net/mlx4: Postpone the registration of net_device
[linux-block.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
dd5f03be 52#include <uapi/linux/if_ether.h>
e2773c06 53
60063497 54#include <linux/atomic.h>
882214e2 55#include <linux/mmu_notifier.h>
e2773c06 56#include <asm/uaccess.h>
1da177e4 57
f0626710
TH
58extern struct workqueue_struct *ib_wq;
59
1da177e4
LT
60union ib_gid {
61 u8 raw[16];
62 struct {
97f52eb4
SH
63 __be64 subnet_prefix;
64 __be64 interface_id;
1da177e4
LT
65 } global;
66};
67
03db3a2d
MB
68struct ib_gid_attr {
69 struct net_device *ndev;
70};
71
07ebafba
TT
72enum rdma_node_type {
73 /* IB values map to NodeInfo:NodeType. */
74 RDMA_NODE_IB_CA = 1,
75 RDMA_NODE_IB_SWITCH,
76 RDMA_NODE_IB_ROUTER,
180771a3
UM
77 RDMA_NODE_RNIC,
78 RDMA_NODE_USNIC,
5db5765e 79 RDMA_NODE_USNIC_UDP,
1da177e4
LT
80};
81
07ebafba
TT
82enum rdma_transport_type {
83 RDMA_TRANSPORT_IB,
180771a3 84 RDMA_TRANSPORT_IWARP,
248567f7
UM
85 RDMA_TRANSPORT_USNIC,
86 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
87};
88
6b90a6d6
MW
89enum rdma_protocol_type {
90 RDMA_PROTOCOL_IB,
91 RDMA_PROTOCOL_IBOE,
92 RDMA_PROTOCOL_IWARP,
93 RDMA_PROTOCOL_USNIC_UDP
94};
95
8385fd84
RD
96__attribute_const__ enum rdma_transport_type
97rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 98
a3f5adaf
EC
99enum rdma_link_layer {
100 IB_LINK_LAYER_UNSPECIFIED,
101 IB_LINK_LAYER_INFINIBAND,
102 IB_LINK_LAYER_ETHERNET,
103};
104
1da177e4
LT
105enum ib_device_cap_flags {
106 IB_DEVICE_RESIZE_MAX_WR = 1,
107 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
108 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
109 IB_DEVICE_RAW_MULTI = (1<<3),
110 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
111 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
112 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
113 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
114 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
115 IB_DEVICE_INIT_TYPE = (1<<9),
116 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
117 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
118 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
119 IB_DEVICE_SRQ_RESIZE = (1<<13),
120 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 121 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 122 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
123 IB_DEVICE_MEM_WINDOW = (1<<17),
124 /*
125 * Devices should set IB_DEVICE_UD_IP_SUM if they support
126 * insertion of UDP and TCP checksum on outgoing UD IPoIB
127 * messages and can verify the validity of checksum for
128 * incoming messages. Setting this flag implies that the
129 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
130 */
131 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 132 IB_DEVICE_UD_TSO = (1<<19),
59991f94 133 IB_DEVICE_XRC = (1<<20),
00f7ec36 134 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 135 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 136 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 137 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335 138 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
139 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
140 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
141};
142
143enum ib_signature_prot_cap {
144 IB_PROT_T10DIF_TYPE_1 = 1,
145 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
146 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
147};
148
149enum ib_signature_guard_cap {
150 IB_GUARD_T10DIF_CRC = 1,
151 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
152};
153
154enum ib_atomic_cap {
155 IB_ATOMIC_NONE,
156 IB_ATOMIC_HCA,
157 IB_ATOMIC_GLOB
158};
159
860f10a7
SG
160enum ib_odp_general_cap_bits {
161 IB_ODP_SUPPORT = 1 << 0,
162};
163
164enum ib_odp_transport_cap_bits {
165 IB_ODP_SUPPORT_SEND = 1 << 0,
166 IB_ODP_SUPPORT_RECV = 1 << 1,
167 IB_ODP_SUPPORT_WRITE = 1 << 2,
168 IB_ODP_SUPPORT_READ = 1 << 3,
169 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
170};
171
172struct ib_odp_caps {
173 uint64_t general_caps;
174 struct {
175 uint32_t rc_odp_caps;
176 uint32_t uc_odp_caps;
177 uint32_t ud_odp_caps;
178 } per_transport_caps;
179};
180
b9926b92
MB
181enum ib_cq_creation_flags {
182 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
183};
184
bcf4c1ea
MB
185struct ib_cq_init_attr {
186 unsigned int cqe;
187 int comp_vector;
188 u32 flags;
189};
190
1da177e4
LT
191struct ib_device_attr {
192 u64 fw_ver;
97f52eb4 193 __be64 sys_image_guid;
1da177e4
LT
194 u64 max_mr_size;
195 u64 page_size_cap;
196 u32 vendor_id;
197 u32 vendor_part_id;
198 u32 hw_ver;
199 int max_qp;
200 int max_qp_wr;
201 int device_cap_flags;
202 int max_sge;
203 int max_sge_rd;
204 int max_cq;
205 int max_cqe;
206 int max_mr;
207 int max_pd;
208 int max_qp_rd_atom;
209 int max_ee_rd_atom;
210 int max_res_rd_atom;
211 int max_qp_init_rd_atom;
212 int max_ee_init_rd_atom;
213 enum ib_atomic_cap atomic_cap;
5e80ba8f 214 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
215 int max_ee;
216 int max_rdd;
217 int max_mw;
218 int max_raw_ipv6_qp;
219 int max_raw_ethy_qp;
220 int max_mcast_grp;
221 int max_mcast_qp_attach;
222 int max_total_mcast_qp_attach;
223 int max_ah;
224 int max_fmr;
225 int max_map_per_fmr;
226 int max_srq;
227 int max_srq_wr;
228 int max_srq_sge;
00f7ec36 229 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
230 u16 max_pkeys;
231 u8 local_ca_ack_delay;
1b01d335
SG
232 int sig_prot_cap;
233 int sig_guard_cap;
860f10a7 234 struct ib_odp_caps odp_caps;
24306dc6
MB
235 uint64_t timestamp_mask;
236 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
237};
238
239enum ib_mtu {
240 IB_MTU_256 = 1,
241 IB_MTU_512 = 2,
242 IB_MTU_1024 = 3,
243 IB_MTU_2048 = 4,
244 IB_MTU_4096 = 5
245};
246
247static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
248{
249 switch (mtu) {
250 case IB_MTU_256: return 256;
251 case IB_MTU_512: return 512;
252 case IB_MTU_1024: return 1024;
253 case IB_MTU_2048: return 2048;
254 case IB_MTU_4096: return 4096;
255 default: return -1;
256 }
257}
258
259enum ib_port_state {
260 IB_PORT_NOP = 0,
261 IB_PORT_DOWN = 1,
262 IB_PORT_INIT = 2,
263 IB_PORT_ARMED = 3,
264 IB_PORT_ACTIVE = 4,
265 IB_PORT_ACTIVE_DEFER = 5
266};
267
268enum ib_port_cap_flags {
269 IB_PORT_SM = 1 << 1,
270 IB_PORT_NOTICE_SUP = 1 << 2,
271 IB_PORT_TRAP_SUP = 1 << 3,
272 IB_PORT_OPT_IPD_SUP = 1 << 4,
273 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
274 IB_PORT_SL_MAP_SUP = 1 << 6,
275 IB_PORT_MKEY_NVRAM = 1 << 7,
276 IB_PORT_PKEY_NVRAM = 1 << 8,
277 IB_PORT_LED_INFO_SUP = 1 << 9,
278 IB_PORT_SM_DISABLED = 1 << 10,
279 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
280 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 281 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
282 IB_PORT_CM_SUP = 1 << 16,
283 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
284 IB_PORT_REINIT_SUP = 1 << 18,
285 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
286 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
287 IB_PORT_DR_NOTICE_SUP = 1 << 21,
288 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
289 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
290 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 291 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 292 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
293};
294
295enum ib_port_width {
296 IB_WIDTH_1X = 1,
297 IB_WIDTH_4X = 2,
298 IB_WIDTH_8X = 4,
299 IB_WIDTH_12X = 8
300};
301
302static inline int ib_width_enum_to_int(enum ib_port_width width)
303{
304 switch (width) {
305 case IB_WIDTH_1X: return 1;
306 case IB_WIDTH_4X: return 4;
307 case IB_WIDTH_8X: return 8;
308 case IB_WIDTH_12X: return 12;
309 default: return -1;
310 }
311}
312
2e96691c
OG
313enum ib_port_speed {
314 IB_SPEED_SDR = 1,
315 IB_SPEED_DDR = 2,
316 IB_SPEED_QDR = 4,
317 IB_SPEED_FDR10 = 8,
318 IB_SPEED_FDR = 16,
319 IB_SPEED_EDR = 32
320};
321
7f624d02
SW
322struct ib_protocol_stats {
323 /* TBD... */
324};
325
326struct iw_protocol_stats {
327 u64 ipInReceives;
328 u64 ipInHdrErrors;
329 u64 ipInTooBigErrors;
330 u64 ipInNoRoutes;
331 u64 ipInAddrErrors;
332 u64 ipInUnknownProtos;
333 u64 ipInTruncatedPkts;
334 u64 ipInDiscards;
335 u64 ipInDelivers;
336 u64 ipOutForwDatagrams;
337 u64 ipOutRequests;
338 u64 ipOutDiscards;
339 u64 ipOutNoRoutes;
340 u64 ipReasmTimeout;
341 u64 ipReasmReqds;
342 u64 ipReasmOKs;
343 u64 ipReasmFails;
344 u64 ipFragOKs;
345 u64 ipFragFails;
346 u64 ipFragCreates;
347 u64 ipInMcastPkts;
348 u64 ipOutMcastPkts;
349 u64 ipInBcastPkts;
350 u64 ipOutBcastPkts;
351
352 u64 tcpRtoAlgorithm;
353 u64 tcpRtoMin;
354 u64 tcpRtoMax;
355 u64 tcpMaxConn;
356 u64 tcpActiveOpens;
357 u64 tcpPassiveOpens;
358 u64 tcpAttemptFails;
359 u64 tcpEstabResets;
360 u64 tcpCurrEstab;
361 u64 tcpInSegs;
362 u64 tcpOutSegs;
363 u64 tcpRetransSegs;
364 u64 tcpInErrs;
365 u64 tcpOutRsts;
366};
367
368union rdma_protocol_stats {
369 struct ib_protocol_stats ib;
370 struct iw_protocol_stats iw;
371};
372
f9b22e35
IW
373/* Define bits for the various functionality this port needs to be supported by
374 * the core.
