Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / include / linux / ti_wilink_st.h
CommitLineData
83ef41f0
PS
1/*
2 * Shared Transport Header file
3 * To be included by the protocol stack drivers for
4 * Texas Instruments BT,FM and GPS combo chip drivers
5 * and also serves the sub-modules of the shared transport driver.
6 *
7 * Copyright (C) 2009-2010 Texas Instruments
8 * Author: Pavan Savoy <pavan_savoy@ti.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24
25#ifndef TI_WILINK_ST_H
26#define TI_WILINK_ST_H
27
9624f615
MG
28#include <linux/skbuff.h>
29
83ef41f0
PS
30/**
31 * enum proto-type - The protocol on WiLink chips which share a
32 * common physical interface like UART.
33 */
34enum proto_type {
35 ST_BT,
36 ST_FM,
37 ST_GPS,
5c88b021 38 ST_MAX_CHANNELS = 16,
83ef41f0
PS
39};
40
41/**
42 * struct st_proto_s - Per Protocol structure from BT/FM/GPS to ST
43 * @type: type of the protocol being registered among the
44 * available proto_type(BT, FM, GPS the protocol which share TTY).
45 * @recv: the receiver callback pointing to a function in the
46 * protocol drivers called by the ST driver upon receiving
47 * relevant data.
48 * @match_packet: reserved for future use, to make ST more generic
49 * @reg_complete_cb: callback handler pointing to a function in protocol
50 * handler called by ST when the pending registrations are complete.
51 * The registrations are marked pending, in situations when fw
52 * download is in progress.
53 * @write: pointer to function in ST provided to protocol drivers from ST,
54 * to be made use when protocol drivers have data to send to TTY.
55 * @priv_data: privdate data holder for the protocol drivers, sent
56 * from the protocol drivers during registration, and sent back on
57 * reg_complete_cb and recv.
5c88b021
PS
58 * @chnl_id: channel id the protocol driver is interested in, the channel
59 * id is nothing but the 1st byte of the packet in UART frame.
60 * @max_frame_size: size of the largest frame the protocol can receive.
61 * @hdr_len: length of the header structure of the protocol.
62 * @offset_len_in_hdr: this provides the offset of the length field in the
63 * header structure of the protocol header, to assist ST to know
64 * how much to receive, if the data is split across UART frames.
65 * @len_size: whether the length field inside the header is 2 bytes
66 * or 1 byte.
67 * @reserve: the number of bytes ST needs to reserve in the skb being
68 * prepared for the protocol driver.
83ef41f0
PS
69 */
70struct st_proto_s {
71 enum proto_type type;
72 long (*recv) (void *, struct sk_buff *);
73 unsigned char (*match_packet) (const unsigned char *data);
74 void (*reg_complete_cb) (void *, char data);
75 long (*write) (struct sk_buff *skb);
76 void *priv_data;
5c88b021
PS
77
78 unsigned char chnl_id;
79 unsigned short max_frame_size;
80 unsigned char hdr_len;
81 unsigned char offset_len_in_hdr;
82 unsigned char len_size;
83 unsigned char reserve;
83ef41f0
PS
84};
85
86extern long st_register(struct st_proto_s *);
5c88b021 87extern long st_unregister(struct st_proto_s *);
83ef41f0
PS
88
89
90/*
91 * header information used by st_core.c
92 */
93
94/* states of protocol list */
95#define ST_NOTEMPTY 1
96#define ST_EMPTY 0
97
98/*
99 * possible st_states
100 */
101#define ST_INITIALIZING 1
102#define ST_REG_IN_PROGRESS 2
103#define ST_REG_PENDING 3
104#define ST_WAITING_FOR_RESP 4
105
106/**
107 * struct st_data_s - ST core internal structure
108 * @st_state: different states of ST like initializing, registration
109 * in progress, this is mainly used to return relevant err codes
110 * when protocol drivers are registering. It is also used to track
111 * the recv function, as in during fw download only HCI events
112 * can occur , where as during other times other events CH8, CH9
113 * can occur.
114 * @tty: tty provided by the TTY core for line disciplines.
83ef41f0
PS
115 * @tx_skb: If for some reason the tty's write returns lesser bytes written
116 * then to maintain the rest of data to be written on next instance.
117 * This needs to be protected, hence the lock inside wakeup func.
