Merge branch 'bpf-sample-cpumap-lb'
[linux-2.6-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
1da177e4 246
5f79e0f9 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
248struct nf_conntrack {
249 atomic_t use;
1da177e4 250};
5f79e0f9 251#endif
1da177e4 252
34666d46 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 254struct nf_bridge_info {
53869ceb 255 refcount_t use;
3eaf4025
FW
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
7fb48c5b 260 } orig_proto:8;
72b1e5e4
FW
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
411ffb4f 264 __u16 frag_max_size;
bf1ac5ca 265 struct net_device *physindev;
63cdbc06
FW
266
267 /* always valid & non-NULL from FORWARD on, for physdev match */
268 struct net_device *physoutdev;
7fb48c5b 269 union {
72b1e5e4 270 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
271 __be32 ipv4_daddr;
272 struct in6_addr ipv6_daddr;
72b1e5e4
FW
273
274 /* after prerouting + nat detected: store original source
275 * mac since neigh resolution overwrites it, only used while
276 * skb is out in neigh layer.
277 */
278 char neigh_header[8];
72b31f72 279 };
1da177e4
LT
280};
281#endif
282
1da177e4
LT
283struct sk_buff_head {
284 /* These two members must be first. */
285 struct sk_buff *next;
286 struct sk_buff *prev;
287
288 __u32 qlen;
289 spinlock_t lock;
290};
291
292struct sk_buff;
293
9d4dde52
IC
294/* To allow 64K frame to be packed as single skb without frag_list we
295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
296 * buffers which do not start on a page boundary.
297 *
298 * Since GRO uses frags we allocate at least 16 regardless of page
299 * size.
a715dea3 300 */
9d4dde52 301#if (65536/PAGE_SIZE + 1) < 16
eec00954 302#define MAX_SKB_FRAGS 16UL
a715dea3 303#else
9d4dde52 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 305#endif
5f74f82e 306extern int sysctl_max_skb_frags;
1da177e4 307
3953c46c
MRL
308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
309 * segment using its current segmentation instead.
310 */
311#define GSO_BY_FRAGS 0xFFFF
312
1da177e4
LT
313typedef struct skb_frag_struct skb_frag_t;
314
315struct skb_frag_struct {
a8605c60
IC
316 struct {
317 struct page *p;
318 } page;
cb4dfe56 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
320 __u32 page_offset;
321 __u32 size;
cb4dfe56
ED
322#else
323 __u16 page_offset;
324 __u16 size;
325#endif
1da177e4
LT
326};
327
9e903e08
ED
328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
329{
330 return frag->size;
331}
332
333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
334{
335 frag->size = size;
336}
337
338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
339{
340 frag->size += delta;
341}
342
343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
344{
345 frag->size -= delta;
346}
347
c613c209
WB
348static inline bool skb_frag_must_loop(struct page *p)
349{
350#if defined(CONFIG_HIGHMEM)
351 if (PageHighMem(p))
352 return true;
353#endif
354 return false;
355}
356
357/**
358 * skb_frag_foreach_page - loop over pages in a fragment
359 *
360 * @f: skb frag to operate on
361 * @f_off: offset from start of f->page.p
362 * @f_len: length from f_off to loop over
363 * @p: (temp var) current page
364 * @p_off: (temp var) offset from start of current page,
365 * non-zero only on first page.
366 * @p_len: (temp var) length in current page,
367 * < PAGE_SIZE only on first and last page.
368 * @copied: (temp var) length so far, excluding current p_len.
369 *
370 * A fragment can hold a compound page, in which case per-page
371 * operations, notably kmap_atomic, must be called for each
372 * regular page.
373 */
374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
375 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
376 p_off = (f_off) & (PAGE_SIZE - 1), \
377 p_len = skb_frag_must_loop(p) ? \
378 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
379 copied = 0; \
380 copied < f_len; \
381 copied += p_len, p++, p_off = 0, \
382 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
383
ac45f602
PO
384#define HAVE_HW_TIME_STAMP
385
386/**
d3a21be8 387 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
388 * @hwtstamp: hardware time stamp transformed into duration
389 * since arbitrary point in time
ac45f602
PO
390 *
391 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 392 * skb->tstamp.
ac45f602
PO
393 *
394 * hwtstamps can only be compared against other hwtstamps from
395 * the same device.
396 *
397 * This structure is attached to packets as part of the
398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
399 */
400struct skb_shared_hwtstamps {
401 ktime_t hwtstamp;
ac45f602
PO
402};
403
2244d07b
OH
404/* Definitions for tx_flags in struct skb_shared_info */
405enum {
406 /* generate hardware time stamp */
407 SKBTX_HW_TSTAMP = 1 << 0,
408
e7fd2885 409 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
410 SKBTX_SW_TSTAMP = 1 << 1,
411
412 /* device driver is going to provide hardware time stamp */
413 SKBTX_IN_PROGRESS = 1 << 2,
414
a6686f2f 415 /* device driver supports TX zero-copy buffers */
62b1a8ab 416 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
417
418 /* generate wifi status information (where possible) */
62b1a8ab 419 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
420
421 /* This indicates at least one fragment might be overwritten
422 * (as in vmsplice(), sendfile() ...)
423 * If we need to compute a TX checksum, we'll need to copy
424 * all frags to avoid possible bad checksum
425 */
426 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
427
428 /* generate software time stamp when entering packet scheduling */
429 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
430};
431
52267790 432#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 433#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 434 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
435#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
436
a6686f2f
SM
437/*
438 * The callback notifies userspace to release buffers when skb DMA is done in
439 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
440 * The zerocopy_success argument is true if zero copy transmit occurred,
441 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
442 * The ctx field is used to track device context.
443 * The desc field is used to track userspace buffer index.
a6686f2f
SM
444 */
445struct ubuf_info {
e19d6763 446 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
447 union {
448 struct {
449 unsigned long desc;
450 void *ctx;
451 };
452 struct {
453 u32 id;
454 u16 len;
455 u16 zerocopy:1;
456 u32 bytelen;
457 };
458 };
c1d1b437 459 refcount_t refcnt;
a91dbff5
WB
460
461 struct mmpin {
462 struct user_struct *user;
463 unsigned int num_pg;
464 } mmp;
ac45f602
PO
465};
466
52267790
WB
467#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
468
6f89dbce
SV
469int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
470void mm_unaccount_pinned_pages(struct mmpin *mmp);
471
52267790 472struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
473struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
474 struct ubuf_info *uarg);
52267790
WB
475
476static inline void sock_zerocopy_get(struct ubuf_info *uarg)
477{
c1d1b437 478 refcount_inc(&uarg->refcnt);
52267790
WB
479}
480
481void sock_zerocopy_put(struct ubuf_info *uarg);
482void sock_zerocopy_put_abort(struct ubuf_info *uarg);
483
484void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
485
486int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
487 struct msghdr *msg, int len,
488 struct ubuf_info *uarg);
489
1da177e4
LT
490/* This data is invariant across clones and lives at
491 * the end of the header data, ie. at skb->end.
492 */
493struct skb_shared_info {
de8f3a83
DB
494 __u8 __unused;
495 __u8 meta_len;
496 __u8 nr_frags;
9f42f126 497 __u8 tx_flags;
7967168c
HX
498 unsigned short gso_size;
499 /* Warning: this field is not always filled in (UFO)! */
500 unsigned short gso_segs;
1da177e4 501 struct sk_buff *frag_list;
ac45f602 502 struct skb_shared_hwtstamps hwtstamps;
7f564528 503 unsigned int gso_type;
09c2d251 504 u32 tskey;
ec7d2f2c
ED
505
506 /*
507 * Warning : all fields before dataref are cleared in __alloc_skb()
508 */
509 atomic_t dataref;
510
69e3c75f
JB
511 /* Intermediate layers must ensure that destructor_arg
512 * remains valid until skb destructor */
513 void * destructor_arg;
a6686f2f 514
fed66381
ED
515 /* must be last field, see pskb_expand_head() */
516 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
517};
518
519/* We divide dataref into two halves. The higher 16 bits hold references
520 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
521 * the entire skb->data. A clone of a headerless skb holds the length of
522 * the header in skb->hdr_len.
1da177e4
LT
523 *
524 * All users must obey the rule that the skb->data reference count must be
525 * greater than or equal to the payload reference count.
526 *
527 * Holding a reference to the payload part means that the user does not
528 * care about modifications to the header part of skb->data.
529 */
530#define SKB_DATAREF_SHIFT 16
531#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
532
d179cd12
DM
533
534enum {
c8753d55
VS
535 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
536 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
537 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
538};
539
7967168c
HX
540enum {
541 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
542
543 /* This indicates the skb is from an untrusted source. */
d9d30adf 544 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
545
546 /* This indicates the tcp segment has CWR set. */
d9d30adf 547 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 548
d9d30adf 549 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 550
d9d30adf 551 SKB_GSO_TCPV6 = 1 << 4,
68c33163 552
d9d30adf 553 SKB_GSO_FCOE = 1 << 5,
73136267 554
d9d30adf 555 SKB_GSO_GRE = 1 << 6,
0d89d203 556
d9d30adf 557 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 558
d9d30adf 559 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 560
d9d30adf 561 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 562
d9d30adf 563 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 564
d9d30adf 565 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 566
d9d30adf 567 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 568
d9d30adf 569 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 570
d9d30adf 571 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 572
d9d30adf 573 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
574
575 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
576
577 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
578};
579
2e07fa9c
ACM
580#if BITS_PER_LONG > 32
581#define NET_SKBUFF_DATA_USES_OFFSET 1
582#endif
583
584#ifdef NET_SKBUFF_DATA_USES_OFFSET
585typedef unsigned int sk_buff_data_t;
586#else
587typedef unsigned char *sk_buff_data_t;
588#endif
589
1da177e4
LT
590/**
591 * struct sk_buff - socket buffer
592 * @next: Next buffer in list
593 * @prev: Previous buffer in list
363ec392 594 * @tstamp: Time we arrived/left
56b17425 595 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 596 * @sk: Socket we are owned by
1da177e4 597 * @dev: Device we arrived on/are leaving by
d84e0bd7 598 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 599 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 600 * @sp: the security path, used for xfrm
1da177e4
LT
601 * @len: Length of actual data
602 * @data_len: Data length
603 * @mac_len: Length of link layer header
334a8132 604 * @hdr_len: writable header length of cloned skb
663ead3b
HX
605 * @csum: Checksum (must include start/offset pair)
606 * @csum_start: Offset from skb->head where checksumming should start
607 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 608 * @priority: Packet queueing priority
60ff7467 609 * @ignore_df: allow local fragmentation
1da177e4 610 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 611 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
612 * @nohdr: Payload reference only, must not modify header
613 * @pkt_type: Packet class
c83c2486 614 * @fclone: skbuff clone status
c83c2486 615 * @ipvs_property: skbuff is owned by ipvs
e7246e12 616 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 617 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
618 * @tc_redirected: packet was redirected by a tc action
619 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
620 * @peeked: this packet has been seen already, so stats have been
621 * done for it, don't do them again
ba9dda3a 622 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
623 * @protocol: Packet protocol from driver
624 * @destructor: Destruct function
e2080072 625 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 626 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 627 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 628 * @skb_iif: ifindex of device we arrived on
1da177e4 629 * @tc_index: Traffic control index
61b905da 630 * @hash: the packet hash
d84e0bd7 631 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 632 * @xmit_more: More SKBs are pending for this queue
8b700862 633 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
553a5672 634 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 635 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 636 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 637 * ports.
a3b18ddb 638 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
639 * @wifi_acked_valid: wifi_acked was set
640 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 641 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 642 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 643 * @dst_pending_confirm: need to confirm neighbour
a48d189e 644 * @decrypted: Decrypted SKB
06021292 645 * @napi_id: id of the NAPI struct this skb came from
984bc16c 646 * @secmark: security marking
d84e0bd7 647 * @mark: Generic packet mark
86a9bad3 648 * @vlan_proto: vlan encapsulation protocol
6aa895b0 649 * @vlan_tci: vlan tag control information
0d89d203 650 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
651 * @inner_transport_header: Inner transport layer header (encapsulation)
652 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 653 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
654 * @transport_header: Transport layer header
655 * @network_header: Network layer header
656 * @mac_header: Link layer header
657 * @tail: Tail pointer
658 * @end: End pointer
659 * @head: Head of buffer
660 * @data: Data head pointer
661 * @truesize: Buffer size
662 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
663 */
664
665struct sk_buff {
363ec392 666 union {
56b17425
ED
667 struct {
668 /* These two members must be first. */
669 struct sk_buff *next;
670 struct sk_buff *prev;
671
672 union {
bffa72cf
ED
673 struct net_device *dev;
674 /* Some protocols might use this space to store information,
675 * while device pointer would be NULL.
676 * UDP receive path is one user.
677 */
678 unsigned long dev_scratch;
56b17425
ED
679 };
680 };
fa0f5273 681 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 682 struct list_head list;
363ec392 683 };
fa0f5273
PO
684
685 union {
686 struct sock *sk;
687 int ip_defrag_offset;
688 };
1da177e4 689
c84d9490 690 union {
bffa72cf
ED
691 ktime_t tstamp;
692 u64 skb_mstamp;
c84d9490 693 };
1da177e4
LT
694 /*
695 * This is the control buffer. It is free to use for every
696 * layer. Please put your private variables there. If you
697 * want to keep them across layers you have to do a skb_clone()
698 * first. This is owned by whoever has the skb queued ATM.
699 */
da3f5cf1 700 char cb[48] __aligned(8);
1da177e4 701
e2080072
ED
702 union {
703 struct {
704 unsigned long _skb_refdst;
705 void (*destructor)(struct sk_buff *skb);
706 };
707 struct list_head tcp_tsorted_anchor;
708 };
709
da3f5cf1
FF
710#ifdef CONFIG_XFRM
711 struct sec_path *sp;
b1937227
ED
712#endif
713#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 714 unsigned long _nfct;
b1937227 715#endif
85224844 716#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 717 struct nf_bridge_info *nf_bridge;
da3f5cf1 718#endif
1da177e4 719 unsigned int len,
334a8132
PM
720 data_len;
721 __u16 mac_len,
722 hdr_len;
b1937227
ED
723
724 /* Following fields are _not_ copied in __copy_skb_header()
725 * Note that queue_mapping is here mostly to fill a hole.
