skbuff: Make __skb_set_sw_hash a general function
[linux-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
f70ea018 40#include <net/flow.h>
1da177e4 41
78ea85f1
DB
42/* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
78ea85f1
DB
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
6edec0e6
TH
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
78ea85f1
DB
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
60476372 135/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
136#define CHECKSUM_NONE 0
137#define CHECKSUM_UNNECESSARY 1
138#define CHECKSUM_COMPLETE 2
139#define CHECKSUM_PARTIAL 3
1da177e4 140
77cffe23
TH
141/* Maximum value in skb->csum_level */
142#define SKB_MAX_CSUM_LEVEL 3
143
0bec8c88 144#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 145#define SKB_WITH_OVERHEAD(X) \
deea84b0 146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
147#define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
149#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
87fb4b7b
ED
152/* return minimum truesize of one skb containing X bytes of data */
153#define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
1da177e4 157struct net_device;
716ea3a7 158struct scatterlist;
9c55e01c 159struct pipe_inode_info;
a8f820aa 160struct iov_iter;
fd11a83d 161struct napi_struct;
1da177e4 162
5f79e0f9 163#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
164struct nf_conntrack {
165 atomic_t use;
1da177e4 166};
5f79e0f9 167#endif
1da177e4 168
34666d46 169#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 170struct nf_bridge_info {
bf1ac5ca 171 atomic_t use;
3eaf4025
FW
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
7fb48c5b 176 } orig_proto:8;
72b1e5e4
FW
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
411ffb4f 180 __u16 frag_max_size;
bf1ac5ca 181 struct net_device *physindev;
7fb48c5b 182 union {
72b1e5e4 183 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
184 __be32 ipv4_daddr;
185 struct in6_addr ipv6_daddr;
72b1e5e4
FW
186
187 /* after prerouting + nat detected: store original source
188 * mac since neigh resolution overwrites it, only used while
189 * skb is out in neigh layer.
190 */
191 char neigh_header[8];
192
193 /* always valid & non-NULL from FORWARD on, for physdev match */
194 struct net_device *physoutdev;
72b31f72 195 };
1da177e4
LT
196};
197#endif
198
1da177e4
LT
199struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206};
207
208struct sk_buff;
209
9d4dde52
IC
210/* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
a715dea3 216 */
9d4dde52 217#if (65536/PAGE_SIZE + 1) < 16
eec00954 218#define MAX_SKB_FRAGS 16UL
a715dea3 219#else
9d4dde52 220#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 221#endif
1da177e4
LT
222
223typedef struct skb_frag_struct skb_frag_t;
224
225struct skb_frag_struct {
a8605c60
IC
226 struct {
227 struct page *p;
228 } page;
cb4dfe56 229#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
230 __u32 page_offset;
231 __u32 size;
cb4dfe56
ED
232#else
233 __u16 page_offset;
234 __u16 size;
235#endif
1da177e4
LT
236};
237
9e903e08
ED
238static inline unsigned int skb_frag_size(const skb_frag_t *frag)
239{
240 return frag->size;
241}
242
243static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
244{
245 frag->size = size;
246}
247
248static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
249{
250 frag->size += delta;
251}
252
253static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
254{
255 frag->size -= delta;
256}
257
ac45f602
PO
258#define HAVE_HW_TIME_STAMP
259
260/**
d3a21be8 261 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
262 * @hwtstamp: hardware time stamp transformed into duration
263 * since arbitrary point in time
ac45f602
PO
264 *
265 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 266 * skb->tstamp.
ac45f602
PO
267 *
268 * hwtstamps can only be compared against other hwtstamps from
269 * the same device.
270 *
271 * This structure is attached to packets as part of the
272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
273 */
274struct skb_shared_hwtstamps {
275 ktime_t hwtstamp;
ac45f602
PO
276};
277
2244d07b
OH
278/* Definitions for tx_flags in struct skb_shared_info */
279enum {
280 /* generate hardware time stamp */
281 SKBTX_HW_TSTAMP = 1 << 0,
282
e7fd2885 283 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
284 SKBTX_SW_TSTAMP = 1 << 1,
285
286 /* device driver is going to provide hardware time stamp */
287 SKBTX_IN_PROGRESS = 1 << 2,
288
a6686f2f 289 /* device driver supports TX zero-copy buffers */
62b1a8ab 290 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
291
292 /* generate wifi status information (where possible) */
62b1a8ab 293 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
294
295 /* This indicates at least one fragment might be overwritten
296 * (as in vmsplice(), sendfile() ...)
297 * If we need to compute a TX checksum, we'll need to copy
298 * all frags to avoid possible bad checksum
299 */
300 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
301
302 /* generate software time stamp when entering packet scheduling */
303 SKBTX_SCHED_TSTAMP = 1 << 6,
e1c8a607
WB
304
305 /* generate software timestamp on peer data acknowledgment */
306 SKBTX_ACK_TSTAMP = 1 << 7,
a6686f2f
SM
307};
308
e1c8a607
WB
309#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
310 SKBTX_SCHED_TSTAMP | \
311 SKBTX_ACK_TSTAMP)
f24b9be5
WB
312#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
313
a6686f2f
SM
314/*
315 * The callback notifies userspace to release buffers when skb DMA is done in
316 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
317 * The zerocopy_success argument is true if zero copy transmit occurred,
318 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
319 * The ctx field is used to track device context.
320 * The desc field is used to track userspace buffer index.
a6686f2f
SM
321 */
322struct ubuf_info {
e19d6763 323 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 324 void *ctx;
a6686f2f 325 unsigned long desc;
ac45f602
PO
326};
327
1da177e4
LT
328/* This data is invariant across clones and lives at
329 * the end of the header data, ie. at skb->end.
330 */
331struct skb_shared_info {
9f42f126
IC
332 unsigned char nr_frags;
333 __u8 tx_flags;
7967168c
HX
334 unsigned short gso_size;
335 /* Warning: this field is not always filled in (UFO)! */
336 unsigned short gso_segs;
337 unsigned short gso_type;
1da177e4 338 struct sk_buff *frag_list;
ac45f602 339 struct skb_shared_hwtstamps hwtstamps;
09c2d251 340 u32 tskey;
9f42f126 341 __be32 ip6_frag_id;
ec7d2f2c
ED
342
343 /*
344 * Warning : all fields before dataref are cleared in __alloc_skb()
345 */
346 atomic_t dataref;
347
69e3c75f
JB
348 /* Intermediate layers must ensure that destructor_arg
349 * remains valid until skb destructor */
350 void * destructor_arg;
a6686f2f 351
fed66381
ED
352 /* must be last field, see pskb_expand_head() */
353 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
354};
355
356/* We divide dataref into two halves. The higher 16 bits hold references
357 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
358 * the entire skb->data. A clone of a headerless skb holds the length of
359 * the header in skb->hdr_len.
1da177e4
LT
360 *
361 * All users must obey the rule that the skb->data reference count must be
362 * greater than or equal to the payload reference count.
363 *
364 * Holding a reference to the payload part means that the user does not
365 * care about modifications to the header part of skb->data.
366 */
367#define SKB_DATAREF_SHIFT 16
368#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
369
d179cd12
DM
370
371enum {
c8753d55
VS
372 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
373 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
374 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
375};
376
7967168c
HX
377enum {
378 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 379 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
380
381 /* This indicates the skb is from an untrusted source. */
382 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
383
384 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
385 SKB_GSO_TCP_ECN = 1 << 3,
386
387 SKB_GSO_TCPV6 = 1 << 4,
01d5b2fc
CL
388
389 SKB_GSO_FCOE = 1 << 5,
68c33163
PS
390
391 SKB_GSO_GRE = 1 << 6,
73136267 392
4b28252c 393 SKB_GSO_GRE_CSUM = 1 << 7,
0d89d203 394
4b28252c 395 SKB_GSO_IPIP = 1 << 8,
cb32f511 396
4b28252c 397 SKB_GSO_SIT = 1 << 9,
61c1db7f 398
4b28252c 399 SKB_GSO_UDP_TUNNEL = 1 << 10,
0f4f4ffa
TH
400
401 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
4749c09c 402
59b93b41 403 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
7967168c
HX
404};
405
2e07fa9c
ACM
406#if BITS_PER_LONG > 32
407#define NET_SKBUFF_DATA_USES_OFFSET 1
408#endif
409
410#ifdef NET_SKBUFF_DATA_USES_OFFSET
411typedef unsigned int sk_buff_data_t;
412#else
413typedef unsigned char *sk_buff_data_t;
414#endif
415
363ec392
ED
416/**
417 * struct skb_mstamp - multi resolution time stamps
418 * @stamp_us: timestamp in us resolution
419 * @stamp_jiffies: timestamp in jiffies
420 */
421struct skb_mstamp {
422 union {
423 u64 v64;
424 struct {
425 u32 stamp_us;
426 u32 stamp_jiffies;
427 };
428 };
429};
430
431/**
432 * skb_mstamp_get - get current timestamp
433 * @cl: place to store timestamps
434 */
435static inline void skb_mstamp_get(struct skb_mstamp *cl)
436{
437 u64 val = local_clock();
438
439 do_div(val, NSEC_PER_USEC);
440 cl->stamp_us = (u32)val;
441 cl->stamp_jiffies = (u32)jiffies;
442}
443
444/**
445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
446 * @t1: pointer to newest sample
447 * @t0: pointer to oldest sample
448 */
449static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
450 const struct skb_mstamp *t0)
451{
452 s32 delta_us = t1->stamp_us - t0->stamp_us;
453 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
454
455 /* If delta_us is negative, this might be because interval is too big,
456 * or local_clock() drift is too big : fallback using jiffies.
