Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
dd5f03be 51#include <uapi/linux/if_ether.h>
e2773c06 52
60063497 53#include <linux/atomic.h>
e2773c06 54#include <asm/uaccess.h>
1da177e4 55
f0626710
TH
56extern struct workqueue_struct *ib_wq;
57
1da177e4
LT
58union ib_gid {
59 u8 raw[16];
60 struct {
97f52eb4
SH
61 __be64 subnet_prefix;
62 __be64 interface_id;
1da177e4
LT
63 } global;
64};
65
07ebafba
TT
66enum rdma_node_type {
67 /* IB values map to NodeInfo:NodeType. */
68 RDMA_NODE_IB_CA = 1,
69 RDMA_NODE_IB_SWITCH,
70 RDMA_NODE_IB_ROUTER,
180771a3
UM
71 RDMA_NODE_RNIC,
72 RDMA_NODE_USNIC,
5db5765e 73 RDMA_NODE_USNIC_UDP,
1da177e4
LT
74};
75
07ebafba
TT
76enum rdma_transport_type {
77 RDMA_TRANSPORT_IB,
180771a3 78 RDMA_TRANSPORT_IWARP,
248567f7
UM
79 RDMA_TRANSPORT_USNIC,
80 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
81};
82
83enum rdma_transport_type
84rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85
a3f5adaf
EC
86enum rdma_link_layer {
87 IB_LINK_LAYER_UNSPECIFIED,
88 IB_LINK_LAYER_INFINIBAND,
89 IB_LINK_LAYER_ETHERNET,
90};
91
1da177e4
LT
92enum ib_device_cap_flags {
93 IB_DEVICE_RESIZE_MAX_WR = 1,
94 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
95 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
96 IB_DEVICE_RAW_MULTI = (1<<3),
97 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
98 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
99 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
100 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
101 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
102 IB_DEVICE_INIT_TYPE = (1<<9),
103 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
104 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
105 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
106 IB_DEVICE_SRQ_RESIZE = (1<<13),
107 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 108 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 109 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
110 IB_DEVICE_MEM_WINDOW = (1<<17),
111 /*
112 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 * messages and can verify the validity of checksum for
115 * incoming messages. Setting this flag implies that the
116 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 */
118 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 119 IB_DEVICE_UD_TSO = (1<<19),
59991f94 120 IB_DEVICE_XRC = (1<<20),
00f7ec36 121 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 122 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 123 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 124 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335
SG
125 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
126 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30)
127};
128
129enum ib_signature_prot_cap {
130 IB_PROT_T10DIF_TYPE_1 = 1,
131 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
132 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
133};
134
135enum ib_signature_guard_cap {
136 IB_GUARD_T10DIF_CRC = 1,
137 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
138};
139
140enum ib_atomic_cap {
141 IB_ATOMIC_NONE,
142 IB_ATOMIC_HCA,
143 IB_ATOMIC_GLOB
144};
145
146struct ib_device_attr {
147 u64 fw_ver;
97f52eb4 148 __be64 sys_image_guid;
1da177e4
LT
149 u64 max_mr_size;
150 u64 page_size_cap;
151 u32 vendor_id;
152 u32 vendor_part_id;
153 u32 hw_ver;
154 int max_qp;
155 int max_qp_wr;
156 int device_cap_flags;
157 int max_sge;
158 int max_sge_rd;
159 int max_cq;
160 int max_cqe;
161 int max_mr;
162 int max_pd;
163 int max_qp_rd_atom;
164 int max_ee_rd_atom;
165 int max_res_rd_atom;
166 int max_qp_init_rd_atom;
167 int max_ee_init_rd_atom;
168 enum ib_atomic_cap atomic_cap;
5e80ba8f 169 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
170 int max_ee;
171 int max_rdd;
172 int max_mw;
173 int max_raw_ipv6_qp;
174 int max_raw_ethy_qp;
175 int max_mcast_grp;
176 int max_mcast_qp_attach;
177 int max_total_mcast_qp_attach;
178 int max_ah;
179 int max_fmr;
180 int max_map_per_fmr;
181 int max_srq;
182 int max_srq_wr;
183 int max_srq_sge;
00f7ec36 184 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
185 u16 max_pkeys;
186 u8 local_ca_ack_delay;
1b01d335
SG
187 int sig_prot_cap;
188 int sig_guard_cap;
1da177e4
LT
189};
190
191enum ib_mtu {
192 IB_MTU_256 = 1,
193 IB_MTU_512 = 2,
194 IB_MTU_1024 = 3,
195 IB_MTU_2048 = 4,
196 IB_MTU_4096 = 5
197};
198
199static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
200{
201 switch (mtu) {
202 case IB_MTU_256: return 256;
203 case IB_MTU_512: return 512;
204 case IB_MTU_1024: return 1024;
205 case IB_MTU_2048: return 2048;
206 case IB_MTU_4096: return 4096;
207 default: return -1;
208 }
209}
210
211enum ib_port_state {
212 IB_PORT_NOP = 0,
213 IB_PORT_DOWN = 1,
214 IB_PORT_INIT = 2,
215 IB_PORT_ARMED = 3,
216 IB_PORT_ACTIVE = 4,
217 IB_PORT_ACTIVE_DEFER = 5
218};
219
220enum ib_port_cap_flags {
221 IB_PORT_SM = 1 << 1,
222 IB_PORT_NOTICE_SUP = 1 << 2,
223 IB_PORT_TRAP_SUP = 1 << 3,
224 IB_PORT_OPT_IPD_SUP = 1 << 4,
225 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
226 IB_PORT_SL_MAP_SUP = 1 << 6,
227 IB_PORT_MKEY_NVRAM = 1 << 7,
228 IB_PORT_PKEY_NVRAM = 1 << 8,
229 IB_PORT_LED_INFO_SUP = 1 << 9,
230 IB_PORT_SM_DISABLED = 1 << 10,
231 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
232 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 233 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
234 IB_PORT_CM_SUP = 1 << 16,
235 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
236 IB_PORT_REINIT_SUP = 1 << 18,
237 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
238 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
239 IB_PORT_DR_NOTICE_SUP = 1 << 21,
240 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
241 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
242 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27
MS
243 IB_PORT_CLIENT_REG_SUP = 1 << 25,
244 IB_PORT_IP_BASED_GIDS = 1 << 26
1da177e4
LT
245};
246
247enum ib_port_width {
248 IB_WIDTH_1X = 1,
249 IB_WIDTH_4X = 2,
250 IB_WIDTH_8X = 4,
251 IB_WIDTH_12X = 8
252};
253
254static inline int ib_width_enum_to_int(enum ib_port_width width)
255{
256 switch (width) {
257 case IB_WIDTH_1X: return 1;
258 case IB_WIDTH_4X: return 4;
259 case IB_WIDTH_8X: return 8;
260 case IB_WIDTH_12X: return 12;
261 default: return -1;
262 }
263}
264
2e96691c
OG
265enum ib_port_speed {
266 IB_SPEED_SDR = 1,
267 IB_SPEED_DDR = 2,
268 IB_SPEED_QDR = 4,
269 IB_SPEED_FDR10 = 8,
270 IB_SPEED_FDR = 16,
271 IB_SPEED_EDR = 32
272};
273
7f624d02
SW
274struct ib_protocol_stats {
275 /* TBD... */
276};
277
278struct iw_protocol_stats {
279 u64 ipInReceives;
280 u64 ipInHdrErrors;
281 u64 ipInTooBigErrors;
282 u64 ipInNoRoutes;
283 u64 ipInAddrErrors;
284 u64 ipInUnknownProtos;
285 u64 ipInTruncatedPkts;
286 u64 ipInDiscards;
287 u64 ipInDelivers;
288 u64 ipOutForwDatagrams;
289 u64 ipOutRequests;
290 u64 ipOutDiscards;
291 u64 ipOutNoRoutes;
292 u64 ipReasmTimeout;
293 u64 ipReasmReqds;
294 u64 ipReasmOKs;
295 u64 ipReasmFails;
296 u64 ipFragOKs;
297 u64 ipFragFails;
298 u64 ipFragCreates;
299 u64 ipInMcastPkts;
300 u64 ipOutMcastPkts;
301 u64 ipInBcastPkts;
302 u64 ipOutBcastPkts;
303
304 u64 tcpRtoAlgorithm;
305 u64 tcpRtoMin;
306 u64 tcpRtoMax;
307 u64 tcpMaxConn;
308 u64 tcpActiveOpens;
309 u64 tcpPassiveOpens;
310 u64 tcpAttemptFails;
311 u64 tcpEstabResets;
312 u64 tcpCurrEstab;
313 u64 tcpInSegs;
314 u64 tcpOutSegs;
315 u64 tcpRetransSegs;
316 u64 tcpInErrs;
317 u64 tcpOutRsts;
318};
319
320union rdma_protocol_stats {
321 struct ib_protocol_stats ib;
322 struct iw_protocol_stats iw;
323};
324
1da177e4
LT
325struct ib_port_attr {
326 enum ib_port_state state;
327 enum ib_mtu max_mtu;
328 enum ib_mtu active_mtu;
329 int gid_tbl_len;
330 u32 port_cap_flags;
331 u32 max_msg_sz;
332 u32 bad_pkey_cntr;
333 u32 qkey_viol_cntr;
334 u16 pkey_tbl_len;
335 u16 lid;
336 u16 sm_lid;
337 u8 lmc;
338 u8 max_vl_num;
339 u8 sm_sl;
340 u8 subnet_timeout;
341 u8 init_type_reply;
342 u8 active_width;
343 u8 active_speed;
344 u8 phys_state;
345};
346
347enum ib_device_modify_flags {
c5bcbbb9
RD
348 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
349 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
350};
351
352struct ib_device_modify {
353 u64 sys_image_guid;
c5bcbbb9 354 char node_desc[64];
1da177e4
LT
355};
356
357enum ib_port_modify_flags {
358 IB_PORT_SHUTDOWN = 1,
359 IB_PORT_INIT_TYPE = (1<<2),
360 IB_PORT_RESET_QKEY_CNTR = (1<<3)
361};
362
363struct ib_port_modify {
364 u32 set_port_cap_mask;
365 u32 clr_port_cap_mask;
366 u8 init_type;
367};
368
369enum ib_event_type {
370 IB_EVENT_CQ_ERR,
371 IB_EVENT_QP_FATAL,
372 IB_EVENT_QP_REQ_ERR,
373 IB_EVENT_QP_ACCESS_ERR,
374 IB_EVENT_COMM_EST,
375 IB_EVENT_SQ_DRAINED,
376 IB_EVENT_PATH_MIG,
377 IB_EVENT_PATH_MIG_ERR,
378 IB_EVENT_DEVICE_FATAL,
379 IB_EVENT_PORT_ACTIVE,
380 IB_EVENT_PORT_ERR,
381 IB_EVENT_LID_CHANGE,
382 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
383 IB_EVENT_SM_CHANGE,
384 IB_EVENT_SRQ_ERR,
385 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 386 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
387 IB_EVENT_CLIENT_REREGISTER,
388 IB_EVENT_GID_CHANGE,
1da177e4
LT
389};
390
391struct ib_event {
392 struct ib_device *device;
393 union {
394 struct ib_cq *cq;
395 struct ib_qp *qp;
d41fcc67 396 struct ib_srq *srq;
1da177e4
LT
397 u8 port_num;
398 } element;
399 enum ib_event_type event;
400};
401
402struct ib_event_handler {
403 struct ib_device *device;
404 void (*handler)(struct ib_event_handler *, struct ib_event *);
405 struct list_head list;
406};
407
408#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
409 do { \
410 (_ptr)->device = _device; \
411 (_ptr)->handler = _handler; \
412 INIT_LIST_HEAD(&(_ptr)->list); \
413 } while (0)
414
415struct ib_global_route {
416 union ib_gid dgid;
417 u32 flow_label;
418 u8 sgid_index;
419 u8 hop_limit;
420 u8 traffic_class;
421};
422
513789ed 423struct ib_grh {
97f52eb4
SH
424 __be32 version_tclass_flow;
425 __be16 paylen;
513789ed
HR
426 u8 next_hdr;
427 u8 hop_limit;
428 union ib_gid sgid;
429 union ib_gid dgid;
430};
431
1da177e4
LT
432enum {
433 IB_MULTICAST_QPN = 0xffffff
434};
435
f3a7c66b 436#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 437
1da177e4
LT
438enum ib_ah_flags {
439 IB_AH_GRH = 1
440};
441
bf6a9e31
JM
442enum ib_rate {
443 IB_RATE_PORT_CURRENT = 0,
444 IB_RATE_2_5_GBPS = 2,
445 IB_RATE_5_GBPS = 5,
446 IB_RATE_10_GBPS = 3,
447 IB_RATE_20_GBPS = 6,
448 IB_RATE_30_GBPS = 4,
449 IB_RATE_40_GBPS = 7,
450 IB_RATE_60_GBPS = 8,
451 IB_RATE_80_GBPS = 9,
71eeba16
MA
452 IB_RATE_120_GBPS = 10,
453 IB_RATE_14_GBPS = 11,
454 IB_RATE_56_GBPS = 12,
455 IB_RATE_112_GBPS = 13,
456 IB_RATE_168_GBPS = 14,
457 IB_RATE_25_GBPS = 15,
458 IB_RATE_100_GBPS = 16,
459 IB_RATE_200_GBPS = 17,
460 IB_RATE_300_GBPS = 18
bf6a9e31
JM
461};
462
463/**
464 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
465 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
466 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
467 * @rate: rate to convert.
