *
633 * @IFLA_BR_MCAST_LAST_MEMBER_INTVL
634 * The Last Member Query Interval is the Max Response Time inserted into
635 * Group-Specific Queries sent in response to Leave Group messages, and
636 * is also the amount of time between Group-Specific Query messages.
637 *
638 * The default value is (1 * USER_HZ).
639 *
640 * @IFLA_BR_MCAST_MEMBERSHIP_INTVL
641 * The interval after which the bridge will leave a group, if no membership
642 * reports for this group are received.
643 *
644 * The default value is (260 * USER_HZ).
645 *
646 * @IFLA_BR_MCAST_QUERIER_INTVL
647 * The interval between queries sent by other routers. if no queries are
648 * seen after this delay has passed, the bridge will start to send its own
649 * queries (as if *IFLA_BR_MCAST_QUERIER_INTVL* was enabled).
650 *
651 * The default value is (255 * USER_HZ).
652 *
653 * @IFLA_BR_MCAST_QUERY_INTVL
654 * The Query Interval is the interval between General Queries sent by
655 * the Querier.
656 *
657 * The default value is (125 * USER_HZ). The minimum value is (1 * USER_HZ).
658 *
659 * @IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
660 * The Max Response Time used to calculate the Max Resp Code inserted
661 * into the periodic General Queries.
662 *
663 * The default value is (10 * USER_HZ).
664 *
665 * @IFLA_BR_MCAST_STARTUP_QUERY_INTVL
666 * The interval between queries in the startup phase.
667 *
668 * The default value is (125 * USER_HZ) / 4. The minimum value is (1 * USER_HZ).
669 *
670 * @IFLA_BR_NF_CALL_IPTABLES
671 * Enable (*NF_CALL_IPTABLES* > 0) or disable (*NF_CALL_IPTABLES* == 0)
672 * iptables hooks on the bridge.
673 *
674 * The default value is 0 (disabled).
675 *
676 * @IFLA_BR_NF_CALL_IP6TABLES
677 * Enable (*NF_CALL_IP6TABLES* > 0) or disable (*NF_CALL_IP6TABLES* == 0)
678 * ip6tables hooks on the bridge.
679 *
680 * The default value is 0 (disabled).
681 *
682 * @IFLA_BR_NF_CALL_ARPTABLES
683 * Enable (*NF_CALL_ARPTABLES* > 0) or disable (*NF_CALL_ARPTABLES* == 0)
684 * arptables hooks on the bridge.
685 *
686 * The default value is 0 (disabled).
687 *
688 * @IFLA_BR_VLAN_DEFAULT_PVID
689 * VLAN ID applied to untagged and priority-tagged incoming packets.
690 *
691 * The default value is 1. Setting to the special value 0 makes all ports of
692 * this bridge not have a PVID by default, which means that they will
693 * not accept VLAN-untagged traffic.
694 *
695 * @IFLA_BR_PAD
696 * Bridge attribute padding type for netlink message.
697 *
698 * @IFLA_BR_VLAN_STATS_ENABLED
699 * Enable (*IFLA_BR_VLAN_STATS_ENABLED* == 1) or disable
700 * (*IFLA_BR_VLAN_STATS_ENABLED* == 0) per-VLAN stats accounting.
701 *
702 * The default value is 0 (disabled).
703 *
704 * @IFLA_BR_MCAST_STATS_ENABLED
705 * Enable (*IFLA_BR_MCAST_STATS_ENABLED* > 0) or disable
706 * (*IFLA_BR_MCAST_STATS_ENABLED* == 0) multicast (IGMP/MLD) stats
707 * accounting.
708 *
709 * The default value is 0 (disabled).
710 *
711 * @IFLA_BR_MCAST_IGMP_VERSION
712 * Set the IGMP version.
713 *
714 * The valid values are 2 and 3. The default value is 2.
715 *
716 * @IFLA_BR_MCAST_MLD_VERSION
717 * Set the MLD version.
718 *
719 * The valid values are 1 and 2. The default value is 1.
720 *
721 * @IFLA_BR_VLAN_STATS_PER_PORT
722 * Enable (*IFLA_BR_VLAN_STATS_PER_PORT* == 1) or disable
723 * (*IFLA_BR_VLAN_STATS_PER_PORT* == 0) per-VLAN per-port stats accounting.
724 * Can be changed only when there are no port VLANs configured.
725 *
726 * The default value is 0 (disabled).
727 *
728 * @IFLA_BR_MULTI_BOOLOPT
729 * The multi_boolopt is used to control new boolean options to avoid adding
730 * new netlink attributes. You can look at ``enum br_boolopt_id`` for those
731 * options.
732 *
733 * @IFLA_BR_MCAST_QUERIER_STATE
734 * Bridge mcast querier states, read only.
735 *
736 * @IFLA_BR_FDB_N_LEARNED
737 * The number of dynamically learned FDB entries for the current bridge,
738 * read only.
739 *
740 * @IFLA_BR_FDB_MAX_LEARNED
741 * Set the number of max dynamically learned FDB entries for the current
742 * bridge.
743 */
e5c3ea5c
JP
744enum {
745 IFLA_BR_UNSPEC,
746 IFLA_BR_FORWARD_DELAY,
747 IFLA_BR_HELLO_TIME,
748 IFLA_BR_MAX_AGE,
af615762
JT
749 IFLA_BR_AGEING_TIME,
750 IFLA_BR_STP_STATE,
751 IFLA_BR_PRIORITY,
a7854037 752 IFLA_BR_VLAN_FILTERING,
d2d427b3 753 IFLA_BR_VLAN_PROTOCOL,
7910228b 754 IFLA_BR_GROUP_FWD_MASK,
5127c81f 755 IFLA_BR_ROOT_ID,
7599a220 756 IFLA_BR_BRIDGE_ID,
8762ba68 757 IFLA_BR_ROOT_PORT,
684dd248 758 IFLA_BR_ROOT_PATH_COST,
ed416309
NA
759 IFLA_BR_TOPOLOGY_CHANGE,
760 IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
d76bd14e
NA
761 IFLA_BR_HELLO_TIMER,
762 IFLA_BR_TCN_TIMER,
763 IFLA_BR_TOPOLOGY_CHANGE_TIMER,
764 IFLA_BR_GC_TIMER,
111189ab 765 IFLA_BR_GROUP_ADDR,
150217c6 766 IFLA_BR_FDB_FLUSH,
a9a6bc70 767 IFLA_BR_MCAST_ROUTER,
89126327 768 IFLA_BR_MCAST_SNOOPING,
295141d9 769 IFLA_BR_MCAST_QUERY_USE_IFADDR,
ba062d7c 770 IFLA_BR_MCAST_QUERIER,
431db3c0 771 IFLA_BR_MCAST_HASH_ELASTICITY,
858079fd 772 IFLA_BR_MCAST_HASH_MAX,
79b859f5 773 IFLA_BR_MCAST_LAST_MEMBER_CNT,
b89e6bab 774 IFLA_BR_MCAST_STARTUP_QUERY_CNT,
7e4df51e
NA
775 IFLA_BR_MCAST_LAST_MEMBER_INTVL,
776 IFLA_BR_MCAST_MEMBERSHIP_INTVL,
777 IFLA_BR_MCAST_QUERIER_INTVL,
778 IFLA_BR_MCAST_QUERY_INTVL,
779 IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
780 IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
93870cc0
NA
781 IFLA_BR_NF_CALL_IPTABLES,
782 IFLA_BR_NF_CALL_IP6TABLES,
783 IFLA_BR_NF_CALL_ARPTABLES,
0f963b75 784 IFLA_BR_VLAN_DEFAULT_PVID,
12a0faa3 785 IFLA_BR_PAD,
6dada9b1 786 IFLA_BR_VLAN_STATS_ENABLED,
1080ab95 787 IFLA_BR_MCAST_STATS_ENABLED,
5e923585 788 IFLA_BR_MCAST_IGMP_VERSION,
aa2ae3e7 789 IFLA_BR_MCAST_MLD_VERSION,
9163a0fc 790 IFLA_BR_VLAN_STATS_PER_PORT,
a428afe8 791 IFLA_BR_MULTI_BOOLOPT,
c7fa1d9b 792 IFLA_BR_MCAST_QUERIER_STATE,
ddd1ad68
JN
793 IFLA_BR_FDB_N_LEARNED,
794 IFLA_BR_FDB_MAX_LEARNED,
e5c3ea5c
JP
795 __IFLA_BR_MAX,
796};
797
798#define IFLA_BR_MAX (__IFLA_BR_MAX - 1)
799
5127c81f
NA
800struct ifla_bridge_id {
801 __u8 prio[2];
802 __u8 addr[6]; /* ETH_ALEN */
803};
804
8c4bafdb
HL
805/**
806 * DOC: Bridge mode enum definition
807 *
808 * @BRIDGE_MODE_HAIRPIN
809 * Controls whether traffic may be sent back out of the port on which it
810 * was received. This option is also called reflective relay mode, and is
811 * used to support basic VEPA (Virtual Ethernet Port Aggregator)
812 * capabilities. By default, this flag is turned off and the bridge will
813 * not forward traffic back out of the receiving port.