375 */
376/* Management 0x00000FFF */
377#define RDMA_CORE_CAP_IB_MAD 0x00000001
378#define RDMA_CORE_CAP_IB_SMI 0x00000002
379#define RDMA_CORE_CAP_IB_CM 0x00000004
380#define RDMA_CORE_CAP_IW_CM 0x00000008
381#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 382#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
383
384/* Address format 0x000FF000 */
385#define RDMA_CORE_CAP_AF_IB 0x00001000
386#define RDMA_CORE_CAP_ETH_AH 0x00002000
387
388/* Protocol 0xFFF00000 */
389#define RDMA_CORE_CAP_PROT_IB 0x00100000
390#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
391#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
392
393#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
394 | RDMA_CORE_CAP_IB_MAD \
395 | RDMA_CORE_CAP_IB_SMI \
396 | RDMA_CORE_CAP_IB_CM \
397 | RDMA_CORE_CAP_IB_SA \
398 | RDMA_CORE_CAP_AF_IB)
399#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
400 | RDMA_CORE_CAP_IB_MAD \
401 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
402 | RDMA_CORE_CAP_AF_IB \
403 | RDMA_CORE_CAP_ETH_AH)
404#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
405 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
406#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
407 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 408
1da177e4
LT
409struct ib_port_attr {
410 enum ib_port_state state;
411 enum ib_mtu max_mtu;
412 enum ib_mtu active_mtu;
413 int gid_tbl_len;
414 u32 port_cap_flags;
415 u32 max_msg_sz;
416 u32 bad_pkey_cntr;
417 u32 qkey_viol_cntr;
418 u16 pkey_tbl_len;
419 u16 lid;
420 u16 sm_lid;
421 u8 lmc;
422 u8 max_vl_num;
423 u8 sm_sl;
424 u8 subnet_timeout;
425 u8 init_type_reply;
426 u8 active_width;
427 u8 active_speed;
428 u8 phys_state;
429};
430
431enum ib_device_modify_flags {
c5bcbbb9
RD
432 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
433 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
434};
435
436struct ib_device_modify {
437 u64 sys_image_guid;
c5bcbbb9 438 char node_desc[64];
1da177e4
LT
439};
440
441enum ib_port_modify_flags {
442 IB_PORT_SHUTDOWN = 1,
443 IB_PORT_INIT_TYPE = (1<<2),
444 IB_PORT_RESET_QKEY_CNTR = (1<<3)
445};
446
447struct ib_port_modify {
448 u32 set_port_cap_mask;
449 u32 clr_port_cap_mask;
450 u8 init_type;
451};
452
453enum ib_event_type {
454 IB_EVENT_CQ_ERR,
455 IB_EVENT_QP_FATAL,
456 IB_EVENT_QP_REQ_ERR,
457 IB_EVENT_QP_ACCESS_ERR,
458 IB_EVENT_COMM_EST,
459 IB_EVENT_SQ_DRAINED,
460 IB_EVENT_PATH_MIG,
461 IB_EVENT_PATH_MIG_ERR,
462 IB_EVENT_DEVICE_FATAL,
463 IB_EVENT_PORT_ACTIVE,
464 IB_EVENT_PORT_ERR,
465 IB_EVENT_LID_CHANGE,
466 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
467 IB_EVENT_SM_CHANGE,
468 IB_EVENT_SRQ_ERR,
469 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 470 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
471 IB_EVENT_CLIENT_REREGISTER,
472 IB_EVENT_GID_CHANGE,
1da177e4
LT
473};
474
2b1b5b60
SG
475__attribute_const__ const char *ib_event_msg(enum ib_event_type event);
476
1da177e4
LT
477struct ib_event {
478 struct ib_device *device;
479 union {
480 struct ib_cq *cq;
481 struct ib_qp *qp;
d41fcc67 482 struct ib_srq *srq;
1da177e4
LT
483 u8 port_num;
484 } element;
485 enum ib_event_type event;
486};
487
488struct ib_event_handler {
489 struct ib_device *device;
490 void (*handler)(struct ib_event_handler *, struct ib_event *);
491 struct list_head list;
492};
493
494#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
495 do { \
496 (_ptr)->device = _device; \
497 (_ptr)->handler = _handler; \
498 INIT_LIST_HEAD(&(_ptr)->list); \
499 } while (0)
500
501struct ib_global_route {
502 union ib_gid dgid;
503 u32 flow_label;
504 u8 sgid_index;
505 u8 hop_limit;
506 u8 traffic_class;
507};
508
513789ed 509struct ib_grh {
97f52eb4
SH
510 __be32 version_tclass_flow;
511 __be16 paylen;
513789ed
HR
512 u8 next_hdr;
513 u8 hop_limit;
514 union ib_gid sgid;
515 union ib_gid dgid;
516};
517
1da177e4
LT
518enum {
519 IB_MULTICAST_QPN = 0xffffff
520};
521
f3a7c66b 522#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 523
1da177e4
LT
524enum ib_ah_flags {
525 IB_AH_GRH = 1
526};
527
bf6a9e31
JM
528enum ib_rate {
529 IB_RATE_PORT_CURRENT = 0,
530 IB_RATE_2_5_GBPS = 2,
531 IB_RATE_5_GBPS = 5,
532 IB_RATE_10_GBPS = 3,
533 IB_RATE_20_GBPS = 6,
534 IB_RATE_30_GBPS = 4,
535 IB_RATE_40_GBPS = 7,
536 IB_RATE_60_GBPS = 8,
537 IB_RATE_80_GBPS = 9,
71eeba16
MA
538 IB_RATE_120_GBPS = 10,
539 IB_RATE_14_GBPS = 11,
540 IB_RATE_56_GBPS = 12,
541 IB_RATE_112_GBPS = 13,
542 IB_RATE_168_GBPS = 14,
543 IB_RATE_25_GBPS = 15,
544 IB_RATE_100_GBPS = 16,
545 IB_RATE_200_GBPS = 17,
546 IB_RATE_300_GBPS = 18
bf6a9e31
JM
547};
548
549/**
550 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
551 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
552 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
553 * @rate: rate to convert.
554 */
8385fd84 555__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 556
71eeba16
MA
557/**
558 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
559 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
560 * @rate: rate to convert.
561 */
8385fd84 562__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 563
17cd3a2d
SG
564
565/**
9bee178b
SG
566 * enum ib_mr_type - memory region type
567 * @IB_MR_TYPE_MEM_REG: memory region that is used for
568 * normal registration
569 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
570 * signature operations (data-integrity
571 * capable regions)
17cd3a2d 572 */
9bee178b
SG
573enum ib_mr_type {
574 IB_MR_TYPE_MEM_REG,
575 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
576};
577
1b01d335 578/**
78eda2bb
SG
579 * Signature types
580 * IB_SIG_TYPE_NONE: Unprotected.
581 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 582 */
78eda2bb
SG
583enum ib_signature_type {
584 IB_SIG_TYPE_NONE,
585 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
586};
587
588/**
589 * Signature T10-DIF block-guard types
590 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
591 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
592 */
593enum ib_t10_dif_bg_type {
594 IB_T10DIF_CRC,
595 IB_T10DIF_CSUM
596};
597
598/**
599 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
600 * domain.
1b01d335
SG
601 * @bg_type: T10-DIF block guard type (CRC|CSUM)
602 * @pi_interval: protection information interval.
603 * @bg: seed of guard computation.
604 * @app_tag: application tag of guard block
605 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
606 * @ref_remap: Indicate wethear the reftag increments each block
607 * @app_escape: Indicate to skip block check if apptag=0xffff
608 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
609 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
610 */
611struct ib_t10_dif_domain {
1b01d335
SG
612 enum ib_t10_dif_bg_type bg_type;
613 u16 pi_interval;
614 u16 bg;
615 u16 app_tag;
616 u32 ref_tag;
78eda2bb
SG
617 bool ref_remap;
618 bool app_escape;
619 bool ref_escape;
620 u16 apptag_check_mask;
1b01d335
SG
621};
622
623/**
624 * struct ib_sig_domain - Parameters for signature domain
625 * @sig_type: specific signauture type
626 * @sig: union of all signature domain attributes that may
627 * be used to set domain layout.
628 */
629struct ib_sig_domain {
630 enum ib_signature_type sig_type;
631 union {
632 struct ib_t10_dif_domain dif;
633 } sig;
634};
635
636/**
637 * struct ib_sig_attrs - Parameters for signature handover operation
638 * @check_mask: bitmask for signature byte check (8 bytes)
639 * @mem: memory domain layout desciptor.
640 * @wire: wire domain layout desciptor.
641 */
642struct ib_sig_attrs {
643 u8 check_mask;
644 struct ib_sig_domain mem;
645 struct ib_sig_domain wire;
646};
647
648enum ib_sig_err_type {
649 IB_SIG_BAD_GUARD,
650 IB_SIG_BAD_REFTAG,
651 IB_SIG_BAD_APPTAG,
652};
653
654/**
655 * struct ib_sig_err - signature error descriptor
656 */
657struct ib_sig_err {
658 enum ib_sig_err_type err_type;
659 u32 expected;
660 u32 actual;
661 u64 sig_err_offset;
662 u32 key;
663};
664
665enum ib_mr_status_check {
666 IB_MR_CHECK_SIG_STATUS = 1,
667};
668
669/**
670 * struct ib_mr_status - Memory region status container
671 *
672 * @fail_status: Bitmask of MR checks status. For each
673 * failed check a corresponding status bit is set.
674 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
675 * failure.
676 */
677struct ib_mr_status {
678 u32 fail_status;
679 struct ib_sig_err sig_err;
680};
681
bf6a9e31
JM
682/**
683 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
684 * enum.
685 * @mult: multiple to convert.
686 */
8385fd84 687__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 688
1da177e4
LT
689struct ib_ah_attr {
690 struct ib_global_route grh;
691 u16 dlid;
692 u8 sl;
693 u8 src_path_bits;
694 u8 static_rate;
695 u8 ah_flags;
696 u8 port_num;
dd5f03be
MB
697 u8 dmac[ETH_ALEN];
698 u16 vlan_id;
1da177e4
LT
699};
700
701enum ib_wc_status {
702 IB_WC_SUCCESS,
703 IB_WC_LOC_LEN_ERR,
704 IB_WC_LOC_QP_OP_ERR,
705 IB_WC_LOC_EEC_OP_ERR,
706 IB_WC_LOC_PROT_ERR,
707 IB_WC_WR_FLUSH_ERR,
708 IB_WC_MW_BIND_ERR,
709 IB_WC_BAD_RESP_ERR,
710 IB_WC_LOC_ACCESS_ERR,
711 IB_WC_REM_INV_REQ_ERR,
712 IB_WC_REM_ACCESS_ERR,
713 IB_WC_REM_OP_ERR,
714 IB_WC_RETRY_EXC_ERR,
715 IB_WC_RNR_RETRY_EXC_ERR,
716 IB_WC_LOC_RDD_VIOL_ERR,
717 IB_WC_REM_INV_RD_REQ_ERR,
718 IB_WC_REM_ABORT_ERR,
719 IB_WC_INV_EECN_ERR,
720 IB_WC_INV_EEC_STATE_ERR,
721 IB_WC_FATAL_ERR,
722 IB_WC_RESP_TIMEOUT_ERR,
723 IB_WC_GENERAL_ERR
724};
725
2b1b5b60
SG
726__attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
727
1da177e4
LT
728enum ib_wc_opcode {
729 IB_WC_SEND,
730 IB_WC_RDMA_WRITE,
731 IB_WC_RDMA_READ,
732 IB_WC_COMP_SWAP,
733 IB_WC_FETCH_ADD,
734 IB_WC_BIND_MW,
c93570f2 735 IB_WC_LSO,
00f7ec36
SW
736 IB_WC_LOCAL_INV,
737 IB_WC_FAST_REG_MR,
5e80ba8f
VS
738 IB_WC_MASKED_COMP_SWAP,
739 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
740/*
741 * Set value of IB_WC_RECV so consumers can test if a completion is a
742 * receive by testing (opcode & IB_WC_RECV).
743 */
744 IB_WC_RECV = 1 << 7,
745 IB_WC_RECV_RDMA_WITH_IMM
746};
747
748enum ib_wc_flags {
749 IB_WC_GRH = 1,
00f7ec36
SW
750 IB_WC_WITH_IMM = (1<<1),
751 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 752 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
753 IB_WC_WITH_SMAC = (1<<4),
754 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
755};
756
757struct ib_wc {
758 u64 wr_id;
759 enum ib_wc_status status;
760 enum ib_wc_opcode opcode;
761 u32 vendor_err;
762 u32 byte_len;
062dbb69 763 struct ib_qp *qp;
00f7ec36
SW
764 union {
765 __be32 imm_data;
766 u32 invalidate_rkey;
767 } ex;
1da177e4
LT
768 u32 src_qp;
769 int wc_flags;
770 u16 pkey_index;
771 u16 slid;
772 u8 sl;
773 u8 dlid_path_bits;
774 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
775 u8 smac[ETH_ALEN];
776 u16 vlan_id;
1da177e4
LT
777};
778
ed23a727
RD
779enum ib_cq_notify_flags {
780 IB_CQ_SOLICITED = 1 << 0,
781 IB_CQ_NEXT_COMP = 1 << 1,
782 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
783 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
784};
785
96104eda 786enum ib_srq_type {
418d5130
SH
787 IB_SRQT_BASIC,
788 IB_SRQT_XRC
96104eda
SH
789};
790
d41fcc67
RD
791enum ib_srq_attr_mask {
792 IB_SRQ_MAX_WR = 1 << 0,
793 IB_SRQ_LIMIT = 1 << 1,
794};
795
796struct ib_srq_attr {
797 u32 max_wr;
798 u32 max_sge;
799 u32 srq_limit;
800};
801
802struct ib_srq_init_attr {
803 void (*event_handler)(struct ib_event *, void *);
804 void *srq_context;
805 struct ib_srq_attr attr;
96104eda 806 enum ib_srq_type srq_type;
418d5130
SH
807
808 union {
809 struct {
810 struct ib_xrcd *xrcd;
811 struct ib_cq *cq;
812 } xrc;
813 } ext;
d41fcc67
RD
814};
815
1da177e4
LT
816struct ib_qp_cap {
817 u32 max_send_wr;
818 u32 max_recv_wr;
819 u32 max_send_sge;
820 u32 max_recv_sge;
821 u32 max_inline_data;
822};
823
824enum ib_sig_type {
825 IB_SIGNAL_ALL_WR,
826 IB_SIGNAL_REQ_WR
827};
828
829enum ib_qp_type {
830 /*
831 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
832 * here (and in that order) since the MAD layer uses them as
833 * indices into a 2-entry table.
834 */
835 IB_QPT_SMI,
836 IB_QPT_GSI,
837
838 IB_QPT_RC,
839 IB_QPT_UC,
840 IB_QPT_UD,
841 IB_QPT_RAW_IPV6,
b42b63cf 842 IB_QPT_RAW_ETHERTYPE,
c938a616 843 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
844 IB_QPT_XRC_INI = 9,
845 IB_QPT_XRC_TGT,
0134f16b
JM
846 IB_QPT_MAX,
847 /* Reserve a range for qp types internal to the low level driver.
