Merge tag 'for-5.16/block-2021-11-09' of git://git.kernel.dk/linux-block
[linux-block.git] / include / rdma / ib_verbs.h
CommitLineData
6bf9d8f6 1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
1da177e4
LT
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
3bc489e8 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
1da177e4
LT
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
10 */
11
6bf9d8f6 12#ifndef IB_VERBS_H
1da177e4
LT
13#define IB_VERBS_H
14
cc69837f 15#include <linux/ethtool.h>
1da177e4
LT
16#include <linux/types.h>
17#include <linux/device.h>
9b513090 18#include <linux/dma-mapping.h>
459d6e2a 19#include <linux/kref.h>
bfb3ea12
DB
20#include <linux/list.h>
21#include <linux/rwsem.h>
f0626710 22#include <linux/workqueue.h>
14d3a3b2 23#include <linux/irq_poll.h>
dd5f03be 24#include <uapi/linux/if_ether.h>
c865f246
SK
25#include <net/ipv6.h>
26#include <net/ip.h>
301a721e
MB
27#include <linux/string.h>
28#include <linux/slab.h>
2fc77572 29#include <linux/netdevice.h>
01b67117 30#include <linux/refcount.h>
50174a7f 31#include <linux/if_link.h>
60063497 32#include <linux/atomic.h>
882214e2 33#include <linux/mmu_notifier.h>
7c0f6ba6 34#include <linux/uaccess.h>
43579b5f 35#include <linux/cgroup_rdma.h>
f6316032
LR
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
da662979 38#include <linux/dim.h>
ea6819e1 39#include <uapi/rdma/ib_user_verbs.h>
413d3347 40#include <rdma/rdma_counter.h>
02d8883f 41#include <rdma/restrack.h>
36b1e47f 42#include <rdma/signature.h>
0ede73bc 43#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 44#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 45
9abb0d1b
LR
46#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
b5231b01 48struct ib_umem_odp;
620d3f81 49struct ib_uqp_object;
9fbe334c 50struct ib_usrq_object;
e04dd131 51struct ib_uwq_object;
211cd945 52struct rdma_cm_id;
d8a58838 53struct ib_port;
467f432a 54struct hw_stats_device_data;
b5231b01 55
f0626710 56extern struct workqueue_struct *ib_wq;
14d3a3b2 57extern struct workqueue_struct *ib_comp_wq;
f794809a 58extern struct workqueue_struct *ib_comp_unbound_wq;
f0626710 59
5bd48c18
JG
60struct ib_ucq_object;
61
923abb9d
GP
62__printf(3, 4) __cold
63void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77__printf(2, 3) __cold
78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
ceabef7d
OZ
80#if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
923abb9d
GP
82#define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
923abb9d
GP
84#else
85__printf(2, 3) __cold
86static inline
87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88#endif
89
05bb411a
GP
90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97} while (0)
98
99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
ceabef7d
OZ
114#if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
05bb411a
GP
116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
117#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126} while (0)
127#else
128__printf(2, 3) __cold
129static inline
130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131#endif
132
1da177e4
LT
133union ib_gid {
134 u8 raw[16];
135 struct {
97f52eb4
SH
136 __be64 subnet_prefix;
137 __be64 interface_id;
1da177e4
LT
138 } global;
139};
140
e26be1bf
MS
141extern union ib_gid zgid;
142
b39ffa1d 143enum ib_gid_type {
9f85cbe5
AH
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
b39ffa1d
MB
147 IB_GID_TYPE_SIZE
148};
149
7ead4bcb 150#define ROCE_V2_UDP_DPORT 4791
03db3a2d 151struct ib_gid_attr {
943bd984 152 struct net_device __rcu *ndev;
598ff6ba 153 struct ib_device *device;
b150c386 154 union ib_gid gid;
598ff6ba
PP
155 enum ib_gid_type gid_type;
156 u16 index;
1fb7f897 157 u32 port_num;
03db3a2d
MB
158};
159
a0c1b2a3
EC
160enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163};
164
07ebafba
TT
165enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
180771a3 167 RDMA_TRANSPORT_IWARP,
248567f7 168 RDMA_TRANSPORT_USNIC,
f95be3d2
GP
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
07ebafba
TT
171};
172
6b90a6d6
MW
173enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178};
179
8385fd84 180__attribute_const__ enum rdma_transport_type
5d60c111 181rdma_node_get_transport(unsigned int node_type);
07ebafba 182
c865f246
SK
183enum rdma_network_type {
184 RDMA_NETWORK_IB,
1c15b4f2 185 RDMA_NETWORK_ROCE_V1,
c865f246
SK
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188};
189
190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191{
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
1c15b4f2
AH
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
c865f246
SK
199}
200
47ec3866
PP
201static inline enum rdma_network_type
202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 203{
47ec3866 204 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
205 return RDMA_NETWORK_IB;
206
1c15b4f2
AH
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
47ec3866 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214}
215
a3f5adaf
EC
216enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220};
221
1da177e4 222enum ib_device_cap_flags {
7ca0bc53
LR
223 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
224 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
225 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
226 IB_DEVICE_RAW_MULTI = (1 << 3),
227 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
228 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
229 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
230 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
231 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 232 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
233 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
234 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
235 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
236 IB_DEVICE_SRQ_RESIZE = (1 << 13),
237 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
238
239 /*
240 * This device supports a per-device lkey or stag that can be
241 * used without performing a memory registration for the local
242 * memory. Note that ULPs should never check this flag, but
243 * instead of use the local_dma_lkey flag in the ib_pd structure,
244 * which will always contain a usable lkey.
245 */
7ca0bc53 246 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 247 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 248 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
249 /*
250 * Devices should set IB_DEVICE_UD_IP_SUM if they support
251 * insertion of UDP and TCP checksum on outgoing UD IPoIB
252 * messages and can verify the validity of checksum for
253 * incoming messages. Setting this flag implies that the
254 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
255 */
7ca0bc53
LR
256 IB_DEVICE_UD_IP_CSUM = (1 << 18),
257 IB_DEVICE_UD_TSO = (1 << 19),
258 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
259
260 /*
261 * This device supports the IB "base memory management extension",
262 * which includes support for fast registrations (IB_WR_REG_MR,
263 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
264 * also be set by any iWarp device which must support FRs to comply
265 * to the iWarp verbs spec. iWarp devices also support the
266 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
267 * stag.
268 */
7ca0bc53
LR
269 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
270 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
271 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
272 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
273 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 274 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 275 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
276 /*
277 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
278 * support execution of WQEs that involve synchronization
279 * of I/O operations with single completion queue managed
280 * by hardware.
281 */
78b57f95 282 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53 283 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
c0a6cbb9 284 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
47355b3c 285 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 286 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 287 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 288 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 289 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
7f90a5a0 290 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35),
e1d2e887
NO
291 /* The device supports padding incoming writes to cacheline. */
292 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
3856ec4b 293 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
1b01d335
SG
294};
295
1da177e4
LT
296enum ib_atomic_cap {
297 IB_ATOMIC_NONE,
298 IB_ATOMIC_HCA,
299 IB_ATOMIC_GLOB
300};
301
860f10a7 302enum ib_odp_general_cap_bits {
25bf14d6
AK
303 IB_ODP_SUPPORT = 1 << 0,
304 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
305};
306
307enum ib_odp_transport_cap_bits {
308 IB_ODP_SUPPORT_SEND = 1 << 0,
309 IB_ODP_SUPPORT_RECV = 1 << 1,
310 IB_ODP_SUPPORT_WRITE = 1 << 2,
311 IB_ODP_SUPPORT_READ = 1 << 3,
312 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
da823342 313 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
860f10a7
SG
314};
315
316struct ib_odp_caps {
317 uint64_t general_caps;
318 struct {
319 uint32_t rc_odp_caps;
320 uint32_t uc_odp_caps;
321 uint32_t ud_odp_caps;
52a72e2a 322 uint32_t xrc_odp_caps;
860f10a7
SG
323 } per_transport_caps;
324};
325
ccf20562
YH
326struct ib_rss_caps {
327 /* Corresponding bit will be set if qp type from
328 * 'enum ib_qp_type' is supported, e.g.
329 * supported_qpts |= 1 << IB_QPT_UD
330 */
331 u32 supported_qpts;
332 u32 max_rwq_indirection_tables;
333 u32 max_rwq_indirection_table_size;
334};
335
6938fc1e 336enum ib_tm_cap_flags {
89705e92
DG
337 /* Support tag matching with rendezvous offload for RC transport */
338 IB_TM_CAP_RNDV_RC = 1 << 0,
6938fc1e
AK
339};
340
78b1beb0 341struct ib_tm_caps {
6938fc1e
AK
342 /* Max size of RNDV header */
343 u32 max_rndv_hdr_size;
344 /* Max number of entries in tag matching list */
345 u32 max_num_tags;
346 /* From enum ib_tm_cap_flags */
347 u32 flags;
348 /* Max number of outstanding list operations */
349 u32 max_ops;
350 /* Max number of SGE in tag matching entry */
351 u32 max_sge;
352};
353
bcf4c1ea
MB
354struct ib_cq_init_attr {
355 unsigned int cqe;
a9018adf 356 u32 comp_vector;
bcf4c1ea
MB
357 u32 flags;
358};
359
869ddcf8
YC
360enum ib_cq_attr_mask {
361 IB_CQ_MODERATE = 1 << 0,
362};
363
18bd9072
YC
364struct ib_cq_caps {
365 u16 max_cq_moderation_count;
366 u16 max_cq_moderation_period;
367};
368
be934cca
AL
369struct ib_dm_mr_attr {
370 u64 length;
371 u64 offset;
372 u32 access_flags;
373};
374
bee76d7a
AL
375struct ib_dm_alloc_attr {
376 u64 length;
377 u32 alignment;
378 u32 flags;
379};
380
1da177e4
LT
381struct ib_device_attr {
382 u64 fw_ver;
97f52eb4 383 __be64 sys_image_guid;
1da177e4
LT
384 u64 max_mr_size;
385 u64 page_size_cap;
386 u32 vendor_id;
387 u32 vendor_part_id;
388 u32 hw_ver;
389 int max_qp;
390 int max_qp_wr;
fb532d6a 391 u64 device_cap_flags;
33023fb8
SW
392 int max_send_sge;
393 int max_recv_sge;
1da177e4
LT
394 int max_sge_rd;
395 int max_cq;
396 int max_cqe;
397 int max_mr;
398 int max_pd;
399 int max_qp_rd_atom;
400 int max_ee_rd_atom;
401 int max_res_rd_atom;
402 int max_qp_init_rd_atom;
403 int max_ee_init_rd_atom;
404 enum ib_atomic_cap atomic_cap;
5e80ba8f 405 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
406 int max_ee;
407 int max_rdd;
408 int max_mw;
409 int max_raw_ipv6_qp;
410 int max_raw_ethy_qp;
411 int max_mcast_grp;
412 int max_mcast_qp_attach;
413 int max_total_mcast_qp_attach;
414 int max_ah;
1da177e4
LT
415 int max_srq;
416 int max_srq_wr;
417 int max_srq_sge;
00f7ec36 418 unsigned int max_fast_reg_page_list_len;
62e3c379 419 unsigned int max_pi_fast_reg_page_list_len;
1da177e4
LT
420 u16 max_pkeys;
421 u8 local_ca_ack_delay;
1b01d335
SG
422 int sig_prot_cap;
423 int sig_guard_cap;
860f10a7 424 struct ib_odp_caps odp_caps;
24306dc6
MB
425 uint64_t timestamp_mask;
426 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
427 struct ib_rss_caps rss_caps;
428 u32 max_wq_type_rq;
ebaaee25 429 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 430 struct ib_tm_caps tm_caps;
18bd9072 431 struct ib_cq_caps cq_caps;
1d8eeb9f 432 u64 max_dm_size;
00bd1439
YF
433 /* Max entries for sgl for optimized performance per READ */
434 u32 max_sgl_rd;
1da177e4
LT
435};
436
437enum ib_mtu {
438 IB_MTU_256 = 1,
439 IB_MTU_512 = 2,
440 IB_MTU_1024 = 3,
441 IB_MTU_2048 = 4,
442 IB_MTU_4096 = 5
443};
444
6d72344c
KW
445enum opa_mtu {
446 OPA_MTU_8192 = 6,
447 OPA_MTU_10240 = 7
448};
449
1da177e4
LT
450static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
451{
452 switch (mtu) {
453 case IB_MTU_256: return 256;
454 case IB_MTU_512: return 512;
455 case IB_MTU_1024: return 1024;
456 case IB_MTU_2048: return 2048;
457 case IB_MTU_4096: return 4096;
458 default: return -1;
459 }
460}
461
d3f4aadd
AR
462static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
463{
464 if (mtu >= 4096)
465 return IB_MTU_4096;
466 else if (mtu >= 2048)
467 return IB_MTU_2048;
468 else if (mtu >= 1024)
469 return IB_MTU_1024;
470 else if (mtu >= 512)
471 return IB_MTU_512;
472 else
473 return IB_MTU_256;
474}
475
6d72344c
KW
476static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
477{
478 switch (mtu) {
479 case OPA_MTU_8192:
480 return 8192;
481 case OPA_MTU_10240:
482 return 10240;
483 default:
484 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
485 }
486}
487
488static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
489{
490 if (mtu >= 10240)
491 return OPA_MTU_10240;
492 else if (mtu >= 8192)
493 return OPA_MTU_8192;
494 else
495 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
496}
497
1da177e4
LT
498enum ib_port_state {
499 IB_PORT_NOP = 0,
500 IB_PORT_DOWN = 1,
501 IB_PORT_INIT = 2,
502 IB_PORT_ARMED = 3,
503 IB_PORT_ACTIVE = 4,
504 IB_PORT_ACTIVE_DEFER = 5
505};
506
72a7720f
KH
507enum ib_port_phys_state {
508 IB_PORT_PHYS_STATE_SLEEP = 1,
509 IB_PORT_PHYS_STATE_POLLING = 2,
510 IB_PORT_PHYS_STATE_DISABLED = 3,
511 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
512 IB_PORT_PHYS_STATE_LINK_UP = 5,
513 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
514 IB_PORT_PHYS_STATE_PHY_TEST = 7,
515};
516
1da177e4
LT
517enum ib_port_width {
518 IB_WIDTH_1X = 1,
dbabf685 519 IB_WIDTH_2X = 16,
1da177e4
LT
520 IB_WIDTH_4X = 2,
521 IB_WIDTH_8X = 4,
522 IB_WIDTH_12X = 8
523};
524
525static inline int ib_width_enum_to_int(enum ib_port_width width)
526{
527 switch (width) {
528 case IB_WIDTH_1X: return 1;
dbabf685 529 case IB_WIDTH_2X: return 2;
1da177e4
LT
530 case IB_WIDTH_4X: return 4;
531 case IB_WIDTH_8X: return 8;
532 case IB_WIDTH_12X: return 12;
533 default: return -1;
534 }
535}
536
2e96691c
OG
537enum ib_port_speed {
538 IB_SPEED_SDR = 1,
539 IB_SPEED_DDR = 2,
540 IB_SPEED_QDR = 4,
541 IB_SPEED_FDR10 = 8,
542 IB_SPEED_FDR = 16,
12113a35 543 IB_SPEED_EDR = 32,
376ceb31
AL
544 IB_SPEED_HDR = 64,
545 IB_SPEED_NDR = 128,
2e96691c
OG
546};
547
5e2ddd1e
AL
548enum ib_stat_flag {
549 IB_STAT_FLAG_OPTIONAL = 1 << 0,
550};
551
13f30b0f
AL
552/**
553 * struct rdma_stat_desc
554 * @name - The name of the counter
5e2ddd1e 555 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
a29b934c 556 * @priv - Driver private information; Core code should not use
13f30b0f
AL
557 */
558struct rdma_stat_desc {
559 const char *name;
5e2ddd1e 560 unsigned int flags;
a29b934c 561 const void *priv;
13f30b0f
AL
562};
563
b40f4757
CL
564/**
565 * struct rdma_hw_stats
e945130b
MB
566 * @lock - Mutex to protect parallel write access to lifespan and values
567 * of counters, which are 64bits and not guaranteeed to be written
568 * atomicaly on 32bits systems.
b40f4757
CL
569 * @timestamp - Used by the core code to track when the last update was
570 * @lifespan - Used by the core code to determine how old the counters
571 * should be before being updated again. Stored in jiffies, defaults
572 * to 10 milliseconds, drivers can override the default be specifying
573 * their own value during their allocation routine.
13f30b0f
AL
574 * @descs - Array of pointers to static descriptors used for the counters
575 * in directory.
0dc89684
AL
576 * @is_disabled - A bitmap to indicate each counter is currently disabled
577 * or not.
b40f4757
CL
578 * @num_counters - How many hardware counters there are. If name is
579 * shorter than this number, a kernel oops will result. Driver authors
580 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
581 * in their code to prevent this.
582 * @value - Array of u64 counters that are accessed by the sysfs code and
583 * filled in by the drivers get_stats routine
584 */
585struct rdma_hw_stats {
e945130b 586 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
587 unsigned long timestamp;
588 unsigned long lifespan;
13f30b0f 589 const struct rdma_stat_desc *descs;
0dc89684 590 unsigned long *is_disabled;
b40f4757
CL
591 int num_counters;
592 u64 value[];
7f624d02
SW
593};
594
b40f4757 595#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
b40f4757 596
0a0800ce
MZ
597struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
598 const struct rdma_stat_desc *descs, int num_counters,
599 unsigned long lifespan);
b40f4757 600
0a0800ce 601void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
b40f4757 602
f9b22e35
IW
603/* Define bits for the various functionality this port needs to be supported by
604 * the core.