814 */
25c71c75 815enum {
816 BRIDGE_MODE_UNSPEC,
817 BRIDGE_MODE_HAIRPIN,
818};
819
8c4bafdb
HL
820/**
821 * DOC: Bridge port enum definition
822 *
823 * @IFLA_BRPORT_STATE
824 * The operation state of the port. Here are the valid values.
825 *
826 * * 0 - port is in STP *DISABLED* state. Make this port completely
827 * inactive for STP. This is also called BPDU filter and could be used
828 * to disable STP on an untrusted port, like a leaf virtual device.
829 * The traffic forwarding is also stopped on this port.
830 * * 1 - port is in STP *LISTENING* state. Only valid if STP is enabled
831 * on the bridge. In this state the port listens for STP BPDUs and
832 * drops all other traffic frames.
833 * * 2 - port is in STP *LEARNING* state. Only valid if STP is enabled on
834 * the bridge. In this state the port will accept traffic only for the
835 * purpose of updating MAC address tables.
836 * * 3 - port is in STP *FORWARDING* state. Port is fully active.
837 * * 4 - port is in STP *BLOCKING* state. Only valid if STP is enabled on
838 * the bridge. This state is used during the STP election process.
839 * In this state, port will only process STP BPDUs.
840 *
841 * @IFLA_BRPORT_PRIORITY
842 * The STP port priority. The valid values are between 0 and 255.
843 *
844 * @IFLA_BRPORT_COST
845 * The STP path cost of the port. The valid values are between 1 and 65535.
846 *
847 * @IFLA_BRPORT_MODE
848 * Set the bridge port mode. See *BRIDGE_MODE_HAIRPIN* for more details.
849 *
850 * @IFLA_BRPORT_GUARD
851 * Controls whether STP BPDUs will be processed by the bridge port. By
852 * default, the flag is turned off to allow BPDU processing. Turning this
853 * flag on will disable the bridge port if a STP BPDU packet is received.
854 *
855 * If the bridge has Spanning Tree enabled, hostile devices on the network
856 * may send BPDU on a port and cause network failure. Setting *guard on*
857 * will detect and stop this by disabling the port. The port will be
858 * restarted if the link is brought down, or removed and reattached.
859 *
860 * @IFLA_BRPORT_PROTECT
861 * Controls whether a given port is allowed to become a root port or not.
862 * Only used when STP is enabled on the bridge. By default the flag is off.
863 *
864 * This feature is also called root port guard. If BPDU is received from a
865 * leaf (edge) port, it should not be elected as root port. This could
866 * be used if using STP on a bridge and the downstream bridges are not fully
867 * trusted; this prevents a hostile guest from rerouting traffic.
868 *
869 * @IFLA_BRPORT_FAST_LEAVE
870 * This flag allows the bridge to immediately stop multicast traffic
871 * forwarding on a port that receives an IGMP Leave message. It is only used
872 * when IGMP snooping is enabled on the bridge. By default the flag is off.
873 *
874 * @IFLA_BRPORT_LEARNING
875 * Controls whether a given port will learn *source* MAC addresses from
876 * received traffic or not. Also controls whether dynamic FDB entries
877 * (which can also be added by software) will be refreshed by incoming
878 * traffic. By default this flag is on.
879 *
880 * @IFLA_BRPORT_UNICAST_FLOOD
881 * Controls whether unicast traffic for which there is no FDB entry will
882 * be flooded towards this port. By default this flag is on.
883 *
884 * @IFLA_BRPORT_PROXYARP
885 * Enable proxy ARP on this port.
886 *
887 * @IFLA_BRPORT_LEARNING_SYNC
888 * Controls whether a given port will sync MAC addresses learned on device
889 * port to bridge FDB.
890 *
891 * @IFLA_BRPORT_PROXYARP_WIFI
892 * Enable proxy ARP on this port which meets extended requirements by
893 * IEEE 802.11 and Hotspot 2.0 specifications.
894 *
895 * @IFLA_BRPORT_ROOT_ID
896 *
897 * @IFLA_BRPORT_BRIDGE_ID
898 *
899 * @IFLA_BRPORT_DESIGNATED_PORT
900 *
901 * @IFLA_BRPORT_DESIGNATED_COST
902 *
903 * @IFLA_BRPORT_ID
904 *
905 * @IFLA_BRPORT_NO
906 *
907 * @IFLA_BRPORT_TOPOLOGY_CHANGE_ACK
908 *
909 * @IFLA_BRPORT_CONFIG_PENDING
910 *
911 * @IFLA_BRPORT_MESSAGE_AGE_TIMER
912 *
913 * @IFLA_BRPORT_FORWARD_DELAY_TIMER
914 *
915 * @IFLA_BRPORT_HOLD_TIMER
916 *
917 * @IFLA_BRPORT_FLUSH
918 * Flush bridge ports' fdb dynamic entries.
919 *
920 * @IFLA_BRPORT_MULTICAST_ROUTER
921 * Configure the port's multicast router presence. A port with
922 * a multicast router will receive all multicast traffic.
923 * The valid values are:
924 *
925 * * 0 disable multicast routers on this port
926 * * 1 let the system detect the presence of routers (default)
927 * * 2 permanently enable multicast traffic forwarding on this port
928 * * 3 enable multicast routers temporarily on this port, not depending
929 * on incoming queries.
930 *
931 * @IFLA_BRPORT_PAD
932 *
933 * @IFLA_BRPORT_MCAST_FLOOD
934 * Controls whether a given port will flood multicast traffic for which
935 * there is no MDB entry. By default this flag is on.
936 *
937 * @IFLA_BRPORT_MCAST_TO_UCAST
938 * Controls whether a given port will replicate packets using unicast
939 * instead of multicast. By default this flag is off.
940 *
941 * This is done by copying the packet per host and changing the multicast
942 * destination MAC to a unicast one accordingly.
943 *
944 * *mcast_to_unicast* works on top of the multicast snooping feature of the
945 * bridge. Which means unicast copies are only delivered to hosts which
946 * are interested in unicast and signaled this via IGMP/MLD reports previously.
947 *
948 * This feature is intended for interface types which have a more reliable
949 * and/or efficient way to deliver unicast packets than broadcast ones
950 * (e.g. WiFi).
951 *
952 * However, it should only be enabled on interfaces where no IGMPv2/MLDv1
953 * report suppression takes place. IGMP/MLD report suppression issue is
954 * usually overcome by the network daemon (supplicant) enabling AP isolation
955 * and by that separating all STAs.
956 *
957 * Delivery of STA-to-STA IP multicast is made possible again by enabling
958 * and utilizing the bridge hairpin mode, which considers the incoming port
959 * as a potential outgoing port, too (see *BRIDGE_MODE_HAIRPIN* option).
960 * Hairpin mode is performed after multicast snooping, therefore leading
961 * to only deliver reports to STAs running a multicast router.
962 *
963 * @IFLA_BRPORT_VLAN_TUNNEL
964 * Controls whether vlan to tunnel mapping is enabled on the port.
965 * By default this flag is off.
966 *
967 * @IFLA_BRPORT_BCAST_FLOOD
968 * Controls flooding of broadcast traffic on the given port. By default
969 * this flag is on.
970 *
971 * @IFLA_BRPORT_GROUP_FWD_MASK
972 * Set the group forward mask. This is a bitmask that is applied to
973 * decide whether to forward incoming frames destined to link-local
974 * addresses. The addresses of the form are 01:80:C2:00:00:0X (defaults
975 * to 0, which means the bridge does not forward any link-local frames
976 * coming on this port).
977 *
978 * @IFLA_BRPORT_NEIGH_SUPPRESS
979 * Controls whether neighbor discovery (arp and nd) proxy and suppression
980 * is enabled on the port. By default this flag is off.
