drm/xe/uapi: Restore flags VM_BIND_FLAG_READONLY and VM_BIND_FLAG_IMMEDIATE
[linux-block.git] / include / uapi / drm / xe_drm.h
CommitLineData
a4f08dbb 1/* SPDX-License-Identifier: MIT */
dd08ebf6 2/*
a4f08dbb 3 * Copyright © 2023 Intel Corporation
dd08ebf6
MB
4 */
5
6#ifndef _UAPI_XE_DRM_H_
7#define _UAPI_XE_DRM_H_
8
9#include "drm.h"
10
11#if defined(__cplusplus)
12extern "C" {
13#endif
14
76ca3a22
RV
15/*
16 * Please note that modifications to all structs defined here are
dd08ebf6 17 * subject to backwards-compatibility constraints.
76ca3a22
RV
18 * Sections in this file are organized as follows:
19 * 1. IOCTL definition
20 * 2. Extension definition and helper structs
21 * 3. IOCTL's Query structs in the order of the Query's entries.
22 * 4. The rest of IOCTL structs in the order of IOCTL declaration.
dd08ebf6
MB
23 */
24
33c6fda6
FD
25/**
26 * DOC: Xe Device Block Diagram
27 *
28 * The diagram below represents a high-level simplification of a discrete
29 * GPU supported by the Xe driver. It shows some device components which
30 * are necessary to understand this API, as well as how their relations
31 * to each other. This diagram does not represent real hardware::
32 *
33 * ┌──────────────────────────────────────────────────────────────────┐
34 * │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35 * │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │
36 * │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │
37 * │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │
38 * │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39 * │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │
40 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
41 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │
42 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
43 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
44 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │
45 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
46 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
47 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
49 * │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
50 * │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │
51 * │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
52 * │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
53 * │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │
54 * │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
55 * │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │
56 * │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │
57 * │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58 * │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59 * └─────────────────────────────Device0───────┬──────────────────────┘
60 * │
61 * ───────────────────────┴────────── PCI bus
62 */
63
4b437893
RV
64/**
65 * DOC: Xe uAPI Overview
66 *
67 * This section aims to describe the Xe's IOCTL entries, its structs, and other
68 * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69 * entries and usage.
70 *
71 * List of supported IOCTLs:
72 * - &DRM_IOCTL_XE_DEVICE_QUERY
73 * - &DRM_IOCTL_XE_GEM_CREATE
74 * - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75 * - &DRM_IOCTL_XE_VM_CREATE
76 * - &DRM_IOCTL_XE_VM_DESTROY
77 * - &DRM_IOCTL_XE_VM_BIND
78 * - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79 * - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80 * - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81 * - &DRM_IOCTL_XE_EXEC
82 * - &DRM_IOCTL_XE_WAIT_USER_FENCE
83 */
84
76ca3a22
RV
85/*
86 * xe specific ioctls.
4f027e30 87 *
76ca3a22
RV
88 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
89 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
90 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
4f027e30 91 */
76ca3a22
RV
92#define DRM_XE_DEVICE_QUERY 0x00
93#define DRM_XE_GEM_CREATE 0x01
94#define DRM_XE_GEM_MMAP_OFFSET 0x02
95#define DRM_XE_VM_CREATE 0x03
96#define DRM_XE_VM_DESTROY 0x04
97#define DRM_XE_VM_BIND 0x05
98#define DRM_XE_EXEC_QUEUE_CREATE 0x06
99#define DRM_XE_EXEC_QUEUE_DESTROY 0x07
100#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08
101#define DRM_XE_EXEC 0x09
102#define DRM_XE_WAIT_USER_FENCE 0x0a
103/* Must be kept compact -- no holes */
104
105#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
106#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
107#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
108#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
109#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
110#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
111#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
112#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
113#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
114#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
115#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
4f027e30 116
dd08ebf6 117/**
4b437893
RV
118 * DOC: Xe IOCTL Extensions
119 *
120 * Before detailing the IOCTLs and its structs, it is important to highlight
121 * that every IOCTL in Xe is extensible.
dd08ebf6
MB
122 *
123 * Many interfaces need to grow over time. In most cases we can simply
124 * extend the struct and have userspace pass in more data. Another option,
125 * as demonstrated by Vulkan's approach to providing extensions for forward
126 * and backward compatibility, is to use a list of optional structs to
127 * provide those extra details.
128 *
129 * The key advantage to using an extension chain is that it allows us to
130 * redefine the interface more easily than an ever growing struct of
131 * increasing complexity, and for large parts of that interface to be
132 * entirely optional. The downside is more pointer chasing; chasing across
133 * the __user boundary with pointers encapsulated inside u64.
134 *
135 * Example chaining:
136 *
137 * .. code-block:: C
138 *
7e9337c2 139 * struct drm_xe_user_extension ext3 {
dd08ebf6
MB
140 * .next_extension = 0, // end
141 * .name = ...,
142 * };
7e9337c2 143 * struct drm_xe_user_extension ext2 {
dd08ebf6
MB
144 * .next_extension = (uintptr_t)&ext3,
145 * .name = ...,
146 * };
7e9337c2 147 * struct drm_xe_user_extension ext1 {
dd08ebf6
MB
148 * .next_extension = (uintptr_t)&ext2,
149 * .name = ...,
150 * };
151 *
7e9337c2 152 * Typically the struct drm_xe_user_extension would be embedded in some uAPI
dd08ebf6
MB
153 * struct, and in this case we would feed it the head of the chain(i.e ext1),
154 * which would then apply all of the above extensions.
4b437893
RV
155*/
156
157/**
158 * struct drm_xe_user_extension - Base class for defining a chain of extensions
dd08ebf6 159 */
7e9337c2 160struct drm_xe_user_extension {
dd08ebf6
MB
161 /**
162 * @next_extension:
163 *
7e9337c2 164 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
dd08ebf6
MB
165 */
166 __u64 next_extension;
4f082f2c 167
dd08ebf6
MB
168 /**
169 * @name: Name of the extension.
170 *
171 * Note that the name here is just some integer.
172 *
173 * Also note that the name space for this is not global for the whole
174 * driver, but rather its scope/meaning is limited to the specific piece
7e9337c2 175 * of uAPI which has embedded the struct drm_xe_user_extension.
dd08ebf6
MB
176 */
177 __u32 name;
4f082f2c 178
dd08ebf6 179 /**
e2bd81af 180 * @pad: MBZ
dd08ebf6
MB
181 *
182 * All undefined bits must be zero.
