btrfs: calculate inline extent buffer page size based on page size
[linux-2.6-block.git] / include / uapi / linux / btrfs_tree.h
CommitLineData
6f52b16c 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
db671160
JM
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
3a4e7f56 5#include <linux/btrfs.h>
9078b4ee 6#include <linux/types.h>
1465af12
QW
7#ifdef __KERNEL__
8#include <linux/stddef.h>
9#else
10#include <stddef.h>
11#endif
9078b4ee 12
db671160
JM
13/*
14 * This header contains the structure definitions and constants used
15 * by file system objects that can be retrieved using
16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
17 * is needed to describe a leaf node's key or item contents.
18 */
19
20/* holds pointers to all of the tree roots */
21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
22
23/* stores information about which extents are in use, and reference counts */
24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25
26/*
27 * chunk tree stores translations from logical -> physical block numbering
28 * the super block points to the chunk tree
29 */
30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31
32/*
33 * stores information about which areas of a given device are in use.
34 * one per device. The tree of tree roots points to the device tree
35 */
36#define BTRFS_DEV_TREE_OBJECTID 4ULL
37
38/* one per subvolume, storing files and directories */
39#define BTRFS_FS_TREE_OBJECTID 5ULL
40
41/* directory objectid inside the root tree */
42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43
44/* holds checksums of all the data extents */
45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
46
47/* holds quota configuration and tracking */
48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49
50/* for storing items that use the BTRFS_UUID_KEY* types */
51#define BTRFS_UUID_TREE_OBJECTID 9ULL
52
53/* tracks free space in block groups. */
54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55
56/* device stats in the device tree */
57#define BTRFS_DEV_STATS_OBJECTID 0ULL
58
59/* for storing balance parameters in the root tree */
60#define BTRFS_BALANCE_OBJECTID -4ULL
61
62/* orhpan objectid for tracking unlinked/truncated files */
63#define BTRFS_ORPHAN_OBJECTID -5ULL
64
65/* does write ahead logging to speed up fsyncs */
66#define BTRFS_TREE_LOG_OBJECTID -6ULL
67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
68
69/* for space balancing */
70#define BTRFS_TREE_RELOC_OBJECTID -8ULL
71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
72
73/*
74 * extent checksums all have this objectid
75 * this allows them to share the logging tree
76 * for fsyncs
77 */
78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
79
80/* For storing free space cache */
81#define BTRFS_FREE_SPACE_OBJECTID -11ULL
82
83/*
84 * The inode number assigned to the special inode for storing
85 * free ino cache
86 */
87#define BTRFS_FREE_INO_OBJECTID -12ULL
88
89/* dummy objectid represents multiple objectids */
90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
91
92/*
93 * All files have objectids in this range.
94 */
95#define BTRFS_FIRST_FREE_OBJECTID 256ULL
96#define BTRFS_LAST_FREE_OBJECTID -256ULL
97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
98
99
100/*
101 * the device items go into the chunk tree. The key is in the form
102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
103 */
104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
105
106#define BTRFS_BTREE_INODE_OBJECTID 1
107
108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
109
110#define BTRFS_DEV_REPLACE_DEVID 0ULL
111
112/*
113 * inode items have the data typically returned from stat and store other
114 * info about object characteristics. There is one for every file and dir in
115 * the FS
116 */
117#define BTRFS_INODE_ITEM_KEY 1
118#define BTRFS_INODE_REF_KEY 12
119#define BTRFS_INODE_EXTREF_KEY 13
120#define BTRFS_XATTR_ITEM_KEY 24
121#define BTRFS_ORPHAN_ITEM_KEY 48
122/* reserve 2-15 close to the inode for later flexibility */
123
124/*
125 * dir items are the name -> inode pointers in a directory. There is one
126 * for every name in a directory.
127 */
128#define BTRFS_DIR_LOG_ITEM_KEY 60
129#define BTRFS_DIR_LOG_INDEX_KEY 72
130#define BTRFS_DIR_ITEM_KEY 84
131#define BTRFS_DIR_INDEX_KEY 96
132/*
133 * extent data is for file data
134 */
135#define BTRFS_EXTENT_DATA_KEY 108
136
137/*
138 * extent csums are stored in a separate tree and hold csums for
139 * an entire extent on disk.