457 */
458 if (delta_us <= 0 ||
459 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
460
461 delta_us = jiffies_to_usecs(delta_jiffies);
462
463 return delta_us;
464}
465
466
1da177e4
LT
467/**
468 * struct sk_buff - socket buffer
469 * @next: Next buffer in list
470 * @prev: Previous buffer in list
363ec392 471 * @tstamp: Time we arrived/left
56b17425 472 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 473 * @sk: Socket we are owned by
1da177e4 474 * @dev: Device we arrived on/are leaving by
d84e0bd7 475 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 476 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 477 * @sp: the security path, used for xfrm
1da177e4
LT
478 * @len: Length of actual data
479 * @data_len: Data length
480 * @mac_len: Length of link layer header
334a8132 481 * @hdr_len: writable header length of cloned skb
663ead3b
HX
482 * @csum: Checksum (must include start/offset pair)
483 * @csum_start: Offset from skb->head where checksumming should start
484 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 485 * @priority: Packet queueing priority
60ff7467 486 * @ignore_df: allow local fragmentation
1da177e4 487 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 488 * @ip_summed: Driver fed us an IP checksum
1da177e4 489 * @nohdr: Payload reference only, must not modify header
d84e0bd7 490 * @nfctinfo: Relationship of this skb to the connection
1da177e4 491 * @pkt_type: Packet class
c83c2486 492 * @fclone: skbuff clone status
c83c2486 493 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
494 * @peeked: this packet has been seen already, so stats have been
495 * done for it, don't do them again
ba9dda3a 496 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
497 * @protocol: Packet protocol from driver
498 * @destructor: Destruct function
499 * @nfct: Associated connection, if any
1da177e4 500 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 501 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
502 * @tc_index: Traffic control index
503 * @tc_verd: traffic control verdict
61b905da 504 * @hash: the packet hash
d84e0bd7 505 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 506 * @xmit_more: More SKBs are pending for this queue
553a5672 507 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 508 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 509 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 510 * ports.
a3b18ddb 511 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
512 * @wifi_acked_valid: wifi_acked was set
513 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 514 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 515 * @napi_id: id of the NAPI struct this skb came from
984bc16c 516 * @secmark: security marking
0c4f691f 517 * @offload_fwd_mark: fwding offload mark
d84e0bd7 518 * @mark: Generic packet mark
86a9bad3 519 * @vlan_proto: vlan encapsulation protocol
6aa895b0 520 * @vlan_tci: vlan tag control information
0d89d203 521 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
522 * @inner_transport_header: Inner transport layer header (encapsulation)
523 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 524 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
525 * @transport_header: Transport layer header
526 * @network_header: Network layer header
527 * @mac_header: Link layer header
528 * @tail: Tail pointer
529 * @end: End pointer
530 * @head: Head of buffer
531 * @data: Data head pointer
532 * @truesize: Buffer size
533 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
534 */
535
536struct sk_buff {
363ec392 537 union {
56b17425
ED
538 struct {
539 /* These two members must be first. */
540 struct sk_buff *next;
541 struct sk_buff *prev;
542
543 union {
544 ktime_t tstamp;
545 struct skb_mstamp skb_mstamp;
546 };
547 };
548 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 549 };
da3f5cf1 550 struct sock *sk;
1da177e4 551 struct net_device *dev;
1da177e4 552
1da177e4
LT
553 /*
554 * This is the control buffer. It is free to use for every
555 * layer. Please put your private variables there. If you
556 * want to keep them across layers you have to do a skb_clone()
557 * first. This is owned by whoever has the skb queued ATM.
558 */
da3f5cf1 559 char cb[48] __aligned(8);
1da177e4 560
7fee226a 561 unsigned long _skb_refdst;
b1937227 562 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
563#ifdef CONFIG_XFRM
564 struct sec_path *sp;
b1937227
ED
565#endif
566#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
567 struct nf_conntrack *nfct;
568#endif
85224844 569#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 570 struct nf_bridge_info *nf_bridge;
da3f5cf1 571#endif
1da177e4 572 unsigned int len,
334a8132
PM
573 data_len;
574 __u16 mac_len,
575 hdr_len;
b1937227
ED
576
577 /* Following fields are _not_ copied in __copy_skb_header()
578 * Note that queue_mapping is here mostly to fill a hole.
579 */
fe55f6d5 580 kmemcheck_bitfield_begin(flags1);
b1937227
ED
581 __u16 queue_mapping;
582 __u8 cloned:1,
6869c4d8 583 nohdr:1,
b84f4cc9 584 fclone:2,
a59322be 585 peeked:1,
b1937227
ED
586 head_frag:1,
587 xmit_more:1;
588 /* one bit hole */
fe55f6d5 589 kmemcheck_bitfield_end(flags1);
4031ae6e 590
b1937227
ED
591 /* fields enclosed in headers_start/headers_end are copied
592 * using a single memcpy() in __copy_skb_header()
593 */
ebcf34f3 594 /* private: */
b1937227 595 __u32 headers_start[0];
ebcf34f3 596 /* public: */
4031ae6e 597
233577a2
HFS
598/* if you move pkt_type around you also must adapt those constants */
599#ifdef __BIG_ENDIAN_BITFIELD
600#define PKT_TYPE_MAX (7 << 5)
601#else
602#define PKT_TYPE_MAX 7
1da177e4 603#endif
233577a2 604#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 605
233577a2 606 __u8 __pkt_type_offset[0];
b1937227 607 __u8 pkt_type:3;
c93bdd0e 608 __u8 pfmemalloc:1;
b1937227
ED
609 __u8 ignore_df:1;
610 __u8 nfctinfo:3;
611
612 __u8 nf_trace:1;
613 __u8 ip_summed:2;
3853b584 614 __u8 ooo_okay:1;
61b905da 615 __u8 l4_hash:1;
a3b18ddb 616 __u8 sw_hash:1;
6e3e939f
JB
617 __u8 wifi_acked_valid:1;
618 __u8 wifi_acked:1;
b1937227 619
3bdc0eba 620 __u8 no_fcs:1;
77cffe23 621 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 622 __u8 encapsulation:1;
7e2b10c1 623 __u8 encap_hdr_csum:1;
5d0c2b95 624 __u8 csum_valid:1;
7e3cead5 625 __u8 csum_complete_sw:1;
b1937227
ED
626 __u8 csum_level:2;
627 __u8 csum_bad:1;
fe55f6d5 628
b1937227
ED
629#ifdef CONFIG_IPV6_NDISC_NODETYPE
630 __u8 ndisc_nodetype:2;
631#endif
632 __u8 ipvs_property:1;
8bce6d7d 633 __u8 inner_protocol_type:1;
e585f236
TH
634 __u8 remcsum_offload:1;
635 /* 3 or 5 bit hole */
b1937227
ED
636
637#ifdef CONFIG_NET_SCHED
638 __u16 tc_index; /* traffic control index */
639#ifdef CONFIG_NET_CLS_ACT
640 __u16 tc_verd; /* traffic control verdict */
641#endif
642#endif
fe55f6d5 643
b1937227
ED
644 union {
645 __wsum csum;
646 struct {
647 __u16 csum_start;
648 __u16 csum_offset;
649 };
650 };
651 __u32 priority;
652 int skb_iif;
653 __u32 hash;
654 __be16 vlan_proto;
655 __u16 vlan_tci;
2bd82484
ED
656#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
657 union {
658 unsigned int napi_id;
659 unsigned int sender_cpu;
660 };
97fc2f08 661#endif
0c4f691f 662 union {
984bc16c 663#ifdef CONFIG_NETWORK_SECMARK
0c4f691f
SF
664 __u32 secmark;
665#endif
666#ifdef CONFIG_NET_SWITCHDEV
667 __u32 offload_fwd_mark;
984bc16c 668#endif
0c4f691f
SF
669 };
670
3b885787
NH
671 union {
672 __u32 mark;
16fad69c 673 __u32 reserved_tailroom;
3b885787 674 };
1da177e4 675
8bce6d7d
TH
676 union {
677 __be16 inner_protocol;
678 __u8 inner_ipproto;
679 };
680
1a37e412
SH
681 __u16 inner_transport_header;
682 __u16 inner_network_header;
683 __u16 inner_mac_header;
b1937227
ED
684
685 __be16 protocol;
1a37e412
SH
686 __u16 transport_header;
687 __u16 network_header;
688 __u16 mac_header;
b1937227 689
ebcf34f3 690 /* private: */
b1937227 691 __u32 headers_end[0];
ebcf34f3 692 /* public: */
b1937227 693
1da177e4 694 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 695 sk_buff_data_t tail;
4305b541 696 sk_buff_data_t end;
1da177e4 697 unsigned char *head,
4305b541 698 *data;
27a884dc
ACM
699 unsigned int truesize;
700 atomic_t users;
1da177e4
LT
701};
702
703#ifdef __KERNEL__
704/*
705 * Handling routines are only of interest to the kernel
706 */
707#include <linux/slab.h>
708
1da177e4 709
c93bdd0e
MG
710#define SKB_ALLOC_FCLONE 0x01
711#define SKB_ALLOC_RX 0x02
fd11a83d 712#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
713
714/* Returns true if the skb was allocated from PFMEMALLOC reserves */
715static inline bool skb_pfmemalloc(const struct sk_buff *skb)
716{
717 return unlikely(skb->pfmemalloc);
718}
719
7fee226a
ED
720/*
721 * skb might have a dst pointer attached, refcounted or not.
722 * _skb_refdst low order bit is set if refcount was _not_ taken
723 */
724#define SKB_DST_NOREF 1UL
725#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
726
727/**
728 * skb_dst - returns skb dst_entry
729 * @skb: buffer
730 *
731 * Returns skb dst_entry, regardless of reference taken or not.
732 */
adf30907
ED
733static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
734{
7fee226a
ED
735 /* If refdst was not refcounted, check we still are in a
736 * rcu_read_lock section
737 */
738 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
739 !rcu_read_lock_held() &&
740 !rcu_read_lock_bh_held());
741 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
742}
743
7fee226a
ED
744/**
745 * skb_dst_set - sets skb dst
746 * @skb: buffer
747 * @dst: dst entry
748 *
749 * Sets skb dst, assuming a reference was taken on dst and should
750 * be released by skb_dst_drop()
751 */
adf30907
ED
752static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
753{
7fee226a
ED
754 skb->_skb_refdst = (unsigned long)dst;
755}
756
932bc4d7
JA
757/**
758 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
759 * @skb: buffer
760 * @dst: dst entry
761 *
762 * Sets skb dst, assuming a reference was not taken on dst.
