Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-block.git] / include / uapi / drm / i915_drm.h
CommitLineData
718dcedd
DH
1/*
2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27#ifndef _UAPI_I915_DRM_H_
28#define _UAPI_I915_DRM_H_
29
1049102f 30#include "drm.h"
718dcedd 31
b1c1f5c4
EV
32#if defined(__cplusplus)
33extern "C" {
34#endif
35
718dcedd
DH
36/* Please note that modifications to all structs defined here are
37 * subject to backwards-compatibility constraints.
38 */
39
cce723ed 40/**
33eaede0 41 * DOC: uevents generated by i915 on its device node
cce723ed
BW
42 *
43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
33eaede0 44 * event from the GPU L3 cache. Additional information supplied is ROW,
35a85ac6 45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
33eaede0
RD
46 * track of these events, and if a specific cache-line seems to have a
47 * persistent error, remap it with the L3 remapping tool supplied in
35a85ac6 48 * intel-gpu-tools. The value supplied with the event is always 1.
cce723ed
BW
49 *
50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51 * hangcheck. The error detection event is a good indicator of when things
52 * began to go badly. The value supplied with the event is a 1 upon error
53 * detection, and a 0 upon reset completion, signifying no more error
54 * exists. NOTE: Disabling hangcheck or reset via module parameter will
55 * cause the related events to not be seen.
56 *
57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
66137f54 58 * GPU. The value supplied with the event is always 1. NOTE: Disable
cce723ed
BW
59 * reset via module parameter will cause this event to not be seen.
60 */
61#define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR"
62#define I915_ERROR_UEVENT "ERROR"
63#define I915_RESET_UEVENT "RESET"
718dcedd 64
19d053d4
MA
65/**
66 * struct i915_user_extension - Base class for defining a chain of extensions
9d1305ef
CW
67 *
68 * Many interfaces need to grow over time. In most cases we can simply
69 * extend the struct and have userspace pass in more data. Another option,
70 * as demonstrated by Vulkan's approach to providing extensions for forward
71 * and backward compatibility, is to use a list of optional structs to
72 * provide those extra details.
73 *
74 * The key advantage to using an extension chain is that it allows us to
75 * redefine the interface more easily than an ever growing struct of
76 * increasing complexity, and for large parts of that interface to be
77 * entirely optional. The downside is more pointer chasing; chasing across
78 * the __user boundary with pointers encapsulated inside u64.
19d053d4
MA
79 *
80 * Example chaining:
81 *
82 * .. code-block:: C
83 *
84 * struct i915_user_extension ext3 {
85 * .next_extension = 0, // end
86 * .name = ...,
87 * };
88 * struct i915_user_extension ext2 {
89 * .next_extension = (uintptr_t)&ext3,
90 * .name = ...,
91 * };
92 * struct i915_user_extension ext1 {
93 * .next_extension = (uintptr_t)&ext2,
94 * .name = ...,
95 * };
96 *
97 * Typically the struct i915_user_extension would be embedded in some uAPI
98 * struct, and in this case we would feed it the head of the chain(i.e ext1),
99 * which would then apply all of the above extensions.
100 *
9d1305ef
CW
101 */
102struct i915_user_extension {
19d053d4
MA
103 /**
104 * @next_extension:
105 *
106 * Pointer to the next struct i915_user_extension, or zero if the end.
107 */
9d1305ef 108 __u64 next_extension;
19d053d4
MA
109 /**
110 * @name: Name of the extension.
111 *
112 * Note that the name here is just some integer.
113 *
114 * Also note that the name space for this is not global for the whole
115 * driver, but rather its scope/meaning is limited to the specific piece
116 * of uAPI which has embedded the struct i915_user_extension.
117 */
9d1305ef 118 __u32 name;
19d053d4
MA
119 /**
120 * @flags: MBZ
121 *
122 * All undefined bits must be zero.
123 */
124 __u32 flags;
125 /**
126 * @rsvd: MBZ
127 *
128 * Reserved for future use; must be zero.
129 */
130 __u32 rsvd[4];
9d1305ef
CW
131};
132
3373ce2e
ID
133/*
134 * MOCS indexes used for GPU surfaces, defining the cacheability of the
135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136 */
137enum i915_mocs_table_index {
138 /*
139 * Not cached anywhere, coherency between CPU and GPU accesses is
140 * guaranteed.
141 */
142 I915_MOCS_UNCACHED,
143 /*
144 * Cacheability and coherency controlled by the kernel automatically
145 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 * usage of the surface (used for display scanout or not).
147 */
148 I915_MOCS_PTE,
149 /*
150 * Cached in all GPU caches available on the platform.
151 * Coherency between CPU and GPU accesses to the surface is not
152 * guaranteed without extra synchronization.
153 */
154 I915_MOCS_CACHED,
155};
156
991b4de3
MR
157/**
158 * enum drm_i915_gem_engine_class - uapi engine type enumeration
159 *
1803fcbc 160 * Different engines serve different roles, and there may be more than one
991b4de3
MR
161 * engine serving each role. This enum provides a classification of the role
162 * of the engine, which may be used when requesting operations to be performed
163 * on a certain subset of engines, or for providing information about that
164 * group.
1803fcbc
TU
165 */
166enum drm_i915_gem_engine_class {
991b4de3
MR
167 /**
168 * @I915_ENGINE_CLASS_RENDER:
169 *
170 * Render engines support instructions used for 3D, Compute (GPGPU),
171 * and programmable media workloads. These instructions fetch data and
172 * dispatch individual work items to threads that operate in parallel.
173 * The threads run small programs (called "kernels" or "shaders") on
174 * the GPU's execution units (EUs).
175 */
1803fcbc 176 I915_ENGINE_CLASS_RENDER = 0,
991b4de3
MR
177
178 /**
179 * @I915_ENGINE_CLASS_COPY:
180 *
181 * Copy engines (also referred to as "blitters") support instructions
182 * that move blocks of data from one location in memory to another,
183 * or that fill a specified location of memory with fixed data.
184 * Copy engines can perform pre-defined logical or bitwise operations
185 * on the source, destination, or pattern data.
186 */
1803fcbc 187 I915_ENGINE_CLASS_COPY = 1,
991b4de3
MR
188
189 /**
190 * @I915_ENGINE_CLASS_VIDEO:
191 *
192 * Video engines (also referred to as "bit stream decode" (BSD) or
193 * "vdbox") support instructions that perform fixed-function media
194 * decode and encode.
195 */
1803fcbc 196 I915_ENGINE_CLASS_VIDEO = 2,
991b4de3
MR
197
198 /**
199 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 *
201 * Video enhancement engines (also referred to as "vebox") support
202 * instructions related to image enhancement.
203 */
1803fcbc
TU
204 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3,
205
ecf8eca5
MR
206 /**
207 * @I915_ENGINE_CLASS_COMPUTE:
208 *
209 * Compute engines support a subset of the instructions available
210 * on render engines: compute engines support Compute (GPGPU) and
211 * programmable media workloads, but do not support the 3D pipeline.
212 */
213 I915_ENGINE_CLASS_COMPUTE = 4,
214
991b4de3 215 /* Values in this enum should be kept compact. */
be03564b 216
991b4de3
MR
217 /**
218 * @I915_ENGINE_CLASS_INVALID:
219 *
220 * Placeholder value to represent an invalid engine class assignment.
221 */
1803fcbc
TU
222 I915_ENGINE_CLASS_INVALID = -1
223};
224
c94fde8f
MA
225/**
226 * struct i915_engine_class_instance - Engine class/instance identifier
227 *
d1172ab3
CW
228 * There may be more than one engine fulfilling any role within the system.
229 * Each engine of a class is given a unique instance number and therefore
230 * any engine can be specified by its class:instance tuplet. APIs that allow
231 * access to any engine in the system will use struct i915_engine_class_instance
232 * for this identification.
233 */
234struct i915_engine_class_instance {
c94fde8f
MA
235 /**
236 * @engine_class:
237 *
238 * Engine class from enum drm_i915_gem_engine_class
239 */
240 __u16 engine_class;
976b55f0 241#define I915_ENGINE_CLASS_INVALID_NONE -1
6d06779e 242#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
c94fde8f
MA
243
244 /**
245 * @engine_instance:
246 *
247 * Engine instance.
248 */
249 __u16 engine_instance;
d1172ab3
CW
250};
251
b46a33e2
TU
252/**
253 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254 *
255 */
256
257enum drm_i915_pmu_engine_sample {
258 I915_SAMPLE_BUSY = 0,
259 I915_SAMPLE_WAIT = 1,
b552ae44 260 I915_SAMPLE_SEMA = 2
b46a33e2
TU
261};
262
263#define I915_PMU_SAMPLE_BITS (4)
264#define I915_PMU_SAMPLE_MASK (0xf)
265#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266#define I915_PMU_CLASS_SHIFT \
267 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268
269#define __I915_PMU_ENGINE(class, instance, sample) \
270 ((class) << I915_PMU_CLASS_SHIFT | \
271 (instance) << I915_PMU_SAMPLE_BITS | \
272 (sample))
273
274#define I915_PMU_ENGINE_BUSY(class, instance) \
275 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276
277#define I915_PMU_ENGINE_WAIT(class, instance) \
278 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279
280#define I915_PMU_ENGINE_SEMA(class, instance) \
281 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282
bc4be0a3
TU
283/*
284 * Top 4 bits of every non-engine counter are GT id.
285 */
286#define __I915_PMU_GT_SHIFT (60)
287
288#define ___I915_PMU_OTHER(gt, x) \
289 (((__u64)__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) | \
290 ((__u64)(gt) << __I915_PMU_GT_SHIFT))
291
292#define __I915_PMU_OTHER(x) ___I915_PMU_OTHER(0, x)
b46a33e2
TU
293
294#define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0)
295#define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1)
0cd4684d 296#define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2)
6060b6ae 297#define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3)
8c3b1ba0 298#define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4)
6060b6ae 299
348fb0cb 300#define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
b46a33e2 301
bc4be0a3
TU
302#define __I915_PMU_ACTUAL_FREQUENCY(gt) ___I915_PMU_OTHER(gt, 0)
303#define __I915_PMU_REQUESTED_FREQUENCY(gt) ___I915_PMU_OTHER(gt, 1)
304#define __I915_PMU_INTERRUPTS(gt) ___I915_PMU_OTHER(gt, 2)
305#define __I915_PMU_RC6_RESIDENCY(gt) ___I915_PMU_OTHER(gt, 3)
306#define __I915_PMU_SOFTWARE_GT_AWAKE_TIME(gt) ___I915_PMU_OTHER(gt, 4)
307
718dcedd
DH
308/* Each region is a minimum of 16k, and there are at most 255 of them.
309 */
310#define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use
311 * of chars for next/prev indices */
312#define I915_LOG_MIN_TEX_REGION_SIZE 14
313
314typedef struct _drm_i915_init {
315 enum {
316 I915_INIT_DMA = 0x01,
317 I915_CLEANUP_DMA = 0x02,
318 I915_RESUME_DMA = 0x03
319 } func;
320 unsigned int mmio_offset;
321 int sarea_priv_offset;
322 unsigned int ring_start;
323 unsigned int ring_end;
324 unsigned int ring_size;
325 unsigned int front_offset;
326 unsigned int back_offset;
327 unsigned int depth_offset;
328 unsigned int w;
329 unsigned int h;
330 unsigned int pitch;
331 unsigned int pitch_bits;
332 unsigned int back_pitch;
333 unsigned int depth_pitch;
334 unsigned int cpp;
335 unsigned int chipset;
336} drm_i915_init_t;
337
338typedef struct _drm_i915_sarea {
339 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
340 int last_upload; /* last time texture was uploaded */
341 int last_enqueue; /* last time a buffer was enqueued */
342 int last_dispatch; /* age of the most recently dispatched buffer */
343 int ctxOwner; /* last context to upload state */
344 int texAge;
345 int pf_enabled; /* is pageflipping allowed? */
346 int pf_active;
347 int pf_current_page; /* which buffer is being displayed? */
348 int perf_boxes; /* performance boxes to be displayed */
349 int width, height; /* screen size in pixels */
350
351 drm_handle_t front_handle;
352 int front_offset;
353 int front_size;
354
355 drm_handle_t back_handle;
356 int back_offset;
357 int back_size;
358
359 drm_handle_t depth_handle;
360 int depth_offset;
361 int depth_size;
362
363 drm_handle_t tex_handle;
364 int tex_offset;
365 int tex_size;
366 int log_tex_granularity;
367 int pitch;
368 int rotation; /* 0, 90, 180 or 270 */
369 int rotated_offset;
370 int rotated_size;
371 int rotated_pitch;
372 int virtualX, virtualY;
373
374 unsigned int front_tiled;
375 unsigned int back_tiled;
376 unsigned int depth_tiled;
377 unsigned int rotated_tiled;
378 unsigned int rotated2_tiled;
379
380 int pipeA_x;
381 int pipeA_y;
382 int pipeA_w;
383 int pipeA_h;
384 int pipeB_x;
385 int pipeB_y;
386 int pipeB_w;
387 int pipeB_h;
388
389 /* fill out some space for old userspace triple buffer */
390 drm_handle_t unused_handle;
391 __u32 unused1, unused2, unused3;
392
393 /* buffer object handles for static buffers. May change
394 * over the lifetime of the client.
395 */
396 __u32 front_bo_handle;
397 __u32 back_bo_handle;
398 __u32 unused_bo_handle;
399 __u32 depth_bo_handle;
400
401} drm_i915_sarea_t;
402
403/* due to userspace building against these headers we need some compat here */
404#define planeA_x pipeA_x
405#define planeA_y pipeA_y
406#define planeA_w pipeA_w
407#define planeA_h pipeA_h
408#define planeB_x pipeB_x
409#define planeB_y pipeB_y
410#define planeB_w pipeB_w
411#define planeB_h pipeB_h
412
413/* Flags for perf_boxes
414 */
415#define I915_BOX_RING_EMPTY 0x1
416#define I915_BOX_FLIP 0x2
417#define I915_BOX_WAIT 0x4
418#define I915_BOX_TEXTURE_LOAD 0x8
419#define I915_BOX_LOST_CONTEXT 0x10
420
21631f10
DL
421/*
422 * i915 specific ioctls.
423 *
424 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
425 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
426 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
718dcedd
DH
427 */
428#define DRM_I915_INIT 0x00
429#define DRM_I915_FLUSH 0x01
430#define DRM_I915_FLIP 0x02
431#define DRM_I915_BATCHBUFFER 0x03
432#define DRM_I915_IRQ_EMIT 0x04
433#define DRM_I915_IRQ_WAIT 0x05
434#define DRM_I915_GETPARAM 0x06
435#define DRM_I915_SETPARAM 0x07
436#define DRM_I915_ALLOC 0x08
437#define DRM_I915_FREE 0x09
438#define DRM_I915_INIT_HEAP 0x0a
439#define DRM_I915_CMDBUFFER 0x0b
440#define DRM_I915_DESTROY_HEAP 0x0c
441#define DRM_I915_SET_VBLANK_PIPE 0x0d
442#define DRM_I915_GET_VBLANK_PIPE 0x0e
443#define DRM_I915_VBLANK_SWAP 0x0f
444#define DRM_I915_HWS_ADDR 0x11
445#define DRM_I915_GEM_INIT 0x13
446#define DRM_I915_GEM_EXECBUFFER 0x14
447#define DRM_I915_GEM_PIN 0x15
448#define DRM_I915_GEM_UNPIN 0x16
449#define DRM_I915_GEM_BUSY 0x17
450#define DRM_I915_GEM_THROTTLE 0x18
451#define DRM_I915_GEM_ENTERVT 0x19
452#define DRM_I915_GEM_LEAVEVT 0x1a
453#define DRM_I915_GEM_CREATE 0x1b
454#define DRM_I915_GEM_PREAD 0x1c
455#define DRM_I915_GEM_PWRITE 0x1d
456#define DRM_I915_GEM_MMAP 0x1e
457#define DRM_I915_GEM_SET_DOMAIN 0x1f
458#define DRM_I915_GEM_SW_FINISH 0x20
459#define DRM_I915_GEM_SET_TILING 0x21
460#define DRM_I915_GEM_GET_TILING 0x22
461#define DRM_I915_GEM_GET_APERTURE 0x23
462#define DRM_I915_GEM_MMAP_GTT 0x24
463#define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25
464#define DRM_I915_GEM_MADVISE 0x26
465#define DRM_I915_OVERLAY_PUT_IMAGE 0x27
466#define DRM_I915_OVERLAY_ATTRS 0x28
467#define DRM_I915_GEM_EXECBUFFER2 0x29
fec0445c 468#define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2
718dcedd
DH
469#define DRM_I915_GET_SPRITE_COLORKEY 0x2a
470#define DRM_I915_SET_SPRITE_COLORKEY 0x2b
471#define DRM_I915_GEM_WAIT 0x2c
472#define DRM_I915_GEM_CONTEXT_CREATE 0x2d
473#define DRM_I915_GEM_CONTEXT_DESTROY 0x2e
474#define DRM_I915_GEM_SET_CACHING 0x2f
475#define DRM_I915_GEM_GET_CACHING 0x30
476#define DRM_I915_REG_READ 0x31
b6359918 477#define DRM_I915_GET_RESET_STATS 0x32
5cc9ed4b 478#define DRM_I915_GEM_USERPTR 0x33
c9dc0f35
CW
479#define DRM_I915_GEM_CONTEXT_GETPARAM 0x34
480#define DRM_I915_GEM_CONTEXT_SETPARAM 0x35
eec688e1 481#define DRM_I915_PERF_OPEN 0x36
f89823c2
LL
482#define DRM_I915_PERF_ADD_CONFIG 0x37
483#define DRM_I915_PERF_REMOVE_CONFIG 0x38
a446ae2c 484#define DRM_I915_QUERY 0x39
7f3f317a
CW
485#define DRM_I915_GEM_VM_CREATE 0x3a
486#define DRM_I915_GEM_VM_DESTROY 0x3b
ebcb4029 487#define DRM_I915_GEM_CREATE_EXT 0x3c
be03564b 488/* Must be kept compact -- no holes */
718dcedd
DH
489
490#define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
491#define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
492#define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
493#define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
494#define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
495#define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
496#define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
497#define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
498#define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
499#define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
500#define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
501#define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
502#define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
503#define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
504#define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
505#define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
506#define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
507#define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
508#define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
509#define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
fec0445c 510#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
718dcedd
DH
511#define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
512#define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
513#define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
514#define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
515#define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
516#define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
517#define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
518#define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
519#define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
ebcb4029 520#define DRM_IOCTL_I915_GEM_CREATE_EXT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
718dcedd
DH
521#define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
522#define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
523#define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
524#define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
cc662126 525#define DRM_IOCTL_I915_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
718dcedd
DH
526#define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
527#define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
528#define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
529#define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
530#define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
531#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
532#define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
533#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
534#define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
535#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
2c60fae1 536#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
718dcedd
DH
537#define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
538#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
b9171541 539#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
718dcedd
DH
540#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
541#define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
b6359918 542#define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
5cc9ed4b 543#define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
c9dc0f35
CW
544#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
545#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
eec688e1 546#define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
f89823c2
LL
547#define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
548#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
a446ae2c 549#define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
7f3f317a
CW
550#define DRM_IOCTL_I915_GEM_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
551#define DRM_IOCTL_I915_GEM_VM_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
718dcedd
DH
552
553/* Allow drivers to submit batchbuffers directly to hardware, relying
554 * on the security mechanisms provided by hardware.