605 */
606/* Management 0x00000FFF */
607#define RDMA_CORE_CAP_IB_MAD 0x00000001
608#define RDMA_CORE_CAP_IB_SMI 0x00000002
609#define RDMA_CORE_CAP_IB_CM 0x00000004
610#define RDMA_CORE_CAP_IW_CM 0x00000008
611#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 612#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
613
614/* Address format 0x000FF000 */
615#define RDMA_CORE_CAP_AF_IB 0x00001000
616#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 617#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 618#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
619
620/* Protocol 0xFFF00000 */
621#define RDMA_CORE_CAP_PROT_IB 0x00100000
622#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
623#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 624#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 625#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 626#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 627
b02289b3
AK
628#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
629 | RDMA_CORE_CAP_PROT_ROCE \
630 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
631
f9b22e35
IW
632#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
633 | RDMA_CORE_CAP_IB_MAD \
634 | RDMA_CORE_CAP_IB_SMI \
635 | RDMA_CORE_CAP_IB_CM \
636 | RDMA_CORE_CAP_IB_SA \
637 | RDMA_CORE_CAP_AF_IB)
638#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
639 | RDMA_CORE_CAP_IB_MAD \
640 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
641 | RDMA_CORE_CAP_AF_IB \
642 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
643#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
644 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
645 | RDMA_CORE_CAP_IB_MAD \
646 | RDMA_CORE_CAP_IB_CM \
647 | RDMA_CORE_CAP_AF_IB \
648 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
649#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
650 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
651#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
652 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 653
aa773bd4
OG
654#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
655
ce1e055f
OG
656#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
657
1da177e4 658struct ib_port_attr {
fad61ad4 659 u64 subnet_prefix;
1da177e4
LT
660 enum ib_port_state state;
661 enum ib_mtu max_mtu;
662 enum ib_mtu active_mtu;
6d72344c 663 u32 phys_mtu;
1da177e4 664 int gid_tbl_len;
2f944c0f
JG
665 unsigned int ip_gids:1;
666 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
667 u32 port_cap_flags;
668 u32 max_msg_sz;
669 u32 bad_pkey_cntr;
670 u32 qkey_viol_cntr;
671 u16 pkey_tbl_len;
db58540b 672 u32 sm_lid;
582faf31 673 u32 lid;
1da177e4
LT
674 u8 lmc;
675 u8 max_vl_num;
676 u8 sm_sl;
677 u8 subnet_timeout;
678 u8 init_type_reply;
679 u8 active_width;
376ceb31 680 u16 active_speed;
1da177e4 681 u8 phys_state;
1e8f43b7 682 u16 port_cap_flags2;
1da177e4
LT
683};
684
685enum ib_device_modify_flags {
c5bcbbb9
RD
686 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
687 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
688};
689
bd99fdea
YS
690#define IB_DEVICE_NODE_DESC_MAX 64
691
1da177e4
LT
692struct ib_device_modify {
693 u64 sys_image_guid;
bd99fdea 694 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
695};
696
697enum ib_port_modify_flags {
698 IB_PORT_SHUTDOWN = 1,
699 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
700 IB_PORT_RESET_QKEY_CNTR = (1<<3),
701 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
702};
703
704struct ib_port_modify {
705 u32 set_port_cap_mask;
706 u32 clr_port_cap_mask;
707 u8 init_type;
708};
709
710enum ib_event_type {
711 IB_EVENT_CQ_ERR,
712 IB_EVENT_QP_FATAL,
713 IB_EVENT_QP_REQ_ERR,
714 IB_EVENT_QP_ACCESS_ERR,
715 IB_EVENT_COMM_EST,
716 IB_EVENT_SQ_DRAINED,
717 IB_EVENT_PATH_MIG,
718 IB_EVENT_PATH_MIG_ERR,
719 IB_EVENT_DEVICE_FATAL,
720 IB_EVENT_PORT_ACTIVE,
721 IB_EVENT_PORT_ERR,
722 IB_EVENT_LID_CHANGE,
723 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
724 IB_EVENT_SM_CHANGE,
725 IB_EVENT_SRQ_ERR,
726 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 727 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
728 IB_EVENT_CLIENT_REREGISTER,
729 IB_EVENT_GID_CHANGE,
f213c052 730 IB_EVENT_WQ_FATAL,
1da177e4
LT
731};
732
db7489e0 733const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 734
1da177e4
LT
735struct ib_event {
736 struct ib_device *device;
737 union {
738 struct ib_cq *cq;
739 struct ib_qp *qp;
d41fcc67 740 struct ib_srq *srq;
f213c052 741 struct ib_wq *wq;
1fb7f897 742 u32 port_num;
1da177e4
LT
743 } element;
744 enum ib_event_type event;
745};
746
747struct ib_event_handler {
748 struct ib_device *device;
749 void (*handler)(struct ib_event_handler *, struct ib_event *);
750 struct list_head list;
751};
752
753#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
754 do { \
755 (_ptr)->device = _device; \
756 (_ptr)->handler = _handler; \
757 INIT_LIST_HEAD(&(_ptr)->list); \
758 } while (0)
759
760struct ib_global_route {
8d9ec9ad 761 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
762 union ib_gid dgid;
763 u32 flow_label;
764 u8 sgid_index;
765 u8 hop_limit;
766 u8 traffic_class;
767};
768
513789ed 769struct ib_grh {
97f52eb4
SH
770 __be32 version_tclass_flow;
771 __be16 paylen;
513789ed
HR
772 u8 next_hdr;
773 u8 hop_limit;
774 union ib_gid sgid;
775 union ib_gid dgid;
776};
777
c865f246
SK
778union rdma_network_hdr {
779 struct ib_grh ibgrh;
780 struct {
781 /* The IB spec states that if it's IPv4, the header
782 * is located in the last 20 bytes of the header.
783 */
784 u8 reserved[20];
785 struct iphdr roce4grh;
786 };
787};
788
7dafbab3
DH
789#define IB_QPN_MASK 0xFFFFFF
790
1da177e4
LT
791enum {
792 IB_MULTICAST_QPN = 0xffffff
793};
794
f3a7c66b 795#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 796#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 797
1da177e4
LT
798enum ib_ah_flags {
799 IB_AH_GRH = 1
800};
801
bf6a9e31
JM
802enum ib_rate {
803 IB_RATE_PORT_CURRENT = 0,
804 IB_RATE_2_5_GBPS = 2,
805 IB_RATE_5_GBPS = 5,
806 IB_RATE_10_GBPS = 3,
807 IB_RATE_20_GBPS = 6,
808 IB_RATE_30_GBPS = 4,
809 IB_RATE_40_GBPS = 7,
810 IB_RATE_60_GBPS = 8,
811 IB_RATE_80_GBPS = 9,
71eeba16
MA
812 IB_RATE_120_GBPS = 10,
813 IB_RATE_14_GBPS = 11,
814 IB_RATE_56_GBPS = 12,
815 IB_RATE_112_GBPS = 13,
816 IB_RATE_168_GBPS = 14,
817 IB_RATE_25_GBPS = 15,
818 IB_RATE_100_GBPS = 16,
819 IB_RATE_200_GBPS = 17,
a5a5d199
MG
820 IB_RATE_300_GBPS = 18,
821 IB_RATE_28_GBPS = 19,
822 IB_RATE_50_GBPS = 20,
823 IB_RATE_400_GBPS = 21,
824 IB_RATE_600_GBPS = 22,
bf6a9e31
JM
825};
826
827/**
828 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
829 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
830 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
831 * @rate: rate to convert.
832 */
8385fd84 833__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 834
71eeba16
MA
835/**
836 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
837 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
838 * @rate: rate to convert.
839 */
8385fd84 840__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 841
17cd3a2d
SG
842
843/**
9bee178b
SG
844 * enum ib_mr_type - memory region type
845 * @IB_MR_TYPE_MEM_REG: memory region that is used for
846 * normal registration
f5aa9159
SG
847 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
848 * register any arbitrary sg lists (without
849 * the normal mr constraints - see
850 * ib_map_mr_sg)
a0bc099a
MG
851 * @IB_MR_TYPE_DM: memory region that is used for device
852 * memory registration
853 * @IB_MR_TYPE_USER: memory region that is used for the user-space
854 * application
855 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
856 * without address translations (VA=PA)
26bc7eae
IR
857 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
858 * data integrity operations
17cd3a2d 859 */
9bee178b
SG
860enum ib_mr_type {
861 IB_MR_TYPE_MEM_REG,
f5aa9159 862 IB_MR_TYPE_SG_GAPS,
a0bc099a
MG
863 IB_MR_TYPE_DM,
864 IB_MR_TYPE_USER,
865 IB_MR_TYPE_DMA,
26bc7eae 866 IB_MR_TYPE_INTEGRITY,
17cd3a2d
SG
867};
868
1b01d335
SG
869enum ib_mr_status_check {
870 IB_MR_CHECK_SIG_STATUS = 1,
871};
872
873/**
874 * struct ib_mr_status - Memory region status container
875 *
876 * @fail_status: Bitmask of MR checks status. For each
877 * failed check a corresponding status bit is set.
878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
879 * failure.
880 */
881struct ib_mr_status {
882 u32 fail_status;
883 struct ib_sig_err sig_err;
884};
885
bf6a9e31
JM
886/**
887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
888 * enum.
889 * @mult: multiple to convert.
890 */
8385fd84 891__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 892
fa5d010c
MG
893struct rdma_ah_init_attr {
894 struct rdma_ah_attr *ah_attr;
895 u32 flags;
51aab126 896 struct net_device *xmit_slave;
fa5d010c
MG
897};
898
44c58487 899enum rdma_ah_attr_type {
87daac68 900 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
901 RDMA_AH_ATTR_TYPE_IB,
902 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 903 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
904};
905
906struct ib_ah_attr {
907 u16 dlid;
908 u8 src_path_bits;
909};
910
911struct roce_ah_attr {
912 u8 dmac[ETH_ALEN];
913};
914
64b4646e
DC
915struct opa_ah_attr {
916 u32 dlid;
917 u8 src_path_bits;
d98bb7f7 918 bool make_grd;
64b4646e
DC
919};
920
90898850 921struct rdma_ah_attr {
1da177e4 922 struct ib_global_route grh;
1da177e4 923 u8 sl;
1da177e4 924 u8 static_rate;
1fb7f897 925 u32 port_num;
44c58487
DC
926 u8 ah_flags;
927 enum rdma_ah_attr_type type;
928 union {
929 struct ib_ah_attr ib;
930 struct roce_ah_attr roce;
64b4646e 931 struct opa_ah_attr opa;
44c58487 932 };
1da177e4
LT
933};
934
935enum ib_wc_status {
936 IB_WC_SUCCESS,
937 IB_WC_LOC_LEN_ERR,
938 IB_WC_LOC_QP_OP_ERR,
939 IB_WC_LOC_EEC_OP_ERR,
940 IB_WC_LOC_PROT_ERR,
941 IB_WC_WR_FLUSH_ERR,
942 IB_WC_MW_BIND_ERR,
943 IB_WC_BAD_RESP_ERR,
944 IB_WC_LOC_ACCESS_ERR,
945 IB_WC_REM_INV_REQ_ERR,
946 IB_WC_REM_ACCESS_ERR,
947 IB_WC_REM_OP_ERR,
948 IB_WC_RETRY_EXC_ERR,
949 IB_WC_RNR_RETRY_EXC_ERR,
950 IB_WC_LOC_RDD_VIOL_ERR,
951 IB_WC_REM_INV_RD_REQ_ERR,
952 IB_WC_REM_ABORT_ERR,
953 IB_WC_INV_EECN_ERR,
954 IB_WC_INV_EEC_STATE_ERR,
955 IB_WC_FATAL_ERR,
956 IB_WC_RESP_TIMEOUT_ERR,
957 IB_WC_GENERAL_ERR
958};
959
db7489e0 960const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 961
1da177e4 962enum ib_wc_opcode {
b60b9c02
BP
963 IB_WC_SEND = IB_UVERBS_WC_SEND,
964 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
965 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
966 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
967 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
968 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
969 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
970 IB_WC_LSO = IB_UVERBS_WC_TSO,
4c67e2bf 971 IB_WC_REG_MR,
5e80ba8f
VS
972 IB_WC_MASKED_COMP_SWAP,
973 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
974/*
975 * Set value of IB_WC_RECV so consumers can test if a completion is a
976 * receive by testing (opcode & IB_WC_RECV).
977 */
978 IB_WC_RECV = 1 << 7,
979 IB_WC_RECV_RDMA_WITH_IMM
980};
981
982enum ib_wc_flags {
983 IB_WC_GRH = 1,
00f7ec36
SW
984 IB_WC_WITH_IMM = (1<<1),
985 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 986 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
987 IB_WC_WITH_SMAC = (1<<4),
988 IB_WC_WITH_VLAN = (1<<5),
c865f246 989 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
990};
991
992struct ib_wc {
14d3a3b2
CH
993 union {
994 u64 wr_id;
995 struct ib_cqe *wr_cqe;
996 };
1da177e4
LT
997 enum ib_wc_status status;
998 enum ib_wc_opcode opcode;
999 u32 vendor_err;
1000 u32 byte_len;
062dbb69 1001 struct ib_qp *qp;
00f7ec36
SW
1002 union {
1003 __be32 imm_data;
1004 u32 invalidate_rkey;
1005 } ex;
1da177e4 1006 u32 src_qp;
cd2a6e7d 1007 u32 slid;
1da177e4
LT
1008 int wc_flags;
1009 u16 pkey_index;
1da177e4
LT
1010 u8 sl;
1011 u8 dlid_path_bits;
1fb7f897 1012 u32 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1013 u8 smac[ETH_ALEN];
1014 u16 vlan_id;
c865f246 1015 u8 network_hdr_type;
1da177e4
LT
1016};
1017
ed23a727
RD
1018enum ib_cq_notify_flags {
1019 IB_CQ_SOLICITED = 1 << 0,
1020 IB_CQ_NEXT_COMP = 1 << 1,
1021 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1022 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1023};
1024
96104eda 1025enum ib_srq_type {
175ba58d
YH
1026 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1027 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1028 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
96104eda
SH
1029};
1030
1a56ff6d
AK
1031static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1032{
9c2c8496
AK
1033 return srq_type == IB_SRQT_XRC ||
1034 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1035}
1036
d41fcc67
RD
1037enum ib_srq_attr_mask {
1038 IB_SRQ_MAX_WR = 1 << 0,
1039 IB_SRQ_LIMIT = 1 << 1,
1040};
1041
1042struct ib_srq_attr {
1043 u32 max_wr;
1044 u32 max_sge;
1045 u32 srq_limit;
1046};
1047
1048struct ib_srq_init_attr {
1049 void (*event_handler)(struct ib_event *, void *);
1050 void *srq_context;
1051 struct ib_srq_attr attr;
96104eda 1052 enum ib_srq_type srq_type;
418d5130 1053
1a56ff6d
AK
1054 struct {
1055 struct ib_cq *cq;
1056 union {
1057 struct {
1058 struct ib_xrcd *xrcd;
1059 } xrc;
9c2c8496
AK
1060
1061 struct {
1062 u32 max_num_tags;
1063 } tag_matching;
1a56ff6d 1064 };
418d5130 1065 } ext;
d41fcc67
RD
1066};
1067
1da177e4
LT
1068struct ib_qp_cap {
1069 u32 max_send_wr;
1070 u32 max_recv_wr;
1071 u32 max_send_sge;
1072 u32 max_recv_sge;
1073 u32 max_inline_data;
a060b562
CH
1074
1075 /*
1076 * Maximum number of rdma_rw_ctx structures in flight at a time.
1077 * ib_create_qp() will calculate the right amount of neededed WRs
1078 * and MRs based on this.
1079 */
1080 u32 max_rdma_ctxs;
1da177e4
LT
1081};
1082
1083enum ib_sig_type {
1084 IB_SIGNAL_ALL_WR,
1085 IB_SIGNAL_REQ_WR
1086};
1087
1088enum ib_qp_type {
1089 /*
1090 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1091 * here (and in that order) since the MAD layer uses them as
1092 * indices into a 2-entry table.
1093 */
1094 IB_QPT_SMI,
1095 IB_QPT_GSI,
1096
175ba58d
YH
1097 IB_QPT_RC = IB_UVERBS_QPT_RC,
1098 IB_QPT_UC = IB_UVERBS_QPT_UC,
1099 IB_QPT_UD = IB_UVERBS_QPT_UD,
1da177e4 1100 IB_QPT_RAW_IPV6,
b42b63cf 1101 IB_QPT_RAW_ETHERTYPE,
175ba58d
YH
1102 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1103 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1104 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
0134f16b 1105 IB_QPT_MAX,
175ba58d 1106 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
0134f16b
JM
1107 /* Reserve a range for qp types internal to the low level driver.
1108 * These qp types will not be visible at the IB core layer, so the
1109 * IB_QPT_MAX usages should not be affected in the core layer
1110 */
1111 IB_QPT_RESERVED1 = 0x1000,
1112 IB_QPT_RESERVED2,
1113 IB_QPT_RESERVED3,
1114 IB_QPT_RESERVED4,
1115 IB_QPT_RESERVED5,
1116 IB_QPT_RESERVED6,
1117 IB_QPT_RESERVED7,
1118 IB_QPT_RESERVED8,
1119 IB_QPT_RESERVED9,
1120 IB_QPT_RESERVED10,
1da177e4
LT
1121};
1122
b846f25a 1123enum ib_qp_create_flags {
47ee1b9f 1124 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
175ba58d
YH
1125 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1126 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
8a06ce59
LR
1127 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1128 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1129 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1130 IB_QP_CREATE_NETIF_QP = 1 << 5,
c0a6cbb9 1131 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
7f90a5a0 1132 IB_QP_CREATE_NETDEV_USE = 1 << 7,
175ba58d
YH
1133 IB_QP_CREATE_SCATTER_FCS =
1134 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1135 IB_QP_CREATE_CVLAN_STRIPPING =
1136 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
02984cc7 1137 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
175ba58d
YH
1138 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1139 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
d2b57063
JM
1140 /* reserve bits 26-31 for low level drivers' internal use */
1141 IB_QP_CREATE_RESERVED_START = 1 << 26,
1142 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1143};
1144
73c40c61
YH
1145/*
1146 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1147 * callback to destroy the passed in QP.
1148 */
1149
1da177e4 1150struct ib_qp_init_attr {
eb93c82e 1151 /* Consumer's event_handler callback must not block */
1da177e4 1152 void (*event_handler)(struct ib_event *, void *);
eb93c82e 1153
1da177e4
LT
1154 void *qp_context;
1155 struct ib_cq *send_cq;
1156 struct ib_cq *recv_cq;
1157 struct ib_srq *srq;
b42b63cf 1158 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1159 struct ib_qp_cap cap;
1160 enum ib_sig_type sq_sig_type;
1161 enum ib_qp_type qp_type;
b56511c1 1162 u32 create_flags;
a060b562
CH
1163
1164 /*
1165 * Only needed for special QP types, or when using the RW API.
1166 */
1fb7f897 1167 u32 port_num;
a9017e23 1168 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1169 u32 source_qpn;
1da177e4
LT
1170};
1171
0e0ec7e0
SH
1172struct ib_qp_open_attr {
1173 void (*event_handler)(struct ib_event *, void *);
1174 void *qp_context;
1175 u32 qp_num;
1176 enum ib_qp_type qp_type;
1177};
1178
1da177e4
LT
1179enum ib_rnr_timeout {
1180 IB_RNR_TIMER_655_36 = 0,
1181 IB_RNR_TIMER_000_01 = 1,
1182 IB_RNR_TIMER_000_02 = 2,
1183 IB_RNR_TIMER_000_03 = 3,
1184 IB_RNR_TIMER_000_04 = 4,
1185 IB_RNR_TIMER_000_06 = 5,
1186 IB_RNR_TIMER_000_08 = 6,
1187 IB_RNR_TIMER_000_12 = 7,
1188 IB_RNR_TIMER_000_16 = 8,
1189 IB_RNR_TIMER_000_24 = 9,
1190 IB_RNR_TIMER_000_32 = 10,
1191 IB_RNR_TIMER_000_48 = 11,
1192 IB_RNR_TIMER_000_64 = 12,
1193 IB_RNR_TIMER_000_96 = 13,
1194 IB_RNR_TIMER_001_28 = 14,
1195 IB_RNR_TIMER_001_92 = 15,
1196 IB_RNR_TIMER_002_56 = 16,
1197 IB_RNR_TIMER_003_84 = 17,
1198 IB_RNR_TIMER_005_12 = 18,
1199 IB_RNR_TIMER_007_68 = 19,
1200 IB_RNR_TIMER_010_24 = 20,
1201 IB_RNR_TIMER_015_36 = 21,
1202 IB_RNR_TIMER_020_48 = 22,
1203 IB_RNR_TIMER_030_72 = 23,
1204 IB_RNR_TIMER_040_96 = 24,
1205 IB_RNR_TIMER_061_44 = 25,
1206 IB_RNR_TIMER_081_92 = 26,
1207 IB_RNR_TIMER_122_88 = 27,
1208 IB_RNR_TIMER_163_84 = 28,
1209 IB_RNR_TIMER_245_76 = 29,
1210 IB_RNR_TIMER_327_68 = 30,
1211 IB_RNR_TIMER_491_52 = 31
1212};
1213
1214enum ib_qp_attr_mask {
1215 IB_QP_STATE = 1,
1216 IB_QP_CUR_STATE = (1<<1),
1217 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1218 IB_QP_ACCESS_FLAGS = (1<<3),
1219 IB_QP_PKEY_INDEX = (1<<4),
1220 IB_QP_PORT = (1<<5),
1221 IB_QP_QKEY = (1<<6),
1222 IB_QP_AV = (1<<7),
1223 IB_QP_PATH_MTU = (1<<8),
1224 IB_QP_TIMEOUT = (1<<9),
1225 IB_QP_RETRY_CNT = (1<<10),
1226 IB_QP_RNR_RETRY = (1<<11),
1227 IB_QP_RQ_PSN = (1<<12),
1228 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1229 IB_QP_ALT_PATH = (1<<14),
1230 IB_QP_MIN_RNR_TIMER = (1<<15),
1231 IB_QP_SQ_PSN = (1<<16),
1232 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1233 IB_QP_PATH_MIG_STATE = (1<<18),
1234 IB_QP_CAP = (1<<19),
dd5f03be 1235 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1236 IB_QP_RESERVED1 = (1<<21),
1237 IB_QP_RESERVED2 = (1<<22),
1238 IB_QP_RESERVED3 = (1<<23),
1239 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1240 IB_QP_RATE_LIMIT = (1<<25),
26e990ba
JG
1241
1242 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1da177e4
LT
1243};
1244
1245enum ib_qp_state {
1246 IB_QPS_RESET,
1247 IB_QPS_INIT,
1248 IB_QPS_RTR,
1249 IB_QPS_RTS,
1250 IB_QPS_SQD,
1251 IB_QPS_SQE,
1252 IB_QPS_ERR
1253};
1254
1255enum ib_mig_state {
1256 IB_MIG_MIGRATED,
1257 IB_MIG_REARM,
1258 IB_MIG_ARMED
1259};
1260
7083e42e
SM
1261enum ib_mw_type {
1262 IB_MW_TYPE_1 = 1,
1263 IB_MW_TYPE_2 = 2
1264};
1265
1da177e4
LT
1266struct ib_qp_attr {
1267 enum ib_qp_state qp_state;
1268 enum ib_qp_state cur_qp_state;
1269 enum ib_mtu path_mtu;
1270 enum ib_mig_state path_mig_state;
1271 u32 qkey;
1272 u32 rq_psn;
1273 u32 sq_psn;
1274 u32 dest_qp_num;
1275 int qp_access_flags;
1276 struct ib_qp_cap cap;
90898850
DC
1277 struct rdma_ah_attr ah_attr;
1278 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1279 u16 pkey_index;
1280 u16 alt_pkey_index;
1281 u8 en_sqd_async_notify;
1282 u8 sq_draining;
1283 u8 max_rd_atomic;
1284 u8 max_dest_rd_atomic;
1285 u8 min_rnr_timer;
1fb7f897 1286 u32 port_num;
1da177e4
LT
1287 u8 timeout;
1288 u8 retry_cnt;
1289 u8 rnr_retry;
1fb7f897 1290 u32 alt_port_num;
1da177e4 1291 u8 alt_timeout;
528e5a1b 1292 u32 rate_limit;
51aab126 1293 struct net_device *xmit_slave;
1da177e4
LT
1294};
1295
1296enum ib_wr_opcode {
9a59739b
JG
1297 /* These are shared with userspace */
1298 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1299 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1300 IB_WR_SEND = IB_UVERBS_WR_SEND,
1301 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1302 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1303 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1304 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
b60b9c02 1305 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
9a59739b
JG
1306 IB_WR_LSO = IB_UVERBS_WR_TSO,
1307 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1308 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1309 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1310 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1311 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1312 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1313 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1314
1315 /* These are kernel only and can not be issued by userspace */
1316 IB_WR_REG_MR = 0x20,
38ca87c6 1317 IB_WR_REG_MR_INTEGRITY,
9a59739b 1318
0134f16b
JM
1319 /* reserve values for low level drivers' internal use.