763 * If dst entry is cached, we do not take reference and dst_release
764 * will be avoided by refdst_drop. If dst entry is not cached, we take
765 * reference, so that last dst_release can destroy the dst immediately.
766 */
767static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
768{
dbfc4fb7
HFS
769 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
770 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 771}
7fee226a
ED
772
773/**
25985edc 774 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
775 * @skb: buffer
776 */
777static inline bool skb_dst_is_noref(const struct sk_buff *skb)
778{
779 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
780}
781
511c3f92
ED
782static inline struct rtable *skb_rtable(const struct sk_buff *skb)
783{
adf30907 784 return (struct rtable *)skb_dst(skb);
511c3f92
ED
785}
786
7965bd4d
JP
787void kfree_skb(struct sk_buff *skb);
788void kfree_skb_list(struct sk_buff *segs);
789void skb_tx_error(struct sk_buff *skb);
790void consume_skb(struct sk_buff *skb);
791void __kfree_skb(struct sk_buff *skb);
d7e8883c 792extern struct kmem_cache *skbuff_head_cache;
bad43ca8 793
7965bd4d
JP
794void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
795bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
796 bool *fragstolen, int *delta_truesize);
bad43ca8 797
7965bd4d
JP
798struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
799 int node);
2ea2f62c 800struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 801struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 802static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 803 gfp_t priority)
d179cd12 804{
564824b0 805 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
806}
807
2e4e4410
ED
808struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
809 unsigned long data_len,
810 int max_page_order,
811 int *errcode,
812 gfp_t gfp_mask);
813
d0bf4a9e
ED
814/* Layout of fast clones : [skb1][skb2][fclone_ref] */
815struct sk_buff_fclones {
816 struct sk_buff skb1;
817
818 struct sk_buff skb2;
819
820 atomic_t fclone_ref;
821};
822
823/**
824 * skb_fclone_busy - check if fclone is busy
825 * @skb: buffer
826 *
827 * Returns true is skb is a fast clone, and its clone is not freed.
39bb5e62
ED
828 * Some drivers call skb_orphan() in their ndo_start_xmit(),
829 * so we also check that this didnt happen.
d0bf4a9e 830 */
39bb5e62
ED
831static inline bool skb_fclone_busy(const struct sock *sk,
832 const struct sk_buff *skb)
d0bf4a9e
ED
833{
834 const struct sk_buff_fclones *fclones;
835
836 fclones = container_of(skb, struct sk_buff_fclones, skb1);
837
838 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 839 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 840 fclones->skb2.sk == sk;
d0bf4a9e
ED
841}
842
d179cd12 843static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 844 gfp_t priority)
d179cd12 845{
c93bdd0e 846 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
847}
848
7965bd4d 849struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
850static inline struct sk_buff *alloc_skb_head(gfp_t priority)
851{
852 return __alloc_skb_head(priority, -1);
853}
854
7965bd4d
JP
855struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
856int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
857struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
858struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
859struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
860 gfp_t gfp_mask, bool fclone);
861static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
862 gfp_t gfp_mask)
863{
864 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
865}
7965bd4d
JP
866
867int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
868struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
869 unsigned int headroom);
870struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
871 int newtailroom, gfp_t priority);
25a91d8d
FD
872int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
873 int offset, int len);
7965bd4d
JP
874int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
875 int len);
876int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
877int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 878#define dev_kfree_skb(a) consume_skb(a)
1da177e4 879
7965bd4d
JP
880int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
881 int getfrag(void *from, char *to, int offset,
882 int len, int odd, struct sk_buff *skb),
883 void *from, int length);
e89e9cf5 884
be12a1fe
HFS
885int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
886 int offset, size_t size);
887
d94d9fee 888struct skb_seq_state {
677e90ed
TG
889 __u32 lower_offset;
890 __u32 upper_offset;
891 __u32 frag_idx;
892 __u32 stepped_offset;
893 struct sk_buff *root_skb;
894 struct sk_buff *cur_skb;
895 __u8 *frag_data;
896};
897
7965bd4d
JP
898void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
899 unsigned int to, struct skb_seq_state *st);
900unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
901 struct skb_seq_state *st);
902void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 903
7965bd4d 904unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 905 unsigned int to, struct ts_config *config);
3fc7e8a6 906
09323cc4
TH
907/*
908 * Packet hash types specify the type of hash in skb_set_hash.
909 *
910 * Hash types refer to the protocol layer addresses which are used to
911 * construct a packet's hash. The hashes are used to differentiate or identify
912 * flows of the protocol layer for the hash type. Hash types are either
913 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
914 *
915 * Properties of hashes:
916 *
917 * 1) Two packets in different flows have different hash values
918 * 2) Two packets in the same flow should have the same hash value
919 *
920 * A hash at a higher layer is considered to be more specific. A driver should
921 * set the most specific hash possible.
922 *
923 * A driver cannot indicate a more specific hash than the layer at which a hash
924 * was computed. For instance an L3 hash cannot be set as an L4 hash.
925 *
926 * A driver may indicate a hash level which is less specific than the
927 * actual layer the hash was computed on. For instance, a hash computed
928 * at L4 may be considered an L3 hash. This should only be done if the
929 * driver can't unambiguously determine that the HW computed the hash at
930 * the higher layer. Note that the "should" in the second property above
931 * permits this.
932 */
933enum pkt_hash_types {
934 PKT_HASH_TYPE_NONE, /* Undefined type */
935 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
936 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
937 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
938};
939
bcc83839 940static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 941{
bcc83839 942 skb->hash = 0;
a3b18ddb 943 skb->sw_hash = 0;
bcc83839
TH
944 skb->l4_hash = 0;
945}
946
947static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
948{
949 if (!skb->l4_hash)
950 skb_clear_hash(skb);
951}
952
953static inline void
954__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
955{
956 skb->l4_hash = is_l4;
957 skb->sw_hash = is_sw;
61b905da 958 skb->hash = hash;
09323cc4
TH
959}
960
bcc83839
TH
961static inline void
962skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
963{
964 /* Used by drivers to set hash from HW */
965 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
966}
967
968static inline void
969__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
970{
971 __skb_set_hash(skb, hash, true, is_l4);
972}
973
e5276937
TH
974void __skb_get_hash(struct sk_buff *skb);
975u32 skb_get_poff(const struct sk_buff *skb);
976u32 __skb_get_poff(const struct sk_buff *skb, void *data,
977 const struct flow_keys *keys, int hlen);
978__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
979 void *data, int hlen_proto);
980
981static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
982 int thoff, u8 ip_proto)
983{
984 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
985}
986
987void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
988 const struct flow_dissector_key *key,
989 unsigned int key_count);
990
991bool __skb_flow_dissect(const struct sk_buff *skb,
992 struct flow_dissector *flow_dissector,
993 void *target_container,
994 void *data, __be16 proto, int nhoff, int hlen);
995
996static inline bool skb_flow_dissect(const struct sk_buff *skb,
997 struct flow_dissector *flow_dissector,
998 void *target_container)
999{
1000 return __skb_flow_dissect(skb, flow_dissector, target_container,
1001 NULL, 0, 0, 0);
1002}
1003
1004static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1005 struct flow_keys *flow)
1006{
1007 memset(flow, 0, sizeof(*flow));
1008 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1009 NULL, 0, 0, 0);
1010}
1011
1012static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1013 void *data, __be16 proto,
1014 int nhoff, int hlen)
1015{
1016 memset(flow, 0, sizeof(*flow));
1017 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1018 data, proto, nhoff, hlen);
1019}
1020
3958afa1 1021static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1022{
a3b18ddb 1023 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1024 __skb_get_hash(skb);
bfb564e7 1025
61b905da 1026 return skb->hash;
bfb564e7
KK
1027}
1028
f70ea018
TH
1029__u32 __skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6);
1030
1031static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, struct flowi6 *fl6)
1032{
1033 if (!skb->l4_hash && !skb->sw_hash)
1034 __skb_get_hash_flowi6(skb, fl6);
1035
1036 return skb->hash;
1037}
1038
1039__u32 __skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl);
1040
1041static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, struct flowi4 *fl4)
1042{
1043 if (!skb->l4_hash && !skb->sw_hash)
1044 __skb_get_hash_flowi4(skb, fl4);
1045
1046 return skb->hash;
1047}
1048
50fb7992
TH
1049__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1050
57bdf7f4
TH
1051static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1052{
61b905da 1053 return skb->hash;
57bdf7f4
TH
1054}
1055
3df7a74e
TH
1056static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1057{
61b905da 1058 to->hash = from->hash;
a3b18ddb 1059 to->sw_hash = from->sw_hash;
61b905da 1060 to->l4_hash = from->l4_hash;
3df7a74e
TH
1061};
1062
c29390c6
ED
1063static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1064{
1065#ifdef CONFIG_XPS
1066 skb->sender_cpu = 0;
1067#endif
1068}
1069
4305b541
ACM
1070#ifdef NET_SKBUFF_DATA_USES_OFFSET
1071static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1072{
1073 return skb->head + skb->end;
1074}
ec47ea82
AD
1075
1076static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1077{
1078 return skb->end;
1079}
4305b541
ACM
1080#else
1081static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1082{
1083 return skb->end;
1084}
ec47ea82
AD
1085
1086static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1087{
1088 return skb->end - skb->head;
1089}
4305b541
ACM
1090#endif
1091
1da177e4 1092/* Internal */
4305b541 1093#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1094
ac45f602
PO
1095static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1096{
1097 return &skb_shinfo(skb)->hwtstamps;
1098}
1099
1da177e4
LT
1100/**
1101 * skb_queue_empty - check if a queue is empty
1102 * @list: queue head
1103 *
1104 * Returns true if the queue is empty, false otherwise.