726 */
b1937227 727 __u16 queue_mapping;
36bbef52
DB
728
729/* if you move cloned around you also must adapt those constants */
730#ifdef __BIG_ENDIAN_BITFIELD
731#define CLONED_MASK (1 << 7)
732#else
733#define CLONED_MASK 1
734#endif
735#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
736
737 __u8 __cloned_offset[0];
b1937227 738 __u8 cloned:1,
6869c4d8 739 nohdr:1,
b84f4cc9 740 fclone:2,
a59322be 741 peeked:1,
b1937227 742 head_frag:1,
36bbef52 743 xmit_more:1,
8b700862 744 pfmemalloc:1;
4031ae6e 745
b1937227
ED
746 /* fields enclosed in headers_start/headers_end are copied
747 * using a single memcpy() in __copy_skb_header()
748 */
ebcf34f3 749 /* private: */
b1937227 750 __u32 headers_start[0];
ebcf34f3 751 /* public: */
4031ae6e 752
233577a2
HFS
753/* if you move pkt_type around you also must adapt those constants */
754#ifdef __BIG_ENDIAN_BITFIELD
755#define PKT_TYPE_MAX (7 << 5)
756#else
757#define PKT_TYPE_MAX 7
1da177e4 758#endif
233577a2 759#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 760
233577a2 761 __u8 __pkt_type_offset[0];
b1937227 762 __u8 pkt_type:3;
b1937227 763 __u8 ignore_df:1;
b1937227
ED
764 __u8 nf_trace:1;
765 __u8 ip_summed:2;
3853b584 766 __u8 ooo_okay:1;
8b700862 767
61b905da 768 __u8 l4_hash:1;
a3b18ddb 769 __u8 sw_hash:1;
6e3e939f
JB
770 __u8 wifi_acked_valid:1;
771 __u8 wifi_acked:1;
3bdc0eba 772 __u8 no_fcs:1;
77cffe23 773 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 774 __u8 encapsulation:1;
7e2b10c1 775 __u8 encap_hdr_csum:1;
5d0c2b95 776 __u8 csum_valid:1;
8b700862 777
7e3cead5 778 __u8 csum_complete_sw:1;
b1937227 779 __u8 csum_level:2;
dba00306 780 __u8 csum_not_inet:1;
4ff06203 781 __u8 dst_pending_confirm:1;
b1937227
ED
782#ifdef CONFIG_IPV6_NDISC_NODETYPE
783 __u8 ndisc_nodetype:2;
784#endif
785 __u8 ipvs_property:1;
8b700862 786
8bce6d7d 787 __u8 inner_protocol_type:1;
e585f236 788 __u8 remcsum_offload:1;
6bc506b4
IS
789#ifdef CONFIG_NET_SWITCHDEV
790 __u8 offload_fwd_mark:1;
abf4bb6b 791 __u8 offload_mr_fwd_mark:1;
6bc506b4 792#endif
e7246e12
WB
793#ifdef CONFIG_NET_CLS_ACT
794 __u8 tc_skip_classify:1;
8dc07fdb 795 __u8 tc_at_ingress:1;
bc31c905
WB
796 __u8 tc_redirected:1;
797 __u8 tc_from_ingress:1;
e7246e12 798#endif
a48d189e
SB
799#ifdef CONFIG_TLS_DEVICE
800 __u8 decrypted:1;
801#endif
b1937227
ED
802
803#ifdef CONFIG_NET_SCHED
804 __u16 tc_index; /* traffic control index */
b1937227 805#endif
fe55f6d5 806
b1937227
ED
807 union {
808 __wsum csum;
809 struct {
810 __u16 csum_start;
811 __u16 csum_offset;
812 };
813 };
814 __u32 priority;
815 int skb_iif;
816 __u32 hash;
817 __be16 vlan_proto;
818 __u16 vlan_tci;
2bd82484
ED
819#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
820 union {
821 unsigned int napi_id;
822 unsigned int sender_cpu;
823 };
97fc2f08 824#endif
984bc16c 825#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 826 __u32 secmark;
0c4f691f 827#endif
0c4f691f 828
3b885787
NH
829 union {
830 __u32 mark;
16fad69c 831 __u32 reserved_tailroom;
3b885787 832 };
1da177e4 833
8bce6d7d
TH
834 union {
835 __be16 inner_protocol;
836 __u8 inner_ipproto;
837 };
838
1a37e412
SH
839 __u16 inner_transport_header;
840 __u16 inner_network_header;
841 __u16 inner_mac_header;
b1937227
ED
842
843 __be16 protocol;
1a37e412
SH
844 __u16 transport_header;
845 __u16 network_header;
846 __u16 mac_header;
b1937227 847
ebcf34f3 848 /* private: */
b1937227 849 __u32 headers_end[0];
ebcf34f3 850 /* public: */
b1937227 851
1da177e4 852 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 853 sk_buff_data_t tail;
4305b541 854 sk_buff_data_t end;
1da177e4 855 unsigned char *head,
4305b541 856 *data;
27a884dc 857 unsigned int truesize;
63354797 858 refcount_t users;
1da177e4
LT
859};
860
861#ifdef __KERNEL__
862/*
863 * Handling routines are only of interest to the kernel
864 */
1da177e4 865
c93bdd0e
MG
866#define SKB_ALLOC_FCLONE 0x01
867#define SKB_ALLOC_RX 0x02
fd11a83d 868#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
869
870/* Returns true if the skb was allocated from PFMEMALLOC reserves */
871static inline bool skb_pfmemalloc(const struct sk_buff *skb)
872{
873 return unlikely(skb->pfmemalloc);
874}
875
7fee226a
ED
876/*
877 * skb might have a dst pointer attached, refcounted or not.
878 * _skb_refdst low order bit is set if refcount was _not_ taken
879 */
880#define SKB_DST_NOREF 1UL
881#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
882
a9e419dc 883#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
884/**
885 * skb_dst - returns skb dst_entry
886 * @skb: buffer
887 *
888 * Returns skb dst_entry, regardless of reference taken or not.
889 */
adf30907
ED
890static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
891{
7fee226a
ED
892 /* If refdst was not refcounted, check we still are in a
893 * rcu_read_lock section
894 */
895 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
896 !rcu_read_lock_held() &&
897 !rcu_read_lock_bh_held());
898 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
899}
900
7fee226a
ED
901/**
902 * skb_dst_set - sets skb dst
903 * @skb: buffer
904 * @dst: dst entry
905 *
906 * Sets skb dst, assuming a reference was taken on dst and should
907 * be released by skb_dst_drop()
908 */
adf30907
ED
909static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
910{
7fee226a
ED
911 skb->_skb_refdst = (unsigned long)dst;
912}
913
932bc4d7
JA
914/**
915 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
916 * @skb: buffer
917 * @dst: dst entry
918 *
919 * Sets skb dst, assuming a reference was not taken on dst.
920 * If dst entry is cached, we do not take reference and dst_release
921 * will be avoided by refdst_drop. If dst entry is not cached, we take
922 * reference, so that last dst_release can destroy the dst immediately.
923 */
924static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
925{
dbfc4fb7
HFS
926 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
927 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 928}
7fee226a
ED
929
930/**
25985edc 931 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
932 * @skb: buffer
933 */
934static inline bool skb_dst_is_noref(const struct sk_buff *skb)
935{
936 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
937}
938
511c3f92
ED
939static inline struct rtable *skb_rtable(const struct sk_buff *skb)
940{
adf30907 941 return (struct rtable *)skb_dst(skb);
511c3f92
ED
942}
943
8b10cab6
JHS
944/* For mangling skb->pkt_type from user space side from applications
945 * such as nft, tc, etc, we only allow a conservative subset of
946 * possible pkt_types to be set.
947*/
948static inline bool skb_pkt_type_ok(u32 ptype)
949{
950 return ptype <= PACKET_OTHERHOST;
951}
952
90b602f8
ML
953static inline unsigned int skb_napi_id(const struct sk_buff *skb)
954{
955#ifdef CONFIG_NET_RX_BUSY_POLL
956 return skb->napi_id;
957#else
958 return 0;
959#endif
960}
961
3889a803
PA
962/* decrement the reference count and return true if we can free the skb */
963static inline bool skb_unref(struct sk_buff *skb)
964{
965 if (unlikely(!skb))
966 return false;
63354797 967 if (likely(refcount_read(&skb->users) == 1))
3889a803 968 smp_rmb();
63354797 969 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
970 return false;
971
972 return true;
973}
974
0a463c78 975void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
976void kfree_skb(struct sk_buff *skb);
977void kfree_skb_list(struct sk_buff *segs);
978void skb_tx_error(struct sk_buff *skb);
979void consume_skb(struct sk_buff *skb);
ca2c1418 980void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 981void __kfree_skb(struct sk_buff *skb);
d7e8883c 982extern struct kmem_cache *skbuff_head_cache;
bad43ca8 983
7965bd4d
JP
984void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
985bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
986 bool *fragstolen, int *delta_truesize);
bad43ca8 987
7965bd4d
JP
988struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
989 int node);
2ea2f62c 990struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 991struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 992static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 993 gfp_t priority)
d179cd12 994{
564824b0 995 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
996}
997
2e4e4410
ED
998struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
999 unsigned long data_len,
1000 int max_page_order,
1001 int *errcode,
1002 gfp_t gfp_mask);
1003
d0bf4a9e
ED
1004/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1005struct sk_buff_fclones {
1006 struct sk_buff skb1;
1007
1008 struct sk_buff skb2;
1009
2638595a 1010 refcount_t fclone_ref;
d0bf4a9e
ED
1011};
1012
1013/**
1014 * skb_fclone_busy - check if fclone is busy
293de7de 1015 * @sk: socket
d0bf4a9e
ED
1016 * @skb: buffer
1017 *
bda13fed 1018 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1019 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1020 * so we also check that this didnt happen.
d0bf4a9e 1021 */
39bb5e62
ED
1022static inline bool skb_fclone_busy(const struct sock *sk,
1023 const struct sk_buff *skb)
d0bf4a9e
ED
1024{
1025 const struct sk_buff_fclones *fclones;
1026
1027 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1028
1029 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1030 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1031 fclones->skb2.sk == sk;
d0bf4a9e
ED
1032}
1033
d179cd12 1034static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1035 gfp_t priority)
d179cd12 1036{
c93bdd0e 1037 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1038}
1039
7965bd4d
JP
1040struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1041int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1042struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1043void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1044struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1045struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1046 gfp_t gfp_mask, bool fclone);
1047static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1048 gfp_t gfp_mask)
1049{
1050 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1051}
7965bd4d
JP
1052
1053int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1054struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1055 unsigned int headroom);
1056struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1057 int newtailroom, gfp_t priority);
48a1df65
JD
1058int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1059 int offset, int len);
1060int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1061 int offset, int len);
7965bd4d 1062int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1063int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1064
1065/**
1066 * skb_pad - zero pad the tail of an skb
1067 * @skb: buffer to pad
1068 * @pad: space to pad
1069 *
1070 * Ensure that a buffer is followed by a padding area that is zero
1071 * filled. Used by network drivers which may DMA or transfer data
1072 * beyond the buffer end onto the wire.
1073 *
1074 * May return error in out of memory cases. The skb is freed on error.
1075 */
1076static inline int skb_pad(struct sk_buff *skb, int pad)
1077{
1078 return __skb_pad(skb, pad, true);
1079}
ead2ceb0 1080#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1081
7965bd4d
JP
1082int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1083 int getfrag(void *from, char *to, int offset,
1084 int len, int odd, struct sk_buff *skb),
1085 void *from, int length);
e89e9cf5 1086
be12a1fe
HFS
1087int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1088 int offset, size_t size);
1089
d94d9fee 1090struct skb_seq_state {
677e90ed
TG
1091 __u32 lower_offset;
1092 __u32 upper_offset;
1093 __u32 frag_idx;
1094 __u32 stepped_offset;
1095 struct sk_buff *root_skb;
1096 struct sk_buff *cur_skb;
1097 __u8 *frag_data;
1098};
1099
7965bd4d
JP
1100void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1101 unsigned int to, struct skb_seq_state *st);
1102unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1103 struct skb_seq_state *st);
1104void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1105
7965bd4d 1106unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1107 unsigned int to, struct ts_config *config);
3fc7e8a6 1108
09323cc4
TH
1109/*
1110 * Packet hash types specify the type of hash in skb_set_hash.
1111 *
1112 * Hash types refer to the protocol layer addresses which are used to
1113 * construct a packet's hash. The hashes are used to differentiate or identify
1114 * flows of the protocol layer for the hash type. Hash types are either
1115 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1116 *
1117 * Properties of hashes:
1118 *
1119 * 1) Two packets in different flows have different hash values
1120 * 2) Two packets in the same flow should have the same hash value
1121 *
1122 * A hash at a higher layer is considered to be more specific. A driver should
1123 * set the most specific hash possible.
1124 *
1125 * A driver cannot indicate a more specific hash than the layer at which a hash
1126 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1127 *
1128 * A driver may indicate a hash level which is less specific than the
1129 * actual layer the hash was computed on. For instance, a hash computed
1130 * at L4 may be considered an L3 hash. This should only be done if the
1131 * driver can't unambiguously determine that the HW computed the hash at
1132 * the higher layer. Note that the "should" in the second property above
1133 * permits this.
