Merge tag 'wireless-drivers-next-for-davem-2019-06-26' of git://git.kernel.org/pub...
[linux-block.git] / include / linux / vmw_vmci_defs.h
CommitLineData
685a6bf8 1/* SPDX-License-Identifier: GPL-2.0-only */
20259849
GZ
2/*
3 * VMware VMCI Driver
4 *
5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
20259849
GZ
6 */
7
8#ifndef _VMW_VMCI_DEF_H_
9#define _VMW_VMCI_DEF_H_
10
11#include <linux/atomic.h>
9a41691e 12#include <linux/bits.h>
20259849
GZ
13
14/* Register offsets. */
15#define VMCI_STATUS_ADDR 0x00
16#define VMCI_CONTROL_ADDR 0x04
17#define VMCI_ICR_ADDR 0x08
18#define VMCI_IMR_ADDR 0x0c
19#define VMCI_DATA_OUT_ADDR 0x10
20#define VMCI_DATA_IN_ADDR 0x14
21#define VMCI_CAPS_ADDR 0x18
22#define VMCI_RESULT_LOW_ADDR 0x1c
23#define VMCI_RESULT_HIGH_ADDR 0x20
24
25/* Max number of devices. */
26#define VMCI_MAX_DEVICES 1
27
28/* Status register bits. */
9a41691e 29#define VMCI_STATUS_INT_ON BIT(0)
20259849
GZ
30
31/* Control register bits. */
9a41691e
VD
32#define VMCI_CONTROL_RESET BIT(0)
33#define VMCI_CONTROL_INT_ENABLE BIT(1)
34#define VMCI_CONTROL_INT_DISABLE BIT(2)
20259849
GZ
35
36/* Capabilities register bits. */
9a41691e
VD
37#define VMCI_CAPS_HYPERCALL BIT(0)
38#define VMCI_CAPS_GUESTCALL BIT(1)
39#define VMCI_CAPS_DATAGRAM BIT(2)
40#define VMCI_CAPS_NOTIFICATIONS BIT(3)
41#define VMCI_CAPS_PPN64 BIT(4)
20259849
GZ
42
43/* Interrupt Cause register bits. */
9a41691e
VD
44#define VMCI_ICR_DATAGRAM BIT(0)
45#define VMCI_ICR_NOTIFICATION BIT(1)
20259849
GZ
46
47/* Interrupt Mask register bits. */
9a41691e
VD
48#define VMCI_IMR_DATAGRAM BIT(0)
49#define VMCI_IMR_NOTIFICATION BIT(1)
20259849 50
20259849
GZ
51/* Maximum MSI/MSI-X interrupt vectors in the device. */
52#define VMCI_MAX_INTRS 2
53
54/*
55 * Supported interrupt vectors. There is one for each ICR value above,
56 * but here they indicate the position in the vector array/message ID.
57 */
58enum {
59 VMCI_INTR_DATAGRAM = 0,
60 VMCI_INTR_NOTIFICATION = 1,
61};
62
63/*
64 * A single VMCI device has an upper limit of 128MB on the amount of
65 * memory that can be used for queue pairs.
66 */
67#define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
68
69/*
70 * Queues with pre-mapped data pages must be small, so that we don't pin
71 * too much kernel memory (especially on vmkernel). We limit a queuepair to
72 * 32 KB, or 16 KB per queue for symmetrical pairs.
73 */
74#define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
75
76/*
77 * We have a fixed set of resource IDs available in the VMX.
78 * This allows us to have a very simple implementation since we statically
79 * know how many will create datagram handles. If a new caller arrives and
80 * we have run out of slots we can manually increment the maximum size of
81 * available resource IDs.
82 *
83 * VMCI reserved hypervisor datagram resource IDs.