555 */
556typedef struct drm_i915_batchbuffer {
557 int start; /* agp offset */
558 int used; /* nr bytes in use */
559 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
560 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
561 int num_cliprects; /* mulitpass with multiple cliprects? */
562 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
563} drm_i915_batchbuffer_t;
564
565/* As above, but pass a pointer to userspace buffer which can be
566 * validated by the kernel prior to sending to hardware.
567 */
568typedef struct _drm_i915_cmdbuffer {
569 char __user *buf; /* pointer to userspace command buffer */
570 int sz; /* nr bytes in buf */
571 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */
572 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */
573 int num_cliprects; /* mulitpass with multiple cliprects? */
574 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */
575} drm_i915_cmdbuffer_t;
576
577/* Userspace can request & wait on irq's:
578 */
579typedef struct drm_i915_irq_emit {
580 int __user *irq_seq;
581} drm_i915_irq_emit_t;
582
583typedef struct drm_i915_irq_wait {
584 int irq_seq;
585} drm_i915_irq_wait_t;
586
4bdafb9d
CW
587/*
588 * Different modes of per-process Graphics Translation Table,
589 * see I915_PARAM_HAS_ALIASING_PPGTT
590 */
591#define I915_GEM_PPGTT_NONE 0
592#define I915_GEM_PPGTT_ALIASING 1
593#define I915_GEM_PPGTT_FULL 2
594
718dcedd
DH
595/* Ioctl to query kernel params:
596 */
597#define I915_PARAM_IRQ_ACTIVE 1
598#define I915_PARAM_ALLOW_BATCHBUFFER 2
599#define I915_PARAM_LAST_DISPATCH 3
600#define I915_PARAM_CHIPSET_ID 4
601#define I915_PARAM_HAS_GEM 5
602#define I915_PARAM_NUM_FENCES_AVAIL 6
603#define I915_PARAM_HAS_OVERLAY 7
604#define I915_PARAM_HAS_PAGEFLIPPING 8
605#define I915_PARAM_HAS_EXECBUF2 9
606#define I915_PARAM_HAS_BSD 10
607#define I915_PARAM_HAS_BLT 11
608#define I915_PARAM_HAS_RELAXED_FENCING 12
609#define I915_PARAM_HAS_COHERENT_RINGS 13
610#define I915_PARAM_HAS_EXEC_CONSTANTS 14
611#define I915_PARAM_HAS_RELAXED_DELTA 15
612#define I915_PARAM_HAS_GEN7_SOL_RESET 16
613#define I915_PARAM_HAS_LLC 17
614#define I915_PARAM_HAS_ALIASING_PPGTT 18
615#define I915_PARAM_HAS_WAIT_TIMEOUT 19
616#define I915_PARAM_HAS_SEMAPHORES 20
617#define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21
a1f2cc73 618#define I915_PARAM_HAS_VEBOX 22
c2fb7916 619#define I915_PARAM_HAS_SECURE_BATCHES 23
b45305fc 620#define I915_PARAM_HAS_PINNED_BATCHES 24
ed5982e6 621#define I915_PARAM_HAS_EXEC_NO_RELOC 25
eef90ccb 622#define I915_PARAM_HAS_EXEC_HANDLE_LUT 26
651d794f 623#define I915_PARAM_HAS_WT 27
d728c8ef 624#define I915_PARAM_CMD_PARSER_VERSION 28
6a2c4232 625#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
1816f923 626#define I915_PARAM_MMAP_VERSION 30
08e16dc8 627#define I915_PARAM_HAS_BSD2 31
27cd4461 628#define I915_PARAM_REVISION 32
a1559ffe
JM
629#define I915_PARAM_SUBSLICE_TOTAL 33
630#define I915_PARAM_EU_TOTAL 34
49e4d842 631#define I915_PARAM_HAS_GPU_RESET 35
a9ed33ca 632#define I915_PARAM_HAS_RESOURCE_STREAMER 36
506a8e87 633#define I915_PARAM_HAS_EXEC_SOFTPIN 37
37f501af 634#define I915_PARAM_HAS_POOLED_EU 38
635#define I915_PARAM_MIN_EU_IN_POOL 39
4cc69075 636#define I915_PARAM_MMAP_GTT_VERSION 40
718dcedd 637
bf64e0b0
CW
638/*
639 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
0de9136d 640 * priorities and the driver will attempt to execute batches in priority order.
bf64e0b0
CW
641 * The param returns a capability bitmask, nonzero implies that the scheduler
642 * is enabled, with different features present according to the mask.
ac14fbd4
CW
643 *
644 * The initial priority for each batch is supplied by the context and is
645 * controlled via I915_CONTEXT_PARAM_PRIORITY.
0de9136d
CW
646 */
647#define I915_PARAM_HAS_SCHEDULER 41
bf64e0b0
CW
648#define I915_SCHEDULER_CAP_ENABLED (1ul << 0)
649#define I915_SCHEDULER_CAP_PRIORITY (1ul << 1)
650#define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2)
e8861964 651#define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3)
bf73fc0f 652#define I915_SCHEDULER_CAP_ENGINE_BUSY_STATS (1ul << 4)
ee242ca7
MB
653/*
654 * Indicates the 2k user priority levels are statically mapped into 3 buckets as
655 * follows:
656 *
657 * -1k to -1 Low priority
658 * 0 Normal priority
659 * 1 to 1k Highest priority
660 */
661#define I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP (1ul << 5)
bf64e0b0 662
b76c14c8
DCS
663/*
664 * Query the status of HuC load.
665 *
666 * The query can fail in the following scenarios with the listed error codes:
667 * -ENODEV if HuC is not present on this platform,
668 * -EOPNOTSUPP if HuC firmware usage is disabled,
669 * -ENOPKG if HuC firmware fetch failed,
670 * -ENOEXEC if HuC firmware is invalid or mismatched,
671 * -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
672 * -EIO if the FW transfer or the FW authentication failed.
673 *
674 * If the IOCTL is successful, the returned parameter will be set to one of the
675 * following values:
676 * * 0 if HuC firmware load is not complete,
98d2722a
DCS
677 * * 1 if HuC firmware is loaded and fully authenticated,
678 * * 2 if HuC firmware is loaded and authenticated for clear media only
b76c14c8 679 */
5464cd65 680#define I915_PARAM_HUC_STATUS 42
0de9136d 681
77ae9957
CW
682/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
683 * synchronisation with implicit fencing on individual objects.
684 * See EXEC_OBJECT_ASYNC.
685 */
686#define I915_PARAM_HAS_EXEC_ASYNC 43
687
fec0445c
CW
688/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
689 * both being able to pass in a sync_file fd to wait upon before executing,
690 * and being able to return a new sync_file fd that is signaled when the
691 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
692 */
693#define I915_PARAM_HAS_EXEC_FENCE 44
694
b0fd47ad 695/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
afa5cf31 696 * user-specified buffers for post-mortem debugging of GPU hangs. See
b0fd47ad
CW
697 * EXEC_OBJECT_CAPTURE.
698 */
699#define I915_PARAM_HAS_EXEC_CAPTURE 45
700
7fed555c
RB
701#define I915_PARAM_SLICE_MASK 46
702
f5320233
RB
703/* Assuming it's uniform for each slice, this queries the mask of subslices
704 * per-slice for this system.
705 */
706#define I915_PARAM_SUBSLICE_MASK 47
707
1a71cf2f
CW
708/*
709 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
710 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
711 */
712#define I915_PARAM_HAS_EXEC_BATCH_FIRST 48
713
cf6e7bac
JE
714/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
715 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY.
716 */
717#define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49
718
d2b4b979
CW
719/*
720 * Query whether every context (both per-file default and user created) is
721 * isolated (insofar as HW supports). If this parameter is not true, then
722 * freshly created contexts may inherit values from an existing context,
723 * rather than default HW values. If true, it also ensures (insofar as HW
724 * supports) that all state set by this context will not leak to any other
725 * context.
726 *
727 * As not every engine across every gen support contexts, the returned
728 * value reports the support of context isolation for individual engines by
729 * returning a bitmask of each engine class set to true if that class supports
730 * isolation.
731 */
732#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
733
dab91783
LL
734/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
735 * registers. This used to be fixed per platform but from CNL onwards, this
736 * might vary depending on the parts.
737 */
738#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
739
900ccf30
CW
740/*
741 * Once upon a time we supposed that writes through the GGTT would be
742 * immediately in physical memory (once flushed out of the CPU path). However,
743 * on a few different processors and chipsets, this is not necessarily the case
744 * as the writes appear to be buffered internally. Thus a read of the backing
745 * storage (physical memory) via a different path (with different physical tags
746 * to the indirect write via the GGTT) will see stale values from before
747 * the GGTT write. Inside the kernel, we can for the most part keep track of
748 * the different read/write domains in use (e.g. set-domain), but the assumption
749 * of coherency is baked into the ABI, hence reporting its true state in this
750 * parameter.
751 *
752 * Reports true when writes via mmap_gtt are immediately visible following an
753 * lfence to flush the WCB.
754 *
755 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
756 * internal buffer and are _not_ immediately visible to third parties accessing
757 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
758 * communications channel when reporting false is strongly disadvised.
759 */
760#define I915_PARAM_MMAP_GTT_COHERENT 52
761
a88b6e4c
CW
762/*
763 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
764 * execution through use of explicit fence support.
765 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
766 */
767#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
b8d49f28
LL
768
769/*
770 * Revision of the i915-perf uAPI. The value returned helps determine what
771 * i915-perf features are available. See drm_i915_perf_property_id.
772 */
773#define I915_PARAM_PERF_REVISION 54
774
13149e8b
LL
775/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
776 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
777 * I915_EXEC_USE_EXTENSIONS.
778 */
779#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
780
b65a9489
CW
781/* Query if the kernel supports the I915_USERPTR_PROBE flag. */
782#define I915_PARAM_HAS_USERPTR_PROBE 56
783
bc7ed4d3
UNR
784/*
785 * Frequency of the timestamps in OA reports. This used to be the same as the CS
786 * timestamp frequency, but differs on some platforms.
787 */
788#define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
789
d1da138f
AP
790/*
791 * Query the status of PXP support in i915.
792 *
793 * The query can fail in the following scenarios with the listed error codes:
794 * -ENODEV = PXP support is not available on the GPU device or in the
795 * kernel due to missing component drivers or kernel configs.
796 *
797 * If the IOCTL is successful, the returned parameter will be set to one of
798 * the following values:
799 * 1 = PXP feature is supported and is ready for use.
800 * 2 = PXP feature is supported but should be ready soon (pending
801 * initialization of non-i915 system dependencies).
802 *
803 * NOTE: When param is supported (positive return values), user space should
804 * still refer to the GEM PXP context-creation UAPI header specs to be
805 * aware of possible failure due to system state machine at the time.
806 */
807#define I915_PARAM_PXP_STATUS 58
808
cec82816
VB
809/*
810 * Query if kernel allows marking a context to send a Freq hint to SLPC. This
811 * will enable use of the strategies allowed by the SLPC algorithm.
812 */
813#define I915_PARAM_HAS_CONTEXT_FREQ_HINT 59
814
be03564b
CW
815/* Must be kept compact -- no holes and well documented */
816
a913bde8
NV
817/**
818 * struct drm_i915_getparam - Driver parameter query structure.
819 */
820struct drm_i915_getparam {
821 /** @param: Driver parameter to query. */
16f7249d 822 __s32 param;
a913bde8
NV
823
824 /**
825 * @value: Address of memory where queried value should be put.
826 *
346add78
DV
827 * WARNING: Using pointers instead of fixed-size u64 means we need to write
828 * compat32 code. Don't repeat this mistake.
829 */
718dcedd 830 int __user *value;
a913bde8
NV
831};
832
833/**
834 * typedef drm_i915_getparam_t - Driver parameter query structure.
835 * See struct drm_i915_getparam.
836 */
837typedef struct drm_i915_getparam drm_i915_getparam_t;
718dcedd
DH
838
839/* Ioctl to set kernel params:
840 */
841#define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1
842#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2
843#define I915_SETPARAM_ALLOW_BATCHBUFFER 3
844#define I915_SETPARAM_NUM_USED_FENCES 4
be03564b 845/* Must be kept compact -- no holes */
718dcedd
DH
846
847typedef struct drm_i915_setparam {
848 int param;
849 int value;
850} drm_i915_setparam_t;
851
852/* A memory manager for regions of shared memory:
853 */
854#define I915_MEM_REGION_AGP 1
855
856typedef struct drm_i915_mem_alloc {
857 int region;
858 int alignment;
859 int size;
860 int __user *region_offset; /* offset from start of fb or agp */
861} drm_i915_mem_alloc_t;
862
863typedef struct drm_i915_mem_free {
864 int region;
865 int region_offset;
866} drm_i915_mem_free_t;
867
868typedef struct drm_i915_mem_init_heap {
869 int region;
870 int size;
871 int start;
872} drm_i915_mem_init_heap_t;
873
874/* Allow memory manager to be torn down and re-initialized (eg on
875 * rotate):
876 */
877typedef struct drm_i915_mem_destroy_heap {
878 int region;
879} drm_i915_mem_destroy_heap_t;
880
881/* Allow X server to configure which pipes to monitor for vblank signals
882 */
883#define DRM_I915_VBLANK_PIPE_A 1
884#define DRM_I915_VBLANK_PIPE_B 2
885
886typedef struct drm_i915_vblank_pipe {
887 int pipe;
888} drm_i915_vblank_pipe_t;
889
890/* Schedule buffer swap at given vertical blank:
891 */
892typedef struct drm_i915_vblank_swap {
893 drm_drawable_t drawable;
894 enum drm_vblank_seq_type seqtype;
895 unsigned int sequence;
896} drm_i915_vblank_swap_t;
897
898typedef struct drm_i915_hws_addr {
899 __u64 addr;
900} drm_i915_hws_addr_t;
901
902struct drm_i915_gem_init {
903 /**
904 * Beginning offset in the GTT to be managed by the DRM memory
905 * manager.
906 */
907 __u64 gtt_start;
908 /**
909 * Ending offset in the GTT to be managed by the DRM memory
910 * manager.
911 */
912 __u64 gtt_end;
913};
914
915struct drm_i915_gem_create {
916 /**
917 * Requested size for the object.
918 *
919 * The (page-aligned) allocated size for the object will be returned.
920 */
921 __u64 size;
922 /**
923 * Returned handle for the object.
924 *
925 * Object handles are nonzero.
926 */
927 __u32 handle;
928 __u32 pad;
929};
930
931struct drm_i915_gem_pread {
932 /** Handle for the object being read. */
933 __u32 handle;
934 __u32 pad;
935 /** Offset into the object to read from */
936 __u64 offset;
937 /** Length of data to read */
938 __u64 size;
939 /**
940 * Pointer to write the data into.
941 *
942 * This is a fixed-size type for 32/64 compatibility.
943 */
944 __u64 data_ptr;
945};
946
947struct drm_i915_gem_pwrite {
948 /** Handle for the object being written to. */
949 __u32 handle;
950 __u32 pad;
951 /** Offset into the object to write to */
952 __u64 offset;
953 /** Length of data to write */
954 __u64 size;
955 /**
956 * Pointer to read the data from.
957 *
958 * This is a fixed-size type for 32/64 compatibility.
959 */
960 __u64 data_ptr;
961};
962
963struct drm_i915_gem_mmap {
964 /** Handle for the object being mapped. */
965 __u32 handle;
966 __u32 pad;
967 /** Offset in the object to map. */
968 __u64 offset;
969 /**
970 * Length of data to map.
971 *
972 * The value will be page-aligned.
973 */
974 __u64 size;
975 /**
976 * Returned pointer the data was mapped at.
977 *
978 * This is a fixed-size type for 32/64 compatibility.
979 */
980 __u64 addr_ptr;
1816f923
AG
981
982 /**
983 * Flags for extended behaviour.
984 *
985 * Added in version 2.
986 */
987 __u64 flags;
988#define I915_MMAP_WC 0x1
718dcedd
DH
989};
990
991struct drm_i915_gem_mmap_gtt {
992 /** Handle for the object being mapped. */
993 __u32 handle;
994 __u32 pad;
995 /**
996 * Fake offset to use for subsequent mmap call
997 *
998 * This is a fixed-size type for 32/64 compatibility.
