Merge tag 'keys-next-20171123' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[linux-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
1da177e4 246
5f79e0f9 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
248struct nf_conntrack {
249 atomic_t use;
1da177e4 250};
5f79e0f9 251#endif
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
53869ceb 255 refcount_t use;
3eaf4025
FW
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
7fb48c5b 260 } orig_proto:8;
72b1e5e4
FW
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
411ffb4f 264 __u16 frag_max_size;
bf1ac5ca 265 struct net_device *physindev;
63cdbc06
FW
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
7fb48c5b 269 union {
72b1e5e4 270 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
72b1e5e4
FW
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
72b31f72 279 };
1da177e4
LT
280};
281#endif
282
1da177e4
LT
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
9d4dde52
IC
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
a715dea3 300 */
9d4dde52 301#if (65536/PAGE_SIZE + 1) < 16
eec00954 302#define MAX_SKB_FRAGS 16UL
a715dea3 303#else
9d4dde52 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 305#endif
5f74f82e 306extern int sysctl_max_skb_frags;
1da177e4 307
3953c46c
MRL
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
1da177e4
LT
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
a8605c60
IC
316 struct {
317 struct page *p;
318 } page;
cb4dfe56 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
320 __u32 page_offset;
321 __u32 size;
cb4dfe56
ED
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
1da177e4
LT
326};
327
9e903e08
ED
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
c613c209
WB
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
ac45f602
PO
384#define HAVE_HW_TIME_STAMP
385
386/**
d3a21be8 387 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
ac45f602
PO
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 392 * skb->tstamp.
ac45f602
PO
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
ac45f602
PO
402};
403
2244d07b
OH
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
e7fd2885 409 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
a6686f2f 415 /* device driver supports TX zero-copy buffers */
62b1a8ab 416 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
417
418 /* generate wifi status information (where possible) */
62b1a8ab 419 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
430};
431
52267790 432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 434 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
a6686f2f
SM
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
a6686f2f
SM
444 */
445struct ubuf_info {
e19d6763 446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
c1d1b437 459 refcount_t refcnt;
a91dbff5
WB
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
ac45f602
PO
465};
466
52267790
WB
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
469struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
470struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
471 struct ubuf_info *uarg);
52267790
WB
472
473static inline void sock_zerocopy_get(struct ubuf_info *uarg)
474{
c1d1b437 475 refcount_inc(&uarg->refcnt);
52267790
WB
476}
477
478void sock_zerocopy_put(struct ubuf_info *uarg);
479void sock_zerocopy_put_abort(struct ubuf_info *uarg);
480
481void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
482
483int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
484 struct msghdr *msg, int len,
485 struct ubuf_info *uarg);
486
1da177e4
LT
487/* This data is invariant across clones and lives at
488 * the end of the header data, ie. at skb->end.
489 */
490struct skb_shared_info {
de8f3a83
DB
491 __u8 __unused;
492 __u8 meta_len;
493 __u8 nr_frags;
9f42f126 494 __u8 tx_flags;
7967168c
HX
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
1da177e4 498 struct sk_buff *frag_list;
ac45f602 499 struct skb_shared_hwtstamps hwtstamps;
7f564528 500 unsigned int gso_type;
09c2d251 501 u32 tskey;
ec7d2f2c
ED
502
503 /*
504 * Warning : all fields before dataref are cleared in __alloc_skb()
505 */
506 atomic_t dataref;
507
69e3c75f
JB
508 /* Intermediate layers must ensure that destructor_arg
509 * remains valid until skb destructor */
510 void * destructor_arg;
a6686f2f 511
fed66381
ED
512 /* must be last field, see pskb_expand_head() */
513 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
514};
515
516/* We divide dataref into two halves. The higher 16 bits hold references
517 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
518 * the entire skb->data. A clone of a headerless skb holds the length of
519 * the header in skb->hdr_len.
1da177e4
LT
520 *
521 * All users must obey the rule that the skb->data reference count must be
522 * greater than or equal to the payload reference count.
523 *
524 * Holding a reference to the payload part means that the user does not
525 * care about modifications to the header part of skb->data.
526 */
527#define SKB_DATAREF_SHIFT 16
528#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
529
d179cd12
DM
530
531enum {
c8753d55
VS
532 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
533 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
534 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
535};
536
7967168c
HX
537enum {
538 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
539
540 /* This indicates the skb is from an untrusted source. */
d9d30adf 541 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
542
543 /* This indicates the tcp segment has CWR set. */
d9d30adf 544 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 545
d9d30adf 546 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 547
d9d30adf 548 SKB_GSO_TCPV6 = 1 << 4,
68c33163 549
d9d30adf 550 SKB_GSO_FCOE = 1 << 5,
73136267 551
d9d30adf 552 SKB_GSO_GRE = 1 << 6,
0d89d203 553
d9d30adf 554 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 555
d9d30adf 556 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 557
d9d30adf 558 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 559
d9d30adf 560 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 561
d9d30adf 562 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 563
d9d30adf 564 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 565
d9d30adf 566 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 567
d9d30adf 568 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 569
d9d30adf 570 SKB_GSO_ESP = 1 << 15,
7967168c
HX
571};
572
2e07fa9c
ACM
573#if BITS_PER_LONG > 32
574#define NET_SKBUFF_DATA_USES_OFFSET 1
575#endif
576
577#ifdef NET_SKBUFF_DATA_USES_OFFSET
578typedef unsigned int sk_buff_data_t;
579#else
580typedef unsigned char *sk_buff_data_t;
581#endif
582
1da177e4
LT
583/**
584 * struct sk_buff - socket buffer
585 * @next: Next buffer in list
586 * @prev: Previous buffer in list
363ec392 587 * @tstamp: Time we arrived/left
56b17425 588 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 589 * @sk: Socket we are owned by
1da177e4 590 * @dev: Device we arrived on/are leaving by
d84e0bd7 591 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 592 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 593 * @sp: the security path, used for xfrm
1da177e4
LT
594 * @len: Length of actual data
595 * @data_len: Data length
596 * @mac_len: Length of link layer header
334a8132 597 * @hdr_len: writable header length of cloned skb
663ead3b
HX
598 * @csum: Checksum (must include start/offset pair)
599 * @csum_start: Offset from skb->head where checksumming should start
600 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 601 * @priority: Packet queueing priority
60ff7467 602 * @ignore_df: allow local fragmentation
1da177e4 603 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 604 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
605 * @nohdr: Payload reference only, must not modify header
606 * @pkt_type: Packet class
c83c2486 607 * @fclone: skbuff clone status
c83c2486 608 * @ipvs_property: skbuff is owned by ipvs
e7246e12 609 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 610 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
611 * @tc_redirected: packet was redirected by a tc action
612 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
613 * @peeked: this packet has been seen already, so stats have been
614 * done for it, don't do them again
ba9dda3a 615 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
616 * @protocol: Packet protocol from driver
617 * @destructor: Destruct function
e2080072 618 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 619 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 620 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 621 * @skb_iif: ifindex of device we arrived on
1da177e4 622 * @tc_index: Traffic control index
61b905da 623 * @hash: the packet hash
d84e0bd7 624 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 625 * @xmit_more: More SKBs are pending for this queue
553a5672 626 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 627 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 628 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 629 * ports.
a3b18ddb 630 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
631 * @wifi_acked_valid: wifi_acked was set
632 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 633 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 634 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 635 * @dst_pending_confirm: need to confirm neighbour
06021292 636 * @napi_id: id of the NAPI struct this skb came from
984bc16c 637 * @secmark: security marking
d84e0bd7 638 * @mark: Generic packet mark
86a9bad3 639 * @vlan_proto: vlan encapsulation protocol
6aa895b0 640 * @vlan_tci: vlan tag control information
0d89d203 641 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
642 * @inner_transport_header: Inner transport layer header (encapsulation)
643 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 644 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
645 * @transport_header: Transport layer header
646 * @network_header: Network layer header
647 * @mac_header: Link layer header
648 * @tail: Tail pointer
649 * @end: End pointer
650 * @head: Head of buffer
651 * @data: Data head pointer
652 * @truesize: Buffer size
653 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
654 */
655
656struct sk_buff {
363ec392 657 union {
56b17425
ED
658 struct {
659 /* These two members must be first. */
660 struct sk_buff *next;
661 struct sk_buff *prev;
662
663 union {
bffa72cf
ED
664 struct net_device *dev;
665 /* Some protocols might use this space to store information,
666 * while device pointer would be NULL.
667 * UDP receive path is one user.
668 */
669 unsigned long dev_scratch;
56b17425
ED
670 };
671 };
672 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 673 };
da3f5cf1 674 struct sock *sk;
1da177e4 675
c84d9490 676 union {
bffa72cf
ED
677 ktime_t tstamp;
678 u64 skb_mstamp;
c84d9490 679 };
1da177e4
LT
680 /*
681 * This is the control buffer. It is free to use for every
682 * layer. Please put your private variables there. If you
683 * want to keep them across layers you have to do a skb_clone()
684 * first. This is owned by whoever has the skb queued ATM.
685 */
da3f5cf1 686 char cb[48] __aligned(8);
1da177e4 687
e2080072
ED
688 union {
689 struct {
690 unsigned long _skb_refdst;
691 void (*destructor)(struct sk_buff *skb);
692 };
693 struct list_head tcp_tsorted_anchor;
694 };
695
da3f5cf1
FF
696#ifdef CONFIG_XFRM
697 struct sec_path *sp;
b1937227
ED
698#endif
699#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 700 unsigned long _nfct;
b1937227 701#endif
85224844 702#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 703 struct nf_bridge_info *nf_bridge;
da3f5cf1 704#endif
1da177e4 705 unsigned int len,
334a8132
PM
706 data_len;
707 __u16 mac_len,
708 hdr_len;
b1937227
ED
709
710 /* Following fields are _not_ copied in __copy_skb_header()
711 * Note that queue_mapping is here mostly to fill a hole.
712 */
b1937227 713 __u16 queue_mapping;
36bbef52
DB
714
715/* if you move cloned around you also must adapt those constants */
716#ifdef __BIG_ENDIAN_BITFIELD
717#define CLONED_MASK (1 << 7)
718#else
719#define CLONED_MASK 1
720#endif
721#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
722
723 __u8 __cloned_offset[0];
b1937227 724 __u8 cloned:1,
6869c4d8 725 nohdr:1,
b84f4cc9 726 fclone:2,
a59322be 727 peeked:1,
b1937227 728 head_frag:1,
36bbef52
DB
729 xmit_more:1,
730 __unused:1; /* one bit hole */
4031ae6e 731
b1937227
ED
732 /* fields enclosed in headers_start/headers_end are copied
733 * using a single memcpy() in __copy_skb_header()
734 */
ebcf34f3 735 /* private: */
b1937227 736 __u32 headers_start[0];
ebcf34f3 737 /* public: */
4031ae6e 738
233577a2
HFS
739/* if you move pkt_type around you also must adapt those constants */
740#ifdef __BIG_ENDIAN_BITFIELD
741#define PKT_TYPE_MAX (7 << 5)
742#else
743#define PKT_TYPE_MAX 7
1da177e4 744#endif
233577a2 745#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 746
233577a2 747 __u8 __pkt_type_offset[0];
b1937227 748 __u8 pkt_type:3;
c93bdd0e 749 __u8 pfmemalloc:1;
b1937227 750 __u8 ignore_df:1;
b1937227
ED
751
752 __u8 nf_trace:1;
753 __u8 ip_summed:2;
3853b584 754 __u8 ooo_okay:1;
61b905da 755 __u8 l4_hash:1;
a3b18ddb 756 __u8 sw_hash:1;
6e3e939f
JB
757 __u8 wifi_acked_valid:1;
758 __u8 wifi_acked:1;
b1937227 759
3bdc0eba 760 __u8 no_fcs:1;
77cffe23 761 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 762 __u8 encapsulation:1;
7e2b10c1 763 __u8 encap_hdr_csum:1;
5d0c2b95 764 __u8 csum_valid:1;
7e3cead5 765 __u8 csum_complete_sw:1;
b1937227 766 __u8 csum_level:2;
dba00306 767 __u8 csum_not_inet:1;
fe55f6d5 768
4ff06203 769 __u8 dst_pending_confirm:1;
b1937227
ED
770#ifdef CONFIG_IPV6_NDISC_NODETYPE
771 __u8 ndisc_nodetype:2;
772#endif
773 __u8 ipvs_property:1;
8bce6d7d 774 __u8 inner_protocol_type:1;
e585f236 775 __u8 remcsum_offload:1;
6bc506b4
IS
776#ifdef CONFIG_NET_SWITCHDEV
777 __u8 offload_fwd_mark:1;
abf4bb6b 778 __u8 offload_mr_fwd_mark:1;
6bc506b4 779#endif
e7246e12
WB
780#ifdef CONFIG_NET_CLS_ACT
781 __u8 tc_skip_classify:1;
8dc07fdb 782 __u8 tc_at_ingress:1;
bc31c905
WB
783 __u8 tc_redirected:1;
784 __u8 tc_from_ingress:1;
e7246e12 785#endif
b1937227
ED
786
787#ifdef CONFIG_NET_SCHED
788 __u16 tc_index; /* traffic control index */
b1937227 789#endif
fe55f6d5 790
b1937227
ED
791 union {
792 __wsum csum;
793 struct {
794 __u16 csum_start;
795 __u16 csum_offset;
796 };
797 };
798 __u32 priority;
799 int skb_iif;
800 __u32 hash;
801 __be16 vlan_proto;
802 __u16 vlan_tci;
2bd82484
ED
803#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
804 union {
805 unsigned int napi_id;
806 unsigned int sender_cpu;
807 };
97fc2f08 808#endif
984bc16c 809#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 810 __u32 secmark;
0c4f691f 811#endif
0c4f691f 812
3b885787
NH
813 union {
814 __u32 mark;
16fad69c 815 __u32 reserved_tailroom;
3b885787 816 };
1da177e4 817
8bce6d7d
TH
818 union {
819 __be16 inner_protocol;
820 __u8 inner_ipproto;
821 };
822
1a37e412
SH
823 __u16 inner_transport_header;
824 __u16 inner_network_header;
825 __u16 inner_mac_header;
b1937227
ED
826
827 __be16 protocol;
1a37e412
SH
828 __u16 transport_header;
829 __u16 network_header;
830 __u16 mac_header;
b1937227 831
ebcf34f3 832 /* private: */
b1937227 833 __u32 headers_end[0];
ebcf34f3 834 /* public: */
b1937227 835
1da177e4 836 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 837 sk_buff_data_t tail;
4305b541 838 sk_buff_data_t end;
1da177e4 839 unsigned char *head,
4305b541 840 *data;
27a884dc 841 unsigned int truesize;
63354797 842 refcount_t users;
1da177e4
LT
843};
844
845#ifdef __KERNEL__
846/*
847 * Handling routines are only of interest to the kernel
848 */
849#include <linux/slab.h>
850
1da177e4 851
c93bdd0e
MG
852#define SKB_ALLOC_FCLONE 0x01
853#define SKB_ALLOC_RX 0x02
fd11a83d 854#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
855
856/* Returns true if the skb was allocated from PFMEMALLOC reserves */
857static inline bool skb_pfmemalloc(const struct sk_buff *skb)
858{
859 return unlikely(skb->pfmemalloc);
860}
861
7fee226a
ED
862/*
863 * skb might have a dst pointer attached, refcounted or not.
