net: Convert GRO SKB handling to list_head.
[linux-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
1da177e4 246
5f79e0f9 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
248struct nf_conntrack {
249 atomic_t use;
1da177e4 250};
5f79e0f9 251#endif
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
53869ceb 255 refcount_t use;
3eaf4025
FW
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
7fb48c5b 260 } orig_proto:8;
72b1e5e4
FW
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
411ffb4f 264 __u16 frag_max_size;
bf1ac5ca 265 struct net_device *physindev;
63cdbc06
FW
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
7fb48c5b 269 union {
72b1e5e4 270 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
72b1e5e4
FW
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
72b31f72 279 };
1da177e4
LT
280};
281#endif
282
1da177e4
LT
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
9d4dde52
IC
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
a715dea3 300 */
9d4dde52 301#if (65536/PAGE_SIZE + 1) < 16
eec00954 302#define MAX_SKB_FRAGS 16UL
a715dea3 303#else
9d4dde52 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 305#endif
5f74f82e 306extern int sysctl_max_skb_frags;
1da177e4 307
3953c46c
MRL
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
1da177e4
LT
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
a8605c60
IC
316 struct {
317 struct page *p;
318 } page;
cb4dfe56 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
320 __u32 page_offset;
321 __u32 size;
cb4dfe56
ED
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
1da177e4
LT
326};
327
9e903e08
ED
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
c613c209
WB
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
ac45f602
PO
384#define HAVE_HW_TIME_STAMP
385
386/**
d3a21be8 387 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
ac45f602
PO
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 392 * skb->tstamp.
ac45f602
PO
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
ac45f602
PO
402};
403
2244d07b
OH
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
e7fd2885 409 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
a6686f2f 415 /* device driver supports TX zero-copy buffers */
62b1a8ab 416 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
417
418 /* generate wifi status information (where possible) */
62b1a8ab 419 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
430};
431
52267790 432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 434 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
a6686f2f
SM
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
a6686f2f
SM
444 */
445struct ubuf_info {
e19d6763 446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
c1d1b437 459 refcount_t refcnt;
a91dbff5
WB
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
ac45f602
PO
465};
466
52267790
WB
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
6f89dbce
SV
469int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470void mm_unaccount_pinned_pages(struct mmpin *mmp);
471
52267790 472struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
473struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 struct ubuf_info *uarg);
52267790
WB
475
476static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477{
c1d1b437 478 refcount_inc(&uarg->refcnt);
52267790
WB
479}
480
481void sock_zerocopy_put(struct ubuf_info *uarg);
482void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483
484void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485
486int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 struct msghdr *msg, int len,
488 struct ubuf_info *uarg);
489
1da177e4
LT
490/* This data is invariant across clones and lives at
491 * the end of the header data, ie. at skb->end.
492 */
493struct skb_shared_info {
de8f3a83
DB
494 __u8 __unused;
495 __u8 meta_len;
496 __u8 nr_frags;
9f42f126 497 __u8 tx_flags;
7967168c
HX
498 unsigned short gso_size;
499 /* Warning: this field is not always filled in (UFO)! */
500 unsigned short gso_segs;
1da177e4 501 struct sk_buff *frag_list;
ac45f602 502 struct skb_shared_hwtstamps hwtstamps;
7f564528 503 unsigned int gso_type;
09c2d251 504 u32 tskey;
ec7d2f2c
ED
505
506 /*
507 * Warning : all fields before dataref are cleared in __alloc_skb()
508 */
509 atomic_t dataref;
510
69e3c75f
JB
511 /* Intermediate layers must ensure that destructor_arg
512 * remains valid until skb destructor */
513 void * destructor_arg;
a6686f2f 514
fed66381
ED
515 /* must be last field, see pskb_expand_head() */
516 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
517};
518
519/* We divide dataref into two halves. The higher 16 bits hold references
520 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
521 * the entire skb->data. A clone of a headerless skb holds the length of
522 * the header in skb->hdr_len.
1da177e4
LT
523 *
524 * All users must obey the rule that the skb->data reference count must be
525 * greater than or equal to the payload reference count.
526 *
527 * Holding a reference to the payload part means that the user does not
528 * care about modifications to the header part of skb->data.
529 */
530#define SKB_DATAREF_SHIFT 16
531#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532
d179cd12
DM
533
534enum {
c8753d55
VS
535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
538};
539
7967168c
HX
540enum {
541 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
542
543 /* This indicates the skb is from an untrusted source. */
d9d30adf 544 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
545
546 /* This indicates the tcp segment has CWR set. */
d9d30adf 547 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 548
d9d30adf 549 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 550
d9d30adf 551 SKB_GSO_TCPV6 = 1 << 4,
68c33163 552
d9d30adf 553 SKB_GSO_FCOE = 1 << 5,
73136267 554
d9d30adf 555 SKB_GSO_GRE = 1 << 6,
0d89d203 556
d9d30adf 557 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 558
d9d30adf 559 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 560
d9d30adf 561 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 562
d9d30adf 563 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 564
d9d30adf 565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 566
d9d30adf 567 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 568
d9d30adf 569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 570
d9d30adf 571 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 572
d9d30adf 573 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
574
575 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
576
577 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
578};
579
2e07fa9c
ACM
580#if BITS_PER_LONG > 32
581#define NET_SKBUFF_DATA_USES_OFFSET 1
582#endif
583
584#ifdef NET_SKBUFF_DATA_USES_OFFSET
585typedef unsigned int sk_buff_data_t;
586#else
587typedef unsigned char *sk_buff_data_t;
588#endif
589
1da177e4
LT
590/**
591 * struct sk_buff - socket buffer
592 * @next: Next buffer in list
593 * @prev: Previous buffer in list
363ec392 594 * @tstamp: Time we arrived/left
56b17425 595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 596 * @sk: Socket we are owned by
1da177e4 597 * @dev: Device we arrived on/are leaving by
d84e0bd7 598 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 599 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 600 * @sp: the security path, used for xfrm
1da177e4
LT
601 * @len: Length of actual data
602 * @data_len: Data length
603 * @mac_len: Length of link layer header
334a8132 604 * @hdr_len: writable header length of cloned skb
663ead3b
HX
605 * @csum: Checksum (must include start/offset pair)
606 * @csum_start: Offset from skb->head where checksumming should start
607 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 608 * @priority: Packet queueing priority
60ff7467 609 * @ignore_df: allow local fragmentation
1da177e4 610 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 611 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
612 * @nohdr: Payload reference only, must not modify header
613 * @pkt_type: Packet class
c83c2486 614 * @fclone: skbuff clone status
c83c2486 615 * @ipvs_property: skbuff is owned by ipvs
e7246e12 616 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 617 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
618 * @tc_redirected: packet was redirected by a tc action
619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
620 * @peeked: this packet has been seen already, so stats have been
621 * done for it, don't do them again
ba9dda3a 622 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
623 * @protocol: Packet protocol from driver
624 * @destructor: Destruct function
e2080072 625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 626 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 628 * @skb_iif: ifindex of device we arrived on
1da177e4 629 * @tc_index: Traffic control index
61b905da 630 * @hash: the packet hash
d84e0bd7 631 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 632 * @xmit_more: More SKBs are pending for this queue
553a5672 633 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 634 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 635 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 636 * ports.
a3b18ddb 637 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
638 * @wifi_acked_valid: wifi_acked was set
639 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 640 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 641 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 642 * @dst_pending_confirm: need to confirm neighbour
06021292 643 * @napi_id: id of the NAPI struct this skb came from
984bc16c 644 * @secmark: security marking
d84e0bd7 645 * @mark: Generic packet mark
86a9bad3 646 * @vlan_proto: vlan encapsulation protocol
6aa895b0 647 * @vlan_tci: vlan tag control information
0d89d203 648 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
649 * @inner_transport_header: Inner transport layer header (encapsulation)
650 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 651 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
652 * @transport_header: Transport layer header
653 * @network_header: Network layer header
654 * @mac_header: Link layer header
655 * @tail: Tail pointer
656 * @end: End pointer
657 * @head: Head of buffer
658 * @data: Data head pointer
659 * @truesize: Buffer size
660 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
661 */
662
663struct sk_buff {
363ec392 664 union {
56b17425
ED
665 struct {
666 /* These two members must be first. */
667 struct sk_buff *next;
668 struct sk_buff *prev;
669
670 union {
bffa72cf
ED
671 struct net_device *dev;
672 /* Some protocols might use this space to store information,
673 * while device pointer would be NULL.
674 * UDP receive path is one user.
675 */
676 unsigned long dev_scratch;
bf663371 677 int ip_defrag_offset;
56b17425
ED
678 };
679 };
d4546c25
DM
680 struct rb_node rbnode; /* used in netem & tcp stack */
681 struct list_head list;
363ec392 682 };
da3f5cf1 683 struct sock *sk;
1da177e4 684
c84d9490 685 union {
bffa72cf
ED
686 ktime_t tstamp;
687 u64 skb_mstamp;
c84d9490 688 };
1da177e4
LT
689 /*
690 * This is the control buffer. It is free to use for every
691 * layer. Please put your private variables there. If you
692 * want to keep them across layers you have to do a skb_clone()
693 * first. This is owned by whoever has the skb queued ATM.
694 */
da3f5cf1 695 char cb[48] __aligned(8);
1da177e4 696
e2080072
ED
697 union {
698 struct {
699 unsigned long _skb_refdst;
700 void (*destructor)(struct sk_buff *skb);
701 };
702 struct list_head tcp_tsorted_anchor;
703 };
704
da3f5cf1
FF
705#ifdef CONFIG_XFRM
706 struct sec_path *sp;
b1937227
ED
707#endif
708#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 709 unsigned long _nfct;
b1937227 710#endif
85224844 711#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 712 struct nf_bridge_info *nf_bridge;
da3f5cf1 713#endif
1da177e4 714 unsigned int len,
334a8132
PM
715 data_len;
716 __u16 mac_len,
717 hdr_len;
b1937227
ED
718
719 /* Following fields are _not_ copied in __copy_skb_header()
720 * Note that queue_mapping is here mostly to fill a hole.
721 */
b1937227 722 __u16 queue_mapping;
36bbef52
DB
723
724/* if you move cloned around you also must adapt those constants */
725#ifdef __BIG_ENDIAN_BITFIELD
726#define CLONED_MASK (1 << 7)
727#else
728#define CLONED_MASK 1
729#endif
730#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
731
732 __u8 __cloned_offset[0];
b1937227 733 __u8 cloned:1,
6869c4d8 734 nohdr:1,
b84f4cc9 735 fclone:2,
a59322be 736 peeked:1,
b1937227 737 head_frag:1,
36bbef52
DB
738 xmit_more:1,
739 __unused:1; /* one bit hole */
4031ae6e 740
b1937227
ED
741 /* fields enclosed in headers_start/headers_end are copied
742 * using a single memcpy() in __copy_skb_header()
743 */
ebcf34f3 744 /* private: */
b1937227 745 __u32 headers_start[0];
ebcf34f3 746 /* public: */
4031ae6e 747
233577a2
HFS
748/* if you move pkt_type around you also must adapt those constants */
749#ifdef __BIG_ENDIAN_BITFIELD
750#define PKT_TYPE_MAX (7 << 5)
751#else
752#define PKT_TYPE_MAX 7
1da177e4 753#endif
233577a2 754#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 755
233577a2 756 __u8 __pkt_type_offset[0];
b1937227 757 __u8 pkt_type:3;
c93bdd0e 758 __u8 pfmemalloc:1;
b1937227 759 __u8 ignore_df:1;
b1937227
ED
760
761 __u8 nf_trace:1;
762 __u8 ip_summed:2;
3853b584 763 __u8 ooo_okay:1;
61b905da 764 __u8 l4_hash:1;
a3b18ddb 765 __u8 sw_hash:1;
6e3e939f
JB
766 __u8 wifi_acked_valid:1;
767 __u8 wifi_acked:1;
b1937227 768
3bdc0eba 769 __u8 no_fcs:1;
77cffe23 770 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 771 __u8 encapsulation:1;
7e2b10c1 772 __u8 encap_hdr_csum:1;
5d0c2b95 773 __u8 csum_valid:1;
7e3cead5 774 __u8 csum_complete_sw:1;
b1937227 775 __u8 csum_level:2;
dba00306 776 __u8 csum_not_inet:1;
fe55f6d5 777
4ff06203 778 __u8 dst_pending_confirm:1;
b1937227
ED
779#ifdef CONFIG_IPV6_NDISC_NODETYPE
780 __u8 ndisc_nodetype:2;
781#endif
782 __u8 ipvs_property:1;
8bce6d7d 783 __u8 inner_protocol_type:1;
e585f236 784 __u8 remcsum_offload:1;
6bc506b4
IS
785#ifdef CONFIG_NET_SWITCHDEV
786 __u8 offload_fwd_mark:1;
abf4bb6b 787 __u8 offload_mr_fwd_mark:1;
6bc506b4 788#endif
e7246e12
WB
789#ifdef CONFIG_NET_CLS_ACT
790 __u8 tc_skip_classify:1;
8dc07fdb 791 __u8 tc_at_ingress:1;
bc31c905
WB
792 __u8 tc_redirected:1;
793 __u8 tc_from_ingress:1;
e7246e12 794#endif
b1937227
ED
795
796#ifdef CONFIG_NET_SCHED
797 __u16 tc_index; /* traffic control index */
b1937227 798#endif
fe55f6d5 799
b1937227
ED
800 union {
801 __wsum csum;
802 struct {
803 __u16 csum_start;
804 __u16 csum_offset;
805 };
806 };
807 __u32 priority;
808 int skb_iif;
809 __u32 hash;
810 __be16 vlan_proto;
811 __u16 vlan_tci;
2bd82484
ED
812#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
813 union {
814 unsigned int napi_id;
815 unsigned int sender_cpu;
816 };
97fc2f08 817#endif
984bc16c 818#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 819 __u32 secmark;
0c4f691f 820#endif
0c4f691f 821
3b885787
NH
822 union {
823 __u32 mark;
16fad69c 824 __u32 reserved_tailroom;
3b885787 825 };
1da177e4 826
8bce6d7d
TH
827 union {
828 __be16 inner_protocol;
829 __u8 inner_ipproto;
830 };
831
1a37e412
SH
832 __u16 inner_transport_header;
833 __u16 inner_network_header;
834 __u16 inner_mac_header;
b1937227
ED
835
836 __be16 protocol;
1a37e412
SH
837 __u16 transport_header;
838 __u16 network_header;
839 __u16 mac_header;
b1937227 840
ebcf34f3 841 /* private: */
b1937227 842 __u32 headers_end[0];
ebcf34f3 843 /* public: */
b1937227 844
1da177e4 845 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 846 sk_buff_data_t tail;
4305b541 847 sk_buff_data_t end;
1da177e4 848 unsigned char *head,
4305b541 849 *data;
27a884dc 850 unsigned int truesize;
63354797 851 refcount_t users;
1da177e4
LT
852};
853
854#ifdef __KERNEL__
855/*
856 * Handling routines are only of interest to the kernel
857 */
1da177e4 858
c93bdd0e
MG
859#define SKB_ALLOC_FCLONE 0x01
860#define SKB_ALLOC_RX 0x02
fd11a83d 861#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
862
863/* Returns true if the skb was allocated from PFMEMALLOC reserves */
864static inline bool skb_pfmemalloc(const struct sk_buff *skb)
865{
866 return unlikely(skb->pfmemalloc);
867}
868
7fee226a
ED
869/*
870 * skb might have a dst pointer attached, refcounted or not.