999 */
1000 __u64 offset;
1001};
1002
7961c5b6
ML
1003/**
1004 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
1005 *
1006 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
1007 * and is used to retrieve the fake offset to mmap an object specified by &handle.
1008 *
1009 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
1010 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
1011 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
1012 */
cc662126 1013struct drm_i915_gem_mmap_offset {
7961c5b6 1014 /** @handle: Handle for the object being mapped. */
cc662126 1015 __u32 handle;
7961c5b6 1016 /** @pad: Must be zero */
cc662126
AJ
1017 __u32 pad;
1018 /**
7961c5b6 1019 * @offset: The fake offset to use for subsequent mmap call
cc662126
AJ
1020 *
1021 * This is a fixed-size type for 32/64 compatibility.
1022 */
1023 __u64 offset;
1024
1025 /**
7961c5b6 1026 * @flags: Flags for extended behaviour.
cc662126 1027 *
7961c5b6
ML
1028 * It is mandatory that one of the `MMAP_OFFSET` types
1029 * should be included:
1030 *
1031 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
1032 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
1033 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
1034 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
1035 *
1036 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
1037 * type. On devices without local memory, this caching mode is invalid.
1038 *
1039 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
1040 * be used, depending on the object placement on creation. WB will be used
1041 * when the object can only exist in system memory, WC otherwise.
cc662126
AJ
1042 */
1043 __u64 flags;
cc662126 1044
7961c5b6
ML
1045#define I915_MMAP_OFFSET_GTT 0
1046#define I915_MMAP_OFFSET_WC 1
1047#define I915_MMAP_OFFSET_WB 2
1048#define I915_MMAP_OFFSET_UC 3
1049#define I915_MMAP_OFFSET_FIXED 4
1050
1051 /**
1052 * @extensions: Zero-terminated chain of extensions.
cc662126
AJ
1053 *
1054 * No current extensions defined; mbz.
1055 */
1056 __u64 extensions;
1057};
1058
3aa8c57f
MA
1059/**
1060 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1061 * preparation for accessing the pages via some CPU domain.
1062 *
1063 * Specifying a new write or read domain will flush the object out of the
1064 * previous domain(if required), before then updating the objects domain
1065 * tracking with the new domain.
1066 *
1067 * Note this might involve waiting for the object first if it is still active on
1068 * the GPU.
1069 *
1070 * Supported values for @read_domains and @write_domain:
1071 *
1072 * - I915_GEM_DOMAIN_WC: Uncached write-combined domain
1073 * - I915_GEM_DOMAIN_CPU: CPU cache domain
1074 * - I915_GEM_DOMAIN_GTT: Mappable aperture domain
1075 *
1076 * All other domains are rejected.
81340cf3
MA
1077 *
1078 * Note that for discrete, starting from DG1, this is no longer supported, and
1079 * is instead rejected. On such platforms the CPU domain is effectively static,
1080 * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1081 * which can't be set explicitly and instead depends on the object placements,
1082 * as per the below.
1083 *
1084 * Implicit caching rules, starting from DG1:
1085 *
1086 * - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1087 * contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1088 * mapped as write-combined only.
1089 *
1090 * - Everything else is always allocated and mapped as write-back, with the
1091 * guarantee that everything is also coherent with the GPU.
1092 *
1093 * Note that this is likely to change in the future again, where we might need
1094 * more flexibility on future devices, so making this all explicit as part of a
1095 * new &drm_i915_gem_create_ext extension is probable.
3aa8c57f 1096 */
718dcedd 1097struct drm_i915_gem_set_domain {
3aa8c57f 1098 /** @handle: Handle for the object. */
718dcedd
DH
1099 __u32 handle;
1100
3aa8c57f 1101 /** @read_domains: New read domains. */
718dcedd
DH
1102 __u32 read_domains;
1103
3aa8c57f
MA
1104 /**
1105 * @write_domain: New write domain.
1106 *
1107 * Note that having something in the write domain implies it's in the
1108 * read domain, and only that read domain.
1109 */
718dcedd
DH
1110 __u32 write_domain;
1111};
1112
1113struct drm_i915_gem_sw_finish {
1114 /** Handle for the object */
1115 __u32 handle;
1116};
1117
1118struct drm_i915_gem_relocation_entry {
1119 /**
1120 * Handle of the buffer being pointed to by this relocation entry.
1121 *
1122 * It's appealing to make this be an index into the mm_validate_entry
1123 * list to refer to the buffer, but this allows the driver to create
1124 * a relocation list for state buffers and not re-write it per
1125 * exec using the buffer.
1126 */
1127 __u32 target_handle;
1128
1129 /**
1130 * Value to be added to the offset of the target buffer to make up
1131 * the relocation entry.
1132 */
1133 __u32 delta;
1134
1135 /** Offset in the buffer the relocation entry will be written into */
1136 __u64 offset;
1137
1138 /**
1139 * Offset value of the target buffer that the relocation entry was last
1140 * written as.
1141 *
1142 * If the buffer has the same offset as last time, we can skip syncing
1143 * and writing the relocation. This value is written back out by
1144 * the execbuffer ioctl when the relocation is written.
1145 */
1146 __u64 presumed_offset;
1147
1148 /**
1149 * Target memory domains read by this operation.
1150 */
1151 __u32 read_domains;
1152
1153 /**
1154 * Target memory domains written by this operation.
1155 *
1156 * Note that only one domain may be written by the whole
1157 * execbuffer operation, so that where there are conflicts,
1158 * the application will get -EINVAL back.
1159 */
1160 __u32 write_domain;
1161};
1162
1163/** @{
1164 * Intel memory domains
1165 *
1166 * Most of these just align with the various caches in
1167 * the system and are used to flush and invalidate as
1168 * objects end up cached in different domains.
1169 */
1170/** CPU cache */
1171#define I915_GEM_DOMAIN_CPU 0x00000001
1172/** Render cache, used by 2D and 3D drawing */
1173#define I915_GEM_DOMAIN_RENDER 0x00000002
1174/** Sampler cache, used by texture engine */
1175#define I915_GEM_DOMAIN_SAMPLER 0x00000004
1176/** Command queue, used to load batch buffers */
1177#define I915_GEM_DOMAIN_COMMAND 0x00000008
1178/** Instruction cache, used by shader programs */
1179#define I915_GEM_DOMAIN_INSTRUCTION 0x00000010
1180/** Vertex address cache */
1181#define I915_GEM_DOMAIN_VERTEX 0x00000020
1182/** GTT domain - aperture and scanout */
1183#define I915_GEM_DOMAIN_GTT 0x00000040
e22d8e3c
CW
1184/** WC domain - uncached access */
1185#define I915_GEM_DOMAIN_WC 0x00000080
718dcedd
DH
1186/** @} */
1187
1188struct drm_i915_gem_exec_object {
1189 /**
1190 * User's handle for a buffer to be bound into the GTT for this
1191 * operation.
1192 */
1193 __u32 handle;
1194
1195 /** Number of relocations to be performed on this buffer */
1196 __u32 relocation_count;
1197 /**
1198 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1199 * the relocations to be performed in this buffer.
1200 */
1201 __u64 relocs_ptr;
1202
1203 /** Required alignment in graphics aperture */
1204 __u64 alignment;
1205
1206 /**
1207 * Returned value of the updated offset of the object, for future
1208 * presumed_offset writes.
1209 */
1210 __u64 offset;
1211};
1212
b5b6f6a6 1213/* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
718dcedd
DH
1214struct drm_i915_gem_execbuffer {
1215 /**
1216 * List of buffers to be validated with their relocations to be
1217 * performend on them.
1218 *
1219 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1220 *
1221 * These buffers must be listed in an order such that all relocations
1222 * a buffer is performing refer to buffers that have already appeared
1223 * in the validate list.
1224 */
1225 __u64 buffers_ptr;
1226 __u32 buffer_count;
1227
1228 /** Offset in the batchbuffer to start execution from. */
1229 __u32 batch_start_offset;
1230 /** Bytes used in batchbuffer from batch_start_offset */
1231 __u32 batch_len;
1232 __u32 DR1;
1233 __u32 DR4;
1234 __u32 num_cliprects;
1235 /** This is a struct drm_clip_rect *cliprects */
1236 __u64 cliprects_ptr;
1237};
1238
1239struct drm_i915_gem_exec_object2 {
1240 /**
1241 * User's handle for a buffer to be bound into the GTT for this
1242 * operation.
1243 */
1244 __u32 handle;
1245
1246 /** Number of relocations to be performed on this buffer */
1247 __u32 relocation_count;
1248 /**
1249 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1250 * the relocations to be performed in this buffer.
1251 */
1252 __u64 relocs_ptr;
1253
1254 /** Required alignment in graphics aperture */
1255 __u64 alignment;
1256
1257 /**
506a8e87
CW
1258 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1259 * the user with the GTT offset at which this object will be pinned.
caa574ff 1260 *
506a8e87
CW
1261 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1262 * presumed_offset of the object.
caa574ff 1263 *
506a8e87
CW
1264 * During execbuffer2 the kernel populates it with the value of the
1265 * current GTT offset of the object, for future presumed_offset writes.
caa574ff
MA
1266 *
1267 * See struct drm_i915_gem_create_ext for the rules when dealing with
1268 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1269 * minimum page sizes, like DG2.
718dcedd
DH
1270 */
1271 __u64 offset;
1272
9e2793f6
DG
1273#define EXEC_OBJECT_NEEDS_FENCE (1<<0)
1274#define EXEC_OBJECT_NEEDS_GTT (1<<1)
1275#define EXEC_OBJECT_WRITE (1<<2)
101b506a 1276#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
9e2793f6 1277#define EXEC_OBJECT_PINNED (1<<4)
91b2db6f 1278#define EXEC_OBJECT_PAD_TO_SIZE (1<<5)
77ae9957
CW
1279/* The kernel implicitly tracks GPU activity on all GEM objects, and
1280 * synchronises operations with outstanding rendering. This includes
1281 * rendering on other devices if exported via dma-buf. However, sometimes
1282 * this tracking is too coarse and the user knows better. For example,
1283 * if the object is split into non-overlapping ranges shared between different
1284 * clients or engines (i.e. suballocating objects), the implicit tracking
1285 * by kernel assumes that each operation affects the whole object rather
1286 * than an individual range, causing needless synchronisation between clients.
1287 * The kernel will also forgo any CPU cache flushes prior to rendering from
1288 * the object as the client is expected to be also handling such domain
1289 * tracking.
1290 *
1291 * The kernel maintains the implicit tracking in order to manage resources
1292 * used by the GPU - this flag only disables the synchronisation prior to
1293 * rendering with this object in this execbuf.
1294 *
1295 * Opting out of implicit synhronisation requires the user to do its own
1296 * explicit tracking to avoid rendering corruption. See, for example,
1297 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1298 */
1299#define EXEC_OBJECT_ASYNC (1<<6)
b0fd47ad
CW
1300/* Request that the contents of this execobject be copied into the error
1301 * state upon a GPU hang involving this batch for post-mortem debugging.
1302 * These buffers are recorded in no particular order as "user" in
1303 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1304 * if the kernel supports this flag.
1305 */
1306#define EXEC_OBJECT_CAPTURE (1<<7)
9e2793f6 1307/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
b0fd47ad 1308#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
718dcedd 1309 __u64 flags;
ed5982e6 1310
91b2db6f
CW
1311 union {
1312 __u64 rsvd1;
1313 __u64 pad_to_size;
1314 };
718dcedd
DH
1315 __u64 rsvd2;
1316};
1317
a913bde8
NV
1318/**
1319 * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1320 * ioctl.
1321 *
1322 * The request will wait for input fence to signal before submission.
1323 *
1324 * The returned output fence will be signaled after the completion of the
1325 * request.
1326 */
cf6e7bac 1327struct drm_i915_gem_exec_fence {
a913bde8 1328 /** @handle: User's handle for a drm_syncobj to wait on or signal. */
cf6e7bac
JE
1329 __u32 handle;
1330
a913bde8
NV
1331 /**
1332 * @flags: Supported flags are:
1333 *
1334 * I915_EXEC_FENCE_WAIT:
1335 * Wait for the input fence before request submission.
1336 *
1337 * I915_EXEC_FENCE_SIGNAL:
1338 * Return request completion fence as output
1339 */
1340 __u32 flags;
cf6e7bac
JE
1341#define I915_EXEC_FENCE_WAIT (1<<0)
1342#define I915_EXEC_FENCE_SIGNAL (1<<1)
ebcaa1ff 1343#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
cf6e7bac
JE
1344};
1345
a913bde8
NV
1346/**
1347 * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1348 * for execbuf ioctl.
1349 *
13149e8b
LL
1350 * This structure describes an array of drm_syncobj and associated points for
1351 * timeline variants of drm_syncobj. It is invalid to append this structure to
1352 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1353 */
1354struct drm_i915_gem_execbuffer_ext_timeline_fences {
a913bde8
NV
1355#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1356 /** @base: Extension link. See struct i915_user_extension. */
13149e8b
LL
1357 struct i915_user_extension base;
1358
1359 /**
a913bde8
NV
1360 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1361 * arrays.
13149e8b
LL
1362 */
1363 __u64 fence_count;
1364
1365 /**
a913bde8
NV
1366 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1367 * of length @fence_count.
13149e8b
LL
1368 */
1369 __u64 handles_ptr;
1370
1371 /**
a913bde8
NV
1372 * @values_ptr: Pointer to an array of u64 values of length
1373 * @fence_count.
1374 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1375 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1376 * binary one.
13149e8b
LL
1377 */
1378 __u64 values_ptr;
cda9edd0
LL
1379};
1380
a913bde8
NV
1381/**
1382 * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1383 * ioctl.
1384 */
718dcedd 1385struct drm_i915_gem_execbuffer2 {
a913bde8 1386 /** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
718dcedd 1387 __u64 buffers_ptr;
a913bde8
NV
1388
1389 /** @buffer_count: Number of elements in @buffers_ptr array */
718dcedd
DH
1390 __u32 buffer_count;
1391
a913bde8
NV
1392 /**
1393 * @batch_start_offset: Offset in the batchbuffer to start execution
1394 * from.
1395 */
718dcedd 1396 __u32 batch_start_offset;
a913bde8
NV
1397
1398 /**
1399 * @batch_len: Length in bytes of the batch buffer, starting from the
1400 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1401 * object size.
1402 */
718dcedd 1403 __u32 batch_len;
a913bde8
NV
1404
1405 /** @DR1: deprecated */
718dcedd 1406 __u32 DR1;
a913bde8
NV
1407
1408 /** @DR4: deprecated */
718dcedd 1409 __u32 DR4;
a913bde8
NV
1410
1411 /** @num_cliprects: See @cliprects_ptr */
718dcedd 1412 __u32 num_cliprects;
a913bde8 1413
cf6e7bac 1414 /**
a913bde8
NV
1415 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1416 *
1417 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1418 * I915_EXEC_USE_EXTENSIONS flags are not set.
cda9edd0
LL
1419 *
1420 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
a913bde8
NV
1421 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1422 * array.
cda9edd0
LL
1423 *
1424 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
a913bde8 1425 * single &i915_user_extension and num_cliprects is 0.
cf6e7bac 1426 */
718dcedd 1427 __u64 cliprects_ptr;
a913bde8
NV
1428
1429 /** @flags: Execbuf flags */
1430 __u64 flags;
d90c06d5 1431#define I915_EXEC_RING_MASK (0x3f)
718dcedd
DH
1432#define I915_EXEC_DEFAULT (0<<0)
1433#define I915_EXEC_RENDER (1<<0)
1434#define I915_EXEC_BSD (2<<0)
1435#define I915_EXEC_BLT (3<<0)
82f91b6e 1436#define I915_EXEC_VEBOX (4<<0)
718dcedd
DH
1437
1438/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1439 * Gen6+ only supports relative addressing to dynamic state (default) and
1440 * absolute addressing.
1441 *
1442 * These flags are ignored for the BSD and BLT rings.
1443 */
1444#define I915_EXEC_CONSTANTS_MASK (3<<6)
1445#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1446#define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6)
1447#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
718dcedd
DH
1448
1449/** Resets the SO write offset registers for transform feedback on gen7. */
1450#define I915_EXEC_GEN7_SOL_RESET (1<<8)
1451
c2fb7916
DV
1452/** Request a privileged ("secure") batch buffer. Note only available for
1453 * DRM_ROOT_ONLY | DRM_MASTER processes.
1454 */
1455#define I915_EXEC_SECURE (1<<9)
1456
b45305fc
DV
1457/** Inform the kernel that the batch is and will always be pinned. This
1458 * negates the requirement for a workaround to be performed to avoid
1459 * an incoherent CS (such as can be found on 830/845). If this flag is
1460 * not passed, the kernel will endeavour to make sure the batch is
1461 * coherent with the CS before execution. If this flag is passed,
1462 * userspace assumes the responsibility for ensuring the same.
1463 */
1464#define I915_EXEC_IS_PINNED (1<<10)
1465
c3d19d3c 1466/** Provide a hint to the kernel that the command stream and auxiliary
ed5982e6
DV
1467 * state buffers already holds the correct presumed addresses and so the
1468 * relocation process may be skipped if no buffers need to be moved in
1469 * preparation for the execbuffer.
1470 */
1471#define I915_EXEC_NO_RELOC (1<<11)
1472
eef90ccb
CW
1473/** Use the reloc.handle as an index into the exec object array rather
1474 * than as the per-file handle.
1475 */
1476#define I915_EXEC_HANDLE_LUT (1<<12)
1477
8d360dff 1478/** Used for switching BSD rings on the platforms with two BSD rings */
d9da6aa0
TU
1479#define I915_EXEC_BSD_SHIFT (13)
1480#define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT)
1481/* default ping-pong mode */
1482#define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT)
1483#define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT)
1484#define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT)
8d360dff 1485
a9ed33ca
AJ
1486/** Tell the kernel that the batchbuffer is processed by
1487 * the resource streamer.