183 */
184 __u32 pad;
185};
186
76ca3a22 187/**
4b437893
RV
188 * struct drm_xe_ext_set_property - Generic set property extension
189 *
190 * A generic struct that allows any of the Xe's IOCTL to be extended
191 * with a set_property operation.
dd08ebf6 192 */
76ca3a22
RV
193struct drm_xe_ext_set_property {
194 /** @base: base user extension */
195 struct drm_xe_user_extension base;
ddfa2d6a 196
76ca3a22
RV
197 /** @property: property to set */
198 __u32 property;
199
200 /** @pad: MBZ */
201 __u32 pad;
202
203 /** @value: property value */
204 __u64 value;
205
206 /** @reserved: Reserved */
207 __u64 reserved[2];
208};
dd08ebf6 209
2bec3071
JRS
210/**
211 * struct drm_xe_engine_class_instance - instance of an engine class
212 *
60a6a849
FD
213 * It is returned as part of the @drm_xe_engine, but it also is used as
214 * the input of engine selection for both @drm_xe_exec_queue_create and
215 * @drm_xe_query_engine_cycles
801989b0
FD
216 *
217 * The @engine_class can be:
218 * - %DRM_XE_ENGINE_CLASS_RENDER
219 * - %DRM_XE_ENGINE_CLASS_COPY
220 * - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
221 * - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
222 * - %DRM_XE_ENGINE_CLASS_COMPUTE
223 * - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
224 * hardware engine class). Used for creating ordered queues of VM
225 * bind operations.
2bec3071 226 */
7793d00d
UNR
227struct drm_xe_engine_class_instance {
228#define DRM_XE_ENGINE_CLASS_RENDER 0
229#define DRM_XE_ENGINE_CLASS_COPY 1
230#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2
231#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3
232#define DRM_XE_ENGINE_CLASS_COMPUTE 4
d3d76739 233#define DRM_XE_ENGINE_CLASS_VM_BIND 5
2bec3071 234 /** @engine_class: engine class id */
7793d00d 235 __u16 engine_class;
2bec3071 236 /** @engine_instance: engine instance id */
7793d00d 237 __u16 engine_instance;
2bec3071 238 /** @gt_id: Unique ID of this GT within the PCI Device */
7793d00d 239 __u16 gt_id;
5ca2c4b8
FD
240 /** @pad: MBZ */
241 __u16 pad;
7793d00d
UNR
242};
243
2bec3071 244/**
60a6a849 245 * struct drm_xe_engine - describe hardware engine
2bec3071 246 */
60a6a849 247struct drm_xe_engine {
2bec3071
JRS
248 /** @instance: The @drm_xe_engine_class_instance */
249 struct drm_xe_engine_class_instance instance;
250
251 /** @reserved: Reserved */
252 __u64 reserved[3];
253};
254
60a6a849
FD
255/**
256 * struct drm_xe_query_engines - describe engines
257 *
258 * If a query is made with a struct @drm_xe_device_query where .query
259 * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
260 * struct @drm_xe_query_engines in .data.
261 */
262struct drm_xe_query_engines {
263 /** @num_engines: number of engines returned in @engines */
264 __u32 num_engines;
265 /** @pad: MBZ */
266 __u32 pad;
267 /** @engines: The returned engines for this device */
268 struct drm_xe_engine engines[];
269};
270
a9c4a069
MA
271/**
272 * enum drm_xe_memory_class - Supported memory classes.
273 */
274enum drm_xe_memory_class {
d5dc73db
FD
275 /** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
276 DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
a9c4a069 277 /**
d5dc73db 278 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
a9c4a069
MA
279 * represents the memory that is local to the device, which we
280 * call VRAM. Not valid on integrated platforms.
281 */
d5dc73db 282 DRM_XE_MEM_REGION_CLASS_VRAM
a9c4a069
MA
283};
284
285/**
4bc9dd98 286 * struct drm_xe_mem_region - Describes some region as known to
a9c4a069
MA
287 * the driver.
288 */
4bc9dd98 289struct drm_xe_mem_region {
a9c4a069
MA
290 /**
291 * @mem_class: The memory class describing this region.
292 *
293 * See enum drm_xe_memory_class for supported values.
294 */
295 __u16 mem_class;
296 /**
535881a8
RV
297 * @instance: The unique ID for this region, which serves as the
298 * index in the placement bitmask used as argument for
299 * &DRM_IOCTL_XE_GEM_CREATE
a9c4a069
MA
300 */
301 __u16 instance;
a9c4a069
MA
302 /**
303 * @min_page_size: Min page-size in bytes for this region.
304 *
305 * When the kernel allocates memory for this region, the
306 * underlying pages will be at least @min_page_size in size.
4e03b584
MCC
307 * Buffer objects with an allowable placement in this region must be
308 * created with a size aligned to this value.
309 * GPU virtual address mappings of (parts of) buffer objects that
310 * may be placed in this region must also have their GPU virtual
311 * address and range aligned to this value.
312 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
313 * not met.
a9c4a069
MA
314 */
315 __u32 min_page_size;
a9c4a069
MA
316 /**
317 * @total_size: The usable size in bytes for this region.
318 */
319 __u64 total_size;
320 /**
321 * @used: Estimate of the memory used in bytes for this region.
322 *
323 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
324 * accounting. Without this the value here will always equal
325 * zero.
326 */
327 __u64 used;
cd928fce
MA
328 /**
329 * @cpu_visible_size: How much of this region can be CPU
330 * accessed, in bytes.
331 *
332 * This will always be <= @total_size, and the remainder (if
333 * any) will not be CPU accessible. If the CPU accessible part
334 * is smaller than @total_size then this is referred to as a
335 * small BAR system.
336 *
337 * On systems without small BAR (full BAR), the probed_size will
338 * always equal the @total_size, since all of it will be CPU
339 * accessible.
340 *
d5dc73db 341 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
cd928fce
MA
342 * regions (for other types the value here will always equal
343 * zero).
344 */
345 __u64 cpu_visible_size;
346 /**
347 * @cpu_visible_used: Estimate of CPU visible memory used, in
348 * bytes.
349 *
350 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
351 * accounting. Without this the value here will always equal
352 * zero. Note this is only currently tracked for
d5dc73db 353 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
cd928fce
MA
354 * here will always be zero).