871 * _skb_refdst low order bit is set if refcount was _not_ taken
872 */
873#define SKB_DST_NOREF 1UL
874#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
875
a9e419dc 876#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
877/**
878 * skb_dst - returns skb dst_entry
879 * @skb: buffer
880 *
881 * Returns skb dst_entry, regardless of reference taken or not.
882 */
adf30907
ED
883static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
884{
7fee226a
ED
885 /* If refdst was not refcounted, check we still are in a
886 * rcu_read_lock section
887 */
888 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
889 !rcu_read_lock_held() &&
890 !rcu_read_lock_bh_held());
891 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
892}
893
7fee226a
ED
894/**
895 * skb_dst_set - sets skb dst
896 * @skb: buffer
897 * @dst: dst entry
898 *
899 * Sets skb dst, assuming a reference was taken on dst and should
900 * be released by skb_dst_drop()
901 */
adf30907
ED
902static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
903{
7fee226a
ED
904 skb->_skb_refdst = (unsigned long)dst;
905}
906
932bc4d7
JA
907/**
908 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
909 * @skb: buffer
910 * @dst: dst entry
911 *
912 * Sets skb dst, assuming a reference was not taken on dst.
913 * If dst entry is cached, we do not take reference and dst_release
914 * will be avoided by refdst_drop. If dst entry is not cached, we take
915 * reference, so that last dst_release can destroy the dst immediately.
916 */
917static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
918{
dbfc4fb7
HFS
919 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
920 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 921}
7fee226a
ED
922
923/**
25985edc 924 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
925 * @skb: buffer
926 */
927static inline bool skb_dst_is_noref(const struct sk_buff *skb)
928{
929 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
930}
931
511c3f92
ED
932static inline struct rtable *skb_rtable(const struct sk_buff *skb)
933{
adf30907 934 return (struct rtable *)skb_dst(skb);
511c3f92
ED
935}
936
8b10cab6
JHS
937/* For mangling skb->pkt_type from user space side from applications
938 * such as nft, tc, etc, we only allow a conservative subset of
939 * possible pkt_types to be set.
940*/
941static inline bool skb_pkt_type_ok(u32 ptype)
942{
943 return ptype <= PACKET_OTHERHOST;
944}
945
90b602f8
ML
946static inline unsigned int skb_napi_id(const struct sk_buff *skb)
947{
948#ifdef CONFIG_NET_RX_BUSY_POLL
949 return skb->napi_id;
950#else
951 return 0;
952#endif
953}
954
3889a803
PA
955/* decrement the reference count and return true if we can free the skb */
956static inline bool skb_unref(struct sk_buff *skb)
957{
958 if (unlikely(!skb))
959 return false;
63354797 960 if (likely(refcount_read(&skb->users) == 1))
3889a803 961 smp_rmb();
63354797 962 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
963 return false;
964
965 return true;
966}
967
0a463c78 968void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
969void kfree_skb(struct sk_buff *skb);
970void kfree_skb_list(struct sk_buff *segs);
971void skb_tx_error(struct sk_buff *skb);
972void consume_skb(struct sk_buff *skb);
ca2c1418 973void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 974void __kfree_skb(struct sk_buff *skb);
d7e8883c 975extern struct kmem_cache *skbuff_head_cache;
bad43ca8 976
7965bd4d
JP
977void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
978bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
979 bool *fragstolen, int *delta_truesize);
bad43ca8 980
7965bd4d
JP
981struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
982 int node);
2ea2f62c 983struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 984struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 985static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 986 gfp_t priority)
d179cd12 987{
564824b0 988 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
989}
990
2e4e4410
ED
991struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
992 unsigned long data_len,
993 int max_page_order,
994 int *errcode,
995 gfp_t gfp_mask);
996
d0bf4a9e
ED
997/* Layout of fast clones : [skb1][skb2][fclone_ref] */
998struct sk_buff_fclones {
999 struct sk_buff skb1;
1000
1001 struct sk_buff skb2;
1002
2638595a 1003 refcount_t fclone_ref;
d0bf4a9e
ED
1004};
1005
1006/**
1007 * skb_fclone_busy - check if fclone is busy
293de7de 1008 * @sk: socket
d0bf4a9e
ED
1009 * @skb: buffer
1010 *
bda13fed 1011 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1012 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1013 * so we also check that this didnt happen.
d0bf4a9e 1014 */
39bb5e62
ED
1015static inline bool skb_fclone_busy(const struct sock *sk,
1016 const struct sk_buff *skb)
d0bf4a9e
ED
1017{
1018 const struct sk_buff_fclones *fclones;
1019
1020 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1021
1022 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1023 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1024 fclones->skb2.sk == sk;
d0bf4a9e
ED
1025}
1026
d179cd12 1027static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1028 gfp_t priority)
d179cd12 1029{
c93bdd0e 1030 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1031}
1032
7965bd4d
JP
1033struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1034int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1035struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1036void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1037struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1038struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1039 gfp_t gfp_mask, bool fclone);
1040static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1041 gfp_t gfp_mask)
1042{
1043 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1044}
7965bd4d
JP
1045
1046int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1047struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1048 unsigned int headroom);
1049struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1050 int newtailroom, gfp_t priority);
48a1df65
JD
1051int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1052 int offset, int len);
1053int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1054 int offset, int len);
7965bd4d 1055int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1056int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1057
1058/**
1059 * skb_pad - zero pad the tail of an skb
1060 * @skb: buffer to pad
1061 * @pad: space to pad
1062 *
1063 * Ensure that a buffer is followed by a padding area that is zero
1064 * filled. Used by network drivers which may DMA or transfer data
1065 * beyond the buffer end onto the wire.
1066 *
1067 * May return error in out of memory cases. The skb is freed on error.
1068 */
1069static inline int skb_pad(struct sk_buff *skb, int pad)
1070{
1071 return __skb_pad(skb, pad, true);
1072}
ead2ceb0 1073#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1074
7965bd4d
JP
1075int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1076 int getfrag(void *from, char *to, int offset,
1077 int len, int odd, struct sk_buff *skb),
1078 void *from, int length);
e89e9cf5 1079
be12a1fe
HFS
1080int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1081 int offset, size_t size);
1082
d94d9fee 1083struct skb_seq_state {
677e90ed
TG
1084 __u32 lower_offset;
1085 __u32 upper_offset;
1086 __u32 frag_idx;
1087 __u32 stepped_offset;
1088 struct sk_buff *root_skb;
1089 struct sk_buff *cur_skb;
1090 __u8 *frag_data;
1091};
1092
7965bd4d
JP
1093void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1094 unsigned int to, struct skb_seq_state *st);
1095unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1096 struct skb_seq_state *st);
1097void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1098
7965bd4d 1099unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1100 unsigned int to, struct ts_config *config);
3fc7e8a6 1101
09323cc4
TH
1102/*
1103 * Packet hash types specify the type of hash in skb_set_hash.
1104 *
1105 * Hash types refer to the protocol layer addresses which are used to
1106 * construct a packet's hash. The hashes are used to differentiate or identify
1107 * flows of the protocol layer for the hash type. Hash types are either
1108 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1109 *
1110 * Properties of hashes:
1111 *
1112 * 1) Two packets in different flows have different hash values
1113 * 2) Two packets in the same flow should have the same hash value
1114 *
1115 * A hash at a higher layer is considered to be more specific. A driver should
1116 * set the most specific hash possible.
1117 *
1118 * A driver cannot indicate a more specific hash than the layer at which a hash
1119 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1120 *
1121 * A driver may indicate a hash level which is less specific than the
1122 * actual layer the hash was computed on. For instance, a hash computed
1123 * at L4 may be considered an L3 hash. This should only be done if the
1124 * driver can't unambiguously determine that the HW computed the hash at
1125 * the higher layer. Note that the "should" in the second property above
1126 * permits this.
1127 */
1128enum pkt_hash_types {
1129 PKT_HASH_TYPE_NONE, /* Undefined type */
1130 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1131 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1132 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1133};
1134
bcc83839 1135static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1136{
bcc83839 1137 skb->hash = 0;
a3b18ddb 1138 skb->sw_hash = 0;
bcc83839
TH
1139 skb->l4_hash = 0;
1140}
1141
1142static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1143{
1144 if (!skb->l4_hash)
1145 skb_clear_hash(skb);
1146}
1147
1148static inline void
1149__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1150{
1151 skb->l4_hash = is_l4;
1152 skb->sw_hash = is_sw;
61b905da 1153 skb->hash = hash;
09323cc4
TH
1154}
1155
bcc83839
TH
1156static inline void
1157skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1158{
1159 /* Used by drivers to set hash from HW */
1160 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1161}
1162
1163static inline void
1164__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1165{
1166 __skb_set_hash(skb, hash, true, is_l4);
1167}
1168
e5276937 1169void __skb_get_hash(struct sk_buff *skb);
b917783c 1170u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1171u32 skb_get_poff(const struct sk_buff *skb);
1172u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1173 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1174__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1175 void *data, int hlen_proto);
1176
1177static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1178 int thoff, u8 ip_proto)
1179{
1180 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1181}
1182
1183void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1184 const struct flow_dissector_key *key,
1185 unsigned int key_count);
1186
1187bool __skb_flow_dissect(const struct sk_buff *skb,
1188 struct flow_dissector *flow_dissector,
1189 void *target_container,
cd79a238
TH
1190 void *data, __be16 proto, int nhoff, int hlen,
1191 unsigned int flags);
e5276937
TH
1192
1193static inline bool skb_flow_dissect(const struct sk_buff *skb,
1194 struct flow_dissector *flow_dissector,
cd79a238 1195 void *target_container, unsigned int flags)
e5276937
TH
1196{
1197 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1198 NULL, 0, 0, 0, flags);
e5276937
TH
1199}
1200
1201static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1202 struct flow_keys *flow,
1203 unsigned int flags)
e5276937
TH
1204{
1205 memset(flow, 0, sizeof(*flow));
1206 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1207 NULL, 0, 0, 0, flags);
e5276937
TH
1208}
1209
72a338bc
PA
1210static inline bool
1211skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1212 struct flow_keys_basic *flow, void *data,
1213 __be16 proto, int nhoff, int hlen,
1214 unsigned int flags)
e5276937
TH
1215{
1216 memset(flow, 0, sizeof(*flow));
72a338bc 1217 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
cd79a238 1218 data, proto, nhoff, hlen, flags);
e5276937
TH
1219}
1220
62b32379
SH
1221void
1222skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1223 struct flow_dissector *flow_dissector,
1224 void *target_container);
1225
3958afa1 1226static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1227{
a3b18ddb 1228 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1229 __skb_get_hash(skb);
bfb564e7 1230
61b905da 1231 return skb->hash;
bfb564e7
KK
1232}
1233
20a17bf6 1234static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1235{
c6cc1ca7
TH
1236 if (!skb->l4_hash && !skb->sw_hash) {
1237 struct flow_keys keys;
de4c1f8b 1238 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1239
de4c1f8b 1240 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1241 }
f70ea018
TH
1242
1243 return skb->hash;
1244}
1245
50fb7992
TH
1246__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1247
57bdf7f4
TH
1248static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1249{
61b905da 1250 return skb->hash;
57bdf7f4
TH
1251}
1252
3df7a74e
TH
1253static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1254{
61b905da 1255 to->hash = from->hash;
a3b18ddb 1256 to->sw_hash = from->sw_hash;
61b905da 1257 to->l4_hash = from->l4_hash;
3df7a74e
TH
1258};
1259
4305b541
ACM
1260#ifdef NET_SKBUFF_DATA_USES_OFFSET
1261static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1262{
1263 return skb->head + skb->end;
1264}
ec47ea82
AD
1265
1266static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1267{
1268 return skb->end;
1269}
4305b541
ACM
1270#else
1271static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1272{
1273 return skb->end;
1274}
ec47ea82
AD
1275
1276static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1277{
1278 return skb->end - skb->head;
1279}
4305b541
ACM
1280#endif
1281
1da177e4 1282/* Internal */
4305b541 1283#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1284
ac45f602
PO
1285static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1286{
1287 return &skb_shinfo(skb)->hwtstamps;
1288}
1289
52267790
WB
1290static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1291{
1292 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1293
1294 return is_zcopy ? skb_uarg(skb) : NULL;
1295}
1296
1297static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1298{
1299 if (skb && uarg && !skb_zcopy(skb)) {
1300 sock_zerocopy_get(uarg);
1301 skb_shinfo(skb)->destructor_arg = uarg;
1302 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1303 }
1304}
1305
1306/* Release a reference on a zerocopy structure */
1307static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1308{
1309 struct ubuf_info *uarg = skb_zcopy(skb);
1310
1311 if (uarg) {
0a4a060b
WB
1312 if (uarg->callback == sock_zerocopy_callback) {
1313 uarg->zerocopy = uarg->zerocopy && zerocopy;
1314 sock_zerocopy_put(uarg);
1315 } else {
1316 uarg->callback(uarg, zerocopy);
1317 }
1318
52267790
WB
1319 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1320 }
1321}
1322
1323/* Abort a zerocopy operation and revert zckey on error in send syscall */
1324static inline void skb_zcopy_abort(struct sk_buff *skb)
1325{
1326 struct ubuf_info *uarg = skb_zcopy(skb);
1327
1328 if (uarg) {
1329 sock_zerocopy_put_abort(uarg);
1330 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1331 }
1332}
1333
1da177e4
LT
1334/**
1335 * skb_queue_empty - check if a queue is empty
1336 * @list: queue head
1337 *
1338 * Returns true if the queue is empty, false otherwise.