864 * _skb_refdst low order bit is set if refcount was _not_ taken
865 */
866#define SKB_DST_NOREF 1UL
867#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
868
a9e419dc 869#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
870/**
871 * skb_dst - returns skb dst_entry
872 * @skb: buffer
873 *
874 * Returns skb dst_entry, regardless of reference taken or not.
875 */
adf30907
ED
876static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
877{
7fee226a
ED
878 /* If refdst was not refcounted, check we still are in a
879 * rcu_read_lock section
880 */
881 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
882 !rcu_read_lock_held() &&
883 !rcu_read_lock_bh_held());
884 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
885}
886
7fee226a
ED
887/**
888 * skb_dst_set - sets skb dst
889 * @skb: buffer
890 * @dst: dst entry
891 *
892 * Sets skb dst, assuming a reference was taken on dst and should
893 * be released by skb_dst_drop()
894 */
adf30907
ED
895static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
896{
7fee226a
ED
897 skb->_skb_refdst = (unsigned long)dst;
898}
899
932bc4d7
JA
900/**
901 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
902 * @skb: buffer
903 * @dst: dst entry
904 *
905 * Sets skb dst, assuming a reference was not taken on dst.
906 * If dst entry is cached, we do not take reference and dst_release
907 * will be avoided by refdst_drop. If dst entry is not cached, we take
908 * reference, so that last dst_release can destroy the dst immediately.
909 */
910static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
911{
dbfc4fb7
HFS
912 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
913 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 914}
7fee226a
ED
915
916/**
25985edc 917 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
918 * @skb: buffer
919 */
920static inline bool skb_dst_is_noref(const struct sk_buff *skb)
921{
922 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
923}
924
511c3f92
ED
925static inline struct rtable *skb_rtable(const struct sk_buff *skb)
926{
adf30907 927 return (struct rtable *)skb_dst(skb);
511c3f92
ED
928}
929
8b10cab6
JHS
930/* For mangling skb->pkt_type from user space side from applications
931 * such as nft, tc, etc, we only allow a conservative subset of
932 * possible pkt_types to be set.
933*/
934static inline bool skb_pkt_type_ok(u32 ptype)
935{
936 return ptype <= PACKET_OTHERHOST;
937}
938
90b602f8
ML
939static inline unsigned int skb_napi_id(const struct sk_buff *skb)
940{
941#ifdef CONFIG_NET_RX_BUSY_POLL
942 return skb->napi_id;
943#else
944 return 0;
945#endif
946}
947
3889a803
PA
948/* decrement the reference count and return true if we can free the skb */
949static inline bool skb_unref(struct sk_buff *skb)
950{
951 if (unlikely(!skb))
952 return false;
63354797 953 if (likely(refcount_read(&skb->users) == 1))
3889a803 954 smp_rmb();
63354797 955 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
956 return false;
957
958 return true;
959}
960
0a463c78 961void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
962void kfree_skb(struct sk_buff *skb);
963void kfree_skb_list(struct sk_buff *segs);
964void skb_tx_error(struct sk_buff *skb);
965void consume_skb(struct sk_buff *skb);
ca2c1418 966void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 967void __kfree_skb(struct sk_buff *skb);
d7e8883c 968extern struct kmem_cache *skbuff_head_cache;
bad43ca8 969
7965bd4d
JP
970void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
971bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
972 bool *fragstolen, int *delta_truesize);
bad43ca8 973
7965bd4d
JP
974struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
975 int node);
2ea2f62c 976struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 977struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 978static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 979 gfp_t priority)
d179cd12 980{
564824b0 981 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
982}
983
2e4e4410
ED
984struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
985 unsigned long data_len,
986 int max_page_order,
987 int *errcode,
988 gfp_t gfp_mask);
989
d0bf4a9e
ED
990/* Layout of fast clones : [skb1][skb2][fclone_ref] */
991struct sk_buff_fclones {
992 struct sk_buff skb1;
993
994 struct sk_buff skb2;
995
2638595a 996 refcount_t fclone_ref;
d0bf4a9e
ED
997};
998
999/**
1000 * skb_fclone_busy - check if fclone is busy
293de7de 1001 * @sk: socket
d0bf4a9e
ED
1002 * @skb: buffer
1003 *
bda13fed 1004 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1005 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1006 * so we also check that this didnt happen.
d0bf4a9e 1007 */
39bb5e62
ED
1008static inline bool skb_fclone_busy(const struct sock *sk,
1009 const struct sk_buff *skb)
d0bf4a9e
ED
1010{
1011 const struct sk_buff_fclones *fclones;
1012
1013 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1014
1015 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1016 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1017 fclones->skb2.sk == sk;
d0bf4a9e
ED
1018}
1019
d179cd12 1020static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1021 gfp_t priority)
d179cd12 1022{
c93bdd0e 1023 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1024}
1025
7965bd4d
JP
1026struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1027int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1028struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1029struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1030struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1031 gfp_t gfp_mask, bool fclone);
1032static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1033 gfp_t gfp_mask)
1034{
1035 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1036}
7965bd4d
JP
1037
1038int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1039struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1040 unsigned int headroom);
1041struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1042 int newtailroom, gfp_t priority);
48a1df65
JD
1043int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1044 int offset, int len);
1045int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1046 int offset, int len);
7965bd4d 1047int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1048int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1049
1050/**
1051 * skb_pad - zero pad the tail of an skb
1052 * @skb: buffer to pad
1053 * @pad: space to pad
1054 *
1055 * Ensure that a buffer is followed by a padding area that is zero
1056 * filled. Used by network drivers which may DMA or transfer data
1057 * beyond the buffer end onto the wire.
1058 *
1059 * May return error in out of memory cases. The skb is freed on error.
1060 */
1061static inline int skb_pad(struct sk_buff *skb, int pad)
1062{
1063 return __skb_pad(skb, pad, true);
1064}
ead2ceb0 1065#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1066
7965bd4d
JP
1067int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1068 int getfrag(void *from, char *to, int offset,
1069 int len, int odd, struct sk_buff *skb),
1070 void *from, int length);
e89e9cf5 1071
be12a1fe
HFS
1072int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1073 int offset, size_t size);
1074
d94d9fee 1075struct skb_seq_state {
677e90ed
TG
1076 __u32 lower_offset;
1077 __u32 upper_offset;
1078 __u32 frag_idx;
1079 __u32 stepped_offset;
1080 struct sk_buff *root_skb;
1081 struct sk_buff *cur_skb;
1082 __u8 *frag_data;
1083};
1084
7965bd4d
JP
1085void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1086 unsigned int to, struct skb_seq_state *st);
1087unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1088 struct skb_seq_state *st);
1089void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1090
7965bd4d 1091unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1092 unsigned int to, struct ts_config *config);
3fc7e8a6 1093
09323cc4
TH
1094/*
1095 * Packet hash types specify the type of hash in skb_set_hash.
1096 *
1097 * Hash types refer to the protocol layer addresses which are used to
1098 * construct a packet's hash. The hashes are used to differentiate or identify
1099 * flows of the protocol layer for the hash type. Hash types are either
1100 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1101 *
1102 * Properties of hashes:
1103 *
1104 * 1) Two packets in different flows have different hash values
1105 * 2) Two packets in the same flow should have the same hash value
1106 *
1107 * A hash at a higher layer is considered to be more specific. A driver should
1108 * set the most specific hash possible.
1109 *
1110 * A driver cannot indicate a more specific hash than the layer at which a hash
1111 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1112 *
1113 * A driver may indicate a hash level which is less specific than the
1114 * actual layer the hash was computed on. For instance, a hash computed
1115 * at L4 may be considered an L3 hash. This should only be done if the
1116 * driver can't unambiguously determine that the HW computed the hash at
1117 * the higher layer. Note that the "should" in the second property above
1118 * permits this.
1119 */
1120enum pkt_hash_types {
1121 PKT_HASH_TYPE_NONE, /* Undefined type */
1122 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1123 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1124 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1125};
1126
bcc83839 1127static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1128{
bcc83839 1129 skb->hash = 0;
a3b18ddb 1130 skb->sw_hash = 0;
bcc83839
TH
1131 skb->l4_hash = 0;
1132}
1133
1134static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1135{
1136 if (!skb->l4_hash)
1137 skb_clear_hash(skb);
1138}
1139
1140static inline void
1141__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1142{
1143 skb->l4_hash = is_l4;
1144 skb->sw_hash = is_sw;
61b905da 1145 skb->hash = hash;
09323cc4
TH
1146}
1147
bcc83839
TH
1148static inline void
1149skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1150{
1151 /* Used by drivers to set hash from HW */
1152 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1153}
1154
1155static inline void
1156__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1157{
1158 __skb_set_hash(skb, hash, true, is_l4);
1159}
1160
e5276937 1161void __skb_get_hash(struct sk_buff *skb);
b917783c 1162u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1163u32 skb_get_poff(const struct sk_buff *skb);
1164u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1165 const struct flow_keys *keys, int hlen);
1166__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1167 void *data, int hlen_proto);
1168
1169static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1170 int thoff, u8 ip_proto)
1171{
1172 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1173}
1174
1175void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1176 const struct flow_dissector_key *key,
1177 unsigned int key_count);
1178
1179bool __skb_flow_dissect(const struct sk_buff *skb,
1180 struct flow_dissector *flow_dissector,
1181 void *target_container,
cd79a238
TH
1182 void *data, __be16 proto, int nhoff, int hlen,
1183 unsigned int flags);
e5276937
TH
1184
1185static inline bool skb_flow_dissect(const struct sk_buff *skb,
1186 struct flow_dissector *flow_dissector,
cd79a238 1187 void *target_container, unsigned int flags)
e5276937
TH
1188{
1189 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1190 NULL, 0, 0, 0, flags);
e5276937
TH
1191}
1192
1193static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1194 struct flow_keys *flow,
1195 unsigned int flags)
e5276937
TH
1196{
1197 memset(flow, 0, sizeof(*flow));
1198 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1199 NULL, 0, 0, 0, flags);
e5276937
TH
1200}
1201
1202static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1203 void *data, __be16 proto,
cd79a238
TH
1204 int nhoff, int hlen,
1205 unsigned int flags)
e5276937
TH
1206{
1207 memset(flow, 0, sizeof(*flow));
1208 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1209 data, proto, nhoff, hlen, flags);
e5276937
TH
1210}
1211
3958afa1 1212static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1213{
a3b18ddb 1214 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1215 __skb_get_hash(skb);
bfb564e7 1216
61b905da 1217 return skb->hash;
bfb564e7
KK
1218}
1219
20a17bf6 1220static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1221{
c6cc1ca7
TH
1222 if (!skb->l4_hash && !skb->sw_hash) {
1223 struct flow_keys keys;
de4c1f8b 1224 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1225
de4c1f8b 1226 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1227 }
f70ea018
TH
1228
1229 return skb->hash;
1230}
1231
50fb7992
TH
1232__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1233
57bdf7f4
TH
1234static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1235{
61b905da 1236 return skb->hash;
57bdf7f4
TH
1237}
1238
3df7a74e
TH
1239static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1240{
61b905da 1241 to->hash = from->hash;
a3b18ddb 1242 to->sw_hash = from->sw_hash;
61b905da 1243 to->l4_hash = from->l4_hash;
3df7a74e
TH
1244};
1245
4305b541
ACM
1246#ifdef NET_SKBUFF_DATA_USES_OFFSET
1247static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1248{
1249 return skb->head + skb->end;
1250}
ec47ea82
AD
1251
1252static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1253{
1254 return skb->end;
1255}
4305b541
ACM
1256#else
1257static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1258{
1259 return skb->end;
1260}
ec47ea82
AD
1261
1262static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1263{
1264 return skb->end - skb->head;
1265}
4305b541
ACM
1266#endif
1267
1da177e4 1268/* Internal */
4305b541 1269#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1270
ac45f602
PO
1271static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1272{
1273 return &skb_shinfo(skb)->hwtstamps;
1274}
1275
52267790
WB
1276static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1277{
1278 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1279
1280 return is_zcopy ? skb_uarg(skb) : NULL;
1281}
1282
1283static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1284{
1285 if (skb && uarg && !skb_zcopy(skb)) {
1286 sock_zerocopy_get(uarg);
1287 skb_shinfo(skb)->destructor_arg = uarg;
1288 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1289 }
1290}
1291
1292/* Release a reference on a zerocopy structure */
1293static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1294{
1295 struct ubuf_info *uarg = skb_zcopy(skb);
1296
1297 if (uarg) {
0a4a060b
WB
1298 if (uarg->callback == sock_zerocopy_callback) {
1299 uarg->zerocopy = uarg->zerocopy && zerocopy;
1300 sock_zerocopy_put(uarg);
1301 } else {
1302 uarg->callback(uarg, zerocopy);
1303 }
1304
52267790
WB
1305 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1306 }
1307}
1308
1309/* Abort a zerocopy operation and revert zckey on error in send syscall */
1310static inline void skb_zcopy_abort(struct sk_buff *skb)
1311{
1312 struct ubuf_info *uarg = skb_zcopy(skb);
1313
1314 if (uarg) {
1315 sock_zerocopy_put_abort(uarg);
1316 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1317 }
1318}
1319
1da177e4
LT
1320/**
1321 * skb_queue_empty - check if a queue is empty
1322 * @list: queue head
1323 *
1324 * Returns true if the queue is empty, false otherwise.