84 */
85enum {
86 VMCI_RESOURCES_QUERY = 0,
87 VMCI_GET_CONTEXT_ID = 1,
88 VMCI_SET_NOTIFY_BITMAP = 2,
89 VMCI_DOORBELL_LINK = 3,
90 VMCI_DOORBELL_UNLINK = 4,
91 VMCI_DOORBELL_NOTIFY = 5,
92 /*
93 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
94 * obsoleted by the removal of VM to VM communication.
95 */
96 VMCI_DATAGRAM_REQUEST_MAP = 6,
97 VMCI_DATAGRAM_REMOVE_MAP = 7,
98 VMCI_EVENT_SUBSCRIBE = 8,
99 VMCI_EVENT_UNSUBSCRIBE = 9,
100 VMCI_QUEUEPAIR_ALLOC = 10,
101 VMCI_QUEUEPAIR_DETACH = 11,
102
103 /*
104 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
105 * WS 7.0/7.1 and ESX 4.1
106 */
107 VMCI_HGFS_TRANSPORT = 13,
108 VMCI_UNITY_PBRPC_REGISTER = 14,
109 VMCI_RPC_PRIVILEGED = 15,
110 VMCI_RPC_UNPRIVILEGED = 16,
111 VMCI_RESOURCE_MAX = 17,
112};
113
114/*
115 * struct vmci_handle - Ownership information structure
116 * @context: The VMX context ID.
117 * @resource: The resource ID (used for locating in resource hash).
118 *
119 * The vmci_handle structure is used to track resources used within
120 * vmw_vmci.
121 */
122struct vmci_handle {
123 u32 context;
124 u32 resource;
125};
126
127#define vmci_make_handle(_cid, _rid) \
128 (struct vmci_handle){ .context = _cid, .resource = _rid }
129
130static inline bool vmci_handle_is_equal(struct vmci_handle h1,
131 struct vmci_handle h2)
132{
133 return h1.context == h2.context && h1.resource == h2.resource;
134}
135
136#define VMCI_INVALID_ID ~0
137static const struct vmci_handle VMCI_INVALID_HANDLE = {
138 .context = VMCI_INVALID_ID,
139 .resource = VMCI_INVALID_ID
140};
141
142static inline bool vmci_handle_is_invalid(struct vmci_handle h)
143{
144 return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
145}
146
147/*
148 * The below defines can be used to send anonymous requests.
149 * This also indicates that no response is expected.
150 */
151#define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID
152#define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID
153static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
154 .context = VMCI_ANON_SRC_CONTEXT_ID,
155 .resource = VMCI_ANON_SRC_RESOURCE_ID
156};
157
158/* The lowest 16 context ids are reserved for internal use. */
159#define VMCI_RESERVED_CID_LIMIT ((u32) 16)
160
161/*
162 * Hypervisor context id, used for calling into hypervisor
163 * supplied services from the VM.
164 */
165#define VMCI_HYPERVISOR_CONTEXT_ID 0
166
167/*
168 * Well-known context id, a logical context that contains a set of
169 * well-known services. This context ID is now obsolete.
170 */
171#define VMCI_WELL_KNOWN_CONTEXT_ID 1
172
173/*
174 * Context ID used by host endpoints.
175 */
176#define VMCI_HOST_CONTEXT_ID 2
177
178#define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \
179 (_cid) > VMCI_HOST_CONTEXT_ID)
180
181/*
182 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
183 * handles that refer to a specific context.
184 */
185#define VMCI_CONTEXT_RESOURCE_ID 0
186
187/*
188 * VMCI error codes.