1134 */
1135enum pkt_hash_types {
1136 PKT_HASH_TYPE_NONE, /* Undefined type */
1137 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1138 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1139 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1140};
1141
bcc83839 1142static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1143{
bcc83839 1144 skb->hash = 0;
a3b18ddb 1145 skb->sw_hash = 0;
bcc83839
TH
1146 skb->l4_hash = 0;
1147}
1148
1149static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1150{
1151 if (!skb->l4_hash)
1152 skb_clear_hash(skb);
1153}
1154
1155static inline void
1156__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1157{
1158 skb->l4_hash = is_l4;
1159 skb->sw_hash = is_sw;
61b905da 1160 skb->hash = hash;
09323cc4
TH
1161}
1162
bcc83839
TH
1163static inline void
1164skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1165{
1166 /* Used by drivers to set hash from HW */
1167 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1168}
1169
1170static inline void
1171__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1172{
1173 __skb_set_hash(skb, hash, true, is_l4);
1174}
1175
e5276937 1176void __skb_get_hash(struct sk_buff *skb);
b917783c 1177u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1178u32 skb_get_poff(const struct sk_buff *skb);
1179u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1180 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1181__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1182 void *data, int hlen_proto);
1183
1184static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1185 int thoff, u8 ip_proto)
1186{
1187 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1188}
1189
1190void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1191 const struct flow_dissector_key *key,
1192 unsigned int key_count);
1193
1194bool __skb_flow_dissect(const struct sk_buff *skb,
1195 struct flow_dissector *flow_dissector,
1196 void *target_container,
cd79a238
TH
1197 void *data, __be16 proto, int nhoff, int hlen,
1198 unsigned int flags);
e5276937
TH
1199
1200static inline bool skb_flow_dissect(const struct sk_buff *skb,
1201 struct flow_dissector *flow_dissector,
cd79a238 1202 void *target_container, unsigned int flags)
e5276937
TH
1203{
1204 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1205 NULL, 0, 0, 0, flags);
e5276937
TH
1206}
1207
1208static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1209 struct flow_keys *flow,
1210 unsigned int flags)
e5276937
TH
1211{
1212 memset(flow, 0, sizeof(*flow));
1213 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1214 NULL, 0, 0, 0, flags);
e5276937
TH
1215}
1216
72a338bc
PA
1217static inline bool
1218skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1219 struct flow_keys_basic *flow, void *data,
1220 __be16 proto, int nhoff, int hlen,
1221 unsigned int flags)
e5276937
TH
1222{
1223 memset(flow, 0, sizeof(*flow));
72a338bc 1224 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
cd79a238 1225 data, proto, nhoff, hlen, flags);
e5276937
TH
1226}
1227
62b32379
SH
1228void
1229skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1230 struct flow_dissector *flow_dissector,
1231 void *target_container);
1232
3958afa1 1233static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1234{
a3b18ddb 1235 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1236 __skb_get_hash(skb);
bfb564e7 1237
61b905da 1238 return skb->hash;
bfb564e7
KK
1239}
1240
20a17bf6 1241static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1242{
c6cc1ca7
TH
1243 if (!skb->l4_hash && !skb->sw_hash) {
1244 struct flow_keys keys;
de4c1f8b 1245 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1246
de4c1f8b 1247 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1248 }
f70ea018
TH
1249
1250 return skb->hash;
1251}
1252
50fb7992
TH
1253__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1254
57bdf7f4
TH
1255static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1256{
61b905da 1257 return skb->hash;
57bdf7f4
TH
1258}
1259
3df7a74e
TH
1260static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1261{
61b905da 1262 to->hash = from->hash;
a3b18ddb 1263 to->sw_hash = from->sw_hash;
61b905da 1264 to->l4_hash = from->l4_hash;
3df7a74e
TH
1265};
1266
4305b541
ACM
1267#ifdef NET_SKBUFF_DATA_USES_OFFSET
1268static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1269{
1270 return skb->head + skb->end;
1271}
ec47ea82
AD
1272
1273static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1274{
1275 return skb->end;
1276}
4305b541
ACM
1277#else
1278static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1279{
1280 return skb->end;
1281}
ec47ea82
AD
1282
1283static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1284{
1285 return skb->end - skb->head;
1286}
4305b541
ACM
1287#endif
1288
1da177e4 1289/* Internal */
4305b541 1290#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1291
ac45f602
PO
1292static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1293{
1294 return &skb_shinfo(skb)->hwtstamps;
1295}
1296
52267790
WB
1297static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1298{
1299 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1300
1301 return is_zcopy ? skb_uarg(skb) : NULL;
1302}
1303
1304static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1305{
1306 if (skb && uarg && !skb_zcopy(skb)) {
1307 sock_zerocopy_get(uarg);
1308 skb_shinfo(skb)->destructor_arg = uarg;
1309 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1310 }
1311}
1312
1313/* Release a reference on a zerocopy structure */
1314static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1315{
1316 struct ubuf_info *uarg = skb_zcopy(skb);
1317
1318 if (uarg) {
0a4a060b
WB
1319 if (uarg->callback == sock_zerocopy_callback) {
1320 uarg->zerocopy = uarg->zerocopy && zerocopy;
1321 sock_zerocopy_put(uarg);
1322 } else {
1323 uarg->callback(uarg, zerocopy);
1324 }
1325
52267790
WB
1326 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1327 }
1328}
1329
1330/* Abort a zerocopy operation and revert zckey on error in send syscall */
1331static inline void skb_zcopy_abort(struct sk_buff *skb)
1332{
1333 struct ubuf_info *uarg = skb_zcopy(skb);
1334
1335 if (uarg) {
1336 sock_zerocopy_put_abort(uarg);
1337 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1338 }
1339}
1340
1da177e4
LT
1341/**
1342 * skb_queue_empty - check if a queue is empty
1343 * @list: queue head
1344 *
1345 * Returns true if the queue is empty, false otherwise.
1346 */
1347static inline int skb_queue_empty(const struct sk_buff_head *list)
1348{
fd44b93c 1349 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1350}
1351
fc7ebb21
DM
1352/**
1353 * skb_queue_is_last - check if skb is the last entry in the queue
1354 * @list: queue head
1355 * @skb: buffer
1356 *
1357 * Returns true if @skb is the last buffer on the list.
1358 */
1359static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1360 const struct sk_buff *skb)
1361{
fd44b93c 1362 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1363}
1364
832d11c5
IJ
1365/**
1366 * skb_queue_is_first - check if skb is the first entry in the queue
1367 * @list: queue head
1368 * @skb: buffer
1369 *
1370 * Returns true if @skb is the first buffer on the list.
1371 */
1372static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1373 const struct sk_buff *skb)
1374{
fd44b93c 1375 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1376}
1377
249c8b42
DM
1378/**
1379 * skb_queue_next - return the next packet in the queue
1380 * @list: queue head
1381 * @skb: current buffer
1382 *
1383 * Return the next packet in @list after @skb. It is only valid to
1384 * call this if skb_queue_is_last() evaluates to false.
1385 */
1386static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1387 const struct sk_buff *skb)
1388{
1389 /* This BUG_ON may seem severe, but if we just return then we
1390 * are going to dereference garbage.
1391 */
1392 BUG_ON(skb_queue_is_last(list, skb));
1393 return skb->next;
1394}
1395
832d11c5
IJ
1396/**
1397 * skb_queue_prev - return the prev packet in the queue
1398 * @list: queue head
1399 * @skb: current buffer
1400 *
1401 * Return the prev packet in @list before @skb. It is only valid to
1402 * call this if skb_queue_is_first() evaluates to false.
1403 */
1404static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1405 const struct sk_buff *skb)
1406{
1407 /* This BUG_ON may seem severe, but if we just return then we
1408 * are going to dereference garbage.
1409 */
1410 BUG_ON(skb_queue_is_first(list, skb));
1411 return skb->prev;
1412}
1413
1da177e4
LT
1414/**
1415 * skb_get - reference buffer
1416 * @skb: buffer to reference
1417 *
1418 * Makes another reference to a socket buffer and returns a pointer
1419 * to the buffer.
1420 */
1421static inline struct sk_buff *skb_get(struct sk_buff *skb)
1422{
63354797 1423 refcount_inc(&skb->users);
1da177e4
LT
1424 return skb;
1425}
1426
1427/*
f8821f96 1428 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1429 */
1430
1da177e4
LT
1431/**
1432 * skb_cloned - is the buffer a clone
1433 * @skb: buffer to check
1434 *
1435 * Returns true if the buffer was generated with skb_clone() and is
1436 * one of multiple shared copies of the buffer. Cloned buffers are
1437 * shared data so must not be written to under normal circumstances.
1438 */
1439static inline int skb_cloned(const struct sk_buff *skb)
1440{
1441 return skb->cloned &&
1442 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1443}
1444
14bbd6a5
PS
1445static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1446{
d0164adc 1447 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1448
1449 if (skb_cloned(skb))
1450 return pskb_expand_head(skb, 0, 0, pri);
1451
1452 return 0;
1453}
1454
1da177e4
LT
1455/**
1456 * skb_header_cloned - is the header a clone
1457 * @skb: buffer to check
1458 *
1459 * Returns true if modifying the header part of the buffer requires
1460 * the data to be copied.
1461 */
1462static inline int skb_header_cloned(const struct sk_buff *skb)
1463{
1464 int dataref;
1465
1466 if (!skb->cloned)
1467 return 0;
1468
1469 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1470 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1471 return dataref != 1;
1472}
1473
9580bf2e
ED
1474static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1475{
1476 might_sleep_if(gfpflags_allow_blocking(pri));
1477
1478 if (skb_header_cloned(skb))
1479 return pskb_expand_head(skb, 0, 0, pri);
1480
1481 return 0;
1482}
1483
f4a775d1
ED
1484/**
1485 * __skb_header_release - release reference to header
1486 * @skb: buffer to operate on
f4a775d1
ED
1487 */
1488static inline void __skb_header_release(struct sk_buff *skb)
1489{
1490 skb->nohdr = 1;
1491 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1492}
1493
1494
1da177e4
LT
1495/**
1496 * skb_shared - is the buffer shared
1497 * @skb: buffer to check
1498 *
1499 * Returns true if more than one person has a reference to this
1500 * buffer.
1501 */
1502static inline int skb_shared(const struct sk_buff *skb)
1503{
63354797 1504 return refcount_read(&skb->users) != 1;
1da177e4
LT
1505}
1506
1507/**
1508 * skb_share_check - check if buffer is shared and if so clone it
1509 * @skb: buffer to check
1510 * @pri: priority for memory allocation
1511 *
1512 * If the buffer is shared the buffer is cloned and the old copy
1513 * drops a reference. A new clone with a single reference is returned.
1514 * If the buffer is not shared the original buffer is returned. When
1515 * being called from interrupt status or with spinlocks held pri must
1516 * be GFP_ATOMIC.
1517 *
1518 * NULL is returned on a memory allocation failure.
1519 */
47061bc4 1520static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1521{
d0164adc 1522 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1523 if (skb_shared(skb)) {
1524 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1525
1526 if (likely(nskb))
1527 consume_skb(skb);
1528 else
1529 kfree_skb(skb);
1da177e4
LT
1530 skb = nskb;
1531 }
1532 return skb;
1533}
1534
1535/*
1536 * Copy shared buffers into a new sk_buff. We effectively do COW on
1537 * packets to handle cases where we have a local reader and forward
1538 * and a couple of other messy ones. The normal one is tcpdumping
1539 * a packet thats being forwarded.
1540 */
1541
1542/**
1543 * skb_unshare - make a copy of a shared buffer
1544 * @skb: buffer to check
1545 * @pri: priority for memory allocation
1546 *
1547 * If the socket buffer is a clone then this function creates a new
1548 * copy of the data, drops a reference count on the old copy and returns
1549 * the new copy with the reference count at 1. If the buffer is not a clone
1550 * the original buffer is returned. When called with a spinlock held or
1551 * from interrupt state @pri must be %GFP_ATOMIC
1552 *
1553 * %NULL is returned on a memory allocation failure.
1554 */
e2bf521d 1555static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1556 gfp_t pri)
1da177e4 1557{
d0164adc 1558 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1559 if (skb_cloned(skb)) {
1560 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1561
1562 /* Free our shared copy */
1563 if (likely(nskb))
1564 consume_skb(skb);
1565 else
1566 kfree_skb(skb);
1da177e4
LT
1567 skb = nskb;
1568 }
1569 return skb;
1570}
1571
1572/**
1a5778aa 1573 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1574 * @list_: list to peek at
1575 *
1576 * Peek an &sk_buff. Unlike most other operations you _MUST_
1577 * be careful with this one. A peek leaves the buffer on the
1578 * list and someone else may run off with it. You must hold
1579 * the appropriate locks or have a private queue to do this.
1580 *
1581 * Returns %NULL for an empty list or a pointer to the head element.
1582 * The reference count is not incremented and the reference is therefore
1583 * volatile. Use with caution.
1584 */
05bdd2f1 1585static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1586{
18d07000
ED
1587 struct sk_buff *skb = list_->next;
1588
1589 if (skb == (struct sk_buff *)list_)
1590 skb = NULL;
1591 return skb;
1da177e4
LT
1592}
1593
da5ef6e5
PE
1594/**
1595 * skb_peek_next - peek skb following the given one from a queue
1596 * @skb: skb to start from
1597 * @list_: list to peek at
1598 *
1599 * Returns %NULL when the end of the list is met or a pointer to the
1600 * next element. The reference count is not incremented and the
1601 * reference is therefore volatile. Use with caution.
1602 */
1603static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1604 const struct sk_buff_head *list_)
1605{
1606 struct sk_buff *next = skb->next;
18d07000 1607
da5ef6e5
PE
1608 if (next == (struct sk_buff *)list_)
1609 next = NULL;
1610 return next;
1611}
1612
1da177e4 1613/**
1a5778aa 1614 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1615 * @list_: list to peek at
1616 *
1617 * Peek an &sk_buff. Unlike most other operations you _MUST_
1618 * be careful with this one. A peek leaves the buffer on the
1619 * list and someone else may run off with it. You must hold
1620 * the appropriate locks or have a private queue to do this.
1621 *
1622 * Returns %NULL for an empty list or a pointer to the tail element.
1623 * The reference count is not incremented and the reference is therefore
1624 * volatile. Use with caution.
1625 */
05bdd2f1 1626static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1627{
18d07000
ED
1628 struct sk_buff *skb = list_->prev;
1629
1630 if (skb == (struct sk_buff *)list_)
1631 skb = NULL;
1632 return skb;
1633
1da177e4
LT
1634}
1635
1636/**
1637 * skb_queue_len - get queue length
1638 * @list_: list to measure
1639 *
1640 * Return the length of an &sk_buff queue.
1641 */
1642static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1643{
1644 return list_->qlen;
1645}
1646
67fed459
DM
1647/**
1648 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1649 * @list: queue to initialize
1650 *
1651 * This initializes only the list and queue length aspects of
1652 * an sk_buff_head object. This allows to initialize the list
1653 * aspects of an sk_buff_head without reinitializing things like
1654 * the spinlock. It can also be used for on-stack sk_buff_head
1655 * objects where the spinlock is known to not be used.
1656 */
1657static inline void __skb_queue_head_init(struct sk_buff_head *list)
1658{
1659 list->prev = list->next = (struct sk_buff *)list;
1660 list->qlen = 0;
1661}
1662
76f10ad0
AV
1663/*
1664 * This function creates a split out lock class for each invocation;
1665 * this is needed for now since a whole lot of users of the skb-queue
1666 * infrastructure in drivers have different locking usage (in hardirq)
1667 * than the networking core (in softirq only). In the long run either the
1668 * network layer or drivers should need annotation to consolidate the
1669 * main types of usage into 3 classes.