1320 * These values will not be used at all in the ib core layer.
1321 */
1322 IB_WR_RESERVED1 = 0xf0,
1323 IB_WR_RESERVED2,
1324 IB_WR_RESERVED3,
1325 IB_WR_RESERVED4,
1326 IB_WR_RESERVED5,
1327 IB_WR_RESERVED6,
1328 IB_WR_RESERVED7,
1329 IB_WR_RESERVED8,
1330 IB_WR_RESERVED9,
1331 IB_WR_RESERVED10,
1da177e4
LT
1332};
1333
1334enum ib_send_flags {
1335 IB_SEND_FENCE = 1,
1336 IB_SEND_SIGNALED = (1<<1),
1337 IB_SEND_SOLICITED = (1<<2),
e0605d91 1338 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1339 IB_SEND_IP_CSUM = (1<<4),
1340
1341 /* reserve bits 26-31 for low level drivers' internal use */
1342 IB_SEND_RESERVED_START = (1 << 26),
1343 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1344};
1345
1346struct ib_sge {
1347 u64 addr;
1348 u32 length;
1349 u32 lkey;
1350};
1351
14d3a3b2
CH
1352struct ib_cqe {
1353 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1354};
1355
1da177e4
LT
1356struct ib_send_wr {
1357 struct ib_send_wr *next;
14d3a3b2
CH
1358 union {
1359 u64 wr_id;
1360 struct ib_cqe *wr_cqe;
1361 };
1da177e4
LT
1362 struct ib_sge *sg_list;
1363 int num_sge;
1364 enum ib_wr_opcode opcode;
1365 int send_flags;
0f39cf3d
RD
1366 union {
1367 __be32 imm_data;
1368 u32 invalidate_rkey;
1369 } ex;
1da177e4
LT
1370};
1371
e622f2f4
CH
1372struct ib_rdma_wr {
1373 struct ib_send_wr wr;
1374 u64 remote_addr;
1375 u32 rkey;
1376};
1377
f696bf6d 1378static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1379{
1380 return container_of(wr, struct ib_rdma_wr, wr);
1381}
1382
1383struct ib_atomic_wr {
1384 struct ib_send_wr wr;
1385 u64 remote_addr;
1386 u64 compare_add;
1387 u64 swap;
1388 u64 compare_add_mask;
1389 u64 swap_mask;
1390 u32 rkey;
1391};
1392
f696bf6d 1393static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1394{
1395 return container_of(wr, struct ib_atomic_wr, wr);
1396}
1397
1398struct ib_ud_wr {
1399 struct ib_send_wr wr;
1400 struct ib_ah *ah;
1401 void *header;
1402 int hlen;
1403 int mss;
1404 u32 remote_qpn;
1405 u32 remote_qkey;
1406 u16 pkey_index; /* valid for GSI only */
1fb7f897 1407 u32 port_num; /* valid for DR SMPs on switch only */
e622f2f4
CH
1408};
1409
f696bf6d 1410static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1411{
1412 return container_of(wr, struct ib_ud_wr, wr);
1413}
1414
4c67e2bf
SG
1415struct ib_reg_wr {
1416 struct ib_send_wr wr;
1417 struct ib_mr *mr;
1418 u32 key;
1419 int access;
1420};
1421
f696bf6d 1422static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1423{
1424 return container_of(wr, struct ib_reg_wr, wr);
1425}
1426
1da177e4
LT
1427struct ib_recv_wr {
1428 struct ib_recv_wr *next;
14d3a3b2
CH
1429 union {
1430 u64 wr_id;
1431 struct ib_cqe *wr_cqe;
1432 };
1da177e4
LT
1433 struct ib_sge *sg_list;
1434 int num_sge;
1435};
1436
1437enum ib_access_flags {
4fca0377
JG
1438 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1439 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1440 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1441 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1442 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1443 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1444 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1445 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
2233c660 1446 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
4fca0377 1447
68d384b9
MG
1448 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1449 IB_ACCESS_SUPPORTED =
1450 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1da177e4
LT
1451};
1452
b7d3e0a9
CH
1453/*
1454 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1455 * are hidden here instead of a uapi header!
1456 */
1da177e4
LT
1457enum ib_mr_rereg_flags {
1458 IB_MR_REREG_TRANS = 1,
1459 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1460 IB_MR_REREG_ACCESS = (1<<2),
1461 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1462};
1463
882214e2
HE
1464struct ib_umem;
1465
38321256 1466enum rdma_remove_reason {
1c77483e
YH
1467 /*
1468 * Userspace requested uobject deletion or initial try
1469 * to remove uobject via cleanup. Call could fail
1470 */
38321256
MB
1471 RDMA_REMOVE_DESTROY,
1472 /* Context deletion. This call should delete the actual object itself */
1473 RDMA_REMOVE_CLOSE,
1474 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1475 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1476 /* uobj is being cleaned-up before being committed */
1477 RDMA_REMOVE_ABORT,
efa968ee
LR
1478 /* The driver failed to destroy the uobject and is being disconnected */
1479 RDMA_REMOVE_DRIVER_FAILURE,
38321256
MB
1480};
1481
43579b5f
PP
1482struct ib_rdmacg_object {
1483#ifdef CONFIG_CGROUP_RDMA
1484 struct rdma_cgroup *cg; /* owner rdma cgroup */
1485#endif
1486};
1487
e2773c06
RD
1488struct ib_ucontext {
1489 struct ib_device *device;
771addf6 1490 struct ib_uverbs_file *ufile;
8ada2c1c 1491
43579b5f 1492 struct ib_rdmacg_object cg_obj;
60615210
LR
1493 /*
1494 * Implementation details of the RDMA core, don't use in drivers:
1495 */
1496 struct rdma_restrack_entry res;
3411f9f0 1497 struct xarray mmap_xa;
e2773c06
RD
1498};
1499
1500struct ib_uobject {
1501 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1502 /* ufile & ucontext owning this object */
1503 struct ib_uverbs_file *ufile;
1504 /* FIXME, save memory: ufile->context == context */
e2773c06 1505 struct ib_ucontext *context; /* associated user context */
9ead190b 1506 void *object; /* containing object */
e2773c06 1507 struct list_head list; /* link to context's list */
43579b5f 1508 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1509 int id; /* index into kernel idr */
9ead190b 1510 struct kref ref;
38321256 1511 atomic_t usecnt; /* protects exclusive access */
d144da8c 1512 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256 1513
6b0d08f4 1514 const struct uverbs_api_object *uapi_object;
e2773c06
RD
1515};
1516
e2773c06 1517struct ib_udata {
309243ec 1518 const void __user *inbuf;
e2773c06
RD
1519 void __user *outbuf;
1520 size_t inlen;
1521 size_t outlen;
1522};
1523
1da177e4 1524struct ib_pd {
96249d70 1525 u32 local_dma_lkey;
ed082d36 1526 u32 flags;
e2773c06
RD
1527 struct ib_device *device;
1528 struct ib_uobject *uobject;
1529 atomic_t usecnt; /* count all resources */
50d46335 1530
ed082d36
CH
1531 u32 unsafe_global_rkey;
1532
50d46335
CH
1533 /*
1534 * Implementation details of the RDMA core, don't use in drivers:
1535 */
1536 struct ib_mr *__internal_mr;
02d8883f 1537 struct rdma_restrack_entry res;
1da177e4
LT
1538};
1539
59991f94
SH
1540struct ib_xrcd {
1541 struct ib_device *device;
d3d72d90 1542 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1543 struct inode *inode;
6f3ca6f4
MG
1544 struct rw_semaphore tgt_qps_rwsem;
1545 struct xarray tgt_qps;
59991f94
SH
1546};
1547
1da177e4
LT
1548struct ib_ah {
1549 struct ib_device *device;
1550 struct ib_pd *pd;
e2773c06 1551 struct ib_uobject *uobject;
1a1f460f 1552 const struct ib_gid_attr *sgid_attr;
44c58487 1553 enum rdma_ah_attr_type type;
1da177e4
LT
1554};
1555
1556typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1557
14d3a3b2 1558enum ib_poll_context {
f794809a
JM
1559 IB_POLL_SOFTIRQ, /* poll from softirq context */
1560 IB_POLL_WORKQUEUE, /* poll from workqueue */
1561 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
c7ff819a
YF
1562 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1563
1564 IB_POLL_DIRECT, /* caller context, no hw completions */
14d3a3b2
CH
1565};
1566
1da177e4 1567struct ib_cq {
e2773c06 1568 struct ib_device *device;
5bd48c18 1569 struct ib_ucq_object *uobject;
e2773c06
RD
1570 ib_comp_handler comp_handler;
1571 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1572 void *cq_context;
e2773c06 1573 int cqe;
c7ff819a 1574 unsigned int cqe_used;
e2773c06 1575 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1576 enum ib_poll_context poll_ctx;
1577 struct ib_wc *wc;
c7ff819a 1578 struct list_head pool_entry;
14d3a3b2
CH
1579 union {
1580 struct irq_poll iop;
1581 struct work_struct work;
1582 };
f794809a 1583 struct workqueue_struct *comp_wq;
da662979 1584 struct dim *dim;
3e5901cb
CL
1585
1586 /* updated only by trace points */
1587 ktime_t timestamp;
3446cbd2
YF
1588 u8 interrupt:1;
1589 u8 shared:1;
c7ff819a 1590 unsigned int comp_vector;
3e5901cb 1591
02d8883f
LR
1592 /*
1593 * Implementation details of the RDMA core, don't use in drivers:
1594 */
1595 struct rdma_restrack_entry res;
1da177e4
LT
1596};
1597
1598struct ib_srq {
d41fcc67
RD
1599 struct ib_device *device;
1600 struct ib_pd *pd;
9fbe334c 1601 struct ib_usrq_object *uobject;
d41fcc67
RD
1602 void (*event_handler)(struct ib_event *, void *);
1603 void *srq_context;
96104eda 1604 enum ib_srq_type srq_type;
1da177e4 1605 atomic_t usecnt;
418d5130 1606
1a56ff6d
AK
1607 struct {
1608 struct ib_cq *cq;
1609 union {
1610 struct {
1611 struct ib_xrcd *xrcd;
1612 u32 srq_num;
1613 } xrc;
1614 };
418d5130 1615 } ext;
48f8a70e
NO
1616
1617 /*
1618 * Implementation details of the RDMA core, don't use in drivers:
1619 */
1620 struct rdma_restrack_entry res;
1da177e4
LT
1621};
1622
ebaaee25
NO
1623enum ib_raw_packet_caps {
1624 /* Strip cvlan from incoming packet and report it in the matching work
1625 * completion is supported.
1626 */
1627 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1628 /* Scatter FCS field of an incoming packet to host memory is supported.
1629 */
1630 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1631 /* Checksum offloads are supported (for both send and receive). */
1632 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1633 /* When a packet is received for an RQ with no receive WQEs, the
1634 * packet processing is delayed.
1635 */
1636 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1637};
1638
5fd251c8 1639enum ib_wq_type {
175ba58d 1640 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
5fd251c8
YH
1641};
1642
1643enum ib_wq_state {
1644 IB_WQS_RESET,
1645 IB_WQS_RDY,
1646 IB_WQS_ERR
1647};
1648
1649struct ib_wq {
1650 struct ib_device *device;
e04dd131 1651 struct ib_uwq_object *uobject;
5fd251c8
YH
1652 void *wq_context;
1653 void (*event_handler)(struct ib_event *, void *);
1654 struct ib_pd *pd;
1655 struct ib_cq *cq;
1656 u32 wq_num;
1657 enum ib_wq_state state;
1658 enum ib_wq_type wq_type;
1659 atomic_t usecnt;
1660};
1661
10bac72b 1662enum ib_wq_flags {
175ba58d
YH
1663 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1664 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1665 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1666 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1667 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
10bac72b
NO
1668};
1669
5fd251c8
YH
1670struct ib_wq_init_attr {
1671 void *wq_context;
1672 enum ib_wq_type wq_type;
1673 u32 max_wr;
1674 u32 max_sge;
1675 struct ib_cq *cq;
1676 void (*event_handler)(struct ib_event *, void *);
10bac72b 1677 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1678};
1679
1680enum ib_wq_attr_mask {
10bac72b
NO
1681 IB_WQ_STATE = 1 << 0,
1682 IB_WQ_CUR_STATE = 1 << 1,
1683 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1684};
1685
1686struct ib_wq_attr {
1687 enum ib_wq_state wq_state;
1688 enum ib_wq_state curr_wq_state;
10bac72b
NO
1689 u32 flags; /* Use enum ib_wq_flags */
1690 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1691};
1692
6d39786b
YH
1693struct ib_rwq_ind_table {
1694 struct ib_device *device;
1695 struct ib_uobject *uobject;
1696 atomic_t usecnt;
1697 u32 ind_tbl_num;
1698 u32 log_ind_tbl_size;
1699 struct ib_wq **ind_tbl;
1700};
1701
1702struct ib_rwq_ind_table_init_attr {
1703 u32 log_ind_tbl_size;
1704 /* Each entry is a pointer to Receive Work Queue */
1705 struct ib_wq **ind_tbl;
1706};
1707
d291f1a6
DJ
1708enum port_pkey_state {
1709 IB_PORT_PKEY_NOT_VALID = 0,
1710 IB_PORT_PKEY_VALID = 1,
1711 IB_PORT_PKEY_LISTED = 2,
1712};
1713
1714struct ib_qp_security;
1715
1716struct ib_port_pkey {
1717 enum port_pkey_state state;
1718 u16 pkey_index;
1fb7f897 1719 u32 port_num;
d291f1a6
DJ
1720 struct list_head qp_list;
1721 struct list_head to_error_list;
1722 struct ib_qp_security *sec;
1723};
1724
1725struct ib_ports_pkeys {
1726 struct ib_port_pkey main;
1727 struct ib_port_pkey alt;
1728};
1729
1730struct ib_qp_security {
1731 struct ib_qp *qp;
1732 struct ib_device *dev;
1733 /* Hold this mutex when changing port and pkey settings. */
1734 struct mutex mutex;
1735 struct ib_ports_pkeys *ports_pkeys;
1736 /* A list of all open shared QP handles. Required to enforce security
1737 * properly for all users of a shared QP.
