kasan: only define metadata structs for Generic mode
[linux-2.6-block.git] / include / linux / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
2e892f43
CL
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
cde53535 5 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
f1b6eb6e
CL
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
1da177e4
LT
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
1b1cec4b 15#include <linux/gfp.h>
49b7f898 16#include <linux/overflow.h>
1b1cec4b 17#include <linux/types.h>
1f458cbf 18#include <linux/workqueue.h>
f0a3a24b 19#include <linux/percpu-refcount.h>
1f458cbf 20
1da177e4 21
2e892f43
CL
22/*
23 * Flags to pass to kmem_cache_create().
124dee09 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 25 */
d50112ed 26/* DEBUG: Perform (expensive) checks on alloc/free */
4fd0b46e 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
d50112ed 28/* DEBUG: Red zone objs in a cache */
4fd0b46e 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
d50112ed 30/* DEBUG: Poison objects */
4fd0b46e 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
d50112ed 32/* Align objs on cache lines */
4fd0b46e 33#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
d50112ed 34/* Use GFP_DMA memory */
4fd0b46e 35#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
6d6ea1e9
NB
36/* Use GFP_DMA32 memory */
37#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
d50112ed 38/* DEBUG: Store the last owner for bug hunting */
4fd0b46e 39#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
d50112ed 40/* Panic if kmem_cache_create() fails */
4fd0b46e 41#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
d7de4c1d 42/*
5f0d5a3a 43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
d7de4c1d
PZ
44 *
45 * This delays freeing the SLAB page by a grace period, it does _NOT_
46 * delay object freeing. This means that if you do kmem_cache_free()
47 * that memory location is free to be reused at any time. Thus it may
48 * be possible to see another object there in the same RCU grace period.
49 *
50 * This feature only ensures the memory location backing the object
51 * stays valid, the trick to using this is relying on an independent
52 * object validation pass. Something like:
53 *
54 * rcu_read_lock()
55 * again:
56 * obj = lockless_lookup(key);
57 * if (obj) {
58 * if (!try_get_ref(obj)) // might fail for free objects
59 * goto again;
60 *
61 * if (obj->key != key) { // not the object we expected
62 * put_ref(obj);
63 * goto again;
64 * }
65 * }
66 * rcu_read_unlock();
67 *
68126702
JK
68 * This is useful if we need to approach a kernel structure obliquely,
69 * from its address obtained without the usual locking. We can lock
70 * the structure to stabilize it and check it's still at the given address,
71 * only if we can be sure that the memory has not been meanwhile reused
72 * for some other kind of object (which our subsystem's lock might corrupt).
73 *
74 * rcu_read_lock before reading the address, then rcu_read_unlock after
75 * taking the spinlock within the structure expected at that address.
5f0d5a3a
PM
76 *
77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
d7de4c1d 78 */
d50112ed 79/* Defer freeing slabs to RCU */
4fd0b46e 80#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
d50112ed 81/* Spread some memory over cpuset */
4fd0b46e 82#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
d50112ed 83/* Trace allocations and frees */
4fd0b46e 84#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
1da177e4 85
30327acf
TG
86/* Flag to prevent checks on free */
87#ifdef CONFIG_DEBUG_OBJECTS
4fd0b46e 88# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
30327acf 89#else
4fd0b46e 90# define SLAB_DEBUG_OBJECTS 0
30327acf
TG
91#endif
92
d50112ed 93/* Avoid kmemleak tracing */
4fd0b46e 94#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
d5cff635 95
d50112ed 96/* Fault injection mark */
4c13dd3b 97#ifdef CONFIG_FAILSLAB
4fd0b46e 98# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
4c13dd3b 99#else
4fd0b46e 100# define SLAB_FAILSLAB 0
4c13dd3b 101#endif
d50112ed 102/* Account to memcg */
84c07d11 103#ifdef CONFIG_MEMCG_KMEM
4fd0b46e 104# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
230e9fc2 105#else
4fd0b46e 106# define SLAB_ACCOUNT 0
230e9fc2 107#endif
2dff4405 108
7ed2f9e6 109#ifdef CONFIG_KASAN
4fd0b46e 110#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
7ed2f9e6 111#else
4fd0b46e 112#define SLAB_KASAN 0
7ed2f9e6
AP
113#endif
114
a285909f
HY
115/*
116 * Ignore user specified debugging flags.
