Merge tag 'xfs-6.4-rc1-fixes' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-block.git] / include / linux / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4 2/*
2e892f43
CL
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
cde53535 5 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
f1b6eb6e
CL
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
1da177e4
LT
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
1b1cec4b 15#include <linux/gfp.h>
49b7f898 16#include <linux/overflow.h>
1b1cec4b 17#include <linux/types.h>
1f458cbf 18#include <linux/workqueue.h>
f0a3a24b 19#include <linux/percpu-refcount.h>
1f458cbf 20
1da177e4 21
2e892f43
CL
22/*
23 * Flags to pass to kmem_cache_create().
124dee09 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
1da177e4 25 */
d50112ed 26/* DEBUG: Perform (expensive) checks on alloc/free */
4fd0b46e 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
d50112ed 28/* DEBUG: Red zone objs in a cache */
4fd0b46e 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
d50112ed 30/* DEBUG: Poison objects */
4fd0b46e 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
6edf2576
FT
32/* Indicate a kmalloc slab */
33#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
d50112ed 34/* Align objs on cache lines */
4fd0b46e 35#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
d50112ed 36/* Use GFP_DMA memory */
4fd0b46e 37#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
6d6ea1e9
NB
38/* Use GFP_DMA32 memory */
39#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
d50112ed 40/* DEBUG: Store the last owner for bug hunting */
4fd0b46e 41#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
d50112ed 42/* Panic if kmem_cache_create() fails */
4fd0b46e 43#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
d7de4c1d 44/*
5f0d5a3a 45 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
d7de4c1d
PZ
46 *
47 * This delays freeing the SLAB page by a grace period, it does _NOT_
48 * delay object freeing. This means that if you do kmem_cache_free()
49 * that memory location is free to be reused at any time. Thus it may
50 * be possible to see another object there in the same RCU grace period.
51 *
52 * This feature only ensures the memory location backing the object
53 * stays valid, the trick to using this is relying on an independent
54 * object validation pass. Something like:
55 *
56 * rcu_read_lock()
57 * again:
58 * obj = lockless_lookup(key);
59 * if (obj) {
60 * if (!try_get_ref(obj)) // might fail for free objects
61 * goto again;
62 *
63 * if (obj->key != key) { // not the object we expected
64 * put_ref(obj);
65 * goto again;
66 * }
67 * }
68 * rcu_read_unlock();
69 *
68126702
JK
70 * This is useful if we need to approach a kernel structure obliquely,
71 * from its address obtained without the usual locking. We can lock
72 * the structure to stabilize it and check it's still at the given address,
73 * only if we can be sure that the memory has not been meanwhile reused
74 * for some other kind of object (which our subsystem's lock might corrupt).
75 *
76 * rcu_read_lock before reading the address, then rcu_read_unlock after
77 * taking the spinlock within the structure expected at that address.
5f0d5a3a 78 *
e9f8a790
PM
79 * Note that it is not possible to acquire a lock within a structure
80 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
81 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages
82 * are not zeroed before being given to the slab, which means that any
83 * locks must be initialized after each and every kmem_struct_alloc().
84 * Alternatively, make the ctor passed to kmem_cache_create() initialize
85 * the locks at page-allocation time, as is done in __i915_request_ctor(),
86 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers
87 * to safely acquire those ctor-initialized locks under rcu_read_lock()
88 * protection.