848 * These qp types will not be visible at the IB core layer, so the
849 * IB_QPT_MAX usages should not be affected in the core layer
850 */
851 IB_QPT_RESERVED1 = 0x1000,
852 IB_QPT_RESERVED2,
853 IB_QPT_RESERVED3,
854 IB_QPT_RESERVED4,
855 IB_QPT_RESERVED5,
856 IB_QPT_RESERVED6,
857 IB_QPT_RESERVED7,
858 IB_QPT_RESERVED8,
859 IB_QPT_RESERVED9,
860 IB_QPT_RESERVED10,
1da177e4
LT
861};
862
b846f25a 863enum ib_qp_create_flags {
47ee1b9f
RL
864 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
865 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 866 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 867 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 868 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
869 /* reserve bits 26-31 for low level drivers' internal use */
870 IB_QP_CREATE_RESERVED_START = 1 << 26,
871 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
872};
873
73c40c61
YH
874
875/*
876 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
877 * callback to destroy the passed in QP.
878 */
879
1da177e4
LT
880struct ib_qp_init_attr {
881 void (*event_handler)(struct ib_event *, void *);
882 void *qp_context;
883 struct ib_cq *send_cq;
884 struct ib_cq *recv_cq;
885 struct ib_srq *srq;
b42b63cf 886 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
887 struct ib_qp_cap cap;
888 enum ib_sig_type sq_sig_type;
889 enum ib_qp_type qp_type;
b846f25a 890 enum ib_qp_create_flags create_flags;
1da177e4
LT
891 u8 port_num; /* special QP types only */
892};
893
0e0ec7e0
SH
894struct ib_qp_open_attr {
895 void (*event_handler)(struct ib_event *, void *);
896 void *qp_context;
897 u32 qp_num;
898 enum ib_qp_type qp_type;
899};
900
1da177e4
LT
901enum ib_rnr_timeout {
902 IB_RNR_TIMER_655_36 = 0,
903 IB_RNR_TIMER_000_01 = 1,
904 IB_RNR_TIMER_000_02 = 2,
905 IB_RNR_TIMER_000_03 = 3,
906 IB_RNR_TIMER_000_04 = 4,
907 IB_RNR_TIMER_000_06 = 5,
908 IB_RNR_TIMER_000_08 = 6,
909 IB_RNR_TIMER_000_12 = 7,
910 IB_RNR_TIMER_000_16 = 8,
911 IB_RNR_TIMER_000_24 = 9,
912 IB_RNR_TIMER_000_32 = 10,
913 IB_RNR_TIMER_000_48 = 11,
914 IB_RNR_TIMER_000_64 = 12,
915 IB_RNR_TIMER_000_96 = 13,
916 IB_RNR_TIMER_001_28 = 14,
917 IB_RNR_TIMER_001_92 = 15,
918 IB_RNR_TIMER_002_56 = 16,
919 IB_RNR_TIMER_003_84 = 17,
920 IB_RNR_TIMER_005_12 = 18,
921 IB_RNR_TIMER_007_68 = 19,
922 IB_RNR_TIMER_010_24 = 20,
923 IB_RNR_TIMER_015_36 = 21,
924 IB_RNR_TIMER_020_48 = 22,
925 IB_RNR_TIMER_030_72 = 23,
926 IB_RNR_TIMER_040_96 = 24,
927 IB_RNR_TIMER_061_44 = 25,
928 IB_RNR_TIMER_081_92 = 26,
929 IB_RNR_TIMER_122_88 = 27,
930 IB_RNR_TIMER_163_84 = 28,
931 IB_RNR_TIMER_245_76 = 29,
932 IB_RNR_TIMER_327_68 = 30,
933 IB_RNR_TIMER_491_52 = 31
934};
935
936enum ib_qp_attr_mask {
937 IB_QP_STATE = 1,
938 IB_QP_CUR_STATE = (1<<1),
939 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
940 IB_QP_ACCESS_FLAGS = (1<<3),
941 IB_QP_PKEY_INDEX = (1<<4),
942 IB_QP_PORT = (1<<5),
943 IB_QP_QKEY = (1<<6),
944 IB_QP_AV = (1<<7),
945 IB_QP_PATH_MTU = (1<<8),
946 IB_QP_TIMEOUT = (1<<9),
947 IB_QP_RETRY_CNT = (1<<10),
948 IB_QP_RNR_RETRY = (1<<11),
949 IB_QP_RQ_PSN = (1<<12),
950 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
951 IB_QP_ALT_PATH = (1<<14),
952 IB_QP_MIN_RNR_TIMER = (1<<15),
953 IB_QP_SQ_PSN = (1<<16),
954 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
955 IB_QP_PATH_MIG_STATE = (1<<18),
956 IB_QP_CAP = (1<<19),
dd5f03be
MB
957 IB_QP_DEST_QPN = (1<<20),
958 IB_QP_SMAC = (1<<21),
959 IB_QP_ALT_SMAC = (1<<22),
960 IB_QP_VID = (1<<23),
961 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
962};
963
964enum ib_qp_state {
965 IB_QPS_RESET,
966 IB_QPS_INIT,
967 IB_QPS_RTR,
968 IB_QPS_RTS,
969 IB_QPS_SQD,
970 IB_QPS_SQE,
971 IB_QPS_ERR
972};
973
974enum ib_mig_state {
975 IB_MIG_MIGRATED,
976 IB_MIG_REARM,
977 IB_MIG_ARMED
978};
979
7083e42e
SM
980enum ib_mw_type {
981 IB_MW_TYPE_1 = 1,
982 IB_MW_TYPE_2 = 2
983};
984
1da177e4
LT
985struct ib_qp_attr {
986 enum ib_qp_state qp_state;
987 enum ib_qp_state cur_qp_state;
988 enum ib_mtu path_mtu;
989 enum ib_mig_state path_mig_state;
990 u32 qkey;
991 u32 rq_psn;
992 u32 sq_psn;
993 u32 dest_qp_num;
994 int qp_access_flags;
995 struct ib_qp_cap cap;
996 struct ib_ah_attr ah_attr;
997 struct ib_ah_attr alt_ah_attr;
998 u16 pkey_index;
999 u16 alt_pkey_index;
1000 u8 en_sqd_async_notify;
1001 u8 sq_draining;
1002 u8 max_rd_atomic;
1003 u8 max_dest_rd_atomic;
1004 u8 min_rnr_timer;
1005 u8 port_num;
1006 u8 timeout;
1007 u8 retry_cnt;
1008 u8 rnr_retry;
1009 u8 alt_port_num;
1010 u8 alt_timeout;
dd5f03be
MB
1011 u8 smac[ETH_ALEN];
1012 u8 alt_smac[ETH_ALEN];
1013 u16 vlan_id;
1014 u16 alt_vlan_id;
1da177e4
LT
1015};
1016
1017enum ib_wr_opcode {
1018 IB_WR_RDMA_WRITE,
1019 IB_WR_RDMA_WRITE_WITH_IMM,
1020 IB_WR_SEND,
1021 IB_WR_SEND_WITH_IMM,
1022 IB_WR_RDMA_READ,
1023 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1024 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1025 IB_WR_LSO,
1026 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1027 IB_WR_RDMA_READ_WITH_INV,
1028 IB_WR_LOCAL_INV,
1029 IB_WR_FAST_REG_MR,
5e80ba8f
VS
1030 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1031 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1032 IB_WR_BIND_MW,
1b01d335 1033 IB_WR_REG_SIG_MR,
0134f16b
JM
1034 /* reserve values for low level drivers' internal use.
1035 * These values will not be used at all in the ib core layer.
1036 */
1037 IB_WR_RESERVED1 = 0xf0,
1038 IB_WR_RESERVED2,
1039 IB_WR_RESERVED3,
1040 IB_WR_RESERVED4,
1041 IB_WR_RESERVED5,
1042 IB_WR_RESERVED6,
1043 IB_WR_RESERVED7,
1044 IB_WR_RESERVED8,
1045 IB_WR_RESERVED9,
1046 IB_WR_RESERVED10,
1da177e4
LT
1047};
1048
1049enum ib_send_flags {
1050 IB_SEND_FENCE = 1,
1051 IB_SEND_SIGNALED = (1<<1),
1052 IB_SEND_SOLICITED = (1<<2),
e0605d91 1053 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1054 IB_SEND_IP_CSUM = (1<<4),
1055
1056 /* reserve bits 26-31 for low level drivers' internal use */
1057 IB_SEND_RESERVED_START = (1 << 26),
1058 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1059};
1060
1061struct ib_sge {
1062 u64 addr;
1063 u32 length;
1064 u32 lkey;
1065};
1066
00f7ec36
SW
1067struct ib_fast_reg_page_list {
1068 struct ib_device *device;
1069 u64 *page_list;
1070 unsigned int max_page_list_len;
1071};
1072
7083e42e
SM
1073/**
1074 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1075 * @mr: A memory region to bind the memory window to.
1076 * @addr: The address where the memory window should begin.
1077 * @length: The length of the memory window, in bytes.
1078 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1079 *
1080 * This struct contains the shared parameters for type 1 and type 2
1081 * memory window bind operations.
1082 */
1083struct ib_mw_bind_info {
1084 struct ib_mr *mr;
1085 u64 addr;
1086 u64 length;
1087 int mw_access_flags;
1088};
1089
1da177e4
LT
1090struct ib_send_wr {
1091 struct ib_send_wr *next;
1092 u64 wr_id;
1093 struct ib_sge *sg_list;
1094 int num_sge;
1095 enum ib_wr_opcode opcode;
1096 int send_flags;
0f39cf3d
RD
1097 union {
1098 __be32 imm_data;
1099 u32 invalidate_rkey;
1100 } ex;
1da177e4
LT
1101 union {
1102 struct {
1103 u64 remote_addr;
1104 u32 rkey;
1105 } rdma;
1106 struct {
1107 u64 remote_addr;
1108 u64 compare_add;
1109 u64 swap;
5e80ba8f
VS
1110 u64 compare_add_mask;
1111 u64 swap_mask;
1da177e4
LT
1112 u32 rkey;
1113 } atomic;
1114 struct {
1115 struct ib_ah *ah;
c93570f2
EC
1116 void *header;
1117 int hlen;
1118 int mss;
1da177e4
LT
1119 u32 remote_qpn;
1120 u32 remote_qkey;
1da177e4
LT
1121 u16 pkey_index; /* valid for GSI only */
1122 u8 port_num; /* valid for DR SMPs on switch only */
1123 } ud;
00f7ec36
SW
1124 struct {
1125 u64 iova_start;
1126 struct ib_fast_reg_page_list *page_list;
1127 unsigned int page_shift;
1128 unsigned int page_list_len;
1129 u32 length;
1130 int access_flags;
1131 u32 rkey;
1132 } fast_reg;
7083e42e
SM
1133 struct {
1134 struct ib_mw *mw;
1135 /* The new rkey for the memory window. */
1136 u32 rkey;
1137 struct ib_mw_bind_info bind_info;
1138 } bind_mw;
1b01d335
SG
1139 struct {
1140 struct ib_sig_attrs *sig_attrs;
1141 struct ib_mr *sig_mr;
1142 int access_flags;
1143 struct ib_sge *prot;
1144 } sig_handover;
1da177e4 1145 } wr;
b42b63cf 1146 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1147};
1148
1149struct ib_recv_wr {
1150 struct ib_recv_wr *next;
1151 u64 wr_id;
1152 struct ib_sge *sg_list;
1153 int num_sge;
1154};
1155
1156enum ib_access_flags {
1157 IB_ACCESS_LOCAL_WRITE = 1,
1158 IB_ACCESS_REMOTE_WRITE = (1<<1),
1159 IB_ACCESS_REMOTE_READ = (1<<2),
1160 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1161 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1162 IB_ZERO_BASED = (1<<5),
1163 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1164};
1165
1166struct ib_phys_buf {
1167 u64 addr;
1168 u64 size;
1169};
1170
1171struct ib_mr_attr {
1172 struct ib_pd *pd;
1173 u64 device_virt_addr;
1174 u64 size;
1175 int mr_access_flags;
1176 u32 lkey;
1177 u32 rkey;
1178};
1179
1180enum ib_mr_rereg_flags {
1181 IB_MR_REREG_TRANS = 1,
1182 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1183 IB_MR_REREG_ACCESS = (1<<2),
1184 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1185};
1186
7083e42e
SM
1187/**
1188 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1189 * @wr_id: Work request id.
1190 * @send_flags: Flags from ib_send_flags enum.
1191 * @bind_info: More parameters of the bind operation.
1192 */
1da177e4 1193struct ib_mw_bind {
7083e42e
SM
1194 u64 wr_id;
1195 int send_flags;
1196 struct ib_mw_bind_info bind_info;
1da177e4
LT
1197};
1198
1199struct ib_fmr_attr {
1200 int max_pages;
1201 int max_maps;
d36f34aa 1202 u8 page_shift;
1da177e4
LT
1203};
1204
882214e2
HE
1205struct ib_umem;
1206
e2773c06
RD
1207struct ib_ucontext {
1208 struct ib_device *device;
1209 struct list_head pd_list;
1210 struct list_head mr_list;
1211 struct list_head mw_list;
1212 struct list_head cq_list;
1213 struct list_head qp_list;
1214 struct list_head srq_list;
1215 struct list_head ah_list;
53d0bd1e 1216 struct list_head xrcd_list;
436f2ad0 1217 struct list_head rule_list;
f7c6a7b5 1218 int closing;
8ada2c1c
SR
1219
1220 struct pid *tgid;
882214e2
HE
1221#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1222 struct rb_root umem_tree;
1223 /*
1224 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1225 * mmu notifiers registration.