355 */
356 __u64 cpu_visible_used;
4b437893 357 /** @reserved: Reserved */
cd928fce 358 __u64 reserved[6];
a9c4a069 359};
dd08ebf6 360
ffd6620f 361/**
b02606d3 362 * struct drm_xe_query_mem_regions - describe memory regions
ffd6620f
FD
363 *
364 * If a query is made with a struct drm_xe_device_query where .query
b02606d3
RV
365 * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
366 * struct drm_xe_query_mem_regions in .data.
ffd6620f 367 */
b02606d3 368struct drm_xe_query_mem_regions {
4bc9dd98
FD
369 /** @num_mem_regions: number of memory regions returned in @mem_regions */
370 __u32 num_mem_regions;
ffd6620f 371 /** @pad: MBZ */
dd08ebf6 372 __u32 pad;
4bc9dd98
FD
373 /** @mem_regions: The returned memory regions for this device */
374 struct drm_xe_mem_region mem_regions[];
dd08ebf6
MB
375};
376
ffd6620f
FD
377/**
378 * struct drm_xe_query_config - describe the device configuration
379 *
380 * If a query is made with a struct drm_xe_device_query where .query
381 * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
382 * struct drm_xe_query_config in .data.
4195e5e5 383 *
801989b0
FD
384 * The index in @info can be:
385 * - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
386 * and the device revision (next 8 bits)
387 * - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
388 * configuration, see list below
389 *
390 * - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
391 * has usable VRAM
392 * - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
393 * required by this device, typically SZ_4K or SZ_64K
394 * - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
395 * - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
396 * available exec queue priority
ffd6620f 397 */
dd08ebf6 398struct drm_xe_query_config {
ffd6620f 399 /** @num_params: number of parameters returned in info */
dd08ebf6 400 __u32 num_params;
ffd6620f
FD
401
402 /** @pad: MBZ */
dd08ebf6 403 __u32 pad;
ffd6620f 404
d5dc73db
FD
405#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0
406#define DRM_XE_QUERY_CONFIG_FLAGS 1
9ad74351 407 #define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0)
d5dc73db
FD
408#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2
409#define DRM_XE_QUERY_CONFIG_VA_BITS 3
410#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4
ffd6620f 411 /** @info: array of elements containing the config info */
dd08ebf6
MB
412 __u64 info[];
413};
414
25f656f5 415/**
71c625aa 416 * struct drm_xe_gt - describe an individual GT.
25f656f5 417 *
e16b4837 418 * To be used with drm_xe_query_gt_list, which will return a list with all the
25f656f5
RV
419 * existing GT individual descriptions.
420 * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
421 * implementing graphics and/or media operations.
801989b0
FD
422 *
423 * The index in @type can be:
424 * - %DRM_XE_QUERY_GT_TYPE_MAIN
425 * - %DRM_XE_QUERY_GT_TYPE_MEDIA
25f656f5 426 */
71c625aa 427struct drm_xe_gt {
d5dc73db
FD
428#define DRM_XE_QUERY_GT_TYPE_MAIN 0
429#define DRM_XE_QUERY_GT_TYPE_MEDIA 1
1a912c90 430 /** @type: GT type: Main or Media */
25f656f5 431 __u16 type;
c3fca107
RV
432 /** @tile_id: Tile ID where this GT lives (Information only) */
433 __u16 tile_id;
2519450a
RV
434 /** @gt_id: Unique ID of this GT within the PCI Device */
435 __u16 gt_id;
7a56bd0c
RV
436 /** @pad: MBZ */
437 __u16 pad[3];
4016d6bf
RV
438 /** @reference_clock: A clock frequency for timestamp */
439 __u32 reference_clock;
25f656f5 440 /**
45c30d80 441 * @near_mem_regions: Bit mask of instances from
b02606d3 442 * drm_xe_query_mem_regions that are nearest to the current engines
45c30d80 443 * of this GT.
535881a8
RV
444 * Each index in this mask refers directly to the struct
445 * drm_xe_query_mem_regions' instance, no assumptions should
446 * be made about order. The type of each region is described
447 * by struct drm_xe_query_mem_regions' mem_class.
25f656f5 448 */
45c30d80 449 __u64 near_mem_regions;
25f656f5 450 /**
45c30d80 451 * @far_mem_regions: Bit mask of instances from
b02606d3 452 * drm_xe_query_mem_regions that are far from the engines of this GT.
45c30d80
RV
453 * In general, they have extra indirections when compared to the
454 * @near_mem_regions. For a discrete device this could mean system
455 * memory and memory living in a different tile.
535881a8
RV
456 * Each index in this mask refers directly to the struct
457 * drm_xe_query_mem_regions' instance, no assumptions should
458 * be made about order. The type of each region is described
459 * by struct drm_xe_query_mem_regions' mem_class.
25f656f5 460 */
45c30d80 461 __u64 far_mem_regions;
8e61e319
MR
462 /** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
463 __u16 ip_ver_major;
464 /** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
465 __u16 ip_ver_minor;
466 /** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
467 __u16 ip_ver_rev;
468 /** @pad2: MBZ */
469 __u16 pad2;
25f656f5 470 /** @reserved: Reserved */
8e61e319 471 __u64 reserved[7];
25f656f5
RV
472};
473
ffd6620f 474/**
e16b4837 475 * struct drm_xe_query_gt_list - A list with GT description items.
ffd6620f
FD
476 *
477 * If a query is made with a struct drm_xe_device_query where .query
e16b4837
RV
478 * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
479 * drm_xe_query_gt_list in .data.
ffd6620f 480 */
e16b4837
RV
481struct drm_xe_query_gt_list {
482 /** @num_gt: number of GT items returned in gt_list */
dd08ebf6 483 __u32 num_gt;
ffd6620f 484 /** @pad: MBZ */
dd08ebf6 485 __u32 pad;
e16b4837 486 /** @gt_list: The GT list returned for this device */
71c625aa 487 struct drm_xe_gt gt_list[];
dd08ebf6
MB
488};
489
ffd6620f
FD
490/**
491 * struct drm_xe_query_topology_mask - describe the topology mask of a GT
492 *
1bc56a93
FD
493 * This is the hardware topology which reflects the internal physical
494 * structure of the GPU.
495 *
ffd6620f
FD
496 * If a query is made with a struct drm_xe_device_query where .query
497 * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
498 * struct drm_xe_query_topology_mask in .data.
801989b0
FD
499 *
500 * The @type can be:
501 * - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
502 * (DSS) available for geometry operations. For example a query response
503 * containing the following in mask:
504 * ``DSS_GEOMETRY ff ff ff ff 00 00 00 00``
505 * means 32 DSS are available for geometry.