89 *
5f0d5a3a 90 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
d7de4c1d 91 */
d50112ed 92/* Defer freeing slabs to RCU */
4fd0b46e 93#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
d50112ed 94/* Spread some memory over cpuset */
4fd0b46e 95#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
d50112ed 96/* Trace allocations and frees */
4fd0b46e 97#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
1da177e4 98
30327acf
TG
99/* Flag to prevent checks on free */
100#ifdef CONFIG_DEBUG_OBJECTS
4fd0b46e 101# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
30327acf 102#else
4fd0b46e 103# define SLAB_DEBUG_OBJECTS 0
30327acf
TG
104#endif
105
d50112ed 106/* Avoid kmemleak tracing */
4fd0b46e 107#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
d5cff635 108
d50112ed 109/* Fault injection mark */
4c13dd3b 110#ifdef CONFIG_FAILSLAB
4fd0b46e 111# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
4c13dd3b 112#else
4fd0b46e 113# define SLAB_FAILSLAB 0
4c13dd3b 114#endif
d50112ed 115/* Account to memcg */
84c07d11 116#ifdef CONFIG_MEMCG_KMEM
4fd0b46e 117# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
230e9fc2 118#else
4fd0b46e 119# define SLAB_ACCOUNT 0
230e9fc2 120#endif
2dff4405 121
682ed089 122#ifdef CONFIG_KASAN_GENERIC
4fd0b46e 123#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
7ed2f9e6 124#else
4fd0b46e 125#define SLAB_KASAN 0
7ed2f9e6
AP
126#endif
127
a285909f
HY
128/*
129 * Ignore user specified debugging flags.
130 * Intended for caches created for self-tests so they have only flags
131 * specified in the code and other flags are ignored.
132 */
133#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U)
134
b84e04f1
IK
135#ifdef CONFIG_KFENCE
136#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U)
137#else
138#define SLAB_SKIP_KFENCE 0
139#endif
140
e12ba74d 141/* The following flags affect the page allocator grouping pages by mobility */
d50112ed 142/* Objects are reclaimable */
3d97d976 143#ifndef CONFIG_SLUB_TINY
4fd0b46e 144#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
3d97d976
VB
145#else
146#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0)
147#endif
e12ba74d 148#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
fcf8a1e4 149
6cb8f913
CL
150/*
151 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
152 *
153 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
154 *
155 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
156 * Both make kfree a no-op.
157 */
158#define ZERO_SIZE_PTR ((void *)16)
159
1d4ec7b1 160#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
161 (unsigned long)ZERO_SIZE_PTR)
162
0316bec2 163#include <linux/kasan.h>
3b0efdfa 164
88f2ef73 165struct list_lru;
2633d7a0 166struct mem_cgroup;
2e892f43
CL
167/*
168 * struct kmem_cache related prototypes
169 */
fda90124 170bool slab_is_available(void);
1da177e4 171
f4957d5b
AD
172struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
173 unsigned int align, slab_flags_t flags,
8eb8284b
DW
174 void (*ctor)(void *));
175struct kmem_cache *kmem_cache_create_usercopy(const char *name,
f4957d5b
AD
176 unsigned int size, unsigned int align,
177 slab_flags_t flags,
7bbdb81e 178 unsigned int useroffset, unsigned int usersize,
8eb8284b 179 void (*ctor)(void *));
72d67229
KC
180void kmem_cache_destroy(struct kmem_cache *s);
181int kmem_cache_shrink(struct kmem_cache *s);
2a4db7eb 182
0a31bd5f
CL
183/*
184 * Please use this macro to create slab caches. Simply specify the
185 * name of the structure and maybe some flags that are listed above.
186 *
187 * The alignment of the struct determines object alignment. If you
188 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
189 * then the objects will be properly aligned in SMP configurations.
190 */
8eb8284b
DW
191#define KMEM_CACHE(__struct, __flags) \
192 kmem_cache_create(#__struct, sizeof(struct __struct), \
193 __alignof__(struct __struct), (__flags), NULL)
194
195/*
196 * To whitelist a single field for copying to/from usercopy, use this
197 * macro instead for KMEM_CACHE() above.
198 */
199#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
200 kmem_cache_create_usercopy(#__struct, \
201 sizeof(struct __struct), \
202 __alignof__(struct __struct), (__flags), \
203 offsetof(struct __struct, __field), \
204 sizeof_field(struct __struct, __field), NULL)
0a31bd5f 205
34504667
CL
206/*
207 * Common kmalloc functions provided by all allocators
208 */
9ed9cac1 209void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
72d67229
KC
210void kfree(const void *objp);
211void kfree_sensitive(const void *objp);
212size_t __ksize(const void *objp);
05a94065
KC
213
214/**
215 * ksize - Report actual allocation size of associated object
216 *
217 * @objp: Pointer returned from a prior kmalloc()-family allocation.