468 */
469int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
470
71eeba16
MA
471/**
472 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
473 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
474 * @rate: rate to convert.
475 */
476int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
477
17cd3a2d
SG
478enum ib_mr_create_flags {
479 IB_MR_SIGNATURE_EN = 1,
480};
481
482/**
483 * ib_mr_init_attr - Memory region init attributes passed to routine
484 * ib_create_mr.
485 * @max_reg_descriptors: max number of registration descriptors that
486 * may be used with registration work requests.
487 * @flags: MR creation flags bit mask.
488 */
489struct ib_mr_init_attr {
490 int max_reg_descriptors;
491 u32 flags;
492};
493
1b01d335
SG
494enum ib_signature_type {
495 IB_SIG_TYPE_T10_DIF,
496};
497
498/**
499 * T10-DIF Signature types
500 * T10-DIF types are defined by SCSI
501 * specifications.
502 */
503enum ib_t10_dif_type {
504 IB_T10DIF_NONE,
505 IB_T10DIF_TYPE1,
506 IB_T10DIF_TYPE2,
507 IB_T10DIF_TYPE3
508};
509
510/**
511 * Signature T10-DIF block-guard types
512 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
513 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
514 */
515enum ib_t10_dif_bg_type {
516 IB_T10DIF_CRC,
517 IB_T10DIF_CSUM
518};
519
520/**
521 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
522 * domain.
523 * @type: T10-DIF type (0|1|2|3)
524 * @bg_type: T10-DIF block guard type (CRC|CSUM)
525 * @pi_interval: protection information interval.
526 * @bg: seed of guard computation.
527 * @app_tag: application tag of guard block
528 * @ref_tag: initial guard block reference tag.
529 * @type3_inc_reftag: T10-DIF type 3 does not state
530 * about the reference tag, it is the user
531 * choice to increment it or not.
532 */
533struct ib_t10_dif_domain {
534 enum ib_t10_dif_type type;
535 enum ib_t10_dif_bg_type bg_type;
536 u16 pi_interval;
537 u16 bg;
538 u16 app_tag;
539 u32 ref_tag;
540 bool type3_inc_reftag;
541};
542
543/**
544 * struct ib_sig_domain - Parameters for signature domain
545 * @sig_type: specific signauture type
546 * @sig: union of all signature domain attributes that may
547 * be used to set domain layout.
548 */
549struct ib_sig_domain {
550 enum ib_signature_type sig_type;
551 union {
552 struct ib_t10_dif_domain dif;
553 } sig;
554};
555
556/**
557 * struct ib_sig_attrs - Parameters for signature handover operation
558 * @check_mask: bitmask for signature byte check (8 bytes)
559 * @mem: memory domain layout desciptor.
560 * @wire: wire domain layout desciptor.
561 */
562struct ib_sig_attrs {
563 u8 check_mask;
564 struct ib_sig_domain mem;
565 struct ib_sig_domain wire;
566};
567
568enum ib_sig_err_type {
569 IB_SIG_BAD_GUARD,
570 IB_SIG_BAD_REFTAG,
571 IB_SIG_BAD_APPTAG,
572};
573
574/**
575 * struct ib_sig_err - signature error descriptor
576 */
577struct ib_sig_err {
578 enum ib_sig_err_type err_type;
579 u32 expected;
580 u32 actual;
581 u64 sig_err_offset;
582 u32 key;
583};
584
585enum ib_mr_status_check {
586 IB_MR_CHECK_SIG_STATUS = 1,
587};
588
589/**
590 * struct ib_mr_status - Memory region status container
591 *
592 * @fail_status: Bitmask of MR checks status. For each
593 * failed check a corresponding status bit is set.
594 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
595 * failure.
596 */
597struct ib_mr_status {
598 u32 fail_status;
599 struct ib_sig_err sig_err;
600};
601
bf6a9e31
JM
602/**
603 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
604 * enum.
605 * @mult: multiple to convert.
606 */
607enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
608
1da177e4
LT
609struct ib_ah_attr {
610 struct ib_global_route grh;
611 u16 dlid;
612 u8 sl;
613 u8 src_path_bits;
614 u8 static_rate;
615 u8 ah_flags;
616 u8 port_num;
dd5f03be
MB
617 u8 dmac[ETH_ALEN];
618 u16 vlan_id;
1da177e4
LT
619};
620
621enum ib_wc_status {
622 IB_WC_SUCCESS,
623 IB_WC_LOC_LEN_ERR,
624 IB_WC_LOC_QP_OP_ERR,
625 IB_WC_LOC_EEC_OP_ERR,
626 IB_WC_LOC_PROT_ERR,
627 IB_WC_WR_FLUSH_ERR,
628 IB_WC_MW_BIND_ERR,
629 IB_WC_BAD_RESP_ERR,
630 IB_WC_LOC_ACCESS_ERR,
631 IB_WC_REM_INV_REQ_ERR,
632 IB_WC_REM_ACCESS_ERR,
633 IB_WC_REM_OP_ERR,
634 IB_WC_RETRY_EXC_ERR,
635 IB_WC_RNR_RETRY_EXC_ERR,
636 IB_WC_LOC_RDD_VIOL_ERR,
637 IB_WC_REM_INV_RD_REQ_ERR,
638 IB_WC_REM_ABORT_ERR,
639 IB_WC_INV_EECN_ERR,
640 IB_WC_INV_EEC_STATE_ERR,
641 IB_WC_FATAL_ERR,
642 IB_WC_RESP_TIMEOUT_ERR,
643 IB_WC_GENERAL_ERR
644};
645
646enum ib_wc_opcode {
647 IB_WC_SEND,
648 IB_WC_RDMA_WRITE,
649 IB_WC_RDMA_READ,
650 IB_WC_COMP_SWAP,
651 IB_WC_FETCH_ADD,
652 IB_WC_BIND_MW,
c93570f2 653 IB_WC_LSO,
00f7ec36
SW
654 IB_WC_LOCAL_INV,
655 IB_WC_FAST_REG_MR,
5e80ba8f
VS
656 IB_WC_MASKED_COMP_SWAP,
657 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
658/*
659 * Set value of IB_WC_RECV so consumers can test if a completion is a
660 * receive by testing (opcode & IB_WC_RECV).
661 */
662 IB_WC_RECV = 1 << 7,
663 IB_WC_RECV_RDMA_WITH_IMM
664};
665
666enum ib_wc_flags {
667 IB_WC_GRH = 1,
00f7ec36
SW
668 IB_WC_WITH_IMM = (1<<1),
669 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 670 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
671 IB_WC_WITH_SMAC = (1<<4),
672 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
673};
674
675struct ib_wc {
676 u64 wr_id;
677 enum ib_wc_status status;
678 enum ib_wc_opcode opcode;
679 u32 vendor_err;
680 u32 byte_len;
062dbb69 681 struct ib_qp *qp;
00f7ec36
SW
682 union {
683 __be32 imm_data;
684 u32 invalidate_rkey;
685 } ex;
1da177e4
LT
686 u32 src_qp;
687 int wc_flags;
688 u16 pkey_index;
689 u16 slid;
690 u8 sl;
691 u8 dlid_path_bits;
692 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
693 u8 smac[ETH_ALEN];
694 u16 vlan_id;
1da177e4
LT
695};
696
ed23a727
RD
697enum ib_cq_notify_flags {
698 IB_CQ_SOLICITED = 1 << 0,
699 IB_CQ_NEXT_COMP = 1 << 1,
700 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
701 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
702};
703
96104eda 704enum ib_srq_type {
418d5130
SH
705 IB_SRQT_BASIC,
706 IB_SRQT_XRC
96104eda
SH
707};
708
d41fcc67
RD
709enum ib_srq_attr_mask {
710 IB_SRQ_MAX_WR = 1 << 0,
711 IB_SRQ_LIMIT = 1 << 1,
712};
713
714struct ib_srq_attr {
715 u32 max_wr;
716 u32 max_sge;
717 u32 srq_limit;
718};
719
720struct ib_srq_init_attr {
721 void (*event_handler)(struct ib_event *, void *);
722 void *srq_context;
723 struct ib_srq_attr attr;
96104eda 724 enum ib_srq_type srq_type;
418d5130
SH
725
726 union {
727 struct {
728 struct ib_xrcd *xrcd;
729 struct ib_cq *cq;
730 } xrc;
731 } ext;
d41fcc67
RD
732};
733
1da177e4
LT
734struct ib_qp_cap {
735 u32 max_send_wr;
736 u32 max_recv_wr;
737 u32 max_send_sge;
738 u32 max_recv_sge;
739 u32 max_inline_data;
740};
741
742enum ib_sig_type {
743 IB_SIGNAL_ALL_WR,
744 IB_SIGNAL_REQ_WR
745};
746
747enum ib_qp_type {
748 /*
749 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
750 * here (and in that order) since the MAD layer uses them as
751 * indices into a 2-entry table.