506 * - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
507 * (DSS) available for compute operations. For example a query response
508 * containing the following in mask:
509 * ``DSS_COMPUTE ff ff ff ff 00 00 00 00``
510 * means 32 DSS are available for compute.
511 * - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
512 * available per Dual Sub Slices (DSS). For example a query response
513 * containing the following in mask:
514 * ``EU_PER_DSS ff ff 00 00 00 00 00 00``
515 * means each DSS has 16 EU.
ffd6620f 516 */
dd08ebf6
MB
517struct drm_xe_query_topology_mask {
518 /** @gt_id: GT ID the mask is associated with */
519 __u16 gt_id;
520
ca83f9d2
FD
521#define DRM_XE_TOPO_DSS_GEOMETRY 1
522#define DRM_XE_TOPO_DSS_COMPUTE 2
523#define DRM_XE_TOPO_EU_PER_DSS 4
4f082f2c
FD
524 /** @type: type of mask */
525 __u16 type;
dd08ebf6
MB
526
527 /** @num_bytes: number of bytes in requested mask */
528 __u32 num_bytes;
529
530 /** @mask: little-endian mask of @num_bytes */
531 __u8 mask[];
532};
533
76ca3a22
RV
534/**
535 * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
536 *
537 * If a query is made with a struct drm_xe_device_query where .query is equal to
538 * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
539 * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
540 * .data points to this allocated structure.
541 *
542 * The query returns the engine cycles, which along with GT's @reference_clock,
543 * can be used to calculate the engine timestamp. In addition the
544 * query returns a set of cpu timestamps that indicate when the command
545 * streamer cycle count was captured.
546 */
547struct drm_xe_query_engine_cycles {
548 /**
549 * @eci: This is input by the user and is the engine for which command
550 * streamer cycles is queried.
551 */
552 struct drm_xe_engine_class_instance eci;
553
554 /**
555 * @clockid: This is input by the user and is the reference clock id for
556 * CPU timestamp. For definition, see clock_gettime(2) and
557 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
558 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
559 */
560 __s32 clockid;
561
562 /** @width: Width of the engine cycle counter in bits. */
563 __u32 width;
564
565 /**
566 * @engine_cycles: Engine cycles as read from its register
567 * at 0x358 offset.
568 */
569 __u64 engine_cycles;
570
571 /**
572 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
573 * reading the engine_cycles register using the reference clockid set by the
574 * user.
575 */
576 __u64 cpu_timestamp;
577
578 /**
579 * @cpu_delta: Time delta in ns captured around reading the lower dword
580 * of the engine_cycles register.
581 */
582 __u64 cpu_delta;
583};
584
9bc36e58
JRS
585/**
586 * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
587 *
588 * Given a uc_type this will return the branch, major, minor and patch version
589 * of the micro-controller firmware.
590 */
591struct drm_xe_query_uc_fw_version {
592 /** @uc_type: The micro-controller type to query firmware version */
593#define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
b2121f2b 594#define XE_QUERY_UC_TYPE_HUC 1
9bc36e58
JRS
595 __u16 uc_type;
596
597 /** @pad: MBZ */
598 __u16 pad;
599
600 /** @branch_ver: branch uc fw version */
601 __u32 branch_ver;
602 /** @major_ver: major uc fw version */
603 __u32 major_ver;
604 /** @minor_ver: minor uc fw version */
605 __u32 minor_ver;
606 /** @patch_ver: patch uc fw version */
607 __u32 patch_ver;
608
609 /** @pad2: MBZ */
610 __u32 pad2;
611
612 /** @reserved: Reserved */
613 __u64 reserved;
614};
615
ffd6620f 616/**
b0e47225
FD
617 * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
618 * structure to query device information
ffd6620f 619 *
ff6c6bc5
FD
620 * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
621 * and sets the value in the query member. This determines the type of
622 * the structure provided by the driver in data, among struct drm_xe_query_*.
623 *
801989b0
FD
624 * The @query can be:
625 * - %DRM_XE_DEVICE_QUERY_ENGINES
626 * - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
627 * - %DRM_XE_DEVICE_QUERY_CONFIG
628 * - %DRM_XE_DEVICE_QUERY_GT_LIST
629 * - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
630 * configuration of the device such as information on slices, memory,
631 * caches, and so on. It is provided as a table of key / value
632 * attributes.
633 * - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
634 * - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
635 *
ff6c6bc5
FD
636 * If size is set to 0, the driver fills it with the required size for
637 * the requested type of data to query. If size is equal to the required
638 * size, the queried information is copied into data. If size is set to
639 * a value different from 0 and different from the required size, the
640 * IOCTL call returns -EINVAL.
ffd6620f
FD
641 *
642 * For example the following code snippet allows retrieving and printing
643 * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
644 *
645 * .. code-block:: C
646 *
60a6a849
FD
647 * struct drm_xe_query_engines *engines;
648 * struct drm_xe_device_query query = {
649 * .extensions = 0,
650 * .query = DRM_XE_DEVICE_QUERY_ENGINES,
651 * .size = 0,
652 * .data = 0,
653 * };
654 * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
655 * engines = malloc(query.size);
656 * query.data = (uintptr_t)engines;
657 * ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
658 * for (int i = 0; i < engines->num_engines; i++) {
659 * printf("Engine %d: %s\n", i,
660 * engines->engines[i].instance.engine_class ==
661 * DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
662 * engines->engines[i].instance.engine_class ==
663 * DRM_XE_ENGINE_CLASS_COPY ? "COPY":
664 * engines->engines[i].instance.engine_class ==
665 * DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
666 * engines->engines[i].instance.engine_class ==
667 * DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
668 * engines->engines[i].instance.engine_class ==
669 * DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
670 * "UNKNOWN");
671 * }
672 * free(engines);
ffd6620f 673 */
dd08ebf6
MB
674struct drm_xe_device_query {
675 /** @extensions: Pointer to the first extension struct, if any */
676 __u64 extensions;
677
7793d00d 678#define DRM_XE_DEVICE_QUERY_ENGINES 0
b02606d3 679#define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1
7793d00d 680#define DRM_XE_DEVICE_QUERY_CONFIG 2
e16b4837 681#define DRM_XE_DEVICE_QUERY_GT_LIST 3
7793d00d
UNR
682#define DRM_XE_DEVICE_QUERY_HWCONFIG 4
683#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5
684#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6
9bc36e58 685#define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7
4f082f2c
FD
686 /** @query: The type of data to query */
687 __u32 query;
dd08ebf6
MB
688
689 /** @size: Size of the queried data */
690 __u32 size;
691
692 /** @data: Queried data is placed here */
693 __u64 data;
694
695 /** @reserved: Reserved */
696 __u64 reserved[2];
697};
698
b0e47225
FD
699/**
700 * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
701 * gem creation
801989b0
FD
702 *
703 * The @flags can be:
704 * - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
705 * - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
706 * - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
707 * possible placement, ensure that the corresponding VRAM allocation
708 * will always use the CPU accessible part of VRAM. This is important
709 * for small-bar systems (on full-bar systems this gets turned into a
710 * noop).