140 */
141#define BTRFS_EXTENT_CSUM_KEY 128
142
143/*
144 * root items point to tree roots. They are typically in the root
145 * tree used by the super block to find all the other trees
146 */
147#define BTRFS_ROOT_ITEM_KEY 132
148
149/*
150 * root backrefs tie subvols and snapshots to the directory entries that
151 * reference them
152 */
153#define BTRFS_ROOT_BACKREF_KEY 144
154
155/*
156 * root refs make a fast index for listing all of the snapshots and
157 * subvolumes referenced by a given root. They point directly to the
158 * directory item in the root that references the subvol
159 */
160#define BTRFS_ROOT_REF_KEY 156
161
162/*
163 * extent items are in the extent map tree. These record which blocks
164 * are used, and how many references there are to each block
165 */
166#define BTRFS_EXTENT_ITEM_KEY 168
167
168/*
169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
170 * the length, so we save the level in key->offset instead of the length.
171 */
172#define BTRFS_METADATA_ITEM_KEY 169
173
174#define BTRFS_TREE_BLOCK_REF_KEY 176
175
176#define BTRFS_EXTENT_DATA_REF_KEY 178
177
178#define BTRFS_EXTENT_REF_V0_KEY 180
179
180#define BTRFS_SHARED_BLOCK_REF_KEY 182
181
182#define BTRFS_SHARED_DATA_REF_KEY 184
183
184/*
185 * block groups give us hints into the extent allocation trees. Which
186 * blocks are free etc etc
187 */
188#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
189
190/*
191 * Every block group is represented in the free space tree by a free space info
192 * item, which stores some accounting information. It is keyed on
193 * (block_group_start, FREE_SPACE_INFO, block_group_length).
194 */
195#define BTRFS_FREE_SPACE_INFO_KEY 198
196
197/*
198 * A free space extent tracks an extent of space that is free in a block group.
199 * It is keyed on (start, FREE_SPACE_EXTENT, length).
200 */
201#define BTRFS_FREE_SPACE_EXTENT_KEY 199
202
203/*
204 * When a block group becomes very fragmented, we convert it to use bitmaps
205 * instead of extents. A free space bitmap is keyed on
206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
207 * (length / sectorsize) bits.
208 */
209#define BTRFS_FREE_SPACE_BITMAP_KEY 200
210
211#define BTRFS_DEV_EXTENT_KEY 204
212#define BTRFS_DEV_ITEM_KEY 216
213#define BTRFS_CHUNK_ITEM_KEY 228
214
215/*
216 * Records the overall state of the qgroups.
217 * There's only one instance of this key present,
218 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
219 */
220#define BTRFS_QGROUP_STATUS_KEY 240
221/*
222 * Records the currently used space of the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
224 */
225#define BTRFS_QGROUP_INFO_KEY 242
226/*
227 * Contains the user configured limits for the qgroup.
228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
229 */
230#define BTRFS_QGROUP_LIMIT_KEY 244
231/*
232 * Records the child-parent relationship of qgroups. For
233 * each relation, 2 keys are present:
234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
236 */
237#define BTRFS_QGROUP_RELATION_KEY 246
238
239/*
240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
241 */
242#define BTRFS_BALANCE_ITEM_KEY 248
243
244/*
245 * The key type for tree items that are stored persistently, but do not need to
246 * exist for extended period of time. The items can exist in any tree.
247 *
248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
249 *
250 * Existing items:
251 *
252 * - balance status item
253 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
254 */
255#define BTRFS_TEMPORARY_ITEM_KEY 248
256
257/*
258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
259 */
260#define BTRFS_DEV_STATS_KEY 249
261
262/*
263 * The key type for tree items that are stored persistently and usually exist
264 * for a long period, eg. filesystem lifetime. The item kinds can be status
265 * information, stats or preference values. The item can exist in any tree.
266 *
267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
268 *
269 * Existing items:
270 *
271 * - device statistics, store IO stats in the device tree, one key for all
272 * stats
273 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
274 */
275#define BTRFS_PERSISTENT_ITEM_KEY 249
276
277/*
278 * Persistantly stores the device replace state in the device tree.
279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
280 */
281#define BTRFS_DEV_REPLACE_KEY 250
282
283/*
284 * Stores items that allow to quickly map UUIDs to something else.