1738 */
1739 struct list_head shared_qp_list;
1740 void *security;
1741 bool destroying;
1742 atomic_t error_list_count;
1743 struct completion error_complete;
1744 int error_comps_pending;
1745};
1746
632bc3f6
BVA
1747/*
1748 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1749 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1750 */
1da177e4
LT
1751struct ib_qp {
1752 struct ib_device *device;
1753 struct ib_pd *pd;
1754 struct ib_cq *send_cq;
1755 struct ib_cq *recv_cq;
fffb0383
CH
1756 spinlock_t mr_lock;
1757 int mrs_used;
a060b562 1758 struct list_head rdma_mrs;
0e353e34 1759 struct list_head sig_mrs;
1da177e4 1760 struct ib_srq *srq;
b42b63cf 1761 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1762 struct list_head xrcd_list;
fffb0383 1763
319a441d
HHZ
1764 /* count times opened, mcast attaches, flow attaches */
1765 atomic_t usecnt;
0e0ec7e0
SH
1766 struct list_head open_list;
1767 struct ib_qp *real_qp;
620d3f81 1768 struct ib_uqp_object *uobject;
1da177e4
LT
1769 void (*event_handler)(struct ib_event *, void *);
1770 void *qp_context;
1a1f460f
JG
1771 /* sgid_attrs associated with the AV's */
1772 const struct ib_gid_attr *av_sgid_attr;
1773 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1774 u32 qp_num;
632bc3f6
BVA
1775 u32 max_write_sge;
1776 u32 max_read_sge;
1da177e4 1777 enum ib_qp_type qp_type;
a9017e23 1778 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1779 struct ib_qp_security *qp_sec;
1fb7f897 1780 u32 port;
02d8883f 1781
185eddc4 1782 bool integrity_en;
02d8883f
LR
1783 /*
1784 * Implementation details of the RDMA core, don't use in drivers:
1785 */
1786 struct rdma_restrack_entry res;
99fa331d
MZ
1787
1788 /* The counter the qp is bind to */
1789 struct rdma_counter *counter;
1da177e4
LT
1790};
1791
bee76d7a
AL
1792struct ib_dm {
1793 struct ib_device *device;
1794 u32 length;
1795 u32 flags;
1796 struct ib_uobject *uobject;
1797 atomic_t usecnt;
1798};
1799
1da177e4 1800struct ib_mr {
e2773c06
RD
1801 struct ib_device *device;
1802 struct ib_pd *pd;
e2773c06
RD
1803 u32 lkey;
1804 u32 rkey;
4c67e2bf 1805 u64 iova;
edd31551 1806 u64 length;
4c67e2bf 1807 unsigned int page_size;
a0bc099a 1808 enum ib_mr_type type;
d4a85c30 1809 bool need_inval;
fffb0383
CH
1810 union {
1811 struct ib_uobject *uobject; /* user */
1812 struct list_head qp_entry; /* FR */
1813 };
fccec5b8 1814
be934cca 1815 struct ib_dm *dm;
7c717d3a 1816 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
fccec5b8
SW
1817 /*
1818 * Implementation details of the RDMA core, don't use in drivers:
1819 */
1820 struct rdma_restrack_entry res;
1da177e4
LT
1821};
1822
1823struct ib_mw {
1824 struct ib_device *device;
1825 struct ib_pd *pd;
e2773c06 1826 struct ib_uobject *uobject;
1da177e4 1827 u32 rkey;
7083e42e 1828 enum ib_mw_type type;
1da177e4
LT
1829};
1830
319a441d
HHZ
1831/* Supported steering options */
1832enum ib_flow_attr_type {
1833 /* steering according to rule specifications */
1834 IB_FLOW_ATTR_NORMAL = 0x0,
1835 /* default unicast and multicast rule -
1836 * receive all Eth traffic which isn't steered to any QP
1837 */
1838 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1839 /* default multicast rule -
1840 * receive all Eth multicast traffic which isn't steered to any QP
1841 */
1842 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1843 /* sniffer rule - receive all port traffic */
1844 IB_FLOW_ATTR_SNIFFER = 0x3
1845};
1846
1847/* Supported steering header types */
1848enum ib_flow_spec_type {
1849 /* L2 headers*/
76bd23b3
MR
1850 IB_FLOW_SPEC_ETH = 0x20,
1851 IB_FLOW_SPEC_IB = 0x22,
319a441d 1852 /* L3 header*/
76bd23b3
MR
1853 IB_FLOW_SPEC_IPV4 = 0x30,
1854 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1855 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1856 /* L4 headers*/
76bd23b3
MR
1857 IB_FLOW_SPEC_TCP = 0x40,
1858 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1859 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1860 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1861 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1862 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1863 /* Actions */
1864 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1865 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1866 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1867 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1868};
240ae00e 1869#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1870#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1871
a3100a78
MV
1872enum ib_flow_flags {
1873 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1874 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1875 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1876};
1877
319a441d
HHZ
1878struct ib_flow_eth_filter {
1879 u8 dst_mac[6];
1880 u8 src_mac[6];
1881 __be16 ether_type;
1882 __be16 vlan_tag;
15dfbd6b 1883 /* Must be last */
5b361328 1884 u8 real_sz[];
319a441d
HHZ
1885};
1886
1887struct ib_flow_spec_eth {
fbf46860 1888 u32 type;
319a441d
HHZ
1889 u16 size;
1890 struct ib_flow_eth_filter val;
1891 struct ib_flow_eth_filter mask;
1892};
1893
240ae00e
MB
1894struct ib_flow_ib_filter {
1895 __be16 dlid;
1896 __u8 sl;
15dfbd6b 1897 /* Must be last */
5b361328 1898 u8 real_sz[];
240ae00e
MB
1899};
1900
1901struct ib_flow_spec_ib {
fbf46860 1902 u32 type;
240ae00e
MB
1903 u16 size;
1904 struct ib_flow_ib_filter val;
1905 struct ib_flow_ib_filter mask;
1906};
1907
989a3a8f
MG
1908/* IPv4 header flags */
1909enum ib_ipv4_flags {
1910 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1911 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1912 last have this flag set */
1913};
1914
319a441d
HHZ
1915struct ib_flow_ipv4_filter {
1916 __be32 src_ip;
1917 __be32 dst_ip;
989a3a8f
MG
1918 u8 proto;
1919 u8 tos;
1920 u8 ttl;
1921 u8 flags;
15dfbd6b 1922 /* Must be last */
5b361328 1923 u8 real_sz[];
319a441d
HHZ
1924};
1925
1926struct ib_flow_spec_ipv4 {
fbf46860 1927 u32 type;
319a441d
HHZ
1928 u16 size;
1929 struct ib_flow_ipv4_filter val;
1930 struct ib_flow_ipv4_filter mask;
1931};
1932
4c2aae71
MG
1933struct ib_flow_ipv6_filter {
1934 u8 src_ip[16];
1935 u8 dst_ip[16];
a72c6a2b
MG
1936 __be32 flow_label;
1937 u8 next_hdr;
1938 u8 traffic_class;
1939 u8 hop_limit;
15dfbd6b 1940 /* Must be last */
5b361328 1941 u8 real_sz[];
4c2aae71
MG
1942};
1943
1944struct ib_flow_spec_ipv6 {
fbf46860 1945 u32 type;
4c2aae71
MG
1946 u16 size;
1947 struct ib_flow_ipv6_filter val;
1948 struct ib_flow_ipv6_filter mask;
1949};
1950
319a441d
HHZ
1951struct ib_flow_tcp_udp_filter {
1952 __be16 dst_port;
1953 __be16 src_port;
15dfbd6b 1954 /* Must be last */
5b361328 1955 u8 real_sz[];
319a441d
HHZ
1956};
1957
1958struct ib_flow_spec_tcp_udp {
fbf46860 1959 u32 type;
319a441d
HHZ
1960 u16 size;
1961 struct ib_flow_tcp_udp_filter val;
1962 struct ib_flow_tcp_udp_filter mask;
1963};
1964
0dbf3332
MR
1965struct ib_flow_tunnel_filter {
1966 __be32 tunnel_id;
5b361328 1967 u8 real_sz[];
0dbf3332
MR
1968};
1969
1970/* ib_flow_spec_tunnel describes the Vxlan tunnel
1971 * the tunnel_id from val has the vni value
1972 */
1973struct ib_flow_spec_tunnel {
fbf46860 1974 u32 type;
0dbf3332
MR
1975 u16 size;
1976 struct ib_flow_tunnel_filter val;
1977 struct ib_flow_tunnel_filter mask;
1978};
1979
56ab0b38
MB
1980struct ib_flow_esp_filter {
1981 __be32 spi;
1982 __be32 seq;
1983 /* Must be last */
5b361328 1984 u8 real_sz[];
56ab0b38
MB
1985};
1986
1987struct ib_flow_spec_esp {
1988 u32 type;
1989 u16 size;
1990 struct ib_flow_esp_filter val;
1991 struct ib_flow_esp_filter mask;
1992};
1993
d90e5e50
AL
1994struct ib_flow_gre_filter {
1995 __be16 c_ks_res0_ver;
1996 __be16 protocol;
1997 __be32 key;
1998 /* Must be last */
5b361328 1999 u8 real_sz[];
d90e5e50
AL
2000};
2001
2002struct ib_flow_spec_gre {
2003 u32 type;
2004 u16 size;
2005 struct ib_flow_gre_filter val;
2006 struct ib_flow_gre_filter mask;
2007};
2008
b04f0f03
AL
2009struct ib_flow_mpls_filter {
2010 __be32 tag;
2011 /* Must be last */
5b361328 2012 u8 real_sz[];
b04f0f03
AL
2013};
2014
2015struct ib_flow_spec_mpls {
2016 u32 type;
2017 u16 size;
2018 struct ib_flow_mpls_filter val;
2019 struct ib_flow_mpls_filter mask;
2020};
2021
460d0198
MR
2022struct ib_flow_spec_action_tag {
2023 enum ib_flow_spec_type type;
2024 u16 size;
2025 u32 tag_id;
2026};
2027
483a3966
SS
2028struct ib_flow_spec_action_drop {
2029 enum ib_flow_spec_type type;
2030 u16 size;
2031};
2032
9b828441
MB
2033struct ib_flow_spec_action_handle {
2034 enum ib_flow_spec_type type;
2035 u16 size;
2036 struct ib_flow_action *act;
2037};
2038
7eea23a5
RS
2039enum ib_counters_description {
2040 IB_COUNTER_PACKETS,
2041 IB_COUNTER_BYTES,
2042};
2043
2044struct ib_flow_spec_action_count {
2045 enum ib_flow_spec_type type;
2046 u16 size;
2047 struct ib_counters *counters;
2048};
2049
319a441d
HHZ
2050union ib_flow_spec {
2051 struct {
fbf46860 2052 u32 type;
319a441d
HHZ
2053 u16 size;
2054 };
2055 struct ib_flow_spec_eth eth;
240ae00e 2056 struct ib_flow_spec_ib ib;
319a441d
HHZ
2057 struct ib_flow_spec_ipv4 ipv4;
2058 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2059 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2060 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2061 struct ib_flow_spec_esp esp;
d90e5e50 2062 struct ib_flow_spec_gre gre;
b04f0f03 2063 struct ib_flow_spec_mpls mpls;
460d0198 2064 struct ib_flow_spec_action_tag flow_tag;
483a3966 2065 struct ib_flow_spec_action_drop drop;
9b828441 2066 struct ib_flow_spec_action_handle action;
7eea23a5 2067 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2068};
2069
2070struct ib_flow_attr {
2071 enum ib_flow_attr_type type;
2072 u16 size;
2073 u16 priority;
2074 u32 flags;
2075 u8 num_of_specs;
1fb7f897 2076 u32 port;
7654cb1b 2077 union ib_flow_spec flows[];
319a441d
HHZ
2078};
2079
2080struct ib_flow {
2081 struct ib_qp *qp;
6cd080a6 2082 struct ib_device *device;
319a441d
HHZ
2083 struct ib_uobject *uobject;
2084};
2085
2eb9beae
MB
2086enum ib_flow_action_type {
2087 IB_FLOW_ACTION_UNSPECIFIED,
2088 IB_FLOW_ACTION_ESP = 1,
2089};
2090
2091struct ib_flow_action_attrs_esp_keymats {
2092 enum ib_uverbs_flow_action_esp_keymat protocol;
2093 union {
2094 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2095 } keymat;
2096};
2097
2098struct ib_flow_action_attrs_esp_replays {
2099 enum ib_uverbs_flow_action_esp_replay protocol;
2100 union {
2101 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2102 } replay;
2103};
2104
2105enum ib_flow_action_attrs_esp_flags {
2106 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2107 * This is done in order to share the same flags between user-space and
2108 * kernel and spare an unnecessary translation.
2109 */
2110
2111 /* Kernel flags */
2112 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2113 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2114};
2115
2116struct ib_flow_spec_list {
2117 struct ib_flow_spec_list *next;
2118 union ib_flow_spec spec;
2119};
2120
2121struct ib_flow_action_attrs_esp {
2122 struct ib_flow_action_attrs_esp_keymats *keymat;
2123 struct ib_flow_action_attrs_esp_replays *replay;
2124 struct ib_flow_spec_list *encap;
2125 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2126 * Value of 0 is a valid value.
2127 */
2128 u32 esn;
2129 u32 spi;
2130 u32 seq;
2131 u32 tfc_pad;
2132 /* Use enum ib_flow_action_attrs_esp_flags */
2133 u64 flags;
2134 u64 hard_limit_pkts;
2135};
2136
2137struct ib_flow_action {
2138 struct ib_device *device;
2139 struct ib_uobject *uobject;
2140 enum ib_flow_action_type type;
2141 atomic_t usecnt;
2142};
2143
e26e7b88 2144struct ib_mad;
1da177e4
LT
2145
2146enum ib_process_mad_flags {
2147 IB_MAD_IGNORE_MKEY = 1,
2148 IB_MAD_IGNORE_BKEY = 2,
2149 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2150};
2151
2152enum ib_mad_result {
2153 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2154 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2155 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2156 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2157};
2158
21d6454a 2159struct ib_port_cache {
883c71fe 2160 u64 subnet_prefix;
21d6454a
JW
2161 struct ib_pkey_cache *pkey;
2162 struct ib_gid_table *gid;
2163 u8 lmc;
2164 enum ib_port_state port_state;
2165};
2166
7738613e
IW
2167struct ib_port_immutable {
2168 int pkey_tbl_len;
2169 int gid_tbl_len;
f9b22e35 2170 u32 core_cap_flags;
337877a4 2171 u32 max_mad_size;
7738613e
IW
2172};
2173
8ceb1357 2174struct ib_port_data {
324e227e
JG
2175 struct ib_device *ib_dev;
2176
8ceb1357
JG
2177 struct ib_port_immutable immutable;
2178
2179 spinlock_t pkey_list_lock;
84dcd8c7
AK
2180
2181 spinlock_t netdev_lock;
2182
8ceb1357 2183 struct list_head pkey_list;
8faea9fd
JG
2184
2185 struct ib_port_cache cache;
c2261dd7 2186
324e227e
JG
2187 struct net_device __rcu *netdev;
2188 struct hlist_node ndev_hash_link;
413d3347 2189 struct rdma_port_counter port_counter;
d8a58838 2190 struct ib_port *sysfs;
8ceb1357
JG
2191};
2192
2fc77572
VN
2193/* rdma netdev type - specifies protocol type */
2194enum rdma_netdev_t {
f0ad83ac
NV
2195 RDMA_NETDEV_OPA_VNIC,
2196 RDMA_NETDEV_IPOIB,
2fc77572
VN
2197};
2198
2199/**
2200 * struct rdma_netdev - rdma netdev
2201 * For cases where netstack interfacing is required.
2202 */
2203struct rdma_netdev {
2204 void *clnt_priv;
2205 struct ib_device *hca;
1fb7f897 2206 u32 port_num;
d99dc602 2207 int mtu;
2fc77572 2208
9f49a5b5
JG
2209 /*
2210 * cleanup function must be specified.
2211 * FIXME: This is only used for OPA_VNIC and that usage should be
2212 * removed too.
2213 */
8e959601
NV
2214 void (*free_rdma_netdev)(struct net_device *netdev);
2215
2fc77572
VN
2216 /* control functions */
2217 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2218 /* send packet */
2219 int (*send)(struct net_device *dev, struct sk_buff *skb,
2220 struct ib_ah *address, u32 dqpn);
2221 /* multicast */
2222 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2223 union ib_gid *gid, u16 mlid,
2224 int set_qkey, u32 qkey);
2225 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2226 union ib_gid *gid, u16 mlid);
042a00f9
MM
2227 /* timeout */
2228 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2fc77572
VN
2229};
2230
f6a8a19b
DD
2231struct rdma_netdev_alloc_params {
2232 size_t sizeof_priv;
2233 unsigned int txqs;
2234 unsigned int rxqs;
2235 void *param;
2236
1fb7f897 2237 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
f6a8a19b
DD
2238 struct net_device *netdev, void *param);
2239};
2240
a3de94e3
EA
2241struct ib_odp_counters {
2242 atomic64_t faults;
2243 atomic64_t invalidations;
d473f4dc 2244 atomic64_t prefetch;
a3de94e3
EA
2245};
2246
fa9b1802
RS
2247struct ib_counters {
2248 struct ib_device *device;
2249 struct ib_uobject *uobject;
2250 /* num of objects attached */
2251 atomic_t usecnt;
2252};
2253
51d7a538
RS
2254struct ib_counters_read_attr {
2255 u64 *counters_buff;
2256 u32 ncounters;
2257 u32 flags; /* use enum ib_read_counters_flags */
2258};
2259
2eb9beae 2260struct uverbs_attr_bundle;
dd05cb82
KH
2261struct iw_cm_id;
2262struct iw_cm_conn_param;
2eb9beae 2263
30471d4b
LR
2264#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2265 .size_##ib_struct = \
2266 (sizeof(struct drv_struct) + \
2267 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2268 BUILD_BUG_ON_ZERO( \
2269 !__same_type(((struct drv_struct *)NULL)->member, \
2270 struct ib_struct)))
2271
514aee66
LR
2272#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2273 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2274 gfp, false))
2275
2276#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2277 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2278 GFP_KERNEL, true))
f6316032 2279
30471d4b 2280#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
f6316032 2281 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
30471d4b
LR
2282
2283#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2284
3411f9f0
MK
2285struct rdma_user_mmap_entry {
2286 struct kref ref;
2287 struct ib_ucontext *ucontext;
2288 unsigned long start_pgoff;
2289 size_t npages;
2290 bool driver_removed;
2291};
2292
2293/* Return the offset (in bytes) the user should pass to libc's mmap() */
2294static inline u64
2295rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2296{
2297 return (u64)entry->start_pgoff << PAGE_SHIFT;
2298}
2299
521ed0d9
KH
2300/**
2301 * struct ib_device_ops - InfiniBand device operations
2302 * This structure defines all the InfiniBand device operations, providers will
2303 * need to define the supported operations, otherwise they will be set to null.
2304 */
2305struct ib_device_ops {
7a154142 2306 struct module *owner;
b9560a41 2307 enum rdma_driver_id driver_id;
72c6ec18 2308 u32 uverbs_abi_ver;
8f71bb00 2309 unsigned int uverbs_no_driver_id_binding:1;
b9560a41 2310
915e4af5
JG
2311 /*
2312 * NOTE: New drivers should not make use of device_group; instead new
2313 * device parameter should be exposed via netlink command. This
2314 * mechanism exists only for existing drivers.
2315 */
2316 const struct attribute_group *device_group;
d7407d16
JG
2317 const struct attribute_group **port_groups;
2318
521ed0d9
KH
2319 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2320 const struct ib_send_wr **bad_send_wr);
2321 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2322 const struct ib_recv_wr **bad_recv_wr);
2323 void (*drain_rq)(struct ib_qp *qp);
2324 void (*drain_sq)(struct ib_qp *qp);
2325 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2326 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2327 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
521ed0d9
KH
2328 int (*post_srq_recv)(struct ib_srq *srq,
2329 const struct ib_recv_wr *recv_wr,
2330 const struct ib_recv_wr **bad_recv_wr);
2331 int (*process_mad)(struct ib_device *device, int process_mad_flags,
1fb7f897 2332 u32 port_num, const struct ib_wc *in_wc,
521ed0d9 2333 const struct ib_grh *in_grh,
e26e7b88
LR
2334 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2335 size_t *out_mad_size, u16 *out_mad_pkey_index);
521ed0d9
KH
2336 int (*query_device)(struct ib_device *device,
2337 struct ib_device_attr *device_attr,
2338 struct ib_udata *udata);
2339 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2340 struct ib_device_modify *device_modify);
2341 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2342 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2343 int comp_vector);
1fb7f897 2344 int (*query_port)(struct ib_device *device, u32 port_num,
521ed0d9 2345 struct ib_port_attr *port_attr);
1fb7f897 2346 int (*modify_port)(struct ib_device *device, u32 port_num,
521ed0d9
KH
2347 int port_modify_mask,
2348 struct ib_port_modify *port_modify);
2349 /**
2350 * The following mandatory functions are used only at device
2351 * registration. Keep functions such as these at the end of this
2352 * structure to avoid cache line misses when accessing struct ib_device
2353 * in fast paths.
2354 */
1fb7f897 2355 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
521ed0d9
KH
2356 struct ib_port_immutable *immutable);
2357 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1fb7f897 2358 u32 port_num);
521ed0d9
KH
2359 /**
2360 * When calling get_netdev, the HW vendor's driver should return the
2361 * net device of device @device at port @port_num or NULL if such
2362 * a net device doesn't exist. The vendor driver should call dev_hold
2363 * on this net device. The HW vendor's device driver must guarantee
2364 * that this function returns NULL before the net device has finished
2365 * NETDEV_UNREGISTER state.
2366 */
1fb7f897
MB
2367 struct net_device *(*get_netdev)(struct ib_device *device,
2368 u32 port_num);
521ed0d9
KH
2369 /**
2370 * rdma netdev operation
2371 *
2372 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2373 * must return -EOPNOTSUPP if it doesn't support the specified type.
2374 */
2375 struct net_device *(*alloc_rdma_netdev)(
1fb7f897 2376 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
521ed0d9
KH
2377 const char *name, unsigned char name_assign_type,
2378 void (*setup)(struct net_device *));
2379
1fb7f897 2380 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
521ed0d9
KH
2381 enum rdma_netdev_t type,
2382 struct rdma_netdev_alloc_params *params);
2383 /**
2384 * query_gid should be return GID value for @device, when @port_num
2385 * link layer is either IB or iWarp. It is no-op if @port_num port
2386 * is RoCE link layer.
2387 */
1fb7f897 2388 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
521ed0d9
KH
2389 union ib_gid *gid);
2390 /**
2391 * When calling add_gid, the HW vendor's driver should add the gid
2392 * of device of port at gid index available at @attr. Meta-info of
2393 * that gid (for example, the network device related to this gid) is
2394 * available at @attr. @context allows the HW vendor driver to store
2395 * extra information together with a GID entry. The HW vendor driver may
2396 * allocate memory to contain this information and store it in @context
2397 * when a new GID entry is written to. Params are consistent until the
2398 * next call of add_gid or delete_gid. The function should return 0 on
2399 * success or error otherwise. The function could be called
2400 * concurrently for different ports. This function is only called when
2401 * roce_gid_table is used.
2402 */
2403 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2404 /**
2405 * When calling del_gid, the HW vendor's driver should delete the
2406 * gid of device @device at gid index gid_index of port port_num
2407 * available in @attr.
2408 * Upon the deletion of a GID entry, the HW vendor must free any
2409 * allocated memory. The caller will clear @context afterwards.