711 * Note1: System memory can be used as an extra placement if the kernel
712 * should spill the allocation to system memory, if space can't be made
713 * available in the CPU accessible part of VRAM (giving the same
714 * behaviour as the i915 interface, see
715 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
716 * Note2: For clear-color CCS surfaces the kernel needs to read the
717 * clear-color value stored in the buffer, and on discrete platforms we
718 * need to use VRAM for display surfaces, therefore the kernel requires
719 * setting this flag for such objects, otherwise an error is thrown on
720 * small-bar systems.
721 *
722 * @cpu_caching supports the following values:
723 * - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
724 * caching. On iGPU this can't be used for scanout surfaces. Currently
725 * not allowed for objects placed in VRAM.
726 * - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
727 * is uncached. Scanout surfaces should likely use this. All objects
728 * that can be placed in VRAM must use this.
b0e47225 729 */
dd08ebf6
MB
730struct drm_xe_gem_create {
731 /** @extensions: Pointer to the first extension struct, if any */
732 __u64 extensions;
733
734 /**
4e03b584
MCC
735 * @size: Size of the object to be created, must match region
736 * (system or vram) minimum alignment (&min_page_size).
dd08ebf6
MB
737 */
738 __u64 size;
739
535881a8
RV
740 /**
741 * @placement: A mask of memory instances of where BO can be placed.
742 * Each index in this mask refers directly to the struct
743 * drm_xe_query_mem_regions' instance, no assumptions should
744 * be made about order. The type of each region is described
745 * by struct drm_xe_query_mem_regions' mem_class.
746 */
6b8c1edc
RV
747 __u32 placement;
748
749#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0)
750#define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1)
6b8c1edc 751#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2)
dd08ebf6
MB
752 /**
753 * @flags: Flags, currently a mask of memory instances of where BO can
754 * be placed
755 */
dd08ebf6
MB
756 __u32 flags;
757
758 /**
759 * @vm_id: Attached VM, if any
760 *
761 * If a VM is specified, this BO must:
762 *
763 * 1. Only ever be bound to that VM.
dd08ebf6
MB
764 * 2. Cannot be exported as a PRIME fd.
765 */
766 __u32 vm_id;
767
768 /**
769 * @handle: Returned handle for the object.
770 *
771 * Object handles are nonzero.
772 */
773 __u32 handle;
774
0bf90a8c
FD
775#define DRM_XE_GEM_CPU_CACHING_WB 1
776#define DRM_XE_GEM_CPU_CACHING_WC 2
622f709c
PM
777 /**
778 * @cpu_caching: The CPU caching mode to select for this object. If
779 * mmaping the object the mode selected here will also be used.
622f709c 780 */
622f709c 781 __u16 cpu_caching;
e2bd81af 782 /** @pad: MBZ */
7a56bd0c 783 __u16 pad[3];
e2bd81af 784
dd08ebf6
MB
785 /** @reserved: Reserved */
786 __u64 reserved[2];
787};
788
b0e47225
FD
789/**
790 * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
791 */
dd08ebf6
MB
792struct drm_xe_gem_mmap_offset {
793 /** @extensions: Pointer to the first extension struct, if any */
794 __u64 extensions;
795
796 /** @handle: Handle for the object being mapped. */
797 __u32 handle;
798
799 /** @flags: Must be zero */
800 __u32 flags;
801
802 /** @offset: The fake offset to use for subsequent mmap call */
803 __u64 offset;
804
805 /** @reserved: Reserved */
806 __u64 reserved[2];
807};
808
b0e47225
FD
809/**
810 * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
801989b0
FD
811 *
812 * The @flags can be:
813 * - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE
814 * - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
815 * exec submissions to its exec_queues that don't have an upper time
816 * limit on the job execution time. But exec submissions to these
817 * don't allow any of the flags DRM_XE_SYNC_FLAG_SYNCOBJ,
818 * DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ, DRM_XE_SYNC_FLAG_DMA_BUF,
819 * used as out-syncobjs, that is, together with DRM_XE_SYNC_FLAG_SIGNAL.
820 * LR VMs can be created in recoverable page-fault mode using
821 * DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
822 * If that flag is omitted, the UMD can not rely on the slightly
823 * different per-VM overcommit semantics that are enabled by
824 * DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
825 * still enable recoverable pagefaults if supported by the device.
826 * - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
827 * DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
828 * demand when accessed, and also allows per-VM overcommit of memory.
829 * The xe driver internally uses recoverable pagefaults to implement
830 * this.
b0e47225 831 */
dd08ebf6 832struct drm_xe_vm_create {
4f082f2c 833 /** @extensions: Pointer to the first extension struct, if any */
dd08ebf6
MB
834 __u64 extensions;
835
9ad74351 836#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0)
9329f066 837#define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1)
d3d76739 838#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2)
4f082f2c
FD
839 /** @flags: Flags */
840 __u32 flags;
dd08ebf6
MB
841
842 /** @vm_id: Returned VM ID */
843 __u32 vm_id;
844
845 /** @reserved: Reserved */
846 __u64 reserved[2];
847};
848
b0e47225
FD
849/**
850 * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
851 */
dd08ebf6
MB
852struct drm_xe_vm_destroy {
853 /** @vm_id: VM ID */
854 __u32 vm_id;
855
856 /** @pad: MBZ */
857 __u32 pad;
858
859 /** @reserved: Reserved */
860 __u64 reserved[2];
861};
862
b0e47225 863/**
801989b0
FD
864 * struct drm_xe_vm_bind_op - run bind operations
865 *
866 * The @op can be:
867 * - %DRM_XE_VM_BIND_OP_MAP
868 * - %DRM_XE_VM_BIND_OP_UNMAP
869 * - %DRM_XE_VM_BIND_OP_MAP_USERPTR
870 * - %DRM_XE_VM_BIND_OP_UNMAP_ALL
871 * - %DRM_XE_VM_BIND_OP_PREFETCH
872 *
873 * and the @flags can be:
31ced035
FD
874 * - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
875 * to ensure write protection
876 * - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
877 * MAP operation immediately rather than deferring the MAP to the page
878 * fault handler. This is implied on a non-faulting VM as there is no
879 * fault handler to defer to.