285 * These items are part of the filesystem UUID tree.
286 * The key is built like this:
287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
288 */
289#if BTRFS_UUID_SIZE != 16
290#error "UUID items require BTRFS_UUID_SIZE == 16!"
291#endif
292#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
293#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
294 * received subvols */
295
296/*
297 * string items are for debugging. They just store a short string of
298 * data in the FS
299 */
300#define BTRFS_STRING_ITEM_KEY 253
301
deb67895
QW
302/* Maximum metadata block size (nodesize) */
303#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
db671160
JM
304
305/* 32 bytes in various csum fields */
306#define BTRFS_CSUM_SIZE 32
307
308/* csum types */
e35b79a1
JT
309enum btrfs_csum_type {
310 BTRFS_CSUM_TYPE_CRC32 = 0,
3951e7f0 311 BTRFS_CSUM_TYPE_XXHASH = 1,
3831bf00 312 BTRFS_CSUM_TYPE_SHA256 = 2,
352ae07b 313 BTRFS_CSUM_TYPE_BLAKE2 = 3,
e35b79a1 314};
db671160
JM
315
316/*
317 * flags definitions for directory entry item type
318 *
319 * Used by:
320 * struct btrfs_dir_item.type
7d157c3d
PP
321 *
322 * Values 0..7 must match common file type values in fs_types.h.
db671160
JM
323 */
324#define BTRFS_FT_UNKNOWN 0
325#define BTRFS_FT_REG_FILE 1
326#define BTRFS_FT_DIR 2
327#define BTRFS_FT_CHRDEV 3
328#define BTRFS_FT_BLKDEV 4
329#define BTRFS_FT_FIFO 5
330#define BTRFS_FT_SOCK 6
331#define BTRFS_FT_SYMLINK 7
332#define BTRFS_FT_XATTR 8
333#define BTRFS_FT_MAX 9
334
335/*
336 * The key defines the order in the tree, and so it also defines (optimal)
337 * block layout.
338 *
339 * objectid corresponds to the inode number.
340 *
341 * type tells us things about the object, and is a kind of stream selector.
342 * so for a given inode, keys with type of 1 might refer to the inode data,
343 * type of 2 may point to file data in the btree and type == 3 may point to
344 * extents.
345 *
346 * offset is the starting byte offset for this key in the stream.
347 *
348 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
349 * in cpu native order. Otherwise they are identical and their sizes
350 * should be the same (ie both packed)
351 */
352struct btrfs_disk_key {
353 __le64 objectid;
14b05c51 354 __u8 type;
db671160
JM
355 __le64 offset;
356} __attribute__ ((__packed__));
357
358struct btrfs_key {
14b05c51
JM
359 __u64 objectid;
360 __u8 type;
361 __u64 offset;
db671160
JM
362} __attribute__ ((__packed__));
363
364struct btrfs_dev_item {
365 /* the internal btrfs device id */
366 __le64 devid;
367
368 /* size of the device */
369 __le64 total_bytes;
370
371 /* bytes used */
372 __le64 bytes_used;
373
374 /* optimal io alignment for this device */
375 __le32 io_align;
376
377 /* optimal io width for this device */
378 __le32 io_width;
379
380 /* minimal io size for this device */
381 __le32 sector_size;
382
383 /* type and info about this device */
384 __le64 type;
385
386 /* expected generation for this device */
387 __le64 generation;
388
389 /*
390 * starting byte of this partition on the device,
391 * to allow for stripe alignment in the future
392 */
393 __le64 start_offset;
394
395 /* grouping information for allocation decisions */
396 __le32 dev_group;
397
398 /* seek speed 0-100 where 100 is fastest */
14b05c51 399 __u8 seek_speed;
db671160
JM
400
401 /* bandwidth 0-100 where 100 is fastest */
14b05c51 402 __u8 bandwidth;
db671160
JM
403
404 /* btrfs generated uuid for this device */
14b05c51 405 __u8 uuid[BTRFS_UUID_SIZE];
db671160
JM
406
407 /* uuid of FS who owns this device */
14b05c51 408 __u8 fsid[BTRFS_UUID_SIZE];
db671160