117 * Intended for caches created for self-tests so they have only flags
118 * specified in the code and other flags are ignored.
119 */
120#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U)
121
b84e04f1
IK
122#ifdef CONFIG_KFENCE
123#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U)
124#else
125#define SLAB_SKIP_KFENCE 0
126#endif
127
e12ba74d 128/* The following flags affect the page allocator grouping pages by mobility */
d50112ed 129/* Objects are reclaimable */
4fd0b46e 130#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
e12ba74d 131#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
fcf8a1e4 132
6cb8f913
CL
133/*
134 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
135 *
136 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
137 *
138 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
139 * Both make kfree a no-op.
140 */
141#define ZERO_SIZE_PTR ((void *)16)
142
1d4ec7b1 143#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
144 (unsigned long)ZERO_SIZE_PTR)
145
0316bec2 146#include <linux/kasan.h>
3b0efdfa 147
88f2ef73 148struct list_lru;
2633d7a0 149struct mem_cgroup;
2e892f43
CL
150/*
151 * struct kmem_cache related prototypes
152 */
153void __init kmem_cache_init(void);
fda90124 154bool slab_is_available(void);
1da177e4 155
f4957d5b
AD
156struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
157 unsigned int align, slab_flags_t flags,
8eb8284b
DW
158 void (*ctor)(void *));
159struct kmem_cache *kmem_cache_create_usercopy(const char *name,
f4957d5b
AD
160 unsigned int size, unsigned int align,
161 slab_flags_t flags,
7bbdb81e 162 unsigned int useroffset, unsigned int usersize,
8eb8284b 163 void (*ctor)(void *));
72d67229
KC
164void kmem_cache_destroy(struct kmem_cache *s);
165int kmem_cache_shrink(struct kmem_cache *s);
2a4db7eb 166
0a31bd5f
CL
167/*
168 * Please use this macro to create slab caches. Simply specify the
169 * name of the structure and maybe some flags that are listed above.
170 *
171 * The alignment of the struct determines object alignment. If you
172 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
173 * then the objects will be properly aligned in SMP configurations.
174 */
8eb8284b
DW
175#define KMEM_CACHE(__struct, __flags) \
176 kmem_cache_create(#__struct, sizeof(struct __struct), \
177 __alignof__(struct __struct), (__flags), NULL)
178
179/*
180 * To whitelist a single field for copying to/from usercopy, use this
181 * macro instead for KMEM_CACHE() above.
182 */
183#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
184 kmem_cache_create_usercopy(#__struct, \
185 sizeof(struct __struct), \
186 __alignof__(struct __struct), (__flags), \
187 offsetof(struct __struct, __field), \
188 sizeof_field(struct __struct, __field), NULL)
0a31bd5f 189
34504667
CL
190/*
191 * Common kmalloc functions provided by all allocators
192 */
c37495d6 193void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __alloc_size(2);
72d67229
KC
194void kfree(const void *objp);
195void kfree_sensitive(const void *objp);
196size_t __ksize(const void *objp);
197size_t ksize(const void *objp);
5bb1bb35 198#ifdef CONFIG_PRINTK
8e7f37f2
PM
199bool kmem_valid_obj(void *object);
200void kmem_dump_obj(void *object);
5bb1bb35 201#endif
34504667 202
c601fd69
CL
203/*
204 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
205 * alignment larger than the alignment of a 64-bit integer.
8cf9e121 206 * Setting ARCH_DMA_MINALIGN in arch headers allows that.
c601fd69
CL
207 */
208#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
209#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
210#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
211#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
212#else
213#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
214#endif
215
94a58c36
RV
216/*
217 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
218 * Intended for arches that get misalignment faults even for 64 bit integer
219 * aligned buffers.
220 */
221#ifndef ARCH_SLAB_MINALIGN
222#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
223#endif
224
d949a815
PC
225/*
226 * Arches can define this function if they want to decide the minimum slab
227 * alignment at runtime. The value returned by the function must be a power
228 * of two and >= ARCH_SLAB_MINALIGN.