801989b0
FD
880 * - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
881 * tables are setup with a special bit which indicates writes are
882 * dropped and all reads return zero. In the future, the NULL flags
883 * will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
884 * handle MBZ, and the BO offset MBZ. This flag is intended to
885 * implement VK sparse bindings.
b0e47225 886 */
dd08ebf6 887struct drm_xe_vm_bind_op {
c4ad3710
MK
888 /** @extensions: Pointer to the first extension struct, if any */
889 __u64 extensions;
890
dd08ebf6
MB
891 /**
892 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
893 */
894 __u32 obj;
895
e1fbc4f1
MA
896 /**
897 * @pat_index: The platform defined @pat_index to use for this mapping.
898 * The index basically maps to some predefined memory attributes,
899 * including things like caching, coherency, compression etc. The exact
900 * meaning of the pat_index is platform specific and defined in the
901 * Bspec and PRMs. When the KMD sets up the binding the index here is
902 * encoded into the ppGTT PTE.
903 *
904 * For coherency the @pat_index needs to be at least 1way coherent when
905 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
906 * will extract the coherency mode from the @pat_index and reject if
907 * there is a mismatch (see note below for pre-MTL platforms).
908 *
909 * Note: On pre-MTL platforms there is only a caching mode and no
910 * explicit coherency mode, but on such hardware there is always a
911 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
912 * CPU caches even with the caching mode set as uncached. It's only the
913 * display engine that is incoherent (on dgpu it must be in VRAM which
914 * is always mapped as WC on the CPU). However to keep the uapi somewhat
915 * consistent with newer platforms the KMD groups the different cache
916 * levels into the following coherency buckets on all pre-MTL platforms:
917 *
918 * ppGTT UC -> COH_NONE
919 * ppGTT WC -> COH_NONE
920 * ppGTT WT -> COH_NONE
921 * ppGTT WB -> COH_AT_LEAST_1WAY
922 *
923 * In practice UC/WC/WT should only ever used for scanout surfaces on
924 * such platforms (or perhaps in general for dma-buf if shared with
925 * another device) since it is only the display engine that is actually
926 * incoherent. Everything else should typically use WB given that we
927 * have a shared-LLC. On MTL+ this completely changes and the HW
928 * defines the coherency mode as part of the @pat_index, where
929 * incoherent GT access is possible.
930 *
931 * Note: For userptr and externally imported dma-buf the kernel expects
932 * either 1WAY or 2WAY for the @pat_index.
933 *
934 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
935 * on the @pat_index. For such mappings there is no actual memory being
936 * mapped (the address in the PTE is invalid), so the various PAT memory
937 * attributes likely do not apply. Simply leaving as zero is one
938 * option (still a valid pat_index).
939 */
940 __u16 pat_index;
941
e2bd81af 942 /** @pad: MBZ */
e1fbc4f1 943 __u16 pad;
e2bd81af 944
dd08ebf6
MB
945 union {
946 /**
947 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
948 * ignored for unbind
949 */
950 __u64 obj_offset;
4f082f2c 951
dd08ebf6
MB
952 /** @userptr: user pointer to bind on */
953 __u64 userptr;
954 };
955
956 /**
957 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
958 */
959 __u64 range;
960
961 /** @addr: Address to operate on, MBZ for UNMAP_ALL */
962 __u64 addr;
963
d5dc73db
FD
964#define DRM_XE_VM_BIND_OP_MAP 0x0
965#define DRM_XE_VM_BIND_OP_UNMAP 0x1
966#define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2
967#define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3
968#define DRM_XE_VM_BIND_OP_PREFETCH 0x4
ea0640fc
FD
969 /** @op: Bind operation to perform */
970 __u32 op;
dd08ebf6 971
31ced035
FD
972#define DRM_XE_VM_BIND_FLAG_READONLY (1 << 0)
973#define DRM_XE_VM_BIND_FLAG_IMMEDIATE (1 << 1)
d3d76739 974#define DRM_XE_VM_BIND_FLAG_NULL (1 << 2)
76a86b58 975#define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3)
ea0640fc
FD
976 /** @flags: Bind flags */
977 __u32 flags;
4f082f2c 978
aaa115ff
RV
979 /**
980 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
981 * It is a region instance, not a mask.
982 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
983 */
984 __u32 prefetch_mem_region_instance;
dd08ebf6 985
4efaadd3 986 /** @pad2: MBZ */
7a56bd0c
RV
987 __u32 pad2;
988
dd08ebf6 989 /** @reserved: Reserved */
cad4a0d6 990 __u64 reserved[3];
dd08ebf6
MB
991};
992
b0e47225
FD
993/**
994 * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
db353311
FD
995 *
996 * Below is an example of a minimal use of @drm_xe_vm_bind to
997 * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
998 * illustrate `userptr`. It can be synchronized by using the example
999 * provided for @drm_xe_sync.
1000 *
1001 * .. code-block:: C
1002 *
1003 * data = aligned_alloc(ALIGNMENT, BO_SIZE);
1004 * struct drm_xe_vm_bind bind = {
1005 * .vm_id = vm,
1006 * .num_binds = 1,
1007 * .bind.obj = 0,
1008 * .bind.obj_offset = to_user_pointer(data),
1009 * .bind.range = BO_SIZE,
1010 * .bind.addr = BIND_ADDRESS,
1011 * .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1012 * .bind.flags = 0,
1013 * .num_syncs = 1,
1014 * .syncs = &sync,
1015 * .exec_queue_id = 0,
1016 * };
1017 * ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1018 *
b0e47225 1019 */
dd08ebf6
MB
1020struct drm_xe_vm_bind {
1021 /** @extensions: Pointer to the first extension struct, if any */
1022 __u64 extensions;
1023
1024 /** @vm_id: The ID of the VM to bind to */
1025 __u32 vm_id;
1026
1027 /**
9b9529ce
FD
1028 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1029 * and exec queue must have same vm_id. If zero, the default VM bind engine
dd08ebf6
MB
1030 * is used.