2410 * This function is only called when roce_gid_table is used.
2411 */
2412 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
1fb7f897 2413 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
521ed0d9 2414 u16 *pkey);
a2a074ef
LR
2415 int (*alloc_ucontext)(struct ib_ucontext *context,
2416 struct ib_udata *udata);
2417 void (*dealloc_ucontext)(struct ib_ucontext *context);
521ed0d9 2418 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
3411f9f0
MK
2419 /**
2420 * This will be called once refcount of an entry in mmap_xa reaches
2421 * zero. The type of the memory that was mapped may differ between
2422 * entries and is opaque to the rdma_user_mmap interface.
2423 * Therefore needs to be implemented by the driver in mmap_free.
2424 */
2425 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
521ed0d9 2426 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
ff23dfa1 2427 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
91a7c58f 2428 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
fa5d010c
MG
2429 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2430 struct ib_udata *udata);
676a80ad
JG
2431 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2432 struct ib_udata *udata);
521ed0d9
KH
2433 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2434 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
9a9ebf8c 2435 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
68e326de
LR
2436 int (*create_srq)(struct ib_srq *srq,
2437 struct ib_srq_init_attr *srq_init_attr,
2438 struct ib_udata *udata);
521ed0d9
KH
2439 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2440 enum ib_srq_attr_mask srq_attr_mask,
2441 struct ib_udata *udata);
2442 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
119181d1 2443 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
514aee66
LR
2444 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2445 struct ib_udata *udata);
521ed0d9
KH
2446 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2447 int qp_attr_mask, struct ib_udata *udata);
2448 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2449 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
c4367a26 2450 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
e39afe3d
LR
2451 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2452 struct ib_udata *udata);
521ed0d9 2453 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
43d781b9 2454 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
521ed0d9
KH
2455 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2456 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2457 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2458 u64 virt_addr, int mr_access_flags,
2459 struct ib_udata *udata);
3bc489e8
JX
2460 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2461 u64 length, u64 virt_addr, int fd,
2462 int mr_access_flags,
2463 struct ib_udata *udata);
6e0954b1
JG
2464 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2465 u64 length, u64 virt_addr,
2466 int mr_access_flags, struct ib_pd *pd,
2467 struct ib_udata *udata);
c4367a26 2468 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
521ed0d9 2469 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
42a3b153 2470 u32 max_num_sg);
26bc7eae
IR
2471 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2472 u32 max_num_data_sg,
2473 u32 max_num_meta_sg);
ad8a4496
MS
2474 int (*advise_mr)(struct ib_pd *pd,
2475 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2476 struct ib_sge *sg_list, u32 num_sge,
2477 struct uverbs_attr_bundle *attrs);
1477d44c
AH
2478
2479 /*
2480 * Kernel users should universally support relaxed ordering (RO), as
2481 * they are designed to read data only after observing the CQE and use
2482 * the DMA API correctly.
2483 *
2484 * Some drivers implicitly enable RO if platform supports it.
2485 */
521ed0d9
KH
2486 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2487 unsigned int *sg_offset);
2488 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2489 struct ib_mr_status *mr_status);
d18bb3e1 2490 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
521ed0d9 2491 int (*dealloc_mw)(struct ib_mw *mw);
521ed0d9
KH
2492 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2493 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
28ad5f65 2494 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
d0c45c85 2495 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
521ed0d9
KH
2496 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2497 struct ib_flow_attr *flow_attr,
d6673746 2498 struct ib_udata *udata);
521ed0d9
KH
2499 int (*destroy_flow)(struct ib_flow *flow_id);
2500 struct ib_flow_action *(*create_flow_action_esp)(
2501 struct ib_device *device,
2502 const struct ib_flow_action_attrs_esp *attr,
2503 struct uverbs_attr_bundle *attrs);
2504 int (*destroy_flow_action)(struct ib_flow_action *action);
2505 int (*modify_flow_action_esp)(
2506 struct ib_flow_action *action,
2507 const struct ib_flow_action_attrs_esp *attr,
2508 struct uverbs_attr_bundle *attrs);
1fb7f897 2509 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
521ed0d9 2510 int state);
1fb7f897 2511 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
521ed0d9 2512 struct ifla_vf_info *ivf);
1fb7f897 2513 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
521ed0d9 2514 struct ifla_vf_stats *stats);
1fb7f897 2515 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
bfcb3c5d
DG
2516 struct ifla_vf_guid *node_guid,
2517 struct ifla_vf_guid *port_guid);
1fb7f897 2518 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
521ed0d9
KH
2519 int type);
2520 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2521 struct ib_wq_init_attr *init_attr,
2522 struct ib_udata *udata);
add53535 2523 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
521ed0d9
KH
2524 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2525 u32 wq_attr_mask, struct ib_udata *udata);
c0a6b5ec
LR
2526 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2527 struct ib_rwq_ind_table_init_attr *init_attr,
2528 struct ib_udata *udata);
521ed0d9
KH
2529 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2530 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2531 struct ib_ucontext *context,
2532 struct ib_dm_alloc_attr *attr,
2533 struct uverbs_attr_bundle *attrs);
c4367a26 2534 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
521ed0d9
KH
2535 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2536 struct ib_dm_mr_attr *attr,
2537 struct uverbs_attr_bundle *attrs);
3b023e1b
LR
2538 int (*create_counters)(struct ib_counters *counters,
2539 struct uverbs_attr_bundle *attrs);
71ff3f62 2540 int (*destroy_counters)(struct ib_counters *counters);
521ed0d9
KH
2541 int (*read_counters)(struct ib_counters *counters,
2542 struct ib_counters_read_attr *counters_read_attr,
2543 struct uverbs_attr_bundle *attrs);
2cdfcdd8
MG
2544 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2545 int data_sg_nents, unsigned int *data_sg_offset,
2546 struct scatterlist *meta_sg, int meta_sg_nents,
2547 unsigned int *meta_sg_offset);
2548
521ed0d9 2549 /**
4b5f4d3f
JG
2550 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2551 * fill in the driver initialized data. The struct is kfree()'ed by
2552 * the sysfs core when the device is removed. A lifespan of -1 in the
2553 * return struct tells the core to set a default lifespan.
521ed0d9 2554 */
4b5f4d3f
JG
2555 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2556 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2557 u32 port_num);
521ed0d9
KH
2558 /**
2559 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2560 * @index - The index in the value array we wish to have updated, or
2561 * num_counters if we want all stats updated
2562 * Return codes -
2563 * < 0 - Error, no counters updated
2564 * index - Updated the single counter pointed to by index
2565 * num_counters - Updated all counters (will reset the timestamp
2566 * and prevent further calls for lifespan milliseconds)
2567 * Drivers are allowed to update all counters in leiu of just the
2568 * one given in index at their option
2569 */
2570 int (*get_hw_stats)(struct ib_device *device,
1fb7f897 2571 struct rdma_hw_stats *stats, u32 port, int index);
d7407d16 2572
5e2ddd1e
AL
2573 /**
2574 * modify_hw_stat - Modify the counter configuration
2575 * @enable: true/false when enable/disable a counter
2576 * Return codes - 0 on success or error code otherwise.
2577 */
2578 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2579 unsigned int counter_index, bool enable);
02da3750
LR
2580 /**
2581 * Allows rdma drivers to add their own restrack attributes.
2582 */
f4434529 2583 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
65959522 2584 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
9e2a187a 2585 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
65959522 2586 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
5cc34116 2587 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
65959522 2588 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
211cd945 2589 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
21a428a0 2590
d0899892 2591 /* Device lifecycle callbacks */
ca22354b
JG
2592 /*
2593 * Called after the device becomes registered, before clients are
2594 * attached
2595 */
2596 int (*enable_driver)(struct ib_device *dev);
d0899892
JG
2597 /*
2598 * This is called as part of ib_dealloc_device().
2599 */
2600 void (*dealloc_driver)(struct ib_device *dev);
2601
dd05cb82
KH
2602 /* iWarp CM callbacks */
2603 void (*iw_add_ref)(struct ib_qp *qp);
2604 void (*iw_rem_ref)(struct ib_qp *qp);
2605 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2606 int (*iw_connect)(struct iw_cm_id *cm_id,
2607 struct iw_cm_conn_param *conn_param);
2608 int (*iw_accept)(struct iw_cm_id *cm_id,
2609 struct iw_cm_conn_param *conn_param);
2610 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2611 u8 pdata_len);
2612 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2613 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
99fa331d
MZ
2614 /**
2615 * counter_bind_qp - Bind a QP to a counter.
2616 * @counter - The counter to be bound. If counter->id is zero then
2617 * the driver needs to allocate a new counter and set counter->id
2618 */
2619 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2620 /**
2621 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2622 * counter and bind it onto the default one
2623 */
2624 int (*counter_unbind_qp)(struct ib_qp *qp);
2625 /**
2626 * counter_dealloc -De-allocate the hw counter
2627 */
2628 int (*counter_dealloc)(struct rdma_counter *counter);
c4ffee7c
MZ
2629 /**
2630 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2631 * the driver initialized data.
2632 */
2633 struct rdma_hw_stats *(*counter_alloc_stats)(
2634 struct rdma_counter *counter);
2635 /**
2636 * counter_update_stats - Query the stats value of this counter
2637 */
2638 int (*counter_update_stats)(struct rdma_counter *counter);
dd05cb82 2639
4061ff7a
EA
2640 /**
2641 * Allows rdma drivers to add their own restrack attributes
2642 * dumped via 'rdma stat' iproute2 command.
2643 */
f4434529 2644 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
4061ff7a 2645
1c8fb1ea
YH
2646 /* query driver for its ucontext properties */
2647 int (*query_ucontext)(struct ib_ucontext *context,
2648 struct uverbs_attr_bundle *attrs);
2649
514aee66
LR
2650 /*
2651 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2652 * Everyone else relies on Linux memory management model.
2653 */
2654 int (*get_numa_node)(struct ib_device *dev);
2655
d3456914 2656 DECLARE_RDMA_OBJ_SIZE(ib_ah);
3b023e1b 2657 DECLARE_RDMA_OBJ_SIZE(ib_counters);
e39afe3d 2658 DECLARE_RDMA_OBJ_SIZE(ib_cq);
d18bb3e1 2659 DECLARE_RDMA_OBJ_SIZE(ib_mw);
21a428a0 2660 DECLARE_RDMA_OBJ_SIZE(ib_pd);
514aee66 2661 DECLARE_RDMA_OBJ_SIZE(ib_qp);
c0a6b5ec 2662 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
68e326de 2663 DECLARE_RDMA_OBJ_SIZE(ib_srq);
a2a074ef 2664 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
28ad5f65 2665 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
521ed0d9
KH
2666};
2667
cebe556b
PP
2668struct ib_core_device {
2669 /* device must be the first element in structure until,
2670 * union of ib_core_device and device exists in ib_device.
2671 */
2672 struct device dev;
4e0f7b90 2673 possible_net_t rdma_net;
cebe556b
PP
2674 struct kobject *ports_kobj;
2675 struct list_head port_list;
2676 struct ib_device *owner; /* reach back to owner ib_device */
2677};
41eda65c 2678
cebe556b 2679struct rdma_restrack_root;
1da177e4 2680struct ib_device {
0957c29f
BVA
2681 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2682 struct device *dma_device;
3023a1e9 2683 struct ib_device_ops ops;
1da177e4 2684 char name[IB_DEVICE_NAME_MAX];
324e227e 2685 struct rcu_head rcu_head;
1da177e4
LT
2686
2687 struct list_head event_handler_list;
6b57cea9
PP
2688 /* Protects event_handler_list */
2689 struct rw_semaphore event_handler_rwsem;
2690
2691 /* Protects QP's event_handler calls and open_qp list */
40adf686 2692 spinlock_t qp_open_list_lock;
1da177e4 2693
921eab11 2694 struct rw_semaphore client_data_rwsem;
0df91bb6 2695 struct xarray client_data;
d0899892 2696 struct mutex unregistration_lock;
1da177e4 2697
17e10646
PP
2698 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2699 rwlock_t cache_lock;
7738613e 2700 /**
8ceb1357 2701 * port_data is indexed by port number
7738613e 2702 */
8ceb1357 2703 struct ib_port_data *port_data;
1da177e4 2704
f4fd0b22
MT
2705 int num_comp_vectors;
2706
cebe556b
PP
2707 union {
2708 struct device dev;
2709 struct ib_core_device coredev;
2710 };
2711
b7066b32
JG
2712 /* First group is for device attributes,
2713 * Second group is for driver provided attributes (optional).
2714 * Third group is for the hw_stats
2715 * It is a NULL terminated array.
d4122f5a 2716 */
b7066b32 2717 const struct attribute_group *groups[4];
adee9f3f 2718
17a55f79 2719 u64 uverbs_cmd_mask;
274c0891 2720
bd99fdea 2721 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2722 __be64 node_guid;
96f15c03 2723 u32 local_dma_lkey;
4139032b 2724 u16 is_switch:1;
6780c4fa
GP
2725 /* Indicates kernel verbs support, should not be used in drivers */
2726 u16 kverbs_provider:1;
da662979
YF
2727 /* CQ adaptive moderation (RDMA DIM) */
2728 u16 use_cq_dim:1;
1da177e4 2729 u8 node_type;
1fb7f897 2730 u32 phys_port_cnt;
3e153a93 2731 struct ib_device_attr attrs;
467f432a 2732 struct hw_stats_device_data *hw_stats_data;
7738613e 2733
43579b5f
PP
2734#ifdef CONFIG_CGROUP_RDMA
2735 struct rdmacg_device cg_device;
2736#endif
2737
ecc82c53 2738 u32 index;
c7ff819a
YF
2739
2740 spinlock_t cq_pools_lock;
2741 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2742
41eda65c 2743 struct rdma_restrack_root *res;
ecc82c53 2744
0cbf432d 2745 const struct uapi_definition *driver_def;
d79af724 2746
01b67117 2747 /*
d79af724
JG
2748 * Positive refcount indicates that the device is currently
2749 * registered and cannot be unregistered.
01b67117
PP
2750 */
2751 refcount_t refcount;
2752 struct completion unreg_completion;
d0899892 2753 struct work_struct unregistration_work;
3856ec4b
SW
2754
2755 const struct rdma_link_ops *link_ops;
4e0f7b90
PP
2756
2757 /* Protects compat_devs xarray modifications */
2758 struct mutex compat_devs_mutex;
2759 /* Maintains compat devices for each net namespace */
2760 struct xarray compat_devs;
dd05cb82
KH
2761
2762 /* Used by iWarp CM */
2763 char iw_ifname[IFNAMSIZ];
2764 u32 iw_driver_flags;
bd3920ea 2765 u32 lag_flags;
1da177e4
LT
2766};
2767
514aee66
LR
2768static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2769 gfp_t gfp, bool is_numa_aware)
2770{
2771 if (is_numa_aware && dev->ops.get_numa_node)
2772 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2773
2774 return kzalloc(size, gfp);
2775}
2776
0e2d00eb 2777struct ib_client_nl_info;
1da177e4 2778struct ib_client {
e59178d8 2779 const char *name;
11a0ae4c 2780 int (*add)(struct ib_device *ibdev);
7c1eb45a 2781 void (*remove)(struct ib_device *, void *client_data);
dc1435c0 2782 void (*rename)(struct ib_device *dev, void *client_data);
0e2d00eb
JG
2783 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2784 struct ib_client_nl_info *res);
2785 int (*get_global_nl_info)(struct ib_client_nl_info *res);
1da177e4 2786
9268f72d
YK
2787 /* Returns the net_dev belonging to this ib_client and matching the
2788 * given parameters.
2789 * @dev: An RDMA device that the net_dev use for communication.
2790 * @port: A physical port number on the RDMA device.
2791 * @pkey: P_Key that the net_dev uses if applicable.
2792 * @gid: A GID that the net_dev uses to communicate.
2793 * @addr: An IP address the net_dev is configured with.
2794 * @client_data: The device's client data set by ib_set_client_data().
2795 *
2796 * An ib_client that implements a net_dev on top of RDMA devices
2797 * (such as IP over IB) should implement this callback, allowing the
2798 * rdma_cm module to find the right net_dev for a given request.
2799 *
2800 * The caller is responsible for calling dev_put on the returned
2801 * netdev. */
2802 struct net_device *(*get_net_dev_by_params)(
2803 struct ib_device *dev,
1fb7f897 2804 u32 port,
9268f72d
YK
2805 u16 pkey,
2806 const union ib_gid *gid,
2807 const struct sockaddr *addr,
2808 void *client_data);
621e55ff
JG
2809
2810 refcount_t uses;
2811 struct completion uses_zero;
e59178d8 2812 u32 client_id;
6780c4fa
GP
2813
2814 /* kverbs are not required by the client */
2815 u8 no_kverbs_req:1;
1da177e4
LT
2816};
2817
a808273a
SS
2818/*
2819 * IB block DMA iterator
2820 *
2821 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2822 * to a HW supported page size.
2823 */
2824struct ib_block_iter {
2825 /* internal states */
2826 struct scatterlist *__sg; /* sg holding the current aligned block */
2827 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2828 unsigned int __sg_nents; /* number of SG entries */
2829 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2830 unsigned int __pg_bit; /* alignment of current block */
2831};
2832
459cc69f
LR
2833struct ib_device *_ib_alloc_device(size_t size);
2834#define ib_alloc_device(drv_struct, member) \
2835 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2836 BUILD_BUG_ON_ZERO(offsetof( \
2837 struct drv_struct, member))), \
2838 struct drv_struct, member)
2839
1da177e4
LT
2840void ib_dealloc_device(struct ib_device *device);
2841
9abb0d1b 2842void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2843
e0477b34
JG
2844int ib_register_device(struct ib_device *device, const char *name,
2845 struct device *dma_device);
1da177e4 2846void ib_unregister_device(struct ib_device *device);
d0899892
JG
2847void ib_unregister_driver(enum rdma_driver_id driver_id);
2848void ib_unregister_device_and_put(struct ib_device *device);
2849void ib_unregister_device_queued(struct ib_device *ib_dev);
1da177e4
LT
2850
2851int ib_register_client (struct ib_client *client);
2852void ib_unregister_client(struct ib_client *client);
2853
a808273a
SS
2854void __rdma_block_iter_start(struct ib_block_iter *biter,
2855 struct scatterlist *sglist,
2856 unsigned int nents,
2857 unsigned long pgsz);
2858bool __rdma_block_iter_next(struct ib_block_iter *biter);
2859
2860/**
2861 * rdma_block_iter_dma_address - get the aligned dma address of the current
2862 * block held by the block iterator.
2863 * @biter: block iterator holding the memory block
2864 */
2865static inline dma_addr_t
2866rdma_block_iter_dma_address(struct ib_block_iter *biter)
2867{
2868 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2869}
2870
2871/**
2872 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2873 * @sglist: sglist to iterate over
2874 * @biter: block iterator holding the memory block
2875 * @nents: maximum number of sg entries to iterate over
2876 * @pgsz: best HW supported page size to use
2877 *
2878 * Callers may use rdma_block_iter_dma_address() to get each
2879 * blocks aligned DMA address.
2880 */
2881#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2882 for (__rdma_block_iter_start(biter, sglist, nents, \
2883 pgsz); \
2884 __rdma_block_iter_next(biter);)
2885
0df91bb6
JG
2886/**
2887 * ib_get_client_data - Get IB client context
2888 * @device:Device to get context for
2889 * @client:Client to get context for
2890 *
2891 * ib_get_client_data() returns the client context data set with
2892 * ib_set_client_data(). This can only be called while the client is
2893 * registered to the device, once the ib_client remove() callback returns this
2894 * cannot be called.