1325 */
1326static inline int skb_queue_empty(const struct sk_buff_head *list)
1327{
fd44b93c 1328 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1329}
1330
fc7ebb21
DM
1331/**
1332 * skb_queue_is_last - check if skb is the last entry in the queue
1333 * @list: queue head
1334 * @skb: buffer
1335 *
1336 * Returns true if @skb is the last buffer on the list.
1337 */
1338static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1339 const struct sk_buff *skb)
1340{
fd44b93c 1341 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1342}
1343
832d11c5
IJ
1344/**
1345 * skb_queue_is_first - check if skb is the first entry in the queue
1346 * @list: queue head
1347 * @skb: buffer
1348 *
1349 * Returns true if @skb is the first buffer on the list.
1350 */
1351static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1352 const struct sk_buff *skb)
1353{
fd44b93c 1354 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1355}
1356
249c8b42
DM
1357/**
1358 * skb_queue_next - return the next packet in the queue
1359 * @list: queue head
1360 * @skb: current buffer
1361 *
1362 * Return the next packet in @list after @skb. It is only valid to
1363 * call this if skb_queue_is_last() evaluates to false.
1364 */
1365static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1366 const struct sk_buff *skb)
1367{
1368 /* This BUG_ON may seem severe, but if we just return then we
1369 * are going to dereference garbage.
1370 */
1371 BUG_ON(skb_queue_is_last(list, skb));
1372 return skb->next;
1373}
1374
832d11c5
IJ
1375/**
1376 * skb_queue_prev - return the prev packet in the queue
1377 * @list: queue head
1378 * @skb: current buffer
1379 *
1380 * Return the prev packet in @list before @skb. It is only valid to
1381 * call this if skb_queue_is_first() evaluates to false.
1382 */
1383static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1384 const struct sk_buff *skb)
1385{
1386 /* This BUG_ON may seem severe, but if we just return then we
1387 * are going to dereference garbage.
1388 */
1389 BUG_ON(skb_queue_is_first(list, skb));
1390 return skb->prev;
1391}
1392
1da177e4
LT
1393/**
1394 * skb_get - reference buffer
1395 * @skb: buffer to reference
1396 *
1397 * Makes another reference to a socket buffer and returns a pointer
1398 * to the buffer.
1399 */
1400static inline struct sk_buff *skb_get(struct sk_buff *skb)
1401{
63354797 1402 refcount_inc(&skb->users);
1da177e4
LT
1403 return skb;
1404}
1405
1406/*
1407 * If users == 1, we are the only owner and are can avoid redundant
1408 * atomic change.
1409 */
1410
1da177e4
LT
1411/**
1412 * skb_cloned - is the buffer a clone
1413 * @skb: buffer to check
1414 *
1415 * Returns true if the buffer was generated with skb_clone() and is
1416 * one of multiple shared copies of the buffer. Cloned buffers are
1417 * shared data so must not be written to under normal circumstances.
1418 */
1419static inline int skb_cloned(const struct sk_buff *skb)
1420{
1421 return skb->cloned &&
1422 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1423}
1424
14bbd6a5
PS
1425static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1426{
d0164adc 1427 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1428
1429 if (skb_cloned(skb))
1430 return pskb_expand_head(skb, 0, 0, pri);
1431
1432 return 0;
1433}
1434
1da177e4
LT
1435/**
1436 * skb_header_cloned - is the header a clone
1437 * @skb: buffer to check
1438 *
1439 * Returns true if modifying the header part of the buffer requires
1440 * the data to be copied.
1441 */
1442static inline int skb_header_cloned(const struct sk_buff *skb)
1443{
1444 int dataref;
1445
1446 if (!skb->cloned)
1447 return 0;
1448
1449 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1450 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1451 return dataref != 1;
1452}
1453
9580bf2e
ED
1454static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1455{
1456 might_sleep_if(gfpflags_allow_blocking(pri));
1457
1458 if (skb_header_cloned(skb))
1459 return pskb_expand_head(skb, 0, 0, pri);
1460
1461 return 0;
1462}
1463
f4a775d1
ED
1464/**
1465 * __skb_header_release - release reference to header
1466 * @skb: buffer to operate on
f4a775d1
ED
1467 */
1468static inline void __skb_header_release(struct sk_buff *skb)
1469{
1470 skb->nohdr = 1;
1471 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1472}
1473
1474
1da177e4
LT
1475/**
1476 * skb_shared - is the buffer shared
1477 * @skb: buffer to check
1478 *
1479 * Returns true if more than one person has a reference to this
1480 * buffer.
1481 */
1482static inline int skb_shared(const struct sk_buff *skb)
1483{
63354797 1484 return refcount_read(&skb->users) != 1;
1da177e4
LT
1485}
1486
1487/**
1488 * skb_share_check - check if buffer is shared and if so clone it
1489 * @skb: buffer to check
1490 * @pri: priority for memory allocation
1491 *
1492 * If the buffer is shared the buffer is cloned and the old copy
1493 * drops a reference. A new clone with a single reference is returned.
1494 * If the buffer is not shared the original buffer is returned. When
1495 * being called from interrupt status or with spinlocks held pri must
1496 * be GFP_ATOMIC.
1497 *
1498 * NULL is returned on a memory allocation failure.
1499 */
47061bc4 1500static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1501{
d0164adc 1502 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1503 if (skb_shared(skb)) {
1504 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1505
1506 if (likely(nskb))
1507 consume_skb(skb);
1508 else
1509 kfree_skb(skb);
1da177e4
LT
1510 skb = nskb;
1511 }
1512 return skb;
1513}
1514
1515/*
1516 * Copy shared buffers into a new sk_buff. We effectively do COW on
1517 * packets to handle cases where we have a local reader and forward
1518 * and a couple of other messy ones. The normal one is tcpdumping
1519 * a packet thats being forwarded.
1520 */
1521
1522/**
1523 * skb_unshare - make a copy of a shared buffer
1524 * @skb: buffer to check
1525 * @pri: priority for memory allocation
1526 *
1527 * If the socket buffer is a clone then this function creates a new
1528 * copy of the data, drops a reference count on the old copy and returns
1529 * the new copy with the reference count at 1. If the buffer is not a clone
1530 * the original buffer is returned. When called with a spinlock held or
1531 * from interrupt state @pri must be %GFP_ATOMIC
1532 *
1533 * %NULL is returned on a memory allocation failure.
1534 */
e2bf521d 1535static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1536 gfp_t pri)
1da177e4 1537{
d0164adc 1538 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1539 if (skb_cloned(skb)) {
1540 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1541
1542 /* Free our shared copy */
1543 if (likely(nskb))
1544 consume_skb(skb);
1545 else
1546 kfree_skb(skb);
1da177e4
LT
1547 skb = nskb;
1548 }
1549 return skb;
1550}
1551
1552/**
1a5778aa 1553 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1554 * @list_: list to peek at
1555 *
1556 * Peek an &sk_buff. Unlike most other operations you _MUST_
1557 * be careful with this one. A peek leaves the buffer on the
1558 * list and someone else may run off with it. You must hold
1559 * the appropriate locks or have a private queue to do this.
1560 *
1561 * Returns %NULL for an empty list or a pointer to the head element.
1562 * The reference count is not incremented and the reference is therefore
1563 * volatile. Use with caution.
1564 */
05bdd2f1 1565static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1566{
18d07000
ED
1567 struct sk_buff *skb = list_->next;
1568
1569 if (skb == (struct sk_buff *)list_)
1570 skb = NULL;
1571 return skb;
1da177e4
LT
1572}
1573
da5ef6e5
PE
1574/**
1575 * skb_peek_next - peek skb following the given one from a queue
1576 * @skb: skb to start from
1577 * @list_: list to peek at
1578 *
1579 * Returns %NULL when the end of the list is met or a pointer to the
1580 * next element. The reference count is not incremented and the
1581 * reference is therefore volatile. Use with caution.
1582 */
1583static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1584 const struct sk_buff_head *list_)
1585{
1586 struct sk_buff *next = skb->next;
18d07000 1587
da5ef6e5
PE
1588 if (next == (struct sk_buff *)list_)
1589 next = NULL;
1590 return next;
1591}
1592
1da177e4 1593/**
1a5778aa 1594 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1595 * @list_: list to peek at
1596 *
1597 * Peek an &sk_buff. Unlike most other operations you _MUST_
1598 * be careful with this one. A peek leaves the buffer on the
1599 * list and someone else may run off with it. You must hold
1600 * the appropriate locks or have a private queue to do this.
1601 *
1602 * Returns %NULL for an empty list or a pointer to the tail element.
1603 * The reference count is not incremented and the reference is therefore
1604 * volatile. Use with caution.
1605 */
05bdd2f1 1606static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1607{
18d07000
ED
1608 struct sk_buff *skb = list_->prev;
1609
1610 if (skb == (struct sk_buff *)list_)
1611 skb = NULL;
1612 return skb;
1613
1da177e4
LT
1614}
1615
1616/**
1617 * skb_queue_len - get queue length
1618 * @list_: list to measure
1619 *
1620 * Return the length of an &sk_buff queue.
1621 */
1622static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1623{
1624 return list_->qlen;
1625}
1626
67fed459
DM
1627/**
1628 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1629 * @list: queue to initialize
1630 *
1631 * This initializes only the list and queue length aspects of
1632 * an sk_buff_head object. This allows to initialize the list
1633 * aspects of an sk_buff_head without reinitializing things like
1634 * the spinlock. It can also be used for on-stack sk_buff_head
1635 * objects where the spinlock is known to not be used.
1636 */
1637static inline void __skb_queue_head_init(struct sk_buff_head *list)
1638{
1639 list->prev = list->next = (struct sk_buff *)list;
1640 list->qlen = 0;
1641}
1642
76f10ad0
AV
1643/*
1644 * This function creates a split out lock class for each invocation;
1645 * this is needed for now since a whole lot of users of the skb-queue
1646 * infrastructure in drivers have different locking usage (in hardirq)
1647 * than the networking core (in softirq only). In the long run either the
1648 * network layer or drivers should need annotation to consolidate the
1649 * main types of usage into 3 classes.
1650 */
1da177e4
LT
1651static inline void skb_queue_head_init(struct sk_buff_head *list)
1652{
1653 spin_lock_init(&list->lock);
67fed459 1654 __skb_queue_head_init(list);
1da177e4
LT
1655}
1656
c2ecba71
PE
1657static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1658 struct lock_class_key *class)
1659{
1660 skb_queue_head_init(list);
1661 lockdep_set_class(&list->lock, class);
1662}
1663
1da177e4 1664/*
bf299275 1665 * Insert an sk_buff on a list.
1da177e4
LT
1666 *
1667 * The "__skb_xxxx()" functions are the non-atomic ones that
1668 * can only be called with interrupts disabled.
1669 */
7965bd4d
JP
1670void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1671 struct sk_buff_head *list);
bf299275
GR
1672static inline void __skb_insert(struct sk_buff *newsk,
1673 struct sk_buff *prev, struct sk_buff *next,
1674 struct sk_buff_head *list)
1675{
1676 newsk->next = next;
1677 newsk->prev = prev;
1678 next->prev = prev->next = newsk;
1679 list->qlen++;
1680}
1da177e4 1681
67fed459
DM
1682static inline void __skb_queue_splice(const struct sk_buff_head *list,
1683 struct sk_buff *prev,
1684 struct sk_buff *next)
1685{
1686 struct sk_buff *first = list->next;
1687 struct sk_buff *last = list->prev;
1688
1689 first->prev = prev;
1690 prev->next = first;
1691
1692 last->next = next;
1693 next->prev = last;
1694}
1695
1696/**
1697 * skb_queue_splice - join two skb lists, this is designed for stacks
1698 * @list: the new list to add
1699 * @head: the place to add it in the first list
1700 */
1701static inline void skb_queue_splice(const struct sk_buff_head *list,
1702 struct sk_buff_head *head)
1703{
1704 if (!skb_queue_empty(list)) {
1705 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1706 head->qlen += list->qlen;
67fed459
DM
1707 }
1708}
1709
1710/**
d9619496 1711 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1712 * @list: the new list to add
1713 * @head: the place to add it in the first list
1714 *
1715 * The list at @list is reinitialised
1716 */
1717static inline void skb_queue_splice_init(struct sk_buff_head *list,
1718 struct sk_buff_head *head)
1719{
1720 if (!skb_queue_empty(list)) {
1721 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1722 head->qlen += list->qlen;
67fed459
DM
1723 __skb_queue_head_init(list);
1724 }
1725}
1726
1727/**
1728 * skb_queue_splice_tail - join two skb lists, each list being a queue
1729 * @list: the new list to add
1730 * @head: the place to add it in the first list
1731 */
1732static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1733 struct sk_buff_head *head)
1734{
1735 if (!skb_queue_empty(list)) {
1736 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1737 head->qlen += list->qlen;
67fed459
DM
1738 }
1739}
1740
1741/**
d9619496 1742 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1743 * @list: the new list to add
1744 * @head: the place to add it in the first list
1745 *
1746 * Each of the lists is a queue.
