netfilter: nf_tables: add userdata support for nft_object
[linux-block.git] / include / uapi / linux / btrfs_tree.h
CommitLineData
6f52b16c 1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
db671160
JM
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
3a4e7f56 5#include <linux/btrfs.h>
9078b4ee
ND
6#include <linux/types.h>
7
db671160
JM
8/*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
13 */
14
15/* holds pointers to all of the tree roots */
16#define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18/* stores information about which extents are in use, and reference counts */
19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21/*
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
24 */
25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27/*
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
30 */
31#define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33/* one per subvolume, storing files and directories */
34#define BTRFS_FS_TREE_OBJECTID 5ULL
35
36/* directory objectid inside the root tree */
37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39/* holds checksums of all the data extents */
40#define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42/* holds quota configuration and tracking */
43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45/* for storing items that use the BTRFS_UUID_KEY* types */
46#define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48/* tracks free space in block groups. */
49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51/* device stats in the device tree */
52#define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54/* for storing balance parameters in the root tree */
55#define BTRFS_BALANCE_OBJECTID -4ULL
56
57/* orhpan objectid for tracking unlinked/truncated files */
58#define BTRFS_ORPHAN_OBJECTID -5ULL
59
60/* does write ahead logging to speed up fsyncs */
61#define BTRFS_TREE_LOG_OBJECTID -6ULL
62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64/* for space balancing */
65#define BTRFS_TREE_RELOC_OBJECTID -8ULL
66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68/*
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
72 */
73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75/* For storing free space cache */
76#define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78/*
79 * The inode number assigned to the special inode for storing
80 * free ino cache
81 */
82#define BTRFS_FREE_INO_OBJECTID -12ULL
83
84/* dummy objectid represents multiple objectids */
85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87/*
88 * All files have objectids in this range.
89 */
90#define BTRFS_FIRST_FREE_OBJECTID 256ULL
91#define BTRFS_LAST_FREE_OBJECTID -256ULL
92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95/*
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98 */
99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101#define BTRFS_BTREE_INODE_OBJECTID 1
102
103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105#define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107/*
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
111 */
112#define BTRFS_INODE_ITEM_KEY 1
113#define BTRFS_INODE_REF_KEY 12
114#define BTRFS_INODE_EXTREF_KEY 13
115#define BTRFS_XATTR_ITEM_KEY 24
116#define BTRFS_ORPHAN_ITEM_KEY 48
117/* reserve 2-15 close to the inode for later flexibility */
118
119/*
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
122 */
123#define BTRFS_DIR_LOG_ITEM_KEY 60
124#define BTRFS_DIR_LOG_INDEX_KEY 72
125#define BTRFS_DIR_ITEM_KEY 84
126#define BTRFS_DIR_INDEX_KEY 96
127/*
128 * extent data is for file data
129 */
130#define BTRFS_EXTENT_DATA_KEY 108
131
132/*
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
135 */
136#define BTRFS_EXTENT_CSUM_KEY 128
137
138/*
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
141 */
142#define BTRFS_ROOT_ITEM_KEY 132
143
144/*
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
147 */
148#define BTRFS_ROOT_BACKREF_KEY 144
149
150/*
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
154 */
155#define BTRFS_ROOT_REF_KEY 156
156
157/*
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
160 */
161#define BTRFS_EXTENT_ITEM_KEY 168
162
163/*
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
166 */
167#define BTRFS_METADATA_ITEM_KEY 169
168
169#define BTRFS_TREE_BLOCK_REF_KEY 176
170
171#define BTRFS_EXTENT_DATA_REF_KEY 178
172
173#define BTRFS_EXTENT_REF_V0_KEY 180
174
175#define BTRFS_SHARED_BLOCK_REF_KEY 182
176
177#define BTRFS_SHARED_DATA_REF_KEY 184
178
179/*
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
182 */
183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185/*
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189 */
190#define BTRFS_FREE_SPACE_INFO_KEY 198
191
192/*
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195 */
196#define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198/*
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
203 */
204#define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206#define BTRFS_DEV_EXTENT_KEY 204
207#define BTRFS_DEV_ITEM_KEY 216
208#define BTRFS_CHUNK_ITEM_KEY 228
209
210/*
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214 */
215#define BTRFS_QGROUP_STATUS_KEY 240
216/*
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219 */
220#define BTRFS_QGROUP_INFO_KEY 242
221/*
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224 */
225#define BTRFS_QGROUP_LIMIT_KEY 244
226/*
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231 */
232#define BTRFS_QGROUP_RELATION_KEY 246
233
234/*
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236 */
237#define BTRFS_BALANCE_ITEM_KEY 248
238
239/*
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
242 *
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244 *
245 * Existing items:
246 *
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249 */
250#define BTRFS_TEMPORARY_ITEM_KEY 248
251
252/*
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254 */
255#define BTRFS_DEV_STATS_KEY 249
256
257/*
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
261 *
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263 *
264 * Existing items:
265 *
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269 */
270#define BTRFS_PERSISTENT_ITEM_KEY 249
271
272/*
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275 */
276#define BTRFS_DEV_REPLACE_KEY 250
277
278/*
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283 */
284#if BTRFS_UUID_SIZE != 16
285#error "UUID items require BTRFS_UUID_SIZE == 16!"