1105 */
1106static inline int skb_queue_empty(const struct sk_buff_head *list)
1107{
fd44b93c 1108 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1109}
1110
fc7ebb21
DM
1111/**
1112 * skb_queue_is_last - check if skb is the last entry in the queue
1113 * @list: queue head
1114 * @skb: buffer
1115 *
1116 * Returns true if @skb is the last buffer on the list.
1117 */
1118static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1119 const struct sk_buff *skb)
1120{
fd44b93c 1121 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1122}
1123
832d11c5
IJ
1124/**
1125 * skb_queue_is_first - check if skb is the first entry in the queue
1126 * @list: queue head
1127 * @skb: buffer
1128 *
1129 * Returns true if @skb is the first buffer on the list.
1130 */
1131static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1132 const struct sk_buff *skb)
1133{
fd44b93c 1134 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1135}
1136
249c8b42
DM
1137/**
1138 * skb_queue_next - return the next packet in the queue
1139 * @list: queue head
1140 * @skb: current buffer
1141 *
1142 * Return the next packet in @list after @skb. It is only valid to
1143 * call this if skb_queue_is_last() evaluates to false.
1144 */
1145static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1146 const struct sk_buff *skb)
1147{
1148 /* This BUG_ON may seem severe, but if we just return then we
1149 * are going to dereference garbage.
1150 */
1151 BUG_ON(skb_queue_is_last(list, skb));
1152 return skb->next;
1153}
1154
832d11c5
IJ
1155/**
1156 * skb_queue_prev - return the prev packet in the queue
1157 * @list: queue head
1158 * @skb: current buffer
1159 *
1160 * Return the prev packet in @list before @skb. It is only valid to
1161 * call this if skb_queue_is_first() evaluates to false.
1162 */
1163static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1164 const struct sk_buff *skb)
1165{
1166 /* This BUG_ON may seem severe, but if we just return then we
1167 * are going to dereference garbage.
1168 */
1169 BUG_ON(skb_queue_is_first(list, skb));
1170 return skb->prev;
1171}
1172
1da177e4
LT
1173/**
1174 * skb_get - reference buffer
1175 * @skb: buffer to reference
1176 *
1177 * Makes another reference to a socket buffer and returns a pointer
1178 * to the buffer.
1179 */
1180static inline struct sk_buff *skb_get(struct sk_buff *skb)
1181{
1182 atomic_inc(&skb->users);
1183 return skb;
1184}
1185
1186/*
1187 * If users == 1, we are the only owner and are can avoid redundant
1188 * atomic change.
1189 */
1190
1da177e4
LT
1191/**
1192 * skb_cloned - is the buffer a clone
1193 * @skb: buffer to check
1194 *
1195 * Returns true if the buffer was generated with skb_clone() and is
1196 * one of multiple shared copies of the buffer. Cloned buffers are
1197 * shared data so must not be written to under normal circumstances.
1198 */
1199static inline int skb_cloned(const struct sk_buff *skb)
1200{
1201 return skb->cloned &&
1202 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1203}
1204
14bbd6a5
PS
1205static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1206{
1207 might_sleep_if(pri & __GFP_WAIT);
1208
1209 if (skb_cloned(skb))
1210 return pskb_expand_head(skb, 0, 0, pri);
1211
1212 return 0;
1213}
1214
1da177e4
LT
1215/**
1216 * skb_header_cloned - is the header a clone
1217 * @skb: buffer to check
1218 *
1219 * Returns true if modifying the header part of the buffer requires
1220 * the data to be copied.
1221 */
1222static inline int skb_header_cloned(const struct sk_buff *skb)
1223{
1224 int dataref;
1225
1226 if (!skb->cloned)
1227 return 0;
1228
1229 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1230 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1231 return dataref != 1;
1232}
1233
1234/**
1235 * skb_header_release - release reference to header
1236 * @skb: buffer to operate on
1237 *
1238 * Drop a reference to the header part of the buffer. This is done
1239 * by acquiring a payload reference. You must not read from the header
1240 * part of skb->data after this.
f4a775d1 1241 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1242 */
1243static inline void skb_header_release(struct sk_buff *skb)
1244{
1245 BUG_ON(skb->nohdr);
1246 skb->nohdr = 1;
1247 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1248}
1249
f4a775d1
ED
1250/**
1251 * __skb_header_release - release reference to header
1252 * @skb: buffer to operate on
1253 *
1254 * Variant of skb_header_release() assuming skb is private to caller.
1255 * We can avoid one atomic operation.
1256 */
1257static inline void __skb_header_release(struct sk_buff *skb)
1258{
1259 skb->nohdr = 1;
1260 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1261}
1262
1263
1da177e4
LT
1264/**
1265 * skb_shared - is the buffer shared
1266 * @skb: buffer to check
1267 *
1268 * Returns true if more than one person has a reference to this
1269 * buffer.
1270 */
1271static inline int skb_shared(const struct sk_buff *skb)
1272{
1273 return atomic_read(&skb->users) != 1;
1274}
1275
1276/**
1277 * skb_share_check - check if buffer is shared and if so clone it
1278 * @skb: buffer to check
1279 * @pri: priority for memory allocation
1280 *
1281 * If the buffer is shared the buffer is cloned and the old copy
1282 * drops a reference. A new clone with a single reference is returned.
1283 * If the buffer is not shared the original buffer is returned. When
1284 * being called from interrupt status or with spinlocks held pri must
1285 * be GFP_ATOMIC.
1286 *
1287 * NULL is returned on a memory allocation failure.
1288 */
47061bc4 1289static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4
LT
1290{
1291 might_sleep_if(pri & __GFP_WAIT);
1292 if (skb_shared(skb)) {
1293 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1294
1295 if (likely(nskb))
1296 consume_skb(skb);
1297 else
1298 kfree_skb(skb);
1da177e4
LT
1299 skb = nskb;
1300 }
1301 return skb;
1302}
1303
1304/*
1305 * Copy shared buffers into a new sk_buff. We effectively do COW on
1306 * packets to handle cases where we have a local reader and forward
1307 * and a couple of other messy ones. The normal one is tcpdumping
1308 * a packet thats being forwarded.
1309 */
1310
1311/**
1312 * skb_unshare - make a copy of a shared buffer
1313 * @skb: buffer to check
1314 * @pri: priority for memory allocation
1315 *
1316 * If the socket buffer is a clone then this function creates a new
1317 * copy of the data, drops a reference count on the old copy and returns
1318 * the new copy with the reference count at 1. If the buffer is not a clone
1319 * the original buffer is returned. When called with a spinlock held or
1320 * from interrupt state @pri must be %GFP_ATOMIC
1321 *
1322 * %NULL is returned on a memory allocation failure.
1323 */
e2bf521d 1324static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1325 gfp_t pri)
1da177e4
LT
1326{
1327 might_sleep_if(pri & __GFP_WAIT);
1328 if (skb_cloned(skb)) {
1329 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1330
1331 /* Free our shared copy */
1332 if (likely(nskb))
1333 consume_skb(skb);
1334 else
1335 kfree_skb(skb);
1da177e4
LT
1336 skb = nskb;
1337 }
1338 return skb;
1339}
1340
1341/**
1a5778aa 1342 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1343 * @list_: list to peek at
1344 *
1345 * Peek an &sk_buff. Unlike most other operations you _MUST_
1346 * be careful with this one. A peek leaves the buffer on the
1347 * list and someone else may run off with it. You must hold
1348 * the appropriate locks or have a private queue to do this.
1349 *
1350 * Returns %NULL for an empty list or a pointer to the head element.
1351 * The reference count is not incremented and the reference is therefore
1352 * volatile. Use with caution.
1353 */
05bdd2f1 1354static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1355{
18d07000
ED
1356 struct sk_buff *skb = list_->next;
1357
1358 if (skb == (struct sk_buff *)list_)
1359 skb = NULL;
1360 return skb;
1da177e4
LT
1361}
1362
da5ef6e5
PE
1363/**
1364 * skb_peek_next - peek skb following the given one from a queue
1365 * @skb: skb to start from
1366 * @list_: list to peek at
1367 *
1368 * Returns %NULL when the end of the list is met or a pointer to the
1369 * next element. The reference count is not incremented and the
1370 * reference is therefore volatile. Use with caution.
1371 */
1372static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1373 const struct sk_buff_head *list_)
1374{
1375 struct sk_buff *next = skb->next;
18d07000 1376
da5ef6e5
PE
1377 if (next == (struct sk_buff *)list_)
1378 next = NULL;
1379 return next;
1380}
1381
1da177e4 1382/**
1a5778aa 1383 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1384 * @list_: list to peek at
1385 *
1386 * Peek an &sk_buff. Unlike most other operations you _MUST_
1387 * be careful with this one. A peek leaves the buffer on the
1388 * list and someone else may run off with it. You must hold
1389 * the appropriate locks or have a private queue to do this.
1390 *
1391 * Returns %NULL for an empty list or a pointer to the tail element.
1392 * The reference count is not incremented and the reference is therefore
1393 * volatile. Use with caution.
1394 */
05bdd2f1 1395static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1396{
18d07000
ED
1397 struct sk_buff *skb = list_->prev;
1398
1399 if (skb == (struct sk_buff *)list_)
1400 skb = NULL;
1401 return skb;
1402
1da177e4
LT
1403}
1404
1405/**
1406 * skb_queue_len - get queue length
1407 * @list_: list to measure
1408 *
1409 * Return the length of an &sk_buff queue.
1410 */
1411static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1412{
1413 return list_->qlen;
1414}
1415
67fed459
DM
1416/**
1417 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1418 * @list: queue to initialize
1419 *
1420 * This initializes only the list and queue length aspects of
1421 * an sk_buff_head object. This allows to initialize the list
1422 * aspects of an sk_buff_head without reinitializing things like
1423 * the spinlock. It can also be used for on-stack sk_buff_head
1424 * objects where the spinlock is known to not be used.