1226 */
1227 struct rw_semaphore umem_rwsem;
1228 void (*invalidate_range)(struct ib_umem *umem,
1229 unsigned long start, unsigned long end);
1230
1231 struct mmu_notifier mn;
1232 atomic_t notifier_count;
1233 /* A list of umems that don't have private mmu notifier counters yet. */
1234 struct list_head no_private_counters;
1235 int odp_mrs_count;
1236#endif
e2773c06
RD
1237};
1238
1239struct ib_uobject {
1240 u64 user_handle; /* handle given to us by userspace */
1241 struct ib_ucontext *context; /* associated user context */
9ead190b 1242 void *object; /* containing object */
e2773c06 1243 struct list_head list; /* link to context's list */
b3d636b0 1244 int id; /* index into kernel idr */
9ead190b
RD
1245 struct kref ref;
1246 struct rw_semaphore mutex; /* protects .live */
1247 int live;
e2773c06
RD
1248};
1249
e2773c06 1250struct ib_udata {
309243ec 1251 const void __user *inbuf;
e2773c06
RD
1252 void __user *outbuf;
1253 size_t inlen;
1254 size_t outlen;
1255};
1256
1da177e4 1257struct ib_pd {
e2773c06
RD
1258 struct ib_device *device;
1259 struct ib_uobject *uobject;
1260 atomic_t usecnt; /* count all resources */
1da177e4
LT
1261};
1262
59991f94
SH
1263struct ib_xrcd {
1264 struct ib_device *device;
d3d72d90 1265 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1266 struct inode *inode;
d3d72d90
SH
1267
1268 struct mutex tgt_qp_mutex;
1269 struct list_head tgt_qp_list;
59991f94
SH
1270};
1271
1da177e4
LT
1272struct ib_ah {
1273 struct ib_device *device;
1274 struct ib_pd *pd;
e2773c06 1275 struct ib_uobject *uobject;
1da177e4
LT
1276};
1277
1278typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1279
1280struct ib_cq {
e2773c06
RD
1281 struct ib_device *device;
1282 struct ib_uobject *uobject;
1283 ib_comp_handler comp_handler;
1284 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1285 void *cq_context;
e2773c06
RD
1286 int cqe;
1287 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1288};
1289
1290struct ib_srq {
d41fcc67
RD
1291 struct ib_device *device;
1292 struct ib_pd *pd;
1293 struct ib_uobject *uobject;
1294 void (*event_handler)(struct ib_event *, void *);
1295 void *srq_context;
96104eda 1296 enum ib_srq_type srq_type;
1da177e4 1297 atomic_t usecnt;
418d5130
SH
1298
1299 union {
1300 struct {
1301 struct ib_xrcd *xrcd;
1302 struct ib_cq *cq;
1303 u32 srq_num;
1304 } xrc;
1305 } ext;
1da177e4
LT
1306};
1307
1308struct ib_qp {
1309 struct ib_device *device;
1310 struct ib_pd *pd;
1311 struct ib_cq *send_cq;
1312 struct ib_cq *recv_cq;
1313 struct ib_srq *srq;
b42b63cf 1314 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1315 struct list_head xrcd_list;
319a441d
HHZ
1316 /* count times opened, mcast attaches, flow attaches */
1317 atomic_t usecnt;
0e0ec7e0
SH
1318 struct list_head open_list;
1319 struct ib_qp *real_qp;
e2773c06 1320 struct ib_uobject *uobject;
1da177e4
LT
1321 void (*event_handler)(struct ib_event *, void *);
1322 void *qp_context;
1323 u32 qp_num;
1324 enum ib_qp_type qp_type;
1325};
1326
1327struct ib_mr {
e2773c06
RD
1328 struct ib_device *device;
1329 struct ib_pd *pd;
1330 struct ib_uobject *uobject;
1331 u32 lkey;
1332 u32 rkey;
1333 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1334};
1335
1336struct ib_mw {
1337 struct ib_device *device;
1338 struct ib_pd *pd;
e2773c06 1339 struct ib_uobject *uobject;
1da177e4 1340 u32 rkey;
7083e42e 1341 enum ib_mw_type type;
1da177e4
LT
1342};
1343
1344struct ib_fmr {
1345 struct ib_device *device;
1346 struct ib_pd *pd;
1347 struct list_head list;
1348 u32 lkey;
1349 u32 rkey;
1350};
1351
319a441d
HHZ
1352/* Supported steering options */
1353enum ib_flow_attr_type {
1354 /* steering according to rule specifications */
1355 IB_FLOW_ATTR_NORMAL = 0x0,
1356 /* default unicast and multicast rule -
1357 * receive all Eth traffic which isn't steered to any QP
1358 */
1359 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1360 /* default multicast rule -
1361 * receive all Eth multicast traffic which isn't steered to any QP
1362 */
1363 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1364 /* sniffer rule - receive all port traffic */
1365 IB_FLOW_ATTR_SNIFFER = 0x3
1366};
1367
1368/* Supported steering header types */
1369enum ib_flow_spec_type {
1370 /* L2 headers*/
1371 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1372 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1373 /* L3 header*/
1374 IB_FLOW_SPEC_IPV4 = 0x30,
1375 /* L4 headers*/
1376 IB_FLOW_SPEC_TCP = 0x40,
1377 IB_FLOW_SPEC_UDP = 0x41
1378};
240ae00e 1379#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1380#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1381
319a441d
HHZ
1382/* Flow steering rule priority is set according to it's domain.
1383 * Lower domain value means higher priority.
1384 */
1385enum ib_flow_domain {
1386 IB_FLOW_DOMAIN_USER,
1387 IB_FLOW_DOMAIN_ETHTOOL,
1388 IB_FLOW_DOMAIN_RFS,
1389 IB_FLOW_DOMAIN_NIC,
1390 IB_FLOW_DOMAIN_NUM /* Must be last */
1391};
1392
1393struct ib_flow_eth_filter {
1394 u8 dst_mac[6];
1395 u8 src_mac[6];
1396 __be16 ether_type;
1397 __be16 vlan_tag;
1398};
1399
1400struct ib_flow_spec_eth {
1401 enum ib_flow_spec_type type;
1402 u16 size;
1403 struct ib_flow_eth_filter val;
1404 struct ib_flow_eth_filter mask;
1405};
1406
240ae00e
MB
1407struct ib_flow_ib_filter {
1408 __be16 dlid;
1409 __u8 sl;
1410};
1411
1412struct ib_flow_spec_ib {
1413 enum ib_flow_spec_type type;
1414 u16 size;
1415 struct ib_flow_ib_filter val;
1416 struct ib_flow_ib_filter mask;
1417};
1418
319a441d
HHZ
1419struct ib_flow_ipv4_filter {
1420 __be32 src_ip;
1421 __be32 dst_ip;
1422};
1423
1424struct ib_flow_spec_ipv4 {
1425 enum ib_flow_spec_type type;
1426 u16 size;
1427 struct ib_flow_ipv4_filter val;
1428 struct ib_flow_ipv4_filter mask;
1429};
1430
1431struct ib_flow_tcp_udp_filter {
1432 __be16 dst_port;
1433 __be16 src_port;
1434};
1435
1436struct ib_flow_spec_tcp_udp {
1437 enum ib_flow_spec_type type;
1438 u16 size;
1439 struct ib_flow_tcp_udp_filter val;
1440 struct ib_flow_tcp_udp_filter mask;
1441};
1442
1443union ib_flow_spec {
1444 struct {
1445 enum ib_flow_spec_type type;
1446 u16 size;
1447 };
1448 struct ib_flow_spec_eth eth;
240ae00e 1449 struct ib_flow_spec_ib ib;
319a441d
HHZ
1450 struct ib_flow_spec_ipv4 ipv4;
1451 struct ib_flow_spec_tcp_udp tcp_udp;
1452};
1453
1454struct ib_flow_attr {
1455 enum ib_flow_attr_type type;
1456 u16 size;
1457 u16 priority;
1458 u32 flags;
1459 u8 num_of_specs;
1460 u8 port;
1461 /* Following are the optional layers according to user request
1462 * struct ib_flow_spec_xxx
1463 * struct ib_flow_spec_yyy
1464 */
1465};
1466
1467struct ib_flow {
1468 struct ib_qp *qp;
1469 struct ib_uobject *uobject;
1470};
1471
4cd7c947 1472struct ib_mad_hdr;
1da177e4
LT
1473struct ib_grh;
1474
1475enum ib_process_mad_flags {
1476 IB_MAD_IGNORE_MKEY = 1,
1477 IB_MAD_IGNORE_BKEY = 2,
1478 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1479};
1480
1481enum ib_mad_result {
1482 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1483 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1484 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1485 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1486};
1487
1488#define IB_DEVICE_NAME_MAX 64
1489
1490struct ib_cache {
1491 rwlock_t lock;
1492 struct ib_event_handler event_handler;
1493 struct ib_pkey_cache **pkey_cache;
03db3a2d 1494 struct ib_gid_table **gid_cache;
6fb9cdbf 1495 u8 *lmc_cache;
1da177e4
LT
1496};
1497
9b513090
RC
1498struct ib_dma_mapping_ops {
1499 int (*mapping_error)(struct ib_device *dev,
1500 u64 dma_addr);
1501 u64 (*map_single)(struct ib_device *dev,
1502 void *ptr, size_t size,
1503 enum dma_data_direction direction);
1504 void (*unmap_single)(struct ib_device *dev,
1505 u64 addr, size_t size,
1506 enum dma_data_direction direction);
1507 u64 (*map_page)(struct ib_device *dev,
1508 struct page *page, unsigned long offset,
1509 size_t size,
1510 enum dma_data_direction direction);
1511 void (*unmap_page)(struct ib_device *dev,
1512 u64 addr, size_t size,
1513 enum dma_data_direction direction);
1514 int (*map_sg)(struct ib_device *dev,
1515 struct scatterlist *sg, int nents,
1516 enum dma_data_direction direction);
1517 void (*unmap_sg)(struct ib_device *dev,
1518 struct scatterlist *sg, int nents,
1519 enum dma_data_direction direction);
9b513090
RC
1520 void (*sync_single_for_cpu)(struct ib_device *dev,
1521 u64 dma_handle,
1522 size_t size,
4deccd6d 1523 enum dma_data_direction dir);
9b513090
RC
1524 void (*sync_single_for_device)(struct ib_device *dev,
1525 u64 dma_handle,
1526 size_t size,
1527 enum dma_data_direction dir);
1528 void *(*alloc_coherent)(struct ib_device *dev,
1529 size_t size,
1530 u64 *dma_handle,
1531 gfp_t flag);
1532 void (*free_coherent)(struct ib_device *dev,
1533 size_t size, void *cpu_addr,
1534 u64 dma_handle);
1535};
1536
07ebafba
TT
1537struct iw_cm_verbs;
1538
7738613e
IW
1539struct ib_port_immutable {
1540 int pkey_tbl_len;
1541 int gid_tbl_len;
f9b22e35 1542 u32 core_cap_flags;
337877a4 1543 u32 max_mad_size;
7738613e
IW
1544};
1545
1da177e4
LT
1546struct ib_device {
1547 struct device *dma_device;
1548
1549 char name[IB_DEVICE_NAME_MAX];
1550
1551 struct list_head event_handler_list;
1552 spinlock_t event_handler_lock;
1553
17a55f79 1554 spinlock_t client_data_lock;
1da177e4 1555 struct list_head core_list;
7c1eb45a
HE
1556 /* Access to the client_data_list is protected by the client_data_lock
1557 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1558 struct list_head client_data_list;
1da177e4
LT
1559
1560 struct ib_cache cache;
7738613e
IW
1561 /**
1562 * port_immutable is indexed by port number
1563 */
1564 struct ib_port_immutable *port_immutable;
1da177e4 1565
f4fd0b22
MT
1566 int num_comp_vectors;
1567
07ebafba
TT
1568 struct iw_cm_verbs *iwcm;
1569
7f624d02
SW
1570 int (*get_protocol_stats)(struct ib_device *device,
1571 union rdma_protocol_stats *stats);
1da177e4 1572 int (*query_device)(struct ib_device *device,
2528e33e
MB
1573 struct ib_device_attr *device_attr,
1574 struct ib_udata *udata);
1da177e4
LT
1575 int (*query_port)(struct ib_device *device,
1576 u8 port_num,
1577 struct ib_port_attr *port_attr);
a3f5adaf
EC
1578 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1579 u8 port_num);
03db3a2d
MB
1580 /* When calling get_netdev, the HW vendor's driver should return the
1581 * net device of device @device at port @port_num or NULL if such
1582 * a net device doesn't exist. The vendor driver should call dev_hold
1583 * on this net device. The HW vendor's device driver must guarantee
1584 * that this function returns NULL before the net device reaches
1585 * NETDEV_UNREGISTER_FINAL state.