286#endif
287#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
290
291/*
292 * string items are for debugging. They just store a short string of
293 * data in the FS
294 */
295#define BTRFS_STRING_ITEM_KEY 253
296
297
298
299/* 32 bytes in various csum fields */
300#define BTRFS_CSUM_SIZE 32
301
302/* csum types */
e35b79a1
JT
303enum btrfs_csum_type {
304 BTRFS_CSUM_TYPE_CRC32 = 0,
3951e7f0 305 BTRFS_CSUM_TYPE_XXHASH = 1,
3831bf00 306 BTRFS_CSUM_TYPE_SHA256 = 2,
352ae07b 307 BTRFS_CSUM_TYPE_BLAKE2 = 3,
e35b79a1 308};
db671160
JM
309
310/*
311 * flags definitions for directory entry item type
312 *
313 * Used by:
314 * struct btrfs_dir_item.type
7d157c3d
PP
315 *
316 * Values 0..7 must match common file type values in fs_types.h.
db671160
JM
317 */
318#define BTRFS_FT_UNKNOWN 0
319#define BTRFS_FT_REG_FILE 1
320#define BTRFS_FT_DIR 2
321#define BTRFS_FT_CHRDEV 3
322#define BTRFS_FT_BLKDEV 4
323#define BTRFS_FT_FIFO 5
324#define BTRFS_FT_SOCK 6
325#define BTRFS_FT_SYMLINK 7
326#define BTRFS_FT_XATTR 8
327#define BTRFS_FT_MAX 9
328
329/*
330 * The key defines the order in the tree, and so it also defines (optimal)
331 * block layout.
332 *
333 * objectid corresponds to the inode number.
334 *
335 * type tells us things about the object, and is a kind of stream selector.
336 * so for a given inode, keys with type of 1 might refer to the inode data,
337 * type of 2 may point to file data in the btree and type == 3 may point to
338 * extents.
339 *
340 * offset is the starting byte offset for this key in the stream.
341 *
342 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
343 * in cpu native order. Otherwise they are identical and their sizes
344 * should be the same (ie both packed)
345 */
346struct btrfs_disk_key {
347 __le64 objectid;
14b05c51 348 __u8 type;
db671160
JM
349 __le64 offset;
350} __attribute__ ((__packed__));
351
352struct btrfs_key {
14b05c51
JM
353 __u64 objectid;
354 __u8 type;
355 __u64 offset;
db671160
JM
356} __attribute__ ((__packed__));
357
358struct btrfs_dev_item {
359 /* the internal btrfs device id */
360 __le64 devid;
361
362 /* size of the device */
363 __le64 total_bytes;
364
365 /* bytes used */
366 __le64 bytes_used;
367
368 /* optimal io alignment for this device */
369 __le32 io_align;
370
371 /* optimal io width for this device */
372 __le32 io_width;
373
374 /* minimal io size for this device */
375 __le32 sector_size;
376
377 /* type and info about this device */
378 __le64 type;
379
380 /* expected generation for this device */
381 __le64 generation;
382
383 /*
384 * starting byte of this partition on the device,
385 * to allow for stripe alignment in the future
386 */
387 __le64 start_offset;
388
389 /* grouping information for allocation decisions */
390 __le32 dev_group;
391
392 /* seek speed 0-100 where 100 is fastest */
14b05c51 393 __u8 seek_speed;
db671160
JM
394
395 /* bandwidth 0-100 where 100 is fastest */
14b05c51 396 __u8 bandwidth;
db671160
JM
397
398 /* btrfs generated uuid for this device */
14b05c51 399 __u8 uuid[BTRFS_UUID_SIZE];
db671160
JM
400
401 /* uuid of FS who owns this device */
14b05c51 402 __u8 fsid[BTRFS_UUID_SIZE];
db671160
JM
403} __attribute__ ((__packed__));
404
405struct btrfs_stripe {
406 __le64 devid;
407 __le64 offset;
14b05c51 408 __u8 dev_uuid[BTRFS_UUID_SIZE];
db671160
JM
409} __attribute__ ((__packed__));
410
411struct btrfs_chunk {
412 /* size of this chunk in bytes */
413 __le64 length;
414
415 /* objectid of the root referencing this chunk */
416 __le64 owner;
417
418 __le64 stripe_len;
419 __le64 type;
420
421 /* optimal io alignment for this chunk */
422 __le32 io_align;
423
424 /* optimal io width for this chunk */
425 __le32 io_width;
426
427 /* minimal io size for this chunk */
428 __le32 sector_size;
429
430 /* 2^16 stripes is quite a lot, a second limit is the size of a single
431 * item in the btree
432 */
433 __le16 num_stripes;
434
435 /* sub stripes only matter for raid10 */
436 __le16 sub_stripes;
437 struct btrfs_stripe stripe;