1339 */
1340static inline int skb_queue_empty(const struct sk_buff_head *list)
1341{
fd44b93c 1342 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1343}
1344
fc7ebb21
DM
1345/**
1346 * skb_queue_is_last - check if skb is the last entry in the queue
1347 * @list: queue head
1348 * @skb: buffer
1349 *
1350 * Returns true if @skb is the last buffer on the list.
1351 */
1352static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1353 const struct sk_buff *skb)
1354{
fd44b93c 1355 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1356}
1357
832d11c5
IJ
1358/**
1359 * skb_queue_is_first - check if skb is the first entry in the queue
1360 * @list: queue head
1361 * @skb: buffer
1362 *
1363 * Returns true if @skb is the first buffer on the list.
1364 */
1365static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1366 const struct sk_buff *skb)
1367{
fd44b93c 1368 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1369}
1370
249c8b42
DM
1371/**
1372 * skb_queue_next - return the next packet in the queue
1373 * @list: queue head
1374 * @skb: current buffer
1375 *
1376 * Return the next packet in @list after @skb. It is only valid to
1377 * call this if skb_queue_is_last() evaluates to false.
1378 */
1379static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1380 const struct sk_buff *skb)
1381{
1382 /* This BUG_ON may seem severe, but if we just return then we
1383 * are going to dereference garbage.
1384 */
1385 BUG_ON(skb_queue_is_last(list, skb));
1386 return skb->next;
1387}
1388
832d11c5
IJ
1389/**
1390 * skb_queue_prev - return the prev packet in the queue
1391 * @list: queue head
1392 * @skb: current buffer
1393 *
1394 * Return the prev packet in @list before @skb. It is only valid to
1395 * call this if skb_queue_is_first() evaluates to false.
1396 */
1397static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1398 const struct sk_buff *skb)
1399{
1400 /* This BUG_ON may seem severe, but if we just return then we
1401 * are going to dereference garbage.
1402 */
1403 BUG_ON(skb_queue_is_first(list, skb));
1404 return skb->prev;
1405}
1406
1da177e4
LT
1407/**
1408 * skb_get - reference buffer
1409 * @skb: buffer to reference
1410 *
1411 * Makes another reference to a socket buffer and returns a pointer
1412 * to the buffer.
1413 */
1414static inline struct sk_buff *skb_get(struct sk_buff *skb)
1415{
63354797 1416 refcount_inc(&skb->users);
1da177e4
LT
1417 return skb;
1418}
1419
1420/*
f8821f96 1421 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1422 */
1423
1da177e4
LT
1424/**
1425 * skb_cloned - is the buffer a clone
1426 * @skb: buffer to check
1427 *
1428 * Returns true if the buffer was generated with skb_clone() and is
1429 * one of multiple shared copies of the buffer. Cloned buffers are
1430 * shared data so must not be written to under normal circumstances.
1431 */
1432static inline int skb_cloned(const struct sk_buff *skb)
1433{
1434 return skb->cloned &&
1435 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1436}
1437
14bbd6a5
PS
1438static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1439{
d0164adc 1440 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1441
1442 if (skb_cloned(skb))
1443 return pskb_expand_head(skb, 0, 0, pri);
1444
1445 return 0;
1446}
1447
1da177e4
LT
1448/**
1449 * skb_header_cloned - is the header a clone
1450 * @skb: buffer to check
1451 *
1452 * Returns true if modifying the header part of the buffer requires
1453 * the data to be copied.
1454 */
1455static inline int skb_header_cloned(const struct sk_buff *skb)
1456{
1457 int dataref;
1458
1459 if (!skb->cloned)
1460 return 0;
1461
1462 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1463 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1464 return dataref != 1;
1465}
1466
9580bf2e
ED
1467static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1468{
1469 might_sleep_if(gfpflags_allow_blocking(pri));
1470
1471 if (skb_header_cloned(skb))
1472 return pskb_expand_head(skb, 0, 0, pri);
1473
1474 return 0;
1475}
1476
f4a775d1
ED
1477/**
1478 * __skb_header_release - release reference to header
1479 * @skb: buffer to operate on
f4a775d1
ED
1480 */
1481static inline void __skb_header_release(struct sk_buff *skb)
1482{
1483 skb->nohdr = 1;
1484 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1485}
1486
1487
1da177e4
LT
1488/**
1489 * skb_shared - is the buffer shared
1490 * @skb: buffer to check
1491 *
1492 * Returns true if more than one person has a reference to this
1493 * buffer.
1494 */
1495static inline int skb_shared(const struct sk_buff *skb)
1496{
63354797 1497 return refcount_read(&skb->users) != 1;
1da177e4
LT
1498}
1499
1500/**
1501 * skb_share_check - check if buffer is shared and if so clone it
1502 * @skb: buffer to check
1503 * @pri: priority for memory allocation
1504 *
1505 * If the buffer is shared the buffer is cloned and the old copy
1506 * drops a reference. A new clone with a single reference is returned.
1507 * If the buffer is not shared the original buffer is returned. When
1508 * being called from interrupt status or with spinlocks held pri must
1509 * be GFP_ATOMIC.
1510 *
1511 * NULL is returned on a memory allocation failure.
1512 */
47061bc4 1513static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1514{
d0164adc 1515 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1516 if (skb_shared(skb)) {
1517 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1518
1519 if (likely(nskb))
1520 consume_skb(skb);
1521 else
1522 kfree_skb(skb);
1da177e4
LT
1523 skb = nskb;
1524 }
1525 return skb;
1526}
1527
1528/*
1529 * Copy shared buffers into a new sk_buff. We effectively do COW on
1530 * packets to handle cases where we have a local reader and forward
1531 * and a couple of other messy ones. The normal one is tcpdumping
1532 * a packet thats being forwarded.
1533 */
1534
1535/**
1536 * skb_unshare - make a copy of a shared buffer
1537 * @skb: buffer to check
1538 * @pri: priority for memory allocation
1539 *
1540 * If the socket buffer is a clone then this function creates a new
1541 * copy of the data, drops a reference count on the old copy and returns
1542 * the new copy with the reference count at 1. If the buffer is not a clone
1543 * the original buffer is returned. When called with a spinlock held or
1544 * from interrupt state @pri must be %GFP_ATOMIC
1545 *
1546 * %NULL is returned on a memory allocation failure.
1547 */
e2bf521d 1548static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1549 gfp_t pri)
1da177e4 1550{
d0164adc 1551 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1552 if (skb_cloned(skb)) {
1553 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1554
1555 /* Free our shared copy */
1556 if (likely(nskb))
1557 consume_skb(skb);
1558 else
1559 kfree_skb(skb);
1da177e4
LT
1560 skb = nskb;
1561 }
1562 return skb;
1563}
1564
1565/**
1a5778aa 1566 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1567 * @list_: list to peek at
1568 *
1569 * Peek an &sk_buff. Unlike most other operations you _MUST_
1570 * be careful with this one. A peek leaves the buffer on the
1571 * list and someone else may run off with it. You must hold
1572 * the appropriate locks or have a private queue to do this.
1573 *
1574 * Returns %NULL for an empty list or a pointer to the head element.
1575 * The reference count is not incremented and the reference is therefore
1576 * volatile. Use with caution.
1577 */
05bdd2f1 1578static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1579{
18d07000
ED
1580 struct sk_buff *skb = list_->next;
1581
1582 if (skb == (struct sk_buff *)list_)
1583 skb = NULL;
1584 return skb;
1da177e4
LT
1585}
1586
da5ef6e5
PE
1587/**
1588 * skb_peek_next - peek skb following the given one from a queue
1589 * @skb: skb to start from
1590 * @list_: list to peek at
1591 *
1592 * Returns %NULL when the end of the list is met or a pointer to the
1593 * next element. The reference count is not incremented and the
1594 * reference is therefore volatile. Use with caution.
1595 */
1596static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1597 const struct sk_buff_head *list_)
1598{
1599 struct sk_buff *next = skb->next;
18d07000 1600
da5ef6e5
PE
1601 if (next == (struct sk_buff *)list_)
1602 next = NULL;
1603 return next;
1604}
1605
1da177e4 1606/**
1a5778aa 1607 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1608 * @list_: list to peek at
1609 *
1610 * Peek an &sk_buff. Unlike most other operations you _MUST_
1611 * be careful with this one. A peek leaves the buffer on the
1612 * list and someone else may run off with it. You must hold
1613 * the appropriate locks or have a private queue to do this.
1614 *
1615 * Returns %NULL for an empty list or a pointer to the tail element.
1616 * The reference count is not incremented and the reference is therefore
1617 * volatile. Use with caution.
1618 */
05bdd2f1 1619static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1620{
18d07000
ED
1621 struct sk_buff *skb = list_->prev;
1622
1623 if (skb == (struct sk_buff *)list_)
1624 skb = NULL;
1625 return skb;
1626
1da177e4
LT
1627}
1628
1629/**
1630 * skb_queue_len - get queue length
1631 * @list_: list to measure
1632 *
1633 * Return the length of an &sk_buff queue.
1634 */
1635static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1636{
1637 return list_->qlen;
1638}
1639
67fed459
DM
1640/**
1641 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1642 * @list: queue to initialize
1643 *
1644 * This initializes only the list and queue length aspects of
1645 * an sk_buff_head object. This allows to initialize the list
1646 * aspects of an sk_buff_head without reinitializing things like
1647 * the spinlock. It can also be used for on-stack sk_buff_head
1648 * objects where the spinlock is known to not be used.
1649 */
1650static inline void __skb_queue_head_init(struct sk_buff_head *list)
1651{
1652 list->prev = list->next = (struct sk_buff *)list;
1653 list->qlen = 0;
1654}
1655
76f10ad0
AV
1656/*
1657 * This function creates a split out lock class for each invocation;
1658 * this is needed for now since a whole lot of users of the skb-queue
1659 * infrastructure in drivers have different locking usage (in hardirq)
1660 * than the networking core (in softirq only). In the long run either the
1661 * network layer or drivers should need annotation to consolidate the
1662 * main types of usage into 3 classes.
1663 */
1da177e4
LT
1664static inline void skb_queue_head_init(struct sk_buff_head *list)
1665{
1666 spin_lock_init(&list->lock);
67fed459 1667 __skb_queue_head_init(list);
1da177e4
LT
1668}
1669
c2ecba71
PE
1670static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1671 struct lock_class_key *class)
1672{
1673 skb_queue_head_init(list);
1674 lockdep_set_class(&list->lock, class);
1675}
1676
1da177e4 1677/*
bf299275 1678 * Insert an sk_buff on a list.
1da177e4
LT
1679 *
1680 * The "__skb_xxxx()" functions are the non-atomic ones that
1681 * can only be called with interrupts disabled.
1682 */
7965bd4d
JP
1683void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1684 struct sk_buff_head *list);
bf299275
GR
1685static inline void __skb_insert(struct sk_buff *newsk,
1686 struct sk_buff *prev, struct sk_buff *next,
1687 struct sk_buff_head *list)
1688{
1689 newsk->next = next;
1690 newsk->prev = prev;
1691 next->prev = prev->next = newsk;
1692 list->qlen++;
1693}
1da177e4 1694
67fed459
DM
1695static inline void __skb_queue_splice(const struct sk_buff_head *list,
1696 struct sk_buff *prev,
1697 struct sk_buff *next)
1698{
1699 struct sk_buff *first = list->next;
1700 struct sk_buff *last = list->prev;
1701
1702 first->prev = prev;
1703 prev->next = first;
1704
1705 last->next = next;
1706 next->prev = last;
1707}
1708
1709/**
1710 * skb_queue_splice - join two skb lists, this is designed for stacks
1711 * @list: the new list to add
1712 * @head: the place to add it in the first list
1713 */
1714static inline void skb_queue_splice(const struct sk_buff_head *list,
1715 struct sk_buff_head *head)
1716{
1717 if (!skb_queue_empty(list)) {
1718 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1719 head->qlen += list->qlen;
67fed459
DM
1720 }
1721}
1722
1723/**
d9619496 1724 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1725 * @list: the new list to add
1726 * @head: the place to add it in the first list
1727 *
1728 * The list at @list is reinitialised
1729 */
1730static inline void skb_queue_splice_init(struct sk_buff_head *list,
1731 struct sk_buff_head *head)
1732{
1733 if (!skb_queue_empty(list)) {
1734 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1735 head->qlen += list->qlen;
67fed459
DM
1736 __skb_queue_head_init(list);
1737 }
1738}
1739
1740/**
1741 * skb_queue_splice_tail - join two skb lists, each list being a queue
1742 * @list: the new list to add
1743 * @head: the place to add it in the first list
1744 */
1745static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1746 struct sk_buff_head *head)
1747{
1748 if (!skb_queue_empty(list)) {
1749 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1750 head->qlen += list->qlen;
67fed459
DM
1751 }
1752}
1753
1754/**
d9619496 1755 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1756 * @list: the new list to add
1757 * @head: the place to add it in the first list
1758 *
1759 * Each of the lists is a queue.