1586 */
1587 struct net_device *(*get_netdev)(struct ib_device *device,
1588 u8 port_num);
1da177e4
LT
1589 int (*query_gid)(struct ib_device *device,
1590 u8 port_num, int index,
1591 union ib_gid *gid);
03db3a2d
MB
1592 /* When calling add_gid, the HW vendor's driver should
1593 * add the gid of device @device at gid index @index of
1594 * port @port_num to be @gid. Meta-info of that gid (for example,
1595 * the network device related to this gid is available
1596 * at @attr. @context allows the HW vendor driver to store extra
1597 * information together with a GID entry. The HW vendor may allocate
1598 * memory to contain this information and store it in @context when a
1599 * new GID entry is written to. Params are consistent until the next
1600 * call of add_gid or delete_gid. The function should return 0 on
1601 * success or error otherwise. The function could be called
1602 * concurrently for different ports. This function is only called
1603 * when roce_gid_table is used.
1604 */
1605 int (*add_gid)(struct ib_device *device,
1606 u8 port_num,
1607 unsigned int index,
1608 const union ib_gid *gid,
1609 const struct ib_gid_attr *attr,
1610 void **context);
1611 /* When calling del_gid, the HW vendor's driver should delete the
1612 * gid of device @device at gid index @index of port @port_num.
1613 * Upon the deletion of a GID entry, the HW vendor must free any
1614 * allocated memory. The caller will clear @context afterwards.
1615 * This function is only called when roce_gid_table is used.
1616 */
1617 int (*del_gid)(struct ib_device *device,
1618 u8 port_num,
1619 unsigned int index,
1620 void **context);
1da177e4
LT
1621 int (*query_pkey)(struct ib_device *device,
1622 u8 port_num, u16 index, u16 *pkey);
1623 int (*modify_device)(struct ib_device *device,
1624 int device_modify_mask,
1625 struct ib_device_modify *device_modify);
1626 int (*modify_port)(struct ib_device *device,
1627 u8 port_num, int port_modify_mask,
1628 struct ib_port_modify *port_modify);
e2773c06
RD
1629 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1630 struct ib_udata *udata);
1631 int (*dealloc_ucontext)(struct ib_ucontext *context);
1632 int (*mmap)(struct ib_ucontext *context,
1633 struct vm_area_struct *vma);
1634 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1635 struct ib_ucontext *context,
1636 struct ib_udata *udata);
1da177e4
LT
1637 int (*dealloc_pd)(struct ib_pd *pd);
1638 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1639 struct ib_ah_attr *ah_attr);
1640 int (*modify_ah)(struct ib_ah *ah,
1641 struct ib_ah_attr *ah_attr);
1642 int (*query_ah)(struct ib_ah *ah,
1643 struct ib_ah_attr *ah_attr);
1644 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1645 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1646 struct ib_srq_init_attr *srq_init_attr,
1647 struct ib_udata *udata);
1648 int (*modify_srq)(struct ib_srq *srq,
1649 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1650 enum ib_srq_attr_mask srq_attr_mask,
1651 struct ib_udata *udata);
d41fcc67
RD
1652 int (*query_srq)(struct ib_srq *srq,
1653 struct ib_srq_attr *srq_attr);
1654 int (*destroy_srq)(struct ib_srq *srq);
1655 int (*post_srq_recv)(struct ib_srq *srq,
1656 struct ib_recv_wr *recv_wr,
1657 struct ib_recv_wr **bad_recv_wr);
1da177e4 1658 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1659 struct ib_qp_init_attr *qp_init_attr,
1660 struct ib_udata *udata);
1da177e4
LT
1661 int (*modify_qp)(struct ib_qp *qp,
1662 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1663 int qp_attr_mask,
1664 struct ib_udata *udata);
1da177e4
LT
1665 int (*query_qp)(struct ib_qp *qp,
1666 struct ib_qp_attr *qp_attr,
1667 int qp_attr_mask,
1668 struct ib_qp_init_attr *qp_init_attr);
1669 int (*destroy_qp)(struct ib_qp *qp);
1670 int (*post_send)(struct ib_qp *qp,
1671 struct ib_send_wr *send_wr,
1672 struct ib_send_wr **bad_send_wr);
1673 int (*post_recv)(struct ib_qp *qp,
1674 struct ib_recv_wr *recv_wr,
1675 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1676 struct ib_cq * (*create_cq)(struct ib_device *device,
1677 const struct ib_cq_init_attr *attr,
e2773c06
RD
1678 struct ib_ucontext *context,
1679 struct ib_udata *udata);
2dd57162
EC
1680 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1681 u16 cq_period);
1da177e4 1682 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1683 int (*resize_cq)(struct ib_cq *cq, int cqe,
1684 struct ib_udata *udata);
1da177e4
LT
1685 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1686 struct ib_wc *wc);
1687 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1688 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1689 enum ib_cq_notify_flags flags);
1da177e4
LT
1690 int (*req_ncomp_notif)(struct ib_cq *cq,
1691 int wc_cnt);
1692 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1693 int mr_access_flags);
1694 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1695 struct ib_phys_buf *phys_buf_array,
1696 int num_phys_buf,
1697 int mr_access_flags,
1698 u64 *iova_start);
e2773c06 1699 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1700 u64 start, u64 length,
1701 u64 virt_addr,
e2773c06
RD
1702 int mr_access_flags,
1703 struct ib_udata *udata);
7e6edb9b
MB
1704 int (*rereg_user_mr)(struct ib_mr *mr,
1705 int flags,
1706 u64 start, u64 length,
1707 u64 virt_addr,
1708 int mr_access_flags,
1709 struct ib_pd *pd,
1710 struct ib_udata *udata);
1da177e4
LT
1711 int (*query_mr)(struct ib_mr *mr,
1712 struct ib_mr_attr *mr_attr);
1713 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1714 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1715 enum ib_mr_type mr_type,
1716 u32 max_num_sg);
00f7ec36
SW
1717 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1718 int page_list_len);
1719 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1720 int (*rereg_phys_mr)(struct ib_mr *mr,
1721 int mr_rereg_mask,
1722 struct ib_pd *pd,
1723 struct ib_phys_buf *phys_buf_array,
1724 int num_phys_buf,
1725 int mr_access_flags,
1726 u64 *iova_start);
7083e42e
SM
1727 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1728 enum ib_mw_type type);
1da177e4
LT
1729 int (*bind_mw)(struct ib_qp *qp,
1730 struct ib_mw *mw,
1731 struct ib_mw_bind *mw_bind);
1732 int (*dealloc_mw)(struct ib_mw *mw);
1733 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1734 int mr_access_flags,
1735 struct ib_fmr_attr *fmr_attr);
1736 int (*map_phys_fmr)(struct ib_fmr *fmr,
1737 u64 *page_list, int list_len,
1738 u64 iova);
1739 int (*unmap_fmr)(struct list_head *fmr_list);
1740 int (*dealloc_fmr)(struct ib_fmr *fmr);
1741 int (*attach_mcast)(struct ib_qp *qp,
1742 union ib_gid *gid,
1743 u16 lid);
1744 int (*detach_mcast)(struct ib_qp *qp,
1745 union ib_gid *gid,
1746 u16 lid);
1747 int (*process_mad)(struct ib_device *device,
1748 int process_mad_flags,
1749 u8 port_num,
a97e2d86
IW
1750 const struct ib_wc *in_wc,
1751 const struct ib_grh *in_grh,
4cd7c947
IW
1752 const struct ib_mad_hdr *in_mad,
1753 size_t in_mad_size,
1754 struct ib_mad_hdr *out_mad,
1755 size_t *out_mad_size,
1756 u16 *out_mad_pkey_index);
59991f94
SH
1757 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1758 struct ib_ucontext *ucontext,
1759 struct ib_udata *udata);
1760 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1761 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1762 struct ib_flow_attr
1763 *flow_attr,
1764 int domain);
1765 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1766 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1767 struct ib_mr_status *mr_status);
1da177e4 1768
9b513090
RC
1769 struct ib_dma_mapping_ops *dma_ops;
1770
e2773c06 1771 struct module *owner;
f4e91eb4 1772 struct device dev;
35be0681 1773 struct kobject *ports_parent;
1da177e4
LT
1774 struct list_head port_list;
1775
1776 enum {
1777 IB_DEV_UNINITIALIZED,
1778 IB_DEV_REGISTERED,
1779 IB_DEV_UNREGISTERED
1780 } reg_state;
1781
274c0891 1782 int uverbs_abi_ver;
17a55f79 1783 u64 uverbs_cmd_mask;
f21519b2 1784 u64 uverbs_ex_cmd_mask;
274c0891 1785
c5bcbbb9 1786 char node_desc[64];
cf311cd4 1787 __be64 node_guid;
96f15c03 1788 u32 local_dma_lkey;
4139032b 1789 u16 is_switch:1;
1da177e4
LT
1790 u8 node_type;
1791 u8 phys_port_cnt;
7738613e
IW
1792
1793 /**
1794 * The following mandatory functions are used only at device
1795 * registration. Keep functions such as these at the end of this
1796 * structure to avoid cache line misses when accessing struct ib_device
1797 * in fast paths.
1798 */
1799 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1800};
1801
1802struct ib_client {
1803 char *name;
1804 void (*add) (struct ib_device *);
7c1eb45a 1805 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1806
9268f72d
YK
1807 /* Returns the net_dev belonging to this ib_client and matching the
1808 * given parameters.
1809 * @dev: An RDMA device that the net_dev use for communication.
1810 * @port: A physical port number on the RDMA device.
1811 * @pkey: P_Key that the net_dev uses if applicable.
1812 * @gid: A GID that the net_dev uses to communicate.
1813 * @addr: An IP address the net_dev is configured with.
1814 * @client_data: The device's client data set by ib_set_client_data().
1815 *
1816 * An ib_client that implements a net_dev on top of RDMA devices
1817 * (such as IP over IB) should implement this callback, allowing the
1818 * rdma_cm module to find the right net_dev for a given request.
1819 *
1820 * The caller is responsible for calling dev_put on the returned
1821 * netdev. */
1822 struct net_device *(*get_net_dev_by_params)(
1823 struct ib_device *dev,
1824 u8 port,
1825 u16 pkey,
1826 const union ib_gid *gid,
1827 const struct sockaddr *addr,
1828 void *client_data);
1da177e4
LT
1829 struct list_head list;
1830};
1831
1832struct ib_device *ib_alloc_device(size_t size);
1833void ib_dealloc_device(struct ib_device *device);
1834
9a6edb60
RC
1835int ib_register_device(struct ib_device *device,
1836 int (*port_callback)(struct ib_device *,
1837 u8, struct kobject *));
1da177e4
LT
1838void ib_unregister_device(struct ib_device *device);
1839
1840int ib_register_client (struct ib_client *client);
1841void ib_unregister_client(struct ib_client *client);
1842
1843void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1844void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1845 void *data);
1846
e2773c06
RD
1847static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1848{
1849 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1850}
1851
1852static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1853{
43c61165 1854 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1855}
1856
8a51866f
RD
1857/**
1858 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1859 * contains all required attributes and no attributes not allowed for
1860 * the given QP state transition.
1861 * @cur_state: Current QP state
1862 * @next_state: Next QP state
1863 * @type: QP type
1864 * @mask: Mask of supplied QP attributes
dd5f03be 1865 * @ll : link layer of port
8a51866f
RD
1866 *
1867 * This function is a helper function that a low-level driver's
1868 * modify_qp method can use to validate the consumer's input. It
1869 * checks that cur_state and next_state are valid QP states, that a
1870 * transition from cur_state to next_state is allowed by the IB spec,
1871 * and that the attribute mask supplied is allowed for the transition.
1872 */
1873int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1874 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1875 enum rdma_link_layer ll);
8a51866f 1876
1da177e4
LT
1877int ib_register_event_handler (struct ib_event_handler *event_handler);
1878int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1879void ib_dispatch_event(struct ib_event *event);
1880
1881int ib_query_device(struct ib_device *device,
1882 struct ib_device_attr *device_attr);
1883
1884int ib_query_port(struct ib_device *device,
1885 u8 port_num, struct ib_port_attr *port_attr);
1886
a3f5adaf
EC
1887enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1888 u8 port_num);
1889
4139032b
HR
1890/**
1891 * rdma_cap_ib_switch - Check if the device is IB switch
1892 * @device: Device to check
1893 *
1894 * Device driver is responsible for setting is_switch bit on
1895 * in ib_device structure at init time.
1896 *
1897 * Return: true if the device is IB switch.