218 *
219 * This should not be used for writing beyond the originally requested
220 * allocation size. Either use krealloc() or round up the allocation size
221 * with kmalloc_size_roundup() prior to allocation. If this is used to
222 * access beyond the originally requested allocation size, UBSAN_BOUNDS
223 * and/or FORTIFY_SOURCE may trip, since they only know about the
224 * originally allocated size via the __alloc_size attribute.
225 */
72d67229 226size_t ksize(const void *objp);
05a94065 227
5bb1bb35 228#ifdef CONFIG_PRINTK
8e7f37f2
PM
229bool kmem_valid_obj(void *object);
230void kmem_dump_obj(void *object);
5bb1bb35 231#endif
34504667 232
c601fd69
CL
233/*
234 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
235 * alignment larger than the alignment of a 64-bit integer.
8cf9e121 236 * Setting ARCH_DMA_MINALIGN in arch headers allows that.
c601fd69
CL
237 */
238#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
239#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
240#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
241#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
242#else
243#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
244#endif
245
94a58c36
RV
246/*
247 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
248 * Intended for arches that get misalignment faults even for 64 bit integer
249 * aligned buffers.
250 */
251#ifndef ARCH_SLAB_MINALIGN
252#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
253#endif
254
d949a815
PC
255/*
256 * Arches can define this function if they want to decide the minimum slab
257 * alignment at runtime. The value returned by the function must be a power
258 * of two and >= ARCH_SLAB_MINALIGN.
259 */
260#ifndef arch_slab_minalign
261static inline unsigned int arch_slab_minalign(void)
262{
263 return ARCH_SLAB_MINALIGN;
264}
265#endif
266
94a58c36 267/*
154036a3
AK
268 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
269 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
270 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
94a58c36
RV
271 */
272#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
273#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
274#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
275
0aa817f0 276/*
95a05b42
CL
277 * Kmalloc array related definitions
278 */
279
280#ifdef CONFIG_SLAB
281/*
d6a71648
HY
282 * SLAB and SLUB directly allocates requests fitting in to an order-1 page
283 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
0aa817f0 284 */
d6a71648 285#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
23baf831 286#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 287#ifndef KMALLOC_SHIFT_LOW
95a05b42 288#define KMALLOC_SHIFT_LOW 5
c601fd69 289#endif
069e2b35
CL
290#endif
291
292#ifdef CONFIG_SLUB
95a05b42 293#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
23baf831 294#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 295#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
296#define KMALLOC_SHIFT_LOW 3
297#endif
c601fd69 298#endif
0aa817f0 299
95a05b42
CL
300/* Maximum allocatable size */
301#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
302/* Maximum size for which we actually use a slab cache */
303#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
d7cff4de 304/* Maximum order allocatable via the slab allocator */
95a05b42 305#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 306
ce6a5026
CL
307/*
308 * Kmalloc subsystem.
309 */
c601fd69 310#ifndef KMALLOC_MIN_SIZE
95a05b42 311#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
312#endif
313
24f870d8
JK
314/*
315 * This restriction comes from byte sized index implementation.
316 * Page size is normally 2^12 bytes and, in this case, if we want to use
317 * byte sized index which can represent 2^8 entries, the size of the object
318 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
319 * If minimum size of kmalloc is less than 16, we use it as minimum object
320 * size and give up to use byte sized index.
321 */
322#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
323 (KMALLOC_MIN_SIZE) : 16)
324
1291523f
VB
325/*
326 * Whenever changing this, take care of that kmalloc_type() and
327 * create_kmalloc_caches() still work as intended.