752 */
753 IB_QPT_SMI,
754 IB_QPT_GSI,
755
756 IB_QPT_RC,
757 IB_QPT_UC,
758 IB_QPT_UD,
759 IB_QPT_RAW_IPV6,
b42b63cf 760 IB_QPT_RAW_ETHERTYPE,
c938a616 761 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
762 IB_QPT_XRC_INI = 9,
763 IB_QPT_XRC_TGT,
0134f16b
JM
764 IB_QPT_MAX,
765 /* Reserve a range for qp types internal to the low level driver.
766 * These qp types will not be visible at the IB core layer, so the
767 * IB_QPT_MAX usages should not be affected in the core layer
768 */
769 IB_QPT_RESERVED1 = 0x1000,
770 IB_QPT_RESERVED2,
771 IB_QPT_RESERVED3,
772 IB_QPT_RESERVED4,
773 IB_QPT_RESERVED5,
774 IB_QPT_RESERVED6,
775 IB_QPT_RESERVED7,
776 IB_QPT_RESERVED8,
777 IB_QPT_RESERVED9,
778 IB_QPT_RESERVED10,
1da177e4
LT
779};
780
b846f25a 781enum ib_qp_create_flags {
47ee1b9f
RL
782 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
783 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 784 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 785 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
d2b57063
JM
786 /* reserve bits 26-31 for low level drivers' internal use */
787 IB_QP_CREATE_RESERVED_START = 1 << 26,
788 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
789};
790
73c40c61
YH
791
792/*
793 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
794 * callback to destroy the passed in QP.
795 */
796
1da177e4
LT
797struct ib_qp_init_attr {
798 void (*event_handler)(struct ib_event *, void *);
799 void *qp_context;
800 struct ib_cq *send_cq;
801 struct ib_cq *recv_cq;
802 struct ib_srq *srq;
b42b63cf 803 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
804 struct ib_qp_cap cap;
805 enum ib_sig_type sq_sig_type;
806 enum ib_qp_type qp_type;
b846f25a 807 enum ib_qp_create_flags create_flags;
1da177e4
LT
808 u8 port_num; /* special QP types only */
809};
810
0e0ec7e0
SH
811struct ib_qp_open_attr {
812 void (*event_handler)(struct ib_event *, void *);
813 void *qp_context;
814 u32 qp_num;
815 enum ib_qp_type qp_type;
816};
817
1da177e4
LT
818enum ib_rnr_timeout {
819 IB_RNR_TIMER_655_36 = 0,
820 IB_RNR_TIMER_000_01 = 1,
821 IB_RNR_TIMER_000_02 = 2,
822 IB_RNR_TIMER_000_03 = 3,
823 IB_RNR_TIMER_000_04 = 4,
824 IB_RNR_TIMER_000_06 = 5,
825 IB_RNR_TIMER_000_08 = 6,
826 IB_RNR_TIMER_000_12 = 7,
827 IB_RNR_TIMER_000_16 = 8,
828 IB_RNR_TIMER_000_24 = 9,
829 IB_RNR_TIMER_000_32 = 10,
830 IB_RNR_TIMER_000_48 = 11,
831 IB_RNR_TIMER_000_64 = 12,
832 IB_RNR_TIMER_000_96 = 13,
833 IB_RNR_TIMER_001_28 = 14,
834 IB_RNR_TIMER_001_92 = 15,
835 IB_RNR_TIMER_002_56 = 16,
836 IB_RNR_TIMER_003_84 = 17,
837 IB_RNR_TIMER_005_12 = 18,
838 IB_RNR_TIMER_007_68 = 19,
839 IB_RNR_TIMER_010_24 = 20,
840 IB_RNR_TIMER_015_36 = 21,
841 IB_RNR_TIMER_020_48 = 22,
842 IB_RNR_TIMER_030_72 = 23,
843 IB_RNR_TIMER_040_96 = 24,
844 IB_RNR_TIMER_061_44 = 25,
845 IB_RNR_TIMER_081_92 = 26,
846 IB_RNR_TIMER_122_88 = 27,
847 IB_RNR_TIMER_163_84 = 28,
848 IB_RNR_TIMER_245_76 = 29,
849 IB_RNR_TIMER_327_68 = 30,
850 IB_RNR_TIMER_491_52 = 31
851};
852
853enum ib_qp_attr_mask {
854 IB_QP_STATE = 1,
855 IB_QP_CUR_STATE = (1<<1),
856 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
857 IB_QP_ACCESS_FLAGS = (1<<3),
858 IB_QP_PKEY_INDEX = (1<<4),
859 IB_QP_PORT = (1<<5),
860 IB_QP_QKEY = (1<<6),
861 IB_QP_AV = (1<<7),
862 IB_QP_PATH_MTU = (1<<8),
863 IB_QP_TIMEOUT = (1<<9),
864 IB_QP_RETRY_CNT = (1<<10),
865 IB_QP_RNR_RETRY = (1<<11),
866 IB_QP_RQ_PSN = (1<<12),
867 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
868 IB_QP_ALT_PATH = (1<<14),
869 IB_QP_MIN_RNR_TIMER = (1<<15),
870 IB_QP_SQ_PSN = (1<<16),
871 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
872 IB_QP_PATH_MIG_STATE = (1<<18),
873 IB_QP_CAP = (1<<19),
dd5f03be
MB
874 IB_QP_DEST_QPN = (1<<20),
875 IB_QP_SMAC = (1<<21),
876 IB_QP_ALT_SMAC = (1<<22),
877 IB_QP_VID = (1<<23),
878 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
879};
880
881enum ib_qp_state {
882 IB_QPS_RESET,
883 IB_QPS_INIT,
884 IB_QPS_RTR,
885 IB_QPS_RTS,
886 IB_QPS_SQD,
887 IB_QPS_SQE,
888 IB_QPS_ERR
889};
890
891enum ib_mig_state {
892 IB_MIG_MIGRATED,
893 IB_MIG_REARM,
894 IB_MIG_ARMED
895};
896
7083e42e
SM
897enum ib_mw_type {
898 IB_MW_TYPE_1 = 1,
899 IB_MW_TYPE_2 = 2
900};
901
1da177e4
LT
902struct ib_qp_attr {
903 enum ib_qp_state qp_state;
904 enum ib_qp_state cur_qp_state;
905 enum ib_mtu path_mtu;
906 enum ib_mig_state path_mig_state;
907 u32 qkey;
908 u32 rq_psn;
909 u32 sq_psn;
910 u32 dest_qp_num;
911 int qp_access_flags;
912 struct ib_qp_cap cap;
913 struct ib_ah_attr ah_attr;
914 struct ib_ah_attr alt_ah_attr;
915 u16 pkey_index;
916 u16 alt_pkey_index;
917 u8 en_sqd_async_notify;
918 u8 sq_draining;
919 u8 max_rd_atomic;
920 u8 max_dest_rd_atomic;
921 u8 min_rnr_timer;
922 u8 port_num;
923 u8 timeout;
924 u8 retry_cnt;
925 u8 rnr_retry;
926 u8 alt_port_num;
927 u8 alt_timeout;
dd5f03be
MB
928 u8 smac[ETH_ALEN];
929 u8 alt_smac[ETH_ALEN];
930 u16 vlan_id;
931 u16 alt_vlan_id;
1da177e4
LT
932};
933
934enum ib_wr_opcode {
935 IB_WR_RDMA_WRITE,
936 IB_WR_RDMA_WRITE_WITH_IMM,
937 IB_WR_SEND,
938 IB_WR_SEND_WITH_IMM,
939 IB_WR_RDMA_READ,
940 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 941 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
942 IB_WR_LSO,
943 IB_WR_SEND_WITH_INV,
00f7ec36
SW
944 IB_WR_RDMA_READ_WITH_INV,
945 IB_WR_LOCAL_INV,
946 IB_WR_FAST_REG_MR,
5e80ba8f
VS
947 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
948 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 949 IB_WR_BIND_MW,
1b01d335 950 IB_WR_REG_SIG_MR,
0134f16b
JM
951 /* reserve values for low level drivers' internal use.
952 * These values will not be used at all in the ib core layer.
953 */
954 IB_WR_RESERVED1 = 0xf0,
955 IB_WR_RESERVED2,
956 IB_WR_RESERVED3,
957 IB_WR_RESERVED4,
958 IB_WR_RESERVED5,
959 IB_WR_RESERVED6,
960 IB_WR_RESERVED7,
961 IB_WR_RESERVED8,
962 IB_WR_RESERVED9,
963 IB_WR_RESERVED10,
1da177e4
LT
964};
965
966enum ib_send_flags {
967 IB_SEND_FENCE = 1,
968 IB_SEND_SIGNALED = (1<<1),
969 IB_SEND_SOLICITED = (1<<2),
e0605d91 970 IB_SEND_INLINE = (1<<3),
0134f16b
JM
971 IB_SEND_IP_CSUM = (1<<4),
972
973 /* reserve bits 26-31 for low level drivers' internal use */
974 IB_SEND_RESERVED_START = (1 << 26),
975 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
976};
977
978struct ib_sge {
979 u64 addr;
980 u32 length;
981 u32 lkey;
982};
983
00f7ec36
SW
984struct ib_fast_reg_page_list {
985 struct ib_device *device;
986 u64 *page_list;
987 unsigned int max_page_list_len;
988};
989
7083e42e
SM
990/**
991 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
992 * @mr: A memory region to bind the memory window to.
993 * @addr: The address where the memory window should begin.
994 * @length: The length of the memory window, in bytes.
995 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
996 *
997 * This struct contains the shared parameters for type 1 and type 2
998 * memory window bind operations.