1898 */
1899static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1900{
1901 return device->is_switch;
1902}
1903
0cf18d77
IW
1904/**
1905 * rdma_start_port - Return the first valid port number for the device
1906 * specified
1907 *
1908 * @device: Device to be checked
1909 *
1910 * Return start port number
1911 */
1912static inline u8 rdma_start_port(const struct ib_device *device)
1913{
4139032b 1914 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1915}
1916
1917/**
1918 * rdma_end_port - Return the last valid port number for the device
1919 * specified
1920 *
1921 * @device: Device to be checked
1922 *
1923 * Return last port number
1924 */
1925static inline u8 rdma_end_port(const struct ib_device *device)
1926{
4139032b 1927 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1928}
1929
5ede9289 1930static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1931{
f9b22e35 1932 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1933}
1934
5ede9289 1935static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1936{
f9b22e35 1937 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1938}
1939
5ede9289 1940static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 1941{
f9b22e35 1942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
1943}
1944
5ede9289 1945static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 1946{
f9b22e35
IW
1947 return device->port_immutable[port_num].core_cap_flags &
1948 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
1949}
1950
c757dea8 1951/**
296ec009 1952 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1953 * Management Datagrams.
296ec009
MW
1954 * @device: Device to check
1955 * @port_num: Port number to check
c757dea8 1956 *
296ec009
MW
1957 * Management Datagrams (MAD) are a required part of the InfiniBand
1958 * specification and are supported on all InfiniBand devices. A slightly
1959 * extended version are also supported on OPA interfaces.
c757dea8 1960 *
296ec009 1961 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 1962 */
5ede9289 1963static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 1964{
f9b22e35 1965 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
1966}
1967
65995fee
IW
1968/**
1969 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1970 * Management Datagrams.
1971 * @device: Device to check
1972 * @port_num: Port number to check
1973 *
1974 * Intel OmniPath devices extend and/or replace the InfiniBand Management
1975 * datagrams with their own versions. These OPA MADs share many but not all of
1976 * the characteristics of InfiniBand MADs.
1977 *
1978 * OPA MADs differ in the following ways:
1979 *
1980 * 1) MADs are variable size up to 2K
1981 * IBTA defined MADs remain fixed at 256 bytes
1982 * 2) OPA SMPs must carry valid PKeys
1983 * 3) OPA SMP packets are a different format
1984 *
1985 * Return: true if the port supports OPA MAD packet formats.
1986 */
1987static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1988{
1989 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1990 == RDMA_CORE_CAP_OPA_MAD;
1991}
1992
29541e3a 1993/**
296ec009
MW
1994 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1995 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1996 * @device: Device to check
1997 * @port_num: Port number to check
29541e3a 1998 *
296ec009
MW
1999 * Each InfiniBand node is required to provide a Subnet Management Agent
2000 * that the subnet manager can access. Prior to the fabric being fully
2001 * configured by the subnet manager, the SMA is accessed via a well known
2002 * interface called the Subnet Management Interface (SMI). This interface
2003 * uses directed route packets to communicate with the SM to get around the
2004 * chicken and egg problem of the SM needing to know what's on the fabric
2005 * in order to configure the fabric, and needing to configure the fabric in
2006 * order to send packets to the devices on the fabric. These directed
2007 * route packets do not need the fabric fully configured in order to reach
2008 * their destination. The SMI is the only method allowed to send
2009 * directed route packets on an InfiniBand fabric.
29541e3a 2010 *
296ec009 2011 * Return: true if the port provides an SMI.
29541e3a 2012 */
5ede9289 2013static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2014{
f9b22e35 2015 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2016}
2017
72219cea
MW
2018/**
2019 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2020 * Communication Manager.
296ec009
MW
2021 * @device: Device to check
2022 * @port_num: Port number to check
72219cea 2023 *
296ec009
MW
2024 * The InfiniBand Communication Manager is one of many pre-defined General
2025 * Service Agents (GSA) that are accessed via the General Service
2026 * Interface (GSI). It's role is to facilitate establishment of connections
2027 * between nodes as well as other management related tasks for established
2028 * connections.
72219cea 2029 *
296ec009
MW
2030 * Return: true if the port supports an IB CM (this does not guarantee that
2031 * a CM is actually running however).
72219cea 2032 */
5ede9289 2033static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2034{
f9b22e35 2035 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2036}
2037
04215330
MW
2038/**
2039 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2040 * Communication Manager.
296ec009
MW
2041 * @device: Device to check
2042 * @port_num: Port number to check
04215330 2043 *
296ec009
MW
2044 * Similar to above, but specific to iWARP connections which have a different
2045 * managment protocol than InfiniBand.
04215330 2046 *
296ec009
MW
2047 * Return: true if the port supports an iWARP CM (this does not guarantee that
2048 * a CM is actually running however).
04215330 2049 */
5ede9289 2050static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2051{
f9b22e35 2052 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2053}
2054
fe53ba2f
MW
2055/**
2056 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2057 * Subnet Administration.
296ec009
MW
2058 * @device: Device to check
2059 * @port_num: Port number to check
fe53ba2f 2060 *
296ec009
MW
2061 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2062 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2063 * fabrics, devices should resolve routes to other hosts by contacting the
2064 * SA to query the proper route.
fe53ba2f 2065 *
296ec009
MW
2066 * Return: true if the port should act as a client to the fabric Subnet
2067 * Administration interface. This does not imply that the SA service is
2068 * running locally.
fe53ba2f 2069 */
5ede9289 2070static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2071{
f9b22e35 2072 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2073}
2074
a31ad3b0
MW
2075/**
2076 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2077 * Multicast.
296ec009
MW
2078 * @device: Device to check
2079 * @port_num: Port number to check
a31ad3b0 2080 *
296ec009
MW
2081 * InfiniBand multicast registration is more complex than normal IPv4 or
2082 * IPv6 multicast registration. Each Host Channel Adapter must register
2083 * with the Subnet Manager when it wishes to join a multicast group. It
2084 * should do so only once regardless of how many queue pairs it subscribes
2085 * to this group. And it should leave the group only after all queue pairs
2086 * attached to the group have been detached.
a31ad3b0 2087 *
296ec009
MW
2088 * Return: true if the port must undertake the additional adminstrative
2089 * overhead of registering/unregistering with the SM and tracking of the
2090 * total number of queue pairs attached to the multicast group.
a31ad3b0 2091 */
5ede9289 2092static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2093{
2094 return rdma_cap_ib_sa(device, port_num);
2095}
2096
30a74ef4
MW
2097/**
2098 * rdma_cap_af_ib - Check if the port of device has the capability
2099 * Native Infiniband Address.
296ec009
MW
2100 * @device: Device to check
2101 * @port_num: Port number to check
30a74ef4 2102 *
296ec009
MW
2103 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2104 * GID. RoCE uses a different mechanism, but still generates a GID via
2105 * a prescribed mechanism and port specific data.
30a74ef4 2106 *
296ec009
MW
2107 * Return: true if the port uses a GID address to identify devices on the
2108 * network.
30a74ef4 2109 */
5ede9289 2110static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2111{
f9b22e35 2112 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2113}
2114
227128fc
MW
2115/**
2116 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2117 * Ethernet Address Handle.
2118 * @device: Device to check
2119 * @port_num: Port number to check
227128fc 2120 *
296ec009
MW
2121 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2122 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2123 * port. Normally, packet headers are generated by the sending host
2124 * adapter, but when sending connectionless datagrams, we must manually
2125 * inject the proper headers for the fabric we are communicating over.
227128fc 2126 *
296ec009
MW
2127 * Return: true if we are running as a RoCE port and must force the
2128 * addition of a Global Route Header built from our Ethernet Address
2129 * Handle into our header list for connectionless packets.
227128fc 2130 */
5ede9289 2131static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2132{
f9b22e35 2133 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2134}
2135
337877a4
IW
2136/**
2137 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2138 *
2139 * @device: Device
2140 * @port_num: Port number
2141 *
2142 * This MAD size includes the MAD headers and MAD payload. No other headers
2143 * are included.
2144 *
2145 * Return the max MAD size required by the Port. Will return 0 if the port
2146 * does not support MADs
2147 */
2148static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2149{
2150 return device->port_immutable[port_num].max_mad_size;
2151}
2152
03db3a2d
MB
2153/**
2154 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2155 * @device: Device to check
2156 * @port_num: Port number to check
2157 *
2158 * RoCE GID table mechanism manages the various GIDs for a device.
2159 *
2160 * NOTE: if allocating the port's GID table has failed, this call will still
2161 * return true, but any RoCE GID table API will fail.
2162 *
2163 * Return: true if the port uses RoCE GID table mechanism in order to manage
2164 * its GIDs.
2165 */
2166static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2167 u8 port_num)
2168{
2169 return rdma_protocol_roce(device, port_num) &&
2170 device->add_gid && device->del_gid;
2171}
2172
1da177e4
LT
2173int ib_query_gid(struct ib_device *device,
2174 u8 port_num, int index, union ib_gid *gid);
2175
2176int ib_query_pkey(struct ib_device *device,
2177 u8 port_num, u16 index, u16 *pkey);
2178
2179int ib_modify_device(struct ib_device *device,
2180 int device_modify_mask,
2181 struct ib_device_modify *device_modify);
2182
2183int ib_modify_port(struct ib_device *device,
2184 u8 port_num, int port_modify_mask,
2185 struct ib_port_modify *port_modify);
2186
5eb620c8
YE
2187int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2188 u8 *port_num, u16 *index);
2189
2190int ib_find_pkey(struct ib_device *device,
2191 u8 port_num, u16 pkey, u16 *index);
2192
1da177e4
LT
2193/**
2194 * ib_alloc_pd - Allocates an unused protection domain.
2195 * @device: The device on which to allocate the protection domain.
2196 *
2197 * A protection domain object provides an association between QPs, shared
2198 * receive queues, address handles, memory regions, and memory windows.
2199 */
2200struct ib_pd *ib_alloc_pd(struct ib_device *device);
2201
2202/**
2203 * ib_dealloc_pd - Deallocates a protection domain.
2204 * @pd: The protection domain to deallocate.
2205 */
2206int ib_dealloc_pd(struct ib_pd *pd);
2207
2208/**
2209 * ib_create_ah - Creates an address handle for the given address vector.
2210 * @pd: The protection domain associated with the address handle.
2211 * @ah_attr: The attributes of the address vector.
2212 *
2213 * The address handle is used to reference a local or global destination
2214 * in all UD QP post sends.
2215 */
2216struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2217
4e00d694
SH
2218/**
2219 * ib_init_ah_from_wc - Initializes address handle attributes from a
2220 * work completion.
2221 * @device: Device on which the received message arrived.
2222 * @port_num: Port on which the received message arrived.
2223 * @wc: Work completion associated with the received message.
2224 * @grh: References the received global route header. This parameter is
2225 * ignored unless the work completion indicates that the GRH is valid.
2226 * @ah_attr: Returned attributes that can be used when creating an address
2227 * handle for replying to the message.
2228 */
73cdaaee
IW
2229int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2230 const struct ib_wc *wc, const struct ib_grh *grh,
2231 struct ib_ah_attr *ah_attr);
4e00d694 2232
513789ed
HR
2233/**
2234 * ib_create_ah_from_wc - Creates an address handle associated with the
2235 * sender of the specified work completion.
2236 * @pd: The protection domain associated with the address handle.
2237 * @wc: Work completion information associated with a received message.
2238 * @grh: References the received global route header. This parameter is
2239 * ignored unless the work completion indicates that the GRH is valid.
2240 * @port_num: The outbound port number to associate with the address.
2241 *
2242 * The address handle is used to reference a local or global destination
2243 * in all UD QP post sends.
2244 */
73cdaaee
IW
2245struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2246 const struct ib_grh *grh, u8 port_num);
513789ed 2247
1da177e4
LT
2248/**
2249 * ib_modify_ah - Modifies the address vector associated with an address
2250 * handle.
2251 * @ah: The address handle to modify.
2252 * @ah_attr: The new address vector attributes to associate with the
2253 * address handle.
2254 */
2255int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2256
2257/**
2258 * ib_query_ah - Queries the address vector associated with an address
2259 * handle.
2260 * @ah: The address handle to query.
2261 * @ah_attr: The address vector attributes associated with the address
2262 * handle.
2263 */
2264int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2265
2266/**
2267 * ib_destroy_ah - Destroys an address handle.
2268 * @ah: The address handle to destroy.
2269 */
2270int ib_destroy_ah(struct ib_ah *ah);
2271
d41fcc67
RD
2272/**
2273 * ib_create_srq - Creates a SRQ associated with the specified protection
2274 * domain.
2275 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2276 * @srq_init_attr: A list of initial attributes required to create the
2277 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2278 * the actual capabilities of the created SRQ.
d41fcc67
RD
2279 *
2280 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2281 * requested size of the SRQ, and set to the actual values allocated
2282 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2283 * will always be at least as large as the requested values.
2284 */
2285struct ib_srq *ib_create_srq(struct ib_pd *pd,
2286 struct ib_srq_init_attr *srq_init_attr);
2287
2288/**
2289 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2290 * @srq: The SRQ to modify.
2291 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2292 * the current values of selected SRQ attributes are returned.
2293 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2294 * are being modified.
2295 *
2296 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2297 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2298 * the number of receives queued drops below the limit.