118 * @tx_state: if the data is being written onto the TTY and protocol driver
119 * wants to send more, queue up data and mark that there is
120 * more data to send.
121 * @list: the list of protocols registered, only MAX can exist, one protocol
122 * can register only once.
123 * @rx_state: states to be maintained inside st's tty receive
124 * @rx_count: count to be maintained inside st's tty receieve
125 * @rx_skb: the skb where all data for a protocol gets accumulated,
126 * since tty might not call receive when a complete event packet
127 * is received, the states, count and the skb needs to be maintained.
5c88b021 128 * @rx_chnl: the channel ID for which the data is getting accumalated for.
83ef41f0
PS
129 * @txq: the list of skbs which needs to be sent onto the TTY.
130 * @tx_waitq: if the chip is not in AWAKE state, the skbs needs to be queued
131 * up in here, PM(WAKEUP_IND) data needs to be sent and then the skbs
132 * from waitq can be moved onto the txq.
133 * Needs locking too.
134 * @lock: the lock to protect skbs, queues, and ST states.
135 * @protos_registered: count of the protocols registered, also when 0 the
136 * chip enable gpio can be toggled, and when it changes to 1 the fw
137 * needs to be downloaded to initialize chip side ST.
138 * @ll_state: the various PM states the chip can be, the states are notified
139 * to us, when the chip sends relevant PM packets(SLEEP_IND, WAKE_IND).
140 * @kim_data: reference to the parent encapsulating structure.
141 *
142 */
143struct st_data_s {
144 unsigned long st_state;
83ef41f0
PS
145 struct sk_buff *tx_skb;
146#define ST_TX_SENDING 1
147#define ST_TX_WAKEUP 2
148 unsigned long tx_state;
5c88b021 149 struct st_proto_s *list[ST_MAX_CHANNELS];
764b0c4b 150 bool is_registered[ST_MAX_CHANNELS];
83ef41f0
PS
151 unsigned long rx_state;
152 unsigned long rx_count;
153 struct sk_buff *rx_skb;
5c88b021 154 unsigned char rx_chnl;
83ef41f0
PS
155 struct sk_buff_head txq, tx_waitq;
156 spinlock_t lock;
157 unsigned char protos_registered;
158 unsigned long ll_state;
159 void *kim_data;
764b0c4b 160 struct tty_struct *tty;
83ef41f0
PS
161};
162
ef04d121
PS
163/*
164 * wrapper around tty->ops->write_room to check
165 * availability during firmware download
166 */
167int st_get_uart_wr_room(struct st_data_s *st_gdata);
83ef41f0
PS
168/**
169 * st_int_write -
170 * point this to tty->driver->write or tty->ops->write
171 * depending upon the kernel version
172 */
173int st_int_write(struct st_data_s*, const unsigned char*, int);
174
175/**
176 * st_write -
177 * internal write function, passed onto protocol drivers
178 * via the write function ptr of protocol struct
179 */
180long st_write(struct sk_buff *);
181
182/* function to be called from ST-LL */
183void st_ll_send_frame(enum proto_type, struct sk_buff *);
184
185/* internal wake up function */
186void st_tx_wakeup(struct st_data_s *st_data);
187
188/* init, exit entry funcs called from KIM */
189int st_core_init(struct st_data_s **);
190void st_core_exit(struct st_data_s *);
191
192/* ask for reference from KIM */
193void st_kim_ref(struct st_data_s **, int);
194
195#define GPS_STUB_TEST
196#ifdef GPS_STUB_TEST
197int gps_chrdrv_stub_write(const unsigned char*, int);
198void gps_chrdrv_stub_init(void);
199#endif
200
201/*
202 * header information used by st_kim.c
203 */
204
205/* time in msec to wait for
206 * line discipline to be installed
207 */
ec60d0ad
PS
208#define LDISC_TIME 1000
209#define CMD_RESP_TIME 800
ef04d121 210#define CMD_WR_TIME 5000
83ef41f0
PS
211#define MAKEWORD(a, b) ((unsigned short)(((unsigned char)(a)) \
212 | ((unsigned short)((unsigned char)(b))) << 8))
213
214#define GPIO_HIGH 1
215#define GPIO_LOW 0
216
217/* the Power-On-Reset logic, requires to attempt
218 * to download firmware onto chip more than once
219 * since the self-test for chip takes a while
220 */
221#define POR_RETRY_COUNT 5
222
223/**
224 * struct chip_version - save the chip version
225 */
226struct chip_version {
227 unsigned short full;
228 unsigned short chip;
229 unsigned short min_ver;
230 unsigned short maj_ver;
231};
232
ec60d0ad 233#define UART_DEV_NAME_LEN 32
83ef41f0
PS
234/**
235 * struct kim_data_s - the KIM internal data, embedded as the
236 * platform's drv data. One for each ST device in the system.