999 */
1000struct ib_mw_bind_info {
1001 struct ib_mr *mr;
1002 u64 addr;
1003 u64 length;
1004 int mw_access_flags;
1005};
1006
1da177e4
LT
1007struct ib_send_wr {
1008 struct ib_send_wr *next;
1009 u64 wr_id;
1010 struct ib_sge *sg_list;
1011 int num_sge;
1012 enum ib_wr_opcode opcode;
1013 int send_flags;
0f39cf3d
RD
1014 union {
1015 __be32 imm_data;
1016 u32 invalidate_rkey;
1017 } ex;
1da177e4
LT
1018 union {
1019 struct {
1020 u64 remote_addr;
1021 u32 rkey;
1022 } rdma;
1023 struct {
1024 u64 remote_addr;
1025 u64 compare_add;
1026 u64 swap;
5e80ba8f
VS
1027 u64 compare_add_mask;
1028 u64 swap_mask;
1da177e4
LT
1029 u32 rkey;
1030 } atomic;
1031 struct {
1032 struct ib_ah *ah;
c93570f2
EC
1033 void *header;
1034 int hlen;
1035 int mss;
1da177e4
LT
1036 u32 remote_qpn;
1037 u32 remote_qkey;
1da177e4
LT
1038 u16 pkey_index; /* valid for GSI only */
1039 u8 port_num; /* valid for DR SMPs on switch only */
1040 } ud;
00f7ec36
SW
1041 struct {
1042 u64 iova_start;
1043 struct ib_fast_reg_page_list *page_list;
1044 unsigned int page_shift;
1045 unsigned int page_list_len;
1046 u32 length;
1047 int access_flags;
1048 u32 rkey;
1049 } fast_reg;
7083e42e
SM
1050 struct {
1051 struct ib_mw *mw;
1052 /* The new rkey for the memory window. */
1053 u32 rkey;
1054 struct ib_mw_bind_info bind_info;
1055 } bind_mw;
1b01d335
SG
1056 struct {
1057 struct ib_sig_attrs *sig_attrs;
1058 struct ib_mr *sig_mr;
1059 int access_flags;
1060 struct ib_sge *prot;
1061 } sig_handover;
1da177e4 1062 } wr;
b42b63cf 1063 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1064};
1065
1066struct ib_recv_wr {
1067 struct ib_recv_wr *next;
1068 u64 wr_id;
1069 struct ib_sge *sg_list;
1070 int num_sge;
1071};
1072
1073enum ib_access_flags {
1074 IB_ACCESS_LOCAL_WRITE = 1,
1075 IB_ACCESS_REMOTE_WRITE = (1<<1),
1076 IB_ACCESS_REMOTE_READ = (1<<2),
1077 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e
SM
1078 IB_ACCESS_MW_BIND = (1<<4),
1079 IB_ZERO_BASED = (1<<5)
1da177e4
LT
1080};
1081
1082struct ib_phys_buf {
1083 u64 addr;
1084 u64 size;
1085};
1086
1087struct ib_mr_attr {
1088 struct ib_pd *pd;
1089 u64 device_virt_addr;
1090 u64 size;
1091 int mr_access_flags;
1092 u32 lkey;
1093 u32 rkey;
1094};
1095
1096enum ib_mr_rereg_flags {
1097 IB_MR_REREG_TRANS = 1,
1098 IB_MR_REREG_PD = (1<<1),
1099 IB_MR_REREG_ACCESS = (1<<2)
1100};
1101
7083e42e
SM
1102/**
1103 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1104 * @wr_id: Work request id.
1105 * @send_flags: Flags from ib_send_flags enum.
1106 * @bind_info: More parameters of the bind operation.
1107 */
1da177e4 1108struct ib_mw_bind {
7083e42e
SM
1109 u64 wr_id;
1110 int send_flags;
1111 struct ib_mw_bind_info bind_info;
1da177e4
LT
1112};
1113
1114struct ib_fmr_attr {
1115 int max_pages;
1116 int max_maps;
d36f34aa 1117 u8 page_shift;
1da177e4
LT
1118};
1119
e2773c06
RD
1120struct ib_ucontext {
1121 struct ib_device *device;
1122 struct list_head pd_list;
1123 struct list_head mr_list;
1124 struct list_head mw_list;
1125 struct list_head cq_list;
1126 struct list_head qp_list;
1127 struct list_head srq_list;
1128 struct list_head ah_list;
53d0bd1e 1129 struct list_head xrcd_list;
436f2ad0 1130 struct list_head rule_list;
f7c6a7b5 1131 int closing;
e2773c06
RD
1132};
1133
1134struct ib_uobject {
1135 u64 user_handle; /* handle given to us by userspace */
1136 struct ib_ucontext *context; /* associated user context */
9ead190b 1137 void *object; /* containing object */
e2773c06 1138 struct list_head list; /* link to context's list */
b3d636b0 1139 int id; /* index into kernel idr */
9ead190b
RD
1140 struct kref ref;
1141 struct rw_semaphore mutex; /* protects .live */
1142 int live;
e2773c06
RD
1143};
1144
e2773c06 1145struct ib_udata {
309243ec 1146 const void __user *inbuf;
e2773c06
RD
1147 void __user *outbuf;
1148 size_t inlen;
1149 size_t outlen;
1150};
1151
1da177e4 1152struct ib_pd {
e2773c06
RD
1153 struct ib_device *device;
1154 struct ib_uobject *uobject;
1155 atomic_t usecnt; /* count all resources */
1da177e4
LT
1156};
1157
59991f94
SH
1158struct ib_xrcd {
1159 struct ib_device *device;
d3d72d90 1160 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1161 struct inode *inode;
d3d72d90
SH
1162
1163 struct mutex tgt_qp_mutex;
1164 struct list_head tgt_qp_list;
59991f94
SH
1165};
1166
1da177e4
LT
1167struct ib_ah {
1168 struct ib_device *device;
1169 struct ib_pd *pd;
e2773c06 1170 struct ib_uobject *uobject;
1da177e4
LT
1171};
1172
1173typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1174
1175struct ib_cq {
e2773c06
RD
1176 struct ib_device *device;
1177 struct ib_uobject *uobject;
1178 ib_comp_handler comp_handler;
1179 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1180 void *cq_context;
e2773c06
RD
1181 int cqe;
1182 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1183};
1184
1185struct ib_srq {
d41fcc67
RD
1186 struct ib_device *device;
1187 struct ib_pd *pd;
1188 struct ib_uobject *uobject;
1189 void (*event_handler)(struct ib_event *, void *);
1190 void *srq_context;
96104eda 1191 enum ib_srq_type srq_type;
1da177e4 1192 atomic_t usecnt;
418d5130
SH
1193
1194 union {
1195 struct {
1196 struct ib_xrcd *xrcd;
1197 struct ib_cq *cq;
1198 u32 srq_num;
1199 } xrc;
1200 } ext;
1da177e4
LT
1201};
1202
1203struct ib_qp {
1204 struct ib_device *device;
1205 struct ib_pd *pd;
1206 struct ib_cq *send_cq;
1207 struct ib_cq *recv_cq;
1208 struct ib_srq *srq;
b42b63cf 1209 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1210 struct list_head xrcd_list;
319a441d
HHZ
1211 /* count times opened, mcast attaches, flow attaches */
1212 atomic_t usecnt;
0e0ec7e0
SH
1213 struct list_head open_list;
1214 struct ib_qp *real_qp;
e2773c06 1215 struct ib_uobject *uobject;
1da177e4
LT
1216 void (*event_handler)(struct ib_event *, void *);
1217 void *qp_context;
1218 u32 qp_num;
1219 enum ib_qp_type qp_type;
1220};
1221
1222struct ib_mr {
e2773c06
RD
1223 struct ib_device *device;
1224 struct ib_pd *pd;
1225 struct ib_uobject *uobject;
1226 u32 lkey;
1227 u32 rkey;
1228 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1229};
1230
1231struct ib_mw {
1232 struct ib_device *device;
1233 struct ib_pd *pd;
e2773c06 1234 struct ib_uobject *uobject;
1da177e4 1235 u32 rkey;
7083e42e 1236 enum ib_mw_type type;
1da177e4
LT
1237};
1238
1239struct ib_fmr {
1240 struct ib_device *device;
1241 struct ib_pd *pd;
1242 struct list_head list;
1243 u32 lkey;
1244 u32 rkey;
1245};
1246
319a441d
HHZ
1247/* Supported steering options */
1248enum ib_flow_attr_type {
1249 /* steering according to rule specifications */
1250 IB_FLOW_ATTR_NORMAL = 0x0,
1251 /* default unicast and multicast rule -
1252 * receive all Eth traffic which isn't steered to any QP
1253 */
1254 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1255 /* default multicast rule -
1256 * receive all Eth multicast traffic which isn't steered to any QP
1257 */
1258 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1259 /* sniffer rule - receive all port traffic */
1260 IB_FLOW_ATTR_SNIFFER = 0x3
1261};
1262
1263/* Supported steering header types */
1264enum ib_flow_spec_type {
1265 /* L2 headers*/
1266 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1267 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1268 /* L3 header*/
1269 IB_FLOW_SPEC_IPV4 = 0x30,
1270 /* L4 headers*/
1271 IB_FLOW_SPEC_TCP = 0x40,
1272 IB_FLOW_SPEC_UDP = 0x41
1273};
240ae00e 1274#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1275#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1276
319a441d
HHZ
1277/* Flow steering rule priority is set according to it's domain.
1278 * Lower domain value means higher priority.