189 */
190enum {
191 VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5,
192 VMCI_SUCCESS_QUEUEPAIR_CREATE = 4,
193 VMCI_SUCCESS_LAST_DETACH = 3,
194 VMCI_SUCCESS_ACCESS_GRANTED = 2,
195 VMCI_SUCCESS_ENTRY_DEAD = 1,
196 VMCI_SUCCESS = 0,
197 VMCI_ERROR_INVALID_RESOURCE = (-1),
198 VMCI_ERROR_INVALID_ARGS = (-2),
199 VMCI_ERROR_NO_MEM = (-3),
200 VMCI_ERROR_DATAGRAM_FAILED = (-4),
201 VMCI_ERROR_MORE_DATA = (-5),
202 VMCI_ERROR_NO_MORE_DATAGRAMS = (-6),
203 VMCI_ERROR_NO_ACCESS = (-7),
204 VMCI_ERROR_NO_HANDLE = (-8),
205 VMCI_ERROR_DUPLICATE_ENTRY = (-9),
206 VMCI_ERROR_DST_UNREACHABLE = (-10),
207 VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11),
208 VMCI_ERROR_INVALID_PRIV = (-12),
209 VMCI_ERROR_GENERIC = (-13),
210 VMCI_ERROR_PAGE_ALREADY_SHARED = (-14),
211 VMCI_ERROR_CANNOT_SHARE_PAGE = (-15),
212 VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16),
213 VMCI_ERROR_NO_PROCESS = (-17),
214 VMCI_ERROR_NO_DATAGRAM = (-18),
215 VMCI_ERROR_NO_RESOURCES = (-19),
216 VMCI_ERROR_UNAVAILABLE = (-20),
217 VMCI_ERROR_NOT_FOUND = (-21),
218 VMCI_ERROR_ALREADY_EXISTS = (-22),
219 VMCI_ERROR_NOT_PAGE_ALIGNED = (-23),
220 VMCI_ERROR_INVALID_SIZE = (-24),
221 VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
222 VMCI_ERROR_TIMEOUT = (-26),
223 VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27),
224 VMCI_ERROR_INCORRECT_IRQL = (-28),
225 VMCI_ERROR_EVENT_UNKNOWN = (-29),
226 VMCI_ERROR_OBSOLETE = (-30),
227 VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31),
228 VMCI_ERROR_QUEUEPAIR_NOTSET = (-32),
229 VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33),
230 VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
231 VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35),
232 VMCI_ERROR_QUEUEPAIR_NODATA = (-36),
233 VMCI_ERROR_BUSMEM_INVALIDATION = (-37),
234 VMCI_ERROR_MODULE_NOT_LOADED = (-38),
235 VMCI_ERROR_DEVICE_NOT_FOUND = (-39),
236 VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40),
237 VMCI_ERROR_WOULD_BLOCK = (-41),
238
239 /* VMCI clients should return error code within this range */
240 VMCI_ERROR_CLIENT_MIN = (-500),
241 VMCI_ERROR_CLIENT_MAX = (-550),
242
243 /* Internal error codes. */
244 VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
245};
246
247/* VMCI reserved events. */
248enum {
249 /* Only applicable to guest endpoints */
250 VMCI_EVENT_CTX_ID_UPDATE = 0,
251
252 /* Applicable to guest and host */
253 VMCI_EVENT_CTX_REMOVED = 1,
254
255 /* Only applicable to guest endpoints */
256 VMCI_EVENT_QP_RESUMED = 2,
257
258 /* Applicable to guest and host */
259 VMCI_EVENT_QP_PEER_ATTACH = 3,
260
261 /* Applicable to guest and host */
262 VMCI_EVENT_QP_PEER_DETACH = 4,
263
264 /*
265 * Applicable to VMX and vmk. On vmk,
266 * this event has the Context payload type.
267 */
268 VMCI_EVENT_MEM_ACCESS_ON = 5,
269
270 /*
271 * Applicable to VMX and vmk. Same as
272 * above for the payload type.
273 */
274 VMCI_EVENT_MEM_ACCESS_OFF = 6,
275 VMCI_EVENT_MAX = 7,
276};
277
278/*
279 * Of the above events, a few are reserved for use in the VMX, and
280 * other endpoints (guest and host kernel) should not use them. For
281 * the rest of the events, we allow both host and guest endpoints to
282 * subscribe to them, to maintain the same API for host and guest
283 * endpoints.