1747 * The list at @list is reinitialised
1748 */
1749static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1750 struct sk_buff_head *head)
1751{
1752 if (!skb_queue_empty(list)) {
1753 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1754 head->qlen += list->qlen;
67fed459
DM
1755 __skb_queue_head_init(list);
1756 }
1757}
1758
1da177e4 1759/**
300ce174 1760 * __skb_queue_after - queue a buffer at the list head
1da177e4 1761 * @list: list to use
300ce174 1762 * @prev: place after this buffer
1da177e4
LT
1763 * @newsk: buffer to queue
1764 *
300ce174 1765 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1766 * and you must therefore hold required locks before calling it.
1767 *
1768 * A buffer cannot be placed on two lists at the same time.
1769 */
300ce174
SH
1770static inline void __skb_queue_after(struct sk_buff_head *list,
1771 struct sk_buff *prev,
1772 struct sk_buff *newsk)
1da177e4 1773{
bf299275 1774 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1775}
1776
7965bd4d
JP
1777void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1778 struct sk_buff_head *list);
7de6c033 1779
f5572855
GR
1780static inline void __skb_queue_before(struct sk_buff_head *list,
1781 struct sk_buff *next,
1782 struct sk_buff *newsk)
1783{
1784 __skb_insert(newsk, next->prev, next, list);
1785}
1786
300ce174
SH
1787/**
1788 * __skb_queue_head - queue a buffer at the list head
1789 * @list: list to use
1790 * @newsk: buffer to queue
1791 *
1792 * Queue a buffer at the start of a list. This function takes no locks
1793 * and you must therefore hold required locks before calling it.
1794 *
1795 * A buffer cannot be placed on two lists at the same time.
1796 */
7965bd4d 1797void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1798static inline void __skb_queue_head(struct sk_buff_head *list,
1799 struct sk_buff *newsk)
1800{
1801 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1802}
1803
1da177e4
LT
1804/**
1805 * __skb_queue_tail - queue a buffer at the list tail
1806 * @list: list to use
1807 * @newsk: buffer to queue
1808 *
1809 * Queue a buffer at the end of a list. This function takes no locks
1810 * and you must therefore hold required locks before calling it.
1811 *
1812 * A buffer cannot be placed on two lists at the same time.
1813 */
7965bd4d 1814void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1815static inline void __skb_queue_tail(struct sk_buff_head *list,
1816 struct sk_buff *newsk)
1817{
f5572855 1818 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1819}
1820
1da177e4
LT
1821/*
1822 * remove sk_buff from list. _Must_ be called atomically, and with
1823 * the list known..
1824 */
7965bd4d 1825void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1826static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1827{
1828 struct sk_buff *next, *prev;
1829
1830 list->qlen--;
1831 next = skb->next;
1832 prev = skb->prev;
1833 skb->next = skb->prev = NULL;
1da177e4
LT
1834 next->prev = prev;
1835 prev->next = next;
1836}
1837
f525c06d
GR
1838/**
1839 * __skb_dequeue - remove from the head of the queue
1840 * @list: list to dequeue from
1841 *
1842 * Remove the head of the list. This function does not take any locks
1843 * so must be used with appropriate locks held only. The head item is
1844 * returned or %NULL if the list is empty.
1845 */
7965bd4d 1846struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1847static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1848{
1849 struct sk_buff *skb = skb_peek(list);
1850 if (skb)
1851 __skb_unlink(skb, list);
1852 return skb;
1853}
1da177e4
LT
1854
1855/**
1856 * __skb_dequeue_tail - remove from the tail of the queue
1857 * @list: list to dequeue from
1858 *
1859 * Remove the tail of the list. This function does not take any locks
1860 * so must be used with appropriate locks held only. The tail item is
1861 * returned or %NULL if the list is empty.
1862 */
7965bd4d 1863struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1864static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1865{
1866 struct sk_buff *skb = skb_peek_tail(list);
1867 if (skb)
1868 __skb_unlink(skb, list);
1869 return skb;
1870}
1871
1872
bdcc0924 1873static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1874{
1875 return skb->data_len;
1876}
1877
1878static inline unsigned int skb_headlen(const struct sk_buff *skb)
1879{
1880 return skb->len - skb->data_len;
1881}
1882
3ece7826 1883static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1884{
c72d8cda 1885 unsigned int i, len = 0;
1da177e4 1886
c72d8cda 1887 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1888 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1889 return len;
1890}
1891
1892static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1893{
1894 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1895}
1896
131ea667
IC
1897/**
1898 * __skb_fill_page_desc - initialise a paged fragment in an skb
1899 * @skb: buffer containing fragment to be initialised
1900 * @i: paged fragment index to initialise
1901 * @page: the page to use for this fragment
1902 * @off: the offset to the data with @page
1903 * @size: the length of the data
1904 *
1905 * Initialises the @i'th fragment of @skb to point to &size bytes at
1906 * offset @off within @page.
1907 *
1908 * Does not take any additional reference on the fragment.
1909 */
1910static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1911 struct page *page, int off, int size)
1da177e4
LT
1912{
1913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1914
c48a11c7 1915 /*
2f064f34
MH
1916 * Propagate page pfmemalloc to the skb if we can. The problem is
1917 * that not all callers have unique ownership of the page but rely
1918 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1919 */
a8605c60 1920 frag->page.p = page;
1da177e4 1921 frag->page_offset = off;
9e903e08 1922 skb_frag_size_set(frag, size);
cca7af38
PE
1923
1924 page = compound_head(page);
2f064f34 1925 if (page_is_pfmemalloc(page))
cca7af38 1926 skb->pfmemalloc = true;
131ea667
IC
1927}
1928
1929/**
1930 * skb_fill_page_desc - initialise a paged fragment in an skb
1931 * @skb: buffer containing fragment to be initialised
1932 * @i: paged fragment index to initialise
1933 * @page: the page to use for this fragment
1934 * @off: the offset to the data with @page
1935 * @size: the length of the data
1936 *
1937 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1938 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1939 * addition updates @skb such that @i is the last fragment.
1940 *
1941 * Does not take any additional reference on the fragment.
1942 */
1943static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1944 struct page *page, int off, int size)
1945{
1946 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1947 skb_shinfo(skb)->nr_frags = i + 1;
1948}
1949
7965bd4d
JP
1950void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1951 int size, unsigned int truesize);
654bed16 1952
f8e617e1
JW
1953void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1954 unsigned int truesize);
1955
1da177e4 1956#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1957#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1958#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1959
27a884dc
ACM
1960#ifdef NET_SKBUFF_DATA_USES_OFFSET
1961static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1962{
1963 return skb->head + skb->tail;
1964}
1965
1966static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1967{
1968 skb->tail = skb->data - skb->head;
1969}
1970
1971static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1972{
1973 skb_reset_tail_pointer(skb);
1974 skb->tail += offset;
1975}
7cc46190 1976
27a884dc
ACM
1977#else /* NET_SKBUFF_DATA_USES_OFFSET */
1978static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1979{
1980 return skb->tail;
1981}
1982
1983static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1984{
1985 skb->tail = skb->data;
1986}
1987
1988static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1989{
1990 skb->tail = skb->data + offset;
1991}
4305b541 1992
27a884dc
ACM
1993#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1994
1da177e4
LT
1995/*
1996 * Add data to an sk_buff
1997 */
4df864c1
JB
1998void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1999void *skb_put(struct sk_buff *skb, unsigned int len);
2000static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2001{
4df864c1 2002 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2003 SKB_LINEAR_ASSERT(skb);
2004 skb->tail += len;
2005 skb->len += len;
2006 return tmp;
2007}
2008
de77b966 2009static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2010{
2011 void *tmp = __skb_put(skb, len);
2012
2013 memset(tmp, 0, len);
2014 return tmp;
2015}
2016
2017static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2018 unsigned int len)
2019{
2020 void *tmp = __skb_put(skb, len);
2021
2022 memcpy(tmp, data, len);
2023 return tmp;
2024}
2025
2026static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2027{
2028 *(u8 *)__skb_put(skb, 1) = val;
2029}
2030
83ad357d 2031static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2032{
83ad357d 2033 void *tmp = skb_put(skb, len);
e45a79da
JB
2034
2035 memset(tmp, 0, len);
2036
2037 return tmp;
2038}
2039
59ae1d12
JB
2040static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2041 unsigned int len)
2042{
2043 void *tmp = skb_put(skb, len);
2044
2045 memcpy(tmp, data, len);
2046
2047 return tmp;
2048}
2049
634fef61
JB
2050static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2051{
2052 *(u8 *)skb_put(skb, 1) = val;
2053}
2054
d58ff351
JB
2055void *skb_push(struct sk_buff *skb, unsigned int len);
2056static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2057{
2058 skb->data -= len;
2059 skb->len += len;
2060 return skb->data;
2061}
2062
af72868b
JB
2063void *skb_pull(struct sk_buff *skb, unsigned int len);
2064static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2065{
2066 skb->len -= len;
2067 BUG_ON(skb->len < skb->data_len);
2068 return skb->data += len;
2069}
2070
af72868b 2071static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2072{
2073 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2074}
2075
af72868b 2076void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2077
af72868b 2078static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2079{
2080 if (len > skb_headlen(skb) &&
987c402a 2081 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2082 return NULL;
2083 skb->len -= len;
2084 return skb->data += len;
2085}
2086
af72868b 2087static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2088{
2089 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2090}
2091
2092static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2093{
2094 if (likely(len <= skb_headlen(skb)))
2095 return 1;
2096 if (unlikely(len > skb->len))
2097 return 0;
987c402a 2098 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2099}
2100
c8c8b127
ED
2101void skb_condense(struct sk_buff *skb);
2102
1da177e4
LT
2103/**
2104 * skb_headroom - bytes at buffer head
2105 * @skb: buffer to check
2106 *
2107 * Return the number of bytes of free space at the head of an &sk_buff.
2108 */
c2636b4d 2109static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2110{
2111 return skb->data - skb->head;
2112}
2113
2114/**
2115 * skb_tailroom - bytes at buffer end
2116 * @skb: buffer to check
2117 *
2118 * Return the number of bytes of free space at the tail of an sk_buff
2119 */
2120static inline int skb_tailroom(const struct sk_buff *skb)
2121{
4305b541 2122 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2123}
2124
a21d4572
ED
2125/**
2126 * skb_availroom - bytes at buffer end
2127 * @skb: buffer to check
2128 *
2129 * Return the number of bytes of free space at the tail of an sk_buff
2130 * allocated by sk_stream_alloc()
2131 */
2132static inline int skb_availroom(const struct sk_buff *skb)
2133{
16fad69c
ED
2134 if (skb_is_nonlinear(skb))
2135 return 0;
2136
2137 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2138}
2139
1da177e4
LT
2140/**
2141 * skb_reserve - adjust headroom
2142 * @skb: buffer to alter
2143 * @len: bytes to move
2144 *
2145 * Increase the headroom of an empty &sk_buff by reducing the tail
2146 * room. This is only allowed for an empty buffer.
2147 */
8243126c 2148static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2149{
2150 skb->data += len;
2151 skb->tail += len;
2152}
2153
1837b2e2
BP
2154/**
2155 * skb_tailroom_reserve - adjust reserved_tailroom
2156 * @skb: buffer to alter
2157 * @mtu: maximum amount of headlen permitted
2158 * @needed_tailroom: minimum amount of reserved_tailroom
2159 *
2160 * Set reserved_tailroom so that headlen can be as large as possible but
2161 * not larger than mtu and tailroom cannot be smaller than
2162 * needed_tailroom.
2163 * The required headroom should already have been reserved before using
2164 * this function.