1279 */
1280enum ib_flow_domain {
1281 IB_FLOW_DOMAIN_USER,
1282 IB_FLOW_DOMAIN_ETHTOOL,
1283 IB_FLOW_DOMAIN_RFS,
1284 IB_FLOW_DOMAIN_NIC,
1285 IB_FLOW_DOMAIN_NUM /* Must be last */
1286};
1287
1288struct ib_flow_eth_filter {
1289 u8 dst_mac[6];
1290 u8 src_mac[6];
1291 __be16 ether_type;
1292 __be16 vlan_tag;
1293};
1294
1295struct ib_flow_spec_eth {
1296 enum ib_flow_spec_type type;
1297 u16 size;
1298 struct ib_flow_eth_filter val;
1299 struct ib_flow_eth_filter mask;
1300};
1301
240ae00e
MB
1302struct ib_flow_ib_filter {
1303 __be16 dlid;
1304 __u8 sl;
1305};
1306
1307struct ib_flow_spec_ib {
1308 enum ib_flow_spec_type type;
1309 u16 size;
1310 struct ib_flow_ib_filter val;
1311 struct ib_flow_ib_filter mask;
1312};
1313
319a441d
HHZ
1314struct ib_flow_ipv4_filter {
1315 __be32 src_ip;
1316 __be32 dst_ip;
1317};
1318
1319struct ib_flow_spec_ipv4 {
1320 enum ib_flow_spec_type type;
1321 u16 size;
1322 struct ib_flow_ipv4_filter val;
1323 struct ib_flow_ipv4_filter mask;
1324};
1325
1326struct ib_flow_tcp_udp_filter {
1327 __be16 dst_port;
1328 __be16 src_port;
1329};
1330
1331struct ib_flow_spec_tcp_udp {
1332 enum ib_flow_spec_type type;
1333 u16 size;
1334 struct ib_flow_tcp_udp_filter val;
1335 struct ib_flow_tcp_udp_filter mask;
1336};
1337
1338union ib_flow_spec {
1339 struct {
1340 enum ib_flow_spec_type type;
1341 u16 size;
1342 };
1343 struct ib_flow_spec_eth eth;
240ae00e 1344 struct ib_flow_spec_ib ib;
319a441d
HHZ
1345 struct ib_flow_spec_ipv4 ipv4;
1346 struct ib_flow_spec_tcp_udp tcp_udp;
1347};
1348
1349struct ib_flow_attr {
1350 enum ib_flow_attr_type type;
1351 u16 size;
1352 u16 priority;
1353 u32 flags;
1354 u8 num_of_specs;
1355 u8 port;
1356 /* Following are the optional layers according to user request
1357 * struct ib_flow_spec_xxx
1358 * struct ib_flow_spec_yyy
1359 */
1360};
1361
1362struct ib_flow {
1363 struct ib_qp *qp;
1364 struct ib_uobject *uobject;
1365};
1366
1da177e4
LT
1367struct ib_mad;
1368struct ib_grh;
1369
1370enum ib_process_mad_flags {
1371 IB_MAD_IGNORE_MKEY = 1,
1372 IB_MAD_IGNORE_BKEY = 2,
1373 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1374};
1375
1376enum ib_mad_result {
1377 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1378 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1379 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1380 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1381};
1382
1383#define IB_DEVICE_NAME_MAX 64
1384
1385struct ib_cache {
1386 rwlock_t lock;
1387 struct ib_event_handler event_handler;
1388 struct ib_pkey_cache **pkey_cache;
1389 struct ib_gid_cache **gid_cache;
6fb9cdbf 1390 u8 *lmc_cache;
1da177e4
LT
1391};
1392
9b513090
RC
1393struct ib_dma_mapping_ops {
1394 int (*mapping_error)(struct ib_device *dev,
1395 u64 dma_addr);
1396 u64 (*map_single)(struct ib_device *dev,
1397 void *ptr, size_t size,
1398 enum dma_data_direction direction);
1399 void (*unmap_single)(struct ib_device *dev,
1400 u64 addr, size_t size,
1401 enum dma_data_direction direction);
1402 u64 (*map_page)(struct ib_device *dev,
1403 struct page *page, unsigned long offset,
1404 size_t size,
1405 enum dma_data_direction direction);
1406 void (*unmap_page)(struct ib_device *dev,
1407 u64 addr, size_t size,
1408 enum dma_data_direction direction);
1409 int (*map_sg)(struct ib_device *dev,
1410 struct scatterlist *sg, int nents,
1411 enum dma_data_direction direction);
1412 void (*unmap_sg)(struct ib_device *dev,
1413 struct scatterlist *sg, int nents,
1414 enum dma_data_direction direction);
9b513090
RC
1415 void (*sync_single_for_cpu)(struct ib_device *dev,
1416 u64 dma_handle,
1417 size_t size,
4deccd6d 1418 enum dma_data_direction dir);
9b513090
RC
1419 void (*sync_single_for_device)(struct ib_device *dev,
1420 u64 dma_handle,
1421 size_t size,
1422 enum dma_data_direction dir);
1423 void *(*alloc_coherent)(struct ib_device *dev,
1424 size_t size,
1425 u64 *dma_handle,
1426 gfp_t flag);
1427 void (*free_coherent)(struct ib_device *dev,
1428 size_t size, void *cpu_addr,
1429 u64 dma_handle);
1430};
1431
07ebafba
TT
1432struct iw_cm_verbs;
1433
1da177e4
LT
1434struct ib_device {
1435 struct device *dma_device;
1436
1437 char name[IB_DEVICE_NAME_MAX];
1438
1439 struct list_head event_handler_list;
1440 spinlock_t event_handler_lock;
1441
17a55f79 1442 spinlock_t client_data_lock;
1da177e4
LT
1443 struct list_head core_list;
1444 struct list_head client_data_list;
1da177e4
LT
1445
1446 struct ib_cache cache;
5eb620c8
YE
1447 int *pkey_tbl_len;
1448 int *gid_tbl_len;
1da177e4 1449
f4fd0b22
MT
1450 int num_comp_vectors;
1451
07ebafba
TT
1452 struct iw_cm_verbs *iwcm;
1453
7f624d02
SW
1454 int (*get_protocol_stats)(struct ib_device *device,
1455 union rdma_protocol_stats *stats);
1da177e4
LT
1456 int (*query_device)(struct ib_device *device,
1457 struct ib_device_attr *device_attr);
1458 int (*query_port)(struct ib_device *device,
1459 u8 port_num,
1460 struct ib_port_attr *port_attr);
a3f5adaf
EC
1461 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1462 u8 port_num);
1da177e4
LT
1463 int (*query_gid)(struct ib_device *device,
1464 u8 port_num, int index,
1465 union ib_gid *gid);
1466 int (*query_pkey)(struct ib_device *device,
1467 u8 port_num, u16 index, u16 *pkey);
1468 int (*modify_device)(struct ib_device *device,
1469 int device_modify_mask,
1470 struct ib_device_modify *device_modify);
1471 int (*modify_port)(struct ib_device *device,
1472 u8 port_num, int port_modify_mask,
1473 struct ib_port_modify *port_modify);
e2773c06
RD
1474 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1475 struct ib_udata *udata);
1476 int (*dealloc_ucontext)(struct ib_ucontext *context);
1477 int (*mmap)(struct ib_ucontext *context,
1478 struct vm_area_struct *vma);
1479 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1480 struct ib_ucontext *context,
1481 struct ib_udata *udata);
1da177e4
LT
1482 int (*dealloc_pd)(struct ib_pd *pd);
1483 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1484 struct ib_ah_attr *ah_attr);
1485 int (*modify_ah)(struct ib_ah *ah,
1486 struct ib_ah_attr *ah_attr);
1487 int (*query_ah)(struct ib_ah *ah,
1488 struct ib_ah_attr *ah_attr);
1489 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1490 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1491 struct ib_srq_init_attr *srq_init_attr,
1492 struct ib_udata *udata);
1493 int (*modify_srq)(struct ib_srq *srq,
1494 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1495 enum ib_srq_attr_mask srq_attr_mask,
1496 struct ib_udata *udata);
d41fcc67
RD
1497 int (*query_srq)(struct ib_srq *srq,
1498 struct ib_srq_attr *srq_attr);
1499 int (*destroy_srq)(struct ib_srq *srq);
1500 int (*post_srq_recv)(struct ib_srq *srq,
1501 struct ib_recv_wr *recv_wr,
1502 struct ib_recv_wr **bad_recv_wr);
1da177e4 1503 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1504 struct ib_qp_init_attr *qp_init_attr,
1505 struct ib_udata *udata);
1da177e4
LT
1506 int (*modify_qp)(struct ib_qp *qp,
1507 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1508 int qp_attr_mask,
1509 struct ib_udata *udata);
1da177e4
LT
1510 int (*query_qp)(struct ib_qp *qp,
1511 struct ib_qp_attr *qp_attr,
1512 int qp_attr_mask,
1513 struct ib_qp_init_attr *qp_init_attr);
1514 int (*destroy_qp)(struct ib_qp *qp);
1515 int (*post_send)(struct ib_qp *qp,
1516 struct ib_send_wr *send_wr,
1517 struct ib_send_wr **bad_send_wr);
1518 int (*post_recv)(struct ib_qp *qp,
1519 struct ib_recv_wr *recv_wr,
1520 struct ib_recv_wr **bad_recv_wr);
e2773c06 1521 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
f4fd0b22 1522 int comp_vector,
e2773c06
RD
1523 struct ib_ucontext *context,
1524 struct ib_udata *udata);
2dd57162
EC
1525 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1526 u16 cq_period);
1da177e4 1527 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1528 int (*resize_cq)(struct ib_cq *cq, int cqe,
1529 struct ib_udata *udata);
1da177e4
LT
1530 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1531 struct ib_wc *wc);
1532 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1533 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1534 enum ib_cq_notify_flags flags);
1da177e4
LT
1535 int (*req_ncomp_notif)(struct ib_cq *cq,
1536 int wc_cnt);
1537 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1538 int mr_access_flags);
1539 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1540 struct ib_phys_buf *phys_buf_array,
1541 int num_phys_buf,
1542 int mr_access_flags,
1543 u64 *iova_start);
e2773c06 1544 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1545 u64 start, u64 length,
1546 u64 virt_addr,
e2773c06
RD
1547 int mr_access_flags,
1548 struct ib_udata *udata);
1da177e4
LT
1549 int (*query_mr)(struct ib_mr *mr,
1550 struct ib_mr_attr *mr_attr);
1551 int (*dereg_mr)(struct ib_mr *mr);
17cd3a2d
SG
1552 int (*destroy_mr)(struct ib_mr *mr);
1553 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1554 struct ib_mr_init_attr *mr_init_attr);
00f7ec36
SW
1555 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1556 int max_page_list_len);
1557 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1558 int page_list_len);
1559 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1560 int (*rereg_phys_mr)(struct ib_mr *mr,
1561 int mr_rereg_mask,
1562 struct ib_pd *pd,
1563 struct ib_phys_buf *phys_buf_array,
1564 int num_phys_buf,
1565 int mr_access_flags,
1566 u64 *iova_start);
7083e42e
SM
1567 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1568 enum ib_mw_type type);
1da177e4
LT
1569 int (*bind_mw)(struct ib_qp *qp,
1570 struct ib_mw *mw,
1571 struct ib_mw_bind *mw_bind);
1572 int (*dealloc_mw)(struct ib_mw *mw);
1573 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1574 int mr_access_flags,
1575 struct ib_fmr_attr *fmr_attr);
1576 int (*map_phys_fmr)(struct ib_fmr *fmr,
1577 u64 *page_list, int list_len,
1578 u64 iova);
1579 int (*unmap_fmr)(struct list_head *fmr_list);
1580 int (*dealloc_fmr)(struct ib_fmr *fmr);
1581 int (*attach_mcast)(struct ib_qp *qp,
1582 union ib_gid *gid,
1583 u16 lid);
1584 int (*detach_mcast)(struct ib_qp *qp,
1585 union ib_gid *gid,
1586 u16 lid);
1587 int (*process_mad)(struct ib_device *device,
1588 int process_mad_flags,
1589 u8 port_num,
1590 struct ib_wc *in_wc,
1591 struct ib_grh *in_grh,
1592 struct ib_mad *in_mad,
1593 struct ib_mad *out_mad);
59991f94
SH
1594 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1595 struct ib_ucontext *ucontext,
1596 struct ib_udata *udata);
1597 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1598 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1599 struct ib_flow_attr
1600 *flow_attr,
1601 int domain);
1602 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1603 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1604 struct ib_mr_status *mr_status);
1da177e4 1605
9b513090
RC
1606 struct ib_dma_mapping_ops *dma_ops;
1607
e2773c06 1608 struct module *owner;
f4e91eb4 1609 struct device dev;
35be0681 1610 struct kobject *ports_parent;
1da177e4
LT
1611 struct list_head port_list;
1612
1613 enum {
1614 IB_DEV_UNINITIALIZED,
1615 IB_DEV_REGISTERED,
1616 IB_DEV_UNREGISTERED
1617 } reg_state;
1618
274c0891 1619 int uverbs_abi_ver;
17a55f79 1620 u64 uverbs_cmd_mask;
f21519b2 1621 u64 uverbs_ex_cmd_mask;
274c0891 1622
c5bcbbb9 1623 char node_desc[64];
cf311cd4 1624 __be64 node_guid;
96f15c03 1625 u32 local_dma_lkey;
1da177e4
LT
1626 u8 node_type;
1627 u8 phys_port_cnt;
1628};
1629
1630struct ib_client {
1631 char *name;
1632 void (*add) (struct ib_device *);
1633 void (*remove)(struct ib_device *);
1634
1635 struct list_head list;
1636};
1637
1638struct ib_device *ib_alloc_device(size_t size);
1639void ib_dealloc_device(struct ib_device *device);
1640
9a6edb60
RC
1641int ib_register_device(struct ib_device *device,
1642 int (*port_callback)(struct ib_device *,
1643 u8, struct kobject *));
1da177e4
LT
1644void ib_unregister_device(struct ib_device *device);
1645
1646int ib_register_client (struct ib_client *client);
1647void ib_unregister_client(struct ib_client *client);
1648
1649void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1650void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1651 void *data);
1652
e2773c06
RD
1653static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1654{
1655 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1656}
1657
1658static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1659{
1660 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1661}
1662
8a51866f
RD
1663/**
1664 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1665 * contains all required attributes and no attributes not allowed for
1666 * the given QP state transition.