1488 */
1489#define I915_EXEC_RESOURCE_STREAMER (1<<15)
1490
fec0445c
CW
1491/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1492 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1493 * the batch.
1494 *
1495 * Returns -EINVAL if the sync_file fd cannot be found.
1496 */
1497#define I915_EXEC_FENCE_IN (1<<16)
1498
1499/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1500 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1501 * to the caller, and it should be close() after use. (The fd is a regular
1502 * file descriptor and will be cleaned up on process termination. It holds
1503 * a reference to the request, but nothing else.)
1504 *
1505 * The sync_file fd can be combined with other sync_file and passed either
1506 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1507 * will only occur after this request completes), or to other devices.
1508 *
1509 * Using I915_EXEC_FENCE_OUT requires use of
1510 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1511 * back to userspace. Failure to do so will cause the out-fence to always
1512 * be reported as zero, and the real fence fd to be leaked.
1513 */
1514#define I915_EXEC_FENCE_OUT (1<<17)
1515
1a71cf2f
CW
1516/*
1517 * Traditionally the execbuf ioctl has only considered the final element in
1518 * the execobject[] to be the executable batch. Often though, the client
1519 * will known the batch object prior to construction and being able to place
1520 * it into the execobject[] array first can simplify the relocation tracking.
1521 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1522 * execobject[] as the * batch instead (the default is to use the last
1523 * element).
1524 */
1525#define I915_EXEC_BATCH_FIRST (1<<18)
cf6e7bac
JE
1526
1527/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1528 * define an array of i915_gem_exec_fence structures which specify a set of
1529 * dma fences to wait upon or signal.
1530 */
1531#define I915_EXEC_FENCE_ARRAY (1<<19)
1532
a88b6e4c
CW
1533/*
1534 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1535 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1536 * the batch.
1537 *
1538 * Returns -EINVAL if the sync_file fd cannot be found.
1539 */
1540#define I915_EXEC_FENCE_SUBMIT (1 << 20)
1541
cda9edd0
LL
1542/*
1543 * Setting I915_EXEC_USE_EXTENSIONS implies that
1544 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1545 * list of i915_user_extension. Each i915_user_extension node is the base of a
1546 * larger structure. The list of supported structures are listed in the
1547 * drm_i915_gem_execbuffer_ext enum.
1548 */
1549#define I915_EXEC_USE_EXTENSIONS (1 << 21)
cda9edd0 1550#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
ed5982e6 1551
a913bde8
NV
1552 /** @rsvd1: Context id */
1553 __u64 rsvd1;
1554
1555 /**
1556 * @rsvd2: in and out sync_file file descriptors.
1557 *
1558 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1559 * lower 32 bits of this field will have the in sync_file fd (input).
1560 *
1561 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1562 * field will have the out sync_file fd (output).
1563 */
1564 __u64 rsvd2;
1565};
1566
718dcedd
DH
1567#define I915_EXEC_CONTEXT_ID_MASK (0xffffffff)
1568#define i915_execbuffer2_set_context_id(eb2, context) \
1569 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1570#define i915_execbuffer2_get_context_id(eb2) \
1571 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1572
1573struct drm_i915_gem_pin {
1574 /** Handle of the buffer to be pinned. */
1575 __u32 handle;
1576 __u32 pad;
1577
1578 /** alignment required within the aperture */
1579 __u64 alignment;
1580
1581 /** Returned GTT offset of the buffer. */
1582 __u64 offset;
1583};
1584
1585struct drm_i915_gem_unpin {
1586 /** Handle of the buffer to be unpinned. */
1587 __u32 handle;
1588 __u32 pad;
1589};
1590
1591struct drm_i915_gem_busy {
1592 /** Handle of the buffer to check for busy */
1593 __u32 handle;
1594
426960be
CW
1595 /** Return busy status
1596 *
1597 * A return of 0 implies that the object is idle (after
1598 * having flushed any pending activity), and a non-zero return that
1599 * the object is still in-flight on the GPU. (The GPU has not yet
1600 * signaled completion for all pending requests that reference the
1255501d
CW
1601 * object.) An object is guaranteed to become idle eventually (so
1602 * long as no new GPU commands are executed upon it). Due to the
1603 * asynchronous nature of the hardware, an object reported
1604 * as busy may become idle before the ioctl is completed.
1605 *
1606 * Furthermore, if the object is busy, which engine is busy is only
c8b50242
CW
1607 * provided as a guide and only indirectly by reporting its class
1608 * (there may be more than one engine in each class). There are race
1609 * conditions which prevent the report of which engines are busy from
1610 * being always accurate. However, the converse is not true. If the
1611 * object is idle, the result of the ioctl, that all engines are idle,
1612 * is accurate.
426960be
CW
1613 *
1614 * The returned dword is split into two fields to indicate both
afa5cf31 1615 * the engine classes on which the object is being read, and the
c8b50242 1616 * engine class on which it is currently being written (if any).
426960be
CW
1617 *
1618 * The low word (bits 0:15) indicate if the object is being written
1619 * to by any engine (there can only be one, as the GEM implicit
1620 * synchronisation rules force writes to be serialised). Only the
c8b50242
CW
1621 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1622 * 1 not 0 etc) for the last write is reported.
426960be 1623 *
c8b50242
CW
1624 * The high word (bits 16:31) are a bitmask of which engines classes
1625 * are currently reading from the object. Multiple engines may be
426960be
CW
1626 * reading from the object simultaneously.
1627 *
c8b50242 1628 * The value of each engine class is the same as specified in the
c649432e 1629 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
c8b50242 1630 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
c649432e
TU
1631 * Some hardware may have parallel execution engines, e.g. multiple
1632 * media engines, which are mapped to the same class identifier and so
1633 * are not separately reported for busyness.
1255501d
CW
1634 *
1635 * Caveat emptor:
1636 * Only the boolean result of this query is reliable; that is whether
1637 * the object is idle or busy. The report of which engines are busy
1638 * should be only used as a heuristic.
718dcedd
DH
1639 */
1640 __u32 busy;
1641};
1642
35c7ab42 1643/**
289f5a72
MA
1644 * struct drm_i915_gem_caching - Set or get the caching for given object
1645 * handle.
35c7ab42 1646 *
289f5a72
MA
1647 * Allow userspace to control the GTT caching bits for a given object when the
1648 * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1649 * ppGTT support, or if the object is used for scanout). Note that this might
1650 * require unbinding the object from the GTT first, if its current caching value
1651 * doesn't match.
e7737b67
MA
1652 *
1653 * Note that this all changes on discrete platforms, starting from DG1, the
1654 * set/get caching is no longer supported, and is now rejected. Instead the CPU
1655 * caching attributes(WB vs WC) will become an immutable creation time property
1656 * for the object, along with the GTT caching level. For now we don't expose any
1657 * new uAPI for this, instead on DG1 this is all implicit, although this largely
1658 * shouldn't matter since DG1 is coherent by default(without any way of
1659 * controlling it).
1660 *
1661 * Implicit caching rules, starting from DG1:
1662 *
1663 * - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1664 * contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1665 * mapped as write-combined only.
1666 *
1667 * - Everything else is always allocated and mapped as write-back, with the
1668 * guarantee that everything is also coherent with the GPU.
1669 *
1670 * Note that this is likely to change in the future again, where we might need
1671 * more flexibility on future devices, so making this all explicit as part of a
1672 * new &drm_i915_gem_create_ext extension is probable.
1673 *
1674 * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1675 * caching attributes for the pages might be required(and is expensive) if we
1676 * need to then CPU map the pages later with different caching attributes. This
1677 * inconsistent caching behaviour, while supported on x86, is not universally
1678 * supported on other architectures. So for simplicity we opt for setting
1679 * everything at creation time, whilst also making it immutable, on discrete
1680 * platforms.
35c7ab42 1681 */
718dcedd
DH
1682struct drm_i915_gem_caching {
1683 /**
289f5a72
MA
1684 * @handle: Handle of the buffer to set/get the caching level.
1685 */
718dcedd
DH
1686 __u32 handle;
1687
1688 /**
289f5a72 1689 * @caching: The GTT caching level to apply or possible return value.
718dcedd 1690 *
289f5a72
MA
1691 * The supported @caching values:
1692 *
1693 * I915_CACHING_NONE:
1694 *
1695 * GPU access is not coherent with CPU caches. Default for machines
1696 * without an LLC. This means manual flushing might be needed, if we
1697 * want GPU access to be coherent.
1698 *
1699 * I915_CACHING_CACHED:
1700 *
1701 * GPU access is coherent with CPU caches and furthermore the data is
1702 * cached in last-level caches shared between CPU cores and the GPU GT.
1703 *
1704 * I915_CACHING_DISPLAY:
1705 *
1706 * Special GPU caching mode which is coherent with the scanout engines.
1707 * Transparently falls back to I915_CACHING_NONE on platforms where no
1708 * special cache mode (like write-through or gfdt flushing) is
1709 * available. The kernel automatically sets this mode when using a
1710 * buffer as a scanout target. Userspace can manually set this mode to
1711 * avoid a costly stall and clflush in the hotpath of drawing the first
1712 * frame.
1713 */
1714#define I915_CACHING_NONE 0
1715#define I915_CACHING_CACHED 1
1716#define I915_CACHING_DISPLAY 2
718dcedd
DH
1717 __u32 caching;
1718};
1719
1720#define I915_TILING_NONE 0
1721#define I915_TILING_X 1
1722#define I915_TILING_Y 2
ea673f17
MR
1723/*
1724 * Do not add new tiling types here. The I915_TILING_* values are for
1725 * de-tiling fence registers that no longer exist on modern platforms. Although
1726 * the hardware may support new types of tiling in general (e.g., Tile4), we
1727 * do not need to add them to the uapi that is specific to now-defunct ioctls.
1728 */
deeb1519 1729#define I915_TILING_LAST I915_TILING_Y
718dcedd
DH
1730
1731#define I915_BIT_6_SWIZZLE_NONE 0
1732#define I915_BIT_6_SWIZZLE_9 1
1733#define I915_BIT_6_SWIZZLE_9_10 2
1734#define I915_BIT_6_SWIZZLE_9_11 3
1735#define I915_BIT_6_SWIZZLE_9_10_11 4
1736/* Not seen by userland */
1737#define I915_BIT_6_SWIZZLE_UNKNOWN 5
1738/* Seen by userland. */
1739#define I915_BIT_6_SWIZZLE_9_17 6
1740#define I915_BIT_6_SWIZZLE_9_10_17 7
1741
1742struct drm_i915_gem_set_tiling {
1743 /** Handle of the buffer to have its tiling state updated */
1744 __u32 handle;
1745
1746 /**
1747 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1748 * I915_TILING_Y).
1749 *
1750 * This value is to be set on request, and will be updated by the
1751 * kernel on successful return with the actual chosen tiling layout.
1752 *
1753 * The tiling mode may be demoted to I915_TILING_NONE when the system
1754 * has bit 6 swizzling that can't be managed correctly by GEM.
1755 *
1756 * Buffer contents become undefined when changing tiling_mode.
1757 */
1758 __u32 tiling_mode;
1759
1760 /**
1761 * Stride in bytes for the object when in I915_TILING_X or
1762 * I915_TILING_Y.
1763 */
1764 __u32 stride;
1765
1766 /**
1767 * Returned address bit 6 swizzling required for CPU access through
1768 * mmap mapping.
1769 */
1770 __u32 swizzle_mode;
1771};
1772
1773struct drm_i915_gem_get_tiling {
1774 /** Handle of the buffer to get tiling state for. */
1775 __u32 handle;
1776
1777 /**
1778 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1779 * I915_TILING_Y).
1780 */
1781 __u32 tiling_mode;
1782
1783 /**
1784 * Returned address bit 6 swizzling required for CPU access through
1785 * mmap mapping.
1786 */
1787 __u32 swizzle_mode;
70f2f5c7
CW
1788
1789 /**
1790 * Returned address bit 6 swizzling required for CPU access through
1791 * mmap mapping whilst bound.
1792 */
1793 __u32 phys_swizzle_mode;
718dcedd
DH
1794};
1795
1796struct drm_i915_gem_get_aperture {
1797 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1798 __u64 aper_size;
1799
1800 /**
1801 * Available space in the aperture used by i915_gem_execbuffer, in
1802 * bytes
1803 */
1804 __u64 aper_available_size;
1805};
1806
1807struct drm_i915_get_pipe_from_crtc_id {
1808 /** ID of CRTC being requested **/
1809 __u32 crtc_id;
1810
1811 /** pipe of requested CRTC **/
1812 __u32 pipe;
1813};
1814
1815#define I915_MADV_WILLNEED 0
1816#define I915_MADV_DONTNEED 1
1817#define __I915_MADV_PURGED 2 /* internal state */
1818
1819struct drm_i915_gem_madvise {
1820 /** Handle of the buffer to change the backing store advice */
1821 __u32 handle;
1822
1823 /* Advice: either the buffer will be needed again in the near future,
afa5cf31 1824 * or won't be and could be discarded under memory pressure.
718dcedd
DH
1825 */
1826 __u32 madv;
1827
1828 /** Whether the backing store still exists. */
1829 __u32 retained;
1830};
1831
1832/* flags */
1833#define I915_OVERLAY_TYPE_MASK 0xff
1834#define I915_OVERLAY_YUV_PLANAR 0x01
1835#define I915_OVERLAY_YUV_PACKED 0x02
1836#define I915_OVERLAY_RGB 0x03
1837
1838#define I915_OVERLAY_DEPTH_MASK 0xff00
1839#define I915_OVERLAY_RGB24 0x1000
1840#define I915_OVERLAY_RGB16 0x2000
1841#define I915_OVERLAY_RGB15 0x3000
1842#define I915_OVERLAY_YUV422 0x0100
1843#define I915_OVERLAY_YUV411 0x0200
1844#define I915_OVERLAY_YUV420 0x0300
1845#define I915_OVERLAY_YUV410 0x0400
1846
1847#define I915_OVERLAY_SWAP_MASK 0xff0000
1848#define I915_OVERLAY_NO_SWAP 0x000000
1849#define I915_OVERLAY_UV_SWAP 0x010000
1850#define I915_OVERLAY_Y_SWAP 0x020000
1851#define I915_OVERLAY_Y_AND_UV_SWAP 0x030000
1852
1853#define I915_OVERLAY_FLAGS_MASK 0xff000000
1854#define I915_OVERLAY_ENABLE 0x01000000
1855
1856struct drm_intel_overlay_put_image {
1857 /* various flags and src format description */
1858 __u32 flags;
1859 /* source picture description */
1860 __u32 bo_handle;
1861 /* stride values and offsets are in bytes, buffer relative */
1862 __u16 stride_Y; /* stride for packed formats */
1863 __u16 stride_UV;
1864 __u32 offset_Y; /* offset for packet formats */
1865 __u32 offset_U;
1866 __u32 offset_V;
1867 /* in pixels */
1868 __u16 src_width;
1869 __u16 src_height;
1870 /* to compensate the scaling factors for partially covered surfaces */
1871 __u16 src_scan_width;
1872 __u16 src_scan_height;
1873 /* output crtc description */
1874 __u32 crtc_id;
1875 __u16 dst_x;
1876 __u16 dst_y;
1877 __u16 dst_width;
1878 __u16 dst_height;
1879};
1880
1881/* flags */
1882#define I915_OVERLAY_UPDATE_ATTRS (1<<0)
1883#define I915_OVERLAY_UPDATE_GAMMA (1<<1)
ea9da4e4 1884#define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2)
718dcedd
DH
1885struct drm_intel_overlay_attrs {
1886 __u32 flags;
1887 __u32 color_key;
1888 __s32 brightness;
1889 __u32 contrast;
1890 __u32 saturation;
1891 __u32 gamma0;
1892 __u32 gamma1;
1893 __u32 gamma2;
1894 __u32 gamma3;
1895 __u32 gamma4;
1896 __u32 gamma5;
1897};
1898
1899/*
1900 * Intel sprite handling
1901 *
1902 * Color keying works with a min/mask/max tuple. Both source and destination
1903 * color keying is allowed.
1904 *
1905 * Source keying:
1906 * Sprite pixels within the min & max values, masked against the color channels
1907 * specified in the mask field, will be transparent. All other pixels will
1908 * be displayed on top of the primary plane. For RGB surfaces, only the min
1909 * and mask fields will be used; ranged compares are not allowed.
1910 *
1911 * Destination keying:
1912 * Primary plane pixels that match the min value, masked against the color
1913 * channels specified in the mask field, will be replaced by corresponding
1914 * pixels from the sprite plane.
1915 *
1916 * Note that source & destination keying are exclusive; only one can be
1917 * active on a given plane.
1918 */
1919
6ec5bd34
VS
1920#define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set
1921 * flags==0 to disable colorkeying.
1922 */
718dcedd
DH
1923#define I915_SET_COLORKEY_DESTINATION (1<<1)
1924#define I915_SET_COLORKEY_SOURCE (1<<2)
1925struct drm_intel_sprite_colorkey {
1926 __u32 plane_id;
1927 __u32 min_value;
1928 __u32 channel_mask;
1929 __u32 max_value;
1930 __u32 flags;
1931};
1932
1933struct drm_i915_gem_wait {
1934 /** Handle of BO we shall wait on */
1935 __u32 bo_handle;
1936 __u32 flags;
1937 /** Number of nanoseconds to wait, Returns time remaining. */
1938 __s64 timeout_ns;
1939};
1940
1941struct drm_i915_gem_context_create {
b9171541 1942 __u32 ctx_id; /* output: id of new context*/
b6359918
MK
1943 __u32 pad;
1944};
1945
a913bde8
NV
1946/**
1947 * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1948 */
b9171541 1949struct drm_i915_gem_context_create_ext {
a913bde8
NV
1950 /** @ctx_id: Id of the created context (output) */
1951 __u32 ctx_id;
1952
1953 /**
1954 * @flags: Supported flags are:
1955 *
1956 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1957 *
1958 * Extensions may be appended to this structure and driver must check
1959 * for those. See @extensions.