1425 */
1426static inline void __skb_queue_head_init(struct sk_buff_head *list)
1427{
1428 list->prev = list->next = (struct sk_buff *)list;
1429 list->qlen = 0;
1430}
1431
76f10ad0
AV
1432/*
1433 * This function creates a split out lock class for each invocation;
1434 * this is needed for now since a whole lot of users of the skb-queue
1435 * infrastructure in drivers have different locking usage (in hardirq)
1436 * than the networking core (in softirq only). In the long run either the
1437 * network layer or drivers should need annotation to consolidate the
1438 * main types of usage into 3 classes.
1439 */
1da177e4
LT
1440static inline void skb_queue_head_init(struct sk_buff_head *list)
1441{
1442 spin_lock_init(&list->lock);
67fed459 1443 __skb_queue_head_init(list);
1da177e4
LT
1444}
1445
c2ecba71
PE
1446static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1447 struct lock_class_key *class)
1448{
1449 skb_queue_head_init(list);
1450 lockdep_set_class(&list->lock, class);
1451}
1452
1da177e4 1453/*
bf299275 1454 * Insert an sk_buff on a list.
1da177e4
LT
1455 *
1456 * The "__skb_xxxx()" functions are the non-atomic ones that
1457 * can only be called with interrupts disabled.
1458 */
7965bd4d
JP
1459void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1460 struct sk_buff_head *list);
bf299275
GR
1461static inline void __skb_insert(struct sk_buff *newsk,
1462 struct sk_buff *prev, struct sk_buff *next,
1463 struct sk_buff_head *list)
1464{
1465 newsk->next = next;
1466 newsk->prev = prev;
1467 next->prev = prev->next = newsk;
1468 list->qlen++;
1469}
1da177e4 1470
67fed459
DM
1471static inline void __skb_queue_splice(const struct sk_buff_head *list,
1472 struct sk_buff *prev,
1473 struct sk_buff *next)
1474{
1475 struct sk_buff *first = list->next;
1476 struct sk_buff *last = list->prev;
1477
1478 first->prev = prev;
1479 prev->next = first;
1480
1481 last->next = next;
1482 next->prev = last;
1483}
1484
1485/**
1486 * skb_queue_splice - join two skb lists, this is designed for stacks
1487 * @list: the new list to add
1488 * @head: the place to add it in the first list
1489 */
1490static inline void skb_queue_splice(const struct sk_buff_head *list,
1491 struct sk_buff_head *head)
1492{
1493 if (!skb_queue_empty(list)) {
1494 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1495 head->qlen += list->qlen;
67fed459
DM
1496 }
1497}
1498
1499/**
d9619496 1500 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1501 * @list: the new list to add
1502 * @head: the place to add it in the first list
1503 *
1504 * The list at @list is reinitialised
1505 */
1506static inline void skb_queue_splice_init(struct sk_buff_head *list,
1507 struct sk_buff_head *head)
1508{
1509 if (!skb_queue_empty(list)) {
1510 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1511 head->qlen += list->qlen;
67fed459
DM
1512 __skb_queue_head_init(list);
1513 }
1514}
1515
1516/**
1517 * skb_queue_splice_tail - join two skb lists, each list being a queue
1518 * @list: the new list to add
1519 * @head: the place to add it in the first list
1520 */
1521static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1522 struct sk_buff_head *head)
1523{
1524 if (!skb_queue_empty(list)) {
1525 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1526 head->qlen += list->qlen;
67fed459
DM
1527 }
1528}
1529
1530/**
d9619496 1531 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1532 * @list: the new list to add
1533 * @head: the place to add it in the first list
1534 *
1535 * Each of the lists is a queue.
1536 * The list at @list is reinitialised
1537 */
1538static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1539 struct sk_buff_head *head)
1540{
1541 if (!skb_queue_empty(list)) {
1542 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1543 head->qlen += list->qlen;
67fed459
DM
1544 __skb_queue_head_init(list);
1545 }
1546}
1547
1da177e4 1548/**
300ce174 1549 * __skb_queue_after - queue a buffer at the list head
1da177e4 1550 * @list: list to use
300ce174 1551 * @prev: place after this buffer
1da177e4
LT
1552 * @newsk: buffer to queue
1553 *
300ce174 1554 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1555 * and you must therefore hold required locks before calling it.
1556 *
1557 * A buffer cannot be placed on two lists at the same time.
1558 */
300ce174
SH
1559static inline void __skb_queue_after(struct sk_buff_head *list,
1560 struct sk_buff *prev,
1561 struct sk_buff *newsk)
1da177e4 1562{
bf299275 1563 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1564}
1565
7965bd4d
JP
1566void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1567 struct sk_buff_head *list);
7de6c033 1568
f5572855
GR
1569static inline void __skb_queue_before(struct sk_buff_head *list,
1570 struct sk_buff *next,
1571 struct sk_buff *newsk)
1572{
1573 __skb_insert(newsk, next->prev, next, list);
1574}
1575
300ce174
SH
1576/**
1577 * __skb_queue_head - queue a buffer at the list head
1578 * @list: list to use
1579 * @newsk: buffer to queue
1580 *
1581 * Queue a buffer at the start of a list. This function takes no locks
1582 * and you must therefore hold required locks before calling it.
1583 *
1584 * A buffer cannot be placed on two lists at the same time.
1585 */
7965bd4d 1586void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1587static inline void __skb_queue_head(struct sk_buff_head *list,
1588 struct sk_buff *newsk)
1589{
1590 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1591}
1592
1da177e4
LT
1593/**
1594 * __skb_queue_tail - queue a buffer at the list tail
1595 * @list: list to use
1596 * @newsk: buffer to queue
1597 *
1598 * Queue a buffer at the end of a list. This function takes no locks
1599 * and you must therefore hold required locks before calling it.
1600 *
1601 * A buffer cannot be placed on two lists at the same time.
1602 */
7965bd4d 1603void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1604static inline void __skb_queue_tail(struct sk_buff_head *list,
1605 struct sk_buff *newsk)
1606{
f5572855 1607 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1608}
1609
1da177e4
LT
1610/*
1611 * remove sk_buff from list. _Must_ be called atomically, and with
1612 * the list known..
1613 */
7965bd4d 1614void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1615static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1616{
1617 struct sk_buff *next, *prev;
1618
1619 list->qlen--;
1620 next = skb->next;
1621 prev = skb->prev;
1622 skb->next = skb->prev = NULL;
1da177e4
LT
1623 next->prev = prev;
1624 prev->next = next;
1625}
1626
f525c06d
GR
1627/**
1628 * __skb_dequeue - remove from the head of the queue
1629 * @list: list to dequeue from
1630 *
1631 * Remove the head of the list. This function does not take any locks
1632 * so must be used with appropriate locks held only. The head item is
1633 * returned or %NULL if the list is empty.
1634 */
7965bd4d 1635struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1636static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1637{
1638 struct sk_buff *skb = skb_peek(list);
1639 if (skb)
1640 __skb_unlink(skb, list);
1641 return skb;
1642}
1da177e4
LT
1643
1644/**
1645 * __skb_dequeue_tail - remove from the tail of the queue
1646 * @list: list to dequeue from
1647 *
1648 * Remove the tail of the list. This function does not take any locks
1649 * so must be used with appropriate locks held only. The tail item is
1650 * returned or %NULL if the list is empty.
1651 */
7965bd4d 1652struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1653static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1654{
1655 struct sk_buff *skb = skb_peek_tail(list);
1656 if (skb)
1657 __skb_unlink(skb, list);
1658 return skb;
1659}
1660
1661
bdcc0924 1662static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1663{
1664 return skb->data_len;
1665}
1666
1667static inline unsigned int skb_headlen(const struct sk_buff *skb)
1668{
1669 return skb->len - skb->data_len;
1670}
1671
1672static inline int skb_pagelen(const struct sk_buff *skb)
1673{
1674 int i, len = 0;
1675
1676 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1677 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1678 return len + skb_headlen(skb);
1679}
1680
131ea667
IC
1681/**
1682 * __skb_fill_page_desc - initialise a paged fragment in an skb
1683 * @skb: buffer containing fragment to be initialised
1684 * @i: paged fragment index to initialise
1685 * @page: the page to use for this fragment
1686 * @off: the offset to the data with @page
1687 * @size: the length of the data
1688 *
1689 * Initialises the @i'th fragment of @skb to point to &size bytes at
1690 * offset @off within @page.
1691 *
1692 * Does not take any additional reference on the fragment.
1693 */
1694static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1695 struct page *page, int off, int size)
1da177e4
LT
1696{
1697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1698
c48a11c7 1699 /*
2f064f34
MH
1700 * Propagate page pfmemalloc to the skb if we can. The problem is
1701 * that not all callers have unique ownership of the page but rely
1702 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1703 */
a8605c60 1704 frag->page.p = page;
1da177e4 1705 frag->page_offset = off;
9e903e08 1706 skb_frag_size_set(frag, size);
cca7af38
PE
1707
1708 page = compound_head(page);
2f064f34 1709 if (page_is_pfmemalloc(page))
cca7af38 1710 skb->pfmemalloc = true;
131ea667
IC
1711}
1712
1713/**
1714 * skb_fill_page_desc - initialise a paged fragment in an skb
1715 * @skb: buffer containing fragment to be initialised
1716 * @i: paged fragment index to initialise
1717 * @page: the page to use for this fragment
1718 * @off: the offset to the data with @page
1719 * @size: the length of the data
1720 *
1721 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1722 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1723 * addition updates @skb such that @i is the last fragment.
1724 *
1725 * Does not take any additional reference on the fragment.