1667 * @cur_state: Current QP state
1668 * @next_state: Next QP state
1669 * @type: QP type
1670 * @mask: Mask of supplied QP attributes
dd5f03be 1671 * @ll : link layer of port
8a51866f
RD
1672 *
1673 * This function is a helper function that a low-level driver's
1674 * modify_qp method can use to validate the consumer's input. It
1675 * checks that cur_state and next_state are valid QP states, that a
1676 * transition from cur_state to next_state is allowed by the IB spec,
1677 * and that the attribute mask supplied is allowed for the transition.
1678 */
1679int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1680 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1681 enum rdma_link_layer ll);
8a51866f 1682
1da177e4
LT
1683int ib_register_event_handler (struct ib_event_handler *event_handler);
1684int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1685void ib_dispatch_event(struct ib_event *event);
1686
1687int ib_query_device(struct ib_device *device,
1688 struct ib_device_attr *device_attr);
1689
1690int ib_query_port(struct ib_device *device,
1691 u8 port_num, struct ib_port_attr *port_attr);
1692
a3f5adaf
EC
1693enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1694 u8 port_num);
1695
1da177e4
LT
1696int ib_query_gid(struct ib_device *device,
1697 u8 port_num, int index, union ib_gid *gid);
1698
1699int ib_query_pkey(struct ib_device *device,
1700 u8 port_num, u16 index, u16 *pkey);
1701
1702int ib_modify_device(struct ib_device *device,
1703 int device_modify_mask,
1704 struct ib_device_modify *device_modify);
1705
1706int ib_modify_port(struct ib_device *device,
1707 u8 port_num, int port_modify_mask,
1708 struct ib_port_modify *port_modify);
1709
5eb620c8
YE
1710int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1711 u8 *port_num, u16 *index);
1712
1713int ib_find_pkey(struct ib_device *device,
1714 u8 port_num, u16 pkey, u16 *index);
1715
1da177e4
LT
1716/**
1717 * ib_alloc_pd - Allocates an unused protection domain.
1718 * @device: The device on which to allocate the protection domain.
1719 *
1720 * A protection domain object provides an association between QPs, shared
1721 * receive queues, address handles, memory regions, and memory windows.
1722 */
1723struct ib_pd *ib_alloc_pd(struct ib_device *device);
1724
1725/**
1726 * ib_dealloc_pd - Deallocates a protection domain.
1727 * @pd: The protection domain to deallocate.
1728 */
1729int ib_dealloc_pd(struct ib_pd *pd);
1730
1731/**
1732 * ib_create_ah - Creates an address handle for the given address vector.
1733 * @pd: The protection domain associated with the address handle.
1734 * @ah_attr: The attributes of the address vector.
1735 *
1736 * The address handle is used to reference a local or global destination
1737 * in all UD QP post sends.
1738 */
1739struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1740
4e00d694
SH
1741/**
1742 * ib_init_ah_from_wc - Initializes address handle attributes from a
1743 * work completion.
1744 * @device: Device on which the received message arrived.
1745 * @port_num: Port on which the received message arrived.
1746 * @wc: Work completion associated with the received message.
1747 * @grh: References the received global route header. This parameter is
1748 * ignored unless the work completion indicates that the GRH is valid.
1749 * @ah_attr: Returned attributes that can be used when creating an address
1750 * handle for replying to the message.
1751 */
1752int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1753 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1754
513789ed
HR
1755/**
1756 * ib_create_ah_from_wc - Creates an address handle associated with the
1757 * sender of the specified work completion.
1758 * @pd: The protection domain associated with the address handle.
1759 * @wc: Work completion information associated with a received message.
1760 * @grh: References the received global route header. This parameter is
1761 * ignored unless the work completion indicates that the GRH is valid.
1762 * @port_num: The outbound port number to associate with the address.
1763 *
1764 * The address handle is used to reference a local or global destination
1765 * in all UD QP post sends.
1766 */
1767struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1768 struct ib_grh *grh, u8 port_num);
1769
1da177e4
LT
1770/**
1771 * ib_modify_ah - Modifies the address vector associated with an address
1772 * handle.
1773 * @ah: The address handle to modify.
1774 * @ah_attr: The new address vector attributes to associate with the
1775 * address handle.
1776 */
1777int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1778
1779/**
1780 * ib_query_ah - Queries the address vector associated with an address
1781 * handle.
1782 * @ah: The address handle to query.
1783 * @ah_attr: The address vector attributes associated with the address
1784 * handle.
1785 */
1786int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1787
1788/**
1789 * ib_destroy_ah - Destroys an address handle.
1790 * @ah: The address handle to destroy.
1791 */
1792int ib_destroy_ah(struct ib_ah *ah);
1793
d41fcc67
RD
1794/**
1795 * ib_create_srq - Creates a SRQ associated with the specified protection
1796 * domain.
1797 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
1798 * @srq_init_attr: A list of initial attributes required to create the
1799 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1800 * the actual capabilities of the created SRQ.
d41fcc67
RD
1801 *
1802 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1803 * requested size of the SRQ, and set to the actual values allocated
1804 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1805 * will always be at least as large as the requested values.
1806 */
1807struct ib_srq *ib_create_srq(struct ib_pd *pd,
1808 struct ib_srq_init_attr *srq_init_attr);
1809
1810/**
1811 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1812 * @srq: The SRQ to modify.
1813 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1814 * the current values of selected SRQ attributes are returned.
1815 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1816 * are being modified.
1817 *
1818 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1819 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1820 * the number of receives queued drops below the limit.
1821 */
1822int ib_modify_srq(struct ib_srq *srq,
1823 struct ib_srq_attr *srq_attr,
1824 enum ib_srq_attr_mask srq_attr_mask);
1825
1826/**
1827 * ib_query_srq - Returns the attribute list and current values for the
1828 * specified SRQ.
1829 * @srq: The SRQ to query.
1830 * @srq_attr: The attributes of the specified SRQ.
1831 */
1832int ib_query_srq(struct ib_srq *srq,
1833 struct ib_srq_attr *srq_attr);
1834
1835/**
1836 * ib_destroy_srq - Destroys the specified SRQ.
1837 * @srq: The SRQ to destroy.
1838 */
1839int ib_destroy_srq(struct ib_srq *srq);
1840
1841/**
1842 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1843 * @srq: The SRQ to post the work request on.
1844 * @recv_wr: A list of work requests to post on the receive queue.
1845 * @bad_recv_wr: On an immediate failure, this parameter will reference
1846 * the work request that failed to be posted on the QP.
1847 */
1848static inline int ib_post_srq_recv(struct ib_srq *srq,
1849 struct ib_recv_wr *recv_wr,
1850 struct ib_recv_wr **bad_recv_wr)
1851{
1852 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1853}
1854
1da177e4
LT
1855/**
1856 * ib_create_qp - Creates a QP associated with the specified protection
1857 * domain.
1858 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
1859 * @qp_init_attr: A list of initial attributes required to create the
1860 * QP. If QP creation succeeds, then the attributes are updated to
1861 * the actual capabilities of the created QP.
1da177e4
LT
1862 */
1863struct ib_qp *ib_create_qp(struct ib_pd *pd,
1864 struct ib_qp_init_attr *qp_init_attr);
1865
1866/**
1867 * ib_modify_qp - Modifies the attributes for the specified QP and then
1868 * transitions the QP to the given state.
1869 * @qp: The QP to modify.
1870 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1871 * the current values of selected QP attributes are returned.
1872 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1873 * are being modified.
1874 */
1875int ib_modify_qp(struct ib_qp *qp,
1876 struct ib_qp_attr *qp_attr,
1877 int qp_attr_mask);
1878
1879/**
1880 * ib_query_qp - Returns the attribute list and current values for the
1881 * specified QP.
1882 * @qp: The QP to query.
1883 * @qp_attr: The attributes of the specified QP.
1884 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1885 * @qp_init_attr: Additional attributes of the selected QP.
1886 *
1887 * The qp_attr_mask may be used to limit the query to gathering only the
1888 * selected attributes.
1889 */
1890int ib_query_qp(struct ib_qp *qp,
1891 struct ib_qp_attr *qp_attr,
1892 int qp_attr_mask,
1893 struct ib_qp_init_attr *qp_init_attr);
1894
1895/**
1896 * ib_destroy_qp - Destroys the specified QP.
1897 * @qp: The QP to destroy.
1898 */
1899int ib_destroy_qp(struct ib_qp *qp);
1900
d3d72d90 1901/**
0e0ec7e0
SH
1902 * ib_open_qp - Obtain a reference to an existing sharable QP.
1903 * @xrcd - XRC domain
1904 * @qp_open_attr: Attributes identifying the QP to open.
1905 *
1906 * Returns a reference to a sharable QP.
1907 */
1908struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1909 struct ib_qp_open_attr *qp_open_attr);
1910
1911/**
1912 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
1913 * @qp: The QP handle to release
1914 *
0e0ec7e0
SH
1915 * The opened QP handle is released by the caller. The underlying
1916 * shared QP is not destroyed until all internal references are released.
d3d72d90 1917 */
0e0ec7e0 1918int ib_close_qp(struct ib_qp *qp);
d3d72d90 1919
1da177e4
LT
1920/**
1921 * ib_post_send - Posts a list of work requests to the send queue of
1922 * the specified QP.
1923 * @qp: The QP to post the work request on.
1924 * @send_wr: A list of work requests to post on the send queue.
1925 * @bad_send_wr: On an immediate failure, this parameter will reference
1926 * the work request that failed to be posted on the QP.
55464d46
BVA
1927 *
1928 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1929 * error is returned, the QP state shall not be affected,
1930 * ib_post_send() will return an immediate error after queueing any
1931 * earlier work requests in the list.
1da177e4
LT
1932 */
1933static inline int ib_post_send(struct ib_qp *qp,
1934 struct ib_send_wr *send_wr,
1935 struct ib_send_wr **bad_send_wr)
1936{
1937 return qp->device->post_send(qp, send_wr, bad_send_wr);
1938}
1939
1940/**
1941 * ib_post_recv - Posts a list of work requests to the receive queue of
1942 * the specified QP.
1943 * @qp: The QP to post the work request on.
1944 * @recv_wr: A list of work requests to post on the receive queue.
1945 * @bad_recv_wr: On an immediate failure, this parameter will reference
1946 * the work request that failed to be posted on the QP.