JM
409} __attribute__ ((__packed__));
410
411struct btrfs_stripe {
412 __le64 devid;
413 __le64 offset;
14b05c51 414 __u8 dev_uuid[BTRFS_UUID_SIZE];
db671160
JM
415} __attribute__ ((__packed__));
416
417struct btrfs_chunk {
418 /* size of this chunk in bytes */
419 __le64 length;
420
421 /* objectid of the root referencing this chunk */
422 __le64 owner;
423
424 __le64 stripe_len;
425 __le64 type;
426
427 /* optimal io alignment for this chunk */
428 __le32 io_align;
429
430 /* optimal io width for this chunk */
431 __le32 io_width;
432
433 /* minimal io size for this chunk */
434 __le32 sector_size;
435
436 /* 2^16 stripes is quite a lot, a second limit is the size of a single
437 * item in the btree
438 */
439 __le16 num_stripes;
440
441 /* sub stripes only matter for raid10 */
442 __le16 sub_stripes;
443 struct btrfs_stripe stripe;
444 /* additional stripes go here */
445} __attribute__ ((__packed__));
446
447#define BTRFS_FREE_SPACE_EXTENT 1
448#define BTRFS_FREE_SPACE_BITMAP 2
449
450struct btrfs_free_space_entry {
451 __le64 offset;
452 __le64 bytes;
14b05c51 453 __u8 type;
db671160
JM
454} __attribute__ ((__packed__));
455
456struct btrfs_free_space_header {
457 struct btrfs_disk_key location;
458 __le64 generation;
459 __le64 num_entries;
460 __le64 num_bitmaps;
461} __attribute__ ((__packed__));
462
463#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
464#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
465
466/* Super block flags */
467/* Errors detected */
468#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
469
470#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
471#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
e2731e55 472#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
98820a7e 473#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
7239ff4b 474#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
db671160
JM
475
476
477/*
478 * items in the extent btree are used to record the objectid of the
479 * owner of the block and the number of references
480 */
481
482struct btrfs_extent_item {
483 __le64 refs;
484 __le64 generation;
485 __le64 flags;
486} __attribute__ ((__packed__));
487
488struct btrfs_extent_item_v0 {
489 __le32 refs;
490} __attribute__ ((__packed__));
491
492
493#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
494#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
495
496/* following flags only apply to tree blocks */
497
498/* use full backrefs for extent pointers in the block */
499#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
500
501/*
502 * this flag is only used internally by scrub and may be changed at any time
503 * it is only declared here to avoid collisions
504 */
505#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
506
507struct btrfs_tree_block_info {
508 struct btrfs_disk_key key;
14b05c51 509 __u8 level;
db671160
JM
510} __attribute__ ((__packed__));
511
512struct btrfs_extent_data_ref {
513 __le64 root;
514 __le64 objectid;
515 __le64 offset;
516 __le32 count;
517} __attribute__ ((__packed__));
518
519struct btrfs_shared_data_ref {
520 __le32 count;
521} __attribute__ ((__packed__));
522
523struct btrfs_extent_inline_ref {
14b05c51 524 __u8 type;
db671160
JM
525 __le64 offset;
526} __attribute__ ((__packed__));
527
db671160
JM
528/* dev extents record free space on individual devices. The owner
529 * field points back to the chunk allocation mapping tree that allocated
530 * the extent. The chunk tree uuid field is a way to double check the owner
531 */
532struct btrfs_dev_extent {
533 __le64 chunk_tree;
534 __le64 chunk_objectid;