2165 */
2166static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2167 unsigned int needed_tailroom)
2168{
2169 SKB_LINEAR_ASSERT(skb);
2170 if (mtu < skb_tailroom(skb) - needed_tailroom)
2171 /* use at most mtu */
2172 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2173 else
2174 /* use up to all available space */
2175 skb->reserved_tailroom = needed_tailroom;
2176}
2177
8bce6d7d
TH
2178#define ENCAP_TYPE_ETHER 0
2179#define ENCAP_TYPE_IPPROTO 1
2180
2181static inline void skb_set_inner_protocol(struct sk_buff *skb,
2182 __be16 protocol)
2183{
2184 skb->inner_protocol = protocol;
2185 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2186}
2187
2188static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2189 __u8 ipproto)
2190{
2191 skb->inner_ipproto = ipproto;
2192 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2193}
2194
6a674e9c
JG
2195static inline void skb_reset_inner_headers(struct sk_buff *skb)
2196{
aefbd2b3 2197 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2198 skb->inner_network_header = skb->network_header;
2199 skb->inner_transport_header = skb->transport_header;
2200}
2201
0b5c9db1
JP
2202static inline void skb_reset_mac_len(struct sk_buff *skb)
2203{
2204 skb->mac_len = skb->network_header - skb->mac_header;
2205}
2206
6a674e9c
JG
2207static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2208 *skb)
2209{
2210 return skb->head + skb->inner_transport_header;
2211}
2212
55dc5a9f
TH
2213static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2214{
2215 return skb_inner_transport_header(skb) - skb->data;
2216}
2217
6a674e9c
JG
2218static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2219{
2220 skb->inner_transport_header = skb->data - skb->head;
2221}
2222
2223static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2224 const int offset)
2225{
2226 skb_reset_inner_transport_header(skb);
2227 skb->inner_transport_header += offset;
2228}
2229
2230static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2231{
2232 return skb->head + skb->inner_network_header;
2233}
2234
2235static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2236{
2237 skb->inner_network_header = skb->data - skb->head;
2238}
2239
2240static inline void skb_set_inner_network_header(struct sk_buff *skb,
2241 const int offset)
2242{
2243 skb_reset_inner_network_header(skb);
2244 skb->inner_network_header += offset;
2245}
2246
aefbd2b3
PS
2247static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2248{
2249 return skb->head + skb->inner_mac_header;
2250}
2251
2252static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2253{
2254 skb->inner_mac_header = skb->data - skb->head;
2255}
2256
2257static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2258 const int offset)
2259{
2260 skb_reset_inner_mac_header(skb);
2261 skb->inner_mac_header += offset;
2262}
fda55eca
ED
2263static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2264{
35d04610 2265 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2266}
2267
9c70220b
ACM
2268static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2269{
2e07fa9c 2270 return skb->head + skb->transport_header;
9c70220b
ACM
2271}
2272
badff6d0
ACM
2273static inline void skb_reset_transport_header(struct sk_buff *skb)
2274{
2e07fa9c 2275 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2276}
2277
967b05f6
ACM
2278static inline void skb_set_transport_header(struct sk_buff *skb,
2279 const int offset)
2280{
2e07fa9c
ACM
2281 skb_reset_transport_header(skb);
2282 skb->transport_header += offset;
ea2ae17d
ACM
2283}
2284
d56f90a7
ACM
2285static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2286{
2e07fa9c 2287 return skb->head + skb->network_header;
d56f90a7
ACM
2288}
2289
c1d2bbe1
ACM
2290static inline void skb_reset_network_header(struct sk_buff *skb)
2291{
2e07fa9c 2292 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2293}
2294
c14d2450
ACM
2295static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2296{
2e07fa9c
ACM
2297 skb_reset_network_header(skb);
2298 skb->network_header += offset;
c14d2450
ACM
2299}
2300
2e07fa9c 2301static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2302{
2e07fa9c 2303 return skb->head + skb->mac_header;
bbe735e4
ACM
2304}
2305
ea6da4fd
AV
2306static inline int skb_mac_offset(const struct sk_buff *skb)
2307{
2308 return skb_mac_header(skb) - skb->data;
2309}
2310
0daf4349
DB
2311static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2312{
2313 return skb->network_header - skb->mac_header;
2314}
2315
2e07fa9c 2316static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2317{
35d04610 2318 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2319}
2320
2321static inline void skb_reset_mac_header(struct sk_buff *skb)
2322{
2323 skb->mac_header = skb->data - skb->head;
2324}
2325
2326static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2327{
2328 skb_reset_mac_header(skb);
2329 skb->mac_header += offset;
2330}
2331
0e3da5bb
TT
2332static inline void skb_pop_mac_header(struct sk_buff *skb)
2333{
2334 skb->mac_header = skb->network_header;
2335}
2336
fbbdb8f0
YX
2337static inline void skb_probe_transport_header(struct sk_buff *skb,
2338 const int offset_hint)
2339{
2340 struct flow_keys keys;
2341
2342 if (skb_transport_header_was_set(skb))
2343 return;
cd79a238 2344 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2345 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2346 else
2347 skb_set_transport_header(skb, offset_hint);
2348}
2349
03606895
ED
2350static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2351{
2352 if (skb_mac_header_was_set(skb)) {
2353 const unsigned char *old_mac = skb_mac_header(skb);
2354
2355 skb_set_mac_header(skb, -skb->mac_len);
2356 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2357 }
2358}
2359
04fb451e
MM
2360static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2361{
2362 return skb->csum_start - skb_headroom(skb);
2363}
2364
08b64fcc
AD
2365static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2366{
2367 return skb->head + skb->csum_start;
2368}
2369
2e07fa9c
ACM
2370static inline int skb_transport_offset(const struct sk_buff *skb)
2371{
2372 return skb_transport_header(skb) - skb->data;
2373}
2374
2375static inline u32 skb_network_header_len(const struct sk_buff *skb)
2376{
2377 return skb->transport_header - skb->network_header;
2378}
2379
6a674e9c
JG
2380static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2381{
2382 return skb->inner_transport_header - skb->inner_network_header;
2383}
2384
2e07fa9c
ACM
2385static inline int skb_network_offset(const struct sk_buff *skb)
2386{
2387 return skb_network_header(skb) - skb->data;
2388}
48d49d0c 2389
6a674e9c
JG
2390static inline int skb_inner_network_offset(const struct sk_buff *skb)
2391{
2392 return skb_inner_network_header(skb) - skb->data;
2393}
2394
f9599ce1
CG
2395static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2396{
2397 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2398}
2399
1da177e4
LT
2400/*
2401 * CPUs often take a performance hit when accessing unaligned memory
2402 * locations. The actual performance hit varies, it can be small if the
2403 * hardware handles it or large if we have to take an exception and fix it
2404 * in software.
2405 *
2406 * Since an ethernet header is 14 bytes network drivers often end up with
2407 * the IP header at an unaligned offset. The IP header can be aligned by
2408 * shifting the start of the packet by 2 bytes. Drivers should do this
2409 * with:
2410 *
8660c124 2411 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2412 *
2413 * The downside to this alignment of the IP header is that the DMA is now
2414 * unaligned. On some architectures the cost of an unaligned DMA is high
2415 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2416 *
1da177e4
LT
2417 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2418 * to be overridden.
2419 */
2420#ifndef NET_IP_ALIGN
2421#define NET_IP_ALIGN 2
2422#endif
2423
025be81e
AB
2424/*
2425 * The networking layer reserves some headroom in skb data (via
2426 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2427 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2428 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2429 *
2430 * Unfortunately this headroom changes the DMA alignment of the resulting
2431 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2432 * on some architectures. An architecture can override this value,
2433 * perhaps setting it to a cacheline in size (since that will maintain
2434 * cacheline alignment of the DMA). It must be a power of 2.
2435 *
d6301d3d 2436 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2437 * headroom, you should not reduce this.
5933dd2f
ED
2438 *
2439 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2440 * to reduce average number of cache lines per packet.
2441 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2442 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2443 */
2444#ifndef NET_SKB_PAD
5933dd2f 2445#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2446#endif
2447
7965bd4d 2448int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2449
5293efe6 2450static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2451{
c4264f27 2452 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2453 WARN_ON(1);
2454 return;
2455 }
27a884dc
ACM
2456 skb->len = len;
2457 skb_set_tail_pointer(skb, len);
1da177e4
LT
2458}
2459
5293efe6
DB
2460static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2461{
2462 __skb_set_length(skb, len);
2463}
2464
7965bd4d 2465void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2466
2467static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2468{
3cc0e873
HX
2469 if (skb->data_len)
2470 return ___pskb_trim(skb, len);
2471 __skb_trim(skb, len);
2472 return 0;
1da177e4
LT
2473}
2474
2475static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2476{
2477 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2478}
2479
e9fa4f7b
HX
2480/**
2481 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2482 * @skb: buffer to alter
2483 * @len: new length
2484 *
2485 * This is identical to pskb_trim except that the caller knows that
2486 * the skb is not cloned so we should never get an error due to out-
2487 * of-memory.
2488 */
2489static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2490{
2491 int err = pskb_trim(skb, len);
2492 BUG_ON(err);
2493}
2494
5293efe6
DB
2495static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2496{
2497 unsigned int diff = len - skb->len;
2498
2499 if (skb_tailroom(skb) < diff) {
2500 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2501 GFP_ATOMIC);
2502 if (ret)
2503 return ret;
2504 }
2505 __skb_set_length(skb, len);
2506 return 0;
2507}
2508
1da177e4
LT
2509/**
2510 * skb_orphan - orphan a buffer
2511 * @skb: buffer to orphan
2512 *
2513 * If a buffer currently has an owner then we call the owner's
2514 * destructor function and make the @skb unowned. The buffer continues
2515 * to exist but is no longer charged to its former owner.
2516 */
2517static inline void skb_orphan(struct sk_buff *skb)
2518{
c34a7612 2519 if (skb->destructor) {
1da177e4 2520 skb->destructor(skb);
c34a7612
ED
2521 skb->destructor = NULL;
2522 skb->sk = NULL;
376c7311
ED
2523 } else {
2524 BUG_ON(skb->sk);
c34a7612 2525 }
1da177e4
LT
2526}
2527
a353e0ce
MT
2528/**
2529 * skb_orphan_frags - orphan the frags contained in a buffer
2530 * @skb: buffer to orphan frags from
2531 * @gfp_mask: allocation mask for replacement pages
2532 *
2533 * For each frag in the SKB which needs a destructor (i.e. has an
2534 * owner) create a copy of that frag and release the original
2535 * page by calling the destructor.
2536 */
2537static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2538{
1f8b977a
WB
2539 if (likely(!skb_zcopy(skb)))
2540 return 0;
2541 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2542 return 0;
2543 return skb_copy_ubufs(skb, gfp_mask);
2544}
2545
2546/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2547static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2548{
2549 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2550 return 0;
2551 return skb_copy_ubufs(skb, gfp_mask);
2552}
2553
1da177e4
LT
2554/**
2555 * __skb_queue_purge - empty a list
2556 * @list: list to empty
2557 *
2558 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2559 * the list and one reference dropped. This function does not take the
2560 * list lock and the caller must hold the relevant locks to use it.
2561 */
7965bd4d 2562void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2563static inline void __skb_queue_purge(struct sk_buff_head *list)
2564{
2565 struct sk_buff *skb;
2566 while ((skb = __skb_dequeue(list)) != NULL)
2567 kfree_skb(skb);
2568}
2569
9f5afeae
YW
2570void skb_rbtree_purge(struct rb_root *root);
2571
7965bd4d 2572void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2573
7965bd4d
JP
2574struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2575 gfp_t gfp_mask);
8af27456
CH
2576
2577/**
2578 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2579 * @dev: network device to receive on
2580 * @length: length to allocate
2581 *
2582 * Allocate a new &sk_buff and assign it a usage count of one. The
2583 * buffer has unspecified headroom built in. Users should allocate
2584 * the headroom they think they need without accounting for the
2585 * built in space. The built in space is used for optimisations.
2586 *
2587 * %NULL is returned if there is no free memory. Although this function
2588 * allocates memory it can be called from an interrupt.
2589 */
2590static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2591 unsigned int length)
8af27456
CH
2592{
2593 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2594}
2595
6f532612
ED
2596/* legacy helper around __netdev_alloc_skb() */
2597static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2598 gfp_t gfp_mask)
2599{
2600 return __netdev_alloc_skb(NULL, length, gfp_mask);
2601}
2602
2603/* legacy helper around netdev_alloc_skb() */
2604static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2605{
2606 return netdev_alloc_skb(NULL, length);
2607}
2608
2609
4915a0de
ED
2610static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2611 unsigned int length, gfp_t gfp)
61321bbd 2612{
4915a0de 2613 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2614
2615 if (NET_IP_ALIGN && skb)
2616 skb_reserve(skb, NET_IP_ALIGN);
2617 return skb;
2618}
2619
4915a0de
ED
2620static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2621 unsigned int length)
2622{
2623 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2624}
2625
181edb2b
AD
2626static inline void skb_free_frag(void *addr)
2627{
8c2dd3e4 2628 page_frag_free(addr);
181edb2b
AD
2629}
2630
ffde7328 2631void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2632struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2633 unsigned int length, gfp_t gfp_mask);
2634static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2635 unsigned int length)
2636{
2637 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2638}
795bb1c0
JDB
2639void napi_consume_skb(struct sk_buff *skb, int budget);
2640
2641void __kfree_skb_flush(void);
15fad714 2642void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2643
71dfda58
AD
2644/**
2645 * __dev_alloc_pages - allocate page for network Rx
2646 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2647 * @order: size of the allocation
2648 *
2649 * Allocate a new page.
2650 *
2651 * %NULL is returned if there is no free memory.
2652*/
2653static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2654 unsigned int order)
2655{
2656 /* This piece of code contains several assumptions.
2657 * 1. This is for device Rx, therefor a cold page is preferred.
2658 * 2. The expectation is the user wants a compound page.
2659 * 3. If requesting a order 0 page it will not be compound
2660 * due to the check to see if order has a value in prep_new_page
2661 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2662 * code in gfp_to_alloc_flags that should be enforcing this.
2663 */
453f85d4 2664 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2665
2666 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2667}
2668
2669static inline struct page *dev_alloc_pages(unsigned int order)
2670{
95829b3a 2671 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2672}
2673
2674/**
2675 * __dev_alloc_page - allocate a page for network Rx
2676 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2677 *
2678 * Allocate a new page.
2679 *
2680 * %NULL is returned if there is no free memory.
2681 */
2682static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2683{
2684 return __dev_alloc_pages(gfp_mask, 0);
2685}
2686
2687static inline struct page *dev_alloc_page(void)
2688{
95829b3a 2689 return dev_alloc_pages(0);
71dfda58
AD
2690}
2691
0614002b
MG
2692/**
2693 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2694 * @page: The page that was allocated from skb_alloc_page
2695 * @skb: The skb that may need pfmemalloc set
2696 */
2697static inline void skb_propagate_pfmemalloc(struct page *page,
2698 struct sk_buff *skb)
2699{
2f064f34 2700 if (page_is_pfmemalloc(page))
0614002b
MG
2701 skb->pfmemalloc = true;
2702}
2703
131ea667 2704/**
e227867f 2705 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2706 * @frag: the paged fragment
2707 *
2708 * Returns the &struct page associated with @frag.
2709 */
2710static inline struct page *skb_frag_page(const skb_frag_t *frag)
2711{
a8605c60 2712 return frag->page.p;
131ea667
IC
2713}
2714
2715/**
2716 * __skb_frag_ref - take an addition reference on a paged fragment.
2717 * @frag: the paged fragment
2718 *
2719 * Takes an additional reference on the paged fragment @frag.
2720 */
2721static inline void __skb_frag_ref(skb_frag_t *frag)
2722{
2723 get_page(skb_frag_page(frag));
2724}
2725
2726/**
2727 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2728 * @skb: the buffer
2729 * @f: the fragment offset.