1670 */
1da177e4
LT
1671static inline void skb_queue_head_init(struct sk_buff_head *list)
1672{
1673 spin_lock_init(&list->lock);
67fed459 1674 __skb_queue_head_init(list);
1da177e4
LT
1675}
1676
c2ecba71
PE
1677static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1678 struct lock_class_key *class)
1679{
1680 skb_queue_head_init(list);
1681 lockdep_set_class(&list->lock, class);
1682}
1683
1da177e4 1684/*
bf299275 1685 * Insert an sk_buff on a list.
1da177e4
LT
1686 *
1687 * The "__skb_xxxx()" functions are the non-atomic ones that
1688 * can only be called with interrupts disabled.
1689 */
7965bd4d
JP
1690void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1691 struct sk_buff_head *list);
bf299275
GR
1692static inline void __skb_insert(struct sk_buff *newsk,
1693 struct sk_buff *prev, struct sk_buff *next,
1694 struct sk_buff_head *list)
1695{
1696 newsk->next = next;
1697 newsk->prev = prev;
1698 next->prev = prev->next = newsk;
1699 list->qlen++;
1700}
1da177e4 1701
67fed459
DM
1702static inline void __skb_queue_splice(const struct sk_buff_head *list,
1703 struct sk_buff *prev,
1704 struct sk_buff *next)
1705{
1706 struct sk_buff *first = list->next;
1707 struct sk_buff *last = list->prev;
1708
1709 first->prev = prev;
1710 prev->next = first;
1711
1712 last->next = next;
1713 next->prev = last;
1714}
1715
1716/**
1717 * skb_queue_splice - join two skb lists, this is designed for stacks
1718 * @list: the new list to add
1719 * @head: the place to add it in the first list
1720 */
1721static inline void skb_queue_splice(const struct sk_buff_head *list,
1722 struct sk_buff_head *head)
1723{
1724 if (!skb_queue_empty(list)) {
1725 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1726 head->qlen += list->qlen;
67fed459
DM
1727 }
1728}
1729
1730/**
d9619496 1731 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1732 * @list: the new list to add
1733 * @head: the place to add it in the first list
1734 *
1735 * The list at @list is reinitialised
1736 */
1737static inline void skb_queue_splice_init(struct sk_buff_head *list,
1738 struct sk_buff_head *head)
1739{
1740 if (!skb_queue_empty(list)) {
1741 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1742 head->qlen += list->qlen;
67fed459
DM
1743 __skb_queue_head_init(list);
1744 }
1745}
1746
1747/**
1748 * skb_queue_splice_tail - join two skb lists, each list being a queue
1749 * @list: the new list to add
1750 * @head: the place to add it in the first list
1751 */
1752static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1753 struct sk_buff_head *head)
1754{
1755 if (!skb_queue_empty(list)) {
1756 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1757 head->qlen += list->qlen;
67fed459
DM
1758 }
1759}
1760
1761/**
d9619496 1762 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1763 * @list: the new list to add
1764 * @head: the place to add it in the first list
1765 *
1766 * Each of the lists is a queue.
1767 * The list at @list is reinitialised
1768 */
1769static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1770 struct sk_buff_head *head)
1771{
1772 if (!skb_queue_empty(list)) {
1773 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1774 head->qlen += list->qlen;
67fed459
DM
1775 __skb_queue_head_init(list);
1776 }
1777}
1778
1da177e4 1779/**
300ce174 1780 * __skb_queue_after - queue a buffer at the list head
1da177e4 1781 * @list: list to use
300ce174 1782 * @prev: place after this buffer
1da177e4
LT
1783 * @newsk: buffer to queue
1784 *
300ce174 1785 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1786 * and you must therefore hold required locks before calling it.
1787 *
1788 * A buffer cannot be placed on two lists at the same time.
1789 */
300ce174
SH
1790static inline void __skb_queue_after(struct sk_buff_head *list,
1791 struct sk_buff *prev,
1792 struct sk_buff *newsk)
1da177e4 1793{
bf299275 1794 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1795}
1796
7965bd4d
JP
1797void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1798 struct sk_buff_head *list);
7de6c033 1799
f5572855
GR
1800static inline void __skb_queue_before(struct sk_buff_head *list,
1801 struct sk_buff *next,
1802 struct sk_buff *newsk)
1803{
1804 __skb_insert(newsk, next->prev, next, list);
1805}
1806
300ce174
SH
1807/**
1808 * __skb_queue_head - queue a buffer at the list head
1809 * @list: list to use
1810 * @newsk: buffer to queue
1811 *
1812 * Queue a buffer at the start of a list. This function takes no locks
1813 * and you must therefore hold required locks before calling it.
1814 *
1815 * A buffer cannot be placed on two lists at the same time.
1816 */
7965bd4d 1817void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1818static inline void __skb_queue_head(struct sk_buff_head *list,
1819 struct sk_buff *newsk)
1820{
1821 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1822}
1823
1da177e4
LT
1824/**
1825 * __skb_queue_tail - queue a buffer at the list tail
1826 * @list: list to use
1827 * @newsk: buffer to queue
1828 *
1829 * Queue a buffer at the end of a list. This function takes no locks
1830 * and you must therefore hold required locks before calling it.
1831 *
1832 * A buffer cannot be placed on two lists at the same time.
1833 */
7965bd4d 1834void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1835static inline void __skb_queue_tail(struct sk_buff_head *list,
1836 struct sk_buff *newsk)
1837{
f5572855 1838 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1839}
1840
1da177e4
LT
1841/*
1842 * remove sk_buff from list. _Must_ be called atomically, and with
1843 * the list known..
1844 */
7965bd4d 1845void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1846static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1847{
1848 struct sk_buff *next, *prev;
1849
1850 list->qlen--;
1851 next = skb->next;
1852 prev = skb->prev;
1853 skb->next = skb->prev = NULL;
1da177e4
LT
1854 next->prev = prev;
1855 prev->next = next;
1856}
1857
f525c06d
GR
1858/**
1859 * __skb_dequeue - remove from the head of the queue
1860 * @list: list to dequeue from
1861 *
1862 * Remove the head of the list. This function does not take any locks
1863 * so must be used with appropriate locks held only. The head item is
1864 * returned or %NULL if the list is empty.
1865 */
7965bd4d 1866struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1867static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1868{
1869 struct sk_buff *skb = skb_peek(list);
1870 if (skb)
1871 __skb_unlink(skb, list);
1872 return skb;
1873}
1da177e4
LT
1874
1875/**
1876 * __skb_dequeue_tail - remove from the tail of the queue
1877 * @list: list to dequeue from
1878 *
1879 * Remove the tail of the list. This function does not take any locks
1880 * so must be used with appropriate locks held only. The tail item is
1881 * returned or %NULL if the list is empty.
1882 */
7965bd4d 1883struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1884static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1885{
1886 struct sk_buff *skb = skb_peek_tail(list);
1887 if (skb)
1888 __skb_unlink(skb, list);
1889 return skb;
1890}
1891
1892
bdcc0924 1893static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1894{
1895 return skb->data_len;
1896}
1897
1898static inline unsigned int skb_headlen(const struct sk_buff *skb)
1899{
1900 return skb->len - skb->data_len;
1901}
1902
3ece7826 1903static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1904{
c72d8cda 1905 unsigned int i, len = 0;
1da177e4 1906
c72d8cda 1907 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1908 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1909 return len;
1910}
1911
1912static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1913{
1914 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1915}
1916
131ea667
IC
1917/**
1918 * __skb_fill_page_desc - initialise a paged fragment in an skb
1919 * @skb: buffer containing fragment to be initialised
1920 * @i: paged fragment index to initialise
1921 * @page: the page to use for this fragment
1922 * @off: the offset to the data with @page
1923 * @size: the length of the data
1924 *
1925 * Initialises the @i'th fragment of @skb to point to &size bytes at
1926 * offset @off within @page.
1927 *
1928 * Does not take any additional reference on the fragment.
1929 */
1930static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1931 struct page *page, int off, int size)
1da177e4
LT
1932{
1933 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1934
c48a11c7 1935 /*
2f064f34
MH
1936 * Propagate page pfmemalloc to the skb if we can. The problem is
1937 * that not all callers have unique ownership of the page but rely
1938 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1939 */
a8605c60 1940 frag->page.p = page;
1da177e4 1941 frag->page_offset = off;
9e903e08 1942 skb_frag_size_set(frag, size);
cca7af38
PE
1943
1944 page = compound_head(page);
2f064f34 1945 if (page_is_pfmemalloc(page))
cca7af38 1946 skb->pfmemalloc = true;
131ea667
IC
1947}
1948
1949/**
1950 * skb_fill_page_desc - initialise a paged fragment in an skb
1951 * @skb: buffer containing fragment to be initialised
1952 * @i: paged fragment index to initialise
1953 * @page: the page to use for this fragment
1954 * @off: the offset to the data with @page
1955 * @size: the length of the data
1956 *
1957 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1958 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1959 * addition updates @skb such that @i is the last fragment.
1960 *
1961 * Does not take any additional reference on the fragment.
1962 */
1963static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1964 struct page *page, int off, int size)
1965{
1966 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1967 skb_shinfo(skb)->nr_frags = i + 1;
1968}
1969
7965bd4d
JP
1970void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1971 int size, unsigned int truesize);
654bed16 1972
f8e617e1
JW
1973void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1974 unsigned int truesize);
1975
1da177e4 1976#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1977#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1978#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1979
27a884dc
ACM
1980#ifdef NET_SKBUFF_DATA_USES_OFFSET
1981static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1982{
1983 return skb->head + skb->tail;
1984}
1985
1986static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1987{
1988 skb->tail = skb->data - skb->head;
1989}
1990
1991static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1992{
1993 skb_reset_tail_pointer(skb);
1994 skb->tail += offset;
1995}
7cc46190 1996
27a884dc
ACM
1997#else /* NET_SKBUFF_DATA_USES_OFFSET */
1998static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1999{
2000 return skb->tail;
2001}
2002
2003static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2004{
2005 skb->tail = skb->data;
2006}
2007
2008static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2009{
2010 skb->tail = skb->data + offset;
2011}
4305b541 2012
27a884dc
ACM
2013#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2014
1da177e4
LT
2015/*
2016 * Add data to an sk_buff
2017 */
4df864c1
JB
2018void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2019void *skb_put(struct sk_buff *skb, unsigned int len);
2020static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2021{
4df864c1 2022 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2023 SKB_LINEAR_ASSERT(skb);
2024 skb->tail += len;
2025 skb->len += len;
2026 return tmp;
2027}
2028
de77b966 2029static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2030{
2031 void *tmp = __skb_put(skb, len);
2032
2033 memset(tmp, 0, len);
2034 return tmp;
2035}
2036
2037static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2038 unsigned int len)
2039{
2040 void *tmp = __skb_put(skb, len);
2041
2042 memcpy(tmp, data, len);
2043 return tmp;
2044}
2045
2046static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2047{
2048 *(u8 *)__skb_put(skb, 1) = val;
2049}
2050
83ad357d 2051static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2052{
83ad357d 2053 void *tmp = skb_put(skb, len);
e45a79da
JB
2054
2055 memset(tmp, 0, len);
2056
2057 return tmp;
2058}
2059
59ae1d12
JB
2060static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2061 unsigned int len)
2062{
2063 void *tmp = skb_put(skb, len);
2064
2065 memcpy(tmp, data, len);
2066
2067 return tmp;
2068}
2069
634fef61
JB
2070static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2071{
2072 *(u8 *)skb_put(skb, 1) = val;
2073}
2074
d58ff351
JB
2075void *skb_push(struct sk_buff *skb, unsigned int len);
2076static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2077{
2078 skb->data -= len;
2079 skb->len += len;
2080 return skb->data;
2081}
2082
af72868b
JB
2083void *skb_pull(struct sk_buff *skb, unsigned int len);
2084static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2085{
2086 skb->len -= len;
2087 BUG_ON(skb->len < skb->data_len);
2088 return skb->data += len;
2089}
2090
af72868b 2091static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2092{
2093 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2094}
2095
af72868b 2096void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2097
af72868b 2098static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2099{
2100 if (len > skb_headlen(skb) &&
987c402a 2101 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2102 return NULL;
2103 skb->len -= len;
2104 return skb->data += len;
2105}
2106
af72868b 2107static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2108{
2109 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2110}
2111
2112static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2113{
2114 if (likely(len <= skb_headlen(skb)))
2115 return 1;
2116 if (unlikely(len > skb->len))
2117 return 0;
987c402a 2118 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2119}
2120
c8c8b127
ED
2121void skb_condense(struct sk_buff *skb);
2122
1da177e4
LT
2123/**
2124 * skb_headroom - bytes at buffer head
2125 * @skb: buffer to check
2126 *
2127 * Return the number of bytes of free space at the head of an &sk_buff.
2128 */
c2636b4d 2129static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2130{
2131 return skb->data - skb->head;
2132}
2133
2134/**
2135 * skb_tailroom - bytes at buffer end
2136 * @skb: buffer to check
2137 *
2138 * Return the number of bytes of free space at the tail of an sk_buff
2139 */
2140static inline int skb_tailroom(const struct sk_buff *skb)
2141{
4305b541 2142 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2143}
2144
a21d4572
ED
2145/**
2146 * skb_availroom - bytes at buffer end
2147 * @skb: buffer to check
2148 *
2149 * Return the number of bytes of free space at the tail of an sk_buff
2150 * allocated by sk_stream_alloc()
2151 */
2152static inline int skb_availroom(const struct sk_buff *skb)
2153{
16fad69c
ED
2154 if (skb_is_nonlinear(skb))
2155 return 0;
2156
2157 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2158}
2159
1da177e4
LT
2160/**
2161 * skb_reserve - adjust headroom
2162 * @skb: buffer to alter
2163 * @len: bytes to move
2164 *
2165 * Increase the headroom of an empty &sk_buff by reducing the tail
2166 * room. This is only allowed for an empty buffer.
2167 */
8243126c 2168static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2169{
2170 skb->data += len;
2171 skb->tail += len;
2172}
2173
1837b2e2
BP
2174/**
2175 * skb_tailroom_reserve - adjust reserved_tailroom
2176 * @skb: buffer to alter
2177 * @mtu: maximum amount of headlen permitted
2178 * @needed_tailroom: minimum amount of reserved_tailroom
2179 *
2180 * Set reserved_tailroom so that headlen can be as large as possible but
2181 * not larger than mtu and tailroom cannot be smaller than
2182 * needed_tailroom.