2299 */
2300int ib_modify_srq(struct ib_srq *srq,
2301 struct ib_srq_attr *srq_attr,
2302 enum ib_srq_attr_mask srq_attr_mask);
2303
2304/**
2305 * ib_query_srq - Returns the attribute list and current values for the
2306 * specified SRQ.
2307 * @srq: The SRQ to query.
2308 * @srq_attr: The attributes of the specified SRQ.
2309 */
2310int ib_query_srq(struct ib_srq *srq,
2311 struct ib_srq_attr *srq_attr);
2312
2313/**
2314 * ib_destroy_srq - Destroys the specified SRQ.
2315 * @srq: The SRQ to destroy.
2316 */
2317int ib_destroy_srq(struct ib_srq *srq);
2318
2319/**
2320 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2321 * @srq: The SRQ to post the work request on.
2322 * @recv_wr: A list of work requests to post on the receive queue.
2323 * @bad_recv_wr: On an immediate failure, this parameter will reference
2324 * the work request that failed to be posted on the QP.
2325 */
2326static inline int ib_post_srq_recv(struct ib_srq *srq,
2327 struct ib_recv_wr *recv_wr,
2328 struct ib_recv_wr **bad_recv_wr)
2329{
2330 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2331}
2332
1da177e4
LT
2333/**
2334 * ib_create_qp - Creates a QP associated with the specified protection
2335 * domain.
2336 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2337 * @qp_init_attr: A list of initial attributes required to create the
2338 * QP. If QP creation succeeds, then the attributes are updated to
2339 * the actual capabilities of the created QP.
1da177e4
LT
2340 */
2341struct ib_qp *ib_create_qp(struct ib_pd *pd,
2342 struct ib_qp_init_attr *qp_init_attr);
2343
2344/**
2345 * ib_modify_qp - Modifies the attributes for the specified QP and then
2346 * transitions the QP to the given state.
2347 * @qp: The QP to modify.
2348 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2349 * the current values of selected QP attributes are returned.
2350 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2351 * are being modified.
2352 */
2353int ib_modify_qp(struct ib_qp *qp,
2354 struct ib_qp_attr *qp_attr,
2355 int qp_attr_mask);
2356
2357/**
2358 * ib_query_qp - Returns the attribute list and current values for the
2359 * specified QP.
2360 * @qp: The QP to query.
2361 * @qp_attr: The attributes of the specified QP.
2362 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2363 * @qp_init_attr: Additional attributes of the selected QP.
2364 *
2365 * The qp_attr_mask may be used to limit the query to gathering only the
2366 * selected attributes.
2367 */
2368int ib_query_qp(struct ib_qp *qp,
2369 struct ib_qp_attr *qp_attr,
2370 int qp_attr_mask,
2371 struct ib_qp_init_attr *qp_init_attr);
2372
2373/**
2374 * ib_destroy_qp - Destroys the specified QP.
2375 * @qp: The QP to destroy.
2376 */
2377int ib_destroy_qp(struct ib_qp *qp);
2378
d3d72d90 2379/**
0e0ec7e0
SH
2380 * ib_open_qp - Obtain a reference to an existing sharable QP.
2381 * @xrcd - XRC domain
2382 * @qp_open_attr: Attributes identifying the QP to open.
2383 *
2384 * Returns a reference to a sharable QP.
2385 */
2386struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2387 struct ib_qp_open_attr *qp_open_attr);
2388
2389/**
2390 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2391 * @qp: The QP handle to release
2392 *
0e0ec7e0
SH
2393 * The opened QP handle is released by the caller. The underlying
2394 * shared QP is not destroyed until all internal references are released.
d3d72d90 2395 */
0e0ec7e0 2396int ib_close_qp(struct ib_qp *qp);
d3d72d90 2397
1da177e4
LT
2398/**
2399 * ib_post_send - Posts a list of work requests to the send queue of
2400 * the specified QP.
2401 * @qp: The QP to post the work request on.
2402 * @send_wr: A list of work requests to post on the send queue.
2403 * @bad_send_wr: On an immediate failure, this parameter will reference
2404 * the work request that failed to be posted on the QP.
55464d46
BVA
2405 *
2406 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2407 * error is returned, the QP state shall not be affected,
2408 * ib_post_send() will return an immediate error after queueing any
2409 * earlier work requests in the list.
1da177e4
LT
2410 */
2411static inline int ib_post_send(struct ib_qp *qp,
2412 struct ib_send_wr *send_wr,
2413 struct ib_send_wr **bad_send_wr)
2414{
2415 return qp->device->post_send(qp, send_wr, bad_send_wr);
2416}
2417
2418/**
2419 * ib_post_recv - Posts a list of work requests to the receive queue of
2420 * the specified QP.
2421 * @qp: The QP to post the work request on.
2422 * @recv_wr: A list of work requests to post on the receive queue.
2423 * @bad_recv_wr: On an immediate failure, this parameter will reference
2424 * the work request that failed to be posted on the QP.
2425 */
2426static inline int ib_post_recv(struct ib_qp *qp,
2427 struct ib_recv_wr *recv_wr,
2428 struct ib_recv_wr **bad_recv_wr)
2429{
2430 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2431}
2432
2433/**
2434 * ib_create_cq - Creates a CQ on the specified device.
2435 * @device: The device on which to create the CQ.
2436 * @comp_handler: A user-specified callback that is invoked when a
2437 * completion event occurs on the CQ.
2438 * @event_handler: A user-specified callback that is invoked when an
2439 * asynchronous event not associated with a completion occurs on the CQ.
2440 * @cq_context: Context associated with the CQ returned to the user via
2441 * the associated completion and event handlers.
8e37210b 2442 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2443 *
2444 * Users can examine the cq structure to determine the actual CQ size.
2445 */
2446struct ib_cq *ib_create_cq(struct ib_device *device,
2447 ib_comp_handler comp_handler,
2448 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2449 void *cq_context,
2450 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2451
2452/**
2453 * ib_resize_cq - Modifies the capacity of the CQ.
2454 * @cq: The CQ to resize.
2455 * @cqe: The minimum size of the CQ.
2456 *
2457 * Users can examine the cq structure to determine the actual CQ size.
2458 */
2459int ib_resize_cq(struct ib_cq *cq, int cqe);
2460
2dd57162
EC
2461/**
2462 * ib_modify_cq - Modifies moderation params of the CQ
2463 * @cq: The CQ to modify.
2464 * @cq_count: number of CQEs that will trigger an event
2465 * @cq_period: max period of time in usec before triggering an event
2466 *
2467 */
2468int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2469
1da177e4
LT
2470/**
2471 * ib_destroy_cq - Destroys the specified CQ.
2472 * @cq: The CQ to destroy.
2473 */
2474int ib_destroy_cq(struct ib_cq *cq);
2475
2476/**
2477 * ib_poll_cq - poll a CQ for completion(s)
2478 * @cq:the CQ being polled
2479 * @num_entries:maximum number of completions to return
2480 * @wc:array of at least @num_entries &struct ib_wc where completions
2481 * will be returned
2482 *
2483 * Poll a CQ for (possibly multiple) completions. If the return value
2484 * is < 0, an error occurred. If the return value is >= 0, it is the
2485 * number of completions returned. If the return value is
2486 * non-negative and < num_entries, then the CQ was emptied.
2487 */
2488static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2489 struct ib_wc *wc)
2490{
2491 return cq->device->poll_cq(cq, num_entries, wc);
2492}
2493
2494/**
2495 * ib_peek_cq - Returns the number of unreaped completions currently
2496 * on the specified CQ.
2497 * @cq: The CQ to peek.
2498 * @wc_cnt: A minimum number of unreaped completions to check for.
2499 *
2500 * If the number of unreaped completions is greater than or equal to wc_cnt,
2501 * this function returns wc_cnt, otherwise, it returns the actual number of
2502 * unreaped completions.
2503 */
2504int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2505
2506/**
2507 * ib_req_notify_cq - Request completion notification on a CQ.
2508 * @cq: The CQ to generate an event for.
ed23a727
RD
2509 * @flags:
2510 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2511 * to request an event on the next solicited event or next work
2512 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2513 * may also be |ed in to request a hint about missed events, as
2514 * described below.
2515 *
2516 * Return Value:
2517 * < 0 means an error occurred while requesting notification
2518 * == 0 means notification was requested successfully, and if
2519 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2520 * were missed and it is safe to wait for another event. In
2521 * this case is it guaranteed that any work completions added
2522 * to the CQ since the last CQ poll will trigger a completion
2523 * notification event.
2524 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2525 * in. It means that the consumer must poll the CQ again to
2526 * make sure it is empty to avoid missing an event because of a
2527 * race between requesting notification and an entry being
2528 * added to the CQ. This return value means it is possible
2529 * (but not guaranteed) that a work completion has been added
2530 * to the CQ since the last poll without triggering a
2531 * completion notification event.
1da177e4
LT
2532 */
2533static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2534 enum ib_cq_notify_flags flags)
1da177e4 2535{
ed23a727 2536 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2537}
2538
2539/**
2540 * ib_req_ncomp_notif - Request completion notification when there are
2541 * at least the specified number of unreaped completions on the CQ.
2542 * @cq: The CQ to generate an event for.
2543 * @wc_cnt: The number of unreaped completions that should be on the
2544 * CQ before an event is generated.
2545 */
2546static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2547{
2548 return cq->device->req_ncomp_notif ?
2549 cq->device->req_ncomp_notif(cq, wc_cnt) :
2550 -ENOSYS;
2551}
2552
2553/**
2554 * ib_get_dma_mr - Returns a memory region for system memory that is
2555 * usable for DMA.
2556 * @pd: The protection domain associated with the memory region.
2557 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2558 *
2559 * Note that the ib_dma_*() functions defined below must be used
2560 * to create/destroy addresses used with the Lkey or Rkey returned
2561 * by ib_get_dma_mr().