237 * @uim_pid: KIM needs to communicate with UIM to request to install
238 * the ldisc by opening UART when protocol drivers register.
239 * @kim_pdev: the platform device added in one of the board-XX.c file
240 * in arch/XX/ directory, 1 for each ST device.
241 * @kim_rcvd: completion handler to notify when data was received,
242 * mainly used during fw download, which involves multiple send/wait
243 * for each of the HCI-VS commands.
244 * @ldisc_installed: completion handler to notify that the UIM accepted
245 * the request to install ldisc, notify from tty_open which suggests
246 * the ldisc was properly installed.
247 * @resp_buffer: data buffer for the .bts fw file name.
248 * @fw_entry: firmware class struct to request/release the fw.
83ef41f0
PS
249 * @rx_state: the rx state for kim's receive func during fw download.
250 * @rx_count: the rx count for the kim's receive func during fw download.
251 * @rx_skb: all of fw data might not come at once, and hence data storage for
252 * whole of the fw response, only HCI_EVENTs and hence diff from ST's
253 * response.
83ef41f0
PS
254 * @core_data: ST core's data, which mainly is the tty's disc_data
255 * @version: chip version available via a sysfs entry.
256 *
257 */
258struct kim_data_s {
259 long uim_pid;
260 struct platform_device *kim_pdev;
261 struct completion kim_rcvd, ldisc_installed;
262 char resp_buffer[30];
263 const struct firmware *fw_entry;
781a7395 264 long nshutdown;
83ef41f0
PS
265 unsigned long rx_state;
266 unsigned long rx_count;
267 struct sk_buff *rx_skb;
83ef41f0
PS
268 struct st_data_s *core_data;
269 struct chip_version version;
ec60d0ad
PS
270 unsigned char ldisc_install;
271 unsigned char dev_name[UART_DEV_NAME_LEN];
272 unsigned char flow_cntrl;
273 unsigned long baud_rate;
83ef41f0
PS
274};
275
276/**
277 * functions called when 1 of the protocol drivers gets
278 * registered, these need to communicate with UIM to request
279 * ldisc installed, read chip_version, download relevant fw
280 */
281long st_kim_start(void *);
282long st_kim_stop(void *);
283
284void st_kim_recv(void *, const unsigned char *, long count);
83ef41f0
PS
285void st_kim_complete(void *);
286void kim_st_list_protocols(struct st_data_s *, void *);
287
288/*
289 * BTS headers
290 */
291#define ACTION_SEND_COMMAND 1
292#define ACTION_WAIT_EVENT 2
293#define ACTION_SERIAL 3
294#define ACTION_DELAY 4
295#define ACTION_RUN_SCRIPT 5
296#define ACTION_REMARKS 6
297
298/**
299 * struct bts_header - the fw file is NOT binary which can
300 * be sent onto TTY as is. The .bts is more a script
301 * file which has different types of actions.
302 * Each such action needs to be parsed by the KIM and
303 * relevant procedure to be called.
304 */
305struct bts_header {
306 u32 magic;
307 u32 version;
308 u8 future[24];
309 u8 actions[0];
310} __attribute__ ((packed));
311
312/**
313 * struct bts_action - Each .bts action has its own type of
314 * data.
315 */
316struct bts_action {
317 u16 type;
318 u16 size;
319 u8 data[0];
320} __attribute__ ((packed));
321
322struct bts_action_send {
323 u8 data[0];
324} __attribute__ ((packed));
325
326struct bts_action_wait {
327 u32 msec;
328 u32 size;
329 u8 data[0];
330} __attribute__ ((packed));
331
332struct bts_action_delay {
333 u32 msec;
334} __attribute__ ((packed));
335
336struct bts_action_serial {
337 u32 baud;
338 u32 flow_control;
339} __attribute__ ((packed));
340
341/**
342 * struct hci_command - the HCI-VS for intrepreting
343 * the change baud rate of host-side UART, which
344 * needs to be ignored, since UIM would do that
345 * when it receives request from KIM for ldisc installation.