284 */
285#define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
286 (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
287
288#define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \
289 !VMCI_EVENT_VALID_VMX(_event))
290
291/* Reserved guest datagram resource ids. */
292#define VMCI_EVENT_HANDLER 0
293
294/*
295 * VMCI coarse-grained privileges (per context or host
296 * process/endpoint. An entity with the restricted flag is only
297 * allowed to interact with the hypervisor and trusted entities.
298 */
299enum {
300 VMCI_NO_PRIVILEGE_FLAGS = 0,
301 VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
302 VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
303 VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
304 VMCI_PRIVILEGE_FLAG_TRUSTED),
305 VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
306 VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
307 VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
308};
309
310/* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
311#define VMCI_RESERVED_RESOURCE_ID_MAX 1023
312
313/*
314 * Driver version.
315 *
316 * Increment major version when you make an incompatible change.
317 * Compatibility goes both ways (old driver with new executable
318 * as well as new driver with old executable).
319 */
320
321/* Never change VMCI_VERSION_SHIFT_WIDTH */
322#define VMCI_VERSION_SHIFT_WIDTH 16
323#define VMCI_MAKE_VERSION(_major, _minor) \
324 ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
325
326#define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
327#define VMCI_VERSION_MINOR(v) ((u16) (v))
328
329/*
330 * VMCI_VERSION is always the current version. Subsequently listed
331 * versions are ways of detecting previous versions of the connecting
332 * application (i.e., VMX).
333 *
334 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
335 * communication.
336 *
337 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
338 * support.
339 *
340 * VMCI_VERSION_HOSTQP: This version introduced host end point support
341 * for hosted products.
342 *
343 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
344 * support for host end-points.
345 *
346 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
347 * represent the version of a VMX which doesn't call into the driver
348 * with ioctl VERSION2 and thus doesn't establish its version with the
349 * driver.
350 */
351
352#define VMCI_VERSION VMCI_VERSION_NOVMVM
353#define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0)
354#define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0)
355#define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0)
356#define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0)
357#define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0)
358
359#define VMCI_SOCKETS_MAKE_VERSION(_p) \
360 ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
361
362/*
363 * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and
364 * we start at sequence 9f. This gives us the same values that our shipping
365 * products use, starting at 1951, provided we leave out the direction and
366 * structure size. Note that VMMon occupies the block following us, starting
367 * at 2001.
368 */
369#define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */
370#define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0)
371#define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4)
372#define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5)
373#define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6)
374#define IOCTL_VMCI_VERSION2 _IO(7, 0xa7)
375#define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8)
376#define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9)
377#define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa)
378#define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab)
379#define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac)
380#define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf)
381#define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0)
382#define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1)
383#define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2)
384#define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3)
385#define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4)
386#define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8)
387#define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9)
388#define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */
389/*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */
390
391/*
392 * struct vmci_queue_header - VMCI Queue Header information.
393 *
394 * A Queue cannot stand by itself as designed. Each Queue's header
395 * contains a pointer into itself (the producer_tail) and into its peer
396 * (consumer_head). The reason for the separation is one of
397 * accessibility: Each end-point can modify two things: where the next
398 * location to enqueue is within its produce_q (producer_tail); and
399 * where the next dequeue location is in its consume_q (consumer_head).
400 *
401 * An end-point cannot modify the pointers of its peer (guest to
402 * guest; NOTE that in the host both queue headers are mapped r/w).
403 * But, each end-point needs read access to both Queue header
404 * structures in order to determine how much space is used (or left)
405 * in the Queue. This is because for an end-point to know how full
406 * its produce_q is, it needs to use the consumer_head that points into
407 * the produce_q but -that- consumer_head is in the Queue header for
408 * that end-points consume_q.
409 *
410 * Thoroughly confused? Sorry.