1960 *
1961 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1962 *
1963 * Created context will have single timeline.
1964 */
5cc9ed4b 1965 __u32 flags;
b9171541 1966#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0)
8319f44c 1967#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE (1u << 1)
b9171541 1968#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
8319f44c 1969 (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
a913bde8
NV
1970
1971 /**
1972 * @extensions: Zero-terminated chain of extensions.
1973 *
1974 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1975 * Context parameter to set or query during context creation.
1976 * See struct drm_i915_gem_context_create_ext_setparam.
1977 *
1978 * I915_CONTEXT_CREATE_EXT_CLONE:
1979 * This extension has been removed. On the off chance someone somewhere
1980 * has attempted to use it, never re-use this extension number.
1981 */
b9171541 1982 __u64 extensions;
a913bde8
NV
1983#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1984#define I915_CONTEXT_CREATE_EXT_CLONE 1
5cc9ed4b
CW
1985};
1986
a913bde8
NV
1987/**
1988 * struct drm_i915_gem_context_param - Context parameter to set or query.
1989 */
c9dc0f35 1990struct drm_i915_gem_context_param {
a913bde8 1991 /** @ctx_id: Context id */
c9dc0f35 1992 __u32 ctx_id;
a913bde8
NV
1993
1994 /** @size: Size of the parameter @value */
c9dc0f35 1995 __u32 size;
a913bde8
NV
1996
1997 /** @param: Parameter to set or query */
c9dc0f35 1998 __u64 param;
fa8848f2 1999#define I915_CONTEXT_PARAM_BAN_PERIOD 0x1
6ff6d61d
JE
2000/* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed. On the off chance
2001 * someone somewhere has attempted to use it, never re-use this context
2002 * param number.
2003 */
fa8848f2
CW
2004#define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2
2005#define I915_CONTEXT_PARAM_GTT_SIZE 0x3
bc3d6744 2006#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4
84102171 2007#define I915_CONTEXT_PARAM_BANNABLE 0x5
ac14fbd4
CW
2008#define I915_CONTEXT_PARAM_PRIORITY 0x6
2009#define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */
2010#define I915_CONTEXT_DEFAULT_PRIORITY 0
2011#define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */
e46c2e99
TU
2012 /*
2013 * When using the following param, value should be a pointer to
2014 * drm_i915_gem_context_param_sseu.
2015 */
2016#define I915_CONTEXT_PARAM_SSEU 0x7
ba4fda62
CW
2017
2018/*
2019 * Not all clients may want to attempt automatic recover of a context after
2020 * a hang (for example, some clients may only submit very small incremental
2021 * batches relying on known logical state of previous batches which will never
2022 * recover correctly and each attempt will hang), and so would prefer that
2023 * the context is forever banned instead.
2024 *
2025 * If set to false (0), after a reset, subsequent (and in flight) rendering
2026 * from this context is discarded, and the client will need to create a new
2027 * context to use instead.
2028 *
2029 * If set to true (1), the kernel will automatically attempt to recover the
2030 * context by skipping the hanging batch and executing the next batch starting
2031 * from the default context state (discarding the incomplete logical context
2032 * state lost due to the reset).
2033 *
2034 * On creation, all new contexts are marked as recoverable.
2035 */
2036#define I915_CONTEXT_PARAM_RECOVERABLE 0x8
7f3f317a
CW
2037
2038 /*
2039 * The id of the associated virtual memory address space (ppGTT) of
2040 * this context. Can be retrieved and passed to another context
2041 * (on the same fd) for both to use the same ppGTT and so share
2042 * address layouts, and avoid reloading the page tables on context
2043 * switches between themselves.
2044 *
2045 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2046 */
2047#define I915_CONTEXT_PARAM_VM 0x9
976b55f0
CW
2048
2049/*
2050 * I915_CONTEXT_PARAM_ENGINES:
2051 *
2052 * Bind this context to operate on this subset of available engines. Henceforth,
2053 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2054 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2055 * and upwards. Slots 0...N are filled in using the specified (class, instance).
2056 * Use
2057 * engine_class: I915_ENGINE_CLASS_INVALID,
2058 * engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2059 * to specify a gap in the array that can be filled in later, e.g. by a
2060 * virtual engine used for load balancing.
2061 *
2062 * Setting the number of engines bound to the context to 0, by passing a zero
2063 * sized argument, will revert back to default settings.
2064 *
2065 * See struct i915_context_param_engines.
ee113690
CW
2066 *
2067 * Extensions:
2068 * i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2069 * i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
e5e32171 2070 * i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
976b55f0
CW
2071 */
2072#define I915_CONTEXT_PARAM_ENGINES 0xa
a0e04715
CW
2073
2074/*
2075 * I915_CONTEXT_PARAM_PERSISTENCE:
2076 *
2077 * Allow the context and active rendering to survive the process until
2078 * completion. Persistence allows fire-and-forget clients to queue up a
2079 * bunch of work, hand the output over to a display server and then quit.
2080 * If the context is marked as not persistent, upon closing (either via
2081 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2082 * or process termination), the context and any outstanding requests will be
2083 * cancelled (and exported fences for cancelled requests marked as -EIO).
2084 *
2085 * By default, new contexts allow persistence.
2086 */
2087#define I915_CONTEXT_PARAM_PERSISTENCE 0xb
88be76cd 2088
fe4751c3
JE
2089/* This API has been removed. On the off chance someone somewhere has
2090 * attempted to use it, never re-use this context param number.
88be76cd
CW
2091 */
2092#define I915_CONTEXT_PARAM_RINGSIZE 0xc
d3ac8d42
DCS
2093
2094/*
2095 * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2096 *
2097 * Mark that the context makes use of protected content, which will result
2098 * in the context being invalidated when the protected content session is.
2099 * Given that the protected content session is killed on suspend, the device
2100 * is kept awake for the lifetime of a protected context, so the user should
2101 * make sure to dispose of them once done.
2102 * This flag can only be set at context creation time and, when set to true,
2103 * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2104 * to false. This flag can't be set to true in conjunction with setting the
2105 * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2106 *
2107 * .. code-block:: C
2108 *
2109 * struct drm_i915_gem_context_create_ext_setparam p_protected = {
2110 * .base = {
2111 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2112 * },
2113 * .param = {
2114 * .param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2115 * .value = 1,
2116 * }
2117 * };
2118 * struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2119 * .base = {
2120 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2121 * .next_extension = to_user_pointer(&p_protected),
2122 * },
2123 * .param = {
2124 * .param = I915_CONTEXT_PARAM_RECOVERABLE,
2125 * .value = 0,
2126 * }
2127 * };
2128 * struct drm_i915_gem_context_create_ext create = {
2129 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2130 * .extensions = to_user_pointer(&p_norecover);
2131 * };
2132 *
2133 * ctx_id = gem_context_create_ext(drm_fd, &create);
2134 *
2135 * In addition to the normal failure cases, setting this flag during context
2136 * creation can result in the following errors:
2137 *
2138 * -ENODEV: feature not available
2139 * -EPERM: trying to mark a recoverable or not bannable context as protected
99afb7cc
AP
2140 * -ENXIO: A dependency such as a component driver or firmware is not yet
2141 * loaded so user space may need to attempt again. Depending on the
2142 * device, this error may be reported if protected context creation is
2143 * attempted very early after kernel start because the internal timeout
2144 * waiting for such dependencies is not guaranteed to be larger than
2145 * required (numbers differ depending on system and kernel config):
2146 * - ADL/RPL: dependencies may take up to 3 seconds from kernel start
2147 * while context creation internal timeout is 250 milisecs
2148 * - MTL: dependencies may take up to 8 seconds from kernel start
2149 * while context creation internal timeout is 250 milisecs
2150 * NOTE: such dependencies happen once, so a subsequent call to create a
2151 * protected context after a prior successful call will not experience
2152 * such timeouts and will not return -ENXIO (unless the driver is reloaded,
2153 * or, depending on the device, resumes from a suspended state).
2154 * -EIO: The firmware did not succeed in creating the protected context.
d3ac8d42
DCS
2155 */
2156#define I915_CONTEXT_PARAM_PROTECTED_CONTENT 0xd
cec82816
VB
2157
2158/*
2159 * I915_CONTEXT_PARAM_LOW_LATENCY:
2160 *
2161 * Mark this context as a low latency workload which requires aggressive GT
2162 * frequency scaling. Use I915_PARAM_HAS_CONTEXT_FREQ_HINT to check if the kernel
2163 * supports this per context flag.
2164 */
2165#define I915_CONTEXT_PARAM_LOW_LATENCY 0xe
0f1bb41b
TU
2166
2167/*
2168 * I915_CONTEXT_PARAM_CONTEXT_IMAGE:
2169 *
2170 * Allows userspace to provide own context images.
2171 *
2172 * Note that this is a debug API not available on production kernel builds.
2173 */
2174#define I915_CONTEXT_PARAM_CONTEXT_IMAGE 0xf
be03564b 2175/* Must be kept compact -- no holes and well documented */
e0695db7 2176
a913bde8 2177 /** @value: Context parameter value to be set or queried */
c9dc0f35
CW
2178 __u64 value;
2179};
2180
2ef6a01f 2181/*
e46c2e99
TU
2182 * Context SSEU programming
2183 *
2184 * It may be necessary for either functional or performance reason to configure
2185 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2186 * Sub-slice/EU).
2187 *
2188 * This is done by configuring SSEU configuration using the below
2189 * @struct drm_i915_gem_context_param_sseu for every supported engine which
2190 * userspace intends to use.
2191 *
2192 * Not all GPUs or engines support this functionality in which case an error
2193 * code -ENODEV will be returned.
2194 *
2195 * Also, flexibility of possible SSEU configuration permutations varies between
2196 * GPU generations and software imposed limitations. Requesting such a
2197 * combination will return an error code of -EINVAL.
2198 *
2199 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2200 * favour of a single global setting.
2201 */
2202struct drm_i915_gem_context_param_sseu {
2203 /*
2204 * Engine class & instance to be configured or queried.
2205 */
d1172ab3 2206 struct i915_engine_class_instance engine;
e46c2e99
TU
2207
2208 /*
e620f7b3 2209 * Unknown flags must be cleared to zero.
e46c2e99
TU
2210 */
2211 __u32 flags;
e620f7b3 2212#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
e46c2e99
TU
2213
2214 /*
2215 * Mask of slices to enable for the context. Valid values are a subset
2216 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2217 */
2218 __u64 slice_mask;
2219
2220 /*
2221 * Mask of subslices to enable for the context. Valid values are a
2222 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2223 */
2224 __u64 subslice_mask;
2225
2226 /*
2227 * Minimum/Maximum number of EUs to enable per subslice for the
2228 * context. min_eus_per_subslice must be inferior or equal to
2229 * max_eus_per_subslice.
2230 */
2231 __u16 min_eus_per_subslice;
2232 __u16 max_eus_per_subslice;
2233
2234 /*
2235 * Unused for now. Must be cleared to zero.
2236 */
2237 __u32 rsvd;
2238};
2239
57772953
TU
2240/**
2241 * DOC: Virtual Engine uAPI
2242 *
2243 * Virtual engine is a concept where userspace is able to configure a set of
2244 * physical engines, submit a batch buffer, and let the driver execute it on any
2245 * engine from the set as it sees fit.
2246 *
2247 * This is primarily useful on parts which have multiple instances of a same
2248 * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2249 *
2250 * For instance userspace can enumerate all engines of a certain class using the
2251 * previously described `Engine Discovery uAPI`_. After that userspace can
2252 * create a GEM context with a placeholder slot for the virtual engine (using
2253 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2254 * and instance respectively) and finally using the
2255 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2256 * the same reserved slot.
2257 *
2258 * Example of creating a virtual engine and submitting a batch buffer to it:
2259 *
2260 * .. code-block:: C
2261 *
2262 * I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2263 * .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2264 * .engine_index = 0, // Place this virtual engine into engine map slot 0
2265 * .num_siblings = 2,
2266 * .engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2267 * { I915_ENGINE_CLASS_VIDEO, 1 }, },
2268 * };
2269 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2270 * .engines = { { I915_ENGINE_CLASS_INVALID,
2271 * I915_ENGINE_CLASS_INVALID_NONE } },
2272 * .extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2273 * };
2274 * struct drm_i915_gem_context_create_ext_setparam p_engines = {
2275 * .base = {
2276 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2277 * },
2278 * .param = {
2279 * .param = I915_CONTEXT_PARAM_ENGINES,
2280 * .value = to_user_pointer(&engines),
2281 * .size = sizeof(engines),
2282 * },
2283 * };
2284 * struct drm_i915_gem_context_create_ext create = {
2285 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2286 * .extensions = to_user_pointer(&p_engines);
2287 * };
2288 *
2289 * ctx_id = gem_context_create_ext(drm_fd, &create);
2290 *
2291 * // Now we have created a GEM context with its engine map containing a
2292 * // single virtual engine. Submissions to this slot can go either to
2293 * // vcs0 or vcs1, depending on the load balancing algorithm used inside
2294 * // the driver. The load balancing is dynamic from one batch buffer to
2295 * // another and transparent to userspace.
2296 *
2297 * ...
2298 * execbuf.rsvd1 = ctx_id;
2299 * execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2300 * gem_execbuf(drm_fd, &execbuf);
2301 */
2302
6d06779e
CW
2303/*
2304 * i915_context_engines_load_balance:
2305 *
2306 * Enable load balancing across this set of engines.
2307 *
2308 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2309 * used will proxy the execbuffer request onto one of the set of engines
2310 * in such a way as to distribute the load evenly across the set.
2311 *
2312 * The set of engines must be compatible (e.g. the same HW class) as they
2313 * will share the same logical GPU context and ring.
2314 *
2315 * To intermix rendering with the virtual engine and direct rendering onto
2316 * the backing engines (bypassing the load balancing proxy), the context must
2317 * be defined to use a single timeline for all engines.
2318 */
2319struct i915_context_engines_load_balance {
2320 struct i915_user_extension base;
2321
2322 __u16 engine_index;
2323 __u16 num_siblings;
2324 __u32 flags; /* all undefined flags must be zero */
2325
2326 __u64 mbz64; /* reserved for future use; must be zero */
2327
94dfc73e 2328 struct i915_engine_class_instance engines[];
6d06779e
CW
2329} __attribute__((packed));
2330
2331#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2332 struct i915_user_extension base; \
2333 __u16 engine_index; \
2334 __u16 num_siblings; \
2335 __u32 flags; \
2336 __u64 mbz64; \
2337 struct i915_engine_class_instance engines[N__]; \
2338} __attribute__((packed)) name__
2339
ee113690
CW
2340/*
2341 * i915_context_engines_bond:
2342 *
2343 * Constructed bonded pairs for execution within a virtual engine.
2344 *
2345 * All engines are equal, but some are more equal than others. Given
2346 * the distribution of resources in the HW, it may be preferable to run
2347 * a request on a given subset of engines in parallel to a request on a
2348 * specific engine. We enable this selection of engines within a virtual
2349 * engine by specifying bonding pairs, for any given master engine we will
2350 * only execute on one of the corresponding siblings within the virtual engine.
2351 *
2352 * To execute a request in parallel on the master engine and a sibling requires
2353 * coordination with a I915_EXEC_FENCE_SUBMIT.
2354 */
2355struct i915_context_engines_bond {
2356 struct i915_user_extension base;
2357
2358 struct i915_engine_class_instance master;
2359
2360 __u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2361 __u16 num_bonds;
2362
2363 __u64 flags; /* all undefined flags must be zero */
2364 __u64 mbz64[4]; /* reserved for future use; must be zero */
2365
94dfc73e 2366 struct i915_engine_class_instance engines[];
ee113690
CW
2367} __attribute__((packed));
2368
2369#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2370 struct i915_user_extension base; \
2371 struct i915_engine_class_instance master; \
2372 __u16 virtual_index; \
2373 __u16 num_bonds; \
2374 __u64 flags; \
2375 __u64 mbz64[4]; \
2376 struct i915_engine_class_instance engines[N__]; \
2377} __attribute__((packed)) name__
2378
e5e32171
MB
2379/**
2380 * struct i915_context_engines_parallel_submit - Configure engine for
2381 * parallel submission.
2382 *
2383 * Setup a slot in the context engine map to allow multiple BBs to be submitted
2384 * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2385 * in parallel. Multiple hardware contexts are created internally in the i915 to
2386 * run these BBs. Once a slot is configured for N BBs only N BBs can be
2387 * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2388 * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2389 * many BBs there are based on the slot's configuration. The N BBs are the last
2390 * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2391 *
2392 * The default placement behavior is to create implicit bonds between each
2393 * context if each context maps to more than 1 physical engine (e.g. context is
2394 * a virtual engine). Also we only allow contexts of same engine class and these
2395 * contexts must be in logically contiguous order. Examples of the placement
2396 * behavior are described below. Lastly, the default is to not allow BBs to be
2397 * preempted mid-batch. Rather insert coordinated preemption points on all
2398 * hardware contexts between each set of BBs. Flags could be added in the future
2399 * to change both of these default behaviors.
2400 *
2401 * Returns -EINVAL if hardware context placement configuration is invalid or if
2402 * the placement configuration isn't supported on the platform / submission
2403 * interface.
2404 * Returns -ENODEV if extension isn't supported on the platform / submission
2405 * interface.