229 */
230#ifndef arch_slab_minalign
231static inline unsigned int arch_slab_minalign(void)
232{
233 return ARCH_SLAB_MINALIGN;
234}
235#endif
236
94a58c36 237/*
154036a3
AK
238 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
239 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
240 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
94a58c36
RV
241 */
242#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
243#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
244#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
245
0aa817f0 246/*
95a05b42
CL
247 * Kmalloc array related definitions
248 */
249
250#ifdef CONFIG_SLAB
251/*
252 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
253 * 32 megabyte (2^25) or the maximum allocatable page order if that is
254 * less than 32 MB.
255 *
256 * WARNING: Its not easy to increase this value since the allocators have
257 * to do various tricks to work around compiler limitations in order to
258 * ensure proper constant folding.
259 */
debee076
CL
260#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
261 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 262#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 263#ifndef KMALLOC_SHIFT_LOW
95a05b42 264#define KMALLOC_SHIFT_LOW 5
c601fd69 265#endif
069e2b35
CL
266#endif
267
268#ifdef CONFIG_SLUB
95a05b42 269/*
433a91ff
DH
270 * SLUB directly allocates requests fitting in to an order-1 page
271 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
95a05b42
CL
272 */
273#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
bb1107f7 274#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
c601fd69 275#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
276#define KMALLOC_SHIFT_LOW 3
277#endif
c601fd69 278#endif
0aa817f0 279
069e2b35
CL
280#ifdef CONFIG_SLOB
281/*
433a91ff 282 * SLOB passes all requests larger than one page to the page allocator.
069e2b35
CL
283 * No kmalloc array is necessary since objects of different sizes can
284 * be allocated from the same page.
285 */
069e2b35 286#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
bb1107f7 287#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
069e2b35
CL
288#ifndef KMALLOC_SHIFT_LOW
289#define KMALLOC_SHIFT_LOW 3
290#endif
291#endif
292
95a05b42
CL
293/* Maximum allocatable size */
294#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
295/* Maximum size for which we actually use a slab cache */
296#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
d7cff4de 297/* Maximum order allocatable via the slab allocator */
95a05b42 298#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 299
ce6a5026
CL
300/*
301 * Kmalloc subsystem.
302 */
c601fd69 303#ifndef KMALLOC_MIN_SIZE
95a05b42 304#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
305#endif
306
24f870d8
JK
307/*
308 * This restriction comes from byte sized index implementation.
309 * Page size is normally 2^12 bytes and, in this case, if we want to use
310 * byte sized index which can represent 2^8 entries, the size of the object
311 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
312 * If minimum size of kmalloc is less than 16, we use it as minimum object
313 * size and give up to use byte sized index.
314 */
315#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
316 (KMALLOC_MIN_SIZE) : 16)
317
1291523f
VB
318/*
319 * Whenever changing this, take care of that kmalloc_type() and
320 * create_kmalloc_caches() still work as intended.
494c1dfe
WL
321 *
322 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
323 * is for accounted but unreclaimable and non-dma objects. All the other
324 * kmem caches can have both accounted and unaccounted objects.
1291523f 325 */
cc252eae
VB
326enum kmalloc_cache_type {
327 KMALLOC_NORMAL = 0,
494c1dfe
WL
328#ifndef CONFIG_ZONE_DMA
329 KMALLOC_DMA = KMALLOC_NORMAL,
330#endif
331#ifndef CONFIG_MEMCG_KMEM
332 KMALLOC_CGROUP = KMALLOC_NORMAL,
333#else
334 KMALLOC_CGROUP,
335#endif
1291523f 336 KMALLOC_RECLAIM,
cc252eae
VB
337#ifdef CONFIG_ZONE_DMA
338 KMALLOC_DMA,
339#endif
340 NR_KMALLOC_TYPES
341};
342
069e2b35 343#ifndef CONFIG_SLOB
cc252eae
VB
344extern struct kmem_cache *
345kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
346
494c1dfe
WL
347/*
348 * Define gfp bits that should not be set for KMALLOC_NORMAL.