346 */
347struct hci_command {
348 u8 prefix;
349 u16 opcode;
350 u8 plen;
351 u32 speed;
352} __attribute__ ((packed));
353
354/*
355 * header information used by st_ll.c
356 */
357
358/* ST LL receiver states */
359#define ST_W4_PACKET_TYPE 0
5c88b021
PS
360#define ST_W4_HEADER 1
361#define ST_W4_DATA 2
83ef41f0
PS
362
363/* ST LL state machines */
364#define ST_LL_ASLEEP 0
365#define ST_LL_ASLEEP_TO_AWAKE 1
366#define ST_LL_AWAKE 2
367#define ST_LL_AWAKE_TO_ASLEEP 3
368#define ST_LL_INVALID 4
369
370/* different PM notifications coming from chip */
371#define LL_SLEEP_IND 0x30
372#define LL_SLEEP_ACK 0x31
373#define LL_WAKE_UP_IND 0x32
374#define LL_WAKE_UP_ACK 0x33
375
376/* initialize and de-init ST LL */
377long st_ll_init(struct st_data_s *);
378long st_ll_deinit(struct st_data_s *);
379
380/**
381 * enable/disable ST LL along with KIM start/stop
382 * called by ST Core
383 */
384void st_ll_enable(struct st_data_s *);
385void st_ll_disable(struct st_data_s *);
386
387/**
388 * various funcs used by ST core to set/get the various PM states
389 * of the chip.
390 */
391unsigned long st_ll_getstate(struct st_data_s *);
392unsigned long st_ll_sleep_state(struct st_data_s *, unsigned char);
393void st_ll_wakeup(struct st_data_s *);
394
395/*
396 * header information used by st_core.c for FM and GPS
397 * packet parsing, the bluetooth headers are already available
398 * at net/bluetooth/
399 */
400
401struct fm_event_hdr {
402 u8 plen;
403} __attribute__ ((packed));
404
405#define FM_MAX_FRAME_SIZE 0xFF /* TODO: */
406#define FM_EVENT_HDR_SIZE 1 /* size of fm_event_hdr */
407#define ST_FM_CH8_PKT 0x8
408
409/* gps stuff */
410struct gps_event_hdr {
411 u8 opcode;
412 u16 plen;
413} __attribute__ ((packed));
414
0d7c5f25
PS
415/**
416 * struct ti_st_plat_data - platform data shared between ST driver and
417 * platform specific board file which adds the ST device.
418 * @nshutdown_gpio: Host's GPIO line to which chip's BT_EN is connected.
419 * @dev_name: The UART/TTY name to which chip is interfaced. (eg: /dev/ttyS1)
420 * @flow_cntrl: Should always be 1, since UART's CTS/RTS is used for PM
421 * purposes.
422 * @baud_rate: The baud rate supported by the Host UART controller, this will
423 * be shared across with the chip via a HCI VS command from User-Space Init
424 * Mgr application.
425 * @suspend:
426 * @resume: legacy PM routines hooked to platform specific board file, so as
427 * to take chip-host interface specific action.
428 * @chip_enable:
429 * @chip_disable: Platform/Interface specific mux mode setting, GPIO
430 * configuring, Host side PM disabling etc.. can be done here.
431 * @chip_asleep:
432 * @chip_awake: Chip specific deep sleep states is communicated to Host
433 * specific board-xx.c to take actions such as cut UART clocks when chip
434 * asleep or run host faster when chip awake etc..
435 *
436 */
ec60d0ad 437struct ti_st_plat_data {
781a7395 438 long nshutdown_gpio;
ec60d0ad
PS
439 unsigned char dev_name[UART_DEV_NAME_LEN]; /* uart name */
440 unsigned char flow_cntrl; /* flow control flag */
441 unsigned long baud_rate;
442 int (*suspend)(struct platform_device *, pm_message_t);
443 int (*resume)(struct platform_device *);
0d7c5f25
PS
444 int (*chip_enable) (struct kim_data_s *);
445 int (*chip_disable) (struct kim_data_s *);
446 int (*chip_asleep) (struct kim_data_s *);
447 int (*chip_awake) (struct kim_data_s *);
ec60d0ad
PS
448};
449
83ef41f0 450#endif /* TI_WILINK_ST_H */