2406 *
2407 * .. code-block:: none
2408 *
2409 * Examples syntax:
2410 * CS[X] = generic engine of same class, logical instance X
2411 * INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2412 *
2413 * Example 1 pseudo code:
2414 * set_engines(INVALID)
2415 * set_parallel(engine_index=0, width=2, num_siblings=1,
2416 * engines=CS[0],CS[1])
2417 *
2418 * Results in the following valid placement:
2419 * CS[0], CS[1]
2420 *
2421 * Example 2 pseudo code:
2422 * set_engines(INVALID)
2423 * set_parallel(engine_index=0, width=2, num_siblings=2,
2424 * engines=CS[0],CS[2],CS[1],CS[3])
2425 *
2426 * Results in the following valid placements:
2427 * CS[0], CS[1]
2428 * CS[2], CS[3]
2429 *
2430 * This can be thought of as two virtual engines, each containing two
2431 * engines thereby making a 2D array. However, there are bonds tying the
2432 * entries together and placing restrictions on how they can be scheduled.
2433 * Specifically, the scheduler can choose only vertical columns from the 2D
2434 * array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2435 * scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2436 * versa. Same for CS[2] requires also using CS[3].
2437 * VE[0] = CS[0], CS[2]
2438 * VE[1] = CS[1], CS[3]
2439 *
2440 * Example 3 pseudo code:
2441 * set_engines(INVALID)
2442 * set_parallel(engine_index=0, width=2, num_siblings=2,
2443 * engines=CS[0],CS[1],CS[1],CS[3])
2444 *
2445 * Results in the following valid and invalid placements:
2446 * CS[0], CS[1]
2447 * CS[1], CS[3] - Not logically contiguous, return -EINVAL
2448 */
2449struct i915_context_engines_parallel_submit {
2450 /**
2451 * @base: base user extension.
2452 */
2453 struct i915_user_extension base;
2454
2455 /**
2456 * @engine_index: slot for parallel engine
2457 */
2458 __u16 engine_index;
2459
2460 /**
2461 * @width: number of contexts per parallel engine or in other words the
2462 * number of batches in each submission
2463 */
2464 __u16 width;
2465
2466 /**
2467 * @num_siblings: number of siblings per context or in other words the
2468 * number of possible placements for each submission
2469 */
2470 __u16 num_siblings;
2471
2472 /**
2473 * @mbz16: reserved for future use; must be zero
2474 */
2475 __u16 mbz16;
2476
2477 /**
2478 * @flags: all undefined flags must be zero, currently not defined flags
2479 */
2480 __u64 flags;
2481
2482 /**
2483 * @mbz64: reserved for future use; must be zero
2484 */
2485 __u64 mbz64[3];
2486
2487 /**
2488 * @engines: 2-d array of engine instances to configure parallel engine
2489 *
2490 * length = width (i) * num_siblings (j)
2491 * index = j + i * num_siblings
2492 */
94dfc73e 2493 struct i915_engine_class_instance engines[];
e5e32171
MB
2494
2495} __packed;
2496
2497#define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2498 struct i915_user_extension base; \
2499 __u16 engine_index; \
2500 __u16 width; \
2501 __u16 num_siblings; \
2502 __u16 mbz16; \
2503 __u64 flags; \
2504 __u64 mbz64[3]; \
2505 struct i915_engine_class_instance engines[N__]; \
2506} __attribute__((packed)) name__
2507
57772953
TU
2508/**
2509 * DOC: Context Engine Map uAPI
2510 *
2511 * Context engine map is a new way of addressing engines when submitting batch-
2512 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2513 * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2514 *
2515 * To use it created GEM contexts need to be configured with a list of engines
2516 * the user is intending to submit to. This is accomplished using the
2517 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2518 * i915_context_param_engines`.
2519 *
2520 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2521 * configured map.
2522 *
2523 * Example of creating such context and submitting against it:
2524 *
2525 * .. code-block:: C
2526 *
2527 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2528 * .engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2529 * { I915_ENGINE_CLASS_COPY, 0 } }
2530 * };
2531 * struct drm_i915_gem_context_create_ext_setparam p_engines = {
2532 * .base = {
2533 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2534 * },
2535 * .param = {
2536 * .param = I915_CONTEXT_PARAM_ENGINES,
2537 * .value = to_user_pointer(&engines),
2538 * .size = sizeof(engines),
2539 * },
2540 * };
2541 * struct drm_i915_gem_context_create_ext create = {
2542 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2543 * .extensions = to_user_pointer(&p_engines);
2544 * };
2545 *
2546 * ctx_id = gem_context_create_ext(drm_fd, &create);
2547 *
2548 * // We have now created a GEM context with two engines in the map:
2549 * // Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2550 * // will not be accessible from this context.
2551 *
2552 * ...
2553 * execbuf.rsvd1 = ctx_id;
2554 * execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2555 * gem_execbuf(drm_fd, &execbuf);
2556 *
2557 * ...
2558 * execbuf.rsvd1 = ctx_id;
2559 * execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2560 * gem_execbuf(drm_fd, &execbuf);
2561 */
2562
976b55f0
CW
2563struct i915_context_param_engines {
2564 __u64 extensions; /* linked chain of extension blocks, 0 terminates */
6d06779e 2565#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
ee113690 2566#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
e5e32171 2567#define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
02abecde 2568 struct i915_engine_class_instance engines[];
976b55f0
CW
2569} __attribute__((packed));
2570
2571#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2572 __u64 extensions; \
2573 struct i915_engine_class_instance engines[N__]; \
2574} __attribute__((packed)) name__
2575
0f1bb41b
TU
2576struct i915_gem_context_param_context_image {
2577 /** @engine: Engine class & instance to be configured. */
2578 struct i915_engine_class_instance engine;
2579
2580 /** @flags: One of the supported flags or zero. */
2581 __u32 flags;
2582#define I915_CONTEXT_IMAGE_FLAG_ENGINE_INDEX (1u << 0)
2583
2584 /** @size: Size of the image blob pointed to by @image. */
2585 __u32 size;
2586
2587 /** @mbz: Must be zero. */
2588 __u32 mbz;
2589
2590 /** @image: Userspace memory containing the context image. */
2591 __u64 image;
2592} __attribute__((packed));
2593
a913bde8
NV
2594/**
2595 * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2596 * to set or query during context creation.
2597 */
b9171541 2598struct drm_i915_gem_context_create_ext_setparam {
a913bde8 2599 /** @base: Extension link. See struct i915_user_extension. */
b9171541 2600 struct i915_user_extension base;
a913bde8
NV
2601
2602 /**
2603 * @param: Context parameter to set or query.
2604 * See struct drm_i915_gem_context_param.
2605 */
b9171541
CW
2606 struct drm_i915_gem_context_param param;
2607};
2608
2609struct drm_i915_gem_context_destroy {
2610 __u32 ctx_id;
2611 __u32 pad;
2612};
2613
a913bde8
NV
2614/**
2615 * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2616 *
b9171541
CW
2617 * DRM_I915_GEM_VM_CREATE -
2618 *
2619 * Create a new virtual memory address space (ppGTT) for use within a context
2620 * on the same file. Extensions can be provided to configure exactly how the
2621 * address space is setup upon creation.
2622 *
2623 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2624 * returned in the outparam @id.
2625 *
b9171541
CW
2626 * An extension chain maybe provided, starting with @extensions, and terminated
2627 * by the @next_extension being 0. Currently, no extensions are defined.
2628 *
2629 * DRM_I915_GEM_VM_DESTROY -
2630 *
a913bde8 2631 * Destroys a previously created VM id, specified in @vm_id.
b9171541
CW
2632 *
2633 * No extensions or flags are allowed currently, and so must be zero.
2634 */
2635struct drm_i915_gem_vm_control {
a913bde8 2636 /** @extensions: Zero-terminated chain of extensions. */
b9171541 2637 __u64 extensions;
a913bde8
NV
2638
2639 /** @flags: reserved for future usage, currently MBZ */
b9171541 2640 __u32 flags;
a913bde8
NV
2641
2642 /** @vm_id: Id of the VM created or to be destroyed */
b9171541
CW
2643 __u32 vm_id;
2644};
2645
2646struct drm_i915_reg_read {
2647 /*
2648 * Register offset.
2649 * For 64bit wide registers where the upper 32bits don't immediately
2650 * follow the lower 32bits, the offset of the lower 32bits must
2651 * be specified
2652 */
2653 __u64 offset;
2654#define I915_REG_READ_8B_WA (1ul << 0)
2655
2656 __u64 val; /* Return value */
2657};
2658
2659/* Known registers:
2660 *
2661 * Render engine timestamp - 0x2358 + 64bit - gen7+
2662 * - Note this register returns an invalid value if using the default
2663 * single instruction 8byte read, in order to workaround that pass
2664 * flag I915_REG_READ_8B_WA in offset field.
2665 *
2666 */
2667
d10612f8
ND
2668/*
2669 * struct drm_i915_reset_stats - Return global reset and other context stats
2670 *
2671 * Driver keeps few stats for each contexts and also global reset count.
2672 * This struct can be used to query those stats.
2673 */
b9171541 2674struct drm_i915_reset_stats {
d10612f8 2675 /** @ctx_id: ID of the requested context */
b9171541 2676 __u32 ctx_id;
d10612f8
ND
2677
2678 /** @flags: MBZ */
b9171541
CW
2679 __u32 flags;
2680
d10612f8 2681 /** @reset_count: All resets since boot/module reload, for all contexts */
b9171541
CW
2682 __u32 reset_count;
2683
d10612f8 2684 /** @batch_active: Number of batches lost when active in GPU, for this context */
b9171541
CW
2685 __u32 batch_active;
2686
d10612f8 2687 /** @batch_pending: Number of batches lost pending for execution, for this context */
b9171541
CW
2688 __u32 batch_pending;
2689
d10612f8 2690 /** @pad: MBZ */
b9171541
CW
2691 __u32 pad;
2692};
2693
aef7b67a
MA
2694/**
2695 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2696 *
2697 * Userptr objects have several restrictions on what ioctls can be used with the
2698 * object handle.
2699 */
b9171541 2700struct drm_i915_gem_userptr {
aef7b67a
MA
2701 /**
2702 * @user_ptr: The pointer to the allocated memory.
2703 *
2704 * Needs to be aligned to PAGE_SIZE.
2705 */
b9171541 2706 __u64 user_ptr;
aef7b67a
MA
2707
2708 /**
2709 * @user_size:
2710 *
2711 * The size in bytes for the allocated memory. This will also become the
2712 * object size.
2713 *
2714 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2715 * or larger.
2716 */
b9171541 2717 __u64 user_size;
aef7b67a
MA
2718
2719 /**
2720 * @flags:
2721 *
2722 * Supported flags:
2723 *
2724 * I915_USERPTR_READ_ONLY:
2725 *
2726 * Mark the object as readonly, this also means GPU access can only be
2727 * readonly. This is only supported on HW which supports readonly access
2728 * through the GTT. If the HW can't support readonly access, an error is
2729 * returned.
2730 *
b65a9489
CW
2731 * I915_USERPTR_PROBE:
2732 *
2733 * Probe the provided @user_ptr range and validate that the @user_ptr is
2734 * indeed pointing to normal memory and that the range is also valid.
2735 * For example if some garbage address is given to the kernel, then this
2736 * should complain.
2737 *
2738 * Returns -EFAULT if the probe failed.
2739 *
2740 * Note that this doesn't populate the backing pages, and also doesn't
2741 * guarantee that the object will remain valid when the object is
2742 * eventually used.
2743 *
2744 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2745 * returns a non-zero value.
2746 *
aef7b67a
MA
2747 * I915_USERPTR_UNSYNCHRONIZED:
2748 *
2749 * NOT USED. Setting this flag will result in an error.
2750 */
b9171541
CW
2751 __u32 flags;
2752#define I915_USERPTR_READ_ONLY 0x1
b65a9489 2753#define I915_USERPTR_PROBE 0x2
b9171541
CW
2754#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2755 /**
aef7b67a 2756 * @handle: Returned handle for the object.
b9171541
CW
2757 *
2758 * Object handles are nonzero.
2759 */
2760 __u32 handle;
2761};
2762
d7965152 2763enum drm_i915_oa_format {
19f81df2
RB
2764 I915_OA_FORMAT_A13 = 1, /* HSW only */
2765 I915_OA_FORMAT_A29, /* HSW only */
2766 I915_OA_FORMAT_A13_B8_C8, /* HSW only */
2767 I915_OA_FORMAT_B4_C8, /* HSW only */
2768 I915_OA_FORMAT_A45_B8_C8, /* HSW only */
2769 I915_OA_FORMAT_B4_C8_A16, /* HSW only */
2770 I915_OA_FORMAT_C4_B8, /* HSW+ */
2771
2772 /* Gen8+ */
2773 I915_OA_FORMAT_A12,
2774 I915_OA_FORMAT_A12_B8_C8,
2775 I915_OA_FORMAT_A32u40_A4u32_B8_C8,
d7965152 2776
81d5f7d9
UNR
2777 /* DG2 */
2778 I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2779 I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2780
1cc064dc
UNR
2781 /* MTL OAM */
2782 I915_OAM_FORMAT_MPEC8u64_B8_C8,
2783 I915_OAM_FORMAT_MPEC8u32_B8_C8,
2784
d7965152
RB
2785 I915_OA_FORMAT_MAX /* non-ABI */
2786};
2787
eec688e1
RB
2788enum drm_i915_perf_property_id {
2789 /**
2790 * Open the stream for a specific context handle (as used with
2791 * execbuffer2). A stream opened for a specific context this way
2792 * won't typically require root privileges.
b8d49f28
LL
2793 *
2794 * This property is available in perf revision 1.
eec688e1
RB
2795 */
2796 DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2797
d7965152
RB
2798 /**
2799 * A value of 1 requests the inclusion of raw OA unit reports as
2800 * part of stream samples.
b8d49f28
LL
2801 *
2802 * This property is available in perf revision 1.
d7965152
RB
2803 */
2804 DRM_I915_PERF_PROP_SAMPLE_OA,
2805
2806 /**
2807 * The value specifies which set of OA unit metrics should be
66137f54 2808 * configured, defining the contents of any OA unit reports.
b8d49f28
LL
2809 *
2810 * This property is available in perf revision 1.
d7965152
RB
2811 */
2812 DRM_I915_PERF_PROP_OA_METRICS_SET,
2813
2814 /**
2815 * The value specifies the size and layout of OA unit reports.
b8d49f28
LL
2816 *
2817 * This property is available in perf revision 1.
d7965152
RB
2818 */
2819 DRM_I915_PERF_PROP_OA_FORMAT,
2820
2821 /**
2822 * Specifying this property implicitly requests periodic OA unit
2823 * sampling and (at least on Haswell) the sampling frequency is derived
2824 * from this exponent as follows:
2825 *
2826 * 80ns * 2^(period_exponent + 1)
b8d49f28
LL
2827 *
2828 * This property is available in perf revision 1.
d7965152
RB
2829 */
2830 DRM_I915_PERF_PROP_OA_EXPONENT,
2831
9cd20ef7
LL
2832 /**
2833 * Specifying this property is only valid when specify a context to
2834 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2835 * will hold preemption of the particular context we want to gather
2836 * performance data about. The execbuf2 submissions must include a
2837 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2838 *
2839 * This property is available in perf revision 3.
2840 */
2841 DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2842
11ecbddd
LL
2843 /**
2844 * Specifying this pins all contexts to the specified SSEU power
2845 * configuration for the duration of the recording.
2846 *
2847 * This parameter's value is a pointer to a struct
2848 * drm_i915_gem_context_param_sseu.
2849 *
2850 * This property is available in perf revision 4.
2851 */
2852 DRM_I915_PERF_PROP_GLOBAL_SSEU,
2853
4ef10fe0
LL
2854 /**
2855 * This optional parameter specifies the timer interval in nanoseconds
2856 * at which the i915 driver will check the OA buffer for available data.
2857 * Minimum allowed value is 100 microseconds. A default value is used by
2858 * the driver if this parameter is not specified. Note that larger timer
2859 * values will reduce cpu consumption during OA perf captures. However,
2860 * excessively large values would potentially result in OA buffer
2861 * overwrites as captures reach end of the OA buffer.
2862 *
2863 * This property is available in perf revision 5.
2864 */
2865 DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2866
c61d04c9
UNR
2867 /**
2868 * Multiple engines may be mapped to the same OA unit. The OA unit is
2869 * identified by class:instance of any engine mapped to it.
2870 *
2871 * This parameter specifies the engine class and must be passed along
2872 * with DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE.
2873 *
2874 * This property is available in perf revision 6.
2875 */
2876 DRM_I915_PERF_PROP_OA_ENGINE_CLASS,
2877
2878 /**
2879 * This parameter specifies the engine instance and must be passed along
2880 * with DRM_I915_PERF_PROP_OA_ENGINE_CLASS.
2881 *
2882 * This property is available in perf revision 6.
2883 */
2884 DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE,
2885
eec688e1
RB
2886 DRM_I915_PERF_PROP_MAX /* non-ABI */
2887};
2888
2889struct drm_i915_perf_open_param {
2890 __u32 flags;
2891#define I915_PERF_FLAG_FD_CLOEXEC (1<<0)
2892#define I915_PERF_FLAG_FD_NONBLOCK (1<<1)
2893#define I915_PERF_FLAG_DISABLED (1<<2)
2894
2895 /** The number of u64 (id, value) pairs */
2896 __u32 num_properties;
2897
2898 /**
2899 * Pointer to array of u64 (id, value) pairs configuring the stream
2900 * to open.
2901 */
cd8bddc4 2902 __u64 properties_ptr;
eec688e1
RB
2903};
2904
2ef6a01f 2905/*
d7965152
RB
2906 * Enable data capture for a stream that was either opened in a disabled state
2907 * via I915_PERF_FLAG_DISABLED or was later disabled via
2908 * I915_PERF_IOCTL_DISABLE.
2909 *
2910 * It is intended to be cheaper to disable and enable a stream than it may be
2911 * to close and re-open a stream with the same configuration.