981 *
982 * @IFLA_BRPORT_ISOLATED
983 * Controls whether a given port will be isolated, which means it will be
984 * able to communicate with non-isolated ports only. By default this
985 * flag is off.
986 *
987 * @IFLA_BRPORT_BACKUP_PORT
988 * Set a backup port. If the port loses carrier all traffic will be
989 * redirected to the configured backup port. Set the value to 0 to disable
990 * it.
991 *
992 * @IFLA_BRPORT_MRP_RING_OPEN
993 *
994 * @IFLA_BRPORT_MRP_IN_OPEN
995 *
996 * @IFLA_BRPORT_MCAST_EHT_HOSTS_LIMIT
997 * The number of per-port EHT hosts limit. The default value is 512.
998 * Setting to 0 is not allowed.
999 *
1000 * @IFLA_BRPORT_MCAST_EHT_HOSTS_CNT
1001 * The current number of tracked hosts, read only.
1002 *
1003 * @IFLA_BRPORT_LOCKED
1004 * Controls whether a port will be locked, meaning that hosts behind the
1005 * port will not be able to communicate through the port unless an FDB
1006 * entry with the unit's MAC address is in the FDB. The common use case is
1007 * that hosts are allowed access through authentication with the IEEE 802.1X
1008 * protocol or based on whitelists. By default this flag is off.
1009 *
1010 * Please note that secure 802.1X deployments should always use the
1011 * *BR_BOOLOPT_NO_LL_LEARN* flag, to not permit the bridge to populate its
1012 * FDB based on link-local (EAPOL) traffic received on the port.
1013 *
1014 * @IFLA_BRPORT_MAB
1015 * Controls whether a port will use MAC Authentication Bypass (MAB), a
1016 * technique through which select MAC addresses may be allowed on a locked
1017 * port, without using 802.1X authentication. Packets with an unknown source
1018 * MAC address generates a "locked" FDB entry on the incoming bridge port.
1019 * The common use case is for user space to react to these bridge FDB
1020 * notifications and optionally replace the locked FDB entry with a normal
1021 * one, allowing traffic to pass for whitelisted MAC addresses.
1022 *
1023 * Setting this flag also requires *IFLA_BRPORT_LOCKED* and
1024 * *IFLA_BRPORT_LEARNING*. *IFLA_BRPORT_LOCKED* ensures that unauthorized
1025 * data packets are dropped, and *IFLA_BRPORT_LEARNING* allows the dynamic
1026 * FDB entries installed by user space (as replacements for the locked FDB
1027 * entries) to be refreshed and/or aged out.
1028 *
1029 * @IFLA_BRPORT_MCAST_N_GROUPS
1030 *
1031 * @IFLA_BRPORT_MCAST_MAX_GROUPS
1032 * Sets the maximum number of MDB entries that can be registered for a
1033 * given port. Attempts to register more MDB entries at the port than this
1034 * limit allows will be rejected, whether they are done through netlink
1035 * (e.g. the bridge tool), or IGMP or MLD membership reports. Setting a
1036 * limit of 0 disables the limit. The default value is 0.
1037 *
1038 * @IFLA_BRPORT_NEIGH_VLAN_SUPPRESS
1039 * Controls whether neighbor discovery (arp and nd) proxy and suppression is
1040 * enabled for a given port. By default this flag is off.
1041 *
1042 * Note that this option only takes effect when *IFLA_BRPORT_NEIGH_SUPPRESS*
1043 * is enabled for a given port.
1044 *
1045 * @IFLA_BRPORT_BACKUP_NHID
1046 * The FDB nexthop object ID to attach to packets being redirected to a
1047 * backup port that has VLAN tunnel mapping enabled (via the
1048 * *IFLA_BRPORT_VLAN_TUNNEL* option). Setting a value of 0 (default) has
1049 * the effect of not attaching any ID.
1050 */
25c71c75 1051enum {
1052 IFLA_BRPORT_UNSPEC,
1053 IFLA_BRPORT_STATE, /* Spanning tree state */
1054 IFLA_BRPORT_PRIORITY, /* " priority */
1055 IFLA_BRPORT_COST, /* " cost */
1056 IFLA_BRPORT_MODE, /* mode (hairpin) */
a2e01a65 1057 IFLA_BRPORT_GUARD, /* bpdu guard */
1007dd1a 1058 IFLA_BRPORT_PROTECT, /* root port protection */
c2d3babf 1059 IFLA_BRPORT_FAST_LEAVE, /* multicast fast leave */
9ba18891 1060 IFLA_BRPORT_LEARNING, /* mac learning */
867a5943 1061 IFLA_BRPORT_UNICAST_FLOOD, /* flood unicast traffic */
95850116 1062 IFLA_BRPORT_PROXYARP, /* proxy ARP */
efacacda 1063 IFLA_BRPORT_LEARNING_SYNC, /* mac learning sync from device */
842a9ae0 1064 IFLA_BRPORT_PROXYARP_WIFI, /* proxy ARP for Wi-Fi */
4ebc7660 1065 IFLA_BRPORT_ROOT_ID, /* designated root */
80df9a26 1066 IFLA_BRPORT_BRIDGE_ID, /* designated bridge */
96f94e7f
NA
1067 IFLA_BRPORT_DESIGNATED_PORT,
1068 IFLA_BRPORT_DESIGNATED_COST,
42d452c4
NA
1069 IFLA_BRPORT_ID,
1070 IFLA_BRPORT_NO,
e08e838a
NA
1071 IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
1072 IFLA_BRPORT_CONFIG_PENDING,
61c0a9a8
NA
1073 IFLA_BRPORT_MESSAGE_AGE_TIMER,
1074 IFLA_BRPORT_FORWARD_DELAY_TIMER,
1075 IFLA_BRPORT_HOLD_TIMER,
9b0c6e4d 1076 IFLA_BRPORT_FLUSH,
5d6ae479 1077 IFLA_BRPORT_MULTICAST_ROUTER,
12a0faa3 1078 IFLA_BRPORT_PAD,
b6cb5ac8 1079 IFLA_BRPORT_MCAST_FLOOD,
6db6f0ea 1080 IFLA_BRPORT_MCAST_TO_UCAST,
b3c7ef0a 1081 IFLA_BRPORT_VLAN_TUNNEL,
99f906e9 1082 IFLA_BRPORT_BCAST_FLOOD,
5af48b59 1083 IFLA_BRPORT_GROUP_FWD_MASK,
821f1b21 1084 IFLA_BRPORT_NEIGH_SUPPRESS,
7d850abd 1085 IFLA_BRPORT_ISOLATED,
2756f68c 1086 IFLA_BRPORT_BACKUP_PORT,
3e54442c 1087 IFLA_BRPORT_MRP_RING_OPEN,
ffb3adba 1088 IFLA_BRPORT_MRP_IN_OPEN,
2dba407f
NA
1089 IFLA_BRPORT_MCAST_EHT_HOSTS_LIMIT,
1090 IFLA_BRPORT_MCAST_EHT_HOSTS_CNT,
a21d9a67 1091 IFLA_BRPORT_LOCKED,
a35ec8e3 1092 IFLA_BRPORT_MAB,
a1aee20d
PM
1093 IFLA_BRPORT_MCAST_N_GROUPS,
1094 IFLA_BRPORT_MCAST_MAX_GROUPS,