1760 * The list at @list is reinitialised
1761 */
1762static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1763 struct sk_buff_head *head)
1764{
1765 if (!skb_queue_empty(list)) {
1766 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1767 head->qlen += list->qlen;
67fed459
DM
1768 __skb_queue_head_init(list);
1769 }
1770}
1771
1da177e4 1772/**
300ce174 1773 * __skb_queue_after - queue a buffer at the list head
1da177e4 1774 * @list: list to use
300ce174 1775 * @prev: place after this buffer
1da177e4
LT
1776 * @newsk: buffer to queue
1777 *
300ce174 1778 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1779 * and you must therefore hold required locks before calling it.
1780 *
1781 * A buffer cannot be placed on two lists at the same time.
1782 */
300ce174
SH
1783static inline void __skb_queue_after(struct sk_buff_head *list,
1784 struct sk_buff *prev,
1785 struct sk_buff *newsk)
1da177e4 1786{
bf299275 1787 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1788}
1789
7965bd4d
JP
1790void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1791 struct sk_buff_head *list);
7de6c033 1792
f5572855
GR
1793static inline void __skb_queue_before(struct sk_buff_head *list,
1794 struct sk_buff *next,
1795 struct sk_buff *newsk)
1796{
1797 __skb_insert(newsk, next->prev, next, list);
1798}
1799
300ce174
SH
1800/**
1801 * __skb_queue_head - queue a buffer at the list head
1802 * @list: list to use
1803 * @newsk: buffer to queue
1804 *
1805 * Queue a buffer at the start of a list. This function takes no locks
1806 * and you must therefore hold required locks before calling it.
1807 *
1808 * A buffer cannot be placed on two lists at the same time.
1809 */
7965bd4d 1810void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1811static inline void __skb_queue_head(struct sk_buff_head *list,
1812 struct sk_buff *newsk)
1813{
1814 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1815}
1816
1da177e4
LT
1817/**
1818 * __skb_queue_tail - queue a buffer at the list tail
1819 * @list: list to use
1820 * @newsk: buffer to queue
1821 *
1822 * Queue a buffer at the end of a list. This function takes no locks
1823 * and you must therefore hold required locks before calling it.
1824 *
1825 * A buffer cannot be placed on two lists at the same time.
1826 */
7965bd4d 1827void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1828static inline void __skb_queue_tail(struct sk_buff_head *list,
1829 struct sk_buff *newsk)
1830{
f5572855 1831 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1832}
1833
1da177e4
LT
1834/*
1835 * remove sk_buff from list. _Must_ be called atomically, and with
1836 * the list known..
1837 */
7965bd4d 1838void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1839static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1840{
1841 struct sk_buff *next, *prev;
1842
1843 list->qlen--;
1844 next = skb->next;
1845 prev = skb->prev;
1846 skb->next = skb->prev = NULL;
1da177e4
LT
1847 next->prev = prev;
1848 prev->next = next;
1849}
1850
f525c06d
GR
1851/**
1852 * __skb_dequeue - remove from the head of the queue
1853 * @list: list to dequeue from
1854 *
1855 * Remove the head of the list. This function does not take any locks
1856 * so must be used with appropriate locks held only. The head item is
1857 * returned or %NULL if the list is empty.
1858 */
7965bd4d 1859struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1860static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1861{
1862 struct sk_buff *skb = skb_peek(list);
1863 if (skb)
1864 __skb_unlink(skb, list);
1865 return skb;
1866}
1da177e4
LT
1867
1868/**
1869 * __skb_dequeue_tail - remove from the tail of the queue
1870 * @list: list to dequeue from
1871 *
1872 * Remove the tail of the list. This function does not take any locks
1873 * so must be used with appropriate locks held only. The tail item is
1874 * returned or %NULL if the list is empty.
1875 */
7965bd4d 1876struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1877static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1878{
1879 struct sk_buff *skb = skb_peek_tail(list);
1880 if (skb)
1881 __skb_unlink(skb, list);
1882 return skb;
1883}
1884
1885
bdcc0924 1886static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1887{
1888 return skb->data_len;
1889}
1890
1891static inline unsigned int skb_headlen(const struct sk_buff *skb)
1892{
1893 return skb->len - skb->data_len;
1894}
1895
3ece7826 1896static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1897{
c72d8cda 1898 unsigned int i, len = 0;
1da177e4 1899
c72d8cda 1900 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1901 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1902 return len;
1903}
1904
1905static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1906{
1907 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1908}
1909
131ea667
IC
1910/**
1911 * __skb_fill_page_desc - initialise a paged fragment in an skb
1912 * @skb: buffer containing fragment to be initialised
1913 * @i: paged fragment index to initialise
1914 * @page: the page to use for this fragment
1915 * @off: the offset to the data with @page
1916 * @size: the length of the data
1917 *
1918 * Initialises the @i'th fragment of @skb to point to &size bytes at
1919 * offset @off within @page.
1920 *
1921 * Does not take any additional reference on the fragment.
1922 */
1923static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1924 struct page *page, int off, int size)
1da177e4
LT
1925{
1926 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1927
c48a11c7 1928 /*
2f064f34
MH
1929 * Propagate page pfmemalloc to the skb if we can. The problem is
1930 * that not all callers have unique ownership of the page but rely
1931 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1932 */
a8605c60 1933 frag->page.p = page;
1da177e4 1934 frag->page_offset = off;
9e903e08 1935 skb_frag_size_set(frag, size);
cca7af38
PE
1936
1937 page = compound_head(page);
2f064f34 1938 if (page_is_pfmemalloc(page))
cca7af38 1939 skb->pfmemalloc = true;
131ea667
IC
1940}
1941
1942/**
1943 * skb_fill_page_desc - initialise a paged fragment in an skb
1944 * @skb: buffer containing fragment to be initialised
1945 * @i: paged fragment index to initialise
1946 * @page: the page to use for this fragment
1947 * @off: the offset to the data with @page
1948 * @size: the length of the data
1949 *
1950 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1951 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1952 * addition updates @skb such that @i is the last fragment.
1953 *
1954 * Does not take any additional reference on the fragment.
1955 */
1956static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1957 struct page *page, int off, int size)
1958{
1959 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1960 skb_shinfo(skb)->nr_frags = i + 1;
1961}
1962
7965bd4d
JP
1963void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1964 int size, unsigned int truesize);
654bed16 1965
f8e617e1
JW
1966void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1967 unsigned int truesize);
1968
1da177e4 1969#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1970#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1971#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1972
27a884dc
ACM
1973#ifdef NET_SKBUFF_DATA_USES_OFFSET
1974static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1975{
1976 return skb->head + skb->tail;
1977}
1978
1979static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1980{
1981 skb->tail = skb->data - skb->head;
1982}
1983
1984static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1985{
1986 skb_reset_tail_pointer(skb);
1987 skb->tail += offset;
1988}
7cc46190 1989
27a884dc
ACM
1990#else /* NET_SKBUFF_DATA_USES_OFFSET */
1991static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1992{
1993 return skb->tail;
1994}
1995
1996static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1997{
1998 skb->tail = skb->data;
1999}
2000
2001static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2002{
2003 skb->tail = skb->data + offset;
2004}
4305b541 2005
27a884dc
ACM
2006#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2007
1da177e4
LT
2008/*
2009 * Add data to an sk_buff
2010 */
4df864c1
JB
2011void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2012void *skb_put(struct sk_buff *skb, unsigned int len);
2013static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2014{
4df864c1 2015 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2016 SKB_LINEAR_ASSERT(skb);
2017 skb->tail += len;
2018 skb->len += len;
2019 return tmp;
2020}
2021
de77b966 2022static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2023{
2024 void *tmp = __skb_put(skb, len);
2025
2026 memset(tmp, 0, len);
2027 return tmp;
2028}
2029
2030static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2031 unsigned int len)
2032{
2033 void *tmp = __skb_put(skb, len);
2034
2035 memcpy(tmp, data, len);
2036 return tmp;
2037}
2038
2039static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2040{
2041 *(u8 *)__skb_put(skb, 1) = val;
2042}
2043
83ad357d 2044static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2045{
83ad357d 2046 void *tmp = skb_put(skb, len);
e45a79da
JB
2047
2048 memset(tmp, 0, len);
2049
2050 return tmp;
2051}
2052
59ae1d12
JB
2053static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2054 unsigned int len)
2055{
2056 void *tmp = skb_put(skb, len);
2057
2058 memcpy(tmp, data, len);
2059
2060 return tmp;
2061}
2062
634fef61
JB
2063static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2064{
2065 *(u8 *)skb_put(skb, 1) = val;
2066}
2067
d58ff351
JB
2068void *skb_push(struct sk_buff *skb, unsigned int len);
2069static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2070{
2071 skb->data -= len;
2072 skb->len += len;
2073 return skb->data;
2074}
2075
af72868b
JB
2076void *skb_pull(struct sk_buff *skb, unsigned int len);
2077static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2078{
2079 skb->len -= len;
2080 BUG_ON(skb->len < skb->data_len);
2081 return skb->data += len;
2082}
2083
af72868b 2084static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2085{
2086 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2087}
2088
af72868b 2089void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2090
af72868b 2091static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2092{
2093 if (len > skb_headlen(skb) &&
987c402a 2094 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2095 return NULL;
2096 skb->len -= len;
2097 return skb->data += len;
2098}
2099
af72868b 2100static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2101{
2102 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2103}
2104
2105static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2106{
2107 if (likely(len <= skb_headlen(skb)))
2108 return 1;
2109 if (unlikely(len > skb->len))
2110 return 0;
987c402a 2111 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2112}
2113
c8c8b127
ED
2114void skb_condense(struct sk_buff *skb);
2115
1da177e4
LT
2116/**
2117 * skb_headroom - bytes at buffer head
2118 * @skb: buffer to check
2119 *
2120 * Return the number of bytes of free space at the head of an &sk_buff.
2121 */
c2636b4d 2122static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2123{
2124 return skb->data - skb->head;
2125}
2126
2127/**
2128 * skb_tailroom - bytes at buffer end
2129 * @skb: buffer to check
2130 *
2131 * Return the number of bytes of free space at the tail of an sk_buff
2132 */
2133static inline int skb_tailroom(const struct sk_buff *skb)
2134{
4305b541 2135 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2136}
2137
a21d4572
ED
2138/**
2139 * skb_availroom - bytes at buffer end
2140 * @skb: buffer to check
2141 *
2142 * Return the number of bytes of free space at the tail of an sk_buff
2143 * allocated by sk_stream_alloc()
2144 */
2145static inline int skb_availroom(const struct sk_buff *skb)
2146{
16fad69c
ED
2147 if (skb_is_nonlinear(skb))
2148 return 0;
2149
2150 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2151}
2152
1da177e4
LT
2153/**
2154 * skb_reserve - adjust headroom
2155 * @skb: buffer to alter
2156 * @len: bytes to move
2157 *
2158 * Increase the headroom of an empty &sk_buff by reducing the tail
2159 * room. This is only allowed for an empty buffer.
2160 */
8243126c 2161static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2162{
2163 skb->data += len;
2164 skb->tail += len;
2165}
2166
1837b2e2
BP
2167/**
2168 * skb_tailroom_reserve - adjust reserved_tailroom
2169 * @skb: buffer to alter
2170 * @mtu: maximum amount of headlen permitted
2171 * @needed_tailroom: minimum amount of reserved_tailroom
2172 *
2173 * Set reserved_tailroom so that headlen can be as large as possible but
2174 * not larger than mtu and tailroom cannot be smaller than
2175 * needed_tailroom.
2176 * The required headroom should already have been reserved before using
2177 * this function.