2912 *
2913 * It's undefined whether any pending data for the stream will be lost.
b8d49f28
LL
2914 *
2915 * This ioctl is available in perf revision 1.
d7965152 2916 */
eec688e1 2917#define I915_PERF_IOCTL_ENABLE _IO('i', 0x0)
d7965152 2918
2ef6a01f 2919/*
d7965152
RB
2920 * Disable data capture for a stream.
2921 *
2922 * It is an error to try and read a stream that is disabled.
b8d49f28
LL
2923 *
2924 * This ioctl is available in perf revision 1.
d7965152 2925 */
eec688e1
RB
2926#define I915_PERF_IOCTL_DISABLE _IO('i', 0x1)
2927
2ef6a01f 2928/*
7831e9a9
CW
2929 * Change metrics_set captured by a stream.
2930 *
2931 * If the stream is bound to a specific context, the configuration change
2932 * will performed inline with that context such that it takes effect before
2933 * the next execbuf submission.
2934 *
2935 * Returns the previously bound metrics set id, or a negative error code.
2936 *
2937 * This ioctl is available in perf revision 2.
2938 */
2939#define I915_PERF_IOCTL_CONFIG _IO('i', 0x2)
2940
2ef6a01f 2941/*
eec688e1
RB
2942 * Common to all i915 perf records
2943 */
2944struct drm_i915_perf_record_header {
2945 __u32 type;
2946 __u16 pad;
2947 __u16 size;
2948};
2949
2950enum drm_i915_perf_record_type {
2951
2952 /**
2953 * Samples are the work horse record type whose contents are extensible
2954 * and defined when opening an i915 perf stream based on the given
2955 * properties.
2956 *
2957 * Boolean properties following the naming convention
2958 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2959 * every sample.
2960 *
2961 * The order of these sample properties given by userspace has no
d7965152 2962 * affect on the ordering of data within a sample. The order is
eec688e1
RB
2963 * documented here.
2964 *
2965 * struct {
2966 * struct drm_i915_perf_record_header header;
2967 *
d7965152 2968 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
eec688e1
RB
2969 * };
2970 */
2971 DRM_I915_PERF_RECORD_SAMPLE = 1,
2972
d7965152
RB
2973 /*
2974 * Indicates that one or more OA reports were not written by the
2975 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2976 * command collides with periodic sampling - which would be more likely
2977 * at higher sampling frequencies.
2978 */
2979 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2980
2981 /**
2982 * An error occurred that resulted in all pending OA reports being lost.
2983 */
2984 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2985
eec688e1
RB
2986 DRM_I915_PERF_RECORD_MAX /* non-ABI */
2987};
2988
a2e54026
MR
2989/**
2990 * struct drm_i915_perf_oa_config
2991 *
f89823c2
LL
2992 * Structure to upload perf dynamic configuration into the kernel.
2993 */
2994struct drm_i915_perf_oa_config {
a2e54026
MR
2995 /**
2996 * @uuid:
2997 *
2998 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2999 */
f89823c2
LL
3000 char uuid[36];
3001
a2e54026
MR
3002 /**
3003 * @n_mux_regs:
3004 *
3005 * Number of mux regs in &mux_regs_ptr.
3006 */
f89823c2 3007 __u32 n_mux_regs;
a2e54026
MR
3008
3009 /**
3010 * @n_boolean_regs:
3011 *
3012 * Number of boolean regs in &boolean_regs_ptr.
3013 */
f89823c2 3014 __u32 n_boolean_regs;
a2e54026
MR
3015
3016 /**
3017 * @n_flex_regs:
3018 *
3019 * Number of flex regs in &flex_regs_ptr.
3020 */
f89823c2
LL
3021 __u32 n_flex_regs;
3022
a2e54026
MR
3023 /**
3024 * @mux_regs_ptr:
3025 *
3026 * Pointer to tuples of u32 values (register address, value) for mux
3027 * registers. Expected length of buffer is (2 * sizeof(u32) *
3028 * &n_mux_regs).
ee427e25 3029 */
17ad4fdd 3030 __u64 mux_regs_ptr;
a2e54026
MR
3031
3032 /**
3033 * @boolean_regs_ptr:
3034 *
3035 * Pointer to tuples of u32 values (register address, value) for mux
3036 * registers. Expected length of buffer is (2 * sizeof(u32) *
3037 * &n_boolean_regs).
3038 */
17ad4fdd 3039 __u64 boolean_regs_ptr;
a2e54026
MR
3040
3041 /**
3042 * @flex_regs_ptr:
3043 *
3044 * Pointer to tuples of u32 values (register address, value) for mux
3045 * registers. Expected length of buffer is (2 * sizeof(u32) *
3046 * &n_flex_regs).
3047 */
17ad4fdd 3048 __u64 flex_regs_ptr;
f89823c2
LL
3049};
3050
e3bdccaf
MA
3051/**
3052 * struct drm_i915_query_item - An individual query for the kernel to process.
3053 *
3054 * The behaviour is determined by the @query_id. Note that exactly what
3055 * @data_ptr is also depends on the specific @query_id.
3056 */
a446ae2c 3057struct drm_i915_query_item {
1c671ad7
MR
3058 /**
3059 * @query_id:
3060 *
3061 * The id for this query. Currently accepted query IDs are:
3062 * - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
3063 * - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
3064 * - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
3065 * - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
3066 * - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
c94fde8f 3067 * - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
b1123648 3068 * - %DRM_I915_QUERY_GUC_SUBMISSION_VERSION (see struct drm_i915_query_guc_submission_version)
1c671ad7 3069 */
a446ae2c 3070 __u64 query_id;
1c671ad7
MR
3071#define DRM_I915_QUERY_TOPOLOGY_INFO 1
3072#define DRM_I915_QUERY_ENGINE_INFO 2
3073#define DRM_I915_QUERY_PERF_CONFIG 3
3074#define DRM_I915_QUERY_MEMORY_REGIONS 4
3075#define DRM_I915_QUERY_HWCONFIG_BLOB 5
c94fde8f 3076#define DRM_I915_QUERY_GEOMETRY_SUBSLICES 6
b1123648 3077#define DRM_I915_QUERY_GUC_SUBMISSION_VERSION 7
be03564b 3078/* Must be kept compact -- no holes and well documented */
a446ae2c 3079
e3bdccaf
MA
3080 /**
3081 * @length:
3082 *
a446ae2c 3083 * When set to zero by userspace, this is filled with the size of the
e3bdccaf 3084 * data to be written at the @data_ptr pointer. The kernel sets this
a446ae2c
LL
3085 * value to a negative value to signal an error on a particular query
3086 * item.
3087 */
3088 __s32 length;
3089
e3bdccaf
MA
3090 /**
3091 * @flags:
3092 *
1c671ad7 3093 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
4f6ccc74 3094 *
1c671ad7 3095 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
e3bdccaf
MA
3096 * following:
3097 *
1c671ad7
MR
3098 * - %DRM_I915_QUERY_PERF_CONFIG_LIST
3099 * - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
3100 * - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
c94fde8f
MA
3101 *
3102 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
3103 * a struct i915_engine_class_instance that references a render engine.
a446ae2c
LL
3104 */
3105 __u32 flags;
4f6ccc74
LL
3106#define DRM_I915_QUERY_PERF_CONFIG_LIST 1
3107#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
3108#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID 3
a446ae2c 3109
e3bdccaf
MA
3110 /**
3111 * @data_ptr:
3112 *
3113 * Data will be written at the location pointed by @data_ptr when the
3114 * value of @length matches the length of the data to be written by the
a446ae2c
LL
3115 * kernel.
3116 */
3117 __u64 data_ptr;
3118};
3119
e3bdccaf
MA
3120/**
3121 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
3122 * kernel to fill out.
3123 *
3124 * Note that this is generally a two step process for each struct
3125 * drm_i915_query_item in the array:
3126 *
3127 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3128 * drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3129 * kernel will then fill in the size, in bytes, which tells userspace how
3130 * memory it needs to allocate for the blob(say for an array of properties).
3131 *
3132 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3133 * &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3134 * the &drm_i915_query_item.length should still be the same as what the
3135 * kernel previously set. At this point the kernel can fill in the blob.
3136 *
3137 * Note that for some query items it can make sense for userspace to just pass
3138 * in a buffer/blob equal to or larger than the required size. In this case only
3139 * a single ioctl call is needed. For some smaller query items this can work
3140 * quite well.
3141 *
3142 */
a446ae2c 3143struct drm_i915_query {
e3bdccaf 3144 /** @num_items: The number of elements in the @items_ptr array */
a446ae2c
LL
3145 __u32 num_items;
3146
e3bdccaf
MA
3147 /**
3148 * @flags: Unused for now. Must be cleared to zero.
a446ae2c
LL
3149 */
3150 __u32 flags;
3151
e3bdccaf
MA
3152 /**
3153 * @items_ptr:
3154 *
3155 * Pointer to an array of struct drm_i915_query_item. The number of
3156 * array elements is @num_items.
a446ae2c
LL
3157 */
3158 __u64 items_ptr;
3159};
3160
462ac1cd
MR
3161/**
3162 * struct drm_i915_query_topology_info
c822e059 3163 *
462ac1cd
MR
3164 * Describes slice/subslice/EU information queried by
3165 * %DRM_I915_QUERY_TOPOLOGY_INFO
c822e059
LL
3166 */
3167struct drm_i915_query_topology_info {
462ac1cd
MR
3168 /**
3169 * @flags:
3170 *
c822e059
LL
3171 * Unused for now. Must be cleared to zero.
3172 */
3173 __u16 flags;
3174
462ac1cd
MR
3175 /**
3176 * @max_slices:
3177 *
3178 * The number of bits used to express the slice mask.
3179 */
c822e059 3180 __u16 max_slices;
462ac1cd
MR
3181
3182 /**
3183 * @max_subslices:
3184 *
3185 * The number of bits used to express the subslice mask.
3186 */
c822e059 3187 __u16 max_subslices;
462ac1cd
MR
3188
3189 /**
3190 * @max_eus_per_subslice:
3191 *
3192 * The number of bits in the EU mask that correspond to a single
3193 * subslice's EUs.
3194 */
c822e059
LL
3195 __u16 max_eus_per_subslice;
3196
462ac1cd
MR
3197 /**
3198 * @subslice_offset:
3199 *
c822e059
LL
3200 * Offset in data[] at which the subslice masks are stored.
3201 */
3202 __u16 subslice_offset;
3203
462ac1cd
MR
3204 /**
3205 * @subslice_stride:
3206 *
c822e059
LL
3207 * Stride at which each of the subslice masks for each slice are
3208 * stored.
3209 */
3210 __u16 subslice_stride;
3211
462ac1cd
MR
3212 /**
3213 * @eu_offset:
3214 *
c822e059
LL
3215 * Offset in data[] at which the EU masks are stored.
3216 */
3217 __u16 eu_offset;
3218
462ac1cd
MR
3219 /**
3220 * @eu_stride:
3221 *
c822e059
LL
3222 * Stride at which each of the EU masks for each subslice are stored.
3223 */
3224 __u16 eu_stride;
3225
462ac1cd
MR
3226 /**
3227 * @data:
3228 *
3229 * Contains 3 pieces of information :
3230 *
3231 * - The slice mask with one bit per slice telling whether a slice is
3232 * available. The availability of slice X can be queried with the
3233 * following formula :
3234 *
3235 * .. code:: c
3236 *
3237 * (data[X / 8] >> (X % 8)) & 1
3238 *
3239 * Starting with Xe_HP platforms, Intel hardware no longer has
3240 * traditional slices so i915 will always report a single slice
3241 * (hardcoded slicemask = 0x1) which contains all of the platform's
3242 * subslices. I.e., the mask here does not reflect any of the newer
3243 * hardware concepts such as "gslices" or "cslices" since userspace
3244 * is capable of inferring those from the subslice mask.
3245 *
3246 * - The subslice mask for each slice with one bit per subslice telling
3247 * whether a subslice is available. Starting with Gen12 we use the
3248 * term "subslice" to refer to what the hardware documentation
3249 * describes as a "dual-subslices." The availability of subslice Y
3250 * in slice X can be queried with the following formula :
3251 *
3252 * .. code:: c
3253 *
3254 * (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3255 *
3256 * - The EU mask for each subslice in each slice, with one bit per EU
3257 * telling whether an EU is available. The availability of EU Z in
3258 * subslice Y in slice X can be queried with the following formula :
3259 *
3260 * .. code:: c
3261 *
3262 * (data[eu_offset +
3263 * (X * max_subslices + Y) * eu_stride +
3264 * Z / 8
3265 * ] >> (Z % 8)) & 1
3266 */
c822e059
LL
3267 __u8 data[];
3268};
3269
57772953
TU
3270/**
3271 * DOC: Engine Discovery uAPI
3272 *
3273 * Engine discovery uAPI is a way of enumerating physical engines present in a
3274 * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3275 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3276 * `I915_PARAM_HAS_BLT`.
3277 *
3278 * The need for this interface came starting with Icelake and newer GPUs, which
3279 * started to establish a pattern of having multiple engines of a same class,
3280 * where not all instances were always completely functionally equivalent.
3281 *
3282 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3283 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3284 *
3285 * Example for getting the list of engines:
3286 *
3287 * .. code-block:: C
3288 *
3289 * struct drm_i915_query_engine_info *info;
3290 * struct drm_i915_query_item item = {
3291 * .query_id = DRM_I915_QUERY_ENGINE_INFO;
3292 * };
3293 * struct drm_i915_query query = {
3294 * .num_items = 1,
3295 * .items_ptr = (uintptr_t)&item,
3296 * };
3297 * int err, i;
3298 *
3299 * // First query the size of the blob we need, this needs to be large
3300 * // enough to hold our array of engines. The kernel will fill out the
3301 * // item.length for us, which is the number of bytes we need.
3302 * //
afa5cf31 3303 * // Alternatively a large buffer can be allocated straightaway enabling
57772953
TU
3304 * // querying in one pass, in which case item.length should contain the
3305 * // length of the provided buffer.
3306 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3307 * if (err) ...
3308 *
3309 * info = calloc(1, item.length);
3310 * // Now that we allocated the required number of bytes, we call the ioctl
3311 * // again, this time with the data_ptr pointing to our newly allocated
3312 * // blob, which the kernel can then populate with info on all engines.
afa5cf31 3313 * item.data_ptr = (uintptr_t)&info;
57772953
TU
3314 *
3315 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3316 * if (err) ...
3317 *
3318 * // We can now access each engine in the array
3319 * for (i = 0; i < info->num_engines; i++) {
3320 * struct drm_i915_engine_info einfo = info->engines[i];
3321 * u16 class = einfo.engine.class;
3322 * u16 instance = einfo.engine.instance;
3323 * ....
3324 * }
3325 *
3326 * free(info);
3327 *
3328 * Each of the enumerated engines, apart from being defined by its class and
3329 * instance (see `struct i915_engine_class_instance`), also can have flags and
3330 * capabilities defined as documented in i915_drm.h.
3331 *
3332 * For instance video engines which support HEVC encoding will have the
3333 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3334 *
3335 * Engine discovery only fully comes to its own when combined with the new way
3336 * of addressing engines when submitting batch buffers using contexts with
3337 * engine maps configured.
3338 */
3339
c5d3e39c
TU
3340/**
3341 * struct drm_i915_engine_info
3342 *
afa5cf31 3343 * Describes one engine and its capabilities as known to the driver.
c5d3e39c
TU
3344 */
3345struct drm_i915_engine_info {
2ef6a01f 3346 /** @engine: Engine class and instance. */
c5d3e39c
TU
3347 struct i915_engine_class_instance engine;
3348
2ef6a01f 3349 /** @rsvd0: Reserved field. */
c5d3e39c
TU
3350 __u32 rsvd0;
3351
2ef6a01f 3352 /** @flags: Engine flags. */
c5d3e39c 3353 __u64 flags;
9409eb35 3354#define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE (1 << 0)
c5d3e39c 3355
2ef6a01f 3356 /** @capabilities: Capabilities of this engine. */
c5d3e39c
TU
3357 __u64 capabilities;
3358#define I915_VIDEO_CLASS_CAPABILITY_HEVC (1 << 0)
3359#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1)
3360
9409eb35
MB
3361 /** @logical_instance: Logical instance of engine */
3362 __u16 logical_instance;
3363
2ef6a01f 3364 /** @rsvd1: Reserved fields. */
9409eb35
MB
3365 __u16 rsvd1[3];
3366 /** @rsvd2: Reserved fields. */
3367 __u64 rsvd2[3];
c5d3e39c
TU
3368};
3369
3370/**
3371 * struct drm_i915_query_engine_info
3372 *
3373 * Engine info query enumerates all engines known to the driver by filling in
3374 * an array of struct drm_i915_engine_info structures.
3375 */
3376struct drm_i915_query_engine_info {
2ef6a01f 3377 /** @num_engines: Number of struct drm_i915_engine_info structs following. */
c5d3e39c
TU
3378 __u32 num_engines;
3379
2ef6a01f 3380 /** @rsvd: MBZ */
c5d3e39c
TU
3381 __u32 rsvd[3];
3382
2ef6a01f 3383 /** @engines: Marker for drm_i915_engine_info structures. */
c5d3e39c
TU
3384 struct drm_i915_engine_info engines[];
3385};
3386
a2e54026
MR
3387/**
3388 * struct drm_i915_query_perf_config
3389 *
c94fde8f
MA
3390 * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3391 * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
4f6ccc74
LL
3392 */
3393struct drm_i915_query_perf_config {
3394 union {
a2e54026
MR
3395 /**
3396 * @n_configs:
3397 *
3398 * When &drm_i915_query_item.flags ==
3399 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3400 * the number of configurations available.
4f6ccc74
LL
3401 */
3402 __u64 n_configs;
3403
a2e54026
MR
3404 /**
3405 * @config:
3406 *
3407 * When &drm_i915_query_item.flags ==
3408 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3409 * value in this field as configuration identifier to decide
3410 * what data to write into config_ptr.