438 /* additional stripes go here */
439} __attribute__ ((__packed__));
440
441#define BTRFS_FREE_SPACE_EXTENT 1
442#define BTRFS_FREE_SPACE_BITMAP 2
443
444struct btrfs_free_space_entry {
445 __le64 offset;
446 __le64 bytes;
14b05c51 447 __u8 type;
db671160
JM
448} __attribute__ ((__packed__));
449
450struct btrfs_free_space_header {
451 struct btrfs_disk_key location;
452 __le64 generation;
453 __le64 num_entries;
454 __le64 num_bitmaps;
455} __attribute__ ((__packed__));
456
457#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
458#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
459
460/* Super block flags */
461/* Errors detected */
462#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
463
464#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
465#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
e2731e55 466#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
98820a7e 467#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
7239ff4b 468#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
db671160
JM
469
470
471/*
472 * items in the extent btree are used to record the objectid of the
473 * owner of the block and the number of references
474 */
475
476struct btrfs_extent_item {
477 __le64 refs;
478 __le64 generation;
479 __le64 flags;
480} __attribute__ ((__packed__));
481
482struct btrfs_extent_item_v0 {
483 __le32 refs;
484} __attribute__ ((__packed__));
485
486
487#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
488#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
489
490/* following flags only apply to tree blocks */
491
492/* use full backrefs for extent pointers in the block */
493#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
494
495/*
496 * this flag is only used internally by scrub and may be changed at any time
497 * it is only declared here to avoid collisions
498 */
499#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
500
501struct btrfs_tree_block_info {
502 struct btrfs_disk_key key;
14b05c51 503 __u8 level;
db671160
JM
504} __attribute__ ((__packed__));
505
506struct btrfs_extent_data_ref {
507 __le64 root;
508 __le64 objectid;
509 __le64 offset;
510 __le32 count;
511} __attribute__ ((__packed__));
512
513struct btrfs_shared_data_ref {
514 __le32 count;
515} __attribute__ ((__packed__));
516
517struct btrfs_extent_inline_ref {
14b05c51 518 __u8 type;
db671160
JM
519 __le64 offset;
520} __attribute__ ((__packed__));
521
db671160
JM
522/* dev extents record free space on individual devices. The owner
523 * field points back to the chunk allocation mapping tree that allocated
524 * the extent. The chunk tree uuid field is a way to double check the owner
525 */
526struct btrfs_dev_extent {
527 __le64 chunk_tree;
528 __le64 chunk_objectid;
529 __le64 chunk_offset;
530 __le64 length;
14b05c51 531 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
db671160
JM
532} __attribute__ ((__packed__));
533
534struct btrfs_inode_ref {
535 __le64 index;
536 __le16 name_len;
537 /* name goes here */
538} __attribute__ ((__packed__));
539
540struct btrfs_inode_extref {
541 __le64 parent_objectid;
542 __le64 index;
543 __le16 name_len;
544 __u8 name[0];
545 /* name goes here */
546} __attribute__ ((__packed__));
547
548struct btrfs_timespec {
549 __le64 sec;
550 __le32 nsec;
551} __attribute__ ((__packed__));
552
553struct btrfs_inode_item {
554 /* nfs style generation number */
555 __le64 generation;
556 /* transid that last touched this inode */
557 __le64 transid;
558 __le64 size;
559 __le64 nbytes;
560 __le64 block_group;
561 __le32 nlink;
562 __le32 uid;
563 __le32 gid;
564 __le32 mode;
565 __le64 rdev;
566 __le64 flags;
567
568 /* modification sequence number for NFS */
569 __le64 sequence;
570
571 /*
572 * a little future expansion, for more than this we can
573 * just grow the inode item and version it
574 */
575 __le64 reserved[4];
576 struct btrfs_timespec atime;
577 struct btrfs_timespec ctime;
578 struct btrfs_timespec mtime;
579 struct btrfs_timespec otime;
580} __attribute__ ((__packed__));