1726 */
1727static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1728 struct page *page, int off, int size)
1729{
1730 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1731 skb_shinfo(skb)->nr_frags = i + 1;
1732}
1733
7965bd4d
JP
1734void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1735 int size, unsigned int truesize);
654bed16 1736
f8e617e1
JW
1737void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1738 unsigned int truesize);
1739
1da177e4 1740#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1741#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1742#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1743
27a884dc
ACM
1744#ifdef NET_SKBUFF_DATA_USES_OFFSET
1745static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1746{
1747 return skb->head + skb->tail;
1748}
1749
1750static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1751{
1752 skb->tail = skb->data - skb->head;
1753}
1754
1755static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1756{
1757 skb_reset_tail_pointer(skb);
1758 skb->tail += offset;
1759}
7cc46190 1760
27a884dc
ACM
1761#else /* NET_SKBUFF_DATA_USES_OFFSET */
1762static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1763{
1764 return skb->tail;
1765}
1766
1767static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1768{
1769 skb->tail = skb->data;
1770}
1771
1772static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1773{
1774 skb->tail = skb->data + offset;
1775}
4305b541 1776
27a884dc
ACM
1777#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1778
1da177e4
LT
1779/*
1780 * Add data to an sk_buff
1781 */
0c7ddf36 1782unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1783unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1784static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1785{
27a884dc 1786 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1787 SKB_LINEAR_ASSERT(skb);
1788 skb->tail += len;
1789 skb->len += len;
1790 return tmp;
1791}
1792
7965bd4d 1793unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1794static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1795{
1796 skb->data -= len;
1797 skb->len += len;
1798 return skb->data;
1799}
1800
7965bd4d 1801unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1802static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1803{
1804 skb->len -= len;
1805 BUG_ON(skb->len < skb->data_len);
1806 return skb->data += len;
1807}
1808
47d29646
DM
1809static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1810{
1811 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1812}
1813
7965bd4d 1814unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1815
1816static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1817{
1818 if (len > skb_headlen(skb) &&
987c402a 1819 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1820 return NULL;
1821 skb->len -= len;
1822 return skb->data += len;
1823}
1824
1825static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1826{
1827 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1828}
1829
1830static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1831{
1832 if (likely(len <= skb_headlen(skb)))
1833 return 1;
1834 if (unlikely(len > skb->len))
1835 return 0;
987c402a 1836 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1837}
1838
1839/**
1840 * skb_headroom - bytes at buffer head
1841 * @skb: buffer to check
1842 *
1843 * Return the number of bytes of free space at the head of an &sk_buff.
1844 */
c2636b4d 1845static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1846{
1847 return skb->data - skb->head;
1848}
1849
1850/**
1851 * skb_tailroom - bytes at buffer end
1852 * @skb: buffer to check
1853 *
1854 * Return the number of bytes of free space at the tail of an sk_buff
1855 */
1856static inline int skb_tailroom(const struct sk_buff *skb)
1857{
4305b541 1858 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1859}
1860
a21d4572
ED
1861/**
1862 * skb_availroom - bytes at buffer end
1863 * @skb: buffer to check
1864 *
1865 * Return the number of bytes of free space at the tail of an sk_buff
1866 * allocated by sk_stream_alloc()
1867 */
1868static inline int skb_availroom(const struct sk_buff *skb)
1869{
16fad69c
ED
1870 if (skb_is_nonlinear(skb))
1871 return 0;
1872
1873 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1874}
1875
1da177e4
LT
1876/**
1877 * skb_reserve - adjust headroom
1878 * @skb: buffer to alter
1879 * @len: bytes to move
1880 *
1881 * Increase the headroom of an empty &sk_buff by reducing the tail
1882 * room. This is only allowed for an empty buffer.
1883 */
8243126c 1884static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1885{
1886 skb->data += len;
1887 skb->tail += len;
1888}
1889
8bce6d7d
TH
1890#define ENCAP_TYPE_ETHER 0
1891#define ENCAP_TYPE_IPPROTO 1
1892
1893static inline void skb_set_inner_protocol(struct sk_buff *skb,
1894 __be16 protocol)
1895{
1896 skb->inner_protocol = protocol;
1897 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1898}
1899
1900static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1901 __u8 ipproto)
1902{
1903 skb->inner_ipproto = ipproto;
1904 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1905}
1906
6a674e9c
JG
1907static inline void skb_reset_inner_headers(struct sk_buff *skb)
1908{
aefbd2b3 1909 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
1910 skb->inner_network_header = skb->network_header;
1911 skb->inner_transport_header = skb->transport_header;
1912}
1913
0b5c9db1
JP
1914static inline void skb_reset_mac_len(struct sk_buff *skb)
1915{
1916 skb->mac_len = skb->network_header - skb->mac_header;
1917}
1918
6a674e9c
JG
1919static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1920 *skb)
1921{
1922 return skb->head + skb->inner_transport_header;
1923}
1924
1925static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1926{
1927 skb->inner_transport_header = skb->data - skb->head;
1928}
1929
1930static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1931 const int offset)
1932{
1933 skb_reset_inner_transport_header(skb);
1934 skb->inner_transport_header += offset;
1935}
1936
1937static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1938{
1939 return skb->head + skb->inner_network_header;
1940}
1941
1942static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1943{
1944 skb->inner_network_header = skb->data - skb->head;
1945}
1946
1947static inline void skb_set_inner_network_header(struct sk_buff *skb,
1948 const int offset)
1949{
1950 skb_reset_inner_network_header(skb);
1951 skb->inner_network_header += offset;
1952}
1953
aefbd2b3
PS
1954static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1955{
1956 return skb->head + skb->inner_mac_header;
1957}
1958
1959static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1960{
1961 skb->inner_mac_header = skb->data - skb->head;
1962}
1963
1964static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1965 const int offset)
1966{
1967 skb_reset_inner_mac_header(skb);
1968 skb->inner_mac_header += offset;
1969}
fda55eca
ED
1970static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1971{
35d04610 1972 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
1973}
1974
9c70220b
ACM
1975static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1976{
2e07fa9c 1977 return skb->head + skb->transport_header;
9c70220b
ACM
1978}
1979
badff6d0
ACM
1980static inline void skb_reset_transport_header(struct sk_buff *skb)
1981{
2e07fa9c 1982 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
1983}
1984
967b05f6
ACM
1985static inline void skb_set_transport_header(struct sk_buff *skb,
1986 const int offset)
1987{
2e07fa9c
ACM
1988 skb_reset_transport_header(skb);
1989 skb->transport_header += offset;
ea2ae17d
ACM
1990}
1991
d56f90a7
ACM
1992static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1993{
2e07fa9c 1994 return skb->head + skb->network_header;
d56f90a7
ACM
1995}
1996
c1d2bbe1
ACM
1997static inline void skb_reset_network_header(struct sk_buff *skb)
1998{
2e07fa9c 1999 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2000}
2001
c14d2450
ACM
2002static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2003{
2e07fa9c
ACM
2004 skb_reset_network_header(skb);
2005 skb->network_header += offset;
c14d2450
ACM
2006}
2007
2e07fa9c 2008static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2009{
2e07fa9c 2010 return skb->head + skb->mac_header;
bbe735e4
ACM
2011}
2012
2e07fa9c 2013static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2014{
35d04610 2015 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2016}
2017
2018static inline void skb_reset_mac_header(struct sk_buff *skb)
2019{
2020 skb->mac_header = skb->data - skb->head;
2021}
2022
2023static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2024{
2025 skb_reset_mac_header(skb);
2026 skb->mac_header += offset;
2027}
2028
0e3da5bb
TT
2029static inline void skb_pop_mac_header(struct sk_buff *skb)
2030{
2031 skb->mac_header = skb->network_header;
2032}
2033
fbbdb8f0
YX
2034static inline void skb_probe_transport_header(struct sk_buff *skb,
2035 const int offset_hint)
2036{
2037 struct flow_keys keys;
2038
2039 if (skb_transport_header_was_set(skb))
2040 return;
06635a35 2041 else if (skb_flow_dissect_flow_keys(skb, &keys))
42aecaa9 2042 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2043 else
2044 skb_set_transport_header(skb, offset_hint);
2045}
2046
03606895
ED
2047static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2048{
2049 if (skb_mac_header_was_set(skb)) {
2050 const unsigned char *old_mac = skb_mac_header(skb);
2051
2052 skb_set_mac_header(skb, -skb->mac_len);
2053 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2054 }
2055}
2056
04fb451e
MM
2057static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2058{
2059 return skb->csum_start - skb_headroom(skb);
2060}
2061
2e07fa9c
ACM
2062static inline int skb_transport_offset(const struct sk_buff *skb)
2063{
2064 return skb_transport_header(skb) - skb->data;
2065}
2066
2067static inline u32 skb_network_header_len(const struct sk_buff *skb)
2068{
2069 return skb->transport_header - skb->network_header;
2070}
2071
6a674e9c
JG
2072static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2073{
2074 return skb->inner_transport_header - skb->inner_network_header;
2075}
2076
2e07fa9c
ACM
2077static inline int skb_network_offset(const struct sk_buff *skb)
2078{
2079 return skb_network_header(skb) - skb->data;
2080}
48d49d0c 2081
6a674e9c
JG
2082static inline int skb_inner_network_offset(const struct sk_buff *skb)
2083{
2084 return skb_inner_network_header(skb) - skb->data;
2085}
2086
f9599ce1
CG
2087static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2088{
2089 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2090}
2091
1da177e4
LT
2092/*
2093 * CPUs often take a performance hit when accessing unaligned memory
2094 * locations. The actual performance hit varies, it can be small if the
2095 * hardware handles it or large if we have to take an exception and fix it
2096 * in software.
2097 *
2098 * Since an ethernet header is 14 bytes network drivers often end up with
2099 * the IP header at an unaligned offset. The IP header can be aligned by
2100 * shifting the start of the packet by 2 bytes. Drivers should do this
2101 * with:
2102 *
8660c124 2103 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2104 *
2105 * The downside to this alignment of the IP header is that the DMA is now
2106 * unaligned. On some architectures the cost of an unaligned DMA is high
2107 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2108 *
1da177e4
LT
2109 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2110 * to be overridden.
2111 */
2112#ifndef NET_IP_ALIGN
2113#define NET_IP_ALIGN 2
2114#endif
2115
025be81e
AB
2116/*
2117 * The networking layer reserves some headroom in skb data (via
2118 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2119 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2120 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2121 *
2122 * Unfortunately this headroom changes the DMA alignment of the resulting
2123 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2124 * on some architectures. An architecture can override this value,
2125 * perhaps setting it to a cacheline in size (since that will maintain
2126 * cacheline alignment of the DMA). It must be a power of 2.