535 __le64 chunk_offset;
536 __le64 length;
14b05c51 537 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
db671160
JM
538} __attribute__ ((__packed__));
539
540struct btrfs_inode_ref {
541 __le64 index;
542 __le16 name_len;
543 /* name goes here */
544} __attribute__ ((__packed__));
545
546struct btrfs_inode_extref {
547 __le64 parent_objectid;
548 __le64 index;
549 __le16 name_len;
550 __u8 name[0];
551 /* name goes here */
552} __attribute__ ((__packed__));
553
554struct btrfs_timespec {
555 __le64 sec;
556 __le32 nsec;
557} __attribute__ ((__packed__));
558
559struct btrfs_inode_item {
560 /* nfs style generation number */
561 __le64 generation;
562 /* transid that last touched this inode */
563 __le64 transid;
564 __le64 size;
565 __le64 nbytes;
566 __le64 block_group;
567 __le32 nlink;
568 __le32 uid;
569 __le32 gid;
570 __le32 mode;
571 __le64 rdev;
572 __le64 flags;
573
574 /* modification sequence number for NFS */
575 __le64 sequence;
576
577 /*
578 * a little future expansion, for more than this we can
579 * just grow the inode item and version it
580 */
581 __le64 reserved[4];
582 struct btrfs_timespec atime;
583 struct btrfs_timespec ctime;
584 struct btrfs_timespec mtime;
585 struct btrfs_timespec otime;
586} __attribute__ ((__packed__));
587
588struct btrfs_dir_log_item {
589 __le64 end;
590} __attribute__ ((__packed__));
591
592struct btrfs_dir_item {
593 struct btrfs_disk_key location;
594 __le64 transid;
595 __le16 data_len;
596 __le16 name_len;
14b05c51 597 __u8 type;
db671160
JM
598} __attribute__ ((__packed__));
599
600#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
601
602/*
603 * Internal in-memory flag that a subvolume has been marked for deletion but
604 * still visible as a directory
605 */
606#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
607
608struct btrfs_root_item {
609 struct btrfs_inode_item inode;
610 __le64 generation;
611 __le64 root_dirid;
612 __le64 bytenr;
613 __le64 byte_limit;
614 __le64 bytes_used;
615 __le64 last_snapshot;
616 __le64 flags;
617 __le32 refs;
618 struct btrfs_disk_key drop_progress;
14b05c51
JM
619 __u8 drop_level;
620 __u8 level;
db671160
JM
621
622 /*
623 * The following fields appear after subvol_uuids+subvol_times
624 * were introduced.
625 */
626
627 /*
628 * This generation number is used to test if the new fields are valid
629 * and up to date while reading the root item. Every time the root item
630 * is written out, the "generation" field is copied into this field. If
631 * anyone ever mounted the fs with an older kernel, we will have
632 * mismatching generation values here and thus must invalidate the
633 * new fields. See btrfs_update_root and btrfs_find_last_root for
634 * details.
635 * the offset of generation_v2 is also used as the start for the memset
636 * when invalidating the fields.
637 */
638 __le64 generation_v2;
14b05c51
JM
639 __u8 uuid[BTRFS_UUID_SIZE];
640 __u8 parent_uuid[BTRFS_UUID_SIZE];
641 __u8 received_uuid[BTRFS_UUID_SIZE];
db671160
JM
642 __le64 ctransid; /* updated when an inode changes */
643 __le64 otransid; /* trans when created */
644 __le64 stransid; /* trans when sent. non-zero for received subvol */
645 __le64 rtransid; /* trans when received. non-zero for received subvol */
646 struct btrfs_timespec ctime;
647 struct btrfs_timespec otime;
648 struct btrfs_timespec stime;
649 struct btrfs_timespec rtime;
650 __le64 reserved[8]; /* for future */
651} __attribute__ ((__packed__));
652
1465af12
QW
653/*
654 * Btrfs root item used to be smaller than current size. The old format ends
655 * at where member generation_v2 is.