411 *
412 * producer_tail: the point to enqueue new entrants. When you approach
413 * a line in a store, for example, you walk up to the tail.
414 *
415 * consumer_head: the point in the queue from which the next element is
416 * dequeued. In other words, who is next in line is he who is at the
417 * head of the line.
418 *
419 * Also, producer_tail points to an empty byte in the Queue, whereas
420 * consumer_head points to a valid byte of data (unless producer_tail ==
421 * consumer_head in which case consumer_head does not point to a valid
422 * byte of data).
423 *
424 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
425 * the range [0, size-1].
426 *
427 * If produce_q_header->producer_tail == consume_q_header->consumer_head
428 * then the produce_q is empty.
429 */
430struct vmci_queue_header {
431 /* All fields are 64bit and aligned. */
432 struct vmci_handle handle; /* Identifier. */
433 atomic64_t producer_tail; /* Offset in this queue. */
434 atomic64_t consumer_head; /* Offset in peer queue. */
435};
436
437/*
438 * struct vmci_datagram - Base struct for vmci datagrams.
439 * @dst: A vmci_handle that tracks the destination of the datagram.
440 * @src: A vmci_handle that tracks the source of the datagram.
441 * @payload_size: The size of the payload.
442 *
443 * vmci_datagram structs are used when sending vmci datagrams. They include
444 * the necessary source and destination information to properly route
445 * the information along with the size of the package.
446 */
447struct vmci_datagram {
448 struct vmci_handle dst;
449 struct vmci_handle src;
450 u64 payload_size;
451};
452
453/*
454 * Second flag is for creating a well-known handle instead of a per context
455 * handle. Next flag is for deferring datagram delivery, so that the
456 * datagram callback is invoked in a delayed context (not interrupt context).
457 */
458#define VMCI_FLAG_DG_NONE 0
9a41691e
VD
459#define VMCI_FLAG_WELLKNOWN_DG_HND BIT(0)
460#define VMCI_FLAG_ANYCID_DG_HND BIT(1)
461#define VMCI_FLAG_DG_DELAYED_CB BIT(2)
20259849
GZ
462
463/*
464 * Maximum supported size of a VMCI datagram for routable datagrams.
465 * Datagrams going to the hypervisor are allowed to be larger.
466 */
467#define VMCI_MAX_DG_SIZE (17 * 4096)
468#define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
469 sizeof(struct vmci_datagram))
470#define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \
471 sizeof(struct vmci_datagram))
472#define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
473#define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
474#define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
475#define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
476
477struct vmci_event_payload_qp {
478 struct vmci_handle handle; /* queue_pair handle. */
479 u32 peer_id; /* Context id of attaching/detaching VM. */
480 u32 _pad;
481};
482
483/* Flags for VMCI queue_pair API. */
484enum {
485 /* Fail alloc if QP not created by peer. */
486 VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
487
488 /* Only allow attaches from local context. */
489 VMCI_QPFLAG_LOCAL = 1 << 1,
490
491 /* Host won't block when guest is quiesced. */
492 VMCI_QPFLAG_NONBLOCK = 1 << 2,
493
494 /* Pin data pages in ESX. Used with NONBLOCK */
495 VMCI_QPFLAG_PINNED = 1 << 3,
496
497 /* Update the following flag when adding new flags. */
498 VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
499 VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
500
501 /* Convenience flags */
502 VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
503 VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
504};
505
506/*
507 * We allow at least 1024 more event datagrams from the hypervisor past the
508 * normally allowed datagrams pending for a given context. We define this
509 * limit on event datagrams from the hypervisor to guard against DoS attack
510 * from a malicious VM which could repeatedly attach to and detach from a queue
511 * pair, causing events to be queued at the destination VM. However, the rate
512 * at which such events can be generated is small since it requires a VM exit
513 * and handling of queue pair attach/detach call at the hypervisor. Event
514 * datagrams may be queued up at the destination VM if it has interrupts
515 * disabled or if it is not draining events for some other reason. 1024
516 * datagrams is a grossly conservative estimate of the time for which
517 * interrupts may be disabled in the destination VM, but at the same time does
518 * not exacerbate the memory pressure problem on the host by much (size of each
519 * event datagram is small).