2127 *
d6301d3d 2128 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2129 * headroom, you should not reduce this.
5933dd2f
ED
2130 *
2131 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2132 * to reduce average number of cache lines per packet.
2133 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2134 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2135 */
2136#ifndef NET_SKB_PAD
5933dd2f 2137#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2138#endif
2139
7965bd4d 2140int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2141
2142static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2143{
c4264f27 2144 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2145 WARN_ON(1);
2146 return;
2147 }
27a884dc
ACM
2148 skb->len = len;
2149 skb_set_tail_pointer(skb, len);
1da177e4
LT
2150}
2151
7965bd4d 2152void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2153
2154static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2155{
3cc0e873
HX
2156 if (skb->data_len)
2157 return ___pskb_trim(skb, len);
2158 __skb_trim(skb, len);
2159 return 0;
1da177e4
LT
2160}
2161
2162static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2163{
2164 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2165}
2166
e9fa4f7b
HX
2167/**
2168 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2169 * @skb: buffer to alter
2170 * @len: new length
2171 *
2172 * This is identical to pskb_trim except that the caller knows that
2173 * the skb is not cloned so we should never get an error due to out-
2174 * of-memory.
2175 */
2176static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2177{
2178 int err = pskb_trim(skb, len);
2179 BUG_ON(err);
2180}
2181
1da177e4
LT
2182/**
2183 * skb_orphan - orphan a buffer
2184 * @skb: buffer to orphan
2185 *
2186 * If a buffer currently has an owner then we call the owner's
2187 * destructor function and make the @skb unowned. The buffer continues
2188 * to exist but is no longer charged to its former owner.
2189 */
2190static inline void skb_orphan(struct sk_buff *skb)
2191{
c34a7612 2192 if (skb->destructor) {
1da177e4 2193 skb->destructor(skb);
c34a7612
ED
2194 skb->destructor = NULL;
2195 skb->sk = NULL;
376c7311
ED
2196 } else {
2197 BUG_ON(skb->sk);
c34a7612 2198 }
1da177e4
LT
2199}
2200
a353e0ce
MT
2201/**
2202 * skb_orphan_frags - orphan the frags contained in a buffer
2203 * @skb: buffer to orphan frags from
2204 * @gfp_mask: allocation mask for replacement pages
2205 *
2206 * For each frag in the SKB which needs a destructor (i.e. has an
2207 * owner) create a copy of that frag and release the original
2208 * page by calling the destructor.
2209 */
2210static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2211{
2212 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2213 return 0;
2214 return skb_copy_ubufs(skb, gfp_mask);
2215}
2216
1da177e4
LT
2217/**
2218 * __skb_queue_purge - empty a list
2219 * @list: list to empty
2220 *
2221 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2222 * the list and one reference dropped. This function does not take the
2223 * list lock and the caller must hold the relevant locks to use it.
2224 */
7965bd4d 2225void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2226static inline void __skb_queue_purge(struct sk_buff_head *list)
2227{
2228 struct sk_buff *skb;
2229 while ((skb = __skb_dequeue(list)) != NULL)
2230 kfree_skb(skb);
2231}
2232
7965bd4d 2233void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2234
7965bd4d
JP
2235struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2236 gfp_t gfp_mask);
8af27456
CH
2237
2238/**
2239 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2240 * @dev: network device to receive on
2241 * @length: length to allocate
2242 *
2243 * Allocate a new &sk_buff and assign it a usage count of one. The
2244 * buffer has unspecified headroom built in. Users should allocate
2245 * the headroom they think they need without accounting for the
2246 * built in space. The built in space is used for optimisations.
2247 *
2248 * %NULL is returned if there is no free memory. Although this function
2249 * allocates memory it can be called from an interrupt.
2250 */
2251static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2252 unsigned int length)
8af27456
CH
2253{
2254 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2255}
2256
6f532612
ED
2257/* legacy helper around __netdev_alloc_skb() */
2258static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2259 gfp_t gfp_mask)
2260{
2261 return __netdev_alloc_skb(NULL, length, gfp_mask);
2262}
2263
2264/* legacy helper around netdev_alloc_skb() */
2265static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2266{
2267 return netdev_alloc_skb(NULL, length);
2268}
2269
2270
4915a0de
ED
2271static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2272 unsigned int length, gfp_t gfp)
61321bbd 2273{
4915a0de 2274 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2275
2276 if (NET_IP_ALIGN && skb)
2277 skb_reserve(skb, NET_IP_ALIGN);
2278 return skb;
2279}
2280
4915a0de
ED
2281static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2282 unsigned int length)
2283{
2284 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2285}
2286
181edb2b
AD
2287static inline void skb_free_frag(void *addr)
2288{
2289 __free_page_frag(addr);
2290}
2291
ffde7328 2292void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2293struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2294 unsigned int length, gfp_t gfp_mask);
2295static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2296 unsigned int length)
2297{
2298 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2299}
ffde7328 2300
71dfda58
AD
2301/**
2302 * __dev_alloc_pages - allocate page for network Rx
2303 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2304 * @order: size of the allocation
2305 *
2306 * Allocate a new page.
2307 *
2308 * %NULL is returned if there is no free memory.
2309*/
2310static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2311 unsigned int order)
2312{
2313 /* This piece of code contains several assumptions.
2314 * 1. This is for device Rx, therefor a cold page is preferred.
2315 * 2. The expectation is the user wants a compound page.
2316 * 3. If requesting a order 0 page it will not be compound
2317 * due to the check to see if order has a value in prep_new_page
2318 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2319 * code in gfp_to_alloc_flags that should be enforcing this.
2320 */
2321 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2322
2323 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2324}
2325
2326static inline struct page *dev_alloc_pages(unsigned int order)
2327{
2328 return __dev_alloc_pages(GFP_ATOMIC, order);
2329}
2330
2331/**
2332 * __dev_alloc_page - allocate a page for network Rx
2333 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2334 *
2335 * Allocate a new page.
2336 *
2337 * %NULL is returned if there is no free memory.
2338 */
2339static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2340{
2341 return __dev_alloc_pages(gfp_mask, 0);
2342}
2343
2344static inline struct page *dev_alloc_page(void)
2345{
2346 return __dev_alloc_page(GFP_ATOMIC);
2347}
2348
0614002b
MG
2349/**
2350 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2351 * @page: The page that was allocated from skb_alloc_page
2352 * @skb: The skb that may need pfmemalloc set
2353 */
2354static inline void skb_propagate_pfmemalloc(struct page *page,
2355 struct sk_buff *skb)
2356{
2f064f34 2357 if (page_is_pfmemalloc(page))
0614002b
MG
2358 skb->pfmemalloc = true;
2359}
2360
131ea667 2361/**
e227867f 2362 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2363 * @frag: the paged fragment
2364 *
2365 * Returns the &struct page associated with @frag.
2366 */
2367static inline struct page *skb_frag_page(const skb_frag_t *frag)
2368{
a8605c60 2369 return frag->page.p;
131ea667
IC
2370}
2371
2372/**
2373 * __skb_frag_ref - take an addition reference on a paged fragment.
2374 * @frag: the paged fragment
2375 *
2376 * Takes an additional reference on the paged fragment @frag.
2377 */
2378static inline void __skb_frag_ref(skb_frag_t *frag)
2379{
2380 get_page(skb_frag_page(frag));
2381}
2382
2383/**
2384 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2385 * @skb: the buffer
2386 * @f: the fragment offset.
2387 *
2388 * Takes an additional reference on the @f'th paged fragment of @skb.
2389 */
2390static inline void skb_frag_ref(struct sk_buff *skb, int f)
2391{
2392 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2393}
2394
2395/**
2396 * __skb_frag_unref - release a reference on a paged fragment.
2397 * @frag: the paged fragment
2398 *
2399 * Releases a reference on the paged fragment @frag.
2400 */
2401static inline void __skb_frag_unref(skb_frag_t *frag)
2402{
2403 put_page(skb_frag_page(frag));
2404}
2405
2406/**
2407 * skb_frag_unref - release a reference on a paged fragment of an skb.
2408 * @skb: the buffer
2409 * @f: the fragment offset
2410 *
2411 * Releases a reference on the @f'th paged fragment of @skb.
2412 */
2413static inline void skb_frag_unref(struct sk_buff *skb, int f)
2414{
2415 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2416}
2417
2418/**
2419 * skb_frag_address - gets the address of the data contained in a paged fragment
2420 * @frag: the paged fragment buffer
2421 *
2422 * Returns the address of the data within @frag. The page must already
2423 * be mapped.
2424 */
2425static inline void *skb_frag_address(const skb_frag_t *frag)
2426{
2427 return page_address(skb_frag_page(frag)) + frag->page_offset;
2428}
2429
2430/**
2431 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2432 * @frag: the paged fragment buffer
2433 *
2434 * Returns the address of the data within @frag. Checks that the page
2435 * is mapped and returns %NULL otherwise.
2436 */
2437static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2438{
2439 void *ptr = page_address(skb_frag_page(frag));
2440 if (unlikely(!ptr))
2441 return NULL;
2442
2443 return ptr + frag->page_offset;
2444}
2445
2446/**
2447 * __skb_frag_set_page - sets the page contained in a paged fragment
2448 * @frag: the paged fragment
2449 * @page: the page to set
2450 *
2451 * Sets the fragment @frag to contain @page.
2452 */
2453static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2454{
a8605c60 2455 frag->page.p = page;
131ea667
IC
2456}
2457
2458/**
2459 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2460 * @skb: the buffer
2461 * @f: the fragment offset
2462 * @page: the page to set
2463 *
2464 * Sets the @f'th fragment of @skb to contain @page.
2465 */
2466static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2467 struct page *page)
2468{
2469 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2470}
2471
400dfd3a
ED
2472bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2473
131ea667
IC
2474/**
2475 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2476 * @dev: the device to map the fragment to
131ea667
IC
2477 * @frag: the paged fragment to map
2478 * @offset: the offset within the fragment (starting at the
2479 * fragment's own offset)
2480 * @size: the number of bytes to map
f83347df 2481 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2482 *
2483 * Maps the page associated with @frag to @device.