2183 * The required headroom should already have been reserved before using
2184 * this function.
2185 */
2186static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2187 unsigned int needed_tailroom)
2188{
2189 SKB_LINEAR_ASSERT(skb);
2190 if (mtu < skb_tailroom(skb) - needed_tailroom)
2191 /* use at most mtu */
2192 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2193 else
2194 /* use up to all available space */
2195 skb->reserved_tailroom = needed_tailroom;
2196}
2197
8bce6d7d
TH
2198#define ENCAP_TYPE_ETHER 0
2199#define ENCAP_TYPE_IPPROTO 1
2200
2201static inline void skb_set_inner_protocol(struct sk_buff *skb,
2202 __be16 protocol)
2203{
2204 skb->inner_protocol = protocol;
2205 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2206}
2207
2208static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2209 __u8 ipproto)
2210{
2211 skb->inner_ipproto = ipproto;
2212 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2213}
2214
6a674e9c
JG
2215static inline void skb_reset_inner_headers(struct sk_buff *skb)
2216{
aefbd2b3 2217 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2218 skb->inner_network_header = skb->network_header;
2219 skb->inner_transport_header = skb->transport_header;
2220}
2221
0b5c9db1
JP
2222static inline void skb_reset_mac_len(struct sk_buff *skb)
2223{
2224 skb->mac_len = skb->network_header - skb->mac_header;
2225}
2226
6a674e9c
JG
2227static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2228 *skb)
2229{
2230 return skb->head + skb->inner_transport_header;
2231}
2232
55dc5a9f
TH
2233static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2234{
2235 return skb_inner_transport_header(skb) - skb->data;
2236}
2237
6a674e9c
JG
2238static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2239{
2240 skb->inner_transport_header = skb->data - skb->head;
2241}
2242
2243static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2244 const int offset)
2245{
2246 skb_reset_inner_transport_header(skb);
2247 skb->inner_transport_header += offset;
2248}
2249
2250static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2251{
2252 return skb->head + skb->inner_network_header;
2253}
2254
2255static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2256{
2257 skb->inner_network_header = skb->data - skb->head;
2258}
2259
2260static inline void skb_set_inner_network_header(struct sk_buff *skb,
2261 const int offset)
2262{
2263 skb_reset_inner_network_header(skb);
2264 skb->inner_network_header += offset;
2265}
2266
aefbd2b3
PS
2267static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2268{
2269 return skb->head + skb->inner_mac_header;
2270}
2271
2272static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2273{
2274 skb->inner_mac_header = skb->data - skb->head;
2275}
2276
2277static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2278 const int offset)
2279{
2280 skb_reset_inner_mac_header(skb);
2281 skb->inner_mac_header += offset;
2282}
fda55eca
ED
2283static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2284{
35d04610 2285 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2286}
2287
9c70220b
ACM
2288static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2289{
2e07fa9c 2290 return skb->head + skb->transport_header;
9c70220b
ACM
2291}
2292
badff6d0
ACM
2293static inline void skb_reset_transport_header(struct sk_buff *skb)
2294{
2e07fa9c 2295 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2296}
2297
967b05f6
ACM
2298static inline void skb_set_transport_header(struct sk_buff *skb,
2299 const int offset)
2300{
2e07fa9c
ACM
2301 skb_reset_transport_header(skb);
2302 skb->transport_header += offset;
ea2ae17d
ACM
2303}
2304
d56f90a7
ACM
2305static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2306{
2e07fa9c 2307 return skb->head + skb->network_header;
d56f90a7
ACM
2308}
2309
c1d2bbe1
ACM
2310static inline void skb_reset_network_header(struct sk_buff *skb)
2311{
2e07fa9c 2312 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2313}
2314
c14d2450
ACM
2315static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2316{
2e07fa9c
ACM
2317 skb_reset_network_header(skb);
2318 skb->network_header += offset;
c14d2450
ACM
2319}
2320
2e07fa9c 2321static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2322{
2e07fa9c 2323 return skb->head + skb->mac_header;
bbe735e4
ACM
2324}
2325
ea6da4fd
AV
2326static inline int skb_mac_offset(const struct sk_buff *skb)
2327{
2328 return skb_mac_header(skb) - skb->data;
2329}
2330
0daf4349
DB
2331static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2332{
2333 return skb->network_header - skb->mac_header;
2334}
2335
2e07fa9c 2336static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2337{
35d04610 2338 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2339}
2340
2341static inline void skb_reset_mac_header(struct sk_buff *skb)
2342{
2343 skb->mac_header = skb->data - skb->head;
2344}
2345
2346static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2347{
2348 skb_reset_mac_header(skb);
2349 skb->mac_header += offset;
2350}
2351
0e3da5bb
TT
2352static inline void skb_pop_mac_header(struct sk_buff *skb)
2353{
2354 skb->mac_header = skb->network_header;
2355}
2356
fbbdb8f0
YX
2357static inline void skb_probe_transport_header(struct sk_buff *skb,
2358 const int offset_hint)
2359{
72a338bc 2360 struct flow_keys_basic keys;
fbbdb8f0
YX
2361
2362 if (skb_transport_header_was_set(skb))
2363 return;
72a338bc
PA
2364
2365 if (skb_flow_dissect_flow_keys_basic(skb, &keys, 0, 0, 0, 0, 0))
42aecaa9 2366 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2367 else
2368 skb_set_transport_header(skb, offset_hint);
2369}
2370
03606895
ED
2371static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2372{
2373 if (skb_mac_header_was_set(skb)) {
2374 const unsigned char *old_mac = skb_mac_header(skb);
2375
2376 skb_set_mac_header(skb, -skb->mac_len);
2377 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2378 }
2379}
2380
04fb451e
MM
2381static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2382{
2383 return skb->csum_start - skb_headroom(skb);
2384}
2385
08b64fcc
AD
2386static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2387{
2388 return skb->head + skb->csum_start;
2389}
2390
2e07fa9c
ACM
2391static inline int skb_transport_offset(const struct sk_buff *skb)
2392{
2393 return skb_transport_header(skb) - skb->data;
2394}
2395
2396static inline u32 skb_network_header_len(const struct sk_buff *skb)
2397{
2398 return skb->transport_header - skb->network_header;
2399}
2400
6a674e9c
JG
2401static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2402{
2403 return skb->inner_transport_header - skb->inner_network_header;
2404}
2405
2e07fa9c
ACM
2406static inline int skb_network_offset(const struct sk_buff *skb)
2407{
2408 return skb_network_header(skb) - skb->data;
2409}
48d49d0c 2410
6a674e9c
JG
2411static inline int skb_inner_network_offset(const struct sk_buff *skb)
2412{
2413 return skb_inner_network_header(skb) - skb->data;
2414}
2415
f9599ce1
CG
2416static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2417{
2418 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2419}
2420
1da177e4
LT
2421/*
2422 * CPUs often take a performance hit when accessing unaligned memory
2423 * locations. The actual performance hit varies, it can be small if the
2424 * hardware handles it or large if we have to take an exception and fix it
2425 * in software.
2426 *
2427 * Since an ethernet header is 14 bytes network drivers often end up with
2428 * the IP header at an unaligned offset. The IP header can be aligned by
2429 * shifting the start of the packet by 2 bytes. Drivers should do this
2430 * with:
2431 *
8660c124 2432 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2433 *
2434 * The downside to this alignment of the IP header is that the DMA is now
2435 * unaligned. On some architectures the cost of an unaligned DMA is high
2436 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2437 *
1da177e4
LT
2438 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2439 * to be overridden.
2440 */
2441#ifndef NET_IP_ALIGN
2442#define NET_IP_ALIGN 2
2443#endif
2444
025be81e
AB
2445/*
2446 * The networking layer reserves some headroom in skb data (via
2447 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2448 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2449 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2450 *
2451 * Unfortunately this headroom changes the DMA alignment of the resulting
2452 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2453 * on some architectures. An architecture can override this value,
2454 * perhaps setting it to a cacheline in size (since that will maintain
2455 * cacheline alignment of the DMA). It must be a power of 2.
2456 *
d6301d3d 2457 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2458 * headroom, you should not reduce this.
5933dd2f
ED
2459 *
2460 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2461 * to reduce average number of cache lines per packet.
2462 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2463 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2464 */
2465#ifndef NET_SKB_PAD
5933dd2f 2466#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2467#endif
2468
7965bd4d 2469int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2470
5293efe6 2471static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2472{
c4264f27 2473 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2474 WARN_ON(1);
2475 return;
2476 }
27a884dc
ACM
2477 skb->len = len;
2478 skb_set_tail_pointer(skb, len);
1da177e4
LT
2479}
2480
5293efe6
DB
2481static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2482{
2483 __skb_set_length(skb, len);
2484}
2485
7965bd4d 2486void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2487
2488static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2489{
3cc0e873
HX
2490 if (skb->data_len)
2491 return ___pskb_trim(skb, len);
2492 __skb_trim(skb, len);
2493 return 0;
1da177e4
LT
2494}
2495
2496static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2497{
2498 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2499}
2500
e9fa4f7b
HX
2501/**
2502 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2503 * @skb: buffer to alter
2504 * @len: new length
2505 *
2506 * This is identical to pskb_trim except that the caller knows that
2507 * the skb is not cloned so we should never get an error due to out-
2508 * of-memory.
2509 */
2510static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2511{
2512 int err = pskb_trim(skb, len);
2513 BUG_ON(err);
2514}
2515
5293efe6
DB
2516static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2517{
2518 unsigned int diff = len - skb->len;
2519
2520 if (skb_tailroom(skb) < diff) {
2521 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2522 GFP_ATOMIC);
2523 if (ret)
2524 return ret;
2525 }
2526 __skb_set_length(skb, len);
2527 return 0;
2528}
2529
1da177e4
LT
2530/**
2531 * skb_orphan - orphan a buffer
2532 * @skb: buffer to orphan
2533 *
2534 * If a buffer currently has an owner then we call the owner's
2535 * destructor function and make the @skb unowned. The buffer continues
2536 * to exist but is no longer charged to its former owner.
2537 */
2538static inline void skb_orphan(struct sk_buff *skb)
2539{
c34a7612 2540 if (skb->destructor) {
1da177e4 2541 skb->destructor(skb);
c34a7612
ED
2542 skb->destructor = NULL;
2543 skb->sk = NULL;
376c7311
ED
2544 } else {
2545 BUG_ON(skb->sk);
c34a7612 2546 }
1da177e4
LT
2547}
2548
a353e0ce
MT
2549/**
2550 * skb_orphan_frags - orphan the frags contained in a buffer
2551 * @skb: buffer to orphan frags from
2552 * @gfp_mask: allocation mask for replacement pages
2553 *
2554 * For each frag in the SKB which needs a destructor (i.e. has an
2555 * owner) create a copy of that frag and release the original
2556 * page by calling the destructor.
2557 */
2558static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2559{
1f8b977a
WB
2560 if (likely(!skb_zcopy(skb)))
2561 return 0;
2562 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2563 return 0;
2564 return skb_copy_ubufs(skb, gfp_mask);
2565}
2566
2567/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2568static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2569{
2570 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2571 return 0;
2572 return skb_copy_ubufs(skb, gfp_mask);
2573}
2574
1da177e4
LT
2575/**
2576 * __skb_queue_purge - empty a list
2577 * @list: list to empty
2578 *
2579 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2580 * the list and one reference dropped. This function does not take the
2581 * list lock and the caller must hold the relevant locks to use it.
2582 */
7965bd4d 2583void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2584static inline void __skb_queue_purge(struct sk_buff_head *list)
2585{
2586 struct sk_buff *skb;
2587 while ((skb = __skb_dequeue(list)) != NULL)
2588 kfree_skb(skb);
2589}
2590
385114de 2591unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2592
7965bd4d 2593void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2594
7965bd4d
JP
2595struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2596 gfp_t gfp_mask);
8af27456
CH
2597
2598/**
2599 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2600 * @dev: network device to receive on
2601 * @length: length to allocate
2602 *
2603 * Allocate a new &sk_buff and assign it a usage count of one. The
2604 * buffer has unspecified headroom built in. Users should allocate
2605 * the headroom they think they need without accounting for the
2606 * built in space. The built in space is used for optimisations.
2607 *
2608 * %NULL is returned if there is no free memory. Although this function
2609 * allocates memory it can be called from an interrupt.
2610 */
2611static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2612 unsigned int length)
8af27456
CH
2613{
2614 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2615}
2616
6f532612
ED
2617/* legacy helper around __netdev_alloc_skb() */
2618static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2619 gfp_t gfp_mask)
2620{
2621 return __netdev_alloc_skb(NULL, length, gfp_mask);
2622}
2623
2624/* legacy helper around netdev_alloc_skb() */
2625static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2626{
2627 return netdev_alloc_skb(NULL, length);
2628}
2629
2630
4915a0de
ED
2631static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2632 unsigned int length, gfp_t gfp)
61321bbd 2633{
4915a0de 2634 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2635
2636 if (NET_IP_ALIGN && skb)
2637 skb_reserve(skb, NET_IP_ALIGN);
2638 return skb;
2639}
2640
4915a0de
ED
2641static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2642 unsigned int length)
2643{
2644 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2645}
2646
181edb2b
AD
2647static inline void skb_free_frag(void *addr)
2648{
8c2dd3e4 2649 page_frag_free(addr);
181edb2b
AD
2650}
2651
ffde7328 2652void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2653struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2654 unsigned int length, gfp_t gfp_mask);
2655static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2656 unsigned int length)
2657{
2658 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2659}
795bb1c0
JDB
2660void napi_consume_skb(struct sk_buff *skb, int budget);
2661
2662void __kfree_skb_flush(void);
15fad714 2663void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2664
71dfda58
AD
2665/**
2666 * __dev_alloc_pages - allocate page for network Rx
2667 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2668 * @order: size of the allocation
2669 *
2670 * Allocate a new page.
2671 *
2672 * %NULL is returned if there is no free memory.
2673*/
2674static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2675 unsigned int order)
2676{
2677 /* This piece of code contains several assumptions.
2678 * 1. This is for device Rx, therefor a cold page is preferred.
2679 * 2. The expectation is the user wants a compound page.
2680 * 3. If requesting a order 0 page it will not be compound
2681 * due to the check to see if order has a value in prep_new_page
2682 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2683 * code in gfp_to_alloc_flags that should be enforcing this.