2895 */
2896static inline void *ib_get_client_data(struct ib_device *device,
2897 struct ib_client *client)
2898{
2899 return xa_load(&device->client_data, client->client_id);
2900}
1da177e4
LT
2901void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2902 void *data);
521ed0d9
KH
2903void ib_set_device_ops(struct ib_device *device,
2904 const struct ib_device_ops *ops);
1da177e4 2905
5f9794dc 2906int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
c043ff2c
MK
2907 unsigned long pfn, unsigned long size, pgprot_t prot,
2908 struct rdma_user_mmap_entry *entry);
3411f9f0
MK
2909int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2910 struct rdma_user_mmap_entry *entry,
2911 size_t length);
7a763d18
YH
2912int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2913 struct rdma_user_mmap_entry *entry,
2914 size_t length, u32 min_pgoff,
2915 u32 max_pgoff);
2916
6d202d9f
CT
2917static inline int
2918rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2919 struct rdma_user_mmap_entry *entry,
2920 size_t length, u32 pgoff)
2921{
2922 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2923 pgoff);
2924}
2925
3411f9f0
MK
2926struct rdma_user_mmap_entry *
2927rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2928 unsigned long pgoff);
2929struct rdma_user_mmap_entry *
2930rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2931 struct vm_area_struct *vma);
2932void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2933
2934void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
5f9794dc 2935
e2773c06
RD
2936static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2937{
2938 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2939}
2940
2941static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2942{
43c61165 2943 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2944}
2945
c66db311
MB
2946static inline bool ib_is_buffer_cleared(const void __user *p,
2947 size_t len)
301a721e 2948{
92d27ae6 2949 bool ret;
301a721e
MB
2950 u8 *buf;
2951
2952 if (len > USHRT_MAX)
2953 return false;
2954
92d27ae6
ME
2955 buf = memdup_user(p, len);
2956 if (IS_ERR(buf))
301a721e
MB
2957 return false;
2958
301a721e 2959 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2960 kfree(buf);
2961 return ret;
2962}
2963
c66db311
MB
2964static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2965 size_t offset,
2966 size_t len)
2967{
2968 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2969}
2970
8a51866f
RD
2971/**
2972 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2973 * contains all required attributes and no attributes not allowed for
2974 * the given QP state transition.
2975 * @cur_state: Current QP state
2976 * @next_state: Next QP state
2977 * @type: QP type
2978 * @mask: Mask of supplied QP attributes
2979 *
2980 * This function is a helper function that a low-level driver's
2981 * modify_qp method can use to validate the consumer's input. It
2982 * checks that cur_state and next_state are valid QP states, that a
2983 * transition from cur_state to next_state is allowed by the IB spec,
2984 * and that the attribute mask supplied is allowed for the transition.
2985 */
19b1f540 2986bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
d31131bb 2987 enum ib_qp_type type, enum ib_qp_attr_mask mask);
8a51866f 2988
dcc9881e
LR
2989void ib_register_event_handler(struct ib_event_handler *event_handler);
2990void ib_unregister_event_handler(struct ib_event_handler *event_handler);
6b57cea9 2991void ib_dispatch_event(const struct ib_event *event);
1da177e4 2992
1da177e4 2993int ib_query_port(struct ib_device *device,
1fb7f897 2994 u32 port_num, struct ib_port_attr *port_attr);
1da177e4 2995
a3f5adaf 2996enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1fb7f897 2997 u32 port_num);
a3f5adaf 2998
4139032b
HR
2999/**
3000 * rdma_cap_ib_switch - Check if the device is IB switch
3001 * @device: Device to check
3002 *
3003 * Device driver is responsible for setting is_switch bit on
3004 * in ib_device structure at init time.
3005 *
3006 * Return: true if the device is IB switch.
3007 */
3008static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3009{
3010 return device->is_switch;
3011}
3012
0cf18d77
IW
3013/**
3014 * rdma_start_port - Return the first valid port number for the device
3015 * specified
3016 *
3017 * @device: Device to be checked
3018 *
3019 * Return start port number
3020 */
1fb7f897 3021static inline u32 rdma_start_port(const struct ib_device *device)
0cf18d77 3022{
4139032b 3023 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
3024}
3025
ea1075ed
JG
3026/**
3027 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3028 * @device - The struct ib_device * to iterate over
3029 * @iter - The unsigned int to store the port number
3030 */
3031#define rdma_for_each_port(device, iter) \
1fb7f897
MB
3032 for (iter = rdma_start_port(device + \
3033 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3034 iter))); \
3035 iter <= rdma_end_port(device); iter++)
ea1075ed 3036
0cf18d77
IW
3037/**
3038 * rdma_end_port - Return the last valid port number for the device
3039 * specified
3040 *
3041 * @device: Device to be checked
3042 *
3043 * Return last port number
3044 */
1fb7f897 3045static inline u32 rdma_end_port(const struct ib_device *device)
0cf18d77 3046{
4139032b 3047 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
3048}
3049
24dc831b
YS
3050static inline int rdma_is_port_valid(const struct ib_device *device,
3051 unsigned int port)
3052{
3053 return (port >= rdma_start_port(device) &&
3054 port <= rdma_end_port(device));
3055}
3056
b02289b3 3057static inline bool rdma_is_grh_required(const struct ib_device *device,
1fb7f897 3058 u32 port_num)
b02289b3 3059{
8ceb1357
JG
3060 return device->port_data[port_num].immutable.core_cap_flags &
3061 RDMA_CORE_PORT_IB_GRH_REQUIRED;
b02289b3
AK
3062}
3063
1fb7f897
MB
3064static inline bool rdma_protocol_ib(const struct ib_device *device,
3065 u32 port_num)
de66be94 3066{
8ceb1357
JG
3067 return device->port_data[port_num].immutable.core_cap_flags &
3068 RDMA_CORE_CAP_PROT_IB;
de66be94
MW
3069}
3070
1fb7f897
MB
3071static inline bool rdma_protocol_roce(const struct ib_device *device,
3072 u32 port_num)
7766a99f 3073{
8ceb1357
JG
3074 return device->port_data[port_num].immutable.core_cap_flags &
3075 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
7766a99f
MB
3076}
3077
1fb7f897
MB
3078static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3079 u32 port_num)
7766a99f 3080{
8ceb1357
JG
3081 return device->port_data[port_num].immutable.core_cap_flags &
3082 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
7766a99f
MB
3083}
3084
1fb7f897
MB
3085static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3086 u32 port_num)
de66be94 3087{
8ceb1357
JG
3088 return device->port_data[port_num].immutable.core_cap_flags &
3089 RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
3090}
3091
1fb7f897
MB
3092static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3093 u32 port_num)
de66be94 3094{
8ceb1357
JG
3095 return device->port_data[port_num].immutable.core_cap_flags &
3096 RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
3097}
3098
1fb7f897
MB
3099static inline bool rdma_ib_or_roce(const struct ib_device *device,
3100 u32 port_num)
de66be94 3101{
7766a99f
MB
3102 return rdma_protocol_ib(device, port_num) ||
3103 rdma_protocol_roce(device, port_num);
de66be94
MW
3104}
3105
1fb7f897
MB
3106static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3107 u32 port_num)
aa773bd4 3108{
8ceb1357
JG
3109 return device->port_data[port_num].immutable.core_cap_flags &
3110 RDMA_CORE_CAP_PROT_RAW_PACKET;
aa773bd4
OG
3111}
3112
1fb7f897
MB
3113static inline bool rdma_protocol_usnic(const struct ib_device *device,
3114 u32 port_num)
ce1e055f 3115{
8ceb1357
JG
3116 return device->port_data[port_num].immutable.core_cap_flags &
3117 RDMA_CORE_CAP_PROT_USNIC;
ce1e055f
OG
3118}
3119
c757dea8 3120/**
296ec009 3121 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 3122 * Management Datagrams.
296ec009
MW
3123 * @device: Device to check
3124 * @port_num: Port number to check
c757dea8 3125 *
296ec009
MW
3126 * Management Datagrams (MAD) are a required part of the InfiniBand
3127 * specification and are supported on all InfiniBand devices. A slightly
3128 * extended version are also supported on OPA interfaces.
c757dea8 3129 *
296ec009 3130 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 3131 */
1fb7f897 3132static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
c757dea8 3133{
8ceb1357
JG
3134 return device->port_data[port_num].immutable.core_cap_flags &
3135 RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
3136}
3137
65995fee
IW
3138/**
3139 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3140 * Management Datagrams.
3141 * @device: Device to check
3142 * @port_num: Port number to check
3143 *
3144 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3145 * datagrams with their own versions. These OPA MADs share many but not all of
3146 * the characteristics of InfiniBand MADs.
3147 *
3148 * OPA MADs differ in the following ways:
3149 *
3150 * 1) MADs are variable size up to 2K
3151 * IBTA defined MADs remain fixed at 256 bytes
3152 * 2) OPA SMPs must carry valid PKeys
3153 * 3) OPA SMP packets are a different format
3154 *
3155 * Return: true if the port supports OPA MAD packet formats.
3156 */
1fb7f897 3157static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
65995fee 3158{
d3243da8
LR
3159 return device->port_data[port_num].immutable.core_cap_flags &
3160 RDMA_CORE_CAP_OPA_MAD;
65995fee
IW
3161}
3162
29541e3a 3163/**
296ec009
MW
3164 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3165 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3166 * @device: Device to check
3167 * @port_num: Port number to check
29541e3a 3168 *
296ec009
MW
3169 * Each InfiniBand node is required to provide a Subnet Management Agent
3170 * that the subnet manager can access. Prior to the fabric being fully
3171 * configured by the subnet manager, the SMA is accessed via a well known
3172 * interface called the Subnet Management Interface (SMI). This interface
3173 * uses directed route packets to communicate with the SM to get around the
3174 * chicken and egg problem of the SM needing to know what's on the fabric
3175 * in order to configure the fabric, and needing to configure the fabric in
3176 * order to send packets to the devices on the fabric. These directed
3177 * route packets do not need the fabric fully configured in order to reach
3178 * their destination. The SMI is the only method allowed to send
3179 * directed route packets on an InfiniBand fabric.
29541e3a 3180 *
296ec009 3181 * Return: true if the port provides an SMI.
29541e3a 3182 */
1fb7f897 3183static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
29541e3a 3184{
8ceb1357
JG
3185 return device->port_data[port_num].immutable.core_cap_flags &
3186 RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
3187}
3188
72219cea
MW
3189/**
3190 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3191 * Communication Manager.
296ec009
MW
3192 * @device: Device to check
3193 * @port_num: Port number to check
72219cea 3194 *
296ec009
MW
3195 * The InfiniBand Communication Manager is one of many pre-defined General
3196 * Service Agents (GSA) that are accessed via the General Service
3197 * Interface (GSI). It's role is to facilitate establishment of connections
3198 * between nodes as well as other management related tasks for established
3199 * connections.
72219cea 3200 *
296ec009
MW
3201 * Return: true if the port supports an IB CM (this does not guarantee that
3202 * a CM is actually running however).
72219cea 3203 */
1fb7f897 3204static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
72219cea 3205{
8ceb1357
JG
3206 return device->port_data[port_num].immutable.core_cap_flags &
3207 RDMA_CORE_CAP_IB_CM;
72219cea
MW
3208}
3209
04215330
MW
3210/**
3211 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3212 * Communication Manager.
296ec009
MW
3213 * @device: Device to check
3214 * @port_num: Port number to check
04215330 3215 *
296ec009
MW
3216 * Similar to above, but specific to iWARP connections which have a different
3217 * managment protocol than InfiniBand.
04215330 3218 *
296ec009
MW
3219 * Return: true if the port supports an iWARP CM (this does not guarantee that
3220 * a CM is actually running however).
04215330 3221 */
1fb7f897 3222static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
04215330 3223{
8ceb1357
JG
3224 return device->port_data[port_num].immutable.core_cap_flags &
3225 RDMA_CORE_CAP_IW_CM;
04215330
MW
3226}
3227
fe53ba2f
MW
3228/**
3229 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3230 * Subnet Administration.
296ec009
MW
3231 * @device: Device to check
3232 * @port_num: Port number to check
fe53ba2f 3233 *
296ec009
MW
3234 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3235 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3236 * fabrics, devices should resolve routes to other hosts by contacting the
3237 * SA to query the proper route.
fe53ba2f 3238 *
296ec009
MW
3239 * Return: true if the port should act as a client to the fabric Subnet
3240 * Administration interface. This does not imply that the SA service is
3241 * running locally.
fe53ba2f 3242 */
1fb7f897 3243static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
fe53ba2f 3244{
8ceb1357
JG
3245 return device->port_data[port_num].immutable.core_cap_flags &
3246 RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
3247}
3248
a31ad3b0
MW
3249/**
3250 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3251 * Multicast.
296ec009
MW
3252 * @device: Device to check
3253 * @port_num: Port number to check
a31ad3b0 3254 *
296ec009
MW
3255 * InfiniBand multicast registration is more complex than normal IPv4 or
3256 * IPv6 multicast registration. Each Host Channel Adapter must register
3257 * with the Subnet Manager when it wishes to join a multicast group. It
3258 * should do so only once regardless of how many queue pairs it subscribes
3259 * to this group. And it should leave the group only after all queue pairs
3260 * attached to the group have been detached.
a31ad3b0 3261 *
296ec009
MW
3262 * Return: true if the port must undertake the additional adminstrative
3263 * overhead of registering/unregistering with the SM and tracking of the
3264 * total number of queue pairs attached to the multicast group.
a31ad3b0 3265 */
1fb7f897
MB
3266static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3267 u32 port_num)
a31ad3b0
MW
3268{
3269 return rdma_cap_ib_sa(device, port_num);
3270}
3271
30a74ef4
MW
3272/**
3273 * rdma_cap_af_ib - Check if the port of device has the capability
3274 * Native Infiniband Address.
296ec009
MW
3275 * @device: Device to check
3276 * @port_num: Port number to check
30a74ef4 3277 *
296ec009
MW
3278 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3279 * GID. RoCE uses a different mechanism, but still generates a GID via
3280 * a prescribed mechanism and port specific data.
30a74ef4 3281 *
296ec009
MW
3282 * Return: true if the port uses a GID address to identify devices on the
3283 * network.
30a74ef4 3284 */
1fb7f897 3285static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
30a74ef4 3286{
8ceb1357
JG
3287 return device->port_data[port_num].immutable.core_cap_flags &
3288 RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
3289}
3290
227128fc
MW
3291/**
3292 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
3293 * Ethernet Address Handle.
3294 * @device: Device to check
3295 * @port_num: Port number to check
227128fc 3296 *
296ec009
MW
3297 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3298 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3299 * port. Normally, packet headers are generated by the sending host
3300 * adapter, but when sending connectionless datagrams, we must manually
3301 * inject the proper headers for the fabric we are communicating over.
227128fc 3302 *
296ec009
MW
3303 * Return: true if we are running as a RoCE port and must force the
3304 * addition of a Global Route Header built from our Ethernet Address
3305 * Handle into our header list for connectionless packets.
227128fc 3306 */
1fb7f897 3307static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
227128fc 3308{
8ceb1357
JG
3309 return device->port_data[port_num].immutable.core_cap_flags &
3310 RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3311}
3312
94d595c5
DC
3313/**
3314 * rdma_cap_opa_ah - Check if the port of device supports
3315 * OPA Address handles
3316 * @device: Device to check
3317 * @port_num: Port number to check
3318 *
3319 * Return: true if we are running on an OPA device which supports
3320 * the extended OPA addressing.
3321 */
1fb7f897 3322static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
94d595c5 3323{
8ceb1357 3324 return (device->port_data[port_num].immutable.core_cap_flags &
94d595c5
DC
3325 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3326}
3327
337877a4
IW
3328/**
3329 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3330 *
3331 * @device: Device
3332 * @port_num: Port number
3333 *
3334 * This MAD size includes the MAD headers and MAD payload. No other headers
3335 * are included.
3336 *
3337 * Return the max MAD size required by the Port. Will return 0 if the port
3338 * does not support MADs
3339 */
1fb7f897
MB
3340static inline size_t rdma_max_mad_size(const struct ib_device *device,
3341 u32 port_num)
337877a4 3342{
8ceb1357 3343 return device->port_data[port_num].immutable.max_mad_size;
337877a4
IW
3344}
3345
03db3a2d
MB
3346/**
3347 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3348 * @device: Device to check
3349 * @port_num: Port number to check
3350 *
3351 * RoCE GID table mechanism manages the various GIDs for a device.
3352 *
3353 * NOTE: if allocating the port's GID table has failed, this call will still
3354 * return true, but any RoCE GID table API will fail.
3355 *
3356 * Return: true if the port uses RoCE GID table mechanism in order to manage
3357 * its GIDs.
3358 */
3359static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
1fb7f897 3360 u32 port_num)
03db3a2d
MB
3361{
3362 return rdma_protocol_roce(device, port_num) &&
3023a1e9 3363 device->ops.add_gid && device->ops.del_gid;
03db3a2d
MB
3364}
3365
002516ed
CH
3366/*
3367 * Check if the device supports READ W/ INVALIDATE.
3368 */
3369static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3370{
3371 /*
3372 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3373 * has support for it yet.
3374 */
3375 return rdma_protocol_iwarp(dev, port_num);
3376}
3377
6d72344c
KW
3378/**
3379 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3380 * @device: Device
3381 * @port_num: 1 based Port number
3382 *
3383 * Return true if port is an Intel OPA port , false if not
3384 */
3385static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3386 u32 port_num)
3387{
3388 return (device->port_data[port_num].immutable.core_cap_flags &
3389 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3390}
3391
3392/**
3393 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3394 * @device: Device
3395 * @port_num: Port number
3396 * @mtu: enum value of MTU
3397 *
3398 * Return the MTU size supported by the port as an integer value. Will return
3399 * -1 if enum value of mtu is not supported.
3400 */
1fb7f897 3401static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
6d72344c
KW
3402 int mtu)
3403{
3404 if (rdma_core_cap_opa_port(device, port))
3405 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3406 else
3407 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3408}
3409
3410/**
3411 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3412 * @device: Device
3413 * @port_num: Port number
3414 * @attr: port attribute
3415 *
3416 * Return the MTU size supported by the port as an integer value.
3417 */
1fb7f897 3418static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
6d72344c
KW
3419 struct ib_port_attr *attr)
3420{
3421 if (rdma_core_cap_opa_port(device, port))
3422 return attr->phys_mtu;
3423 else
3424 return ib_mtu_enum_to_int(attr->max_mtu);
3425}
3426
1fb7f897 3427int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
50174a7f 3428 int state);
1fb7f897 3429int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
50174a7f 3430 struct ifla_vf_info *info);
1fb7f897 3431int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
50174a7f 3432 struct ifla_vf_stats *stats);
1fb7f897 3433int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
bfcb3c5d
DG
3434 struct ifla_vf_guid *node_guid,
3435 struct ifla_vf_guid *port_guid);
1fb7f897 3436int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
50174a7f
EC
3437 int type);
3438
1da177e4 3439int ib_query_pkey(struct ib_device *device,
1fb7f897 3440 u32 port_num, u16 index, u16 *pkey);
1da177e4
LT
3441
3442int ib_modify_device(struct ib_device *device,
3443 int device_modify_mask,
3444 struct ib_device_modify *device_modify);
3445
3446int ib_modify_port(struct ib_device *device,
1fb7f897 3447 u32 port_num, int port_modify_mask,
1da177e4
LT
3448 struct ib_port_modify *port_modify);
3449
5eb620c8 3450int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1fb7f897 3451 u32 *port_num, u16 *index);
5eb620c8
YE
3452
3453int ib_find_pkey(struct ib_device *device,
1fb7f897 3454 u32 port_num, u16 pkey, u16 *index);
5eb620c8 3455
ed082d36
CH
3456enum ib_pd_flags {
3457 /*
3458 * Create a memory registration for all memory in the system and place
3459 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3460 * ULPs to avoid the overhead of dynamic MRs.
3461 *
3462 * This flag is generally considered unsafe and must only be used in
3463 * extremly trusted environments. Every use of it will log a warning
3464 * in the kernel log.
3465 */
3466 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3467};
1da177e4 3468
ed082d36
CH
3469struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3470 const char *caller);
c4367a26 3471
2988ca08
MCC
3472/**
3473 * ib_alloc_pd - Allocates an unused protection domain.
3474 * @device: The device on which to allocate the protection domain.
3475 * @flags: protection domain flags
3476 *
3477 * A protection domain object provides an association between QPs, shared
3478 * receive queues, address handles, memory regions, and memory windows.
3479 *
3480 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3481 * memory operations.