349 */
350#define KMALLOC_NOT_NORMAL_BITS \
351 (__GFP_RECLAIMABLE | \
352 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
353 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
354
cc252eae
VB
355static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
356{
4e45f712
VB
357 /*
358 * The most common case is KMALLOC_NORMAL, so test for it
494c1dfe 359 * with a single branch for all the relevant flags.
4e45f712 360 */
494c1dfe 361 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
4e45f712 362 return KMALLOC_NORMAL;
1291523f
VB
363
364 /*
494c1dfe
WL
365 * At least one of the flags has to be set. Their priorities in
366 * decreasing order are:
367 * 1) __GFP_DMA
368 * 2) __GFP_RECLAIMABLE
369 * 3) __GFP_ACCOUNT
1291523f 370 */
494c1dfe
WL
371 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
372 return KMALLOC_DMA;
373 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
374 return KMALLOC_RECLAIM;
375 else
376 return KMALLOC_CGROUP;
cc252eae
VB
377}
378
ce6a5026
CL
379/*
380 * Figure out which kmalloc slab an allocation of a certain size
381 * belongs to.
382 * 0 = zero alloc
383 * 1 = 65 .. 96 bytes
1ed58b60
RV
384 * 2 = 129 .. 192 bytes
385 * n = 2^(n-1)+1 .. 2^n
588c7fa0
HY
386 *
387 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
388 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
389 * Callers where !size_is_constant should only be test modules, where runtime
390 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
ce6a5026 391 */
588c7fa0
HY
392static __always_inline unsigned int __kmalloc_index(size_t size,
393 bool size_is_constant)
ce6a5026
CL
394{
395 if (!size)
396 return 0;
397
398 if (size <= KMALLOC_MIN_SIZE)
399 return KMALLOC_SHIFT_LOW;
400
401 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
402 return 1;
403 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
404 return 2;
405 if (size <= 8) return 3;
406 if (size <= 16) return 4;
407 if (size <= 32) return 5;
408 if (size <= 64) return 6;
409 if (size <= 128) return 7;
410 if (size <= 256) return 8;
411 if (size <= 512) return 9;
412 if (size <= 1024) return 10;
413 if (size <= 2 * 1024) return 11;
414 if (size <= 4 * 1024) return 12;
415 if (size <= 8 * 1024) return 13;
416 if (size <= 16 * 1024) return 14;
417 if (size <= 32 * 1024) return 15;
418 if (size <= 64 * 1024) return 16;
419 if (size <= 128 * 1024) return 17;
420 if (size <= 256 * 1024) return 18;
421 if (size <= 512 * 1024) return 19;
422 if (size <= 1024 * 1024) return 20;
423 if (size <= 2 * 1024 * 1024) return 21;
424 if (size <= 4 * 1024 * 1024) return 22;
425 if (size <= 8 * 1024 * 1024) return 23;
426 if (size <= 16 * 1024 * 1024) return 24;
427 if (size <= 32 * 1024 * 1024) return 25;
588c7fa0 428
57b2b72a 429 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
588c7fa0
HY
430 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
431 else
432 BUG();
ce6a5026
CL
433
434 /* Will never be reached. Needed because the compiler may complain */
435 return -1;
436}
588c7fa0 437#define kmalloc_index(s) __kmalloc_index(s, true)
069e2b35 438#endif /* !CONFIG_SLOB */
ce6a5026 439
c37495d6 440void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
72d67229 441void *kmem_cache_alloc(struct kmem_cache *s, gfp_t flags) __assume_slab_alignment __malloc;
88f2ef73
MS
442void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
443 gfp_t gfpflags) __assume_slab_alignment __malloc;
72d67229 444void kmem_cache_free(struct kmem_cache *s, void *objp);
f1b6eb6e 445
484748f0 446/*
9f706d68 447 * Bulk allocation and freeing operations. These are accelerated in an
484748f0
CL
448 * allocator specific way to avoid taking locks repeatedly or building
449 * metadata structures unnecessarily.
450 *
451 * Note that interrupts must be enabled when calling these functions.
452 */
72d67229
KC
453void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
454int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
484748f0 455
ca257195
JDB
456/*
457 * Caller must not use kfree_bulk() on memory not originally allocated
458 * by kmalloc(), because the SLOB allocator cannot handle this.