1947 */
1948static inline int ib_post_recv(struct ib_qp *qp,
1949 struct ib_recv_wr *recv_wr,
1950 struct ib_recv_wr **bad_recv_wr)
1951{
1952 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1953}
1954
1955/**
1956 * ib_create_cq - Creates a CQ on the specified device.
1957 * @device: The device on which to create the CQ.
1958 * @comp_handler: A user-specified callback that is invoked when a
1959 * completion event occurs on the CQ.
1960 * @event_handler: A user-specified callback that is invoked when an
1961 * asynchronous event not associated with a completion occurs on the CQ.
1962 * @cq_context: Context associated with the CQ returned to the user via
1963 * the associated completion and event handlers.
1964 * @cqe: The minimum size of the CQ.
f4fd0b22
MT
1965 * @comp_vector - Completion vector used to signal completion events.
1966 * Must be >= 0 and < context->num_comp_vectors.
1da177e4
LT
1967 *
1968 * Users can examine the cq structure to determine the actual CQ size.
1969 */
1970struct ib_cq *ib_create_cq(struct ib_device *device,
1971 ib_comp_handler comp_handler,
1972 void (*event_handler)(struct ib_event *, void *),
f4fd0b22 1973 void *cq_context, int cqe, int comp_vector);
1da177e4
LT
1974
1975/**
1976 * ib_resize_cq - Modifies the capacity of the CQ.
1977 * @cq: The CQ to resize.
1978 * @cqe: The minimum size of the CQ.
1979 *
1980 * Users can examine the cq structure to determine the actual CQ size.
1981 */
1982int ib_resize_cq(struct ib_cq *cq, int cqe);
1983
2dd57162
EC
1984/**
1985 * ib_modify_cq - Modifies moderation params of the CQ
1986 * @cq: The CQ to modify.
1987 * @cq_count: number of CQEs that will trigger an event
1988 * @cq_period: max period of time in usec before triggering an event
1989 *
1990 */
1991int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1992
1da177e4
LT
1993/**
1994 * ib_destroy_cq - Destroys the specified CQ.
1995 * @cq: The CQ to destroy.
1996 */
1997int ib_destroy_cq(struct ib_cq *cq);
1998
1999/**
2000 * ib_poll_cq - poll a CQ for completion(s)
2001 * @cq:the CQ being polled
2002 * @num_entries:maximum number of completions to return
2003 * @wc:array of at least @num_entries &struct ib_wc where completions
2004 * will be returned
2005 *
2006 * Poll a CQ for (possibly multiple) completions. If the return value
2007 * is < 0, an error occurred. If the return value is >= 0, it is the
2008 * number of completions returned. If the return value is
2009 * non-negative and < num_entries, then the CQ was emptied.
2010 */
2011static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2012 struct ib_wc *wc)
2013{
2014 return cq->device->poll_cq(cq, num_entries, wc);
2015}
2016
2017/**
2018 * ib_peek_cq - Returns the number of unreaped completions currently
2019 * on the specified CQ.
2020 * @cq: The CQ to peek.
2021 * @wc_cnt: A minimum number of unreaped completions to check for.
2022 *
2023 * If the number of unreaped completions is greater than or equal to wc_cnt,
2024 * this function returns wc_cnt, otherwise, it returns the actual number of
2025 * unreaped completions.
2026 */
2027int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2028
2029/**
2030 * ib_req_notify_cq - Request completion notification on a CQ.
2031 * @cq: The CQ to generate an event for.
ed23a727
RD
2032 * @flags:
2033 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2034 * to request an event on the next solicited event or next work
2035 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2036 * may also be |ed in to request a hint about missed events, as
2037 * described below.
2038 *
2039 * Return Value:
2040 * < 0 means an error occurred while requesting notification
2041 * == 0 means notification was requested successfully, and if
2042 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2043 * were missed and it is safe to wait for another event. In
2044 * this case is it guaranteed that any work completions added
2045 * to the CQ since the last CQ poll will trigger a completion
2046 * notification event.
2047 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2048 * in. It means that the consumer must poll the CQ again to
2049 * make sure it is empty to avoid missing an event because of a
2050 * race between requesting notification and an entry being
2051 * added to the CQ. This return value means it is possible
2052 * (but not guaranteed) that a work completion has been added
2053 * to the CQ since the last poll without triggering a
2054 * completion notification event.
1da177e4
LT
2055 */
2056static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2057 enum ib_cq_notify_flags flags)
1da177e4 2058{
ed23a727 2059 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2060}
2061
2062/**
2063 * ib_req_ncomp_notif - Request completion notification when there are
2064 * at least the specified number of unreaped completions on the CQ.
2065 * @cq: The CQ to generate an event for.
2066 * @wc_cnt: The number of unreaped completions that should be on the
2067 * CQ before an event is generated.
2068 */
2069static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2070{
2071 return cq->device->req_ncomp_notif ?
2072 cq->device->req_ncomp_notif(cq, wc_cnt) :
2073 -ENOSYS;
2074}
2075
2076/**
2077 * ib_get_dma_mr - Returns a memory region for system memory that is
2078 * usable for DMA.
2079 * @pd: The protection domain associated with the memory region.
2080 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2081 *
2082 * Note that the ib_dma_*() functions defined below must be used
2083 * to create/destroy addresses used with the Lkey or Rkey returned
2084 * by ib_get_dma_mr().
1da177e4
LT
2085 */
2086struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2087
9b513090
RC
2088/**
2089 * ib_dma_mapping_error - check a DMA addr for error
2090 * @dev: The device for which the dma_addr was created
2091 * @dma_addr: The DMA address to check
2092 */
2093static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2094{
d1998ef3
BC
2095 if (dev->dma_ops)
2096 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2097 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2098}
2099
2100/**
2101 * ib_dma_map_single - Map a kernel virtual address to DMA address
2102 * @dev: The device for which the dma_addr is to be created
2103 * @cpu_addr: The kernel virtual address
2104 * @size: The size of the region in bytes
2105 * @direction: The direction of the DMA
2106 */
2107static inline u64 ib_dma_map_single(struct ib_device *dev,
2108 void *cpu_addr, size_t size,
2109 enum dma_data_direction direction)
2110{
d1998ef3
BC
2111 if (dev->dma_ops)
2112 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2113 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2114}
2115
2116/**
2117 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2118 * @dev: The device for which the DMA address was created
2119 * @addr: The DMA address
2120 * @size: The size of the region in bytes
2121 * @direction: The direction of the DMA
2122 */
2123static inline void ib_dma_unmap_single(struct ib_device *dev,
2124 u64 addr, size_t size,
2125 enum dma_data_direction direction)
2126{
d1998ef3
BC
2127 if (dev->dma_ops)
2128 dev->dma_ops->unmap_single(dev, addr, size, direction);
2129 else
9b513090
RC
2130 dma_unmap_single(dev->dma_device, addr, size, direction);
2131}
2132
cb9fbc5c
AK
2133static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2134 void *cpu_addr, size_t size,
2135 enum dma_data_direction direction,
2136 struct dma_attrs *attrs)
2137{
2138 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2139 direction, attrs);
2140}
2141
2142static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2143 u64 addr, size_t size,
2144 enum dma_data_direction direction,
2145 struct dma_attrs *attrs)
2146{
2147 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2148 direction, attrs);
2149}
2150
9b513090
RC
2151/**
2152 * ib_dma_map_page - Map a physical page to DMA address
2153 * @dev: The device for which the dma_addr is to be created
2154 * @page: The page to be mapped
2155 * @offset: The offset within the page
2156 * @size: The size of the region in bytes
2157 * @direction: The direction of the DMA
2158 */
2159static inline u64 ib_dma_map_page(struct ib_device *dev,
2160 struct page *page,
2161 unsigned long offset,
2162 size_t size,
2163 enum dma_data_direction direction)
2164{
d1998ef3
BC
2165 if (dev->dma_ops)
2166 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2167 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2168}
2169
2170/**
2171 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2172 * @dev: The device for which the DMA address was created
2173 * @addr: The DMA address
2174 * @size: The size of the region in bytes
2175 * @direction: The direction of the DMA
2176 */
2177static inline void ib_dma_unmap_page(struct ib_device *dev,
2178 u64 addr, size_t size,
2179 enum dma_data_direction direction)
2180{
d1998ef3
BC
2181 if (dev->dma_ops)
2182 dev->dma_ops->unmap_page(dev, addr, size, direction);
2183 else
9b513090
RC
2184 dma_unmap_page(dev->dma_device, addr, size, direction);
2185}
2186
2187/**
2188 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2189 * @dev: The device for which the DMA addresses are to be created
2190 * @sg: The array of scatter/gather entries
2191 * @nents: The number of scatter/gather entries
2192 * @direction: The direction of the DMA
2193 */
2194static inline int ib_dma_map_sg(struct ib_device *dev,
2195 struct scatterlist *sg, int nents,
2196 enum dma_data_direction direction)
2197{
d1998ef3
BC
2198 if (dev->dma_ops)
2199 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2200 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2201}
2202
2203/**
2204 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2205 * @dev: The device for which the DMA addresses were created
2206 * @sg: The array of scatter/gather entries
2207 * @nents: The number of scatter/gather entries
2208 * @direction: The direction of the DMA
2209 */
2210static inline void ib_dma_unmap_sg(struct ib_device *dev,
2211 struct scatterlist *sg, int nents,
2212 enum dma_data_direction direction)
2213{
d1998ef3
BC
2214 if (dev->dma_ops)
2215 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2216 else
9b513090
RC
2217 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2218}
2219
cb9fbc5c
AK
2220static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2221 struct scatterlist *sg, int nents,
2222 enum dma_data_direction direction,
2223 struct dma_attrs *attrs)
2224{
2225 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2226}
2227
2228static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2229 struct scatterlist *sg, int nents,
2230 enum dma_data_direction direction,
2231 struct dma_attrs *attrs)
2232{
2233 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2234}
9b513090
RC
2235/**
2236 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2237 * @dev: The device for which the DMA addresses were created
2238 * @sg: The scatter/gather entry
ea58a595
MM
2239 *
2240 * Note: this function is obsolete. To do: change all occurrences of
2241 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2242 */
2243static inline u64 ib_sg_dma_address(struct ib_device *dev,
2244 struct scatterlist *sg)
2245{
d1998ef3 2246 return sg_dma_address(sg);
9b513090
RC
2247}
2248
2249/**
2250 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2251 * @dev: The device for which the DMA addresses were created
2252 * @sg: The scatter/gather entry
ea58a595
MM
2253 *
2254 * Note: this function is obsolete. To do: change all occurrences of
2255 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2256 */
2257static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2258 struct scatterlist *sg)
2259{
d1998ef3 2260 return sg_dma_len(sg);
9b513090
RC
2261}
2262
2263/**
2264 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2265 * @dev: The device for which the DMA address was created
2266 * @addr: The DMA address
2267 * @size: The size of the region in bytes
2268 * @dir: The direction of the DMA
2269 */
2270static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2271 u64 addr,
2272 size_t size,
2273 enum dma_data_direction dir)
2274{
d1998ef3
BC
2275 if (dev->dma_ops)
2276 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2277 else
9b513090
RC
2278 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2279}
2280
2281/**
2282 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2283 * @dev: The device for which the DMA address was created
2284 * @addr: The DMA address
2285 * @size: The size of the region in bytes
2286 * @dir: The direction of the DMA
2287 */
2288static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2289 u64 addr,
2290 size_t size,
2291 enum dma_data_direction dir)
2292{
d1998ef3
BC
2293 if (dev->dma_ops)
2294 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2295 else
9b513090
RC
2296 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2297}
2298
2299/**
2300 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2301 * @dev: The device for which the DMA address is requested
2302 * @size: The size of the region to allocate in bytes
2303 * @dma_handle: A pointer for returning the DMA address of the region
2304 * @flag: memory allocator flags
2305 */
2306static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2307 size_t size,
2308 u64 *dma_handle,
2309 gfp_t flag)
2310{
d1998ef3
BC
2311 if (dev->dma_ops)
2312 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2313 else {
2314 dma_addr_t handle;
2315 void *ret;
2316
2317 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2318 *dma_handle = handle;
2319 return ret;
2320 }
9b513090
RC
2321}
2322
2323/**
2324 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2325 * @dev: The device for which the DMA addresses were allocated
2326 * @size: The size of the region
2327 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2328 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2329 */
2330static inline void ib_dma_free_coherent(struct ib_device *dev,
2331 size_t size, void *cpu_addr,
2332 u64 dma_handle)
2333{
d1998ef3
BC
2334 if (dev->dma_ops)
2335 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2336 else
9b513090
RC
2337 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2338}
2339
1da177e4
LT
2340/**
2341 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2342 * by an HCA.