2684 */
453f85d4 2685 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2686
2687 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2688}
2689
2690static inline struct page *dev_alloc_pages(unsigned int order)
2691{
95829b3a 2692 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2693}
2694
2695/**
2696 * __dev_alloc_page - allocate a page for network Rx
2697 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2698 *
2699 * Allocate a new page.
2700 *
2701 * %NULL is returned if there is no free memory.
2702 */
2703static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2704{
2705 return __dev_alloc_pages(gfp_mask, 0);
2706}
2707
2708static inline struct page *dev_alloc_page(void)
2709{
95829b3a 2710 return dev_alloc_pages(0);
71dfda58
AD
2711}
2712
0614002b
MG
2713/**
2714 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2715 * @page: The page that was allocated from skb_alloc_page
2716 * @skb: The skb that may need pfmemalloc set
2717 */
2718static inline void skb_propagate_pfmemalloc(struct page *page,
2719 struct sk_buff *skb)
2720{
2f064f34 2721 if (page_is_pfmemalloc(page))
0614002b
MG
2722 skb->pfmemalloc = true;
2723}
2724
131ea667 2725/**
e227867f 2726 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2727 * @frag: the paged fragment
2728 *
2729 * Returns the &struct page associated with @frag.
2730 */
2731static inline struct page *skb_frag_page(const skb_frag_t *frag)
2732{
a8605c60 2733 return frag->page.p;
131ea667
IC
2734}
2735
2736/**
2737 * __skb_frag_ref - take an addition reference on a paged fragment.
2738 * @frag: the paged fragment
2739 *
2740 * Takes an additional reference on the paged fragment @frag.
2741 */
2742static inline void __skb_frag_ref(skb_frag_t *frag)
2743{
2744 get_page(skb_frag_page(frag));
2745}
2746
2747/**
2748 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2749 * @skb: the buffer
2750 * @f: the fragment offset.
2751 *
2752 * Takes an additional reference on the @f'th paged fragment of @skb.
2753 */
2754static inline void skb_frag_ref(struct sk_buff *skb, int f)
2755{
2756 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2757}
2758
2759/**
2760 * __skb_frag_unref - release a reference on a paged fragment.
2761 * @frag: the paged fragment
2762 *
2763 * Releases a reference on the paged fragment @frag.
2764 */
2765static inline void __skb_frag_unref(skb_frag_t *frag)
2766{
2767 put_page(skb_frag_page(frag));
2768}
2769
2770/**
2771 * skb_frag_unref - release a reference on a paged fragment of an skb.
2772 * @skb: the buffer
2773 * @f: the fragment offset
2774 *
2775 * Releases a reference on the @f'th paged fragment of @skb.
2776 */
2777static inline void skb_frag_unref(struct sk_buff *skb, int f)
2778{
2779 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2780}
2781
2782/**
2783 * skb_frag_address - gets the address of the data contained in a paged fragment
2784 * @frag: the paged fragment buffer
2785 *
2786 * Returns the address of the data within @frag. The page must already
2787 * be mapped.
2788 */
2789static inline void *skb_frag_address(const skb_frag_t *frag)
2790{
2791 return page_address(skb_frag_page(frag)) + frag->page_offset;
2792}
2793
2794/**
2795 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2796 * @frag: the paged fragment buffer
2797 *
2798 * Returns the address of the data within @frag. Checks that the page
2799 * is mapped and returns %NULL otherwise.
2800 */
2801static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2802{
2803 void *ptr = page_address(skb_frag_page(frag));
2804 if (unlikely(!ptr))
2805 return NULL;
2806
2807 return ptr + frag->page_offset;
2808}
2809
2810/**
2811 * __skb_frag_set_page - sets the page contained in a paged fragment
2812 * @frag: the paged fragment
2813 * @page: the page to set
2814 *
2815 * Sets the fragment @frag to contain @page.
2816 */
2817static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2818{
a8605c60 2819 frag->page.p = page;
131ea667
IC
2820}
2821
2822/**
2823 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2824 * @skb: the buffer
2825 * @f: the fragment offset
2826 * @page: the page to set
2827 *
2828 * Sets the @f'th fragment of @skb to contain @page.
2829 */
2830static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2831 struct page *page)
2832{
2833 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2834}
2835
400dfd3a
ED
2836bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2837
131ea667
IC
2838/**
2839 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2840 * @dev: the device to map the fragment to
131ea667
IC
2841 * @frag: the paged fragment to map
2842 * @offset: the offset within the fragment (starting at the
2843 * fragment's own offset)
2844 * @size: the number of bytes to map
771b00a8 2845 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2846 *
2847 * Maps the page associated with @frag to @device.
2848 */
2849static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2850 const skb_frag_t *frag,
2851 size_t offset, size_t size,
2852 enum dma_data_direction dir)
2853{
2854 return dma_map_page(dev, skb_frag_page(frag),
2855 frag->page_offset + offset, size, dir);
2856}
2857
117632e6
ED
2858static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2859 gfp_t gfp_mask)
2860{
2861 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2862}
2863
bad93e9d
OP
2864
2865static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2866 gfp_t gfp_mask)
2867{
2868 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2869}
2870
2871
334a8132
PM
2872/**
2873 * skb_clone_writable - is the header of a clone writable
2874 * @skb: buffer to check
2875 * @len: length up to which to write
2876 *
2877 * Returns true if modifying the header part of the cloned buffer
2878 * does not requires the data to be copied.
2879 */
05bdd2f1 2880static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2881{
2882 return !skb_header_cloned(skb) &&
2883 skb_headroom(skb) + len <= skb->hdr_len;
2884}
2885
3697649f
DB
2886static inline int skb_try_make_writable(struct sk_buff *skb,
2887 unsigned int write_len)
2888{
2889 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2890 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2891}
2892
d9cc2048
HX
2893static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2894 int cloned)
2895{
2896 int delta = 0;
2897
d9cc2048
HX
2898 if (headroom > skb_headroom(skb))
2899 delta = headroom - skb_headroom(skb);
2900
2901 if (delta || cloned)
2902 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2903 GFP_ATOMIC);
2904 return 0;
2905}
2906
1da177e4
LT
2907/**
2908 * skb_cow - copy header of skb when it is required
2909 * @skb: buffer to cow
2910 * @headroom: needed headroom
2911 *
2912 * If the skb passed lacks sufficient headroom or its data part
2913 * is shared, data is reallocated. If reallocation fails, an error
2914 * is returned and original skb is not changed.
2915 *
2916 * The result is skb with writable area skb->head...skb->tail
2917 * and at least @headroom of space at head.
2918 */
2919static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2920{
d9cc2048
HX
2921 return __skb_cow(skb, headroom, skb_cloned(skb));
2922}
1da177e4 2923
d9cc2048
HX
2924/**
2925 * skb_cow_head - skb_cow but only making the head writable
2926 * @skb: buffer to cow
2927 * @headroom: needed headroom
2928 *
2929 * This function is identical to skb_cow except that we replace the
2930 * skb_cloned check by skb_header_cloned. It should be used when
2931 * you only need to push on some header and do not need to modify
2932 * the data.
2933 */
2934static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2935{
2936 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2937}
2938
2939/**
2940 * skb_padto - pad an skbuff up to a minimal size
2941 * @skb: buffer to pad
2942 * @len: minimal length
2943 *
2944 * Pads up a buffer to ensure the trailing bytes exist and are
2945 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2946 * is untouched. Otherwise it is extended. Returns zero on
2947 * success. The skb is freed on error.
1da177e4 2948 */
5b057c6b 2949static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2950{
2951 unsigned int size = skb->len;
2952 if (likely(size >= len))
5b057c6b 2953 return 0;
987c402a 2954 return skb_pad(skb, len - size);
1da177e4
LT
2955}
2956
9c0c1124
AD
2957/**
2958 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2959 * @skb: buffer to pad
2960 * @len: minimal length
cd0a137a 2961 * @free_on_error: free buffer on error
9c0c1124
AD
2962 *
2963 * Pads up a buffer to ensure the trailing bytes exist and are
2964 * blanked. If the buffer already contains sufficient data it
2965 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2966 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2967 */
cd0a137a
FF
2968static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2969 bool free_on_error)
9c0c1124
AD
2970{
2971 unsigned int size = skb->len;
2972
2973 if (unlikely(size < len)) {
2974 len -= size;
cd0a137a 2975 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2976 return -ENOMEM;
2977 __skb_put(skb, len);
2978 }
2979 return 0;
2980}
2981
cd0a137a
FF
2982/**
2983 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2984 * @skb: buffer to pad
2985 * @len: minimal length
2986 *
2987 * Pads up a buffer to ensure the trailing bytes exist and are
2988 * blanked. If the buffer already contains sufficient data it
2989 * is untouched. Otherwise it is extended. Returns zero on
2990 * success. The skb is freed on error.
2991 */
2992static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2993{
2994 return __skb_put_padto(skb, len, true);
2995}
2996
1da177e4 2997static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2998 struct iov_iter *from, int copy)
1da177e4
LT
2999{
3000 const int off = skb->len;
3001
3002 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3003 __wsum csum = 0;
15e6cb46
AV
3004 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3005 &csum, from)) {
1da177e4
LT
3006 skb->csum = csum_block_add(skb->csum, csum, off);
3007 return 0;
3008 }
15e6cb46 3009 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3010 return 0;
3011
3012 __skb_trim(skb, off);
3013 return -EFAULT;
3014}
3015
38ba0a65
ED
3016static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3017 const struct page *page, int off)
1da177e4 3018{
1f8b977a
WB
3019 if (skb_zcopy(skb))
3020 return false;
1da177e4 3021 if (i) {
9e903e08 3022 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3023
ea2ab693 3024 return page == skb_frag_page(frag) &&
9e903e08 3025 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3026 }
38ba0a65 3027 return false;
1da177e4
LT
3028}
3029
364c6bad
HX
3030static inline int __skb_linearize(struct sk_buff *skb)
3031{
3032 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3033}
3034
1da177e4
LT
3035/**
3036 * skb_linearize - convert paged skb to linear one
3037 * @skb: buffer to linarize
1da177e4
LT
3038 *
3039 * If there is no free memory -ENOMEM is returned, otherwise zero
3040 * is returned and the old skb data released.
3041 */
364c6bad
HX
3042static inline int skb_linearize(struct sk_buff *skb)
3043{
3044 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3045}
3046
cef401de
ED
3047/**
3048 * skb_has_shared_frag - can any frag be overwritten
3049 * @skb: buffer to test
3050 *
3051 * Return true if the skb has at least one frag that might be modified
3052 * by an external entity (as in vmsplice()/sendfile())
3053 */
3054static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3055{
c9af6db4
PS
3056 return skb_is_nonlinear(skb) &&
3057 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3058}
3059
364c6bad
HX
3060/**
3061 * skb_linearize_cow - make sure skb is linear and writable
3062 * @skb: buffer to process
3063 *
3064 * If there is no free memory -ENOMEM is returned, otherwise zero
3065 * is returned and the old skb data released.
3066 */
3067static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3068{
364c6bad
HX
3069 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3070 __skb_linearize(skb) : 0;
1da177e4
LT
3071}
3072
479ffccc
DB
3073static __always_inline void
3074__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3075 unsigned int off)
3076{
3077 if (skb->ip_summed == CHECKSUM_COMPLETE)
3078 skb->csum = csum_block_sub(skb->csum,
3079 csum_partial(start, len, 0), off);
3080 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3081 skb_checksum_start_offset(skb) < 0)
3082 skb->ip_summed = CHECKSUM_NONE;
3083}
3084
1da177e4
LT
3085/**
3086 * skb_postpull_rcsum - update checksum for received skb after pull
3087 * @skb: buffer to update
3088 * @start: start of data before pull
3089 * @len: length of data pulled
3090 *
3091 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3092 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3093 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3094 */
1da177e4 3095static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3096 const void *start, unsigned int len)
1da177e4 3097{
479ffccc 3098 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3099}
3100
479ffccc
DB
3101static __always_inline void
3102__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3103 unsigned int off)
3104{
3105 if (skb->ip_summed == CHECKSUM_COMPLETE)
3106 skb->csum = csum_block_add(skb->csum,
3107 csum_partial(start, len, 0), off);
3108}
cbb042f9 3109
479ffccc
DB
3110/**
3111 * skb_postpush_rcsum - update checksum for received skb after push
3112 * @skb: buffer to update
3113 * @start: start of data after push
3114 * @len: length of data pushed
3115 *
3116 * After doing a push on a received packet, you need to call this to
3117 * update the CHECKSUM_COMPLETE checksum.
3118 */
f8ffad69
DB
3119static inline void skb_postpush_rcsum(struct sk_buff *skb,
3120 const void *start, unsigned int len)
3121{
479ffccc 3122 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3123}
3124
af72868b 3125void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3126
82a31b92
WC
3127/**
3128 * skb_push_rcsum - push skb and update receive checksum
3129 * @skb: buffer to update
3130 * @len: length of data pulled
3131 *
3132 * This function performs an skb_push on the packet and updates
3133 * the CHECKSUM_COMPLETE checksum. It should be used on
3134 * receive path processing instead of skb_push unless you know
3135 * that the checksum difference is zero (e.g., a valid IP header)
3136 * or you are setting ip_summed to CHECKSUM_NONE.
3137 */
d58ff351 3138static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3139{
3140 skb_push(skb, len);
3141 skb_postpush_rcsum(skb, skb->data, len);
3142 return skb->data;
3143}
3144
88078d98 3145int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3146/**
3147 * pskb_trim_rcsum - trim received skb and update checksum
3148 * @skb: buffer to trim
3149 * @len: new length
3150 *
3151 * This is exactly the same as pskb_trim except that it ensures the
3152 * checksum of received packets are still valid after the operation.