2730 *
2731 * Takes an additional reference on the @f'th paged fragment of @skb.
2732 */
2733static inline void skb_frag_ref(struct sk_buff *skb, int f)
2734{
2735 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2736}
2737
2738/**
2739 * __skb_frag_unref - release a reference on a paged fragment.
2740 * @frag: the paged fragment
2741 *
2742 * Releases a reference on the paged fragment @frag.
2743 */
2744static inline void __skb_frag_unref(skb_frag_t *frag)
2745{
2746 put_page(skb_frag_page(frag));
2747}
2748
2749/**
2750 * skb_frag_unref - release a reference on a paged fragment of an skb.
2751 * @skb: the buffer
2752 * @f: the fragment offset
2753 *
2754 * Releases a reference on the @f'th paged fragment of @skb.
2755 */
2756static inline void skb_frag_unref(struct sk_buff *skb, int f)
2757{
2758 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2759}
2760
2761/**
2762 * skb_frag_address - gets the address of the data contained in a paged fragment
2763 * @frag: the paged fragment buffer
2764 *
2765 * Returns the address of the data within @frag. The page must already
2766 * be mapped.
2767 */
2768static inline void *skb_frag_address(const skb_frag_t *frag)
2769{
2770 return page_address(skb_frag_page(frag)) + frag->page_offset;
2771}
2772
2773/**
2774 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2775 * @frag: the paged fragment buffer
2776 *
2777 * Returns the address of the data within @frag. Checks that the page
2778 * is mapped and returns %NULL otherwise.
2779 */
2780static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2781{
2782 void *ptr = page_address(skb_frag_page(frag));
2783 if (unlikely(!ptr))
2784 return NULL;
2785
2786 return ptr + frag->page_offset;
2787}
2788
2789/**
2790 * __skb_frag_set_page - sets the page contained in a paged fragment
2791 * @frag: the paged fragment
2792 * @page: the page to set
2793 *
2794 * Sets the fragment @frag to contain @page.
2795 */
2796static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2797{
a8605c60 2798 frag->page.p = page;
131ea667
IC
2799}
2800
2801/**
2802 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2803 * @skb: the buffer
2804 * @f: the fragment offset
2805 * @page: the page to set
2806 *
2807 * Sets the @f'th fragment of @skb to contain @page.
2808 */
2809static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2810 struct page *page)
2811{
2812 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2813}
2814
400dfd3a
ED
2815bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2816
131ea667
IC
2817/**
2818 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2819 * @dev: the device to map the fragment to
131ea667
IC
2820 * @frag: the paged fragment to map
2821 * @offset: the offset within the fragment (starting at the
2822 * fragment's own offset)
2823 * @size: the number of bytes to map
771b00a8 2824 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2825 *
2826 * Maps the page associated with @frag to @device.
2827 */
2828static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2829 const skb_frag_t *frag,
2830 size_t offset, size_t size,
2831 enum dma_data_direction dir)
2832{
2833 return dma_map_page(dev, skb_frag_page(frag),
2834 frag->page_offset + offset, size, dir);
2835}
2836
117632e6
ED
2837static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2838 gfp_t gfp_mask)
2839{
2840 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2841}
2842
bad93e9d
OP
2843
2844static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2845 gfp_t gfp_mask)
2846{
2847 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2848}
2849
2850
334a8132
PM
2851/**
2852 * skb_clone_writable - is the header of a clone writable
2853 * @skb: buffer to check
2854 * @len: length up to which to write
2855 *
2856 * Returns true if modifying the header part of the cloned buffer
2857 * does not requires the data to be copied.
2858 */
05bdd2f1 2859static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2860{
2861 return !skb_header_cloned(skb) &&
2862 skb_headroom(skb) + len <= skb->hdr_len;
2863}
2864
3697649f
DB
2865static inline int skb_try_make_writable(struct sk_buff *skb,
2866 unsigned int write_len)
2867{
2868 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2869 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2870}
2871
d9cc2048
HX
2872static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2873 int cloned)
2874{
2875 int delta = 0;
2876
d9cc2048
HX
2877 if (headroom > skb_headroom(skb))
2878 delta = headroom - skb_headroom(skb);
2879
2880 if (delta || cloned)
2881 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2882 GFP_ATOMIC);
2883 return 0;
2884}
2885
1da177e4
LT
2886/**
2887 * skb_cow - copy header of skb when it is required
2888 * @skb: buffer to cow
2889 * @headroom: needed headroom
2890 *
2891 * If the skb passed lacks sufficient headroom or its data part
2892 * is shared, data is reallocated. If reallocation fails, an error
2893 * is returned and original skb is not changed.
2894 *
2895 * The result is skb with writable area skb->head...skb->tail
2896 * and at least @headroom of space at head.
2897 */
2898static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2899{
d9cc2048
HX
2900 return __skb_cow(skb, headroom, skb_cloned(skb));
2901}
1da177e4 2902
d9cc2048
HX
2903/**
2904 * skb_cow_head - skb_cow but only making the head writable
2905 * @skb: buffer to cow
2906 * @headroom: needed headroom
2907 *
2908 * This function is identical to skb_cow except that we replace the
2909 * skb_cloned check by skb_header_cloned. It should be used when
2910 * you only need to push on some header and do not need to modify
2911 * the data.
2912 */
2913static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2914{
2915 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2916}
2917
2918/**
2919 * skb_padto - pad an skbuff up to a minimal size
2920 * @skb: buffer to pad
2921 * @len: minimal length
2922 *
2923 * Pads up a buffer to ensure the trailing bytes exist and are
2924 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2925 * is untouched. Otherwise it is extended. Returns zero on
2926 * success. The skb is freed on error.
1da177e4 2927 */
5b057c6b 2928static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2929{
2930 unsigned int size = skb->len;
2931 if (likely(size >= len))
5b057c6b 2932 return 0;
987c402a 2933 return skb_pad(skb, len - size);
1da177e4
LT
2934}
2935
9c0c1124
AD
2936/**
2937 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2938 * @skb: buffer to pad
2939 * @len: minimal length
cd0a137a 2940 * @free_on_error: free buffer on error
9c0c1124
AD
2941 *
2942 * Pads up a buffer to ensure the trailing bytes exist and are
2943 * blanked. If the buffer already contains sufficient data it
2944 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2945 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2946 */
cd0a137a
FF
2947static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2948 bool free_on_error)
9c0c1124
AD
2949{
2950 unsigned int size = skb->len;
2951
2952 if (unlikely(size < len)) {
2953 len -= size;
cd0a137a 2954 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2955 return -ENOMEM;
2956 __skb_put(skb, len);
2957 }
2958 return 0;
2959}
2960
cd0a137a
FF
2961/**
2962 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2963 * @skb: buffer to pad
2964 * @len: minimal length
2965 *
2966 * Pads up a buffer to ensure the trailing bytes exist and are
2967 * blanked. If the buffer already contains sufficient data it
2968 * is untouched. Otherwise it is extended. Returns zero on
2969 * success. The skb is freed on error.
2970 */
2971static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2972{
2973 return __skb_put_padto(skb, len, true);
2974}
2975
1da177e4 2976static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2977 struct iov_iter *from, int copy)
1da177e4
LT
2978{
2979 const int off = skb->len;
2980
2981 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 2982 __wsum csum = 0;
15e6cb46
AV
2983 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2984 &csum, from)) {
1da177e4
LT
2985 skb->csum = csum_block_add(skb->csum, csum, off);
2986 return 0;
2987 }
15e6cb46 2988 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
2989 return 0;
2990
2991 __skb_trim(skb, off);
2992 return -EFAULT;
2993}
2994
38ba0a65
ED
2995static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2996 const struct page *page, int off)
1da177e4 2997{
1f8b977a
WB
2998 if (skb_zcopy(skb))
2999 return false;
1da177e4 3000 if (i) {
9e903e08 3001 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3002
ea2ab693 3003 return page == skb_frag_page(frag) &&
9e903e08 3004 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3005 }
38ba0a65 3006 return false;
1da177e4
LT
3007}
3008
364c6bad
HX
3009static inline int __skb_linearize(struct sk_buff *skb)
3010{
3011 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3012}
3013
1da177e4
LT
3014/**
3015 * skb_linearize - convert paged skb to linear one
3016 * @skb: buffer to linarize
1da177e4
LT
3017 *
3018 * If there is no free memory -ENOMEM is returned, otherwise zero
3019 * is returned and the old skb data released.
3020 */
364c6bad
HX
3021static inline int skb_linearize(struct sk_buff *skb)
3022{
3023 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3024}
3025
cef401de
ED
3026/**
3027 * skb_has_shared_frag - can any frag be overwritten
3028 * @skb: buffer to test
3029 *
3030 * Return true if the skb has at least one frag that might be modified
3031 * by an external entity (as in vmsplice()/sendfile())
3032 */
3033static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3034{
c9af6db4
PS
3035 return skb_is_nonlinear(skb) &&
3036 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3037}
3038
364c6bad
HX
3039/**
3040 * skb_linearize_cow - make sure skb is linear and writable
3041 * @skb: buffer to process
3042 *
3043 * If there is no free memory -ENOMEM is returned, otherwise zero
3044 * is returned and the old skb data released.
3045 */
3046static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3047{
364c6bad
HX
3048 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3049 __skb_linearize(skb) : 0;
1da177e4
LT
3050}
3051
479ffccc
DB
3052static __always_inline void
3053__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3054 unsigned int off)
3055{
3056 if (skb->ip_summed == CHECKSUM_COMPLETE)
3057 skb->csum = csum_block_sub(skb->csum,
3058 csum_partial(start, len, 0), off);
3059 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3060 skb_checksum_start_offset(skb) < 0)
3061 skb->ip_summed = CHECKSUM_NONE;
3062}
3063
1da177e4
LT
3064/**
3065 * skb_postpull_rcsum - update checksum for received skb after pull
3066 * @skb: buffer to update
3067 * @start: start of data before pull
3068 * @len: length of data pulled
3069 *
3070 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3071 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3072 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3073 */
1da177e4 3074static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3075 const void *start, unsigned int len)
1da177e4 3076{
479ffccc 3077 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3078}
3079
479ffccc
DB
3080static __always_inline void
3081__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3082 unsigned int off)
3083{
3084 if (skb->ip_summed == CHECKSUM_COMPLETE)
3085 skb->csum = csum_block_add(skb->csum,
3086 csum_partial(start, len, 0), off);
3087}
cbb042f9 3088
479ffccc
DB
3089/**
3090 * skb_postpush_rcsum - update checksum for received skb after push
3091 * @skb: buffer to update
3092 * @start: start of data after push
3093 * @len: length of data pushed
3094 *
3095 * After doing a push on a received packet, you need to call this to
3096 * update the CHECKSUM_COMPLETE checksum.
3097 */
f8ffad69
DB
3098static inline void skb_postpush_rcsum(struct sk_buff *skb,
3099 const void *start, unsigned int len)
3100{
479ffccc 3101 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3102}
3103
af72868b 3104void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3105
82a31b92
WC
3106/**
3107 * skb_push_rcsum - push skb and update receive checksum
3108 * @skb: buffer to update
3109 * @len: length of data pulled
3110 *
3111 * This function performs an skb_push on the packet and updates
3112 * the CHECKSUM_COMPLETE checksum. It should be used on
3113 * receive path processing instead of skb_push unless you know
3114 * that the checksum difference is zero (e.g., a valid IP header)
3115 * or you are setting ip_summed to CHECKSUM_NONE.
3116 */
d58ff351 3117static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3118{
3119 skb_push(skb, len);
3120 skb_postpush_rcsum(skb, skb->data, len);
3121 return skb->data;
3122}
3123
7ce5a27f
DM
3124/**
3125 * pskb_trim_rcsum - trim received skb and update checksum
3126 * @skb: buffer to trim
3127 * @len: new length
3128 *
3129 * This is exactly the same as pskb_trim except that it ensures the
3130 * checksum of received packets are still valid after the operation.