581
582struct btrfs_dir_log_item {
583 __le64 end;
584} __attribute__ ((__packed__));
585
586struct btrfs_dir_item {
587 struct btrfs_disk_key location;
588 __le64 transid;
589 __le16 data_len;
590 __le16 name_len;
14b05c51 591 __u8 type;
db671160
JM
592} __attribute__ ((__packed__));
593
594#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
595
596/*
597 * Internal in-memory flag that a subvolume has been marked for deletion but
598 * still visible as a directory
599 */
600#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
601
602struct btrfs_root_item {
603 struct btrfs_inode_item inode;
604 __le64 generation;
605 __le64 root_dirid;
606 __le64 bytenr;
607 __le64 byte_limit;
608 __le64 bytes_used;
609 __le64 last_snapshot;
610 __le64 flags;
611 __le32 refs;
612 struct btrfs_disk_key drop_progress;
14b05c51
JM
613 __u8 drop_level;
614 __u8 level;
db671160
JM
615
616 /*
617 * The following fields appear after subvol_uuids+subvol_times
618 * were introduced.
619 */
620
621 /*
622 * This generation number is used to test if the new fields are valid
623 * and up to date while reading the root item. Every time the root item
624 * is written out, the "generation" field is copied into this field. If
625 * anyone ever mounted the fs with an older kernel, we will have
626 * mismatching generation values here and thus must invalidate the
627 * new fields. See btrfs_update_root and btrfs_find_last_root for
628 * details.
629 * the offset of generation_v2 is also used as the start for the memset
630 * when invalidating the fields.
631 */
632 __le64 generation_v2;
14b05c51
JM
633 __u8 uuid[BTRFS_UUID_SIZE];
634 __u8 parent_uuid[BTRFS_UUID_SIZE];
635 __u8 received_uuid[BTRFS_UUID_SIZE];
db671160
JM
636 __le64 ctransid; /* updated when an inode changes */
637 __le64 otransid; /* trans when created */
638 __le64 stransid; /* trans when sent. non-zero for received subvol */
639 __le64 rtransid; /* trans when received. non-zero for received subvol */
640 struct btrfs_timespec ctime;
641 struct btrfs_timespec otime;
642 struct btrfs_timespec stime;
643 struct btrfs_timespec rtime;
644 __le64 reserved[8]; /* for future */
645} __attribute__ ((__packed__));
646
647/*
648 * this is used for both forward and backward root refs
649 */
650struct btrfs_root_ref {
651 __le64 dirid;
652 __le64 sequence;
653 __le16 name_len;
654} __attribute__ ((__packed__));
655
656struct btrfs_disk_balance_args {
657 /*
658 * profiles to operate on, single is denoted by
659 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
660 */
661 __le64 profiles;
662
663 /*
664 * usage filter
665 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
666 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
667 */
668 union {
669 __le64 usage;
670 struct {
671 __le32 usage_min;
672 __le32 usage_max;
673 };
674 };
675
676 /* devid filter */
677 __le64 devid;
678
679 /* devid subset filter [pstart..pend) */
680 __le64 pstart;
681 __le64 pend;
682
683 /* btrfs virtual address space subset filter [vstart..vend) */
684 __le64 vstart;
685 __le64 vend;
686
687 /*
688 * profile to convert to, single is denoted by
689 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
690 */
691 __le64 target;
692
693 /* BTRFS_BALANCE_ARGS_* */
694 __le64 flags;
695
696 /*
697 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
698 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
699 * and maximum
700 */
701 union {
702 __le64 limit;
703 struct {
704 __le32 limit_min;
705 __le32 limit_max;
706 };
707 };
708
709 /*
710 * Process chunks that cross stripes_min..stripes_max devices,
711 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
712 */
713 __le32 stripes_min;
714 __le32 stripes_max;
715
716 __le64 unused[6];
717} __attribute__ ((__packed__));
718
719/*
720 * store balance parameters to disk so that balance can be properly
721 * resumed after crash or unmount
722 */
723struct btrfs_balance_item {
724 /* BTRFS_BALANCE_* */
725 __le64 flags;
726
727 struct btrfs_disk_balance_args data;