459 */
460static __always_inline void kfree_bulk(size_t size, void **p)
461{
462 kmem_cache_free_bulk(NULL, size, p);
463}
464
f1b6eb6e 465#ifdef CONFIG_NUMA
c37495d6
KC
466void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
467 __alloc_size(1);
72d67229
KC
468void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
469 __malloc;
f1b6eb6e 470#else
c37495d6 471static __always_inline __alloc_size(1) void *__kmalloc_node(size_t size, gfp_t flags, int node)
f1b6eb6e
CL
472{
473 return __kmalloc(size, flags);
474}
475
476static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
477{
478 return kmem_cache_alloc(s, flags);
479}
480#endif
481
482#ifdef CONFIG_TRACING
72d67229 483extern void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
c37495d6 484 __assume_slab_alignment __alloc_size(3);
f1b6eb6e
CL
485
486#ifdef CONFIG_NUMA
72d67229 487extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
c37495d6
KC
488 int node, size_t size) __assume_slab_alignment
489 __alloc_size(4);
f1b6eb6e 490#else
c37495d6
KC
491static __always_inline __alloc_size(4) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
492 gfp_t gfpflags, int node, size_t size)
f1b6eb6e
CL
493{
494 return kmem_cache_alloc_trace(s, gfpflags, size);
495}
496#endif /* CONFIG_NUMA */
497
498#else /* CONFIG_TRACING */
c37495d6
KC
499static __always_inline __alloc_size(3) void *kmem_cache_alloc_trace(struct kmem_cache *s,
500 gfp_t flags, size_t size)
f1b6eb6e 501{
0316bec2
AR
502 void *ret = kmem_cache_alloc(s, flags);
503
0116523c 504 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 505 return ret;
f1b6eb6e
CL
506}
507
72d67229
KC
508static __always_inline void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
509 int node, size_t size)
f1b6eb6e 510{
0316bec2
AR
511 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
512
0116523c 513 ret = kasan_kmalloc(s, ret, size, gfpflags);
0316bec2 514 return ret;
f1b6eb6e
CL
515}
516#endif /* CONFIG_TRACING */
517
72d67229 518extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment
c37495d6 519 __alloc_size(1);
f1b6eb6e
CL
520
521#ifdef CONFIG_TRACING
72d67229 522extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
c37495d6 523 __assume_page_alignment __alloc_size(1);
f1b6eb6e 524#else
c37495d6
KC
525static __always_inline __alloc_size(1) void *kmalloc_order_trace(size_t size, gfp_t flags,
526 unsigned int order)
f1b6eb6e
CL
527{
528 return kmalloc_order(size, flags, order);
529}
ce6a5026
CL
530#endif
531
c37495d6 532static __always_inline __alloc_size(1) void *kmalloc_large(size_t size, gfp_t flags)
f1b6eb6e
CL
533{
534 unsigned int order = get_order(size);
535 return kmalloc_order_trace(size, flags, order);
536}
537
538/**
539 * kmalloc - allocate memory
540 * @size: how many bytes of memory are required.
7e3528c3 541 * @flags: the type of memory to allocate.
f1b6eb6e
CL
542 *
543 * kmalloc is the normal method of allocating memory
544 * for objects smaller than page size in the kernel.
7e3528c3 545 *
59bb4798
VB
546 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
547 * bytes. For @size of power of two bytes, the alignment is also guaranteed
548 * to be at least to the size.
549 *
01598ba6
MR
550 * The @flags argument may be one of the GFP flags defined at
551 * include/linux/gfp.h and described at
552 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
7e3528c3 553 *
01598ba6 554 * The recommended usage of the @flags is described at
2370ae4b 555 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
7e3528c3 556 *
01598ba6 557 * Below is a brief outline of the most useful GFP flags
7e3528c3 558 *
01598ba6
MR
559 * %GFP_KERNEL
560 * Allocate normal kernel ram. May sleep.
7e3528c3 561 *
01598ba6
MR
562 * %GFP_NOWAIT
563 * Allocation will not sleep.