494c1dfe
WL
328 *
329 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
330 * is for accounted but unreclaimable and non-dma objects. All the other
331 * kmem caches can have both accounted and unaccounted objects.
1291523f 332 */
cc252eae
VB
333enum kmalloc_cache_type {
334 KMALLOC_NORMAL = 0,
494c1dfe
WL
335#ifndef CONFIG_ZONE_DMA
336 KMALLOC_DMA = KMALLOC_NORMAL,
337#endif
338#ifndef CONFIG_MEMCG_KMEM
339 KMALLOC_CGROUP = KMALLOC_NORMAL,
494c1dfe 340#endif
2f7c1c13
VB
341#ifdef CONFIG_SLUB_TINY
342 KMALLOC_RECLAIM = KMALLOC_NORMAL,
343#else
1291523f 344 KMALLOC_RECLAIM,
2f7c1c13 345#endif
cc252eae
VB
346#ifdef CONFIG_ZONE_DMA
347 KMALLOC_DMA,
2f7c1c13
VB
348#endif
349#ifdef CONFIG_MEMCG_KMEM
350 KMALLOC_CGROUP,
cc252eae
VB
351#endif
352 NR_KMALLOC_TYPES
353};
354
cc252eae
VB
355extern struct kmem_cache *
356kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
357
494c1dfe
WL
358/*
359 * Define gfp bits that should not be set for KMALLOC_NORMAL.
360 */
361#define KMALLOC_NOT_NORMAL_BITS \
362 (__GFP_RECLAIMABLE | \
363 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
364 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
365
cc252eae
VB
366static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
367{
4e45f712
VB
368 /*
369 * The most common case is KMALLOC_NORMAL, so test for it
494c1dfe 370 * with a single branch for all the relevant flags.
4e45f712 371 */
494c1dfe 372 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
4e45f712 373 return KMALLOC_NORMAL;
1291523f
VB
374
375 /*
494c1dfe
WL
376 * At least one of the flags has to be set. Their priorities in
377 * decreasing order are:
378 * 1) __GFP_DMA
379 * 2) __GFP_RECLAIMABLE
380 * 3) __GFP_ACCOUNT
1291523f 381 */
494c1dfe
WL
382 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
383 return KMALLOC_DMA;
384 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
385 return KMALLOC_RECLAIM;
386 else
387 return KMALLOC_CGROUP;
cc252eae
VB
388}
389
ce6a5026
CL
390/*
391 * Figure out which kmalloc slab an allocation of a certain size
392 * belongs to.
393 * 0 = zero alloc
394 * 1 = 65 .. 96 bytes
1ed58b60
RV
395 * 2 = 129 .. 192 bytes
396 * n = 2^(n-1)+1 .. 2^n
588c7fa0
HY
397 *
398 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
399 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
400 * Callers where !size_is_constant should only be test modules, where runtime
401 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
ce6a5026 402 */
588c7fa0
HY
403static __always_inline unsigned int __kmalloc_index(size_t size,
404 bool size_is_constant)
ce6a5026
CL
405{
406 if (!size)
407 return 0;
408
409 if (size <= KMALLOC_MIN_SIZE)
410 return KMALLOC_SHIFT_LOW;
411
412 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
413 return 1;
414 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
415 return 2;
416 if (size <= 8) return 3;
417 if (size <= 16) return 4;
418 if (size <= 32) return 5;
419 if (size <= 64) return 6;
420 if (size <= 128) return 7;
421 if (size <= 256) return 8;
422 if (size <= 512) return 9;
423 if (size <= 1024) return 10;
424 if (size <= 2 * 1024) return 11;
425 if (size <= 4 * 1024) return 12;
426 if (size <= 8 * 1024) return 13;
427 if (size <= 16 * 1024) return 14;
428 if (size <= 32 * 1024) return 15;
429 if (size <= 64 * 1024) return 16;
430 if (size <= 128 * 1024) return 17;
431 if (size <= 256 * 1024) return 18;
432 if (size <= 512 * 1024) return 19;
433 if (size <= 1024 * 1024) return 20;
434 if (size <= 2 * 1024 * 1024) return 21;
588c7fa0 435
57b2b72a 436 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
588c7fa0
HY
437 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
438 else
439 BUG();
ce6a5026
CL
440
441 /* Will never be reached. Needed because the compiler may complain */
442 return -1;
443}
d6a71648 444static_assert(PAGE_SHIFT <= 20);
588c7fa0 445#define kmalloc_index(s) __kmalloc_index(s, true)
ce6a5026 446
c37495d6 447void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
838de63b
VB
448
449/**
450 * kmem_cache_alloc - Allocate an object
451 * @cachep: The cache to allocate from.