728 struct btrfs_disk_balance_args meta;
729 struct btrfs_disk_balance_args sys;
730
731 __le64 unused[4];
732} __attribute__ ((__packed__));
733
b9b1a53e
CX
734enum {
735 BTRFS_FILE_EXTENT_INLINE = 0,
736 BTRFS_FILE_EXTENT_REG = 1,
737 BTRFS_FILE_EXTENT_PREALLOC = 2,
738 BTRFS_NR_FILE_EXTENT_TYPES = 3,
739};
db671160
JM
740
741struct btrfs_file_extent_item {
742 /*
743 * transaction id that created this extent
744 */
745 __le64 generation;
746 /*
747 * max number of bytes to hold this extent in ram
748 * when we split a compressed extent we can't know how big
749 * each of the resulting pieces will be. So, this is
750 * an upper limit on the size of the extent in ram instead of
751 * an exact limit.
752 */
753 __le64 ram_bytes;
754
755 /*
756 * 32 bits for the various ways we might encode the data,
757 * including compression and encryption. If any of these
758 * are set to something a given disk format doesn't understand
759 * it is treated like an incompat flag for reading and writing,
760 * but not for stat.
761 */
14b05c51
JM
762 __u8 compression;
763 __u8 encryption;
db671160
JM
764 __le16 other_encoding; /* spare for later use */
765
766 /* are we inline data or a real extent? */
14b05c51 767 __u8 type;
db671160
JM
768
769 /*
770 * disk space consumed by the extent, checksum blocks are included
771 * in these numbers
772 *
773 * At this offset in the structure, the inline extent data start.
774 */
775 __le64 disk_bytenr;
776 __le64 disk_num_bytes;
777 /*
778 * the logical offset in file blocks (no csums)
779 * this extent record is for. This allows a file extent to point
780 * into the middle of an existing extent on disk, sharing it
781 * between two snapshots (useful if some bytes in the middle of the
782 * extent have changed
783 */
784 __le64 offset;
785 /*
786 * the logical number of file blocks (no csums included). This
787 * always reflects the size uncompressed and without encoding.
788 */
789 __le64 num_bytes;
790
791} __attribute__ ((__packed__));
792
793struct btrfs_csum_item {
14b05c51 794 __u8 csum;
db671160
JM
795} __attribute__ ((__packed__));
796
797struct btrfs_dev_stats_item {
798 /*
799 * grow this item struct at the end for future enhancements and keep
800 * the existing values unchanged
801 */
802 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
803} __attribute__ ((__packed__));
804
805#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
806#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
db671160
JM
807
808struct btrfs_dev_replace_item {
809 /*
810 * grow this item struct at the end for future enhancements and keep
811 * the existing values unchanged
812 */
813 __le64 src_devid;
814 __le64 cursor_left;
815 __le64 cursor_right;
816 __le64 cont_reading_from_srcdev_mode;
817
818 __le64 replace_state;
819 __le64 time_started;
820 __le64 time_stopped;
821 __le64 num_write_errors;
822 __le64 num_uncorrectable_read_errors;
823} __attribute__ ((__packed__));
824
825/* different types of block groups (and chunks) */
826#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
827#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
828#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
829#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
830#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
831#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
832#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
833#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
834#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
47e6f742 835#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
8d6fac00 836#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
db671160
JM
837#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
838 BTRFS_SPACE_INFO_GLOBAL_RSV)
839
840enum btrfs_raid_types {
841 BTRFS_RAID_RAID10,
842 BTRFS_RAID_RAID1,
843 BTRFS_RAID_DUP,
844 BTRFS_RAID_RAID0,
845 BTRFS_RAID_SINGLE,
846 BTRFS_RAID_RAID5,
847 BTRFS_RAID_RAID6,
47e6f742 848 BTRFS_RAID_RAID1C3,
8d6fac00 849 BTRFS_RAID_RAID1C4,