7e3528c3 564 *
01598ba6
MR
565 * %GFP_ATOMIC
566 * Allocation will not sleep. May use emergency pools.
7e3528c3 567 *
01598ba6
MR
568 * %GFP_HIGHUSER
569 * Allocate memory from high memory on behalf of user.
7e3528c3
RD
570 *
571 * Also it is possible to set different flags by OR'ing
572 * in one or more of the following additional @flags:
573 *
01598ba6
MR
574 * %__GFP_HIGH
575 * This allocation has high priority and may use emergency pools.
7e3528c3 576 *
01598ba6
MR
577 * %__GFP_NOFAIL
578 * Indicate that this allocation is in no way allowed to fail
579 * (think twice before using).
7e3528c3 580 *
01598ba6
MR
581 * %__GFP_NORETRY
582 * If memory is not immediately available,
583 * then give up at once.
7e3528c3 584 *
01598ba6
MR
585 * %__GFP_NOWARN
586 * If allocation fails, don't issue any warnings.
7e3528c3 587 *
01598ba6
MR
588 * %__GFP_RETRY_MAYFAIL
589 * Try really hard to succeed the allocation but fail
590 * eventually.
f1b6eb6e 591 */
c37495d6 592static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
f1b6eb6e
CL
593{
594 if (__builtin_constant_p(size)) {
cc252eae
VB
595#ifndef CONFIG_SLOB
596 unsigned int index;
597#endif
f1b6eb6e
CL
598 if (size > KMALLOC_MAX_CACHE_SIZE)
599 return kmalloc_large(size, flags);
600#ifndef CONFIG_SLOB
cc252eae 601 index = kmalloc_index(size);
f1b6eb6e 602
cc252eae
VB
603 if (!index)
604 return ZERO_SIZE_PTR;
f1b6eb6e 605
cc252eae
VB
606 return kmem_cache_alloc_trace(
607 kmalloc_caches[kmalloc_type(flags)][index],
608 flags, size);
f1b6eb6e
CL
609#endif
610 }
611 return __kmalloc(size, flags);
612}
613
c37495d6 614static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
f1b6eb6e
CL
615{
616#ifndef CONFIG_SLOB
617 if (__builtin_constant_p(size) &&
cc252eae 618 size <= KMALLOC_MAX_CACHE_SIZE) {
36071a27 619 unsigned int i = kmalloc_index(size);
f1b6eb6e
CL
620
621 if (!i)
622 return ZERO_SIZE_PTR;
623
cc252eae
VB
624 return kmem_cache_alloc_node_trace(
625 kmalloc_caches[kmalloc_type(flags)][i],
f1b6eb6e
CL
626 flags, node, size);
627 }
628#endif
629 return __kmalloc_node(size, flags, node);
630}
631
e7efa615
MO
632/**
633 * kmalloc_array - allocate memory for an array.
634 * @n: number of elements.
635 * @size: element size.
636 * @flags: the type of memory to allocate (see kmalloc).
800590f5 637 */
c37495d6 638static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 639{
49b7f898
KC
640 size_t bytes;
641
642 if (unlikely(check_mul_overflow(n, size, &bytes)))
6193a2ff 643 return NULL;
91c6a05f 644 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
645 return kmalloc(bytes, flags);
646 return __kmalloc(bytes, flags);
a8203725
XW
647}
648
f0dbd2bd
BG
649/**
650 * krealloc_array - reallocate memory for an array.
651 * @p: pointer to the memory chunk to reallocate
652 * @new_n: new number of elements to alloc
653 * @new_size: new size of a single member of the array
654 * @flags: the type of memory to allocate (see kmalloc)
655 */
c37495d6
KC
656static inline __alloc_size(2, 3) void * __must_check krealloc_array(void *p,
657 size_t new_n,
658 size_t new_size,
659 gfp_t flags)
f0dbd2bd
BG
660{
661 size_t bytes;
662
663 if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
664 return NULL;
665
666 return krealloc(p, bytes, flags);
667}
668
a8203725
XW
669/**
670 * kcalloc - allocate memory for an array. The memory is set to zero.
671 * @n: number of elements.
672 * @size: element size.
673 * @flags: the type of memory to allocate (see kmalloc).