2178 */
2179static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2180 unsigned int needed_tailroom)
2181{
2182 SKB_LINEAR_ASSERT(skb);
2183 if (mtu < skb_tailroom(skb) - needed_tailroom)
2184 /* use at most mtu */
2185 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2186 else
2187 /* use up to all available space */
2188 skb->reserved_tailroom = needed_tailroom;
2189}
2190
8bce6d7d
TH
2191#define ENCAP_TYPE_ETHER 0
2192#define ENCAP_TYPE_IPPROTO 1
2193
2194static inline void skb_set_inner_protocol(struct sk_buff *skb,
2195 __be16 protocol)
2196{
2197 skb->inner_protocol = protocol;
2198 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2199}
2200
2201static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2202 __u8 ipproto)
2203{
2204 skb->inner_ipproto = ipproto;
2205 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2206}
2207
6a674e9c
JG
2208static inline void skb_reset_inner_headers(struct sk_buff *skb)
2209{
aefbd2b3 2210 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2211 skb->inner_network_header = skb->network_header;
2212 skb->inner_transport_header = skb->transport_header;
2213}
2214
0b5c9db1
JP
2215static inline void skb_reset_mac_len(struct sk_buff *skb)
2216{
2217 skb->mac_len = skb->network_header - skb->mac_header;
2218}
2219
6a674e9c
JG
2220static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2221 *skb)
2222{
2223 return skb->head + skb->inner_transport_header;
2224}
2225
55dc5a9f
TH
2226static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2227{
2228 return skb_inner_transport_header(skb) - skb->data;
2229}
2230
6a674e9c
JG
2231static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2232{
2233 skb->inner_transport_header = skb->data - skb->head;
2234}
2235
2236static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2237 const int offset)
2238{
2239 skb_reset_inner_transport_header(skb);
2240 skb->inner_transport_header += offset;
2241}
2242
2243static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2244{
2245 return skb->head + skb->inner_network_header;
2246}
2247
2248static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2249{
2250 skb->inner_network_header = skb->data - skb->head;
2251}
2252
2253static inline void skb_set_inner_network_header(struct sk_buff *skb,
2254 const int offset)
2255{
2256 skb_reset_inner_network_header(skb);
2257 skb->inner_network_header += offset;
2258}
2259
aefbd2b3
PS
2260static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2261{
2262 return skb->head + skb->inner_mac_header;
2263}
2264
2265static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2266{
2267 skb->inner_mac_header = skb->data - skb->head;
2268}
2269
2270static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2271 const int offset)
2272{
2273 skb_reset_inner_mac_header(skb);
2274 skb->inner_mac_header += offset;
2275}
fda55eca
ED
2276static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2277{
35d04610 2278 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2279}
2280
9c70220b
ACM
2281static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2282{
2e07fa9c 2283 return skb->head + skb->transport_header;
9c70220b
ACM
2284}
2285
badff6d0
ACM
2286static inline void skb_reset_transport_header(struct sk_buff *skb)
2287{
2e07fa9c 2288 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2289}
2290
967b05f6
ACM
2291static inline void skb_set_transport_header(struct sk_buff *skb,
2292 const int offset)
2293{
2e07fa9c
ACM
2294 skb_reset_transport_header(skb);
2295 skb->transport_header += offset;
ea2ae17d
ACM
2296}
2297
d56f90a7
ACM
2298static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2299{
2e07fa9c 2300 return skb->head + skb->network_header;
d56f90a7
ACM
2301}
2302
c1d2bbe1
ACM
2303static inline void skb_reset_network_header(struct sk_buff *skb)
2304{
2e07fa9c 2305 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2306}
2307
c14d2450
ACM
2308static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2309{
2e07fa9c
ACM
2310 skb_reset_network_header(skb);
2311 skb->network_header += offset;
c14d2450
ACM
2312}
2313
2e07fa9c 2314static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2315{
2e07fa9c 2316 return skb->head + skb->mac_header;
bbe735e4
ACM
2317}
2318
ea6da4fd
AV
2319static inline int skb_mac_offset(const struct sk_buff *skb)
2320{
2321 return skb_mac_header(skb) - skb->data;
2322}
2323
0daf4349
DB
2324static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2325{
2326 return skb->network_header - skb->mac_header;
2327}
2328
2e07fa9c 2329static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2330{
35d04610 2331 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2332}
2333
2334static inline void skb_reset_mac_header(struct sk_buff *skb)
2335{
2336 skb->mac_header = skb->data - skb->head;
2337}
2338
2339static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2340{
2341 skb_reset_mac_header(skb);
2342 skb->mac_header += offset;
2343}
2344
0e3da5bb
TT
2345static inline void skb_pop_mac_header(struct sk_buff *skb)
2346{
2347 skb->mac_header = skb->network_header;
2348}
2349
fbbdb8f0
YX
2350static inline void skb_probe_transport_header(struct sk_buff *skb,
2351 const int offset_hint)
2352{
72a338bc 2353 struct flow_keys_basic keys;
fbbdb8f0
YX
2354
2355 if (skb_transport_header_was_set(skb))
2356 return;
72a338bc
PA
2357
2358 if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
42aecaa9 2359 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2360 else
2361 skb_set_transport_header(skb, offset_hint);
2362}
2363
03606895
ED
2364static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365{
2366 if (skb_mac_header_was_set(skb)) {
2367 const unsigned char *old_mac = skb_mac_header(skb);
2368
2369 skb_set_mac_header(skb, -skb->mac_len);
2370 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371 }
2372}
2373
04fb451e
MM
2374static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375{
2376 return skb->csum_start - skb_headroom(skb);
2377}
2378
08b64fcc
AD
2379static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380{
2381 return skb->head + skb->csum_start;
2382}
2383
2e07fa9c
ACM
2384static inline int skb_transport_offset(const struct sk_buff *skb)
2385{
2386 return skb_transport_header(skb) - skb->data;
2387}
2388
2389static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390{
2391 return skb->transport_header - skb->network_header;
2392}
2393
6a674e9c
JG
2394static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395{
2396 return skb->inner_transport_header - skb->inner_network_header;
2397}
2398
2e07fa9c
ACM
2399static inline int skb_network_offset(const struct sk_buff *skb)
2400{
2401 return skb_network_header(skb) - skb->data;
2402}
48d49d0c 2403
6a674e9c
JG
2404static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405{
2406 return skb_inner_network_header(skb) - skb->data;
2407}
2408
f9599ce1
CG
2409static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410{
2411 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412}
2413
1da177e4
LT
2414/*
2415 * CPUs often take a performance hit when accessing unaligned memory
2416 * locations. The actual performance hit varies, it can be small if the
2417 * hardware handles it or large if we have to take an exception and fix it
2418 * in software.
2419 *
2420 * Since an ethernet header is 14 bytes network drivers often end up with
2421 * the IP header at an unaligned offset. The IP header can be aligned by
2422 * shifting the start of the packet by 2 bytes. Drivers should do this
2423 * with:
2424 *
8660c124 2425 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2426 *
2427 * The downside to this alignment of the IP header is that the DMA is now
2428 * unaligned. On some architectures the cost of an unaligned DMA is high
2429 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2430 *
1da177e4
LT
2431 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432 * to be overridden.
2433 */
2434#ifndef NET_IP_ALIGN
2435#define NET_IP_ALIGN 2
2436#endif
2437
025be81e
AB
2438/*
2439 * The networking layer reserves some headroom in skb data (via
2440 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2442 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2443 *
2444 * Unfortunately this headroom changes the DMA alignment of the resulting
2445 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446 * on some architectures. An architecture can override this value,
2447 * perhaps setting it to a cacheline in size (since that will maintain
2448 * cacheline alignment of the DMA). It must be a power of 2.
2449 *
d6301d3d 2450 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2451 * headroom, you should not reduce this.
5933dd2f
ED
2452 *
2453 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454 * to reduce average number of cache lines per packet.
2455 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2456 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2457 */
2458#ifndef NET_SKB_PAD
5933dd2f 2459#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2460#endif
2461
7965bd4d 2462int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2463
5293efe6 2464static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2465{
c4264f27 2466 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2467 WARN_ON(1);
2468 return;
2469 }
27a884dc
ACM
2470 skb->len = len;
2471 skb_set_tail_pointer(skb, len);
1da177e4
LT
2472}
2473
5293efe6
DB
2474static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475{
2476 __skb_set_length(skb, len);
2477}
2478
7965bd4d 2479void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2480
2481static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482{
3cc0e873
HX
2483 if (skb->data_len)
2484 return ___pskb_trim(skb, len);
2485 __skb_trim(skb, len);
2486 return 0;
1da177e4
LT
2487}
2488
2489static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490{
2491 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492}
2493
e9fa4f7b
HX
2494/**
2495 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496 * @skb: buffer to alter
2497 * @len: new length
2498 *
2499 * This is identical to pskb_trim except that the caller knows that
2500 * the skb is not cloned so we should never get an error due to out-
2501 * of-memory.
2502 */
2503static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504{
2505 int err = pskb_trim(skb, len);
2506 BUG_ON(err);
2507}
2508
5293efe6
DB
2509static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510{
2511 unsigned int diff = len - skb->len;
2512
2513 if (skb_tailroom(skb) < diff) {
2514 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515 GFP_ATOMIC);
2516 if (ret)
2517 return ret;
2518 }
2519 __skb_set_length(skb, len);
2520 return 0;
2521}
2522
1da177e4
LT
2523/**
2524 * skb_orphan - orphan a buffer
2525 * @skb: buffer to orphan
2526 *
2527 * If a buffer currently has an owner then we call the owner's
2528 * destructor function and make the @skb unowned. The buffer continues
2529 * to exist but is no longer charged to its former owner.
2530 */
2531static inline void skb_orphan(struct sk_buff *skb)
2532{
c34a7612 2533 if (skb->destructor) {
1da177e4 2534 skb->destructor(skb);
c34a7612
ED
2535 skb->destructor = NULL;
2536 skb->sk = NULL;
376c7311
ED
2537 } else {
2538 BUG_ON(skb->sk);
c34a7612 2539 }
1da177e4
LT
2540}
2541
a353e0ce
MT
2542/**
2543 * skb_orphan_frags - orphan the frags contained in a buffer
2544 * @skb: buffer to orphan frags from
2545 * @gfp_mask: allocation mask for replacement pages
2546 *
2547 * For each frag in the SKB which needs a destructor (i.e. has an
2548 * owner) create a copy of that frag and release the original
2549 * page by calling the destructor.
2550 */
2551static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552{
1f8b977a
WB
2553 if (likely(!skb_zcopy(skb)))
2554 return 0;
2555 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 return 0;
2557 return skb_copy_ubufs(skb, gfp_mask);
2558}
2559
2560/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562{
2563 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2564 return 0;
2565 return skb_copy_ubufs(skb, gfp_mask);
2566}
2567
1da177e4
LT
2568/**
2569 * __skb_queue_purge - empty a list
2570 * @list: list to empty
2571 *
2572 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2573 * the list and one reference dropped. This function does not take the
2574 * list lock and the caller must hold the relevant locks to use it.
2575 */
7965bd4d 2576void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2577static inline void __skb_queue_purge(struct sk_buff_head *list)
2578{
2579 struct sk_buff *skb;
2580 while ((skb = __skb_dequeue(list)) != NULL)
2581 kfree_skb(skb);
2582}
2583
9f5afeae
YW
2584void skb_rbtree_purge(struct rb_root *root);
2585
7965bd4d 2586void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2587
7965bd4d
JP
2588struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589 gfp_t gfp_mask);
8af27456
CH
2590
2591/**
2592 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593 * @dev: network device to receive on
2594 * @length: length to allocate
2595 *
2596 * Allocate a new &sk_buff and assign it a usage count of one. The
2597 * buffer has unspecified headroom built in. Users should allocate
2598 * the headroom they think they need without accounting for the
2599 * built in space. The built in space is used for optimisations.
2600 *
2601 * %NULL is returned if there is no free memory. Although this function
2602 * allocates memory it can be called from an interrupt.
2603 */
2604static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2605 unsigned int length)
8af27456
CH
2606{
2607 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608}
2609
6f532612
ED
2610/* legacy helper around __netdev_alloc_skb() */
2611static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612 gfp_t gfp_mask)
2613{
2614 return __netdev_alloc_skb(NULL, length, gfp_mask);
2615}
2616
2617/* legacy helper around netdev_alloc_skb() */
2618static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619{
2620 return netdev_alloc_skb(NULL, length);
2621}
2622
2623
4915a0de
ED
2624static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625 unsigned int length, gfp_t gfp)
61321bbd 2626{
4915a0de 2627 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2628
2629 if (NET_IP_ALIGN && skb)
2630 skb_reserve(skb, NET_IP_ALIGN);
2631 return skb;
2632}
2633
4915a0de
ED
2634static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635 unsigned int length)
2636{
2637 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638}
2639
181edb2b
AD
2640static inline void skb_free_frag(void *addr)
2641{
8c2dd3e4 2642 page_frag_free(addr);
181edb2b
AD
2643}
2644
ffde7328 2645void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2646struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647 unsigned int length, gfp_t gfp_mask);
2648static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649 unsigned int length)
2650{
2651 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652}
795bb1c0
JDB
2653void napi_consume_skb(struct sk_buff *skb, int budget);
2654
2655void __kfree_skb_flush(void);
15fad714 2656void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2657
71dfda58
AD
2658/**
2659 * __dev_alloc_pages - allocate page for network Rx
2660 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661 * @order: size of the allocation
2662 *
2663 * Allocate a new page.
2664 *
2665 * %NULL is returned if there is no free memory.
2666*/
2667static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668 unsigned int order)
2669{
2670 /* This piece of code contains several assumptions.
2671 * 1. This is for device Rx, therefor a cold page is preferred.
2672 * 2. The expectation is the user wants a compound page.
2673 * 3. If requesting a order 0 page it will not be compound
2674 * due to the check to see if order has a value in prep_new_page
2675 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676 * code in gfp_to_alloc_flags that should be enforcing this.
2677 */
453f85d4 2678 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2679
2680 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681}
2682
2683static inline struct page *dev_alloc_pages(unsigned int order)
2684{
95829b3a 2685 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2686}
2687
2688/**
2689 * __dev_alloc_page - allocate a page for network Rx
2690 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691 *
2692 * Allocate a new page.
2693 *
2694 * %NULL is returned if there is no free memory.
2695 */
2696static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697{
2698 return __dev_alloc_pages(gfp_mask, 0);
2699}
2700
2701static inline struct page *dev_alloc_page(void)
2702{
95829b3a 2703 return dev_alloc_pages(0);
71dfda58
AD
2704}
2705
0614002b
MG
2706/**
2707 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708 * @page: The page that was allocated from skb_alloc_page
2709 * @skb: The skb that may need pfmemalloc set
2710 */
2711static inline void skb_propagate_pfmemalloc(struct page *page,
2712 struct sk_buff *skb)
2713{
2f064f34 2714 if (page_is_pfmemalloc(page))
0614002b
MG
2715 skb->pfmemalloc = true;
2716}
2717
131ea667 2718/**
e227867f 2719 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2720 * @frag: the paged fragment
2721 *
2722 * Returns the &struct page associated with @frag.
2723 */
2724static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725{
a8605c60 2726 return frag->page.p;
131ea667
IC
2727}
2728
2729/**
2730 * __skb_frag_ref - take an addition reference on a paged fragment.