3153 */
3154
3155static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3156{
3157 if (likely(len >= skb->len))
3158 return 0;
88078d98 3159 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3160}
3161
5293efe6
DB
3162static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3163{
3164 if (skb->ip_summed == CHECKSUM_COMPLETE)
3165 skb->ip_summed = CHECKSUM_NONE;
3166 __skb_trim(skb, len);
3167 return 0;
3168}
3169
3170static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3171{
3172 if (skb->ip_summed == CHECKSUM_COMPLETE)
3173 skb->ip_summed = CHECKSUM_NONE;
3174 return __skb_grow(skb, len);
3175}
3176
18a4c0ea
ED
3177#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3178#define skb_rb_first(root) rb_to_skb(rb_first(root))
3179#define skb_rb_last(root) rb_to_skb(rb_last(root))
3180#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3181#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3182
1da177e4
LT
3183#define skb_queue_walk(queue, skb) \
3184 for (skb = (queue)->next; \
a1e4891f 3185 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3186 skb = skb->next)
3187
46f8914e
JC
3188#define skb_queue_walk_safe(queue, skb, tmp) \
3189 for (skb = (queue)->next, tmp = skb->next; \
3190 skb != (struct sk_buff *)(queue); \
3191 skb = tmp, tmp = skb->next)
3192
1164f52a 3193#define skb_queue_walk_from(queue, skb) \
a1e4891f 3194 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3195 skb = skb->next)
3196
18a4c0ea
ED
3197#define skb_rbtree_walk(skb, root) \
3198 for (skb = skb_rb_first(root); skb != NULL; \
3199 skb = skb_rb_next(skb))
3200
3201#define skb_rbtree_walk_from(skb) \
3202 for (; skb != NULL; \
3203 skb = skb_rb_next(skb))
3204
3205#define skb_rbtree_walk_from_safe(skb, tmp) \
3206 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3207 skb = tmp)
3208
1164f52a
DM
3209#define skb_queue_walk_from_safe(queue, skb, tmp) \
3210 for (tmp = skb->next; \
3211 skb != (struct sk_buff *)(queue); \
3212 skb = tmp, tmp = skb->next)
3213
300ce174
SH
3214#define skb_queue_reverse_walk(queue, skb) \
3215 for (skb = (queue)->prev; \
a1e4891f 3216 skb != (struct sk_buff *)(queue); \
300ce174
SH
3217 skb = skb->prev)
3218
686a2955
DM
3219#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3220 for (skb = (queue)->prev, tmp = skb->prev; \
3221 skb != (struct sk_buff *)(queue); \
3222 skb = tmp, tmp = skb->prev)
3223
3224#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3225 for (tmp = skb->prev; \
3226 skb != (struct sk_buff *)(queue); \
3227 skb = tmp, tmp = skb->prev)
1da177e4 3228
21dc3301 3229static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3230{
3231 return skb_shinfo(skb)->frag_list != NULL;
3232}
3233
3234static inline void skb_frag_list_init(struct sk_buff *skb)
3235{
3236 skb_shinfo(skb)->frag_list = NULL;
3237}
3238
ee039871
DM
3239#define skb_walk_frags(skb, iter) \
3240 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3241
ea3793ee
RW
3242
3243int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3244 const struct sk_buff *skb);
65101aec
PA
3245struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3246 struct sk_buff_head *queue,
3247 unsigned int flags,
3248 void (*destructor)(struct sock *sk,
3249 struct sk_buff *skb),
3250 int *peeked, int *off, int *err,
3251 struct sk_buff **last);
ea3793ee 3252struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3253 void (*destructor)(struct sock *sk,
3254 struct sk_buff *skb),
ea3793ee
RW
3255 int *peeked, int *off, int *err,
3256 struct sk_buff **last);
7965bd4d 3257struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3258 void (*destructor)(struct sock *sk,
3259 struct sk_buff *skb),
7965bd4d
JP
3260 int *peeked, int *off, int *err);
3261struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3262 int *err);
a11e1d43
LT
3263__poll_t datagram_poll(struct file *file, struct socket *sock,
3264 struct poll_table_struct *wait);
c0371da6
AV
3265int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3266 struct iov_iter *to, int size);
51f3d02b
DM
3267static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3268 struct msghdr *msg, int size)
3269{
e5a4b0bb 3270 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3271}
e5a4b0bb
AV
3272int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3273 struct msghdr *msg);
3a654f97
AV
3274int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3275 struct iov_iter *from, int len);
3a654f97 3276int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3277void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3278void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3279static inline void skb_free_datagram_locked(struct sock *sk,
3280 struct sk_buff *skb)
3281{
3282 __skb_free_datagram_locked(sk, skb, 0);
3283}
7965bd4d 3284int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3285int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3286int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3287__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3288 int len, __wsum csum);
a60e3cc7 3289int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3290 struct pipe_inode_info *pipe, unsigned int len,
25869262 3291 unsigned int flags);
20bf50de
TH
3292int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3293 int len);
3294int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3295void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3296unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3297int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3298 int len, int hlen);
7965bd4d
JP
3299void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3300int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3301void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3302bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3303bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3304struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3305struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3306int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3307int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3308int skb_vlan_pop(struct sk_buff *skb);
3309int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3310struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3311 gfp_t gfp);
20380731 3312
6ce8e9ce
AV
3313static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3314{
3073f070 3315 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3316}
3317
7eab8d9e
AV
3318static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3319{
e5a4b0bb 3320 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3321}
3322
2817a336
DB
3323struct skb_checksum_ops {
3324 __wsum (*update)(const void *mem, int len, __wsum wsum);
3325 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3326};
3327
9617813d
DC
3328extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3329
2817a336
DB
3330__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3331 __wsum csum, const struct skb_checksum_ops *ops);
3332__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3333 __wsum csum);
3334
1e98a0f0
ED
3335static inline void * __must_check
3336__skb_header_pointer(const struct sk_buff *skb, int offset,
3337 int len, void *data, int hlen, void *buffer)
1da177e4 3338{
55820ee2 3339 if (hlen - offset >= len)
690e36e7 3340 return data + offset;
1da177e4 3341
690e36e7
DM
3342 if (!skb ||
3343 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3344 return NULL;
3345
3346 return buffer;
3347}
3348
1e98a0f0
ED
3349static inline void * __must_check
3350skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3351{
3352 return __skb_header_pointer(skb, offset, len, skb->data,
3353 skb_headlen(skb), buffer);
3354}
3355
4262e5cc
DB
3356/**
3357 * skb_needs_linearize - check if we need to linearize a given skb
3358 * depending on the given device features.
3359 * @skb: socket buffer to check
3360 * @features: net device features
3361 *
3362 * Returns true if either:
3363 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3364 * 2. skb is fragmented and the device does not support SG.
3365 */
3366static inline bool skb_needs_linearize(struct sk_buff *skb,
3367 netdev_features_t features)
3368{
3369 return skb_is_nonlinear(skb) &&
3370 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3371 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3372}
3373
d626f62b
ACM
3374static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3375 void *to,
3376 const unsigned int len)
3377{
3378 memcpy(to, skb->data, len);
3379}
3380
3381static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3382 const int offset, void *to,
3383 const unsigned int len)
3384{
3385 memcpy(to, skb->data + offset, len);
3386}
3387
27d7ff46
ACM
3388static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3389 const void *from,
3390 const unsigned int len)
3391{
3392 memcpy(skb->data, from, len);
3393}
3394
3395static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3396 const int offset,
3397 const void *from,
3398 const unsigned int len)
3399{
3400 memcpy(skb->data + offset, from, len);
3401}
3402
7965bd4d 3403void skb_init(void);
1da177e4 3404
ac45f602
PO
3405static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3406{
3407 return skb->tstamp;
3408}
3409
a61bbcf2
PM
3410/**
3411 * skb_get_timestamp - get timestamp from a skb
3412 * @skb: skb to get stamp from
3413 * @stamp: pointer to struct timeval to store stamp in
3414 *
3415 * Timestamps are stored in the skb as offsets to a base timestamp.
3416 * This function converts the offset back to a struct timeval and stores
3417 * it in stamp.
3418 */
ac45f602
PO
3419static inline void skb_get_timestamp(const struct sk_buff *skb,
3420 struct timeval *stamp)
a61bbcf2 3421{
b7aa0bf7 3422 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3423}
3424
ac45f602
PO
3425static inline void skb_get_timestampns(const struct sk_buff *skb,
3426 struct timespec *stamp)
3427{
3428 *stamp = ktime_to_timespec(skb->tstamp);
3429}
3430
b7aa0bf7 3431static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3432{
b7aa0bf7 3433 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3434}
3435
164891aa
SH
3436static inline ktime_t net_timedelta(ktime_t t)
3437{
3438 return ktime_sub(ktime_get_real(), t);
3439}
3440
b9ce204f
IJ
3441static inline ktime_t net_invalid_timestamp(void)
3442{
8b0e1953 3443 return 0;
b9ce204f 3444}
a61bbcf2 3445
de8f3a83
DB
3446static inline u8 skb_metadata_len(const struct sk_buff *skb)
3447{
3448 return skb_shinfo(skb)->meta_len;
3449}
3450
3451static inline void *skb_metadata_end(const struct sk_buff *skb)
3452{
3453 return skb_mac_header(skb);
3454}
3455
3456static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3457 const struct sk_buff *skb_b,
3458 u8 meta_len)
3459{
3460 const void *a = skb_metadata_end(skb_a);
3461 const void *b = skb_metadata_end(skb_b);
3462 /* Using more efficient varaiant than plain call to memcmp(). */
3463#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3464 u64 diffs = 0;
3465
3466 switch (meta_len) {
3467#define __it(x, op) (x -= sizeof(u##op))
3468#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3469 case 32: diffs |= __it_diff(a, b, 64);
3470 case 24: diffs |= __it_diff(a, b, 64);
3471 case 16: diffs |= __it_diff(a, b, 64);
3472 case 8: diffs |= __it_diff(a, b, 64);
3473 break;
3474 case 28: diffs |= __it_diff(a, b, 64);
3475 case 20: diffs |= __it_diff(a, b, 64);
3476 case 12: diffs |= __it_diff(a, b, 64);
3477 case 4: diffs |= __it_diff(a, b, 32);
3478 break;
3479 }
3480 return diffs;
3481#else
3482 return memcmp(a - meta_len, b - meta_len, meta_len);
3483#endif
3484}
3485
3486static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3487 const struct sk_buff *skb_b)
3488{
3489 u8 len_a = skb_metadata_len(skb_a);
3490 u8 len_b = skb_metadata_len(skb_b);
3491
3492 if (!(len_a | len_b))
3493 return false;
3494
3495 return len_a != len_b ?
3496 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3497}
3498
3499static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3500{
3501 skb_shinfo(skb)->meta_len = meta_len;
3502}
3503
3504static inline void skb_metadata_clear(struct sk_buff *skb)
3505{
3506 skb_metadata_set(skb, 0);
3507}
3508
62bccb8c
AD
3509struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3510
c1f19b51
RC
3511#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3512
7965bd4d
JP
3513void skb_clone_tx_timestamp(struct sk_buff *skb);
3514bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3515
3516#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3517
3518static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3519{
3520}
3521
3522static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3523{
3524 return false;
3525}
3526
3527#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3528
3529/**
3530 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3531 *
da92b194
RC
3532 * PHY drivers may accept clones of transmitted packets for
3533 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3534 * must call this function to return the skb back to the stack with a
3535 * timestamp.
da92b194 3536 *
c1f19b51 3537 * @skb: clone of the the original outgoing packet
7a76a021 3538 * @hwtstamps: hardware time stamps
c1f19b51
RC
3539 *
3540 */
3541void skb_complete_tx_timestamp(struct sk_buff *skb,
3542 struct skb_shared_hwtstamps *hwtstamps);
3543
e7fd2885
WB
3544void __skb_tstamp_tx(struct sk_buff *orig_skb,
3545 struct skb_shared_hwtstamps *hwtstamps,
3546 struct sock *sk, int tstype);
3547
ac45f602
PO
3548/**
3549 * skb_tstamp_tx - queue clone of skb with send time stamps
3550 * @orig_skb: the original outgoing packet
3551 * @hwtstamps: hardware time stamps, may be NULL if not available
3552 *
3553 * If the skb has a socket associated, then this function clones the
3554 * skb (thus sharing the actual data and optional structures), stores
3555 * the optional hardware time stamping information (if non NULL) or
3556 * generates a software time stamp (otherwise), then queues the clone
3557 * to the error queue of the socket. Errors are silently ignored.
3558 */
7965bd4d
JP
3559void skb_tstamp_tx(struct sk_buff *orig_skb,
3560 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3561
4507a715
RC
3562/**
3563 * skb_tx_timestamp() - Driver hook for transmit timestamping
3564 *
3565 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3566 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3567 *
73409f3b
DM
3568 * Specifically, one should make absolutely sure that this function is
3569 * called before TX completion of this packet can trigger. Otherwise
3570 * the packet could potentially already be freed.
3571 *
4507a715
RC
3572 * @skb: A socket buffer.
3573 */
3574static inline void skb_tx_timestamp(struct sk_buff *skb)
3575{
c1f19b51 3576 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3577 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3578 skb_tstamp_tx(skb, NULL);
4507a715
RC
3579}
3580
6e3e939f
JB
3581/**
3582 * skb_complete_wifi_ack - deliver skb with wifi status
3583 *
3584 * @skb: the original outgoing packet
3585 * @acked: ack status
3586 *
3587 */
3588void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3589
7965bd4d
JP
3590__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3591__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3592
60476372
HX
3593static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3594{
6edec0e6
TH
3595 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3596 skb->csum_valid ||
3597 (skb->ip_summed == CHECKSUM_PARTIAL &&
3598 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3599}
3600
fb286bb2
HX
3601/**
3602 * skb_checksum_complete - Calculate checksum of an entire packet
3603 * @skb: packet to process
3604 *
3605 * This function calculates the checksum over the entire packet plus
3606 * the value of skb->csum. The latter can be used to supply the
3607 * checksum of a pseudo header as used by TCP/UDP. It returns the
3608 * checksum.
3609 *
3610 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3611 * this function can be used to verify that checksum on received
3612 * packets. In that case the function should return zero if the
3613 * checksum is correct. In particular, this function will return zero
3614 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3615 * hardware has already verified the correctness of the checksum.
3616 */
4381ca3c 3617static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3618{
60476372
HX
3619 return skb_csum_unnecessary(skb) ?
3620 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3621}
3622
77cffe23
TH
3623static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3624{
3625 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3626 if (skb->csum_level == 0)
3627 skb->ip_summed = CHECKSUM_NONE;
3628 else
3629 skb->csum_level--;
3630 }
3631}
3632
3633static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3634{
3635 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3636 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3637 skb->csum_level++;
3638 } else if (skb->ip_summed == CHECKSUM_NONE) {
3639 skb->ip_summed = CHECKSUM_UNNECESSARY;
3640 skb->csum_level = 0;
3641 }
3642}
3643
76ba0aae
TH
3644/* Check if we need to perform checksum complete validation.