160656d7 1095 IFLA_BRPORT_NEIGH_VLAN_SUPPRESS,
29cfb2aa 1096 IFLA_BRPORT_BACKUP_NHID,
25c71c75 1097 __IFLA_BRPORT_MAX
1098};
1099#define IFLA_BRPORT_MAX (__IFLA_BRPORT_MAX - 1)
1100
607ca46e
DH
1101struct ifla_cacheinfo {
1102 __u32 max_reasm_len;
1103 __u32 tstamp; /* ipv6InterfaceTable updated timestamp */
1104 __u32 reachable_time;
1105 __u32 retrans_time;
1106};
1107
1108enum {
1109 IFLA_INFO_UNSPEC,
1110 IFLA_INFO_KIND,
1111 IFLA_INFO_DATA,
1112 IFLA_INFO_XSTATS,
ba7d49b1
JP
1113 IFLA_INFO_SLAVE_KIND,
1114 IFLA_INFO_SLAVE_DATA,
607ca46e
DH
1115 __IFLA_INFO_MAX,
1116};
1117
1118#define IFLA_INFO_MAX (__IFLA_INFO_MAX - 1)
1119
1120/* VLAN section */
1121
1122enum {
1123 IFLA_VLAN_UNSPEC,
1124 IFLA_VLAN_ID,
1125 IFLA_VLAN_FLAGS,
1126 IFLA_VLAN_EGRESS_QOS,
1127 IFLA_VLAN_INGRESS_QOS,
8ad227ff 1128 IFLA_VLAN_PROTOCOL,
607ca46e
DH
1129 __IFLA_VLAN_MAX,
1130};
1131
1132#define IFLA_VLAN_MAX (__IFLA_VLAN_MAX - 1)
1133
1134struct ifla_vlan_flags {
1135 __u32 flags;
1136 __u32 mask;
1137};
1138
1139enum {
1140 IFLA_VLAN_QOS_UNSPEC,
1141 IFLA_VLAN_QOS_MAPPING,
1142 __IFLA_VLAN_QOS_MAX
1143};
1144
1145#define IFLA_VLAN_QOS_MAX (__IFLA_VLAN_QOS_MAX - 1)
1146
1147struct ifla_vlan_qos_mapping {
1148 __u32 from;
1149 __u32 to;
1150};
1151
1152/* MACVLAN section */
1153enum {
1154 IFLA_MACVLAN_UNSPEC,
1155 IFLA_MACVLAN_MODE,
1156 IFLA_MACVLAN_FLAGS,
79cf79ab
MB
1157 IFLA_MACVLAN_MACADDR_MODE,
1158 IFLA_MACVLAN_MACADDR,
1159 IFLA_MACVLAN_MACADDR_DATA,
1160 IFLA_MACVLAN_MACADDR_COUNT,
d4bff72c
TK
1161 IFLA_MACVLAN_BC_QUEUE_LEN,
1162 IFLA_MACVLAN_BC_QUEUE_LEN_USED,
954d1fa1 1163 IFLA_MACVLAN_BC_CUTOFF,
607ca46e
DH
1164 __IFLA_MACVLAN_MAX,
1165};
1166
1167#define IFLA_MACVLAN_MAX (__IFLA_MACVLAN_MAX - 1)
1168
1169enum macvlan_mode {
1170 MACVLAN_MODE_PRIVATE = 1, /* don't talk to other macvlans */
1171 MACVLAN_MODE_VEPA = 2, /* talk to other ports through ext bridge */
1172 MACVLAN_MODE_BRIDGE = 4, /* talk to bridge ports directly */
1173 MACVLAN_MODE_PASSTHRU = 8,/* take over the underlying device */
79cf79ab
MB
1174 MACVLAN_MODE_SOURCE = 16,/* use source MAC address list to assign */
1175};
1176
1177enum macvlan_macaddr_mode {
1178 MACVLAN_MACADDR_ADD,
1179 MACVLAN_MACADDR_DEL,
1180 MACVLAN_MACADDR_FLUSH,
1181 MACVLAN_MACADDR_SET,
607ca46e
DH
1182};
1183
1184#define MACVLAN_FLAG_NOPROMISC 1
427f0c8c 1185#define MACVLAN_FLAG_NODST 2 /* skip dst macvlan if matching src macvlan */
607ca46e 1186
4e3c8992
DA
1187/* VRF section */
1188enum {
1189 IFLA_VRF_UNSPEC,
1190 IFLA_VRF_TABLE,
1191 __IFLA_VRF_MAX
1192};
1193
1194#define IFLA_VRF_MAX (__IFLA_VRF_MAX - 1)
1195
67eb0331
DA
1196enum {
1197 IFLA_VRF_PORT_UNSPEC,
1198 IFLA_VRF_PORT_TABLE,
1199 __IFLA_VRF_PORT_MAX
1200};
1201
1202#define IFLA_VRF_PORT_MAX (__IFLA_VRF_PORT_MAX - 1)
1203
dece8d2b
SD
1204/* MACSEC section */
1205enum {
1206 IFLA_MACSEC_UNSPEC,
1207 IFLA_MACSEC_SCI,
1208 IFLA_MACSEC_PORT,
1209 IFLA_MACSEC_ICV_LEN,
1210 IFLA_MACSEC_CIPHER_SUITE,
1211 IFLA_MACSEC_WINDOW,
1212 IFLA_MACSEC_ENCODING_SA,
1213 IFLA_MACSEC_ENCRYPT,
1214 IFLA_MACSEC_PROTECT,
1215 IFLA_MACSEC_INC_SCI,
1216 IFLA_MACSEC_ES,
1217 IFLA_MACSEC_SCB,
1218 IFLA_MACSEC_REPLAY_PROTECT,
1219 IFLA_MACSEC_VALIDATION,
f60d94c0 1220 IFLA_MACSEC_PAD,
791bb3fc 1221 IFLA_MACSEC_OFFLOAD,
dece8d2b
SD
1222 __IFLA_MACSEC_MAX,
1223};
1224
1225#define IFLA_MACSEC_MAX (__IFLA_MACSEC_MAX - 1)
1226
f203b76d
SK
1227/* XFRM section */
1228enum {
1229 IFLA_XFRM_UNSPEC,
1230 IFLA_XFRM_LINK,
1231 IFLA_XFRM_IF_ID,
abc340b3 1232 IFLA_XFRM_COLLECT_METADATA,
f203b76d
SK
1233 __IFLA_XFRM_MAX
1234};
1235
1236#define IFLA_XFRM_MAX (__IFLA_XFRM_MAX - 1)
dece8d2b
SD
1237
1238enum macsec_validation_type {
1239 MACSEC_VALIDATE_DISABLED = 0,
1240 MACSEC_VALIDATE_CHECK = 1,
1241 MACSEC_VALIDATE_STRICT = 2,
1242 __MACSEC_VALIDATE_END,
1243 MACSEC_VALIDATE_MAX = __MACSEC_VALIDATE_END - 1,
1244};
1245
76564261
AT
1246enum macsec_offload {
1247 MACSEC_OFFLOAD_OFF = 0,
1248 MACSEC_OFFLOAD_PHY = 1,
21114b7f 1249 MACSEC_OFFLOAD_MAC = 2,
76564261
AT
1250 __MACSEC_OFFLOAD_END,
1251 MACSEC_OFFLOAD_MAX = __MACSEC_OFFLOAD_END - 1,
1252};
1253
2ad7bf36
MB
1254/* IPVLAN section */
1255enum {
1256 IFLA_IPVLAN_UNSPEC,
1257 IFLA_IPVLAN_MODE,
a190d04d 1258 IFLA_IPVLAN_FLAGS,
2ad7bf36
MB
1259 __IFLA_IPVLAN_MAX
1260};
1261
1262#define IFLA_IPVLAN_MAX (__IFLA_IPVLAN_MAX - 1)
1263
1264enum ipvlan_mode {
1265 IPVLAN_MODE_L2 = 0,
1266 IPVLAN_MODE_L3,
4fbae7d8 1267 IPVLAN_MODE_L3S,
2ad7bf36
MB
1268 IPVLAN_MODE_MAX
1269};
1270
a190d04d 1271#define IPVLAN_F_PRIVATE 0x01
fe89aa6b 1272#define IPVLAN_F_VEPA 0x02
a190d04d 1273
7b8135f4
RP
1274/* Tunnel RTM header */
1275struct tunnel_msg {
1276 __u8 family;
445b2f36 1277 __u8 flags;
7b8135f4
RP
1278 __u16 reserved2;
1279 __u32 ifindex;
1280};
1281
35dfaad7
DB
1282/* netkit section */
1283enum netkit_action {
1284 NETKIT_NEXT = -1,
1285 NETKIT_PASS = 0,
1286 NETKIT_DROP = 2,
1287 NETKIT_REDIRECT = 7,
1288};
1289
1290enum netkit_mode {
1291 NETKIT_L2,
1292 NETKIT_L3,
1293};
1294
1295enum {
1296 IFLA_NETKIT_UNSPEC,
1297 IFLA_NETKIT_PEER_INFO,
1298 IFLA_NETKIT_PRIMARY,
1299 IFLA_NETKIT_POLICY,
1300 IFLA_NETKIT_PEER_POLICY,
1301 IFLA_NETKIT_MODE,
1302 __IFLA_NETKIT_MAX,
1303};
1304#define IFLA_NETKIT_MAX (__IFLA_NETKIT_MAX - 1)
1305
607ca46e 1306/* VXLAN section */
445b2f36
NA
1307
1308/* include statistics in the dump */
1309#define TUNNEL_MSG_FLAG_STATS 0x01