452 * @flags: See kmalloc().
453 *
454 * Allocate an object from this cache.
455 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
456 *
457 * Return: pointer to the new object or %NULL in case of error
458 */
459void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
88f2ef73
MS
460void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
461 gfp_t gfpflags) __assume_slab_alignment __malloc;
72d67229 462void kmem_cache_free(struct kmem_cache *s, void *objp);
f1b6eb6e 463
484748f0 464/*
9f706d68 465 * Bulk allocation and freeing operations. These are accelerated in an
484748f0
CL
466 * allocator specific way to avoid taking locks repeatedly or building
467 * metadata structures unnecessarily.
468 *
469 * Note that interrupts must be enabled when calling these functions.
470 */
72d67229
KC
471void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
472int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
484748f0 473
ca257195
JDB
474static __always_inline void kfree_bulk(size_t size, void **p)
475{
476 kmem_cache_free_bulk(NULL, size, p);
477}
478
c37495d6
KC
479void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
480 __alloc_size(1);
72d67229
KC
481void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
482 __malloc;
f1b6eb6e 483
26a40990
HY
484void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
485 __assume_kmalloc_alignment __alloc_size(3);
f1b6eb6e 486
26a40990
HY
487void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
488 int node, size_t size) __assume_kmalloc_alignment
489 __alloc_size(4);
e4c98d68
HY
490void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
491 __alloc_size(1);
a0c3b940
HY
492
493void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
494 __alloc_size(1);
495
f1b6eb6e 496/**
838de63b 497 * kmalloc - allocate kernel memory
f1b6eb6e 498 * @size: how many bytes of memory are required.
838de63b 499 * @flags: describe the allocation context
f1b6eb6e
CL
500 *
501 * kmalloc is the normal method of allocating memory
502 * for objects smaller than page size in the kernel.
7e3528c3 503 *
59bb4798
VB
504 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
505 * bytes. For @size of power of two bytes, the alignment is also guaranteed
506 * to be at least to the size.
507 *
01598ba6 508 * The @flags argument may be one of the GFP flags defined at
e9d198f2 509 * include/linux/gfp_types.h and described at
01598ba6 510 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
7e3528c3 511 *
01598ba6 512 * The recommended usage of the @flags is described at
2370ae4b 513 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
7e3528c3 514 *
01598ba6 515 * Below is a brief outline of the most useful GFP flags
7e3528c3 516 *
01598ba6
MR
517 * %GFP_KERNEL
518 * Allocate normal kernel ram. May sleep.
7e3528c3 519 *
01598ba6
MR
520 * %GFP_NOWAIT
521 * Allocation will not sleep.
7e3528c3 522 *
01598ba6
MR
523 * %GFP_ATOMIC
524 * Allocation will not sleep. May use emergency pools.
7e3528c3 525 *
7e3528c3
RD
526 * Also it is possible to set different flags by OR'ing
527 * in one or more of the following additional @flags:
528 *
838de63b
VB
529 * %__GFP_ZERO
530 * Zero the allocated memory before returning. Also see kzalloc().
531 *
01598ba6
MR
532 * %__GFP_HIGH
533 * This allocation has high priority and may use emergency pools.