656 */
657static inline __u32 btrfs_legacy_root_item_size(void)
658{
659 return offsetof(struct btrfs_root_item, generation_v2);
660}
661
db671160
JM
662/*
663 * this is used for both forward and backward root refs
664 */
665struct btrfs_root_ref {
666 __le64 dirid;
667 __le64 sequence;
668 __le16 name_len;
669} __attribute__ ((__packed__));
670
671struct btrfs_disk_balance_args {
672 /*
673 * profiles to operate on, single is denoted by
674 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
675 */
676 __le64 profiles;
677
678 /*
679 * usage filter
680 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
681 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
682 */
683 union {
684 __le64 usage;
685 struct {
686 __le32 usage_min;
687 __le32 usage_max;
688 };
689 };
690
691 /* devid filter */
692 __le64 devid;
693
694 /* devid subset filter [pstart..pend) */
695 __le64 pstart;
696 __le64 pend;
697
698 /* btrfs virtual address space subset filter [vstart..vend) */
699 __le64 vstart;
700 __le64 vend;
701
702 /*
703 * profile to convert to, single is denoted by
704 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
705 */
706 __le64 target;
707
708 /* BTRFS_BALANCE_ARGS_* */
709 __le64 flags;
710
711 /*
712 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
713 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
714 * and maximum
715 */
716 union {
717 __le64 limit;
718 struct {
719 __le32 limit_min;
720 __le32 limit_max;
721 };
722 };
723
724 /*
725 * Process chunks that cross stripes_min..stripes_max devices,
726 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
727 */
728 __le32 stripes_min;
729 __le32 stripes_max;
730
731 __le64 unused[6];
732} __attribute__ ((__packed__));
733
734/*
735 * store balance parameters to disk so that balance can be properly
736 * resumed after crash or unmount
737 */
738struct btrfs_balance_item {
739 /* BTRFS_BALANCE_* */
740 __le64 flags;
741
742 struct btrfs_disk_balance_args data;
743 struct btrfs_disk_balance_args meta;
744 struct btrfs_disk_balance_args sys;
745
746 __le64 unused[4];
747} __attribute__ ((__packed__));
748
b9b1a53e
CX
749enum {
750 BTRFS_FILE_EXTENT_INLINE = 0,
751 BTRFS_FILE_EXTENT_REG = 1,
752 BTRFS_FILE_EXTENT_PREALLOC = 2,
753 BTRFS_NR_FILE_EXTENT_TYPES = 3,
754};
db671160
JM
755
756struct btrfs_file_extent_item {
757 /*
758 * transaction id that created this extent
759 */
760 __le64 generation;
761 /*
762 * max number of bytes to hold this extent in ram
763 * when we split a compressed extent we can't know how big
764 * each of the resulting pieces will be. So, this is
765 * an upper limit on the size of the extent in ram instead of
766 * an exact limit.
767 */
768 __le64 ram_bytes;
769
770 /*
771 * 32 bits for the various ways we might encode the data,
772 * including compression and encryption. If any of these
773 * are set to something a given disk format doesn't understand
774 * it is treated like an incompat flag for reading and writing,
775 * but not for stat.
776 */
14b05c51
JM
777 __u8 compression;
778 __u8 encryption;
db671160
JM
779 __le16 other_encoding; /* spare for later use */
780
781 /* are we inline data or a real extent? */
14b05c51 782 __u8 type;
db671160
JM
783
784 /*
785 * disk space consumed by the extent, checksum blocks are included
786 * in these numbers
787 *
788 * At this offset in the structure, the inline extent data start.
789 */
790 __le64 disk_bytenr;
791 __le64 disk_num_bytes;
792 /*
793 * the logical offset in file blocks (no csums)
794 * this extent record is for. This allows a file extent to point
795 * into the middle of an existing extent on disk, sharing it
796 * between two snapshots (useful if some bytes in the middle of the
797 * extent have changed
798 */
799 __le64 offset;
800 /*
801 * the logical number of file blocks (no csums included). This
802 * always reflects the size uncompressed and without encoding.
803 */
804 __le64 num_bytes;
805
806} __attribute__ ((__packed__));
807
808struct btrfs_csum_item {
14b05c51 809 __u8 csum;
db671160
JM
810} __attribute__ ((__packed__));
811
812struct btrfs_dev_stats_item {
813 /*
814 * grow this item struct at the end for future enhancements and keep
815 * the existing values unchanged
816 */
817 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
818} __attribute__ ((__packed__));
819
820#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
821#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
db671160
JM
822
823struct btrfs_dev_replace_item {
824 /*
825 * grow this item struct at the end for future enhancements and keep
826 * the existing values unchanged
827 */
828 __le64 src_devid;
829 __le64 cursor_left;
830 __le64 cursor_right;
831 __le64 cont_reading_from_srcdev_mode;
832
833 __le64 replace_state;
834 __le64 time_started;
835 __le64 time_stopped;
836 __le64 num_write_errors;
837 __le64 num_uncorrectable_read_errors;
838} __attribute__ ((__packed__));
839
840/* different types of block groups (and chunks) */