1310
1311#define TUNNEL_MSG_VALID_USER_FLAGS TUNNEL_MSG_FLAG_STATS
1312
1313/* Embedded inside VXLAN_VNIFILTER_ENTRY_STATS */
1314enum {
1315 VNIFILTER_ENTRY_STATS_UNSPEC,
1316 VNIFILTER_ENTRY_STATS_RX_BYTES,
1317 VNIFILTER_ENTRY_STATS_RX_PKTS,
1318 VNIFILTER_ENTRY_STATS_RX_DROPS,
1319 VNIFILTER_ENTRY_STATS_RX_ERRORS,
1320 VNIFILTER_ENTRY_STATS_TX_BYTES,
1321 VNIFILTER_ENTRY_STATS_TX_PKTS,
1322 VNIFILTER_ENTRY_STATS_TX_DROPS,
1323 VNIFILTER_ENTRY_STATS_TX_ERRORS,
1324 VNIFILTER_ENTRY_STATS_PAD,
1325 __VNIFILTER_ENTRY_STATS_MAX
1326};
1327#define VNIFILTER_ENTRY_STATS_MAX (__VNIFILTER_ENTRY_STATS_MAX - 1)
1328
7b8135f4
RP
1329enum {
1330 VXLAN_VNIFILTER_ENTRY_UNSPEC,
1331 VXLAN_VNIFILTER_ENTRY_START,
1332 VXLAN_VNIFILTER_ENTRY_END,
1333 VXLAN_VNIFILTER_ENTRY_GROUP,
1334 VXLAN_VNIFILTER_ENTRY_GROUP6,
445b2f36 1335 VXLAN_VNIFILTER_ENTRY_STATS,
7b8135f4
RP
1336 __VXLAN_VNIFILTER_ENTRY_MAX
1337};
1338#define VXLAN_VNIFILTER_ENTRY_MAX (__VXLAN_VNIFILTER_ENTRY_MAX - 1)
1339
1340enum {
1341 VXLAN_VNIFILTER_UNSPEC,
1342 VXLAN_VNIFILTER_ENTRY,
1343 __VXLAN_VNIFILTER_MAX
1344};
1345#define VXLAN_VNIFILTER_MAX (__VXLAN_VNIFILTER_MAX - 1)
1346
607ca46e
DH
1347enum {
1348 IFLA_VXLAN_UNSPEC,
1349 IFLA_VXLAN_ID,
5d174dd8 1350 IFLA_VXLAN_GROUP, /* group or remote address */
607ca46e
DH
1351 IFLA_VXLAN_LINK,
1352 IFLA_VXLAN_LOCAL,
1353 IFLA_VXLAN_TTL,
1354 IFLA_VXLAN_TOS,
1355 IFLA_VXLAN_LEARNING,
1356 IFLA_VXLAN_AGEING,
1357 IFLA_VXLAN_LIMIT,
823aa873 1358 IFLA_VXLAN_PORT_RANGE, /* source port */
e4f67add
DS
1359 IFLA_VXLAN_PROXY,
1360 IFLA_VXLAN_RSC,
1361 IFLA_VXLAN_L2MISS,
1362 IFLA_VXLAN_L3MISS,
823aa873 1363 IFLA_VXLAN_PORT, /* destination port */
e4c7ed41
CW
1364 IFLA_VXLAN_GROUP6,
1365 IFLA_VXLAN_LOCAL6,
359a0ea9
TH
1366 IFLA_VXLAN_UDP_CSUM,
1367 IFLA_VXLAN_UDP_ZERO_CSUM6_TX,
1368 IFLA_VXLAN_UDP_ZERO_CSUM6_RX,
dfd8645e
TH
1369 IFLA_VXLAN_REMCSUM_TX,
1370 IFLA_VXLAN_REMCSUM_RX,
3511494c 1371 IFLA_VXLAN_GBP,
0ace2ca8 1372 IFLA_VXLAN_REMCSUM_NOPARTIAL,
f8a9b1bc 1373 IFLA_VXLAN_COLLECT_METADATA,
e7f70af1 1374 IFLA_VXLAN_LABEL,
e1e5314d 1375 IFLA_VXLAN_GPE,
72f6d71e 1376 IFLA_VXLAN_TTL_INHERIT,
b4d30697 1377 IFLA_VXLAN_DF,
7b8135f4 1378 IFLA_VXLAN_VNIFILTER, /* only applicable with COLLECT_METADATA mode */
69474a8a 1379 IFLA_VXLAN_LOCALBYPASS,
c6e9dba3 1380 IFLA_VXLAN_LABEL_POLICY, /* IPv6 flow label policy; ifla_vxlan_label_policy */
607ca46e
DH
1381 __IFLA_VXLAN_MAX
1382};
1383#define IFLA_VXLAN_MAX (__IFLA_VXLAN_MAX - 1)
1384
1385struct ifla_vxlan_port_range {
1386 __be16 low;
1387 __be16 high;
1388};
1389
b4d30697
SB
1390enum ifla_vxlan_df {
1391 VXLAN_DF_UNSET = 0,
1392 VXLAN_DF_SET,
1393 VXLAN_DF_INHERIT,
1394 __VXLAN_DF_END,
1395 VXLAN_DF_MAX = __VXLAN_DF_END - 1,
1396};
1397
c6e9dba3
AL
1398enum ifla_vxlan_label_policy {
1399 VXLAN_LABEL_FIXED = 0,
1400 VXLAN_LABEL_INHERIT = 1,
1401 __VXLAN_LABEL_END,
1402 VXLAN_LABEL_MAX = __VXLAN_LABEL_END - 1,
1403};
1404
2d07dc79
JL
1405/* GENEVE section */
1406enum {
1407 IFLA_GENEVE_UNSPEC,
1408 IFLA_GENEVE_ID,
1409 IFLA_GENEVE_REMOTE,
8760ce58 1410 IFLA_GENEVE_TTL,
d8951125 1411 IFLA_GENEVE_TOS,
cd7918b3 1412 IFLA_GENEVE_PORT, /* destination port */
e305ac6c 1413 IFLA_GENEVE_COLLECT_METADATA,
8ed66f0e 1414 IFLA_GENEVE_REMOTE6,
abe492b4
TH
1415 IFLA_GENEVE_UDP_CSUM,
1416 IFLA_GENEVE_UDP_ZERO_CSUM6_TX,
1417 IFLA_GENEVE_UDP_ZERO_CSUM6_RX,
8eb3b995 1418 IFLA_GENEVE_LABEL,
52d0d404 1419 IFLA_GENEVE_TTL_INHERIT,
a025fb5f 1420 IFLA_GENEVE_DF,
435fe1c0 1421 IFLA_GENEVE_INNER_PROTO_INHERIT,
2d07dc79
JL
1422 __IFLA_GENEVE_MAX
1423};
1424#define IFLA_GENEVE_MAX (__IFLA_GENEVE_MAX - 1)
1425
a025fb5f
SB
1426enum ifla_geneve_df {
1427 GENEVE_DF_UNSET = 0,
1428 GENEVE_DF_SET,
1429 GENEVE_DF_INHERIT,
1430 __GENEVE_DF_END,
1431 GENEVE_DF_MAX = __GENEVE_DF_END - 1,
1432};
1433
571912c6
MV
1434/* Bareudp section */
1435enum {
1436 IFLA_BAREUDP_UNSPEC,
1437 IFLA_BAREUDP_PORT,
1438 IFLA_BAREUDP_ETHERTYPE,
1439 IFLA_BAREUDP_SRCPORT_MIN,
4b5f6723 1440 IFLA_BAREUDP_MULTIPROTO_MODE,
571912c6
MV
1441 __IFLA_BAREUDP_MAX
1442};
1443
1444#define IFLA_BAREUDP_MAX (__IFLA_BAREUDP_MAX - 1)
1445
96d934c7
GN
1446/* PPP section */
1447enum {
1448 IFLA_PPP_UNSPEC,
1449 IFLA_PPP_DEV_FD,
1450 __IFLA_PPP_MAX
1451};
1452#define IFLA_PPP_MAX (__IFLA_PPP_MAX - 1)
1453
459aa660 1454/* GTP section */
91ed81f9
JB
1455
1456enum ifla_gtp_role {
1457 GTP_ROLE_GGSN = 0,
1458 GTP_ROLE_SGSN,
1459};
1460
459aa660
PN
1461enum {
1462 IFLA_GTP_UNSPEC,
1463 IFLA_GTP_FD0,
1464 IFLA_GTP_FD1,
1465 IFLA_GTP_PDP_HASHSIZE,
91ed81f9 1466 IFLA_GTP_ROLE,
b20dc3c6 1467 IFLA_GTP_CREATE_SOCKETS,
9af41cc3 1468 IFLA_GTP_RESTART_COUNT,
999cb275
PNA
1469 IFLA_GTP_LOCAL,
1470 IFLA_GTP_LOCAL6,
459aa660
PN
1471 __IFLA_GTP_MAX,
1472};
1473#define IFLA_GTP_MAX (__IFLA_GTP_MAX - 1)
1474
90af2311
JP
1475/* Bonding section */
1476
1477enum {
1478 IFLA_BOND_UNSPEC,
1479 IFLA_BOND_MODE,
ec76aa49 1480 IFLA_BOND_ACTIVE_SLAVE,
eecdaa6e 1481 IFLA_BOND_MIIMON,
25852e29 1482 IFLA_BOND_UPDELAY,
c7461f9b 1483 IFLA_BOND_DOWNDELAY,
9f53e14e 1484 IFLA_BOND_USE_CARRIER,
06151dbc 1485 IFLA_BOND_ARP_INTERVAL,
7f28fa10 1486 IFLA_BOND_ARP_IP_TARGET,
29c49482 1487 IFLA_BOND_ARP_VALIDATE,
d5c84254 1488 IFLA_BOND_ARP_ALL_TARGETS,
0a98a0d1 1489 IFLA_BOND_PRIMARY,
8a41ae44 1490 IFLA_BOND_PRIMARY_RESELECT,
89901972 1491 IFLA_BOND_FAIL_OVER_MAC,
f70161c6 1492 IFLA_BOND_XMIT_HASH_POLICY,