520 */
521#define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \
522 (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \
523 1024 * (sizeof(struct vmci_datagram) + \
524 sizeof(struct vmci_event_data_max)))
525
526/*
527 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
528 * hypervisor resources. Struct size is 16 bytes. All fields in struct are
529 * aligned to their natural alignment.
530 */
531struct vmci_resource_query_hdr {
532 struct vmci_datagram hdr;
533 u32 num_resources;
534 u32 _padding;
535};
536
537/*
538 * Convenience struct for negotiating vectors. Must match layout of
539 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
540 */
541struct vmci_resource_query_msg {
542 u32 num_resources;
543 u32 _padding;
544 u32 resources[1];
545};
546
547/*
548 * The maximum number of resources that can be queried using
549 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
550 * bits of a positive return value. Negative values are reserved for
551 * errors.
552 */
553#define VMCI_RESOURCE_QUERY_MAX_NUM 31
554
555/* Maximum size for the VMCI_RESOURCE_QUERY request. */
556#define VMCI_RESOURCE_QUERY_MAX_SIZE \
557 (sizeof(struct vmci_resource_query_hdr) + \
558 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
559
560/*
561 * Struct used for setting the notification bitmap. All fields in
562 * struct are aligned to their natural alignment.
563 */
564struct vmci_notify_bm_set_msg {
565 struct vmci_datagram hdr;
f2db7361
VD
566 union {
567 u32 bitmap_ppn32;
568 u64 bitmap_ppn64;
569 };
20259849
GZ
570};
571
572/*
573 * Struct used for linking a doorbell handle with an index in the
574 * notify bitmap. All fields in struct are aligned to their natural
575 * alignment.
576 */
577struct vmci_doorbell_link_msg {
578 struct vmci_datagram hdr;
579 struct vmci_handle handle;
580 u64 notify_idx;
581};
582
583/*
584 * Struct used for unlinking a doorbell handle from an index in the
585 * notify bitmap. All fields in struct are aligned to their natural
586 * alignment.
587 */
588struct vmci_doorbell_unlink_msg {
589 struct vmci_datagram hdr;
590 struct vmci_handle handle;
591};
592
593/*
594 * Struct used for generating a notification on a doorbell handle. All
595 * fields in struct are aligned to their natural alignment.
596 */
597struct vmci_doorbell_notify_msg {
598 struct vmci_datagram hdr;
599 struct vmci_handle handle;
600};
601
602/*
603 * This struct is used to contain data for events. Size of this struct is a
604 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
605 */
606struct vmci_event_data {
607 u32 event; /* 4 bytes. */
608 u32 _pad;
609 /* Event payload is put here. */
610};
611
612/*
613 * Define the different VMCI_EVENT payload data types here. All structs must
614 * be a multiple of 8 bytes, and fields must be aligned to their natural
615 * alignment.
616 */
617struct vmci_event_payld_ctx {
618 u32 context_id; /* 4 bytes. */
619 u32 _pad;
620};
621
622struct vmci_event_payld_qp {
623 struct vmci_handle handle; /* queue_pair handle. */
624 u32 peer_id; /* Context id of attaching/detaching VM. */
625 u32 _pad;
626};
627
628/*
629 * We define the following struct to get the size of the maximum event
630 * data the hypervisor may send to the guest. If adding a new event
631 * payload type above, add it to the following struct too (inside the
632 * union).
633 */
634struct vmci_event_data_max {
635 struct vmci_event_data event_data;
636 union {
637 struct vmci_event_payld_ctx context_payload;
638 struct vmci_event_payld_qp qp_payload;
639 } ev_data_payload;
640};
641
642/*
643 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
644 * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields
645 * in struct are aligned to their natural alignment.