1da177e4
LT
2562 */
2563struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2564
9b513090
RC
2565/**
2566 * ib_dma_mapping_error - check a DMA addr for error
2567 * @dev: The device for which the dma_addr was created
2568 * @dma_addr: The DMA address to check
2569 */
2570static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2571{
d1998ef3
BC
2572 if (dev->dma_ops)
2573 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2574 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2575}
2576
2577/**
2578 * ib_dma_map_single - Map a kernel virtual address to DMA address
2579 * @dev: The device for which the dma_addr is to be created
2580 * @cpu_addr: The kernel virtual address
2581 * @size: The size of the region in bytes
2582 * @direction: The direction of the DMA
2583 */
2584static inline u64 ib_dma_map_single(struct ib_device *dev,
2585 void *cpu_addr, size_t size,
2586 enum dma_data_direction direction)
2587{
d1998ef3
BC
2588 if (dev->dma_ops)
2589 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2590 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2591}
2592
2593/**
2594 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2595 * @dev: The device for which the DMA address was created
2596 * @addr: The DMA address
2597 * @size: The size of the region in bytes
2598 * @direction: The direction of the DMA
2599 */
2600static inline void ib_dma_unmap_single(struct ib_device *dev,
2601 u64 addr, size_t size,
2602 enum dma_data_direction direction)
2603{
d1998ef3
BC
2604 if (dev->dma_ops)
2605 dev->dma_ops->unmap_single(dev, addr, size, direction);
2606 else
9b513090
RC
2607 dma_unmap_single(dev->dma_device, addr, size, direction);
2608}
2609
cb9fbc5c
AK
2610static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2611 void *cpu_addr, size_t size,
2612 enum dma_data_direction direction,
2613 struct dma_attrs *attrs)
2614{
2615 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2616 direction, attrs);
2617}
2618
2619static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2620 u64 addr, size_t size,
2621 enum dma_data_direction direction,
2622 struct dma_attrs *attrs)
2623{
2624 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2625 direction, attrs);
2626}
2627
9b513090
RC
2628/**
2629 * ib_dma_map_page - Map a physical page to DMA address
2630 * @dev: The device for which the dma_addr is to be created
2631 * @page: The page to be mapped
2632 * @offset: The offset within the page
2633 * @size: The size of the region in bytes
2634 * @direction: The direction of the DMA
2635 */
2636static inline u64 ib_dma_map_page(struct ib_device *dev,
2637 struct page *page,
2638 unsigned long offset,
2639 size_t size,
2640 enum dma_data_direction direction)
2641{
d1998ef3
BC
2642 if (dev->dma_ops)
2643 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2644 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2645}
2646
2647/**
2648 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2649 * @dev: The device for which the DMA address was created
2650 * @addr: The DMA address
2651 * @size: The size of the region in bytes
2652 * @direction: The direction of the DMA
2653 */
2654static inline void ib_dma_unmap_page(struct ib_device *dev,
2655 u64 addr, size_t size,
2656 enum dma_data_direction direction)
2657{
d1998ef3
BC
2658 if (dev->dma_ops)
2659 dev->dma_ops->unmap_page(dev, addr, size, direction);
2660 else
9b513090
RC
2661 dma_unmap_page(dev->dma_device, addr, size, direction);
2662}
2663
2664/**
2665 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2666 * @dev: The device for which the DMA addresses are to be created
2667 * @sg: The array of scatter/gather entries
2668 * @nents: The number of scatter/gather entries
2669 * @direction: The direction of the DMA
2670 */
2671static inline int ib_dma_map_sg(struct ib_device *dev,
2672 struct scatterlist *sg, int nents,
2673 enum dma_data_direction direction)
2674{
d1998ef3
BC
2675 if (dev->dma_ops)
2676 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2677 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2678}
2679
2680/**
2681 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2682 * @dev: The device for which the DMA addresses were created
2683 * @sg: The array of scatter/gather entries
2684 * @nents: The number of scatter/gather entries
2685 * @direction: The direction of the DMA
2686 */
2687static inline void ib_dma_unmap_sg(struct ib_device *dev,
2688 struct scatterlist *sg, int nents,
2689 enum dma_data_direction direction)
2690{
d1998ef3
BC
2691 if (dev->dma_ops)
2692 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2693 else
9b513090
RC
2694 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2695}
2696
cb9fbc5c
AK
2697static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2698 struct scatterlist *sg, int nents,
2699 enum dma_data_direction direction,
2700 struct dma_attrs *attrs)
2701{
2702 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2703}
2704
2705static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2706 struct scatterlist *sg, int nents,
2707 enum dma_data_direction direction,
2708 struct dma_attrs *attrs)
2709{
2710 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2711}
9b513090
RC
2712/**
2713 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2714 * @dev: The device for which the DMA addresses were created
2715 * @sg: The scatter/gather entry
ea58a595
MM
2716 *
2717 * Note: this function is obsolete. To do: change all occurrences of
2718 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2719 */
2720static inline u64 ib_sg_dma_address(struct ib_device *dev,
2721 struct scatterlist *sg)
2722{
d1998ef3 2723 return sg_dma_address(sg);
9b513090
RC
2724}
2725
2726/**
2727 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2728 * @dev: The device for which the DMA addresses were created
2729 * @sg: The scatter/gather entry
ea58a595
MM
2730 *
2731 * Note: this function is obsolete. To do: change all occurrences of
2732 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2733 */
2734static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2735 struct scatterlist *sg)
2736{
d1998ef3 2737 return sg_dma_len(sg);
9b513090
RC
2738}
2739
2740/**
2741 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2742 * @dev: The device for which the DMA address was created
2743 * @addr: The DMA address
2744 * @size: The size of the region in bytes
2745 * @dir: The direction of the DMA
2746 */
2747static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2748 u64 addr,
2749 size_t size,
2750 enum dma_data_direction dir)
2751{
d1998ef3
BC
2752 if (dev->dma_ops)
2753 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2754 else
9b513090
RC
2755 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2756}
2757
2758/**
2759 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2760 * @dev: The device for which the DMA address was created
2761 * @addr: The DMA address
2762 * @size: The size of the region in bytes
2763 * @dir: The direction of the DMA
2764 */
2765static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2766 u64 addr,
2767 size_t size,
2768 enum dma_data_direction dir)
2769{
d1998ef3
BC
2770 if (dev->dma_ops)
2771 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2772 else
9b513090
RC
2773 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2774}
2775
2776/**
2777 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2778 * @dev: The device for which the DMA address is requested
2779 * @size: The size of the region to allocate in bytes
2780 * @dma_handle: A pointer for returning the DMA address of the region
2781 * @flag: memory allocator flags
2782 */
2783static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2784 size_t size,
2785 u64 *dma_handle,
2786 gfp_t flag)
2787{
d1998ef3
BC
2788 if (dev->dma_ops)
2789 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2790 else {
2791 dma_addr_t handle;
2792 void *ret;
2793
2794 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2795 *dma_handle = handle;
2796 return ret;
2797 }
9b513090
RC
2798}
2799
2800/**
2801 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2802 * @dev: The device for which the DMA addresses were allocated
2803 * @size: The size of the region
2804 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2805 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2806 */
2807static inline void ib_dma_free_coherent(struct ib_device *dev,
2808 size_t size, void *cpu_addr,
2809 u64 dma_handle)
2810{
d1998ef3
BC
2811 if (dev->dma_ops)
2812 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2813 else
9b513090
RC
2814 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2815}
2816
1da177e4
LT
2817/**
2818 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2819 * by an HCA.
2820 * @pd: The protection domain associated assigned to the registered region.
2821 * @phys_buf_array: Specifies a list of physical buffers to use in the
2822 * memory region.
2823 * @num_phys_buf: Specifies the size of the phys_buf_array.
2824 * @mr_access_flags: Specifies the memory access rights.
2825 * @iova_start: The offset of the region's starting I/O virtual address.
2826 */
2827struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2828 struct ib_phys_buf *phys_buf_array,
2829 int num_phys_buf,
2830 int mr_access_flags,
2831 u64 *iova_start);
2832
2833/**
2834 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2835 * Conceptually, this call performs the functions deregister memory region
2836 * followed by register physical memory region. Where possible,
2837 * resources are reused instead of deallocated and reallocated.
2838 * @mr: The memory region to modify.
2839 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2840 * properties of the memory region are being modified.
2841 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2842 * the new protection domain to associated with the memory region,
2843 * otherwise, this parameter is ignored.
2844 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2845 * field specifies a list of physical buffers to use in the new
2846 * translation, otherwise, this parameter is ignored.
2847 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2848 * field specifies the size of the phys_buf_array, otherwise, this
2849 * parameter is ignored.
2850 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2851 * field specifies the new memory access rights, otherwise, this
2852 * parameter is ignored.
2853 * @iova_start: The offset of the region's starting I/O virtual address.
2854 */
2855int ib_rereg_phys_mr(struct ib_mr *mr,
2856 int mr_rereg_mask,
2857 struct ib_pd *pd,
2858 struct ib_phys_buf *phys_buf_array,
2859 int num_phys_buf,
2860 int mr_access_flags,
2861 u64 *iova_start);
2862
2863/**
2864 * ib_query_mr - Retrieves information about a specific memory region.
2865 * @mr: The memory region to retrieve information about.
2866 * @mr_attr: The attributes of the specified memory region.
2867 */
2868int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2869
2870/**
2871 * ib_dereg_mr - Deregisters a memory region and removes it from the
2872 * HCA translation table.
2873 * @mr: The memory region to deregister.
7083e42e
SM
2874 *
2875 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2876 */
2877int ib_dereg_mr(struct ib_mr *mr);
2878
9bee178b
SG
2879struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2880 enum ib_mr_type mr_type,
2881 u32 max_num_sg);
17cd3a2d 2882
00f7ec36
SW
2883/**
2884 * ib_alloc_fast_reg_page_list - Allocates a page list array
2885 * @device - ib device pointer.
2886 * @page_list_len - size of the page list array to be allocated.
2887 *
2888 * This allocates and returns a struct ib_fast_reg_page_list * and a
2889 * page_list array that is at least page_list_len in size. The actual
2890 * size is returned in max_page_list_len. The caller is responsible
2891 * for initializing the contents of the page_list array before posting
2892 * a send work request with the IB_WC_FAST_REG_MR opcode.
2893 *
2894 * The page_list array entries must be translated using one of the
2895 * ib_dma_*() functions just like the addresses passed to
2896 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2897 * ib_fast_reg_page_list must not be modified by the caller until the
2898 * IB_WC_FAST_REG_MR work request completes.
2899 */
2900struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2901 struct ib_device *device, int page_list_len);
2902
2903/**
2904 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2905 * page list array.
2906 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2907 */
2908void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2909
2910/**
2911 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2912 * R_Key and L_Key.
2913 * @mr - struct ib_mr pointer to be updated.
2914 * @newkey - new key to be used.
2915 */
2916static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2917{
2918 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2919 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2920}
2921
7083e42e
SM
2922/**
2923 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2924 * for calculating a new rkey for type 2 memory windows.
2925 * @rkey - the rkey to increment.
2926 */
2927static inline u32 ib_inc_rkey(u32 rkey)
2928{
2929 const u32 mask = 0x000000ff;
2930 return ((rkey + 1) & mask) | (rkey & ~mask);
2931}
2932
1da177e4
LT
2933/**
2934 * ib_alloc_mw - Allocates a memory window.
2935 * @pd: The protection domain associated with the memory window.
7083e42e 2936 * @type: The type of the memory window (1 or 2).
1da177e4 2937 */
7083e42e 2938struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2939
2940/**
2941 * ib_bind_mw - Posts a work request to the send queue of the specified
2942 * QP, which binds the memory window to the given address range and
2943 * remote access attributes.
2944 * @qp: QP to post the bind work request on.
2945 * @mw: The memory window to bind.
2946 * @mw_bind: Specifies information about the memory window, including
2947 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2948 *
2949 * If there is no immediate error, the function will update the rkey member
2950 * of the mw parameter to its new value. The bind operation can still fail
2951 * asynchronously.
1da177e4
LT
2952 */
2953static inline int ib_bind_mw(struct ib_qp *qp,
2954 struct ib_mw *mw,
2955 struct ib_mw_bind *mw_bind)
2956{
2957 /* XXX reference counting in corresponding MR? */
2958 return mw->device->bind_mw ?
2959 mw->device->bind_mw(qp, mw, mw_bind) :
2960 -ENOSYS;
2961}
2962
2963/**
2964 * ib_dealloc_mw - Deallocates a memory window.
2965 * @mw: The memory window to deallocate.
2966 */
2967int ib_dealloc_mw(struct ib_mw *mw);
2968
2969/**
2970 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2971 * @pd: The protection domain associated with the unmapped region.
2972 * @mr_access_flags: Specifies the memory access rights.
2973 * @fmr_attr: Attributes of the unmapped region.
2974 *
2975 * A fast memory region must be mapped before it can be used as part of
2976 * a work request.
2977 */
2978struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2979 int mr_access_flags,
2980 struct ib_fmr_attr *fmr_attr);
2981
2982/**
2983 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2984 * @fmr: The fast memory region to associate with the pages.
2985 * @page_list: An array of physical pages to map to the fast memory region.
2986 * @list_len: The number of pages in page_list.
2987 * @iova: The I/O virtual address to use with the mapped region.
2988 */
2989static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2990 u64 *page_list, int list_len,
2991 u64 iova)
2992{
2993 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2994}
2995
2996/**
2997 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2998 * @fmr_list: A linked list of fast memory regions to unmap.
2999 */
3000int ib_unmap_fmr(struct list_head *fmr_list);
3001
3002/**
3003 * ib_dealloc_fmr - Deallocates a fast memory region.
3004 * @fmr: The fast memory region to deallocate.
3005 */
3006int ib_dealloc_fmr(struct ib_fmr *fmr);
3007
3008/**
3009 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3010 * @qp: QP to attach to the multicast group. The QP must be type
3011 * IB_QPT_UD.
3012 * @gid: Multicast group GID.
3013 * @lid: Multicast group LID in host byte order.
3014 *
3015 * In order to send and receive multicast packets, subnet
3016 * administration must have created the multicast group and configured
3017 * the fabric appropriately. The port associated with the specified
3018 * QP must also be a member of the multicast group.
3019 */
3020int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3021
3022/**
3023 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3024 * @qp: QP to detach from the multicast group.
3025 * @gid: Multicast group GID.
3026 * @lid: Multicast group LID in host byte order.
3027 */
3028int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3029
59991f94
SH
3030/**
3031 * ib_alloc_xrcd - Allocates an XRC domain.
3032 * @device: The device on which to allocate the XRC domain.
3033 */
3034struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3035
3036/**
3037 * ib_dealloc_xrcd - Deallocates an XRC domain.
3038 * @xrcd: The XRC domain to deallocate.
3039 */
3040int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3041
319a441d
HHZ
3042struct ib_flow *ib_create_flow(struct ib_qp *qp,
3043 struct ib_flow_attr *flow_attr, int domain);
3044int ib_destroy_flow(struct ib_flow *flow_id);
3045
1c636f80
EC
3046static inline int ib_check_mr_access(int flags)
3047{
3048 /*
3049 * Local write permission is required if remote write or
3050 * remote atomic permission is also requested.
3051 */
3052 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3053 !(flags & IB_ACCESS_LOCAL_WRITE))
3054 return -EINVAL;
3055
3056 return 0;
3057}
3058
1b01d335
SG
3059/**
3060 * ib_check_mr_status: lightweight check of MR status.
3061 * This routine may provide status checks on a selected
3062 * ib_mr. first use is for signature status check.
3063 *
3064 * @mr: A memory region.
3065 * @check_mask: Bitmask of which checks to perform from
3066 * ib_mr_status_check enumeration.
3067 * @mr_status: The container of relevant status checks.
3068 * failed checks will be indicated in the status bitmask
3069 * and the relevant info shall be in the error item.
3070 */
3071int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3072 struct ib_mr_status *mr_status);
3073
9268f72d
YK
3074struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3075 u16 pkey, const union ib_gid *gid,
3076 const struct sockaddr *addr);
3077
1da177e4 3078#endif /* IB_VERBS_H */