d8838de7 1493 IFLA_BOND_RESEND_IGMP,
2c9839c1 1494 IFLA_BOND_NUM_PEER_NOTIF,
1cc0b1e3 1495 IFLA_BOND_ALL_SLAVES_ACTIVE,
7d101008 1496 IFLA_BOND_MIN_LINKS,
8d836d09 1497 IFLA_BOND_LP_INTERVAL,
c13ab3ff 1498 IFLA_BOND_PACKETS_PER_SLAVE,
998e40bb 1499 IFLA_BOND_AD_LACP_RATE,
ec029fac 1500 IFLA_BOND_AD_SELECT,
4ee7ac75 1501 IFLA_BOND_AD_INFO,
171a42c3
AG
1502 IFLA_BOND_AD_ACTOR_SYS_PRIO,
1503 IFLA_BOND_AD_USER_PORT_KEY,
1504 IFLA_BOND_AD_ACTOR_SYSTEM,
0f7bffd9 1505 IFLA_BOND_TLB_DYNAMIC_LB,
07a4ddec 1506 IFLA_BOND_PEER_NOTIF_DELAY,
3a755cd8 1507 IFLA_BOND_AD_LACP_ACTIVE,
5944b5ab 1508 IFLA_BOND_MISSED_MAX,
129e3c1b 1509 IFLA_BOND_NS_IP6_TARGET,
240fd405 1510 IFLA_BOND_COUPLED_CONTROL,
90af2311
JP
1511 __IFLA_BOND_MAX,
1512};
1513
1514#define IFLA_BOND_MAX (__IFLA_BOND_MAX - 1)
1515
4ee7ac75 1516enum {
237266f7 1517 IFLA_BOND_AD_INFO_UNSPEC,
4ee7ac75 1518 IFLA_BOND_AD_INFO_AGGREGATOR,
1519 IFLA_BOND_AD_INFO_NUM_PORTS,
1520 IFLA_BOND_AD_INFO_ACTOR_KEY,
1521 IFLA_BOND_AD_INFO_PARTNER_KEY,
1522 IFLA_BOND_AD_INFO_PARTNER_MAC,
1523 __IFLA_BOND_AD_INFO_MAX,
1524};
1525
1526#define IFLA_BOND_AD_INFO_MAX (__IFLA_BOND_AD_INFO_MAX - 1)
1527
1d3ee88a 1528enum {
df7dbcbb
JP
1529 IFLA_BOND_SLAVE_UNSPEC,
1530 IFLA_BOND_SLAVE_STATE,
1531 IFLA_BOND_SLAVE_MII_STATUS,
1532 IFLA_BOND_SLAVE_LINK_FAILURE_COUNT,
1533 IFLA_BOND_SLAVE_PERM_HWADDR,
1534 IFLA_BOND_SLAVE_QUEUE_ID,
1535 IFLA_BOND_SLAVE_AD_AGGREGATOR_ID,
254cb6db 1536 IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE,
46ea297e 1537 IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE,
0a2ff7cc 1538 IFLA_BOND_SLAVE_PRIO,
df7dbcbb 1539 __IFLA_BOND_SLAVE_MAX,
1d3ee88a 1540};
1541
df7dbcbb 1542#define IFLA_BOND_SLAVE_MAX (__IFLA_BOND_SLAVE_MAX - 1)
1d3ee88a 1543
607ca46e
DH
1544/* SR-IOV virtual function management section */
1545
1546enum {
1547 IFLA_VF_INFO_UNSPEC,
1548 IFLA_VF_INFO,
1549 __IFLA_VF_INFO_MAX,
1550};
1551
1552#define IFLA_VF_INFO_MAX (__IFLA_VF_INFO_MAX - 1)
1553
1554enum {
1555 IFLA_VF_UNSPEC,
1556 IFLA_VF_MAC, /* Hardware queue specific attributes */
79aab093 1557 IFLA_VF_VLAN, /* VLAN ID and QoS */
ed616689 1558 IFLA_VF_TX_RATE, /* Max TX Bandwidth Allocation */
607ca46e 1559 IFLA_VF_SPOOFCHK, /* Spoof Checking on/off switch */
1d8faf48 1560 IFLA_VF_LINK_STATE, /* link state enable/disable/auto switch */
ed616689 1561 IFLA_VF_RATE, /* Min and Max TX Bandwidth Allocation */
01a3d796
VZ
1562 IFLA_VF_RSS_QUERY_EN, /* RSS Redirection Table and Hash Key query
1563 * on/off switch
1564 */
3b766cd8 1565 IFLA_VF_STATS, /* network device statistics */
dd461d6a 1566 IFLA_VF_TRUST, /* Trust VF */
cc8e27cc
EC
1567 IFLA_VF_IB_NODE_GUID, /* VF Infiniband node GUID */
1568 IFLA_VF_IB_PORT_GUID, /* VF Infiniband port GUID */
79aab093 1569 IFLA_VF_VLAN_LIST, /* nested list of vlans, option for QinQ */
75345f88 1570 IFLA_VF_BROADCAST, /* VF broadcast */
607ca46e
DH
1571 __IFLA_VF_MAX,
1572};
1573
1574#define IFLA_VF_MAX (__IFLA_VF_MAX - 1)
1575
1576struct ifla_vf_mac {
1577 __u32 vf;
1578 __u8 mac[32]; /* MAX_ADDR_LEN */
1579};
1580
75345f88
DK
1581struct ifla_vf_broadcast {
1582 __u8 broadcast[32];
1583};
1584
607ca46e
DH
1585struct ifla_vf_vlan {
1586 __u32 vf;
1587 __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
1588 __u32 qos;
1589};
1590
79aab093
MS
1591enum {
1592 IFLA_VF_VLAN_INFO_UNSPEC,
1593 IFLA_VF_VLAN_INFO, /* VLAN ID, QoS and VLAN protocol */
1594 __IFLA_VF_VLAN_INFO_MAX,
1595};
1596
1597#define IFLA_VF_VLAN_INFO_MAX (__IFLA_VF_VLAN_INFO_MAX - 1)
1598#define MAX_VLAN_LIST_LEN 1
1599
1600struct ifla_vf_vlan_info {
1601 __u32 vf;
1602 __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
1603 __u32 qos;
1604 __be16 vlan_proto; /* VLAN protocol either 802.1Q or 802.1ad */
1605};
1606
607ca46e
DH
1607struct ifla_vf_tx_rate {
1608 __u32 vf;
1609 __u32 rate; /* Max TX bandwidth in Mbps, 0 disables throttling */
1610};
1611
ed616689
SC
1612struct ifla_vf_rate {
1613 __u32 vf;
1614 __u32 min_tx_rate; /* Min Bandwidth in Mbps */
1615 __u32 max_tx_rate; /* Max Bandwidth in Mbps */
1616};
1617
607ca46e
DH
1618struct ifla_vf_spoofchk {
1619 __u32 vf;
1620 __u32 setting;
1621};
1622
cc8e27cc
EC
1623struct ifla_vf_guid {
1624 __u32 vf;
1625 __u64 guid;
1626};
1627
1d8faf48
RE
1628enum {
1629 IFLA_VF_LINK_STATE_AUTO, /* link state of the uplink */
1630 IFLA_VF_LINK_STATE_ENABLE, /* link always up */
1631 IFLA_VF_LINK_STATE_DISABLE, /* link always down */
1632 __IFLA_VF_LINK_STATE_MAX,
1633};
1634
1635struct ifla_vf_link_state {
1636 __u32 vf;
1637 __u32 link_state;
1638};
1639
01a3d796
VZ
1640struct ifla_vf_rss_query_en {
1641 __u32 vf;
1642 __u32 setting;
1643};
1644
3b766cd8
EBE
1645enum {
1646 IFLA_VF_STATS_RX_PACKETS,
1647 IFLA_VF_STATS_TX_PACKETS,
1648 IFLA_VF_STATS_RX_BYTES,
1649 IFLA_VF_STATS_TX_BYTES,
1650 IFLA_VF_STATS_BROADCAST,
1651 IFLA_VF_STATS_MULTICAST,
343a6d8e 1652 IFLA_VF_STATS_PAD,
c5a9f6f0
EE
1653 IFLA_VF_STATS_RX_DROPPED,
1654 IFLA_VF_STATS_TX_DROPPED,
3b766cd8
EBE
1655 __IFLA_VF_STATS_MAX,
1656};
1657
1658#define IFLA_VF_STATS_MAX (__IFLA_VF_STATS_MAX - 1)
1659
dd461d6a
HS
1660struct ifla_vf_trust {
1661 __u32 vf;
1662 __u32 setting;
1663};
1664
607ca46e
DH
1665/* VF ports management section
1666 *
1667 * Nested layout of set/get msg is:
1668 *
1669 * [IFLA_NUM_VF]
1670 * [IFLA_VF_PORTS]
1671 * [IFLA_VF_PORT]
1672 * [IFLA_PORT_*], ...