3645 *
3646 * Returns true if checksum complete is needed, false otherwise
3647 * (either checksum is unnecessary or zero checksum is allowed).
3648 */
3649static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3650 bool zero_okay,
3651 __sum16 check)
3652{
5d0c2b95
TH
3653 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3654 skb->csum_valid = 1;
77cffe23 3655 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3656 return false;
3657 }
3658
3659 return true;
3660}
3661
da279887 3662/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3663 * in checksum_init.
3664 */
3665#define CHECKSUM_BREAK 76
3666
4e18b9ad
TH
3667/* Unset checksum-complete
3668 *
3669 * Unset checksum complete can be done when packet is being modified
3670 * (uncompressed for instance) and checksum-complete value is
3671 * invalidated.
3672 */
3673static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3674{
3675 if (skb->ip_summed == CHECKSUM_COMPLETE)
3676 skb->ip_summed = CHECKSUM_NONE;
3677}
3678
76ba0aae
TH
3679/* Validate (init) checksum based on checksum complete.
3680 *
3681 * Return values:
3682 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3683 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3684 * checksum is stored in skb->csum for use in __skb_checksum_complete
3685 * non-zero: value of invalid checksum
3686 *
3687 */
3688static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3689 bool complete,
3690 __wsum psum)
3691{
3692 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3693 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3694 skb->csum_valid = 1;
76ba0aae
TH
3695 return 0;
3696 }
3697 }
3698
3699 skb->csum = psum;
3700
5d0c2b95
TH
3701 if (complete || skb->len <= CHECKSUM_BREAK) {
3702 __sum16 csum;
3703
3704 csum = __skb_checksum_complete(skb);
3705 skb->csum_valid = !csum;
3706 return csum;
3707 }
76ba0aae
TH
3708
3709 return 0;
3710}
3711
3712static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3713{
3714 return 0;
3715}
3716
3717/* Perform checksum validate (init). Note that this is a macro since we only
3718 * want to calculate the pseudo header which is an input function if necessary.
3719 * First we try to validate without any computation (checksum unnecessary) and
3720 * then calculate based on checksum complete calling the function to compute
3721 * pseudo header.
3722 *
3723 * Return values:
3724 * 0: checksum is validated or try to in skb_checksum_complete
3725 * non-zero: value of invalid checksum
3726 */
3727#define __skb_checksum_validate(skb, proto, complete, \
3728 zero_okay, check, compute_pseudo) \
3729({ \
3730 __sum16 __ret = 0; \
5d0c2b95 3731 skb->csum_valid = 0; \
76ba0aae
TH
3732 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3733 __ret = __skb_checksum_validate_complete(skb, \
3734 complete, compute_pseudo(skb, proto)); \
3735 __ret; \
3736})
3737
3738#define skb_checksum_init(skb, proto, compute_pseudo) \
3739 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3740
3741#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3742 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3743
3744#define skb_checksum_validate(skb, proto, compute_pseudo) \
3745 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3746
3747#define skb_checksum_validate_zero_check(skb, proto, check, \
3748 compute_pseudo) \
096a4cfa 3749 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3750
3751#define skb_checksum_simple_validate(skb) \
3752 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3753
d96535a1
TH
3754static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3755{
219f1d79 3756 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3757}
3758
3759static inline void __skb_checksum_convert(struct sk_buff *skb,
3760 __sum16 check, __wsum pseudo)
3761{
3762 skb->csum = ~pseudo;
3763 skb->ip_summed = CHECKSUM_COMPLETE;
3764}
3765
3766#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3767do { \
3768 if (__skb_checksum_convert_check(skb)) \
3769 __skb_checksum_convert(skb, check, \
3770 compute_pseudo(skb, proto)); \
3771} while (0)
3772
15e2396d
TH
3773static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3774 u16 start, u16 offset)
3775{
3776 skb->ip_summed = CHECKSUM_PARTIAL;
3777 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3778 skb->csum_offset = offset - start;
3779}
3780
dcdc8994
TH
3781/* Update skbuf and packet to reflect the remote checksum offload operation.
3782 * When called, ptr indicates the starting point for skb->csum when
3783 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3784 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3785 */
3786static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3787 int start, int offset, bool nopartial)
dcdc8994
TH
3788{
3789 __wsum delta;
3790
15e2396d
TH
3791 if (!nopartial) {
3792 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3793 return;
3794 }
3795
dcdc8994
TH
3796 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3797 __skb_checksum_complete(skb);
3798 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3799 }
3800
3801 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3802
3803 /* Adjust skb->csum since we changed the packet */
3804 skb->csum = csum_add(skb->csum, delta);
3805}
3806
cb9c6836
FW
3807static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3808{
3809#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3810 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3811#else
3812 return NULL;
3813#endif
3814}
3815
5f79e0f9 3816#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3817void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3818static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3819{
3820 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3821 nf_conntrack_destroy(nfct);
1da177e4
LT
3822}
3823static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3824{
3825 if (nfct)
3826 atomic_inc(&nfct->use);
3827}
2fc72c7b 3828#endif
34666d46 3829#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3830static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3831{
53869ceb 3832 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3833 kfree(nf_bridge);
3834}
3835static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3836{
3837 if (nf_bridge)
53869ceb 3838 refcount_inc(&nf_bridge->use);
1da177e4
LT
3839}
3840#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3841static inline void nf_reset(struct sk_buff *skb)
3842{
5f79e0f9 3843#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3844 nf_conntrack_put(skb_nfct(skb));
3845 skb->_nfct = 0;
2fc72c7b 3846#endif
34666d46 3847#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3848 nf_bridge_put(skb->nf_bridge);
3849 skb->nf_bridge = NULL;
3850#endif
3851}
3852
124dff01
PM
3853static inline void nf_reset_trace(struct sk_buff *skb)
3854{
478b360a 3855#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3856 skb->nf_trace = 0;
3857#endif
a193a4ab
PM
3858}
3859
2b5ec1a5
YY
3860static inline void ipvs_reset(struct sk_buff *skb)
3861{
3862#if IS_ENABLED(CONFIG_IP_VS)
3863 skb->ipvs_property = 0;
3864#endif
3865}
3866
edda553c 3867/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3868static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3869 bool copy)
edda553c 3870{
5f79e0f9 3871#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3872 dst->_nfct = src->_nfct;
3873 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3874#endif
34666d46 3875#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3876 dst->nf_bridge = src->nf_bridge;
3877 nf_bridge_get(src->nf_bridge);
3878#endif
478b360a 3879#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3880 if (copy)
3881 dst->nf_trace = src->nf_trace;
478b360a 3882#endif
edda553c
YK
3883}
3884
e7ac05f3
YK
3885static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3886{
e7ac05f3 3887#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3888 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3889#endif
34666d46 3890#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3891 nf_bridge_put(dst->nf_bridge);
3892#endif
b1937227 3893 __nf_copy(dst, src, true);
e7ac05f3
YK
3894}
3895
984bc16c
JM
3896#ifdef CONFIG_NETWORK_SECMARK
3897static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3898{
3899 to->secmark = from->secmark;
3900}
3901
3902static inline void skb_init_secmark(struct sk_buff *skb)
3903{
3904 skb->secmark = 0;
3905}
3906#else
3907static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3908{ }
3909
3910static inline void skb_init_secmark(struct sk_buff *skb)
3911{ }
3912#endif
3913
574f7194
EB
3914static inline bool skb_irq_freeable(const struct sk_buff *skb)
3915{
3916 return !skb->destructor &&
3917#if IS_ENABLED(CONFIG_XFRM)
3918 !skb->sp &&
3919#endif
cb9c6836 3920 !skb_nfct(skb) &&
574f7194
EB
3921 !skb->_skb_refdst &&
3922 !skb_has_frag_list(skb);
3923}
3924
f25f4e44
PWJ
3925static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3926{
f25f4e44 3927 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3928}
3929
9247744e 3930static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3931{
4e3ab47a 3932 return skb->queue_mapping;
4e3ab47a
PE
3933}
3934
f25f4e44
PWJ
3935static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3936{
f25f4e44 3937 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3938}
3939
d5a9e24a
DM
3940static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3941{
3942 skb->queue_mapping = rx_queue + 1;
3943}
3944
9247744e 3945static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3946{
3947 return skb->queue_mapping - 1;
3948}
3949
9247744e 3950static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3951{
a02cec21 3952 return skb->queue_mapping != 0;
d5a9e24a
DM
3953}
3954
4ff06203
JA
3955static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3956{
3957 skb->dst_pending_confirm = val;
3958}
3959
3960static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3961{
3962 return skb->dst_pending_confirm != 0;
3963}
3964
def8b4fa
AD
3965static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3966{
0b3d8e08 3967#ifdef CONFIG_XFRM
def8b4fa 3968 return skb->sp;
def8b4fa 3969#else
def8b4fa 3970 return NULL;
def8b4fa 3971#endif
0b3d8e08 3972}
def8b4fa 3973
68c33163
PS
3974/* Keeps track of mac header offset relative to skb->head.
3975 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3976 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3977 * tunnel skb it points to outer mac header.
3978 * Keeps track of level of encapsulation of network headers.
3979 */
68c33163 3980struct skb_gso_cb {
802ab55a
AD
3981 union {
3982 int mac_offset;
3983 int data_offset;
3984 };
3347c960 3985 int encap_level;
76443456 3986 __wsum csum;
7e2b10c1 3987 __u16 csum_start;
68c33163 3988};
9207f9d4
KK
3989#define SKB_SGO_CB_OFFSET 32
3990#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3991
3992static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3993{
3994 return (skb_mac_header(inner_skb) - inner_skb->head) -
3995 SKB_GSO_CB(inner_skb)->mac_offset;
3996}
3997
1e2bd517
PS
3998static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3999{
4000 int new_headroom, headroom;
4001 int ret;
4002
4003 headroom = skb_headroom(skb);
4004 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4005 if (ret)
4006 return ret;
4007
4008 new_headroom = skb_headroom(skb);
4009 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4010 return 0;
4011}
4012
08b64fcc
AD
4013static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4014{
4015 /* Do not update partial checksums if remote checksum is enabled. */
4016 if (skb->remcsum_offload)
4017 return;
4018
4019 SKB_GSO_CB(skb)->csum = res;
4020 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4021}
4022
7e2b10c1
TH
4023/* Compute the checksum for a gso segment. First compute the checksum value
4024 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4025 * then add in skb->csum (checksum from csum_start to end of packet).
4026 * skb->csum and csum_start are then updated to reflect the checksum of the
4027 * resultant packet starting from the transport header-- the resultant checksum
4028 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4029 * header.
4030 */
4031static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4032{
76443456
AD
4033 unsigned char *csum_start = skb_transport_header(skb);
4034 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4035 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4036
76443456
AD
4037 SKB_GSO_CB(skb)->csum = res;
4038 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4039
76443456 4040 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4041}
4042
bdcc0924 4043static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4044{
4045 return skb_shinfo(skb)->gso_size;
4046}
4047
36a8f39e 4048/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4049static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4050{
4051 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4052}
4053
d02f51cb
DA
4054/* Note: Should be called only if skb_is_gso(skb) is true */
4055static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4056{
4057 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4058}
4059
5293efe6
DB
4060static inline void skb_gso_reset(struct sk_buff *skb)
4061{
4062 skb_shinfo(skb)->gso_size = 0;
4063 skb_shinfo(skb)->gso_segs = 0;
4064 skb_shinfo(skb)->gso_type = 0;
4065}
4066
d02f51cb
DA
4067static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4068 u16 increment)
4069{
4070 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4071 return;
4072 shinfo->gso_size += increment;
4073}
4074
4075static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4076 u16 decrement)
4077{
4078 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4079 return;
4080 shinfo->gso_size -= decrement;
4081}
4082
7965bd4d 4083void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4084
4085static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4086{
4087 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4088 * wanted then gso_type will be set. */
05bdd2f1
ED
4089 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4090
b78462eb
AD
4091 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4092 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4093 __skb_warn_lro_forwarding(skb);
4094 return true;
4095 }
4096 return false;
4097}
4098
35fc92a9
HX
4099static inline void skb_forward_csum(struct sk_buff *skb)
4100{
4101 /* Unfortunately we don't support this one. Any brave souls? */
4102 if (skb->ip_summed == CHECKSUM_COMPLETE)
4103 skb->ip_summed = CHECKSUM_NONE;
4104}
4105
bc8acf2c
ED
4106/**
4107 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4108 * @skb: skb to check
4109 *
4110 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4111 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4112 * use this helper, to document places where we make this assertion.
4113 */
05bdd2f1 4114static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4115{
4116#ifdef DEBUG
4117 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4118#endif
4119}
4120
f35d9d8a 4121bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4122
ed1f50c3 4123int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4124struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4125 unsigned int transport_len,
4126 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4127
3a7c1ee4
AD
4128/**
4129 * skb_head_is_locked - Determine if the skb->head is locked down
4130 * @skb: skb to check
4131 *
4132 * The head on skbs build around a head frag can be removed if they are
4133 * not cloned. This function returns true if the skb head is locked down
4134 * due to either being allocated via kmalloc, or by being a clone with
4135 * multiple references to the head.
4136 */
4137static inline bool skb_head_is_locked(const struct sk_buff *skb)
4138{
4139 return !skb->head_frag || skb_cloned(skb);
4140}
fe6cc55f 4141
179bc67f
EC
4142/* Local Checksum Offload.
4143 * Compute outer checksum based on the assumption that the
4144 * inner checksum will be offloaded later.
e8ae7b00
EC
4145 * See Documentation/networking/checksum-offloads.txt for
4146 * explanation of how this works.
179bc67f
EC
4147 * Fill in outer checksum adjustment (e.g. with sum of outer
4148 * pseudo-header) before calling.
4149 * Also ensure that inner checksum is in linear data area.
4150 */
4151static inline __wsum lco_csum(struct sk_buff *skb)
4152{
9e74a6da
AD
4153 unsigned char *csum_start = skb_checksum_start(skb);
4154 unsigned char *l4_hdr = skb_transport_header(skb);
4155 __wsum partial;
179bc67f
EC
4156
4157 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4158 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4159 skb->csum_offset));
4160
179bc67f 4161 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4162 * adjustment filled in by caller) and return result.
179bc67f 4163 */
9e74a6da 4164 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4165}
4166
1da177e4
LT
4167#endif /* __KERNEL__ */
4168#endif /* _LINUX_SKBUFF_H */