4f6ccc74
LL
3411 */
3412 __u64 config;
3413
a2e54026
MR
3414 /**
3415 * @uuid:
3416 *
3417 * When &drm_i915_query_item.flags ==
3418 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3419 * value in this field as configuration identifier to decide
3420 * what data to write into config_ptr.
4f6ccc74
LL
3421 *
3422 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3423 */
3424 char uuid[36];
3425 };
3426
a2e54026
MR
3427 /**
3428 * @flags:
3429 *
4f6ccc74
LL
3430 * Unused for now. Must be cleared to zero.
3431 */
3432 __u32 flags;
3433
a2e54026
MR
3434 /**
3435 * @data:
3436 *
3437 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3438 * i915 will write an array of __u64 of configuration identifiers.
4f6ccc74 3439 *
a2e54026
MR
3440 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3441 * i915 will write a struct drm_i915_perf_oa_config. If the following
3442 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3443 * write into the associated pointers the values of submitted when the
4f6ccc74
LL
3444 * configuration was created :
3445 *
a2e54026
MR
3446 * - &drm_i915_perf_oa_config.n_mux_regs
3447 * - &drm_i915_perf_oa_config.n_boolean_regs
3448 * - &drm_i915_perf_oa_config.n_flex_regs
4f6ccc74
LL
3449 */
3450 __u8 data[];
3451};
3452
71021729
AJ
3453/**
3454 * enum drm_i915_gem_memory_class - Supported memory classes
3455 */
3456enum drm_i915_gem_memory_class {
3457 /** @I915_MEMORY_CLASS_SYSTEM: System memory */
3458 I915_MEMORY_CLASS_SYSTEM = 0,
3459 /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3460 I915_MEMORY_CLASS_DEVICE,
3461};
3462
3463/**
3464 * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3465 */
3466struct drm_i915_gem_memory_class_instance {
3467 /** @memory_class: See enum drm_i915_gem_memory_class */
3468 __u16 memory_class;
3469
3470 /** @memory_instance: Which instance */
3471 __u16 memory_instance;
3472};
3473
3474/**
3475 * struct drm_i915_memory_region_info - Describes one region as known to the
3476 * driver.
3477 *
71021729
AJ
3478 * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3479 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3480 * at &drm_i915_query_item.query_id.
3481 */
3482struct drm_i915_memory_region_info {
3483 /** @region: The class:instance pair encoding */
3484 struct drm_i915_gem_memory_class_instance region;
3485
b0feda9c
MA
3486 /** @rsvd0: MBZ */
3487 __u32 rsvd0;
71021729 3488
3f4309cb
MA
3489 /**
3490 * @probed_size: Memory probed by the driver
3491 *
3492 * Note that it should not be possible to ever encounter a zero value
3493 * here, also note that no current region type will ever return -1 here.
3494 * Although for future region types, this might be a possibility. The
3495 * same applies to the other size fields.
3496 */
71021729
AJ
3497 __u64 probed_size;
3498
141f733b
MA
3499 /**
3500 * @unallocated_size: Estimate of memory remaining
3501 *
3502 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3503 * Without this (or if this is an older kernel) the value here will
3504 * always equal the @probed_size. Note this is only currently tracked
3505 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3506 * will always equal the @probed_size).
3507 */
71021729
AJ
3508 __u64 unallocated_size;
3509
3f4309cb
MA
3510 union {
3511 /** @rsvd1: MBZ */
3512 __u64 rsvd1[8];
3513 struct {
3514 /**
3515 * @probed_cpu_visible_size: Memory probed by the driver
3516 * that is CPU accessible.
3517 *
3518 * This will be always be <= @probed_size, and the
3519 * remainder (if there is any) will not be CPU
3520 * accessible.
3521 *
3522 * On systems without small BAR, the @probed_size will
3523 * always equal the @probed_cpu_visible_size, since all
3524 * of it will be CPU accessible.
3525 *
3526 * Note this is only tracked for
3527 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3528 * value here will always equal the @probed_size).
3529 *
3530 * Note that if the value returned here is zero, then
3531 * this must be an old kernel which lacks the relevant
3532 * small-bar uAPI support (including
3533 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3534 * such systems we should never actually end up with a
3535 * small BAR configuration, assuming we are able to load
3536 * the kernel module. Hence it should be safe to treat
3537 * this the same as when @probed_cpu_visible_size ==
3538 * @probed_size.
3539 */
3540 __u64 probed_cpu_visible_size;
141f733b
MA
3541
3542 /**
3543 * @unallocated_cpu_visible_size: Estimate of CPU
3544 * visible memory remaining.
3545 *
3546 * Note this is only tracked for
3547 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3548 * value here will always equal the
3549 * @probed_cpu_visible_size).
3550 *
3551 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3552 * accounting. Without this the value here will always
3553 * equal the @probed_cpu_visible_size. Note this is only
3554 * currently tracked for I915_MEMORY_CLASS_DEVICE
3555 * regions (for other types the value here will also
3556 * always equal the @probed_cpu_visible_size).
3557 *
3558 * If this is an older kernel the value here will be
3559 * zero, see also @probed_cpu_visible_size.
3560 */
3561 __u64 unallocated_cpu_visible_size;
3f4309cb
MA
3562 };
3563 };
71021729
AJ
3564};
3565
3566/**
3567 * struct drm_i915_query_memory_regions
3568 *
3569 * The region info query enumerates all regions known to the driver by filling
3570 * in an array of struct drm_i915_memory_region_info structures.
3571 *
3572 * Example for getting the list of supported regions:
3573 *
3574 * .. code-block:: C
3575 *
3576 * struct drm_i915_query_memory_regions *info;
3577 * struct drm_i915_query_item item = {
3578 * .query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3579 * };
3580 * struct drm_i915_query query = {
3581 * .num_items = 1,
3582 * .items_ptr = (uintptr_t)&item,
3583 * };
3584 * int err, i;
3585 *
3586 * // First query the size of the blob we need, this needs to be large
3587 * // enough to hold our array of regions. The kernel will fill out the
3588 * // item.length for us, which is the number of bytes we need.
3589 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3590 * if (err) ...
3591 *
3592 * info = calloc(1, item.length);
3593 * // Now that we allocated the required number of bytes, we call the ioctl
3594 * // again, this time with the data_ptr pointing to our newly allocated
3595 * // blob, which the kernel can then populate with the all the region info.
3596 * item.data_ptr = (uintptr_t)&info,
3597 *
3598 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3599 * if (err) ...
3600 *
3601 * // We can now access each region in the array
3602 * for (i = 0; i < info->num_regions; i++) {
3603 * struct drm_i915_memory_region_info mr = info->regions[i];
3604 * u16 class = mr.region.class;
3605 * u16 instance = mr.region.instance;
3606 *
3607 * ....
3608 * }
3609 *
3610 * free(info);
3611 */
3612struct drm_i915_query_memory_regions {
3613 /** @num_regions: Number of supported regions */
3614 __u32 num_regions;
3615
3616 /** @rsvd: MBZ */
3617 __u32 rsvd[3];
3618
3619 /** @regions: Info about each supported region */
3620 struct drm_i915_memory_region_info regions[];
3621};
3622
b1123648
TU
3623/**
3624 * struct drm_i915_query_guc_submission_version - query GuC submission interface version
3625 */
3626struct drm_i915_query_guc_submission_version {
5cf0fbf7 3627 /** @branch: Firmware branch version. */
b1123648 3628 __u32 branch;
5cf0fbf7 3629 /** @major: Firmware major version. */
b1123648 3630 __u32 major;
5cf0fbf7 3631 /** @minor: Firmware minor version. */
b1123648 3632 __u32 minor;
5cf0fbf7 3633 /** @patch: Firmware patch version. */
b1123648
TU
3634 __u32 patch;
3635};
3636
034d47b2
TU
3637/**
3638 * DOC: GuC HWCONFIG blob uAPI
3639 *
3640 * The GuC produces a blob with information about the current device.
3641 * i915 reads this blob from GuC and makes it available via this uAPI.
3642 *
3643 * The format and meaning of the blob content are documented in the
3644 * Programmer's Reference Manual.
3645 */
3646
ebcb4029
MA
3647/**
3648 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3649 * extension support using struct i915_user_extension.
3650 *
525e93f6
MA
3651 * Note that new buffer flags should be added here, at least for the stuff that
3652 * is immutable. Previously we would have two ioctls, one to create the object
3653 * with gem_create, and another to apply various parameters, however this
3654 * creates some ambiguity for the params which are considered immutable. Also in
3655 * general we're phasing out the various SET/GET ioctls.
ebcb4029
MA
3656 */
3657struct drm_i915_gem_create_ext {
3658 /**
3659 * @size: Requested size for the object.
3660 *
3661 * The (page-aligned) allocated size for the object will be returned.
3662 *
8133a6da
MA
3663 * On platforms like DG2/ATS the kernel will always use 64K or larger
3664 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3665 * minimum of 64K GTT alignment for such objects.
caa574ff 3666 *
8133a6da
MA
3667 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3668 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3669 * where we had the following complications:
caa574ff
MA
3670 *
3671 * 1) The entire PDE (which covers a 2MB virtual address range), must
3672 * contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3673 * PDE is forbidden by the hardware.
3674 *
3675 * 2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3676 * objects.
3677 *
8133a6da
MA
3678 * However on actual production HW this was completely changed to now
3679 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3680 * more flexible than the above. With this the 2M restriction was
3681 * dropped where we now only require 64K.
ebcb4029
MA
3682 */
3683 __u64 size;
525e93f6 3684
ebcb4029
MA
3685 /**
3686 * @handle: Returned handle for the object.
3687 *
3688 * Object handles are nonzero.
3689 */
3690 __u32 handle;
525e93f6
MA
3691
3692 /**
3693 * @flags: Optional flags.
3694 *
3695 * Supported values:
3696 *
3697 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3698 * the object will need to be accessed via the CPU.
3699 *
3700 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3701 * strictly required on configurations where some subset of the device
3702 * memory is directly visible/mappable through the CPU (which we also
3703 * call small BAR), like on some DG2+ systems. Note that this is quite
3704 * undesirable, but due to various factors like the client CPU, BIOS etc
3705 * it's something we can expect to see in the wild. See
3706 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3707 * determine if this system applies.
3708 *
3709 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3710 * ensure the kernel can always spill the allocation to system memory,
3711 * if the object can't be allocated in the mappable part of
3712 * I915_MEMORY_CLASS_DEVICE.
3713 *
3714 * Also note that since the kernel only supports flat-CCS on objects
3715 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3716 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3717 * flat-CCS.
3718 *
3719 * Without this hint, the kernel will assume that non-mappable
3720 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3721 * kernel can still migrate the object to the mappable part, as a last
3722 * resort, if userspace ever CPU faults this object, but this might be
3723 * expensive, and so ideally should be avoided.
3724 *
3725 * On older kernels which lack the relevant small-bar uAPI support (see
3726 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3727 * usage of the flag will result in an error, but it should NEVER be
3728 * possible to end up with a small BAR configuration, assuming we can
3729 * also successfully load the i915 kernel module. In such cases the
3730 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3731 * such there are zero restrictions on where the object can be placed.
3732 */
3733#define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
ebcb4029 3734 __u32 flags;
525e93f6 3735
ebcb4029
MA
3736 /**
3737 * @extensions: The chain of extensions to apply to this object.
3738 *
3739 * This will be useful in the future when we need to support several
3740 * different extensions, and we need to apply more than one when
3741 * creating the object. See struct i915_user_extension.
3742 *
3743 * If we don't supply any extensions then we get the same old gem_create
3744 * behaviour.
3745 *
2459e56f
MA
3746 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3747 * struct drm_i915_gem_create_ext_memory_regions.
d3ac8d42
DCS
3748 *
3749 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3750 * struct drm_i915_gem_create_ext_protected_content.
81b1b599
FY
3751 *
3752 * For I915_GEM_CREATE_EXT_SET_PAT usage see
3753 * struct drm_i915_gem_create_ext_set_pat.
ebcb4029 3754 */
2459e56f 3755#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
d3ac8d42 3756#define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
81b1b599 3757#define I915_GEM_CREATE_EXT_SET_PAT 2
ebcb4029
MA
3758 __u64 extensions;
3759};
3760
2459e56f
MA
3761/**
3762 * struct drm_i915_gem_create_ext_memory_regions - The
3763 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3764 *
3765 * Set the object with the desired set of placements/regions in priority
3766 * order. Each entry must be unique and supported by the device.
3767 *
3768 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3769 * an equivalent layout of class:instance pair encodings. See struct
3770 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3771 * query the supported regions for a device.
3772 *
3773 * As an example, on discrete devices, if we wish to set the placement as
3774 * device local-memory we can do something like:
3775 *
3776 * .. code-block:: C
3777 *
3778 * struct drm_i915_gem_memory_class_instance region_lmem = {
3779 * .memory_class = I915_MEMORY_CLASS_DEVICE,
3780 * .memory_instance = 0,
3781 * };
3782 * struct drm_i915_gem_create_ext_memory_regions regions = {
3783 * .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3784 * .regions = (uintptr_t)&region_lmem,
3785 * .num_regions = 1,
3786 * };
3787 * struct drm_i915_gem_create_ext create_ext = {
3788 * .size = 16 * PAGE_SIZE,
3789 * .extensions = (uintptr_t)&regions,
3790 * };
3791 *
3792 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3793 * if (err) ...
3794 *
3795 * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3796 * along with the final object size in &drm_i915_gem_create_ext.size, which
3797 * should account for any rounding up, if required.
a50794f2
R
3798 *
3799 * Note that userspace has no means of knowing the current backing region
3800 * for objects where @num_regions is larger than one. The kernel will only
3801 * ensure that the priority order of the @regions array is honoured, either
3802 * when initially placing the object, or when moving memory around due to
3803 * memory pressure
3804 *
3805 * On Flat-CCS capable HW, compression is supported for the objects residing
3806 * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3807 * memory class in @regions and migrated (by i915, due to memory
3808 * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3809 * decompress the content. But i915 doesn't have the required information to
3810 * decompress the userspace compressed objects.
3811 *
3812 * So i915 supports Flat-CCS, on the objects which can reside only on
3813 * I915_MEMORY_CLASS_DEVICE regions.
2459e56f
MA
3814 */
3815struct drm_i915_gem_create_ext_memory_regions {
3816 /** @base: Extension link. See struct i915_user_extension. */
3817 struct i915_user_extension base;
3818
3819 /** @pad: MBZ */
3820 __u32 pad;
3821 /** @num_regions: Number of elements in the @regions array. */
3822 __u32 num_regions;
3823 /**
3824 * @regions: The regions/placements array.
3825 *
3826 * An array of struct drm_i915_gem_memory_class_instance.
3827 */
3828 __u64 regions;
3829};
3830
d3ac8d42
DCS
3831/**
3832 * struct drm_i915_gem_create_ext_protected_content - The
3833 * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3834 *
3835 * If this extension is provided, buffer contents are expected to be protected
3836 * by PXP encryption and require decryption for scan out and processing. This
3837 * is only possible on platforms that have PXP enabled, on all other scenarios
3838 * using this extension will cause the ioctl to fail and return -ENODEV. The
3839 * flags parameter is reserved for future expansion and must currently be set
3840 * to zero.
3841 *
3842 * The buffer contents are considered invalid after a PXP session teardown.
3843 *
3844 * The encryption is guaranteed to be processed correctly only if the object
3845 * is submitted with a context created using the
3846 * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3847 * at submission time on the validity of the objects involved.
3848 *
3849 * Below is an example on how to create a protected object:
3850 *
3851 * .. code-block:: C
3852 *
3853 * struct drm_i915_gem_create_ext_protected_content protected_ext = {
3854 * .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3855 * .flags = 0,
3856 * };
3857 * struct drm_i915_gem_create_ext create_ext = {
3858 * .size = PAGE_SIZE,
3859 * .extensions = (uintptr_t)&protected_ext,
3860 * };
3861 *
3862 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3863 * if (err) ...
3864 */
3865struct drm_i915_gem_create_ext_protected_content {
3866 /** @base: Extension link. See struct i915_user_extension. */
3867 struct i915_user_extension base;
3868 /** @flags: reserved for future usage, currently MBZ */
3869 __u32 flags;
3870};
3871
81b1b599
FY
3872/**
3873 * struct drm_i915_gem_create_ext_set_pat - The
3874 * I915_GEM_CREATE_EXT_SET_PAT extension.
3875 *
3876 * If this extension is provided, the specified caching policy (PAT index) is
3877 * applied to the buffer object.
3878 *
3879 * Below is an example on how to create an object with specific caching policy:
3880 *
3881 * .. code-block:: C
3882 *
3883 * struct drm_i915_gem_create_ext_set_pat set_pat_ext = {
3884 * .base = { .name = I915_GEM_CREATE_EXT_SET_PAT },
3885 * .pat_index = 0,
3886 * };
3887 * struct drm_i915_gem_create_ext create_ext = {
3888 * .size = PAGE_SIZE,
3889 * .extensions = (uintptr_t)&set_pat_ext,
3890 * };
3891 *
3892 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3893 * if (err) ...
3894 */
3895struct drm_i915_gem_create_ext_set_pat {
3896 /** @base: Extension link. See struct i915_user_extension. */
3897 struct i915_user_extension base;
3898 /**
3899 * @pat_index: PAT index to be set
3900 * PAT index is a bit field in Page Table Entry to control caching
3901 * behaviors for GPU accesses. The definition of PAT index is
3902 * platform dependent and can be found in hardware specifications,
3903 */
3904 __u32 pat_index;
3905 /** @rsvd: reserved for future use */
3906 __u32 rsvd;
3907};
3908
cbbd3764
HS
3909/* ID of the protected content session managed by i915 when PXP is active */
3910#define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3911
b1c1f5c4
EV
3912#if defined(__cplusplus)
3913}
3914#endif
3915
718dcedd 3916#endif /* _UAPI_I915_DRM_H_ */