7e3528c3 534 *
01598ba6
MR
535 * %__GFP_NOFAIL
536 * Indicate that this allocation is in no way allowed to fail
537 * (think twice before using).
7e3528c3 538 *
01598ba6
MR
539 * %__GFP_NORETRY
540 * If memory is not immediately available,
541 * then give up at once.
7e3528c3 542 *
01598ba6
MR
543 * %__GFP_NOWARN
544 * If allocation fails, don't issue any warnings.
7e3528c3 545 *
01598ba6
MR
546 * %__GFP_RETRY_MAYFAIL
547 * Try really hard to succeed the allocation but fail
548 * eventually.
f1b6eb6e 549 */
c37495d6 550static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
f1b6eb6e 551{
6fa57d78 552 if (__builtin_constant_p(size) && size) {
cc252eae 553 unsigned int index;
3bf01933 554
f1b6eb6e
CL
555 if (size > KMALLOC_MAX_CACHE_SIZE)
556 return kmalloc_large(size, flags);
f1b6eb6e 557
cc252eae 558 index = kmalloc_index(size);
26a40990 559 return kmalloc_trace(
cc252eae
VB
560 kmalloc_caches[kmalloc_type(flags)][index],
561 flags, size);
f1b6eb6e
CL
562 }
563 return __kmalloc(size, flags);
564}
565
c37495d6 566static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
f1b6eb6e 567{
6fa57d78 568 if (__builtin_constant_p(size) && size) {
bf37d791 569 unsigned int index;
f1b6eb6e 570
bf37d791
HY
571 if (size > KMALLOC_MAX_CACHE_SIZE)
572 return kmalloc_large_node(size, flags, node);
573
574 index = kmalloc_index(size);
26a40990 575 return kmalloc_node_trace(
bf37d791 576 kmalloc_caches[kmalloc_type(flags)][index],
26a40990 577 flags, node, size);
f1b6eb6e 578 }
f1b6eb6e
CL
579 return __kmalloc_node(size, flags, node);
580}
581
e7efa615
MO
582/**
583 * kmalloc_array - allocate memory for an array.
584 * @n: number of elements.
585 * @size: element size.
586 * @flags: the type of memory to allocate (see kmalloc).
800590f5 587 */
c37495d6 588static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 589{
49b7f898
KC
590 size_t bytes;
591
592 if (unlikely(check_mul_overflow(n, size, &bytes)))
6193a2ff 593 return NULL;
91c6a05f 594 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
595 return kmalloc(bytes, flags);
596 return __kmalloc(bytes, flags);
a8203725
XW
597}
598
f0dbd2bd
BG
599/**
600 * krealloc_array - reallocate memory for an array.
601 * @p: pointer to the memory chunk to reallocate
602 * @new_n: new number of elements to alloc
603 * @new_size: new size of a single member of the array
604 * @flags: the type of memory to allocate (see kmalloc)
605 */
9ed9cac1
KC
606static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
607 size_t new_n,
608 size_t new_size,
609 gfp_t flags)
f0dbd2bd
BG
610{
611 size_t bytes;
612
613 if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
614 return NULL;
615
616 return krealloc(p, bytes, flags);
617}
618
a8203725
XW
619/**
620 * kcalloc - allocate memory for an array. The memory is set to zero.
621 * @n: number of elements.
622 * @size: element size.
623 * @flags: the type of memory to allocate (see kmalloc).
624 */
c37495d6 625static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
a8203725
XW
626{
627 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
628}
629
c45248db
HY
630void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
631 unsigned long caller) __alloc_size(1);
632#define kmalloc_node_track_caller(size, flags, node) \
633 __kmalloc_node_track_caller(size, flags, node, \
634 _RET_IP_)
635
1d2c8eea
CH
636/*
637 * kmalloc_track_caller is a special version of kmalloc that records the
638 * calling function of the routine calling it for slab leak tracking instead
639 * of just the calling function (confusing, eh?).
640 * It's useful when the call to kmalloc comes from a widely-used standard
641 * allocator where we care about the real place the memory allocation
642 * request comes from.