3482 */
ed082d36 3483#define ib_alloc_pd(device, flags) \
e4496447 3484 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
c4367a26 3485
91a7c58f 3486int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
c4367a26
SR
3487
3488/**
3489 * ib_dealloc_pd - Deallocate kernel PD
3490 * @pd: The protection domain
3491 *
3492 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3493 */
3494static inline void ib_dealloc_pd(struct ib_pd *pd)
3495{
91a7c58f
LR
3496 int ret = ib_dealloc_pd_user(pd, NULL);
3497
3498 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
c4367a26 3499}
1da177e4 3500
b090c4e3
GP
3501enum rdma_create_ah_flags {
3502 /* In a sleepable context */
3503 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3504};
3505
1da177e4 3506/**
0a18cfe4 3507 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3508 * @pd: The protection domain associated with the address handle.
3509 * @ah_attr: The attributes of the address vector.
b090c4e3 3510 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
1da177e4
LT
3511 *
3512 * The address handle is used to reference a local or global destination
3513 * in all UD QP post sends.
3514 */
b090c4e3
GP
3515struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3516 u32 flags);
1da177e4 3517
5cda6587
PP
3518/**
3519 * rdma_create_user_ah - Creates an address handle for the given address vector.
3520 * It resolves destination mac address for ah attribute of RoCE type.
3521 * @pd: The protection domain associated with the address handle.
3522 * @ah_attr: The attributes of the address vector.
3523 * @udata: pointer to user's input output buffer information need by
3524 * provider driver.
3525 *
3526 * It returns 0 on success and returns appropriate error code on error.
3527 * The address handle is used to reference a local or global destination
3528 * in all UD QP post sends.
3529 */
3530struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3531 struct rdma_ah_attr *ah_attr,
3532 struct ib_udata *udata);
850d8fd7
MS
3533/**
3534 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3535 * work completion.
3536 * @hdr: the L3 header to parse
3537 * @net_type: type of header to parse
3538 * @sgid: place to store source gid
3539 * @dgid: place to store destination gid
3540 */
3541int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3542 enum rdma_network_type net_type,
3543 union ib_gid *sgid, union ib_gid *dgid);
3544
3545/**
3546 * ib_get_rdma_header_version - Get the header version
3547 * @hdr: the L3 header to parse
3548 */
3549int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3550
4e00d694 3551/**
f6bdb142 3552 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3553 * work completion.
3554 * @device: Device on which the received message arrived.
3555 * @port_num: Port on which the received message arrived.
3556 * @wc: Work completion associated with the received message.
3557 * @grh: References the received global route header. This parameter is
3558 * ignored unless the work completion indicates that the GRH is valid.
3559 * @ah_attr: Returned attributes that can be used when creating an address
3560 * handle for replying to the message.
b7403217
PP
3561 * When ib_init_ah_attr_from_wc() returns success,
3562 * (a) for IB link layer it optionally contains a reference to SGID attribute
3563 * when GRH is present for IB link layer.
3564 * (b) for RoCE link layer it contains a reference to SGID attribute.
3565 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3566 * attributes which are initialized using ib_init_ah_attr_from_wc().
3567 *
4e00d694 3568 */
1fb7f897 3569int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
f6bdb142
PP
3570 const struct ib_wc *wc, const struct ib_grh *grh,
3571 struct rdma_ah_attr *ah_attr);
4e00d694 3572
513789ed
HR
3573/**
3574 * ib_create_ah_from_wc - Creates an address handle associated with the
3575 * sender of the specified work completion.
3576 * @pd: The protection domain associated with the address handle.
3577 * @wc: Work completion information associated with a received message.
3578 * @grh: References the received global route header. This parameter is
3579 * ignored unless the work completion indicates that the GRH is valid.
3580 * @port_num: The outbound port number to associate with the address.
3581 *
3582 * The address handle is used to reference a local or global destination
3583 * in all UD QP post sends.
3584 */
73cdaaee 3585struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
1fb7f897 3586 const struct ib_grh *grh, u32 port_num);
513789ed 3587
1da177e4 3588/**
67b985b6 3589 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3590 * handle.
3591 * @ah: The address handle to modify.
3592 * @ah_attr: The new address vector attributes to associate with the
3593 * address handle.
3594 */
67b985b6 3595int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3596
3597/**
bfbfd661 3598 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3599 * handle.
3600 * @ah: The address handle to query.
3601 * @ah_attr: The address vector attributes associated with the address
3602 * handle.
3603 */
bfbfd661 3604int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4 3605
2553ba21
GP
3606enum rdma_destroy_ah_flags {
3607 /* In a sleepable context */
3608 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3609};
3610
1da177e4 3611/**
c4367a26 3612 * rdma_destroy_ah_user - Destroys an address handle.
1da177e4 3613 * @ah: The address handle to destroy.
2553ba21 3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
c4367a26 3615 * @udata: Valid user data or NULL for kernel objects
1da177e4 3616 */
c4367a26
SR
3617int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3618
3619/**
3620 * rdma_destroy_ah - Destroys an kernel address handle.
3621 * @ah: The address handle to destroy.
3622 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3623 *
3624 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3625 */
9a9ebf8c 3626static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
c4367a26 3627{
9a9ebf8c
LR
3628 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3629
3630 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
c4367a26 3631}
1da177e4 3632
b0810b03
JG
3633struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3634 struct ib_srq_init_attr *srq_init_attr,
3635 struct ib_usrq_object *uobject,
3636 struct ib_udata *udata);
3637static inline struct ib_srq *
3638ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3639{
3640 if (!pd->device->ops.create_srq)
3641 return ERR_PTR(-EOPNOTSUPP);
3642
3643 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3644}
d41fcc67
RD
3645
3646/**
3647 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3648 * @srq: The SRQ to modify.
3649 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3650 * the current values of selected SRQ attributes are returned.
3651 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3652 * are being modified.
3653 *
3654 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3655 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3656 * the number of receives queued drops below the limit.
3657 */
3658int ib_modify_srq(struct ib_srq *srq,
3659 struct ib_srq_attr *srq_attr,
3660 enum ib_srq_attr_mask srq_attr_mask);
3661
3662/**
3663 * ib_query_srq - Returns the attribute list and current values for the
3664 * specified SRQ.
3665 * @srq: The SRQ to query.
3666 * @srq_attr: The attributes of the specified SRQ.
3667 */
3668int ib_query_srq(struct ib_srq *srq,
3669 struct ib_srq_attr *srq_attr);
3670
3671/**
c4367a26
SR
3672 * ib_destroy_srq_user - Destroys the specified SRQ.
3673 * @srq: The SRQ to destroy.
3674 * @udata: Valid user data or NULL for kernel objects
3675 */
3676int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3677
3678/**
3679 * ib_destroy_srq - Destroys the specified kernel SRQ.
d41fcc67 3680 * @srq: The SRQ to destroy.
c4367a26
SR
3681 *
3682 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
d41fcc67 3683 */
119181d1 3684static inline void ib_destroy_srq(struct ib_srq *srq)
c4367a26 3685{
119181d1
LR
3686 int ret = ib_destroy_srq_user(srq, NULL);
3687
3688 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
c4367a26 3689}
d41fcc67
RD
3690
3691/**
3692 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3693 * @srq: The SRQ to post the work request on.
3694 * @recv_wr: A list of work requests to post on the receive queue.
3695 * @bad_recv_wr: On an immediate failure, this parameter will reference
3696 * the work request that failed to be posted on the QP.
3697 */
3698static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3699 const struct ib_recv_wr *recv_wr,
3700 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3701{
d34ac5cd 3702 const struct ib_recv_wr *dummy;
bb039a87 3703
3023a1e9
KH
3704 return srq->device->ops.post_srq_recv(srq, recv_wr,
3705 bad_recv_wr ? : &dummy);
d41fcc67
RD
3706}
3707
8da9fe4e
LR
3708struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3709 struct ib_qp_init_attr *qp_init_attr,
3710 const char *caller);
3711/**
3712 * ib_create_qp - Creates a kernel QP associated with the specific protection
3713 * domain.
3714 * @pd: The protection domain associated with the QP.
3715 * @init_attr: A list of initial attributes required to create the
3716 * QP. If QP creation succeeds, then the attributes are updated to
3717 * the actual capabilities of the created QP.
3718 */
66f57b87
LR
3719static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3720 struct ib_qp_init_attr *init_attr)
3721{
8da9fe4e 3722 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
66f57b87 3723}
1da177e4 3724
a512c2fb
PP
3725/**
3726 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3727 * @qp: The QP to modify.
3728 * @attr: On input, specifies the QP attributes to modify. On output,
3729 * the current values of selected QP attributes are returned.
3730 * @attr_mask: A bit-mask used to specify which attributes of the QP
3731 * are being modified.
3732 * @udata: pointer to user's input output buffer information
3733 * are being modified.
3734 * It returns 0 on success and returns appropriate error code on error.
3735 */
3736int ib_modify_qp_with_udata(struct ib_qp *qp,
3737 struct ib_qp_attr *attr,
3738 int attr_mask,
3739 struct ib_udata *udata);
3740
1da177e4
LT
3741/**
3742 * ib_modify_qp - Modifies the attributes for the specified QP and then
3743 * transitions the QP to the given state.
3744 * @qp: The QP to modify.
3745 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3746 * the current values of selected QP attributes are returned.
3747 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3748 * are being modified.
3749 */
3750int ib_modify_qp(struct ib_qp *qp,
3751 struct ib_qp_attr *qp_attr,
3752 int qp_attr_mask);
3753
3754/**
3755 * ib_query_qp - Returns the attribute list and current values for the
3756 * specified QP.
3757 * @qp: The QP to query.
3758 * @qp_attr: The attributes of the specified QP.
3759 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3760 * @qp_init_attr: Additional attributes of the selected QP.
3761 *
3762 * The qp_attr_mask may be used to limit the query to gathering only the
3763 * selected attributes.
3764 */
3765int ib_query_qp(struct ib_qp *qp,
3766 struct ib_qp_attr *qp_attr,
3767 int qp_attr_mask,
3768 struct ib_qp_init_attr *qp_init_attr);
3769
3770/**
3771 * ib_destroy_qp - Destroys the specified QP.
3772 * @qp: The QP to destroy.
c4367a26 3773 * @udata: Valid udata or NULL for kernel objects
1da177e4 3774 */
c4367a26
SR
3775int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3776
3777/**
3778 * ib_destroy_qp - Destroys the specified kernel QP.
3779 * @qp: The QP to destroy.
3780 *
3781 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3782 */
3783static inline int ib_destroy_qp(struct ib_qp *qp)
3784{
3785 return ib_destroy_qp_user(qp, NULL);
3786}
1da177e4 3787
d3d72d90 3788/**
0e0ec7e0
SH
3789 * ib_open_qp - Obtain a reference to an existing sharable QP.
3790 * @xrcd - XRC domain
3791 * @qp_open_attr: Attributes identifying the QP to open.
3792 *
3793 * Returns a reference to a sharable QP.
3794 */
3795struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3796 struct ib_qp_open_attr *qp_open_attr);
3797
3798/**
3799 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3800 * @qp: The QP handle to release
3801 *
0e0ec7e0
SH
3802 * The opened QP handle is released by the caller. The underlying
3803 * shared QP is not destroyed until all internal references are released.
d3d72d90 3804 */
0e0ec7e0 3805int ib_close_qp(struct ib_qp *qp);
d3d72d90 3806
1da177e4
LT
3807/**
3808 * ib_post_send - Posts a list of work requests to the send queue of
3809 * the specified QP.
3810 * @qp: The QP to post the work request on.
3811 * @send_wr: A list of work requests to post on the send queue.
3812 * @bad_send_wr: On an immediate failure, this parameter will reference
3813 * the work request that failed to be posted on the QP.
55464d46
BVA
3814 *
3815 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3816 * error is returned, the QP state shall not be affected,
3817 * ib_post_send() will return an immediate error after queueing any
3818 * earlier work requests in the list.
1da177e4
LT
3819 */
3820static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3821 const struct ib_send_wr *send_wr,
3822 const struct ib_send_wr **bad_send_wr)
1da177e4 3823{
d34ac5cd 3824 const struct ib_send_wr *dummy;
bb039a87 3825
3023a1e9 3826 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3827}
3828
3829/**
3830 * ib_post_recv - Posts a list of work requests to the receive queue of
3831 * the specified QP.
3832 * @qp: The QP to post the work request on.
3833 * @recv_wr: A list of work requests to post on the receive queue.
3834 * @bad_recv_wr: On an immediate failure, this parameter will reference
3835 * the work request that failed to be posted on the QP.
3836 */
3837static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3838 const struct ib_recv_wr *recv_wr,
3839 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3840{
d34ac5cd 3841 const struct ib_recv_wr *dummy;
bb039a87 3842
3023a1e9 3843 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3844}
3845
7e3c66c9
LR
3846struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3847 int comp_vector, enum ib_poll_context poll_ctx,
3848 const char *caller);
c4367a26
SR
3849static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3850 int nr_cqe, int comp_vector,
3851 enum ib_poll_context poll_ctx)
3852{
7e3c66c9
LR
3853 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3854 KBUILD_MODNAME);
c4367a26
SR
3855}
3856
20cf4e02
CL
3857struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3858 int nr_cqe, enum ib_poll_context poll_ctx,
3859 const char *caller);
3860
3861/**
3862 * ib_alloc_cq_any: Allocate kernel CQ
3863 * @dev: The IB device
3864 * @private: Private data attached to the CQE
3865 * @nr_cqe: Number of CQEs in the CQ
3866 * @poll_ctx: Context used for polling the CQ
3867 */
3868static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3869 void *private, int nr_cqe,
3870 enum ib_poll_context poll_ctx)
3871{
3872 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3873 KBUILD_MODNAME);
3874}
3875
7e3c66c9 3876void ib_free_cq(struct ib_cq *cq);
14d3a3b2
CH
3877int ib_process_cq_direct(struct ib_cq *cq, int budget);
3878
1da177e4
LT
3879/**
3880 * ib_create_cq - Creates a CQ on the specified device.
3881 * @device: The device on which to create the CQ.
3882 * @comp_handler: A user-specified callback that is invoked when a
3883 * completion event occurs on the CQ.
3884 * @event_handler: A user-specified callback that is invoked when an
3885 * asynchronous event not associated with a completion occurs on the CQ.
3886 * @cq_context: Context associated with the CQ returned to the user via
3887 * the associated completion and event handlers.
8e37210b 3888 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3889 *
3890 * Users can examine the cq structure to determine the actual CQ size.
3891 */
7350cdd0
BP
3892struct ib_cq *__ib_create_cq(struct ib_device *device,
3893 ib_comp_handler comp_handler,
3894 void (*event_handler)(struct ib_event *, void *),
3895 void *cq_context,
3896 const struct ib_cq_init_attr *cq_attr,
3897 const char *caller);
3898#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3899 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
1da177e4
LT
3900
3901/**
3902 * ib_resize_cq - Modifies the capacity of the CQ.
3903 * @cq: The CQ to resize.
3904 * @cqe: The minimum size of the CQ.
3905 *
3906 * Users can examine the cq structure to determine the actual CQ size.
3907 */
3908int ib_resize_cq(struct ib_cq *cq, int cqe);
3909
2dd57162 3910/**
4190b4e9 3911 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3912 * @cq: The CQ to modify.
3913 * @cq_count: number of CQEs that will trigger an event
3914 * @cq_period: max period of time in usec before triggering an event
3915 *
3916 */
4190b4e9 3917int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3918
1da177e4 3919/**
c4367a26 3920 * ib_destroy_cq_user - Destroys the specified CQ.
1da177e4 3921 * @cq: The CQ to destroy.
c4367a26 3922 * @udata: Valid user data or NULL for kernel objects
1da177e4 3923 */
c4367a26
SR
3924int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3925
3926/**
3927 * ib_destroy_cq - Destroys the specified kernel CQ.
3928 * @cq: The CQ to destroy.
3929 *
3930 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3931 */
890ac8d9 3932static inline void ib_destroy_cq(struct ib_cq *cq)
c4367a26 3933{
43d781b9
LR
3934 int ret = ib_destroy_cq_user(cq, NULL);
3935
3936 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
c4367a26 3937}
1da177e4
LT
3938
3939/**
3940 * ib_poll_cq - poll a CQ for completion(s)
3941 * @cq:the CQ being polled
3942 * @num_entries:maximum number of completions to return
3943 * @wc:array of at least @num_entries &struct ib_wc where completions
3944 * will be returned
3945 *
3946 * Poll a CQ for (possibly multiple) completions. If the return value
3947 * is < 0, an error occurred. If the return value is >= 0, it is the
3948 * number of completions returned. If the return value is
3949 * non-negative and < num_entries, then the CQ was emptied.
3950 */
3951static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3952 struct ib_wc *wc)
3953{
3023a1e9 3954 return cq->device->ops.poll_cq(cq, num_entries, wc);
1da177e4
LT
3955}
3956
1da177e4
LT
3957/**
3958 * ib_req_notify_cq - Request completion notification on a CQ.
3959 * @cq: The CQ to generate an event for.
ed23a727
RD
3960 * @flags:
3961 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3962 * to request an event on the next solicited event or next work
3963 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3964 * may also be |ed in to request a hint about missed events, as
3965 * described below.
3966 *
3967 * Return Value:
3968 * < 0 means an error occurred while requesting notification
3969 * == 0 means notification was requested successfully, and if
3970 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3971 * were missed and it is safe to wait for another event. In
3972 * this case is it guaranteed that any work completions added
3973 * to the CQ since the last CQ poll will trigger a completion
3974 * notification event.
3975 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3976 * in. It means that the consumer must poll the CQ again to
3977 * make sure it is empty to avoid missing an event because of a
3978 * race between requesting notification and an entry being
3979 * added to the CQ. This return value means it is possible
3980 * (but not guaranteed) that a work completion has been added
3981 * to the CQ since the last poll without triggering a
3982 * completion notification event.
1da177e4
LT
3983 */
3984static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3985 enum ib_cq_notify_flags flags)
1da177e4 3986{
3023a1e9 3987 return cq->device->ops.req_notify_cq(cq, flags);
1da177e4
LT
3988}
3989
c7ff819a
YF
3990struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3991 int comp_vector_hint,
3992 enum ib_poll_context poll_ctx);
3993
3994void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3995
5a7a9e03
CH
3996/*
3997 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3998 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3999 * address into the dma address.