1031 */
9b9529ce 1032 __u32 exec_queue_id;
dd08ebf6 1033
e2bd81af
CS
1034 /** @pad: MBZ */
1035 __u32 pad;
1036
7a56bd0c
RV
1037 /** @num_binds: number of binds in this IOCTL */
1038 __u32 num_binds;
1039
dd08ebf6
MB
1040 union {
1041 /** @bind: used if num_binds == 1 */
1042 struct drm_xe_vm_bind_op bind;
4f082f2c 1043
dd08ebf6
MB
1044 /**
1045 * @vector_of_binds: userptr to array of struct
1046 * drm_xe_vm_bind_op if num_binds > 1
1047 */
1048 __u64 vector_of_binds;
1049 };
1050
4efaadd3 1051 /** @pad2: MBZ */
7a56bd0c
RV
1052 __u32 pad2;
1053
dd08ebf6
MB
1054 /** @num_syncs: amount of syncs to wait on */
1055 __u32 num_syncs;
1056
1057 /** @syncs: pointer to struct drm_xe_sync array */
1058 __u64 syncs;
1059
1060 /** @reserved: Reserved */
1061 __u64 reserved[2];
1062};
1063
b0e47225
FD
1064/**
1065 * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
db353311
FD
1066 *
1067 * The example below shows how to use @drm_xe_exec_queue_create to create
1068 * a simple exec_queue (no parallel submission) of class
1069 * &DRM_XE_ENGINE_CLASS_RENDER.
1070 *
1071 * .. code-block:: C
1072 *
1073 * struct drm_xe_engine_class_instance instance = {
1074 * .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1075 * };
1076 * struct drm_xe_exec_queue_create exec_queue_create = {
1077 * .extensions = 0,
1078 * .vm_id = vm,
1079 * .num_bb_per_exec = 1,
1080 * .num_eng_per_bb = 1,
1081 * .instances = to_user_pointer(&instance),
1082 * };
1083 * ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1084 *
b0e47225 1085 */
9b9529ce 1086struct drm_xe_exec_queue_create {
0f1d88f2
RV
1087#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0
1088#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0
1089#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1
0f1d88f2 1090
4f082f2c 1091 /** @extensions: Pointer to the first extension struct, if any */
dd08ebf6
MB
1092 __u64 extensions;
1093
9b9529ce 1094 /** @width: submission width (number BB per exec) for this exec queue */
dd08ebf6
MB
1095 __u16 width;
1096
9b9529ce 1097 /** @num_placements: number of valid placements for this exec queue */
dd08ebf6
MB
1098 __u16 num_placements;
1099
9b9529ce 1100 /** @vm_id: VM to use for this exec queue */
dd08ebf6
MB
1101 __u32 vm_id;
1102
1103 /** @flags: MBZ */
1104 __u32 flags;
1105
9b9529ce
FD
1106 /** @exec_queue_id: Returned exec queue ID */
1107 __u32 exec_queue_id;
dd08ebf6
MB
1108
1109 /**
1110 * @instances: user pointer to a 2-d array of struct
1111 * drm_xe_engine_class_instance
1112 *
1113 * length = width (i) * num_placements (j)
1114 * index = j + i * width
1115 */
1116 __u64 instances;
1117
1118 /** @reserved: Reserved */
1119 __u64 reserved[2];
1120};
1121
76ca3a22
RV
1122/**
1123 * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1124 */
1125struct drm_xe_exec_queue_destroy {
1126 /** @exec_queue_id: Exec queue ID */
1127 __u32 exec_queue_id;
1128
1129 /** @pad: MBZ */
1130 __u32 pad;
1131
1132 /** @reserved: Reserved */
1133 __u64 reserved[2];
1134};
1135
b0e47225
FD
1136/**
1137 * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
801989b0
FD
1138 *
1139 * The @property can be:
1140 * - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
b0e47225 1141 */
9b9529ce 1142struct drm_xe_exec_queue_get_property {
19431b02
JRS
1143 /** @extensions: Pointer to the first extension struct, if any */
1144 __u64 extensions;
1145
9b9529ce
FD
1146 /** @exec_queue_id: Exec queue ID */
1147 __u32 exec_queue_id;
19431b02 1148
d5dc73db 1149#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0
4f082f2c 1150 /** @property: property to get */
19431b02
JRS
1151 __u32 property;
1152
1153 /** @value: property value */
1154 __u64 value;
1155
1156 /** @reserved: Reserved */
1157 __u64 reserved[2];
1158};
1159
b0e47225 1160/**
801989b0
FD
1161 * struct drm_xe_sync - sync object
1162 *
1163 * The @type can be:
1164 * - %DRM_XE_SYNC_TYPE_SYNCOBJ
1165 * - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1166 * - %DRM_XE_SYNC_TYPE_USER_FENCE
1167 *
1168 * and the @flags can be:
1169 * - %DRM_XE_SYNC_FLAG_SIGNAL
db353311
FD
1170 *
1171 * A minimal use of @drm_xe_sync looks like this:
1172 *
1173 * .. code-block:: C
1174 *
1175 * struct drm_xe_sync sync = {
1176 * .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1177 * .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1178 * };
1179 * struct drm_syncobj_create syncobj_create = { 0 };
1180 * ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1181 * sync.handle = syncobj_create.handle;
1182 * ...
1183 * use of &sync in drm_xe_exec or drm_xe_vm_bind
1184 * ...
1185 * struct drm_syncobj_wait wait = {
1186 * .handles = &sync.handle,
1187 * .timeout_nsec = INT64_MAX,
1188 * .count_handles = 1,
1189 * .flags = 0,
1190 * .first_signaled = 0,
1191 * .pad = 0,
1192 * };
1193 * ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
b0e47225 1194 */
dd08ebf6
MB
1195struct drm_xe_sync {
1196 /** @extensions: Pointer to the first extension struct, if any */
1197 __u64 extensions;
1198
37d078e5
RV
1199#define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0
1200#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1
1201#define DRM_XE_SYNC_TYPE_USER_FENCE 0x2
1202 /** @type: Type of the this sync object */
1203 __u32 type;
1204
1205#define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0)
1206 /** @flags: Sync Flags */
4f082f2c 1207 __u32 flags;
dd08ebf6
MB
1208
1209 union {
4efaadd3 1210 /** @handle: Handle for the object */
dd08ebf6 1211 __u32 handle;
4f082f2c 1212
dd08ebf6 1213 /**
4b437893
RV
1214 * @addr: Address of user fence. When sync is passed in via exec
1215 * IOCTL this is a GPU address in the VM. When sync passed in via
dd08ebf6
MB
1216 * VM bind IOCTL this is a user pointer. In either case, it is
1217 * the users responsibility that this address is present and
1218 * mapped when the user fence is signalled. Must be qword
1219 * aligned.