643 */
1d2c8eea 644#define kmalloc_track_caller(size, flags) \
c45248db
HY
645 __kmalloc_node_track_caller(size, flags, \
646 NUMA_NO_NODE, _RET_IP_)
1da177e4 647
c37495d6
KC
648static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
649 int node)
5799b255 650{
49b7f898
KC
651 size_t bytes;
652
653 if (unlikely(check_mul_overflow(n, size, &bytes)))
5799b255
JT
654 return NULL;
655 if (__builtin_constant_p(n) && __builtin_constant_p(size))
49b7f898
KC
656 return kmalloc_node(bytes, flags, node);
657 return __kmalloc_node(bytes, flags, node);
5799b255
JT
658}
659
c37495d6 660static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
5799b255
JT
661{
662 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
663}
664
81cda662
CL
665/*
666 * Shortcuts
667 */
668static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
669{
670 return kmem_cache_alloc(k, flags | __GFP_ZERO);
671}
672
673/**
674 * kzalloc - allocate memory. The memory is set to zero.
675 * @size: how many bytes of memory are required.
676 * @flags: the type of memory to allocate (see kmalloc).
677 */
c37495d6 678static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
81cda662
CL
679{
680 return kmalloc(size, flags | __GFP_ZERO);
681}
682
979b0fea
JL
683/**
684 * kzalloc_node - allocate zeroed memory from a particular memory node.
685 * @size: how many bytes of memory are required.
686 * @flags: the type of memory to allocate (see kmalloc).
687 * @node: memory node from which to allocate
688 */
c37495d6 689static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
979b0fea
JL
690{
691 return kmalloc_node(size, flags | __GFP_ZERO, node);
692}
693
56bcf40f
KC
694extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
695static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
8587ca6f
MWO
696{
697 return kvmalloc_node(size, flags, NUMA_NO_NODE);
698}
56bcf40f 699static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
8587ca6f
MWO
700{
701 return kvmalloc_node(size, flags | __GFP_ZERO, node);
702}
56bcf40f 703static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
8587ca6f
MWO
704{
705 return kvmalloc(size, flags | __GFP_ZERO);
706}
707
56bcf40f 708static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
8587ca6f
MWO
709{
710 size_t bytes;
711
712 if (unlikely(check_mul_overflow(n, size, &bytes)))
713 return NULL;
714
715 return kvmalloc(bytes, flags);
716}
717
56bcf40f 718static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
8587ca6f
MWO
719{
720 return kvmalloc_array(n, size, flags | __GFP_ZERO);
721}
722
56bcf40f 723extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
9ed9cac1 724 __realloc_size(3);
8587ca6f
MWO
725extern void kvfree(const void *addr);
726extern void kvfree_sensitive(const void *addr, size_t len);
727
07f361b2 728unsigned int kmem_cache_size(struct kmem_cache *s);
05a94065
KC
729
730/**
731 * kmalloc_size_roundup - Report allocation bucket size for the given size
732 *
733 * @size: Number of bytes to round up from.
734 *
735 * This returns the number of bytes that would be available in a kmalloc()
736 * allocation of @size bytes. For example, a 126 byte request would be
737 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
738 * for the general-purpose kmalloc()-based allocations, and is not for the
739 * pre-sized kmem_cache_alloc()-based allocations.)
740 *
741 * Use this to kmalloc() the full bucket size ahead of time instead of using
742 * ksize() to query the size after an allocation.
743 */
744size_t kmalloc_size_roundup(size_t size);
745
7e85ee0c
PE
746void __init kmem_cache_init_late(void);
747
6731d4f1
SAS
748#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
749int slab_prepare_cpu(unsigned int cpu);
750int slab_dead_cpu(unsigned int cpu);
751#else
752#define slab_prepare_cpu NULL
753#define slab_dead_cpu NULL
754#endif
755
1da177e4 756#endif /* _LINUX_SLAB_H */