2343 * @pd: The protection domain associated assigned to the registered region.
2344 * @phys_buf_array: Specifies a list of physical buffers to use in the
2345 * memory region.
2346 * @num_phys_buf: Specifies the size of the phys_buf_array.
2347 * @mr_access_flags: Specifies the memory access rights.
2348 * @iova_start: The offset of the region's starting I/O virtual address.
2349 */
2350struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2351 struct ib_phys_buf *phys_buf_array,
2352 int num_phys_buf,
2353 int mr_access_flags,
2354 u64 *iova_start);
2355
2356/**
2357 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2358 * Conceptually, this call performs the functions deregister memory region
2359 * followed by register physical memory region. Where possible,
2360 * resources are reused instead of deallocated and reallocated.
2361 * @mr: The memory region to modify.
2362 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2363 * properties of the memory region are being modified.
2364 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2365 * the new protection domain to associated with the memory region,
2366 * otherwise, this parameter is ignored.
2367 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2368 * field specifies a list of physical buffers to use in the new
2369 * translation, otherwise, this parameter is ignored.
2370 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2371 * field specifies the size of the phys_buf_array, otherwise, this
2372 * parameter is ignored.
2373 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2374 * field specifies the new memory access rights, otherwise, this
2375 * parameter is ignored.
2376 * @iova_start: The offset of the region's starting I/O virtual address.
2377 */
2378int ib_rereg_phys_mr(struct ib_mr *mr,
2379 int mr_rereg_mask,
2380 struct ib_pd *pd,
2381 struct ib_phys_buf *phys_buf_array,
2382 int num_phys_buf,
2383 int mr_access_flags,
2384 u64 *iova_start);
2385
2386/**
2387 * ib_query_mr - Retrieves information about a specific memory region.
2388 * @mr: The memory region to retrieve information about.
2389 * @mr_attr: The attributes of the specified memory region.
2390 */
2391int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2392
2393/**
2394 * ib_dereg_mr - Deregisters a memory region and removes it from the
2395 * HCA translation table.
2396 * @mr: The memory region to deregister.
7083e42e
SM
2397 *
2398 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2399 */
2400int ib_dereg_mr(struct ib_mr *mr);
2401
17cd3a2d
SG
2402
2403/**
2404 * ib_create_mr - Allocates a memory region that may be used for
2405 * signature handover operations.
2406 * @pd: The protection domain associated with the region.
2407 * @mr_init_attr: memory region init attributes.
2408 */
2409struct ib_mr *ib_create_mr(struct ib_pd *pd,
2410 struct ib_mr_init_attr *mr_init_attr);
2411
2412/**
2413 * ib_destroy_mr - Destroys a memory region that was created using
2414 * ib_create_mr and removes it from HW translation tables.
2415 * @mr: The memory region to destroy.
2416 *
2417 * This function can fail, if the memory region has memory windows bound to it.
2418 */
2419int ib_destroy_mr(struct ib_mr *mr);
2420
00f7ec36
SW
2421/**
2422 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2423 * IB_WR_FAST_REG_MR send work request.
2424 * @pd: The protection domain associated with the region.
2425 * @max_page_list_len: requested max physical buffer list length to be
2426 * used with fast register work requests for this MR.
2427 */
2428struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2429
2430/**
2431 * ib_alloc_fast_reg_page_list - Allocates a page list array
2432 * @device - ib device pointer.
2433 * @page_list_len - size of the page list array to be allocated.
2434 *
2435 * This allocates and returns a struct ib_fast_reg_page_list * and a
2436 * page_list array that is at least page_list_len in size. The actual
2437 * size is returned in max_page_list_len. The caller is responsible
2438 * for initializing the contents of the page_list array before posting
2439 * a send work request with the IB_WC_FAST_REG_MR opcode.
2440 *
2441 * The page_list array entries must be translated using one of the
2442 * ib_dma_*() functions just like the addresses passed to
2443 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2444 * ib_fast_reg_page_list must not be modified by the caller until the
2445 * IB_WC_FAST_REG_MR work request completes.
2446 */
2447struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2448 struct ib_device *device, int page_list_len);
2449
2450/**
2451 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2452 * page list array.
2453 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2454 */
2455void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2456
2457/**
2458 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2459 * R_Key and L_Key.
2460 * @mr - struct ib_mr pointer to be updated.
2461 * @newkey - new key to be used.
2462 */
2463static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2464{
2465 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2466 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2467}
2468
7083e42e
SM
2469/**
2470 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2471 * for calculating a new rkey for type 2 memory windows.
2472 * @rkey - the rkey to increment.
2473 */
2474static inline u32 ib_inc_rkey(u32 rkey)
2475{
2476 const u32 mask = 0x000000ff;
2477 return ((rkey + 1) & mask) | (rkey & ~mask);
2478}
2479
1da177e4
LT
2480/**
2481 * ib_alloc_mw - Allocates a memory window.
2482 * @pd: The protection domain associated with the memory window.
7083e42e 2483 * @type: The type of the memory window (1 or 2).
1da177e4 2484 */
7083e42e 2485struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2486
2487/**
2488 * ib_bind_mw - Posts a work request to the send queue of the specified
2489 * QP, which binds the memory window to the given address range and
2490 * remote access attributes.
2491 * @qp: QP to post the bind work request on.
2492 * @mw: The memory window to bind.
2493 * @mw_bind: Specifies information about the memory window, including
2494 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2495 *
2496 * If there is no immediate error, the function will update the rkey member
2497 * of the mw parameter to its new value. The bind operation can still fail
2498 * asynchronously.
1da177e4
LT
2499 */
2500static inline int ib_bind_mw(struct ib_qp *qp,
2501 struct ib_mw *mw,
2502 struct ib_mw_bind *mw_bind)
2503{
2504 /* XXX reference counting in corresponding MR? */
2505 return mw->device->bind_mw ?
2506 mw->device->bind_mw(qp, mw, mw_bind) :
2507 -ENOSYS;
2508}
2509
2510/**
2511 * ib_dealloc_mw - Deallocates a memory window.
2512 * @mw: The memory window to deallocate.
2513 */
2514int ib_dealloc_mw(struct ib_mw *mw);
2515
2516/**
2517 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2518 * @pd: The protection domain associated with the unmapped region.
2519 * @mr_access_flags: Specifies the memory access rights.
2520 * @fmr_attr: Attributes of the unmapped region.
2521 *
2522 * A fast memory region must be mapped before it can be used as part of
2523 * a work request.
2524 */
2525struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2526 int mr_access_flags,
2527 struct ib_fmr_attr *fmr_attr);
2528
2529/**
2530 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2531 * @fmr: The fast memory region to associate with the pages.
2532 * @page_list: An array of physical pages to map to the fast memory region.
2533 * @list_len: The number of pages in page_list.
2534 * @iova: The I/O virtual address to use with the mapped region.
2535 */
2536static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2537 u64 *page_list, int list_len,
2538 u64 iova)
2539{
2540 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2541}
2542
2543/**
2544 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2545 * @fmr_list: A linked list of fast memory regions to unmap.
2546 */
2547int ib_unmap_fmr(struct list_head *fmr_list);
2548
2549/**
2550 * ib_dealloc_fmr - Deallocates a fast memory region.
2551 * @fmr: The fast memory region to deallocate.
2552 */
2553int ib_dealloc_fmr(struct ib_fmr *fmr);
2554
2555/**
2556 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2557 * @qp: QP to attach to the multicast group. The QP must be type
2558 * IB_QPT_UD.
2559 * @gid: Multicast group GID.
2560 * @lid: Multicast group LID in host byte order.
2561 *
2562 * In order to send and receive multicast packets, subnet
2563 * administration must have created the multicast group and configured
2564 * the fabric appropriately. The port associated with the specified
2565 * QP must also be a member of the multicast group.
2566 */
2567int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568
2569/**
2570 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2571 * @qp: QP to detach from the multicast group.
2572 * @gid: Multicast group GID.
2573 * @lid: Multicast group LID in host byte order.
2574 */
2575int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2576
59991f94
SH
2577/**
2578 * ib_alloc_xrcd - Allocates an XRC domain.
2579 * @device: The device on which to allocate the XRC domain.
2580 */
2581struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2582
2583/**
2584 * ib_dealloc_xrcd - Deallocates an XRC domain.
2585 * @xrcd: The XRC domain to deallocate.
2586 */
2587int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2588
319a441d
HHZ
2589struct ib_flow *ib_create_flow(struct ib_qp *qp,
2590 struct ib_flow_attr *flow_attr, int domain);
2591int ib_destroy_flow(struct ib_flow *flow_id);
2592
1c636f80
EC
2593static inline int ib_check_mr_access(int flags)
2594{
2595 /*
2596 * Local write permission is required if remote write or
2597 * remote atomic permission is also requested.
2598 */
2599 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2600 !(flags & IB_ACCESS_LOCAL_WRITE))
2601 return -EINVAL;
2602
2603 return 0;
2604}
2605
1b01d335
SG
2606/**
2607 * ib_check_mr_status: lightweight check of MR status.
2608 * This routine may provide status checks on a selected
2609 * ib_mr. first use is for signature status check.
2610 *
2611 * @mr: A memory region.
2612 * @check_mask: Bitmask of which checks to perform from
2613 * ib_mr_status_check enumeration.
2614 * @mr_status: The container of relevant status checks.
2615 * failed checks will be indicated in the status bitmask
2616 * and the relevant info shall be in the error item.
2617 */
2618int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2619 struct ib_mr_status *mr_status);
2620
1da177e4 2621#endif /* IB_VERBS_H */