1220 */
1221 __u64 addr;
1222 };
1223
4b437893
RV
1224 /**
1225 * @timeline_value: Input for the timeline sync object. Needs to be
1226 * different than 0 when used with %DRM_XE_SYNC_FLAG_TIMELINE_SYNCOBJ.
1227 */
dd08ebf6
MB
1228 __u64 timeline_value;
1229
1230 /** @reserved: Reserved */
1231 __u64 reserved[2];
1232};
1233
b0e47225
FD
1234/**
1235 * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
db353311
FD
1236 *
1237 * This is an example to use @drm_xe_exec for execution of the object
1238 * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1239 * (see example in @drm_xe_exec_queue_create). It can be synchronized
1240 * by using the example provided for @drm_xe_sync.
1241 *
1242 * .. code-block:: C
1243 *
1244 * struct drm_xe_exec exec = {
1245 * .exec_queue_id = exec_queue,
1246 * .syncs = &sync,
1247 * .num_syncs = 1,
1248 * .address = BIND_ADDRESS,
1249 * .num_batch_buffer = 1,
1250 * };
1251 * ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1252 *
b0e47225 1253 */
dd08ebf6
MB
1254struct drm_xe_exec {
1255 /** @extensions: Pointer to the first extension struct, if any */
1256 __u64 extensions;
1257
9b9529ce
FD
1258 /** @exec_queue_id: Exec queue ID for the batch buffer */
1259 __u32 exec_queue_id;
dd08ebf6
MB
1260
1261 /** @num_syncs: Amount of struct drm_xe_sync in array. */
1262 __u32 num_syncs;
1263
1264 /** @syncs: Pointer to struct drm_xe_sync array. */
1265 __u64 syncs;
1266
1267 /**
a0385a84
FD
1268 * @address: address of batch buffer if num_batch_buffer == 1 or an
1269 * array of batch buffer addresses
1270 */
dd08ebf6
MB
1271 __u64 address;
1272
1273 /**
1274 * @num_batch_buffer: number of batch buffer in this exec, must match
1275 * the width of the engine
1276 */
1277 __u16 num_batch_buffer;
1278
e2bd81af
CS
1279 /** @pad: MBZ */
1280 __u16 pad[3];
1281
dd08ebf6
MB
1282 /** @reserved: Reserved */
1283 __u64 reserved[2];
1284};
1285
dd08ebf6 1286/**
b0e47225 1287 * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
dd08ebf6 1288 *
2793fac1 1289 * Wait on user fence, XE will wake-up on every HW engine interrupt in the
63f9c3cd
MA
1290 * instances list and check if user fence is complete::
1291 *
1292 * (*addr & MASK) OP (VALUE & MASK)
dd08ebf6
MB
1293 *
1294 * Returns to user on user fence completion or timeout.
801989b0
FD
1295 *
1296 * The @op can be:
1297 * - %DRM_XE_UFENCE_WAIT_OP_EQ
1298 * - %DRM_XE_UFENCE_WAIT_OP_NEQ
1299 * - %DRM_XE_UFENCE_WAIT_OP_GT
1300 * - %DRM_XE_UFENCE_WAIT_OP_GTE
1301 * - %DRM_XE_UFENCE_WAIT_OP_LT
1302 * - %DRM_XE_UFENCE_WAIT_OP_LTE
1303 *
1304 * and the @flags can be:
1305 * - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1306 * - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1307 *
1308 * The @mask values can be for example:
1309 * - 0xffu for u8
1310 * - 0xffffu for u16
1311 * - 0xffffffffu for u32
1312 * - 0xffffffffffffffffu for u64
dd08ebf6
MB
1313 */
1314struct drm_xe_wait_user_fence {
1315 /** @extensions: Pointer to the first extension struct, if any */
1316 __u64 extensions;
4f082f2c 1317
b21ae51d
MB
1318 /**
1319 * @addr: user pointer address to wait on, must qword aligned
1320 */
1321 __u64 addr;
4f082f2c 1322
4a349c86
RV
1323#define DRM_XE_UFENCE_WAIT_OP_EQ 0x0
1324#define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1
1325#define DRM_XE_UFENCE_WAIT_OP_GT 0x2
1326#define DRM_XE_UFENCE_WAIT_OP_GTE 0x3
1327#define DRM_XE_UFENCE_WAIT_OP_LT 0x4
1328#define DRM_XE_UFENCE_WAIT_OP_LTE 0x5
4f082f2c 1329 /** @op: wait operation (type of comparison) */
dd08ebf6 1330 __u16 op;
4f082f2c 1331
9212da07 1332#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0)
4f082f2c 1333 /** @flags: wait flags */
dd08ebf6 1334 __u16 flags;
4f082f2c 1335
e2bd81af
CS
1336 /** @pad: MBZ */
1337 __u32 pad;
4f082f2c 1338
dd08ebf6
MB
1339 /** @value: compare value */
1340 __u64 value;
4f082f2c 1341
801989b0 1342 /** @mask: comparison mask */
dd08ebf6 1343 __u64 mask;
4a349c86 1344
5572a004
ZK
1345 /**
1346 * @timeout: how long to wait before bailing, value in nanoseconds.
3ac4a789 1347 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
5572a004
ZK
1348 * it contains timeout expressed in nanoseconds to wait (fence will
1349 * expire at now() + timeout).
3ac4a789 1350 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
5572a004
ZK
1351 * will end at timeout (uses system MONOTONIC_CLOCK).
1352 * Passing negative timeout leads to neverending wait.
1353 *
1354 * On relative timeout this value is updated with timeout left
1355 * (for restarting the call in case of signal delivery).
1356 * On absolute timeout this value stays intact (restarted call still
1357 * expire at the same point of time).
1358 */
dd08ebf6 1359 __s64 timeout;
4f082f2c 1360
9212da07
BK
1361 /** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1362 __u32 exec_queue_id;
4f082f2c 1363
9212da07
BK
1364 /** @pad2: MBZ */
1365 __u32 pad2;
dd08ebf6
MB
1366
1367 /** @reserved: Reserved */
1368 __u64 reserved[2];
1369};
76ca3a22 1370
dd08ebf6
MB
1371#if defined(__cplusplus)
1372}
1373#endif
1374
1375#endif /* _UAPI_XE_DRM_H_ */