2731 * @frag: the paged fragment
2732 *
2733 * Takes an additional reference on the paged fragment @frag.
2734 */
2735static inline void __skb_frag_ref(skb_frag_t *frag)
2736{
2737 get_page(skb_frag_page(frag));
2738}
2739
2740/**
2741 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742 * @skb: the buffer
2743 * @f: the fragment offset.
2744 *
2745 * Takes an additional reference on the @f'th paged fragment of @skb.
2746 */
2747static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748{
2749 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750}
2751
2752/**
2753 * __skb_frag_unref - release a reference on a paged fragment.
2754 * @frag: the paged fragment
2755 *
2756 * Releases a reference on the paged fragment @frag.
2757 */
2758static inline void __skb_frag_unref(skb_frag_t *frag)
2759{
2760 put_page(skb_frag_page(frag));
2761}
2762
2763/**
2764 * skb_frag_unref - release a reference on a paged fragment of an skb.
2765 * @skb: the buffer
2766 * @f: the fragment offset
2767 *
2768 * Releases a reference on the @f'th paged fragment of @skb.
2769 */
2770static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771{
2772 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773}
2774
2775/**
2776 * skb_frag_address - gets the address of the data contained in a paged fragment
2777 * @frag: the paged fragment buffer
2778 *
2779 * Returns the address of the data within @frag. The page must already
2780 * be mapped.
2781 */
2782static inline void *skb_frag_address(const skb_frag_t *frag)
2783{
2784 return page_address(skb_frag_page(frag)) + frag->page_offset;
2785}
2786
2787/**
2788 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789 * @frag: the paged fragment buffer
2790 *
2791 * Returns the address of the data within @frag. Checks that the page
2792 * is mapped and returns %NULL otherwise.
2793 */
2794static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795{
2796 void *ptr = page_address(skb_frag_page(frag));
2797 if (unlikely(!ptr))
2798 return NULL;
2799
2800 return ptr + frag->page_offset;
2801}
2802
2803/**
2804 * __skb_frag_set_page - sets the page contained in a paged fragment
2805 * @frag: the paged fragment
2806 * @page: the page to set
2807 *
2808 * Sets the fragment @frag to contain @page.
2809 */
2810static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811{
a8605c60 2812 frag->page.p = page;
131ea667
IC
2813}
2814
2815/**
2816 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817 * @skb: the buffer
2818 * @f: the fragment offset
2819 * @page: the page to set
2820 *
2821 * Sets the @f'th fragment of @skb to contain @page.
2822 */
2823static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824 struct page *page)
2825{
2826 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827}
2828
400dfd3a
ED
2829bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830
131ea667
IC
2831/**
2832 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2833 * @dev: the device to map the fragment to
131ea667
IC
2834 * @frag: the paged fragment to map
2835 * @offset: the offset within the fragment (starting at the
2836 * fragment's own offset)
2837 * @size: the number of bytes to map
771b00a8 2838 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2839 *
2840 * Maps the page associated with @frag to @device.
2841 */
2842static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843 const skb_frag_t *frag,
2844 size_t offset, size_t size,
2845 enum dma_data_direction dir)
2846{
2847 return dma_map_page(dev, skb_frag_page(frag),
2848 frag->page_offset + offset, size, dir);
2849}
2850
117632e6
ED
2851static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852 gfp_t gfp_mask)
2853{
2854 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855}
2856
bad93e9d
OP
2857
2858static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859 gfp_t gfp_mask)
2860{
2861 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862}
2863
2864
334a8132
PM
2865/**
2866 * skb_clone_writable - is the header of a clone writable
2867 * @skb: buffer to check
2868 * @len: length up to which to write
2869 *
2870 * Returns true if modifying the header part of the cloned buffer
2871 * does not requires the data to be copied.
2872 */
05bdd2f1 2873static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2874{
2875 return !skb_header_cloned(skb) &&
2876 skb_headroom(skb) + len <= skb->hdr_len;
2877}
2878
3697649f
DB
2879static inline int skb_try_make_writable(struct sk_buff *skb,
2880 unsigned int write_len)
2881{
2882 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884}
2885
d9cc2048
HX
2886static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887 int cloned)
2888{
2889 int delta = 0;
2890
d9cc2048
HX
2891 if (headroom > skb_headroom(skb))
2892 delta = headroom - skb_headroom(skb);
2893
2894 if (delta || cloned)
2895 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896 GFP_ATOMIC);
2897 return 0;
2898}
2899
1da177e4
LT
2900/**
2901 * skb_cow - copy header of skb when it is required
2902 * @skb: buffer to cow
2903 * @headroom: needed headroom
2904 *
2905 * If the skb passed lacks sufficient headroom or its data part
2906 * is shared, data is reallocated. If reallocation fails, an error
2907 * is returned and original skb is not changed.
2908 *
2909 * The result is skb with writable area skb->head...skb->tail
2910 * and at least @headroom of space at head.
2911 */
2912static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913{
d9cc2048
HX
2914 return __skb_cow(skb, headroom, skb_cloned(skb));
2915}
1da177e4 2916
d9cc2048
HX
2917/**
2918 * skb_cow_head - skb_cow but only making the head writable
2919 * @skb: buffer to cow
2920 * @headroom: needed headroom
2921 *
2922 * This function is identical to skb_cow except that we replace the
2923 * skb_cloned check by skb_header_cloned. It should be used when
2924 * you only need to push on some header and do not need to modify
2925 * the data.
2926 */
2927static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928{
2929 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2930}
2931
2932/**
2933 * skb_padto - pad an skbuff up to a minimal size
2934 * @skb: buffer to pad
2935 * @len: minimal length
2936 *
2937 * Pads up a buffer to ensure the trailing bytes exist and are
2938 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2939 * is untouched. Otherwise it is extended. Returns zero on
2940 * success. The skb is freed on error.
1da177e4 2941 */
5b057c6b 2942static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2943{
2944 unsigned int size = skb->len;
2945 if (likely(size >= len))
5b057c6b 2946 return 0;
987c402a 2947 return skb_pad(skb, len - size);
1da177e4
LT
2948}
2949
9c0c1124
AD
2950/**
2951 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2952 * @skb: buffer to pad
2953 * @len: minimal length
cd0a137a 2954 * @free_on_error: free buffer on error
9c0c1124
AD
2955 *
2956 * Pads up a buffer to ensure the trailing bytes exist and are
2957 * blanked. If the buffer already contains sufficient data it
2958 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2959 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2960 */
cd0a137a
FF
2961static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962 bool free_on_error)
9c0c1124
AD
2963{
2964 unsigned int size = skb->len;
2965
2966 if (unlikely(size < len)) {
2967 len -= size;
cd0a137a 2968 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2969 return -ENOMEM;
2970 __skb_put(skb, len);
2971 }
2972 return 0;
2973}
2974
cd0a137a
FF
2975/**
2976 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2977 * @skb: buffer to pad
2978 * @len: minimal length
2979 *
2980 * Pads up a buffer to ensure the trailing bytes exist and are
2981 * blanked. If the buffer already contains sufficient data it
2982 * is untouched. Otherwise it is extended. Returns zero on
2983 * success. The skb is freed on error.
2984 */
2985static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986{
2987 return __skb_put_padto(skb, len, true);
2988}
2989
1da177e4 2990static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2991 struct iov_iter *from, int copy)
1da177e4
LT
2992{
2993 const int off = skb->len;
2994
2995 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 2996 __wsum csum = 0;
15e6cb46
AV
2997 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 &csum, from)) {
1da177e4
LT
2999 skb->csum = csum_block_add(skb->csum, csum, off);
3000 return 0;
3001 }
15e6cb46 3002 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3003 return 0;
3004
3005 __skb_trim(skb, off);
3006 return -EFAULT;
3007}
3008
38ba0a65
ED
3009static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010 const struct page *page, int off)
1da177e4 3011{
1f8b977a
WB
3012 if (skb_zcopy(skb))
3013 return false;
1da177e4 3014 if (i) {
9e903e08 3015 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3016
ea2ab693 3017 return page == skb_frag_page(frag) &&
9e903e08 3018 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3019 }
38ba0a65 3020 return false;
1da177e4
LT
3021}
3022
364c6bad
HX
3023static inline int __skb_linearize(struct sk_buff *skb)
3024{
3025 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026}
3027
1da177e4
LT
3028/**
3029 * skb_linearize - convert paged skb to linear one
3030 * @skb: buffer to linarize
1da177e4
LT
3031 *
3032 * If there is no free memory -ENOMEM is returned, otherwise zero
3033 * is returned and the old skb data released.
3034 */
364c6bad
HX
3035static inline int skb_linearize(struct sk_buff *skb)
3036{
3037 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038}
3039
cef401de
ED
3040/**
3041 * skb_has_shared_frag - can any frag be overwritten
3042 * @skb: buffer to test
3043 *
3044 * Return true if the skb has at least one frag that might be modified
3045 * by an external entity (as in vmsplice()/sendfile())
3046 */
3047static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048{
c9af6db4
PS
3049 return skb_is_nonlinear(skb) &&
3050 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3051}
3052
364c6bad
HX
3053/**
3054 * skb_linearize_cow - make sure skb is linear and writable
3055 * @skb: buffer to process
3056 *
3057 * If there is no free memory -ENOMEM is returned, otherwise zero
3058 * is returned and the old skb data released.
3059 */
3060static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3061{
364c6bad
HX
3062 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063 __skb_linearize(skb) : 0;
1da177e4
LT
3064}
3065
479ffccc
DB
3066static __always_inline void
3067__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068 unsigned int off)
3069{
3070 if (skb->ip_summed == CHECKSUM_COMPLETE)
3071 skb->csum = csum_block_sub(skb->csum,
3072 csum_partial(start, len, 0), off);
3073 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074 skb_checksum_start_offset(skb) < 0)
3075 skb->ip_summed = CHECKSUM_NONE;
3076}
3077
1da177e4
LT
3078/**
3079 * skb_postpull_rcsum - update checksum for received skb after pull
3080 * @skb: buffer to update
3081 * @start: start of data before pull
3082 * @len: length of data pulled
3083 *
3084 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3085 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3087 */
1da177e4 3088static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3089 const void *start, unsigned int len)
1da177e4 3090{
479ffccc 3091 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3092}
3093
479ffccc
DB
3094static __always_inline void
3095__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096 unsigned int off)
3097{
3098 if (skb->ip_summed == CHECKSUM_COMPLETE)
3099 skb->csum = csum_block_add(skb->csum,
3100 csum_partial(start, len, 0), off);
3101}
cbb042f9 3102
479ffccc
DB
3103/**
3104 * skb_postpush_rcsum - update checksum for received skb after push
3105 * @skb: buffer to update
3106 * @start: start of data after push
3107 * @len: length of data pushed
3108 *
3109 * After doing a push on a received packet, you need to call this to
3110 * update the CHECKSUM_COMPLETE checksum.
3111 */
f8ffad69
DB
3112static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113 const void *start, unsigned int len)
3114{
479ffccc 3115 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3116}
3117
af72868b 3118void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3119
82a31b92
WC
3120/**
3121 * skb_push_rcsum - push skb and update receive checksum
3122 * @skb: buffer to update
3123 * @len: length of data pulled
3124 *
3125 * This function performs an skb_push on the packet and updates
3126 * the CHECKSUM_COMPLETE checksum. It should be used on
3127 * receive path processing instead of skb_push unless you know
3128 * that the checksum difference is zero (e.g., a valid IP header)
3129 * or you are setting ip_summed to CHECKSUM_NONE.
3130 */
d58ff351 3131static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3132{
3133 skb_push(skb, len);
3134 skb_postpush_rcsum(skb, skb->data, len);
3135 return skb->data;
3136}
3137
88078d98 3138int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3139/**
3140 * pskb_trim_rcsum - trim received skb and update checksum
3141 * @skb: buffer to trim
3142 * @len: new length
3143 *
3144 * This is exactly the same as pskb_trim except that it ensures the
3145 * checksum of received packets are still valid after the operation.