674 */
c37495d6 675static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
a8203725
XW
676{
677 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
678}
679
1d2c8eea
CH
680/*
681 * kmalloc_track_caller is a special version of kmalloc that records the
682 * calling function of the routine calling it for slab leak tracking instead
683 * of just the calling function (confusing, eh?).
684 * It's useful when the call to kmalloc comes from a widely-used standard
685 * allocator where we care about the real place the memory allocation
686 * request comes from.
687 */
93dd04ab 688extern void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller);
1d2c8eea 689#define kmalloc_track_caller(size, flags) \
ce71e27c 690 __kmalloc_track_caller(size, flags, _RET_IP_)
1da177e4 691
c37495d6
KC
692static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
693 int node)
5799b255 694{
49b7f898
KC
695 size_t bytes;
696
697 if (unlikely(check_mul_overflow(n, size, &bytes)))
5799b255
JT
698 return NULL;
699 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
700 return kmalloc_node(bytes, flags, node);
701 return __kmalloc_node(bytes, flags, node);
5799b255
JT
702}
703
c37495d6 704static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
5799b255
JT
705{
706 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
707}
708
709
97e2bde4 710#ifdef CONFIG_NUMA
72d67229 711extern void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
c37495d6 712 unsigned long caller) __alloc_size(1);
8b98c169
CH
713#define kmalloc_node_track_caller(size, flags, node) \
714 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 715 _RET_IP_)
2e892f43 716
8b98c169 717#else /* CONFIG_NUMA */
8b98c169
CH
718
719#define kmalloc_node_track_caller(size, flags, node) \
720 kmalloc_track_caller(size, flags)
97e2bde4 721
dfcd3610 722#endif /* CONFIG_NUMA */
10cef602 723
81cda662
CL
724/*
725 * Shortcuts
726 */
727static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
728{
729 return kmem_cache_alloc(k, flags | __GFP_ZERO);
730}
731
732/**
733 * kzalloc - allocate memory. The memory is set to zero.
734 * @size: how many bytes of memory are required.
735 * @flags: the type of memory to allocate (see kmalloc).
736 */
c37495d6 737static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
81cda662
CL
738{
739 return kmalloc(size, flags | __GFP_ZERO);
740}
741
979b0fea
JL
742/**
743 * kzalloc_node - allocate zeroed memory from a particular memory node.
744 * @size: how many bytes of memory are required.
745 * @flags: the type of memory to allocate (see kmalloc).
746 * @node: memory node from which to allocate
747 */
c37495d6 748static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
979b0fea
JL
749{
750 return kmalloc_node(size, flags | __GFP_ZERO, node);
751}
752
56bcf40f
KC
753extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
754static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
8587ca6f
MWO
755{
756 return kvmalloc_node(size, flags, NUMA_NO_NODE);
757}
56bcf40f 758static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
8587ca6f
MWO
759{
760 return kvmalloc_node(size, flags | __GFP_ZERO, node);
761}
56bcf40f 762static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
8587ca6f
MWO
763{
764 return kvmalloc(size, flags | __GFP_ZERO);
765}
766
56bcf40f 767static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
8587ca6f
MWO
768{
769 size_t bytes;
770
771 if (unlikely(check_mul_overflow(n, size, &bytes)))
772 return NULL;
773
774 return kvmalloc(bytes, flags);
775}
776
56bcf40f 777static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
8587ca6f
MWO
778{
779 return kvmalloc_array(n, size, flags | __GFP_ZERO);
780}
781
56bcf40f
KC
782extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
783 __alloc_size(3);
8587ca6f
MWO
784extern void kvfree(const void *addr);
785extern void kvfree_sensitive(const void *addr, size_t len);
786
07f361b2 787unsigned int kmem_cache_size(struct kmem_cache *s);
7e85ee0c
PE
788void __init kmem_cache_init_late(void);
789
6731d4f1
SAS
790#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
791int slab_prepare_cpu(unsigned int cpu);
792int slab_dead_cpu(unsigned int cpu);
793#else
794#define slab_prepare_cpu NULL
795#define slab_dead_cpu NULL
796#endif
797
1da177e4 798#endif /* _LINUX_SLAB_H */