3131 */
3132
3133static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3134{
3135 if (likely(len >= skb->len))
3136 return 0;
3137 if (skb->ip_summed == CHECKSUM_COMPLETE)
3138 skb->ip_summed = CHECKSUM_NONE;
3139 return __pskb_trim(skb, len);
3140}
3141
5293efe6
DB
3142static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3143{
3144 if (skb->ip_summed == CHECKSUM_COMPLETE)
3145 skb->ip_summed = CHECKSUM_NONE;
3146 __skb_trim(skb, len);
3147 return 0;
3148}
3149
3150static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3151{
3152 if (skb->ip_summed == CHECKSUM_COMPLETE)
3153 skb->ip_summed = CHECKSUM_NONE;
3154 return __skb_grow(skb, len);
3155}
3156
18a4c0ea
ED
3157#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3158#define skb_rb_first(root) rb_to_skb(rb_first(root))
3159#define skb_rb_last(root) rb_to_skb(rb_last(root))
3160#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3161#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3162
1da177e4
LT
3163#define skb_queue_walk(queue, skb) \
3164 for (skb = (queue)->next; \
a1e4891f 3165 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3166 skb = skb->next)
3167
46f8914e
JC
3168#define skb_queue_walk_safe(queue, skb, tmp) \
3169 for (skb = (queue)->next, tmp = skb->next; \
3170 skb != (struct sk_buff *)(queue); \
3171 skb = tmp, tmp = skb->next)
3172
1164f52a 3173#define skb_queue_walk_from(queue, skb) \
a1e4891f 3174 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3175 skb = skb->next)
3176
18a4c0ea
ED
3177#define skb_rbtree_walk(skb, root) \
3178 for (skb = skb_rb_first(root); skb != NULL; \
3179 skb = skb_rb_next(skb))
3180
3181#define skb_rbtree_walk_from(skb) \
3182 for (; skb != NULL; \
3183 skb = skb_rb_next(skb))
3184
3185#define skb_rbtree_walk_from_safe(skb, tmp) \
3186 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3187 skb = tmp)
3188
1164f52a
DM
3189#define skb_queue_walk_from_safe(queue, skb, tmp) \
3190 for (tmp = skb->next; \
3191 skb != (struct sk_buff *)(queue); \
3192 skb = tmp, tmp = skb->next)
3193
300ce174
SH
3194#define skb_queue_reverse_walk(queue, skb) \
3195 for (skb = (queue)->prev; \
a1e4891f 3196 skb != (struct sk_buff *)(queue); \
300ce174
SH
3197 skb = skb->prev)
3198
686a2955
DM
3199#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3200 for (skb = (queue)->prev, tmp = skb->prev; \
3201 skb != (struct sk_buff *)(queue); \
3202 skb = tmp, tmp = skb->prev)
3203
3204#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3205 for (tmp = skb->prev; \
3206 skb != (struct sk_buff *)(queue); \
3207 skb = tmp, tmp = skb->prev)
1da177e4 3208
21dc3301 3209static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3210{
3211 return skb_shinfo(skb)->frag_list != NULL;
3212}
3213
3214static inline void skb_frag_list_init(struct sk_buff *skb)
3215{
3216 skb_shinfo(skb)->frag_list = NULL;
3217}
3218
ee039871
DM
3219#define skb_walk_frags(skb, iter) \
3220 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3221
ea3793ee
RW
3222
3223int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3224 const struct sk_buff *skb);
65101aec
PA
3225struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3226 struct sk_buff_head *queue,
3227 unsigned int flags,
3228 void (*destructor)(struct sock *sk,
3229 struct sk_buff *skb),
3230 int *peeked, int *off, int *err,
3231 struct sk_buff **last);
ea3793ee 3232struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3233 void (*destructor)(struct sock *sk,
3234 struct sk_buff *skb),
ea3793ee
RW
3235 int *peeked, int *off, int *err,
3236 struct sk_buff **last);
7965bd4d 3237struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3238 void (*destructor)(struct sock *sk,
3239 struct sk_buff *skb),
7965bd4d
JP
3240 int *peeked, int *off, int *err);
3241struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3242 int *err);
3243unsigned int datagram_poll(struct file *file, struct socket *sock,
3244 struct poll_table_struct *wait);
c0371da6
AV
3245int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3246 struct iov_iter *to, int size);
51f3d02b
DM
3247static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3248 struct msghdr *msg, int size)
3249{
e5a4b0bb 3250 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3251}
e5a4b0bb
AV
3252int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3253 struct msghdr *msg);
3a654f97
AV
3254int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3255 struct iov_iter *from, int len);
3a654f97 3256int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3257void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3258void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3259static inline void skb_free_datagram_locked(struct sock *sk,
3260 struct sk_buff *skb)
3261{
3262 __skb_free_datagram_locked(sk, skb, 0);
3263}
7965bd4d 3264int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3265int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3266int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3267__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3268 int len, __wsum csum);
a60e3cc7 3269int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3270 struct pipe_inode_info *pipe, unsigned int len,
25869262 3271 unsigned int flags);
20bf50de
TH
3272int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3273 int len);
3274int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3275void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3276unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3277int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3278 int len, int hlen);
7965bd4d
JP
3279void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3280int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3281void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3282unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3283bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 3284struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3285struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3286int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3287int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3288int skb_vlan_pop(struct sk_buff *skb);
3289int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3290struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3291 gfp_t gfp);
20380731 3292
6ce8e9ce
AV
3293static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3294{
3073f070 3295 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3296}
3297
7eab8d9e
AV
3298static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3299{
e5a4b0bb 3300 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3301}
3302
2817a336
DB
3303struct skb_checksum_ops {
3304 __wsum (*update)(const void *mem, int len, __wsum wsum);
3305 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3306};
3307
9617813d
DC
3308extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3309
2817a336
DB
3310__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3311 __wsum csum, const struct skb_checksum_ops *ops);
3312__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 __wsum csum);
3314
1e98a0f0
ED
3315static inline void * __must_check
3316__skb_header_pointer(const struct sk_buff *skb, int offset,
3317 int len, void *data, int hlen, void *buffer)
1da177e4 3318{
55820ee2 3319 if (hlen - offset >= len)
690e36e7 3320 return data + offset;
1da177e4 3321
690e36e7
DM
3322 if (!skb ||
3323 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3324 return NULL;
3325
3326 return buffer;
3327}
3328
1e98a0f0
ED
3329static inline void * __must_check
3330skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3331{
3332 return __skb_header_pointer(skb, offset, len, skb->data,
3333 skb_headlen(skb), buffer);
3334}
3335
4262e5cc
DB
3336/**
3337 * skb_needs_linearize - check if we need to linearize a given skb
3338 * depending on the given device features.
3339 * @skb: socket buffer to check
3340 * @features: net device features
3341 *
3342 * Returns true if either:
3343 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3344 * 2. skb is fragmented and the device does not support SG.
3345 */
3346static inline bool skb_needs_linearize(struct sk_buff *skb,
3347 netdev_features_t features)
3348{
3349 return skb_is_nonlinear(skb) &&
3350 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3351 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3352}
3353
d626f62b
ACM
3354static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3355 void *to,
3356 const unsigned int len)
3357{
3358 memcpy(to, skb->data, len);
3359}
3360
3361static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3362 const int offset, void *to,
3363 const unsigned int len)
3364{
3365 memcpy(to, skb->data + offset, len);
3366}
3367
27d7ff46
ACM
3368static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3369 const void *from,
3370 const unsigned int len)
3371{
3372 memcpy(skb->data, from, len);
3373}
3374
3375static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3376 const int offset,
3377 const void *from,
3378 const unsigned int len)
3379{
3380 memcpy(skb->data + offset, from, len);
3381}
3382
7965bd4d 3383void skb_init(void);
1da177e4 3384
ac45f602
PO
3385static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3386{
3387 return skb->tstamp;
3388}
3389
a61bbcf2
PM
3390/**
3391 * skb_get_timestamp - get timestamp from a skb
3392 * @skb: skb to get stamp from
3393 * @stamp: pointer to struct timeval to store stamp in
3394 *
3395 * Timestamps are stored in the skb as offsets to a base timestamp.
3396 * This function converts the offset back to a struct timeval and stores
3397 * it in stamp.
3398 */
ac45f602
PO
3399static inline void skb_get_timestamp(const struct sk_buff *skb,
3400 struct timeval *stamp)
a61bbcf2 3401{
b7aa0bf7 3402 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3403}
3404
ac45f602
PO
3405static inline void skb_get_timestampns(const struct sk_buff *skb,
3406 struct timespec *stamp)
3407{
3408 *stamp = ktime_to_timespec(skb->tstamp);
3409}
3410
b7aa0bf7 3411static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3412{
b7aa0bf7 3413 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3414}
3415
164891aa
SH
3416static inline ktime_t net_timedelta(ktime_t t)
3417{
3418 return ktime_sub(ktime_get_real(), t);
3419}
3420
b9ce204f
IJ
3421static inline ktime_t net_invalid_timestamp(void)
3422{
8b0e1953 3423 return 0;
b9ce204f 3424}
a61bbcf2 3425
de8f3a83
DB
3426static inline u8 skb_metadata_len(const struct sk_buff *skb)
3427{
3428 return skb_shinfo(skb)->meta_len;
3429}
3430
3431static inline void *skb_metadata_end(const struct sk_buff *skb)
3432{
3433 return skb_mac_header(skb);
3434}
3435
3436static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3437 const struct sk_buff *skb_b,
3438 u8 meta_len)
3439{
3440 const void *a = skb_metadata_end(skb_a);
3441 const void *b = skb_metadata_end(skb_b);
3442 /* Using more efficient varaiant than plain call to memcmp(). */
3443#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3444 u64 diffs = 0;
3445
3446 switch (meta_len) {
3447#define __it(x, op) (x -= sizeof(u##op))
3448#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3449 case 32: diffs |= __it_diff(a, b, 64);
3450 case 24: diffs |= __it_diff(a, b, 64);
3451 case 16: diffs |= __it_diff(a, b, 64);
3452 case 8: diffs |= __it_diff(a, b, 64);
3453 break;
3454 case 28: diffs |= __it_diff(a, b, 64);
3455 case 20: diffs |= __it_diff(a, b, 64);
3456 case 12: diffs |= __it_diff(a, b, 64);
3457 case 4: diffs |= __it_diff(a, b, 32);
3458 break;
3459 }
3460 return diffs;
3461#else
3462 return memcmp(a - meta_len, b - meta_len, meta_len);
3463#endif
3464}
3465
3466static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3467 const struct sk_buff *skb_b)
3468{
3469 u8 len_a = skb_metadata_len(skb_a);
3470 u8 len_b = skb_metadata_len(skb_b);
3471
3472 if (!(len_a | len_b))
3473 return false;
3474
3475 return len_a != len_b ?
3476 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3477}
3478
3479static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3480{
3481 skb_shinfo(skb)->meta_len = meta_len;
3482}
3483
3484static inline void skb_metadata_clear(struct sk_buff *skb)
3485{
3486 skb_metadata_set(skb, 0);
3487}
3488
62bccb8c
AD
3489struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3490
c1f19b51
RC
3491#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3492
7965bd4d
JP
3493void skb_clone_tx_timestamp(struct sk_buff *skb);
3494bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3495
3496#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3497
3498static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3499{
3500}
3501
3502static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3503{
3504 return false;
3505}
3506
3507#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3508
3509/**
3510 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3511 *
da92b194
RC
3512 * PHY drivers may accept clones of transmitted packets for
3513 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3514 * must call this function to return the skb back to the stack with a
3515 * timestamp.
da92b194 3516 *
c1f19b51 3517 * @skb: clone of the the original outgoing packet
7a76a021 3518 * @hwtstamps: hardware time stamps
c1f19b51
RC
3519 *
3520 */
3521void skb_complete_tx_timestamp(struct sk_buff *skb,
3522 struct skb_shared_hwtstamps *hwtstamps);
3523
e7fd2885
WB
3524void __skb_tstamp_tx(struct sk_buff *orig_skb,
3525 struct skb_shared_hwtstamps *hwtstamps,
3526 struct sock *sk, int tstype);
3527
ac45f602
PO
3528/**
3529 * skb_tstamp_tx - queue clone of skb with send time stamps
3530 * @orig_skb: the original outgoing packet
3531 * @hwtstamps: hardware time stamps, may be NULL if not available
3532 *
3533 * If the skb has a socket associated, then this function clones the
3534 * skb (thus sharing the actual data and optional structures), stores
3535 * the optional hardware time stamping information (if non NULL) or
3536 * generates a software time stamp (otherwise), then queues the clone
3537 * to the error queue of the socket. Errors are silently ignored.
3538 */
7965bd4d
JP
3539void skb_tstamp_tx(struct sk_buff *orig_skb,
3540 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3541
4507a715
RC
3542/**
3543 * skb_tx_timestamp() - Driver hook for transmit timestamping
3544 *
3545 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3546 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3547 *
73409f3b
DM
3548 * Specifically, one should make absolutely sure that this function is
3549 * called before TX completion of this packet can trigger. Otherwise
3550 * the packet could potentially already be freed.
3551 *
4507a715
RC
3552 * @skb: A socket buffer.
3553 */
3554static inline void skb_tx_timestamp(struct sk_buff *skb)
3555{
c1f19b51 3556 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3557 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3558 skb_tstamp_tx(skb, NULL);
4507a715
RC
3559}
3560
6e3e939f
JB
3561/**
3562 * skb_complete_wifi_ack - deliver skb with wifi status
3563 *
3564 * @skb: the original outgoing packet
3565 * @acked: ack status
3566 *
3567 */
3568void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3569
7965bd4d
JP
3570__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3571__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3572
60476372
HX
3573static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3574{
6edec0e6
TH
3575 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3576 skb->csum_valid ||
3577 (skb->ip_summed == CHECKSUM_PARTIAL &&
3578 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3579}
3580
fb286bb2
HX
3581/**
3582 * skb_checksum_complete - Calculate checksum of an entire packet
3583 * @skb: packet to process
3584 *
3585 * This function calculates the checksum over the entire packet plus
3586 * the value of skb->csum. The latter can be used to supply the
3587 * checksum of a pseudo header as used by TCP/UDP. It returns the
3588 * checksum.
3589 *
3590 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3591 * this function can be used to verify that checksum on received
3592 * packets. In that case the function should return zero if the
3593 * checksum is correct. In particular, this function will return zero
3594 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3595 * hardware has already verified the correctness of the checksum.
3596 */
4381ca3c 3597static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3598{
60476372
HX
3599 return skb_csum_unnecessary(skb) ?
3600 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3601}
3602
77cffe23
TH
3603static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3604{
3605 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3606 if (skb->csum_level == 0)
3607 skb->ip_summed = CHECKSUM_NONE;
3608 else
3609 skb->csum_level--;
3610 }
3611}
3612
3613static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3614{
3615 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3616 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3617 skb->csum_level++;
3618 } else if (skb->ip_summed == CHECKSUM_NONE) {
3619 skb->ip_summed = CHECKSUM_UNNECESSARY;
3620 skb->csum_level = 0;
3621 }
3622}
3623
76ba0aae
TH
3624/* Check if we need to perform checksum complete validation.
3625 *
3626 * Returns true if checksum complete is needed, false otherwise
3627 * (either checksum is unnecessary or zero checksum is allowed).
3628 */
3629static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3630 bool zero_okay,
3631 __sum16 check)
3632{
5d0c2b95
TH
3633 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3634 skb->csum_valid = 1;
77cffe23 3635 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3636 return false;
3637 }
3638
3639 return true;
3640}
3641
3642/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3643 * in checksum_init.