646 */
647struct vmci_event_msg {
648 struct vmci_datagram hdr;
649
650 /* Has event type and payload. */
651 struct vmci_event_data event_data;
652
653 /* Payload gets put here. */
654};
655
656/* Event with context payload. */
657struct vmci_event_ctx {
658 struct vmci_event_msg msg;
659 struct vmci_event_payld_ctx payload;
660};
661
662/* Event with QP payload. */
663struct vmci_event_qp {
664 struct vmci_event_msg msg;
665 struct vmci_event_payld_qp payload;
666};
667
668/*
669 * Structs used for queue_pair alloc and detach messages. We align fields of
670 * these structs to 64bit boundaries.
671 */
672struct vmci_qp_alloc_msg {
673 struct vmci_datagram hdr;
674 struct vmci_handle handle;
675 u32 peer;
676 u32 flags;
677 u64 produce_size;
678 u64 consume_size;
679 u64 num_ppns;
680
681 /* List of PPNs placed here. */
682};
683
684struct vmci_qp_detach_msg {
685 struct vmci_datagram hdr;
686 struct vmci_handle handle;
687};
688
689/* VMCI Doorbell API. */
9a41691e 690#define VMCI_FLAG_DELAYED_CB BIT(0)
20259849
GZ
691
692typedef void (*vmci_callback) (void *client_data);
693
694/*
695 * struct vmci_qp - A vmw_vmci queue pair handle.
696 *
697 * This structure is used as a handle to a queue pair created by
698 * VMCI. It is intentionally left opaque to clients.
699 */
700struct vmci_qp;
701
702/* Callback needed for correctly waiting on events. */
703typedef int (*vmci_datagram_recv_cb) (void *client_data,
704 struct vmci_datagram *msg);
705
706/* VMCI Event API. */
707typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
708 void *client_data);
709
710/*
711 * We use the following inline function to access the payload data
712 * associated with an event data.
713 */
714static inline const void *
715vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
716{
717 return (const char *)ev_data + sizeof(*ev_data);
718}
719
720static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
721{
722 return (void *)vmci_event_data_const_payload(ev_data);
723}
724
f42a0fd1
JH
725/*
726 * Helper to read a value from a head or tail pointer. For X86_32, the
727 * pointer is treated as a 32bit value, since the pointer value
728 * never exceeds a 32bit value in this case. Also, doing an
729 * atomic64_read on X86_32 uniprocessor systems may be implemented
730 * as a non locked cmpxchg8b, that may end up overwriting updates done
731 * by the VMCI device to the memory location. On 32bit SMP, the lock
732 * prefix will be used, so correctness isn't an issue, but using a
733 * 64bit operation still adds unnecessary overhead.
734 */
735static inline u64 vmci_q_read_pointer(atomic64_t *var)
736{
737#if defined(CONFIG_X86_32)
738 return atomic_read((atomic_t *)var);
739#else
740 return atomic64_read(var);
741#endif
742}
743
744/*
745 * Helper to set the value of a head or tail pointer. For X86_32, the
746 * pointer is treated as a 32bit value, since the pointer value
747 * never exceeds a 32bit value in this case. On 32bit SMP, using a
748 * locked cmpxchg8b adds unnecessary overhead.
749 */
750static inline void vmci_q_set_pointer(atomic64_t *var,
751 u64 new_val)
752{
753#if defined(CONFIG_X86_32)
754 return atomic_set((atomic_t *)var, (u32)new_val);
755#else
756 return atomic64_set(var, new_val);
757#endif
758}
759
20259849
GZ
760/*
761 * Helper to add a given offset to a head or tail pointer. Wraps the
762 * value of the pointer around the max size of the queue.