841#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
842#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
843#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
844#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
845#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
846#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
847#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
848#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
849#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
47e6f742 850#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
8d6fac00 851#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
db671160
JM
852#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
853 BTRFS_SPACE_INFO_GLOBAL_RSV)
854
855enum btrfs_raid_types {
856 BTRFS_RAID_RAID10,
857 BTRFS_RAID_RAID1,
858 BTRFS_RAID_DUP,
859 BTRFS_RAID_RAID0,
860 BTRFS_RAID_SINGLE,
861 BTRFS_RAID_RAID5,
862 BTRFS_RAID_RAID6,
47e6f742 863 BTRFS_RAID_RAID1C3,
8d6fac00 864 BTRFS_RAID_RAID1C4,
db671160
JM
865 BTRFS_NR_RAID_TYPES
866};
867
868#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
869 BTRFS_BLOCK_GROUP_SYSTEM | \
870 BTRFS_BLOCK_GROUP_METADATA)
871
872#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
873 BTRFS_BLOCK_GROUP_RAID1 | \
47e6f742 874 BTRFS_BLOCK_GROUP_RAID1C3 | \
8d6fac00 875 BTRFS_BLOCK_GROUP_RAID1C4 | \
db671160
JM
876 BTRFS_BLOCK_GROUP_RAID5 | \
877 BTRFS_BLOCK_GROUP_RAID6 | \
878 BTRFS_BLOCK_GROUP_DUP | \
879 BTRFS_BLOCK_GROUP_RAID10)
880#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
881 BTRFS_BLOCK_GROUP_RAID6)
882
47e6f742 883#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
8d6fac00
DS
884 BTRFS_BLOCK_GROUP_RAID1C3 | \
885 BTRFS_BLOCK_GROUP_RAID1C4)
c7369b3f 886
db671160
JM
887/*
888 * We need a bit for restriper to be able to tell when chunks of type
889 * SINGLE are available. This "extended" profile format is used in
890 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
891 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
892 * to avoid remappings between two formats in future.
893 */
894#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
895
896/*
897 * A fake block group type that is used to communicate global block reserve
898 * size to userspace via the SPACE_INFO ioctl.
899 */
900#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
901
902#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
903 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
904
14b05c51 905static inline __u64 chunk_to_extended(__u64 flags)
db671160
JM
906{
907 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
908 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
909
910 return flags;
911}
14b05c51 912static inline __u64 extended_to_chunk(__u64 flags)
db671160
JM
913{
914 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
915}
916
917struct btrfs_block_group_item {
918 __le64 used;
919 __le64 chunk_objectid;
920 __le64 flags;
921} __attribute__ ((__packed__));
922
923struct btrfs_free_space_info {
924 __le32 extent_count;
925 __le32 flags;
926} __attribute__ ((__packed__));
927
928#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
929
930#define BTRFS_QGROUP_LEVEL_SHIFT 48
06f67c47 931static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
db671160 932{
06f67c47 933 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
db671160
JM
934}
935
936/*
937 * is subvolume quota turned on?
938 */
939#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
940/*
941 * RESCAN is set during the initialization phase
942 */
943#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
944/*
945 * Some qgroup entries are known to be out of date,
946 * either because the configuration has changed in a way that
947 * makes a rescan necessary, or because the fs has been mounted
948 * with a non-qgroup-aware version.
949 * Turning qouta off and on again makes it inconsistent, too.
950 */
951#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
952
953#define BTRFS_QGROUP_STATUS_VERSION 1
954
955struct btrfs_qgroup_status_item {
956 __le64 version;
957 /*
958 * the generation is updated during every commit. As older
959 * versions of btrfs are not aware of qgroups, it will be
960 * possible to detect inconsistencies by checking the
961 * generation on mount time
962 */
963 __le64 generation;
964
965 /* flag definitions see above */
966 __le64 flags;
967
968 /*
969 * only used during scanning to record the progress
970 * of the scan. It contains a logical address
971 */
972 __le64 rescan;
973} __attribute__ ((__packed__));
974
975struct btrfs_qgroup_info_item {
976 __le64 generation;
977 __le64 rfer;
978 __le64 rfer_cmpr;
979 __le64 excl;
980 __le64 excl_cmpr;
981} __attribute__ ((__packed__));
982
983struct btrfs_qgroup_limit_item {
984 /*
985 * only updated when any of the other values change
986 */
987 __le64 flags;
988 __le64 max_rfer;
989 __le64 max_excl;
990 __le64 rsv_rfer;
991 __le64 rsv_excl;
992} __attribute__ ((__packed__));
993
994#endif /* _BTRFS_CTREE_H_ */