3644 */
3645#define CHECKSUM_BREAK 76
3646
4e18b9ad
TH
3647/* Unset checksum-complete
3648 *
3649 * Unset checksum complete can be done when packet is being modified
3650 * (uncompressed for instance) and checksum-complete value is
3651 * invalidated.
3652 */
3653static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3654{
3655 if (skb->ip_summed == CHECKSUM_COMPLETE)
3656 skb->ip_summed = CHECKSUM_NONE;
3657}
3658
76ba0aae
TH
3659/* Validate (init) checksum based on checksum complete.
3660 *
3661 * Return values:
3662 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3663 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3664 * checksum is stored in skb->csum for use in __skb_checksum_complete
3665 * non-zero: value of invalid checksum
3666 *
3667 */
3668static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3669 bool complete,
3670 __wsum psum)
3671{
3672 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3673 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3674 skb->csum_valid = 1;
76ba0aae
TH
3675 return 0;
3676 }
3677 }
3678
3679 skb->csum = psum;
3680
5d0c2b95
TH
3681 if (complete || skb->len <= CHECKSUM_BREAK) {
3682 __sum16 csum;
3683
3684 csum = __skb_checksum_complete(skb);
3685 skb->csum_valid = !csum;
3686 return csum;
3687 }
76ba0aae
TH
3688
3689 return 0;
3690}
3691
3692static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3693{
3694 return 0;
3695}
3696
3697/* Perform checksum validate (init). Note that this is a macro since we only
3698 * want to calculate the pseudo header which is an input function if necessary.
3699 * First we try to validate without any computation (checksum unnecessary) and
3700 * then calculate based on checksum complete calling the function to compute
3701 * pseudo header.
3702 *
3703 * Return values:
3704 * 0: checksum is validated or try to in skb_checksum_complete
3705 * non-zero: value of invalid checksum
3706 */
3707#define __skb_checksum_validate(skb, proto, complete, \
3708 zero_okay, check, compute_pseudo) \
3709({ \
3710 __sum16 __ret = 0; \
5d0c2b95 3711 skb->csum_valid = 0; \
76ba0aae
TH
3712 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3713 __ret = __skb_checksum_validate_complete(skb, \
3714 complete, compute_pseudo(skb, proto)); \
3715 __ret; \
3716})
3717
3718#define skb_checksum_init(skb, proto, compute_pseudo) \
3719 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3720
3721#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3722 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3723
3724#define skb_checksum_validate(skb, proto, compute_pseudo) \
3725 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3726
3727#define skb_checksum_validate_zero_check(skb, proto, check, \
3728 compute_pseudo) \
096a4cfa 3729 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3730
3731#define skb_checksum_simple_validate(skb) \
3732 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3733
d96535a1
TH
3734static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3735{
219f1d79 3736 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3737}
3738
3739static inline void __skb_checksum_convert(struct sk_buff *skb,
3740 __sum16 check, __wsum pseudo)
3741{
3742 skb->csum = ~pseudo;
3743 skb->ip_summed = CHECKSUM_COMPLETE;
3744}
3745
3746#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3747do { \
3748 if (__skb_checksum_convert_check(skb)) \
3749 __skb_checksum_convert(skb, check, \
3750 compute_pseudo(skb, proto)); \
3751} while (0)
3752
15e2396d
TH
3753static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3754 u16 start, u16 offset)
3755{
3756 skb->ip_summed = CHECKSUM_PARTIAL;
3757 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3758 skb->csum_offset = offset - start;
3759}
3760
dcdc8994
TH
3761/* Update skbuf and packet to reflect the remote checksum offload operation.
3762 * When called, ptr indicates the starting point for skb->csum when
3763 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3764 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3765 */
3766static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3767 int start, int offset, bool nopartial)
dcdc8994
TH
3768{
3769 __wsum delta;
3770
15e2396d
TH
3771 if (!nopartial) {
3772 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3773 return;
3774 }
3775
dcdc8994
TH
3776 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3777 __skb_checksum_complete(skb);
3778 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3779 }
3780
3781 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3782
3783 /* Adjust skb->csum since we changed the packet */
3784 skb->csum = csum_add(skb->csum, delta);
3785}
3786
cb9c6836
FW
3787static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3788{
3789#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3790 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3791#else
3792 return NULL;
3793#endif
3794}
3795
5f79e0f9 3796#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3797void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3798static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3799{
3800 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3801 nf_conntrack_destroy(nfct);
1da177e4
LT
3802}
3803static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3804{
3805 if (nfct)
3806 atomic_inc(&nfct->use);
3807}
2fc72c7b 3808#endif
34666d46 3809#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3810static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3811{
53869ceb 3812 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3813 kfree(nf_bridge);
3814}
3815static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3816{
3817 if (nf_bridge)
53869ceb 3818 refcount_inc(&nf_bridge->use);
1da177e4
LT
3819}
3820#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3821static inline void nf_reset(struct sk_buff *skb)
3822{
5f79e0f9 3823#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3824 nf_conntrack_put(skb_nfct(skb));
3825 skb->_nfct = 0;
2fc72c7b 3826#endif
34666d46 3827#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3828 nf_bridge_put(skb->nf_bridge);
3829 skb->nf_bridge = NULL;
3830#endif
3831}
3832
124dff01
PM
3833static inline void nf_reset_trace(struct sk_buff *skb)
3834{
478b360a 3835#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3836 skb->nf_trace = 0;
3837#endif
a193a4ab
PM
3838}
3839
2b5ec1a5
YY
3840static inline void ipvs_reset(struct sk_buff *skb)
3841{
3842#if IS_ENABLED(CONFIG_IP_VS)
3843 skb->ipvs_property = 0;
3844#endif
3845}
3846
edda553c 3847/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3848static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3849 bool copy)
edda553c 3850{
5f79e0f9 3851#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3852 dst->_nfct = src->_nfct;
3853 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3854#endif
34666d46 3855#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3856 dst->nf_bridge = src->nf_bridge;
3857 nf_bridge_get(src->nf_bridge);
3858#endif
478b360a 3859#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3860 if (copy)
3861 dst->nf_trace = src->nf_trace;
478b360a 3862#endif
edda553c
YK
3863}
3864
e7ac05f3
YK
3865static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3866{
e7ac05f3 3867#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3868 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3869#endif
34666d46 3870#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3871 nf_bridge_put(dst->nf_bridge);
3872#endif
b1937227 3873 __nf_copy(dst, src, true);
e7ac05f3
YK
3874}
3875
984bc16c
JM
3876#ifdef CONFIG_NETWORK_SECMARK
3877static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3878{
3879 to->secmark = from->secmark;
3880}
3881
3882static inline void skb_init_secmark(struct sk_buff *skb)
3883{
3884 skb->secmark = 0;
3885}
3886#else
3887static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3888{ }
3889
3890static inline void skb_init_secmark(struct sk_buff *skb)
3891{ }
3892#endif
3893
574f7194
EB
3894static inline bool skb_irq_freeable(const struct sk_buff *skb)
3895{
3896 return !skb->destructor &&
3897#if IS_ENABLED(CONFIG_XFRM)
3898 !skb->sp &&
3899#endif
cb9c6836 3900 !skb_nfct(skb) &&
574f7194
EB
3901 !skb->_skb_refdst &&
3902 !skb_has_frag_list(skb);
3903}
3904
f25f4e44
PWJ
3905static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3906{
f25f4e44 3907 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3908}
3909
9247744e 3910static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3911{
4e3ab47a 3912 return skb->queue_mapping;
4e3ab47a
PE
3913}
3914
f25f4e44
PWJ
3915static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3916{
f25f4e44 3917 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3918}
3919
d5a9e24a
DM
3920static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3921{
3922 skb->queue_mapping = rx_queue + 1;
3923}
3924
9247744e 3925static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3926{
3927 return skb->queue_mapping - 1;
3928}
3929
9247744e 3930static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3931{
a02cec21 3932 return skb->queue_mapping != 0;
d5a9e24a
DM
3933}
3934
4ff06203
JA
3935static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3936{
3937 skb->dst_pending_confirm = val;
3938}
3939
3940static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3941{
3942 return skb->dst_pending_confirm != 0;
3943}
3944
def8b4fa
AD
3945static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3946{
0b3d8e08 3947#ifdef CONFIG_XFRM
def8b4fa 3948 return skb->sp;
def8b4fa 3949#else
def8b4fa 3950 return NULL;
def8b4fa 3951#endif
0b3d8e08 3952}
def8b4fa 3953
68c33163
PS
3954/* Keeps track of mac header offset relative to skb->head.
3955 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3956 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3957 * tunnel skb it points to outer mac header.
3958 * Keeps track of level of encapsulation of network headers.
3959 */
68c33163 3960struct skb_gso_cb {
802ab55a
AD
3961 union {
3962 int mac_offset;
3963 int data_offset;
3964 };
3347c960 3965 int encap_level;
76443456 3966 __wsum csum;
7e2b10c1 3967 __u16 csum_start;
68c33163 3968};
9207f9d4
KK
3969#define SKB_SGO_CB_OFFSET 32
3970#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3971
3972static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3973{
3974 return (skb_mac_header(inner_skb) - inner_skb->head) -
3975 SKB_GSO_CB(inner_skb)->mac_offset;
3976}
3977
1e2bd517
PS
3978static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3979{
3980 int new_headroom, headroom;
3981 int ret;
3982
3983 headroom = skb_headroom(skb);
3984 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3985 if (ret)
3986 return ret;
3987
3988 new_headroom = skb_headroom(skb);
3989 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3990 return 0;
3991}
3992
08b64fcc
AD
3993static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3994{
3995 /* Do not update partial checksums if remote checksum is enabled. */
3996 if (skb->remcsum_offload)
3997 return;
3998
3999 SKB_GSO_CB(skb)->csum = res;
4000 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4001}
4002
7e2b10c1
TH
4003/* Compute the checksum for a gso segment. First compute the checksum value
4004 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4005 * then add in skb->csum (checksum from csum_start to end of packet).
4006 * skb->csum and csum_start are then updated to reflect the checksum of the
4007 * resultant packet starting from the transport header-- the resultant checksum
4008 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4009 * header.
4010 */
4011static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4012{
76443456
AD
4013 unsigned char *csum_start = skb_transport_header(skb);
4014 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4015 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4016
76443456
AD
4017 SKB_GSO_CB(skb)->csum = res;
4018 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4019
76443456 4020 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4021}
4022
bdcc0924 4023static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4024{
4025 return skb_shinfo(skb)->gso_size;
4026}
4027
36a8f39e 4028/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4029static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4030{
4031 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4032}
4033
5293efe6
DB
4034static inline void skb_gso_reset(struct sk_buff *skb)
4035{
4036 skb_shinfo(skb)->gso_size = 0;
4037 skb_shinfo(skb)->gso_segs = 0;
4038 skb_shinfo(skb)->gso_type = 0;
4039}
4040
7965bd4d 4041void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4042
4043static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4044{
4045 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4046 * wanted then gso_type will be set. */
05bdd2f1
ED
4047 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4048
b78462eb
AD
4049 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4050 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4051 __skb_warn_lro_forwarding(skb);
4052 return true;
4053 }
4054 return false;
4055}
4056
35fc92a9
HX
4057static inline void skb_forward_csum(struct sk_buff *skb)
4058{
4059 /* Unfortunately we don't support this one. Any brave souls? */
4060 if (skb->ip_summed == CHECKSUM_COMPLETE)
4061 skb->ip_summed = CHECKSUM_NONE;
4062}
4063
bc8acf2c
ED
4064/**
4065 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4066 * @skb: skb to check
4067 *
4068 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4069 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4070 * use this helper, to document places where we make this assertion.
4071 */
05bdd2f1 4072static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4073{
4074#ifdef DEBUG
4075 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4076#endif
4077}
4078
f35d9d8a 4079bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4080
ed1f50c3 4081int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4082struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4083 unsigned int transport_len,
4084 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4085
3a7c1ee4
AD
4086/**
4087 * skb_head_is_locked - Determine if the skb->head is locked down
4088 * @skb: skb to check
4089 *
4090 * The head on skbs build around a head frag can be removed if they are
4091 * not cloned. This function returns true if the skb head is locked down
4092 * due to either being allocated via kmalloc, or by being a clone with
4093 * multiple references to the head.
4094 */
4095static inline bool skb_head_is_locked(const struct sk_buff *skb)
4096{
4097 return !skb->head_frag || skb_cloned(skb);
4098}
fe6cc55f
FW
4099
4100/**
4101 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4102 *
4103 * @skb: GSO skb
4104 *
4105 * skb_gso_network_seglen is used to determine the real size of the
4106 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4107 *
4108 * The MAC/L2 header is not accounted for.
4109 */
4110static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4111{
4112 unsigned int hdr_len = skb_transport_header(skb) -
4113 skb_network_header(skb);
4114 return hdr_len + skb_gso_transport_seglen(skb);
4115}
ee122c79 4116
179bc67f
EC
4117/* Local Checksum Offload.
4118 * Compute outer checksum based on the assumption that the
4119 * inner checksum will be offloaded later.
e8ae7b00
EC
4120 * See Documentation/networking/checksum-offloads.txt for
4121 * explanation of how this works.
179bc67f
EC
4122 * Fill in outer checksum adjustment (e.g. with sum of outer
4123 * pseudo-header) before calling.
4124 * Also ensure that inner checksum is in linear data area.
4125 */
4126static inline __wsum lco_csum(struct sk_buff *skb)
4127{
9e74a6da
AD
4128 unsigned char *csum_start = skb_checksum_start(skb);
4129 unsigned char *l4_hdr = skb_transport_header(skb);
4130 __wsum partial;
179bc67f
EC
4131
4132 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4133 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4134 skb->csum_offset));
4135
179bc67f 4136 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4137 * adjustment filled in by caller) and return result.
179bc67f 4138 */
9e74a6da 4139 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4140}
4141
1da177e4
LT
4142#endif /* __KERNEL__ */
4143#endif /* _LINUX_SKBUFF_H */