763 */
764static inline void vmci_qp_add_pointer(atomic64_t *var,
765 size_t add,
766 u64 size)
767{
f42a0fd1 768 u64 new_val = vmci_q_read_pointer(var);
20259849
GZ
769
770 if (new_val >= size - add)
771 new_val -= size;
772
773 new_val += add;
774
f42a0fd1 775 vmci_q_set_pointer(var, new_val);
20259849
GZ
776}
777
778/*
779 * Helper routine to get the Producer Tail from the supplied queue.
780 */
781static inline u64
782vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
783{
784 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
f42a0fd1 785 return vmci_q_read_pointer(&qh->producer_tail);
20259849
GZ
786}
787
788/*
789 * Helper routine to get the Consumer Head from the supplied queue.
790 */
791static inline u64
792vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
793{
794 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
f42a0fd1 795 return vmci_q_read_pointer(&qh->consumer_head);
20259849
GZ
796}
797
798/*
799 * Helper routine to increment the Producer Tail. Fundamentally,
800 * vmci_qp_add_pointer() is used to manipulate the tail itself.
801 */
802static inline void
803vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
804 size_t add,
805 u64 queue_size)
806{
807 vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
808}
809
810/*
811 * Helper routine to increment the Consumer Head. Fundamentally,
812 * vmci_qp_add_pointer() is used to manipulate the head itself.
813 */
814static inline void
815vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
816 size_t add,
817 u64 queue_size)
818{
819 vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
820}
821
822/*
823 * Helper routine for getting the head and the tail pointer for a queue.
824 * Both the VMCIQueues are needed to get both the pointers for one queue.
825 */
826static inline void
827vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
828 const struct vmci_queue_header *consume_q_header,
829 u64 *producer_tail,
830 u64 *consumer_head)
831{
832 if (producer_tail)
833 *producer_tail = vmci_q_header_producer_tail(produce_q_header);
834
835 if (consumer_head)
836 *consumer_head = vmci_q_header_consumer_head(consume_q_header);
837}
838
839static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
840 const struct vmci_handle handle)
841{
842 q_header->handle = handle;
843 atomic64_set(&q_header->producer_tail, 0);
844 atomic64_set(&q_header->consumer_head, 0);
845}
846
847/*
848 * Finds available free space in a produce queue to enqueue more
849 * data or reports an error if queue pair corruption is detected.
850 */
851static s64
852vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
853 const struct vmci_queue_header *consume_q_header,
854 const u64 produce_q_size)
855{
856 u64 tail;
857 u64 head;
858 u64 free_space;
859
860 tail = vmci_q_header_producer_tail(produce_q_header);
861 head = vmci_q_header_consumer_head(consume_q_header);
862
863 if (tail >= produce_q_size || head >= produce_q_size)
864 return VMCI_ERROR_INVALID_SIZE;
865
866 /*
867 * Deduct 1 to avoid tail becoming equal to head which causes
868 * ambiguity. If head and tail are equal it means that the
869 * queue is empty.
870 */
871 if (tail >= head)
872 free_space = produce_q_size - (tail - head) - 1;
873 else
874 free_space = head - tail - 1;
875
876 return free_space;
877}
878
879/*
880 * vmci_q_header_free_space() does all the heavy lifting of
881 * determing the number of free bytes in a Queue. This routine,
882 * then subtracts that size from the full size of the Queue so
883 * the caller knows how many bytes are ready to be dequeued.
884 * Results:
885 * On success, available data size in bytes (up to MAX_INT64).
886 * On failure, appropriate error code.
887 */
888static inline s64
889vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
890 const struct vmci_queue_header *produce_q_header,
891 const u64 consume_q_size)
892{
893 s64 free_space;
894
895 free_space = vmci_q_header_free_space(consume_q_header,
896 produce_q_header, consume_q_size);
897 if (free_space < VMCI_SUCCESS)
898 return free_space;
899
900 return consume_q_size - free_space - 1;
901}
902
903
904#endif /* _VMW_VMCI_DEF_H_ */