4000 */
4001static inline bool ib_uses_virt_dma(struct ib_device *dev)
4002{
4003 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4004}
4005
9b513090
RC
4006/**
4007 * ib_dma_mapping_error - check a DMA addr for error
4008 * @dev: The device for which the dma_addr was created
4009 * @dma_addr: The DMA address to check
4010 */
4011static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4012{
5a7a9e03
CH
4013 if (ib_uses_virt_dma(dev))
4014 return 0;
0957c29f 4015 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
4016}
4017
4018/**
4019 * ib_dma_map_single - Map a kernel virtual address to DMA address
4020 * @dev: The device for which the dma_addr is to be created
4021 * @cpu_addr: The kernel virtual address
4022 * @size: The size of the region in bytes
4023 * @direction: The direction of the DMA
4024 */
4025static inline u64 ib_dma_map_single(struct ib_device *dev,
4026 void *cpu_addr, size_t size,
4027 enum dma_data_direction direction)
4028{
5a7a9e03
CH
4029 if (ib_uses_virt_dma(dev))
4030 return (uintptr_t)cpu_addr;
0957c29f 4031 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
4032}
4033
4034/**
4035 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4036 * @dev: The device for which the DMA address was created
4037 * @addr: The DMA address
4038 * @size: The size of the region in bytes
4039 * @direction: The direction of the DMA
4040 */
4041static inline void ib_dma_unmap_single(struct ib_device *dev,
4042 u64 addr, size_t size,
4043 enum dma_data_direction direction)
4044{
5a7a9e03
CH
4045 if (!ib_uses_virt_dma(dev))
4046 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
4047}
4048
9b513090
RC
4049/**
4050 * ib_dma_map_page - Map a physical page to DMA address
4051 * @dev: The device for which the dma_addr is to be created
4052 * @page: The page to be mapped
4053 * @offset: The offset within the page
4054 * @size: The size of the region in bytes
4055 * @direction: The direction of the DMA
4056 */
4057static inline u64 ib_dma_map_page(struct ib_device *dev,
4058 struct page *page,
4059 unsigned long offset,
4060 size_t size,
4061 enum dma_data_direction direction)
4062{
5a7a9e03
CH
4063 if (ib_uses_virt_dma(dev))
4064 return (uintptr_t)(page_address(page) + offset);
0957c29f 4065 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
4066}
4067
4068/**
4069 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4070 * @dev: The device for which the DMA address was created
4071 * @addr: The DMA address
4072 * @size: The size of the region in bytes
4073 * @direction: The direction of the DMA
4074 */
4075static inline void ib_dma_unmap_page(struct ib_device *dev,
4076 u64 addr, size_t size,
4077 enum dma_data_direction direction)
4078{
5a7a9e03
CH
4079 if (!ib_uses_virt_dma(dev))
4080 dma_unmap_page(dev->dma_device, addr, size, direction);
4081}
4082
4083int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4084static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4085 struct scatterlist *sg, int nents,
4086 enum dma_data_direction direction,
4087 unsigned long dma_attrs)
4088{
4089 if (ib_uses_virt_dma(dev))
4090 return ib_dma_virt_map_sg(dev, sg, nents);
4091 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4092 dma_attrs);
4093}
4094
4095static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4096 struct scatterlist *sg, int nents,
4097 enum dma_data_direction direction,
4098 unsigned long dma_attrs)
4099{
4100 if (!ib_uses_virt_dma(dev))
4101 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4102 dma_attrs);
9b513090
RC
4103}
4104
79fbd3e1
MG
4105/**
4106 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4107 * @dev: The device for which the DMA addresses are to be created
4108 * @sg: The sg_table object describing the buffer
4109 * @direction: The direction of the DMA
4110 * @attrs: Optional DMA attributes for the map operation
4111 */
4112static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4113 struct sg_table *sgt,
4114 enum dma_data_direction direction,
4115 unsigned long dma_attrs)
4116{
ac0fffa0
LG
4117 int nents;
4118
79fbd3e1 4119 if (ib_uses_virt_dma(dev)) {
ac0fffa0
LG
4120 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4121 if (!nents)
4122 return -EIO;
4123 sgt->nents = nents;
79fbd3e1
MG
4124 return 0;
4125 }
4126 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4127}
4128
4129static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4130 struct sg_table *sgt,
4131 enum dma_data_direction direction,
4132 unsigned long dma_attrs)
4133{
4134 if (!ib_uses_virt_dma(dev))
4135 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4136}
4137
9b513090
RC
4138/**
4139 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4140 * @dev: The device for which the DMA addresses are to be created
4141 * @sg: The array of scatter/gather entries
4142 * @nents: The number of scatter/gather entries
4143 * @direction: The direction of the DMA
4144 */
4145static inline int ib_dma_map_sg(struct ib_device *dev,
4146 struct scatterlist *sg, int nents,
4147 enum dma_data_direction direction)
4148{
5a7a9e03 4149 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
9b513090
RC
4150}
4151
4152/**
4153 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4154 * @dev: The device for which the DMA addresses were created
4155 * @sg: The array of scatter/gather entries
4156 * @nents: The number of scatter/gather entries
4157 * @direction: The direction of the DMA
4158 */
4159static inline void ib_dma_unmap_sg(struct ib_device *dev,
4160 struct scatterlist *sg, int nents,
4161 enum dma_data_direction direction)
4162{
5a7a9e03 4163 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
cb9fbc5c 4164}
9b513090 4165
0b5cb330
BVA
4166/**
4167 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4168 * @dev: The device to query
4169 *
4170 * The returned value represents a size in bytes.
4171 */
4172static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4173{
5a7a9e03
CH
4174 if (ib_uses_virt_dma(dev))
4175 return UINT_MAX;
ecdfdfdb 4176 return dma_get_max_seg_size(dev->dma_device);
0b5cb330
BVA
4177}
4178
9b513090
RC
4179/**
4180 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4181 * @dev: The device for which the DMA address was created
4182 * @addr: The DMA address
4183 * @size: The size of the region in bytes
4184 * @dir: The direction of the DMA
4185 */
4186static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4187 u64 addr,
4188 size_t size,
4189 enum dma_data_direction dir)
4190{
5a7a9e03
CH
4191 if (!ib_uses_virt_dma(dev))
4192 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
4193}
4194
4195/**
4196 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4197 * @dev: The device for which the DMA address was created
4198 * @addr: The DMA address
4199 * @size: The size of the region in bytes
4200 * @dir: The direction of the DMA
4201 */
4202static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4203 u64 addr,
4204 size_t size,
4205 enum dma_data_direction dir)
4206{
5a7a9e03
CH
4207 if (!ib_uses_virt_dma(dev))
4208 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
4209}
4210
33006bd4
MS
4211/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4212 * space. This function should be called when 'current' is the owning MM.
4213 */
4214struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4215 u64 virt_addr, int mr_access_flags);
4216
87d8069f
MS
4217/* ib_advise_mr - give an advice about an address range in a memory region */
4218int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4219 u32 flags, struct ib_sge *sg_list, u32 num_sge);
1da177e4 4220/**
c4367a26
SR
4221 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4222 * HCA translation table.
4223 * @mr: The memory region to deregister.
4224 * @udata: Valid user data or NULL for kernel object
4225 *
4226 * This function can fail, if the memory region has memory windows bound to it.
4227 */
4228int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4229
4230/**
4231 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
1da177e4
LT
4232 * HCA translation table.
4233 * @mr: The memory region to deregister.
7083e42e
SM
4234 *
4235 * This function can fail, if the memory region has memory windows bound to it.
c4367a26
SR
4236 *
4237 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
1da177e4 4238 */
c4367a26
SR
4239static inline int ib_dereg_mr(struct ib_mr *mr)
4240{
4241 return ib_dereg_mr_user(mr, NULL);
4242}
4243
b64b74b1
GP
4244struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4245 u32 max_num_sg);
00f7ec36 4246
26bc7eae
IR
4247struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4248 u32 max_num_data_sg,
4249 u32 max_num_meta_sg);
4250
00f7ec36
SW
4251/**
4252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4253 * R_Key and L_Key.
4254 * @mr - struct ib_mr pointer to be updated.
4255 * @newkey - new key to be used.
4256 */
4257static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4258{
4259 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4260 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4261}
4262
7083e42e
SM
4263/**
4264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4265 * for calculating a new rkey for type 2 memory windows.
4266 * @rkey - the rkey to increment.
4267 */
4268static inline u32 ib_inc_rkey(u32 rkey)
4269{
4270 const u32 mask = 0x000000ff;
4271 return ((rkey + 1) & mask) | (rkey & ~mask);
4272}
4273
1da177e4
LT
4274/**
4275 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4276 * @qp: QP to attach to the multicast group. The QP must be type
4277 * IB_QPT_UD.
4278 * @gid: Multicast group GID.
4279 * @lid: Multicast group LID in host byte order.
4280 *
4281 * In order to send and receive multicast packets, subnet
4282 * administration must have created the multicast group and configured
4283 * the fabric appropriately. The port associated with the specified
4284 * QP must also be a member of the multicast group.
4285 */
4286int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4287
4288/**
4289 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4290 * @qp: QP to detach from the multicast group.
4291 * @gid: Multicast group GID.
4292 * @lid: Multicast group LID in host byte order.
4293 */
4294int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4295
b73efcb2
MG
4296struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4297 struct inode *inode, struct ib_udata *udata);
4298int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
59991f94 4299
adac4cb3
JG
4300static inline int ib_check_mr_access(struct ib_device *ib_dev,
4301 unsigned int flags)
1c636f80
EC
4302{
4303 /*
4304 * Local write permission is required if remote write or
4305 * remote atomic permission is also requested.
4306 */
4307 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4308 !(flags & IB_ACCESS_LOCAL_WRITE))
4309 return -EINVAL;
4310
ca95c141
MG
4311 if (flags & ~IB_ACCESS_SUPPORTED)
4312 return -EINVAL;
4313
adac4cb3
JG
4314 if (flags & IB_ACCESS_ON_DEMAND &&
4315 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4316 return -EINVAL;
1c636f80
EC
4317 return 0;
4318}
4319
08bb558a
JM
4320static inline bool ib_access_writable(int access_flags)
4321{
4322 /*
4323 * We have writable memory backing the MR if any of the following
4324 * access flags are set. "Local write" and "remote write" obviously
4325 * require write access. "Remote atomic" can do things like fetch and
4326 * add, which will modify memory, and "MW bind" can change permissions
4327 * by binding a window.
4328 */
4329 return access_flags &
4330 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4331 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4332}
4333
1b01d335
SG
4334/**
4335 * ib_check_mr_status: lightweight check of MR status.
4336 * This routine may provide status checks on a selected
4337 * ib_mr. first use is for signature status check.
4338 *
4339 * @mr: A memory region.
4340 * @check_mask: Bitmask of which checks to perform from
4341 * ib_mr_status_check enumeration.
4342 * @mr_status: The container of relevant status checks.
4343 * failed checks will be indicated in the status bitmask
4344 * and the relevant info shall be in the error item.
4345 */
4346int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4347 struct ib_mr_status *mr_status);
4348
d79af724
JG
4349/**
4350 * ib_device_try_get: Hold a registration lock
4351 * device: The device to lock
4352 *
4353 * A device under an active registration lock cannot become unregistered. It
4354 * is only possible to obtain a registration lock on a device that is fully
4355 * registered, otherwise this function returns false.
4356 *
4357 * The registration lock is only necessary for actions which require the
4358 * device to still be registered. Uses that only require the device pointer to
4359 * be valid should use get_device(&ibdev->dev) to hold the memory.
4360 *
4361 */
4362static inline bool ib_device_try_get(struct ib_device *dev)
4363{
4364 return refcount_inc_not_zero(&dev->refcount);
4365}
4366
4367void ib_device_put(struct ib_device *device);
324e227e
JG
4368struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4369 enum rdma_driver_id driver_id);
4370struct ib_device *ib_device_get_by_name(const char *name,
4371 enum rdma_driver_id driver_id);
1fb7f897 4372struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
9268f72d
YK
4373 u16 pkey, const union ib_gid *gid,
4374 const struct sockaddr *addr);
c2261dd7
JG
4375int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4376 unsigned int port);
1fb7f897 4377struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
c2261dd7 4378
5fd251c8
YH
4379struct ib_wq *ib_create_wq(struct ib_pd *pd,
4380 struct ib_wq_init_attr *init_attr);
add53535 4381int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
9268f72d 4382
ff2ba993 4383int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4384 unsigned int *sg_offset, unsigned int page_size);
2cdfcdd8
MG
4385int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4386 int data_sg_nents, unsigned int *data_sg_offset,
4387 struct scatterlist *meta_sg, int meta_sg_nents,
4388 unsigned int *meta_sg_offset, unsigned int page_size);
4c67e2bf
SG
4389
4390static inline int
ff2ba993 4391ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 4392 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
4393{
4394 int n;
4395
ff2ba993 4396 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
4397 mr->iova = 0;
4398
4399 return n;
4400}
4401
ff2ba993 4402int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 4403 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 4404
765d6774
SW
4405void ib_drain_rq(struct ib_qp *qp);
4406void ib_drain_sq(struct ib_qp *qp);
4407void ib_drain_qp(struct ib_qp *qp);
850d8fd7 4408
1fb7f897
MB
4409int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4410 u8 *width);
2224c47a
DC
4411
4412static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4413{
44c58487
DC
4414 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4415 return attr->roce.dmac;
4416 return NULL;
2224c47a
DC
4417}
4418
64b4646e 4419static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 4420{
44c58487 4421 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
4422 attr->ib.dlid = (u16)dlid;
4423 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4424 attr->opa.dlid = dlid;
2224c47a
DC
4425}
4426
64b4646e 4427static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 4428{
44c58487
DC
4429 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4430 return attr->ib.dlid;
64b4646e
DC
4431 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4432 return attr->opa.dlid;
44c58487 4433 return 0;
2224c47a
DC
4434}
4435
4436static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4437{
4438 attr->sl = sl;
4439}
4440
4441static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4442{
4443 return attr->sl;
4444}
4445
4446static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4447 u8 src_path_bits)
4448{
44c58487
DC
4449 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4450 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
4451 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4452 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
4453}
4454
4455static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4456{
44c58487
DC
4457 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4458 return attr->ib.src_path_bits;
64b4646e
DC
4459 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4460 return attr->opa.src_path_bits;
44c58487 4461 return 0;
2224c47a
DC
4462}
4463
d98bb7f7
DH
4464static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4465 bool make_grd)
4466{
4467 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4468 attr->opa.make_grd = make_grd;
4469}
4470
4471static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4472{
4473 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4474 return attr->opa.make_grd;
4475 return false;
4476}
4477
1fb7f897 4478static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
2224c47a
DC
4479{
4480 attr->port_num = port_num;
4481}
4482
1fb7f897 4483static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
2224c47a
DC
4484{
4485 return attr->port_num;
4486}
4487
4488static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4489 u8 static_rate)
4490{
4491 attr->static_rate = static_rate;
4492}
4493
4494static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4495{
4496 return attr->static_rate;
4497}
4498
4499static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4500 enum ib_ah_flags flag)
4501{
4502 attr->ah_flags = flag;
4503}
4504
4505static inline enum ib_ah_flags
4506 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4507{
4508 return attr->ah_flags;
4509}
4510
4511static inline const struct ib_global_route
4512 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4513{
4514 return &attr->grh;
4515}
4516
4517/*To retrieve and modify the grh */
4518static inline struct ib_global_route
4519 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4520{
4521 return &attr->grh;
4522}
4523
4524static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4525{
4526 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4527
4528 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4529}
4530
4531static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4532 __be64 prefix)
4533{
4534 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4535
4536 grh->dgid.global.subnet_prefix = prefix;
4537}
4538
4539static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4540 __be64 if_id)
4541{
4542 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4543
4544 grh->dgid.global.interface_id = if_id;
4545}
4546
4547static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4548 union ib_gid *dgid, u32 flow_label,
4549 u8 sgid_index, u8 hop_limit,
4550 u8 traffic_class)
4551{
4552 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4553
4554 attr->ah_flags = IB_AH_GRH;
4555 if (dgid)
4556 grh->dgid = *dgid;
4557 grh->flow_label = flow_label;
4558 grh->sgid_index = sgid_index;
4559 grh->hop_limit = hop_limit;
4560 grh->traffic_class = traffic_class;
8d9ec9ad 4561 grh->sgid_attr = NULL;
2224c47a 4562}
44c58487 4563
8d9ec9ad
JG
4564void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4565void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4566 u32 flow_label, u8 hop_limit, u8 traffic_class,
4567 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4568void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4569 const struct rdma_ah_attr *src);
4570void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4571 const struct rdma_ah_attr *new);
4572void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4573
87daac68
DH
4574/**
4575 * rdma_ah_find_type - Return address handle type.
4576 *
4577 * @dev: Device to be checked
4578 * @port_num: Port number
4579 */
44c58487 4580static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
1fb7f897 4581 u32 port_num)
44c58487 4582{
a6532e71 4583 if (rdma_protocol_roce(dev, port_num))
44c58487 4584 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4585 if (rdma_protocol_ib(dev, port_num)) {
4586 if (rdma_cap_opa_ah(dev, port_num))
4587 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4588 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4589 }
4590
4591 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4592}
7db20ecd 4593
62ede777
HD
4594/**
4595 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4596 * In the current implementation the only way to get
4597 * get the 32bit lid is from other sources for OPA.
4598 * For IB, lids will always be 16bits so cast the
4599 * value accordingly.
4600 *
4601 * @lid: A 32bit LID
4602 */
4603static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4604{
62ede777
HD
4605 WARN_ON_ONCE(lid & 0xFFFF0000);
4606 return (u16)lid;
7db20ecd
HD
4607}
4608
62ede777
HD
4609/**
4610 * ib_lid_be16 - Return lid in 16bit BE encoding.
4611 *
4612 * @lid: A 32bit LID
4613 */
4614static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4615{
62ede777
HD
4616 WARN_ON_ONCE(lid & 0xFFFF0000);
4617 return cpu_to_be16((u16)lid);
7db20ecd 4618}
32043830 4619
c66cd353
SG
4620/**
4621 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4622 * vector
4623 * @device: the rdma device
4624 * @comp_vector: index of completion vector
4625 *
4626 * Returns NULL on failure, otherwise a corresponding cpu map of the
4627 * completion vector (returns all-cpus map if the device driver doesn't
4628 * implement get_vector_affinity).
4629 */
4630static inline const struct cpumask *
4631ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4632{
4633 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3023a1e9 4634 !device->ops.get_vector_affinity)
c66cd353
SG
4635 return NULL;
4636
3023a1e9 4637 return device->ops.get_vector_affinity(device, comp_vector);
c66cd353
SG
4638
4639}
4640
32f69e4b
DJ
4641/**
4642 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4643 * and add their gids, as needed, to the relevant RoCE devices.
4644 *
4645 * @device: the rdma device
4646 */
4647void rdma_roce_rescan_device(struct ib_device *ibdev);
4648
8313c10f 4649struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
7dc08dcf 4650
15a1b4be 4651int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
f6a8a19b 4652
1fb7f897 4653struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
f6a8a19b
DD
4654 enum rdma_netdev_t type, const char *name,
4655 unsigned char name_assign_type,
4656 void (*setup)(struct net_device *));
5d6b0cb3 4657
1fb7f897 4658int rdma_init_netdev(struct ib_device *device, u32 port_num,
5d6b0cb3
DD
4659 enum rdma_netdev_t type, const char *name,
4660 unsigned char name_assign_type,
4661 void (*setup)(struct net_device *),
4662 struct net_device *netdev);
4663
54747231
PP
4664/**
4665 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4666 *
4667 * @device: device pointer for which ib_device pointer to retrieve
4668 *
4669 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4670 *
4671 */
4672static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4673{
cebe556b
PP
4674 struct ib_core_device *coredev =
4675 container_of(device, struct ib_core_device, dev);
4676
4677 return coredev->owner;
54747231
PP
4678}
4679
8ecfca68
CH
4680/**
4681 * ibdev_to_node - return the NUMA node for a given ib_device
4682 * @dev: device to get the NUMA node for.
4683 */
4684static inline int ibdev_to_node(struct ib_device *ibdev)
4685{
4686 struct device *parent = ibdev->dev.parent;
4687
4688 if (!parent)
4689 return NUMA_NO_NODE;
4690 return dev_to_node(parent);
4691}
4692
54747231
PP
4693/**
4694 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4695 * ib_device holder structure from device pointer.
4696 *
4697 * NOTE: New drivers should not make use of this API; This API is only for
4698 * existing drivers who have exposed sysfs entries using
915e4af5 4699 * ops->device_group.
54747231
PP
4700 */
4701#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4702 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
41c61401
PP
4703
4704bool rdma_dev_access_netns(const struct ib_device *device,
4705 const struct net *net);
d5665a21
MZ
4706
4707#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
074bf2c2 4708#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
d5665a21
MZ
4709#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4710
4711/**
4712 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4713 * on the flow_label
4714 *
4715 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4716 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4717 * convention.
4718 */
4719static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4720{
4721 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4722
4723 fl_low ^= fl_high >> 14;
4724 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4725}
4726
4727/**
4728 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4729 * local and remote qpn values
4730 *
4731 * This function folded the multiplication results of two qpns, 24 bit each,
4732 * fields, and converts it to a 20 bit results.
4733 *
4734 * This function will create symmetric flow_label value based on the local
4735 * and remote qpn values. this will allow both the requester and responder
4736 * to calculate the same flow_label for a given connection.
4737 *
4738 * This helper function should be used by driver in case the upper layer
4739 * provide a zero flow_label value. This is to improve entropy of RDMA
4740 * traffic in the network.
4741 */
4742static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4743{
4744 u64 v = (u64)lqpn * rqpn;
4745
4746 v ^= v >> 20;
4747 v ^= v >> 40;
4748
4749 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4750}
7416790e
PP
4751
4752const struct ib_port_immutable*
4753ib_port_immutable_read(struct ib_device *dev, unsigned int port);
1da177e4 4754#endif /* IB_VERBS_H */