3146 */
3147
3148static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3149{
3150 if (likely(len >= skb->len))
3151 return 0;
88078d98 3152 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3153}
3154
5293efe6
DB
3155static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3156{
3157 if (skb->ip_summed == CHECKSUM_COMPLETE)
3158 skb->ip_summed = CHECKSUM_NONE;
3159 __skb_trim(skb, len);
3160 return 0;
3161}
3162
3163static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3164{
3165 if (skb->ip_summed == CHECKSUM_COMPLETE)
3166 skb->ip_summed = CHECKSUM_NONE;
3167 return __skb_grow(skb, len);
3168}
3169
18a4c0ea
ED
3170#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3171#define skb_rb_first(root) rb_to_skb(rb_first(root))
3172#define skb_rb_last(root) rb_to_skb(rb_last(root))
3173#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3174#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3175
1da177e4
LT
3176#define skb_queue_walk(queue, skb) \
3177 for (skb = (queue)->next; \
a1e4891f 3178 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3179 skb = skb->next)
3180
46f8914e
JC
3181#define skb_queue_walk_safe(queue, skb, tmp) \
3182 for (skb = (queue)->next, tmp = skb->next; \
3183 skb != (struct sk_buff *)(queue); \
3184 skb = tmp, tmp = skb->next)
3185
1164f52a 3186#define skb_queue_walk_from(queue, skb) \
a1e4891f 3187 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3188 skb = skb->next)
3189
18a4c0ea
ED
3190#define skb_rbtree_walk(skb, root) \
3191 for (skb = skb_rb_first(root); skb != NULL; \
3192 skb = skb_rb_next(skb))
3193
3194#define skb_rbtree_walk_from(skb) \
3195 for (; skb != NULL; \
3196 skb = skb_rb_next(skb))
3197
3198#define skb_rbtree_walk_from_safe(skb, tmp) \
3199 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3200 skb = tmp)
3201
1164f52a
DM
3202#define skb_queue_walk_from_safe(queue, skb, tmp) \
3203 for (tmp = skb->next; \
3204 skb != (struct sk_buff *)(queue); \
3205 skb = tmp, tmp = skb->next)
3206
300ce174
SH
3207#define skb_queue_reverse_walk(queue, skb) \
3208 for (skb = (queue)->prev; \
a1e4891f 3209 skb != (struct sk_buff *)(queue); \
300ce174
SH
3210 skb = skb->prev)
3211
686a2955
DM
3212#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3213 for (skb = (queue)->prev, tmp = skb->prev; \
3214 skb != (struct sk_buff *)(queue); \
3215 skb = tmp, tmp = skb->prev)
3216
3217#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3218 for (tmp = skb->prev; \
3219 skb != (struct sk_buff *)(queue); \
3220 skb = tmp, tmp = skb->prev)
1da177e4 3221
21dc3301 3222static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3223{
3224 return skb_shinfo(skb)->frag_list != NULL;
3225}
3226
3227static inline void skb_frag_list_init(struct sk_buff *skb)
3228{
3229 skb_shinfo(skb)->frag_list = NULL;
3230}
3231
ee039871
DM
3232#define skb_walk_frags(skb, iter) \
3233 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3234
ea3793ee
RW
3235
3236int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3237 const struct sk_buff *skb);
65101aec
PA
3238struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3239 struct sk_buff_head *queue,
3240 unsigned int flags,
3241 void (*destructor)(struct sock *sk,
3242 struct sk_buff *skb),
3243 int *peeked, int *off, int *err,
3244 struct sk_buff **last);
ea3793ee 3245struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3246 void (*destructor)(struct sock *sk,
3247 struct sk_buff *skb),
ea3793ee
RW
3248 int *peeked, int *off, int *err,
3249 struct sk_buff **last);
7965bd4d 3250struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3251 void (*destructor)(struct sock *sk,
3252 struct sk_buff *skb),
7965bd4d
JP
3253 int *peeked, int *off, int *err);
3254struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3255 int *err);
db5051ea 3256__poll_t datagram_poll_mask(struct socket *sock, __poll_t events);
c0371da6
AV
3257int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3258 struct iov_iter *to, int size);
51f3d02b
DM
3259static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3260 struct msghdr *msg, int size)
3261{
e5a4b0bb 3262 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3263}
e5a4b0bb
AV
3264int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3265 struct msghdr *msg);
3a654f97
AV
3266int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3267 struct iov_iter *from, int len);
3a654f97 3268int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3269void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3270void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3271static inline void skb_free_datagram_locked(struct sock *sk,
3272 struct sk_buff *skb)
3273{
3274 __skb_free_datagram_locked(sk, skb, 0);
3275}
7965bd4d 3276int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3277int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3278int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3279__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3280 int len, __wsum csum);
a60e3cc7 3281int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3282 struct pipe_inode_info *pipe, unsigned int len,
25869262 3283 unsigned int flags);
20bf50de
TH
3284int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3285 int len);
3286int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3287void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3288unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3289int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3290 int len, int hlen);
7965bd4d
JP
3291void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3292int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3293void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3294bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3295bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3296struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3297struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3298int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3299int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3300int skb_vlan_pop(struct sk_buff *skb);
3301int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3302struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3303 gfp_t gfp);
20380731 3304
6ce8e9ce
AV
3305static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3306{
3073f070 3307 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3308}
3309
7eab8d9e
AV
3310static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3311{
e5a4b0bb 3312 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3313}
3314
2817a336
DB
3315struct skb_checksum_ops {
3316 __wsum (*update)(const void *mem, int len, __wsum wsum);
3317 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3318};
3319
9617813d
DC
3320extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3321
2817a336
DB
3322__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3323 __wsum csum, const struct skb_checksum_ops *ops);
3324__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3325 __wsum csum);
3326
1e98a0f0
ED
3327static inline void * __must_check
3328__skb_header_pointer(const struct sk_buff *skb, int offset,
3329 int len, void *data, int hlen, void *buffer)
1da177e4 3330{
55820ee2 3331 if (hlen - offset >= len)
690e36e7 3332 return data + offset;
1da177e4 3333
690e36e7
DM
3334 if (!skb ||
3335 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3336 return NULL;
3337
3338 return buffer;
3339}
3340
1e98a0f0
ED
3341static inline void * __must_check
3342skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3343{
3344 return __skb_header_pointer(skb, offset, len, skb->data,
3345 skb_headlen(skb), buffer);
3346}
3347
4262e5cc
DB
3348/**
3349 * skb_needs_linearize - check if we need to linearize a given skb
3350 * depending on the given device features.
3351 * @skb: socket buffer to check
3352 * @features: net device features
3353 *
3354 * Returns true if either:
3355 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3356 * 2. skb is fragmented and the device does not support SG.
3357 */
3358static inline bool skb_needs_linearize(struct sk_buff *skb,
3359 netdev_features_t features)
3360{
3361 return skb_is_nonlinear(skb) &&
3362 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3363 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3364}
3365
d626f62b
ACM
3366static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3367 void *to,
3368 const unsigned int len)
3369{
3370 memcpy(to, skb->data, len);
3371}
3372
3373static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3374 const int offset, void *to,
3375 const unsigned int len)
3376{
3377 memcpy(to, skb->data + offset, len);
3378}
3379
27d7ff46
ACM
3380static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3381 const void *from,
3382 const unsigned int len)
3383{
3384 memcpy(skb->data, from, len);
3385}
3386
3387static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3388 const int offset,
3389 const void *from,
3390 const unsigned int len)
3391{
3392 memcpy(skb->data + offset, from, len);
3393}
3394
7965bd4d 3395void skb_init(void);
1da177e4 3396
ac45f602
PO
3397static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3398{
3399 return skb->tstamp;
3400}
3401
a61bbcf2
PM
3402/**
3403 * skb_get_timestamp - get timestamp from a skb
3404 * @skb: skb to get stamp from
3405 * @stamp: pointer to struct timeval to store stamp in
3406 *
3407 * Timestamps are stored in the skb as offsets to a base timestamp.
3408 * This function converts the offset back to a struct timeval and stores
3409 * it in stamp.
3410 */
ac45f602
PO
3411static inline void skb_get_timestamp(const struct sk_buff *skb,
3412 struct timeval *stamp)
a61bbcf2 3413{
b7aa0bf7 3414 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3415}
3416
ac45f602
PO
3417static inline void skb_get_timestampns(const struct sk_buff *skb,
3418 struct timespec *stamp)
3419{
3420 *stamp = ktime_to_timespec(skb->tstamp);
3421}
3422
b7aa0bf7 3423static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3424{
b7aa0bf7 3425 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3426}
3427
164891aa
SH
3428static inline ktime_t net_timedelta(ktime_t t)
3429{
3430 return ktime_sub(ktime_get_real(), t);
3431}
3432
b9ce204f
IJ
3433static inline ktime_t net_invalid_timestamp(void)
3434{
8b0e1953 3435 return 0;
b9ce204f 3436}
a61bbcf2 3437
de8f3a83
DB
3438static inline u8 skb_metadata_len(const struct sk_buff *skb)
3439{
3440 return skb_shinfo(skb)->meta_len;
3441}
3442
3443static inline void *skb_metadata_end(const struct sk_buff *skb)
3444{
3445 return skb_mac_header(skb);
3446}
3447
3448static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3449 const struct sk_buff *skb_b,
3450 u8 meta_len)
3451{
3452 const void *a = skb_metadata_end(skb_a);
3453 const void *b = skb_metadata_end(skb_b);
3454 /* Using more efficient varaiant than plain call to memcmp(). */
3455#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3456 u64 diffs = 0;
3457
3458 switch (meta_len) {
3459#define __it(x, op) (x -= sizeof(u##op))
3460#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3461 case 32: diffs |= __it_diff(a, b, 64);
3462 case 24: diffs |= __it_diff(a, b, 64);
3463 case 16: diffs |= __it_diff(a, b, 64);
3464 case 8: diffs |= __it_diff(a, b, 64);
3465 break;
3466 case 28: diffs |= __it_diff(a, b, 64);
3467 case 20: diffs |= __it_diff(a, b, 64);
3468 case 12: diffs |= __it_diff(a, b, 64);
3469 case 4: diffs |= __it_diff(a, b, 32);
3470 break;
3471 }
3472 return diffs;
3473#else
3474 return memcmp(a - meta_len, b - meta_len, meta_len);
3475#endif
3476}
3477
3478static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3479 const struct sk_buff *skb_b)
3480{
3481 u8 len_a = skb_metadata_len(skb_a);
3482 u8 len_b = skb_metadata_len(skb_b);
3483
3484 if (!(len_a | len_b))
3485 return false;
3486
3487 return len_a != len_b ?
3488 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3489}
3490
3491static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3492{
3493 skb_shinfo(skb)->meta_len = meta_len;
3494}
3495
3496static inline void skb_metadata_clear(struct sk_buff *skb)
3497{
3498 skb_metadata_set(skb, 0);
3499}
3500
62bccb8c
AD
3501struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3502
c1f19b51
RC
3503#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3504
7965bd4d
JP
3505void skb_clone_tx_timestamp(struct sk_buff *skb);
3506bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3507
3508#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3509
3510static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3511{
3512}
3513
3514static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3515{
3516 return false;
3517}
3518
3519#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3520
3521/**
3522 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3523 *
da92b194
RC
3524 * PHY drivers may accept clones of transmitted packets for
3525 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3526 * must call this function to return the skb back to the stack with a
3527 * timestamp.
da92b194 3528 *
c1f19b51 3529 * @skb: clone of the the original outgoing packet
7a76a021 3530 * @hwtstamps: hardware time stamps
c1f19b51
RC
3531 *
3532 */
3533void skb_complete_tx_timestamp(struct sk_buff *skb,
3534 struct skb_shared_hwtstamps *hwtstamps);
3535
e7fd2885
WB
3536void __skb_tstamp_tx(struct sk_buff *orig_skb,
3537 struct skb_shared_hwtstamps *hwtstamps,
3538 struct sock *sk, int tstype);
3539
ac45f602
PO
3540/**
3541 * skb_tstamp_tx - queue clone of skb with send time stamps
3542 * @orig_skb: the original outgoing packet
3543 * @hwtstamps: hardware time stamps, may be NULL if not available
3544 *
3545 * If the skb has a socket associated, then this function clones the
3546 * skb (thus sharing the actual data and optional structures), stores
3547 * the optional hardware time stamping information (if non NULL) or
3548 * generates a software time stamp (otherwise), then queues the clone
3549 * to the error queue of the socket. Errors are silently ignored.
3550 */
7965bd4d
JP
3551void skb_tstamp_tx(struct sk_buff *orig_skb,
3552 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3553
4507a715
RC
3554/**
3555 * skb_tx_timestamp() - Driver hook for transmit timestamping
3556 *
3557 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3558 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3559 *
73409f3b
DM
3560 * Specifically, one should make absolutely sure that this function is
3561 * called before TX completion of this packet can trigger. Otherwise
3562 * the packet could potentially already be freed.
3563 *
4507a715
RC
3564 * @skb: A socket buffer.
3565 */
3566static inline void skb_tx_timestamp(struct sk_buff *skb)
3567{
c1f19b51 3568 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3569 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3570 skb_tstamp_tx(skb, NULL);
4507a715
RC
3571}
3572
6e3e939f
JB
3573/**
3574 * skb_complete_wifi_ack - deliver skb with wifi status
3575 *
3576 * @skb: the original outgoing packet
3577 * @acked: ack status
3578 *
3579 */
3580void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3581
7965bd4d
JP
3582__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3583__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3584
60476372
HX
3585static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3586{
6edec0e6
TH
3587 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3588 skb->csum_valid ||
3589 (skb->ip_summed == CHECKSUM_PARTIAL &&
3590 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3591}
3592
fb286bb2
HX
3593/**
3594 * skb_checksum_complete - Calculate checksum of an entire packet
3595 * @skb: packet to process
3596 *
3597 * This function calculates the checksum over the entire packet plus
3598 * the value of skb->csum. The latter can be used to supply the
3599 * checksum of a pseudo header as used by TCP/UDP. It returns the
3600 * checksum.
3601 *
3602 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3603 * this function can be used to verify that checksum on received
3604 * packets. In that case the function should return zero if the
3605 * checksum is correct. In particular, this function will return zero
3606 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3607 * hardware has already verified the correctness of the checksum.
3608 */
4381ca3c 3609static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3610{
60476372
HX
3611 return skb_csum_unnecessary(skb) ?
3612 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3613}
3614
77cffe23
TH
3615static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3616{
3617 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3618 if (skb->csum_level == 0)
3619 skb->ip_summed = CHECKSUM_NONE;
3620 else
3621 skb->csum_level--;
3622 }
3623}
3624
3625static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3626{
3627 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3628 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3629 skb->csum_level++;
3630 } else if (skb->ip_summed == CHECKSUM_NONE) {
3631 skb->ip_summed = CHECKSUM_UNNECESSARY;
3632 skb->csum_level = 0;
3633 }
3634}
3635
76ba0aae
TH
3636/* Check if we need to perform checksum complete validation.
3637 *
3638 * Returns true if checksum complete is needed, false otherwise
3639 * (either checksum is unnecessary or zero checksum is allowed).
3640 */
3641static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3642 bool zero_okay,
3643 __sum16 check)
3644{
5d0c2b95
TH
3645 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3646 skb->csum_valid = 1;
77cffe23 3647 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3648 return false;
3649 }
3650
3651 return true;
3652}
3653
da279887 3654/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3655 * in checksum_init.
3656 */
3657#define CHECKSUM_BREAK 76
3658
4e18b9ad
TH
3659/* Unset checksum-complete
3660 *
3661 * Unset checksum complete can be done when packet is being modified
3662 * (uncompressed for instance) and checksum-complete value is
3663 * invalidated.