db671160
JM
850 BTRFS_NR_RAID_TYPES
851};
852
853#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
854 BTRFS_BLOCK_GROUP_SYSTEM | \
855 BTRFS_BLOCK_GROUP_METADATA)
856
857#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
858 BTRFS_BLOCK_GROUP_RAID1 | \
47e6f742 859 BTRFS_BLOCK_GROUP_RAID1C3 | \
8d6fac00 860 BTRFS_BLOCK_GROUP_RAID1C4 | \
db671160
JM
861 BTRFS_BLOCK_GROUP_RAID5 | \
862 BTRFS_BLOCK_GROUP_RAID6 | \
863 BTRFS_BLOCK_GROUP_DUP | \
864 BTRFS_BLOCK_GROUP_RAID10)
865#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
866 BTRFS_BLOCK_GROUP_RAID6)
867
47e6f742 868#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
8d6fac00
DS
869 BTRFS_BLOCK_GROUP_RAID1C3 | \
870 BTRFS_BLOCK_GROUP_RAID1C4)
c7369b3f 871
db671160
JM
872/*
873 * We need a bit for restriper to be able to tell when chunks of type
874 * SINGLE are available. This "extended" profile format is used in
875 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
876 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
877 * to avoid remappings between two formats in future.
878 */
879#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
880
881/*
882 * A fake block group type that is used to communicate global block reserve
883 * size to userspace via the SPACE_INFO ioctl.
884 */
885#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
886
887#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
888 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
889
14b05c51 890static inline __u64 chunk_to_extended(__u64 flags)
db671160
JM
891{
892 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
893 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
894
895 return flags;
896}
14b05c51 897static inline __u64 extended_to_chunk(__u64 flags)
db671160
JM
898{
899 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
900}
901
902struct btrfs_block_group_item {
903 __le64 used;
904 __le64 chunk_objectid;
905 __le64 flags;
906} __attribute__ ((__packed__));
907
908struct btrfs_free_space_info {
909 __le32 extent_count;
910 __le32 flags;
911} __attribute__ ((__packed__));
912
913#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
914
915#define BTRFS_QGROUP_LEVEL_SHIFT 48
06f67c47 916static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
db671160 917{
06f67c47 918 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
db671160
JM
919}
920
921/*
922 * is subvolume quota turned on?
923 */
924#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
925/*
926 * RESCAN is set during the initialization phase
927 */
928#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
929/*
930 * Some qgroup entries are known to be out of date,
931 * either because the configuration has changed in a way that
932 * makes a rescan necessary, or because the fs has been mounted
933 * with a non-qgroup-aware version.
934 * Turning qouta off and on again makes it inconsistent, too.
935 */
936#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
937
938#define BTRFS_QGROUP_STATUS_VERSION 1
939
940struct btrfs_qgroup_status_item {
941 __le64 version;
942 /*
943 * the generation is updated during every commit. As older
944 * versions of btrfs are not aware of qgroups, it will be
945 * possible to detect inconsistencies by checking the
946 * generation on mount time
947 */
948 __le64 generation;
949
950 /* flag definitions see above */
951 __le64 flags;
952
953 /*
954 * only used during scanning to record the progress
955 * of the scan. It contains a logical address
956 */
957 __le64 rescan;
958} __attribute__ ((__packed__));
959
960struct btrfs_qgroup_info_item {
961 __le64 generation;
962 __le64 rfer;
963 __le64 rfer_cmpr;
964 __le64 excl;
965 __le64 excl_cmpr;
966} __attribute__ ((__packed__));
967
968struct btrfs_qgroup_limit_item {
969 /*
970 * only updated when any of the other values change
971 */
972 __le64 flags;
973 __le64 max_rfer;
974 __le64 max_excl;
975 __le64 rsv_rfer;
976 __le64 rsv_excl;
977} __attribute__ ((__packed__));
978
979#endif /* _BTRFS_CTREE_H_ */