1673 * [IFLA_VF_PORT]
1674 * [IFLA_PORT_*], ...
1675 * ...
1676 * [IFLA_PORT_SELF]
1677 * [IFLA_PORT_*], ...
1678 */
1679
1680enum {
1681 IFLA_VF_PORT_UNSPEC,
1682 IFLA_VF_PORT, /* nest */
1683 __IFLA_VF_PORT_MAX,
1684};
1685
1686#define IFLA_VF_PORT_MAX (__IFLA_VF_PORT_MAX - 1)
1687
1688enum {
1689 IFLA_PORT_UNSPEC,
1690 IFLA_PORT_VF, /* __u32 */
1691 IFLA_PORT_PROFILE, /* string */
1692 IFLA_PORT_VSI_TYPE, /* 802.1Qbg (pre-)standard VDP */
1693 IFLA_PORT_INSTANCE_UUID, /* binary UUID */
1694 IFLA_PORT_HOST_UUID, /* binary UUID */
1695 IFLA_PORT_REQUEST, /* __u8 */
1696 IFLA_PORT_RESPONSE, /* __u16, output only */
1697 __IFLA_PORT_MAX,
1698};
1699
1700#define IFLA_PORT_MAX (__IFLA_PORT_MAX - 1)
1701
1702#define PORT_PROFILE_MAX 40
1703#define PORT_UUID_MAX 16
1704#define PORT_SELF_VF -1
1705
1706enum {
1707 PORT_REQUEST_PREASSOCIATE = 0,
1708 PORT_REQUEST_PREASSOCIATE_RR,
1709 PORT_REQUEST_ASSOCIATE,
1710 PORT_REQUEST_DISASSOCIATE,
1711};
1712
1713enum {
1714 PORT_VDP_RESPONSE_SUCCESS = 0,
1715 PORT_VDP_RESPONSE_INVALID_FORMAT,
1716 PORT_VDP_RESPONSE_INSUFFICIENT_RESOURCES,
1717 PORT_VDP_RESPONSE_UNUSED_VTID,
1718 PORT_VDP_RESPONSE_VTID_VIOLATION,
1719 PORT_VDP_RESPONSE_VTID_VERSION_VIOALTION,
1720 PORT_VDP_RESPONSE_OUT_OF_SYNC,
1721 /* 0x08-0xFF reserved for future VDP use */
1722 PORT_PROFILE_RESPONSE_SUCCESS = 0x100,
1723 PORT_PROFILE_RESPONSE_INPROGRESS,
1724 PORT_PROFILE_RESPONSE_INVALID,
1725 PORT_PROFILE_RESPONSE_BADSTATE,
1726 PORT_PROFILE_RESPONSE_INSUFFICIENT_RESOURCES,
1727 PORT_PROFILE_RESPONSE_ERROR,
1728};
1729
1730struct ifla_port_vsi {
1731 __u8 vsi_mgr_id;
1732 __u8 vsi_type_id[3];
1733 __u8 vsi_type_version;
1734 __u8 pad[3];
1735};
1736
1737
1738/* IPoIB section */
1739
1740enum {
1741 IFLA_IPOIB_UNSPEC,
1742 IFLA_IPOIB_PKEY,
1743 IFLA_IPOIB_MODE,
1744 IFLA_IPOIB_UMCAST,
1745 __IFLA_IPOIB_MAX
1746};
1747
1748enum {
1749 IPOIB_MODE_DATAGRAM = 0, /* using unreliable datagram QPs */
1750 IPOIB_MODE_CONNECTED = 1, /* using connected QPs */
1751};
1752
1753#define IFLA_IPOIB_MAX (__IFLA_IPOIB_MAX - 1)
1754
f421436a 1755
8f4c0e01
MK
1756/* HSR/PRP section, both uses same interface */
1757
1758/* Different redundancy protocols for hsr device */
1759enum {
1760 HSR_PROTOCOL_HSR,
1761 HSR_PROTOCOL_PRP,
1762 HSR_PROTOCOL_MAX,
1763};
f421436a
AB
1764
1765enum {
1766 IFLA_HSR_UNSPEC,
1767 IFLA_HSR_SLAVE1,
1768 IFLA_HSR_SLAVE2,
98bf8362
AB
1769 IFLA_HSR_MULTICAST_SPEC, /* Last byte of supervision addr */
1770 IFLA_HSR_SUPERVISION_ADDR, /* Supervision frame multicast addr */
1771 IFLA_HSR_SEQ_NR,
b84e9307 1772 IFLA_HSR_VERSION, /* HSR version */
8f4c0e01
MK
1773 IFLA_HSR_PROTOCOL, /* Indicate different protocol than
1774 * HSR. For example PRP.
1775 */
5055cccf 1776 IFLA_HSR_INTERLINK, /* HSR interlink network device */
f421436a
AB
1777 __IFLA_HSR_MAX,
1778};
1779
1780#define IFLA_HSR_MAX (__IFLA_HSR_MAX - 1)
1781
10c9ead9
RP
1782/* STATS section */
1783
1784struct if_stats_msg {
1785 __u8 family;
1786 __u8 pad1;
1787 __u16 pad2;
1788 __u32 ifindex;
1789 __u32 filter_mask;
1790};
1791
1792/* A stats attribute can be netdev specific or a global stat.
1793 * For netdev stats, lets use the prefix IFLA_STATS_LINK_*
1794 */
1795enum {
1796 IFLA_STATS_UNSPEC, /* also used as 64bit pad attribute */
1797 IFLA_STATS_LINK_64,
97a47fac 1798 IFLA_STATS_LINK_XSTATS,
80e73cc5 1799 IFLA_STATS_LINK_XSTATS_SLAVE,
69ae6ad2 1800 IFLA_STATS_LINK_OFFLOAD_XSTATS,
aefb4d4a 1801 IFLA_STATS_AF_SPEC,
10c9ead9
RP
1802 __IFLA_STATS_MAX,
1803};
1804
1805#define IFLA_STATS_MAX (__IFLA_STATS_MAX - 1)
1806
1807#define IFLA_STATS_FILTER_BIT(ATTR) (1 << (ATTR - 1))
1808
46efc97b
PM
1809enum {
1810 IFLA_STATS_GETSET_UNSPEC,
1811 IFLA_STATS_GET_FILTERS, /* Nest of IFLA_STATS_LINK_xxx, each a u32 with
1812 * a filter mask for the corresponding group.