3664 */
3665static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3666{
3667 if (skb->ip_summed == CHECKSUM_COMPLETE)
3668 skb->ip_summed = CHECKSUM_NONE;
3669}
3670
76ba0aae
TH
3671/* Validate (init) checksum based on checksum complete.
3672 *
3673 * Return values:
3674 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3675 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3676 * checksum is stored in skb->csum for use in __skb_checksum_complete
3677 * non-zero: value of invalid checksum
3678 *
3679 */
3680static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3681 bool complete,
3682 __wsum psum)
3683{
3684 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3685 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3686 skb->csum_valid = 1;
76ba0aae
TH
3687 return 0;
3688 }
3689 }
3690
3691 skb->csum = psum;
3692
5d0c2b95
TH
3693 if (complete || skb->len <= CHECKSUM_BREAK) {
3694 __sum16 csum;
3695
3696 csum = __skb_checksum_complete(skb);
3697 skb->csum_valid = !csum;
3698 return csum;
3699 }
76ba0aae
TH
3700
3701 return 0;
3702}
3703
3704static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3705{
3706 return 0;
3707}
3708
3709/* Perform checksum validate (init). Note that this is a macro since we only
3710 * want to calculate the pseudo header which is an input function if necessary.
3711 * First we try to validate without any computation (checksum unnecessary) and
3712 * then calculate based on checksum complete calling the function to compute
3713 * pseudo header.
3714 *
3715 * Return values:
3716 * 0: checksum is validated or try to in skb_checksum_complete
3717 * non-zero: value of invalid checksum
3718 */
3719#define __skb_checksum_validate(skb, proto, complete, \
3720 zero_okay, check, compute_pseudo) \
3721({ \
3722 __sum16 __ret = 0; \
5d0c2b95 3723 skb->csum_valid = 0; \
76ba0aae
TH
3724 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3725 __ret = __skb_checksum_validate_complete(skb, \
3726 complete, compute_pseudo(skb, proto)); \
3727 __ret; \
3728})
3729
3730#define skb_checksum_init(skb, proto, compute_pseudo) \
3731 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3732
3733#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3734 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3735
3736#define skb_checksum_validate(skb, proto, compute_pseudo) \
3737 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3738
3739#define skb_checksum_validate_zero_check(skb, proto, check, \
3740 compute_pseudo) \
096a4cfa 3741 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3742
3743#define skb_checksum_simple_validate(skb) \
3744 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3745
d96535a1
TH
3746static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3747{
219f1d79 3748 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3749}
3750
3751static inline void __skb_checksum_convert(struct sk_buff *skb,
3752 __sum16 check, __wsum pseudo)
3753{
3754 skb->csum = ~pseudo;
3755 skb->ip_summed = CHECKSUM_COMPLETE;
3756}
3757
3758#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3759do { \
3760 if (__skb_checksum_convert_check(skb)) \
3761 __skb_checksum_convert(skb, check, \
3762 compute_pseudo(skb, proto)); \
3763} while (0)
3764
15e2396d
TH
3765static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3766 u16 start, u16 offset)
3767{
3768 skb->ip_summed = CHECKSUM_PARTIAL;
3769 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3770 skb->csum_offset = offset - start;
3771}
3772
dcdc8994
TH
3773/* Update skbuf and packet to reflect the remote checksum offload operation.
3774 * When called, ptr indicates the starting point for skb->csum when
3775 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3776 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3777 */
3778static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3779 int start, int offset, bool nopartial)
dcdc8994
TH
3780{
3781 __wsum delta;
3782
15e2396d
TH
3783 if (!nopartial) {
3784 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3785 return;
3786 }
3787
dcdc8994
TH
3788 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3789 __skb_checksum_complete(skb);
3790 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3791 }
3792
3793 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3794
3795 /* Adjust skb->csum since we changed the packet */
3796 skb->csum = csum_add(skb->csum, delta);
3797}
3798
cb9c6836
FW
3799static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3800{
3801#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3802 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3803#else
3804 return NULL;
3805#endif
3806}
3807
5f79e0f9 3808#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3809void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3810static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3811{
3812 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3813 nf_conntrack_destroy(nfct);
1da177e4
LT
3814}
3815static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3816{
3817 if (nfct)
3818 atomic_inc(&nfct->use);
3819}
2fc72c7b 3820#endif
34666d46 3821#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3822static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3823{
53869ceb 3824 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3825 kfree(nf_bridge);
3826}
3827static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3828{
3829 if (nf_bridge)
53869ceb 3830 refcount_inc(&nf_bridge->use);
1da177e4
LT
3831}
3832#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3833static inline void nf_reset(struct sk_buff *skb)
3834{
5f79e0f9 3835#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3836 nf_conntrack_put(skb_nfct(skb));
3837 skb->_nfct = 0;
2fc72c7b 3838#endif
34666d46 3839#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3840 nf_bridge_put(skb->nf_bridge);
3841 skb->nf_bridge = NULL;
3842#endif
3843}
3844
124dff01
PM
3845static inline void nf_reset_trace(struct sk_buff *skb)
3846{
478b360a 3847#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3848 skb->nf_trace = 0;
3849#endif
a193a4ab
PM
3850}
3851
2b5ec1a5
YY
3852static inline void ipvs_reset(struct sk_buff *skb)
3853{
3854#if IS_ENABLED(CONFIG_IP_VS)
3855 skb->ipvs_property = 0;
3856#endif
3857}
3858
edda553c 3859/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3860static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3861 bool copy)
edda553c 3862{
5f79e0f9 3863#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3864 dst->_nfct = src->_nfct;
3865 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3866#endif
34666d46 3867#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3868 dst->nf_bridge = src->nf_bridge;
3869 nf_bridge_get(src->nf_bridge);
3870#endif
478b360a 3871#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3872 if (copy)
3873 dst->nf_trace = src->nf_trace;
478b360a 3874#endif
edda553c
YK
3875}
3876
e7ac05f3
YK
3877static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3878{
e7ac05f3 3879#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3880 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3881#endif
34666d46 3882#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3883 nf_bridge_put(dst->nf_bridge);
3884#endif
b1937227 3885 __nf_copy(dst, src, true);
e7ac05f3
YK
3886}
3887
984bc16c
JM
3888#ifdef CONFIG_NETWORK_SECMARK
3889static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3890{
3891 to->secmark = from->secmark;
3892}
3893
3894static inline void skb_init_secmark(struct sk_buff *skb)
3895{
3896 skb->secmark = 0;
3897}
3898#else
3899static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3900{ }
3901
3902static inline void skb_init_secmark(struct sk_buff *skb)
3903{ }
3904#endif
3905
574f7194
EB
3906static inline bool skb_irq_freeable(const struct sk_buff *skb)
3907{
3908 return !skb->destructor &&
3909#if IS_ENABLED(CONFIG_XFRM)
3910 !skb->sp &&
3911#endif
cb9c6836 3912 !skb_nfct(skb) &&
574f7194
EB
3913 !skb->_skb_refdst &&
3914 !skb_has_frag_list(skb);
3915}
3916
f25f4e44
PWJ
3917static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3918{
f25f4e44 3919 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3920}
3921
9247744e 3922static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3923{
4e3ab47a 3924 return skb->queue_mapping;
4e3ab47a
PE
3925}
3926
f25f4e44
PWJ
3927static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3928{
f25f4e44 3929 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3930}
3931
d5a9e24a
DM
3932static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3933{
3934 skb->queue_mapping = rx_queue + 1;
3935}
3936
9247744e 3937static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3938{
3939 return skb->queue_mapping - 1;
3940}
3941
9247744e 3942static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3943{
a02cec21 3944 return skb->queue_mapping != 0;
d5a9e24a
DM
3945}
3946
4ff06203
JA
3947static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3948{
3949 skb->dst_pending_confirm = val;
3950}
3951
3952static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3953{
3954 return skb->dst_pending_confirm != 0;
3955}
3956
def8b4fa
AD
3957static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3958{
0b3d8e08 3959#ifdef CONFIG_XFRM
def8b4fa 3960 return skb->sp;
def8b4fa 3961#else
def8b4fa 3962 return NULL;
def8b4fa 3963#endif
0b3d8e08 3964}
def8b4fa 3965
68c33163
PS
3966/* Keeps track of mac header offset relative to skb->head.
3967 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3968 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3969 * tunnel skb it points to outer mac header.
3970 * Keeps track of level of encapsulation of network headers.
3971 */
68c33163 3972struct skb_gso_cb {
802ab55a
AD
3973 union {
3974 int mac_offset;
3975 int data_offset;
3976 };
3347c960 3977 int encap_level;
76443456 3978 __wsum csum;
7e2b10c1 3979 __u16 csum_start;
68c33163 3980};
9207f9d4
KK
3981#define SKB_SGO_CB_OFFSET 32
3982#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3983
3984static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3985{
3986 return (skb_mac_header(inner_skb) - inner_skb->head) -
3987 SKB_GSO_CB(inner_skb)->mac_offset;
3988}
3989
1e2bd517
PS
3990static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3991{
3992 int new_headroom, headroom;
3993 int ret;
3994
3995 headroom = skb_headroom(skb);
3996 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3997 if (ret)
3998 return ret;
3999
4000 new_headroom = skb_headroom(skb);
4001 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4002 return 0;
4003}
4004
08b64fcc
AD
4005static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4006{
4007 /* Do not update partial checksums if remote checksum is enabled. */
4008 if (skb->remcsum_offload)
4009 return;
4010
4011 SKB_GSO_CB(skb)->csum = res;
4012 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4013}
4014
7e2b10c1
TH
4015/* Compute the checksum for a gso segment. First compute the checksum value
4016 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4017 * then add in skb->csum (checksum from csum_start to end of packet).
4018 * skb->csum and csum_start are then updated to reflect the checksum of the
4019 * resultant packet starting from the transport header-- the resultant checksum
4020 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4021 * header.
4022 */
4023static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4024{
76443456
AD
4025 unsigned char *csum_start = skb_transport_header(skb);
4026 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4027 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4028
76443456
AD
4029 SKB_GSO_CB(skb)->csum = res;
4030 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4031
76443456 4032 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4033}
4034
bdcc0924 4035static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4036{
4037 return skb_shinfo(skb)->gso_size;
4038}
4039
36a8f39e 4040/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4041static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4042{
4043 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4044}
4045
d02f51cb
DA
4046/* Note: Should be called only if skb_is_gso(skb) is true */
4047static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4048{
4049 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4050}
4051
5293efe6
DB
4052static inline void skb_gso_reset(struct sk_buff *skb)
4053{
4054 skb_shinfo(skb)->gso_size = 0;
4055 skb_shinfo(skb)->gso_segs = 0;
4056 skb_shinfo(skb)->gso_type = 0;
4057}
4058
d02f51cb
DA
4059static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4060 u16 increment)
4061{
4062 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4063 return;
4064 shinfo->gso_size += increment;
4065}
4066
4067static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4068 u16 decrement)
4069{
4070 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071 return;
4072 shinfo->gso_size -= decrement;
4073}
4074
7965bd4d 4075void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4076
4077static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4078{
4079 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4080 * wanted then gso_type will be set. */
05bdd2f1
ED
4081 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4082
b78462eb
AD
4083 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4084 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4085 __skb_warn_lro_forwarding(skb);
4086 return true;
4087 }
4088 return false;
4089}
4090
35fc92a9
HX
4091static inline void skb_forward_csum(struct sk_buff *skb)
4092{
4093 /* Unfortunately we don't support this one. Any brave souls? */
4094 if (skb->ip_summed == CHECKSUM_COMPLETE)
4095 skb->ip_summed = CHECKSUM_NONE;
4096}
4097
bc8acf2c
ED
4098/**
4099 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4100 * @skb: skb to check
4101 *
4102 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4103 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4104 * use this helper, to document places where we make this assertion.
4105 */
05bdd2f1 4106static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4107{
4108#ifdef DEBUG
4109 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4110#endif
4111}
4112
f35d9d8a 4113bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4114
ed1f50c3 4115int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4116struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4117 unsigned int transport_len,
4118 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4119
3a7c1ee4
AD
4120/**
4121 * skb_head_is_locked - Determine if the skb->head is locked down
4122 * @skb: skb to check
4123 *
4124 * The head on skbs build around a head frag can be removed if they are
4125 * not cloned. This function returns true if the skb head is locked down
4126 * due to either being allocated via kmalloc, or by being a clone with
4127 * multiple references to the head.
4128 */
4129static inline bool skb_head_is_locked(const struct sk_buff *skb)
4130{
4131 return !skb->head_frag || skb_cloned(skb);
4132}
fe6cc55f 4133
179bc67f
EC
4134/* Local Checksum Offload.
4135 * Compute outer checksum based on the assumption that the
4136 * inner checksum will be offloaded later.
e8ae7b00
EC
4137 * See Documentation/networking/checksum-offloads.txt for
4138 * explanation of how this works.
179bc67f
EC
4139 * Fill in outer checksum adjustment (e.g. with sum of outer
4140 * pseudo-header) before calling.
4141 * Also ensure that inner checksum is in linear data area.
4142 */
4143static inline __wsum lco_csum(struct sk_buff *skb)
4144{
9e74a6da
AD
4145 unsigned char *csum_start = skb_checksum_start(skb);
4146 unsigned char *l4_hdr = skb_transport_header(skb);
4147 __wsum partial;
179bc67f
EC
4148
4149 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4150 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4151 skb->csum_offset));
4152
179bc67f 4153 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4154 * adjustment filled in by caller) and return result.
179bc67f 4155 */
9e74a6da 4156 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4157}
4158
1da177e4
LT
4159#endif /* __KERNEL__ */
4160#endif /* _LINUX_SKBUFF_H */