1813 */
5fd0b838 1814 IFLA_STATS_SET_OFFLOAD_XSTATS_L3_STATS, /* 0 or 1 as u8 */
46efc97b
PM
1815 __IFLA_STATS_GETSET_MAX,
1816};
1817
1818#define IFLA_STATS_GETSET_MAX (__IFLA_STATS_GETSET_MAX - 1)
1819
97a47fac
NA
1820/* These are embedded into IFLA_STATS_LINK_XSTATS:
1821 * [IFLA_STATS_LINK_XSTATS]
1822 * -> [LINK_XSTATS_TYPE_xxx]
1823 * -> [rtnl link type specific attributes]
1824 */
1825enum {
1826 LINK_XSTATS_TYPE_UNSPEC,
a60c0903 1827 LINK_XSTATS_TYPE_BRIDGE,
a258aeac 1828 LINK_XSTATS_TYPE_BOND,
97a47fac
NA
1829 __LINK_XSTATS_TYPE_MAX
1830};
1831#define LINK_XSTATS_TYPE_MAX (__LINK_XSTATS_TYPE_MAX - 1)
1832
69ae6ad2
NF
1833/* These are stats embedded into IFLA_STATS_LINK_OFFLOAD_XSTATS */
1834enum {
1835 IFLA_OFFLOAD_XSTATS_UNSPEC,
1836 IFLA_OFFLOAD_XSTATS_CPU_HIT, /* struct rtnl_link_stats64 */
0e7788fd
PM
1837 IFLA_OFFLOAD_XSTATS_HW_S_INFO, /* HW stats info. A nest */
1838 IFLA_OFFLOAD_XSTATS_L3_STATS, /* struct rtnl_hw_stats64 */
69ae6ad2
NF
1839 __IFLA_OFFLOAD_XSTATS_MAX
1840};
1841#define IFLA_OFFLOAD_XSTATS_MAX (__IFLA_OFFLOAD_XSTATS_MAX - 1)
1842
0e7788fd
PM
1843enum {
1844 IFLA_OFFLOAD_XSTATS_HW_S_INFO_UNSPEC,
1845 IFLA_OFFLOAD_XSTATS_HW_S_INFO_REQUEST, /* u8 */
1846 IFLA_OFFLOAD_XSTATS_HW_S_INFO_USED, /* u8 */
1847 __IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX,
1848};
1849#define IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX \
1850 (__IFLA_OFFLOAD_XSTATS_HW_S_INFO_MAX - 1)
1851
d1fdd913
BB
1852/* XDP section */
1853
85de8576 1854#define XDP_FLAGS_UPDATE_IF_NOEXIST (1U << 0)
0489df9a
DB
1855#define XDP_FLAGS_SKB_MODE (1U << 1)
1856#define XDP_FLAGS_DRV_MODE (1U << 2)
ee5d032f 1857#define XDP_FLAGS_HW_MODE (1U << 3)
92234c8f 1858#define XDP_FLAGS_REPLACE (1U << 4)
ee5d032f
JK
1859#define XDP_FLAGS_MODES (XDP_FLAGS_SKB_MODE | \
1860 XDP_FLAGS_DRV_MODE | \
1861 XDP_FLAGS_HW_MODE)
b5cdae32 1862#define XDP_FLAGS_MASK (XDP_FLAGS_UPDATE_IF_NOEXIST | \
92234c8f 1863 XDP_FLAGS_MODES | XDP_FLAGS_REPLACE)
85de8576 1864
d67b9cd2
DB
1865/* These are stored into IFLA_XDP_ATTACHED on dump. */
1866enum {
1867 XDP_ATTACHED_NONE = 0,
1868 XDP_ATTACHED_DRV,
1869 XDP_ATTACHED_SKB,
ce158e58 1870 XDP_ATTACHED_HW,
a25717d2 1871 XDP_ATTACHED_MULTI,
d67b9cd2
DB
1872};
1873
d1fdd913
BB
1874enum {
1875 IFLA_XDP_UNSPEC,
1876 IFLA_XDP_FD,
1877 IFLA_XDP_ATTACHED,
85de8576 1878 IFLA_XDP_FLAGS,
58038695 1879 IFLA_XDP_PROG_ID,
4f91da26
JK
1880 IFLA_XDP_DRV_PROG_ID,
1881 IFLA_XDP_SKB_PROG_ID,
1882 IFLA_XDP_HW_PROG_ID,
92234c8f 1883 IFLA_XDP_EXPECTED_FD,
d1fdd913
BB
1884 __IFLA_XDP_MAX,
1885};
1886
1887#define IFLA_XDP_MAX (__IFLA_XDP_MAX - 1)
1888
3d3ea5af
VY
1889enum {
1890 IFLA_EVENT_NONE,
1891 IFLA_EVENT_REBOOT, /* internal reset / reboot */
1892 IFLA_EVENT_FEATURES, /* change in offload features */
1893 IFLA_EVENT_BONDING_FAILOVER, /* change in active slave */
1894 IFLA_EVENT_NOTIFY_PEERS, /* re-sent grat. arp/ndisc */
1895 IFLA_EVENT_IGMP_RESEND, /* re-sent IGMP JOIN */
1896 IFLA_EVENT_BONDING_OPTIONS, /* change in bonding options */
1897};
1898
1ec010e7
SD
1899/* tun section */
1900
1901enum {
1902 IFLA_TUN_UNSPEC,
1903 IFLA_TUN_OWNER,
1904 IFLA_TUN_GROUP,
1905 IFLA_TUN_TYPE,
1906 IFLA_TUN_PI,
1907 IFLA_TUN_VNET_HDR,
1908 IFLA_TUN_PERSIST,
1909 IFLA_TUN_MULTI_QUEUE,
1910 IFLA_TUN_NUM_QUEUES,
1911 IFLA_TUN_NUM_DISABLED_QUEUES,
1912 __IFLA_TUN_MAX,
1913};
1914
1915#define IFLA_TUN_MAX (__IFLA_TUN_MAX - 1)
1916
14452ca3
SAK
1917/* rmnet section */
1918
1919#define RMNET_FLAGS_INGRESS_DEAGGREGATION (1U << 0)
1920#define RMNET_FLAGS_INGRESS_MAP_COMMANDS (1U << 1)
1921#define RMNET_FLAGS_INGRESS_MAP_CKSUMV4 (1U << 2)
1922#define RMNET_FLAGS_EGRESS_MAP_CKSUMV4 (1U << 3)
e1d9a90a 1923#define RMNET_FLAGS_INGRESS_MAP_CKSUMV5 (1U << 4)
b6e5d27e 1924#define RMNET_FLAGS_EGRESS_MAP_CKSUMV5 (1U << 5)
14452ca3
SAK
1925
1926enum {
1927 IFLA_RMNET_UNSPEC,
1928 IFLA_RMNET_MUX_ID,
1929 IFLA_RMNET_FLAGS,
1930 __IFLA_RMNET_MAX,
1931};
1932
1933#define IFLA_RMNET_MAX (__IFLA_RMNET_MAX - 1)
1934
1935struct ifla_rmnet_flags {
1936 __u32 flags;
1937 __u32 mask;
1938};
1939
583be982
JK
1940/* MCTP section */
1941
1942enum {
1943 IFLA_MCTP_UNSPEC,
1944 IFLA_MCTP_NET,
1945 __IFLA_MCTP_MAX,
1946};
1947
1948#define IFLA_MCTP_MAX (__IFLA_MCTP_MAX - 1)
1949
95f510d0
VO
1950/* DSA section */
1951
1952enum {
1953 IFLA_DSA_UNSPEC,
87cd8371
FF
1954 IFLA_DSA_CONDUIT,
1955 /* Deprecated, use IFLA_DSA_CONDUIT instead */
1956 IFLA_DSA_MASTER = IFLA_DSA_CONDUIT,
95f510d0
VO
1957 __IFLA_DSA_MAX,
1958};
1959
1960#define IFLA_DSA_MAX (__IFLA_DSA_MAX - 1)
1961
607ca46e 1962#endif /* _UAPI_LINUX_IF_LINK_H */