2484 */
2485static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2486 const skb_frag_t *frag,
2487 size_t offset, size_t size,
2488 enum dma_data_direction dir)
2489{
2490 return dma_map_page(dev, skb_frag_page(frag),
2491 frag->page_offset + offset, size, dir);
2492}
2493
117632e6
ED
2494static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2495 gfp_t gfp_mask)
2496{
2497 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2498}
2499
bad93e9d
OP
2500
2501static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2502 gfp_t gfp_mask)
2503{
2504 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2505}
2506
2507
334a8132
PM
2508/**
2509 * skb_clone_writable - is the header of a clone writable
2510 * @skb: buffer to check
2511 * @len: length up to which to write
2512 *
2513 * Returns true if modifying the header part of the cloned buffer
2514 * does not requires the data to be copied.
2515 */
05bdd2f1 2516static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2517{
2518 return !skb_header_cloned(skb) &&
2519 skb_headroom(skb) + len <= skb->hdr_len;
2520}
2521
d9cc2048
HX
2522static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2523 int cloned)
2524{
2525 int delta = 0;
2526
d9cc2048
HX
2527 if (headroom > skb_headroom(skb))
2528 delta = headroom - skb_headroom(skb);
2529
2530 if (delta || cloned)
2531 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2532 GFP_ATOMIC);
2533 return 0;
2534}
2535
1da177e4
LT
2536/**
2537 * skb_cow - copy header of skb when it is required
2538 * @skb: buffer to cow
2539 * @headroom: needed headroom
2540 *
2541 * If the skb passed lacks sufficient headroom or its data part
2542 * is shared, data is reallocated. If reallocation fails, an error
2543 * is returned and original skb is not changed.
2544 *
2545 * The result is skb with writable area skb->head...skb->tail
2546 * and at least @headroom of space at head.
2547 */
2548static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2549{
d9cc2048
HX
2550 return __skb_cow(skb, headroom, skb_cloned(skb));
2551}
1da177e4 2552
d9cc2048
HX
2553/**
2554 * skb_cow_head - skb_cow but only making the head writable
2555 * @skb: buffer to cow
2556 * @headroom: needed headroom
2557 *
2558 * This function is identical to skb_cow except that we replace the
2559 * skb_cloned check by skb_header_cloned. It should be used when
2560 * you only need to push on some header and do not need to modify
2561 * the data.
2562 */
2563static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2564{
2565 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2566}
2567
2568/**
2569 * skb_padto - pad an skbuff up to a minimal size
2570 * @skb: buffer to pad
2571 * @len: minimal length
2572 *
2573 * Pads up a buffer to ensure the trailing bytes exist and are
2574 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2575 * is untouched. Otherwise it is extended. Returns zero on
2576 * success. The skb is freed on error.
1da177e4 2577 */
5b057c6b 2578static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2579{
2580 unsigned int size = skb->len;
2581 if (likely(size >= len))
5b057c6b 2582 return 0;
987c402a 2583 return skb_pad(skb, len - size);
1da177e4
LT
2584}
2585
9c0c1124
AD
2586/**
2587 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2588 * @skb: buffer to pad
2589 * @len: minimal length
2590 *
2591 * Pads up a buffer to ensure the trailing bytes exist and are
2592 * blanked. If the buffer already contains sufficient data it
2593 * is untouched. Otherwise it is extended. Returns zero on
2594 * success. The skb is freed on error.
2595 */
2596static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2597{
2598 unsigned int size = skb->len;
2599
2600 if (unlikely(size < len)) {
2601 len -= size;
2602 if (skb_pad(skb, len))
2603 return -ENOMEM;
2604 __skb_put(skb, len);
2605 }
2606 return 0;
2607}
2608
1da177e4 2609static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2610 struct iov_iter *from, int copy)
1da177e4
LT
2611{
2612 const int off = skb->len;
2613
2614 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2615 __wsum csum = 0;
2616 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2617 &csum, from) == copy) {
1da177e4
LT
2618 skb->csum = csum_block_add(skb->csum, csum, off);
2619 return 0;
2620 }
af2b040e 2621 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2622 return 0;
2623
2624 __skb_trim(skb, off);
2625 return -EFAULT;
2626}
2627
38ba0a65
ED
2628static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2629 const struct page *page, int off)
1da177e4
LT
2630{
2631 if (i) {
9e903e08 2632 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2633
ea2ab693 2634 return page == skb_frag_page(frag) &&
9e903e08 2635 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2636 }
38ba0a65 2637 return false;
1da177e4
LT
2638}
2639
364c6bad
HX
2640static inline int __skb_linearize(struct sk_buff *skb)
2641{
2642 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2643}
2644
1da177e4
LT
2645/**
2646 * skb_linearize - convert paged skb to linear one
2647 * @skb: buffer to linarize
1da177e4
LT
2648 *
2649 * If there is no free memory -ENOMEM is returned, otherwise zero
2650 * is returned and the old skb data released.
2651 */
364c6bad
HX
2652static inline int skb_linearize(struct sk_buff *skb)
2653{
2654 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2655}
2656
cef401de
ED
2657/**
2658 * skb_has_shared_frag - can any frag be overwritten
2659 * @skb: buffer to test
2660 *
2661 * Return true if the skb has at least one frag that might be modified
2662 * by an external entity (as in vmsplice()/sendfile())
2663 */
2664static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2665{
c9af6db4
PS
2666 return skb_is_nonlinear(skb) &&
2667 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2668}
2669
364c6bad
HX
2670/**
2671 * skb_linearize_cow - make sure skb is linear and writable
2672 * @skb: buffer to process
2673 *
2674 * If there is no free memory -ENOMEM is returned, otherwise zero
2675 * is returned and the old skb data released.
2676 */
2677static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2678{
364c6bad
HX
2679 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2680 __skb_linearize(skb) : 0;
1da177e4
LT
2681}
2682
2683/**
2684 * skb_postpull_rcsum - update checksum for received skb after pull
2685 * @skb: buffer to update
2686 * @start: start of data before pull
2687 * @len: length of data pulled
2688 *
2689 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2690 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2691 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2692 */
2693
2694static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2695 const void *start, unsigned int len)
1da177e4 2696{
84fa7933 2697 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4
LT
2698 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2699}
2700
cbb042f9
HX
2701unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2702
7ce5a27f
DM
2703/**
2704 * pskb_trim_rcsum - trim received skb and update checksum
2705 * @skb: buffer to trim
2706 * @len: new length
2707 *
2708 * This is exactly the same as pskb_trim except that it ensures the
2709 * checksum of received packets are still valid after the operation.
2710 */
2711
2712static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2713{
2714 if (likely(len >= skb->len))
2715 return 0;
2716 if (skb->ip_summed == CHECKSUM_COMPLETE)
2717 skb->ip_summed = CHECKSUM_NONE;
2718 return __pskb_trim(skb, len);
2719}
2720
1da177e4
LT
2721#define skb_queue_walk(queue, skb) \
2722 for (skb = (queue)->next; \
a1e4891f 2723 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2724 skb = skb->next)
2725
46f8914e
JC
2726#define skb_queue_walk_safe(queue, skb, tmp) \
2727 for (skb = (queue)->next, tmp = skb->next; \
2728 skb != (struct sk_buff *)(queue); \
2729 skb = tmp, tmp = skb->next)
2730
1164f52a 2731#define skb_queue_walk_from(queue, skb) \
a1e4891f 2732 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2733 skb = skb->next)
2734
2735#define skb_queue_walk_from_safe(queue, skb, tmp) \
2736 for (tmp = skb->next; \
2737 skb != (struct sk_buff *)(queue); \
2738 skb = tmp, tmp = skb->next)
2739
300ce174
SH
2740#define skb_queue_reverse_walk(queue, skb) \
2741 for (skb = (queue)->prev; \
a1e4891f 2742 skb != (struct sk_buff *)(queue); \
300ce174
SH
2743 skb = skb->prev)
2744
686a2955
DM
2745#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2746 for (skb = (queue)->prev, tmp = skb->prev; \
2747 skb != (struct sk_buff *)(queue); \
2748 skb = tmp, tmp = skb->prev)
2749
2750#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2751 for (tmp = skb->prev; \
2752 skb != (struct sk_buff *)(queue); \
2753 skb = tmp, tmp = skb->prev)
1da177e4 2754
21dc3301 2755static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2756{
2757 return skb_shinfo(skb)->frag_list != NULL;
2758}
2759
2760static inline void skb_frag_list_init(struct sk_buff *skb)
2761{
2762 skb_shinfo(skb)->frag_list = NULL;
2763}
2764
ee039871
DM
2765#define skb_walk_frags(skb, iter) \
2766 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2767
7965bd4d
JP
2768struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2769 int *peeked, int *off, int *err);
2770struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2771 int *err);
2772unsigned int datagram_poll(struct file *file, struct socket *sock,
2773 struct poll_table_struct *wait);
c0371da6
AV
2774int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2775 struct iov_iter *to, int size);
51f3d02b
DM
2776static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2777 struct msghdr *msg, int size)
2778{
e5a4b0bb 2779 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 2780}
e5a4b0bb
AV
2781int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2782 struct msghdr *msg);
3a654f97
AV
2783int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2784 struct iov_iter *from, int len);
3a654f97 2785int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d
JP
2786void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2787void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2788int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2789int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2790int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2791__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2792 int len, __wsum csum);
a60e3cc7
HFS
2793ssize_t skb_socket_splice(struct sock *sk,
2794 struct pipe_inode_info *pipe,
2795 struct splice_pipe_desc *spd);
2796int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 2797 struct pipe_inode_info *pipe, unsigned int len,
a60e3cc7
HFS
2798 unsigned int flags,
2799 ssize_t (*splice_cb)(struct sock *,
2800 struct pipe_inode_info *,
2801 struct splice_pipe_desc *));
7965bd4d 2802void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 2803unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
2804int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2805 int len, int hlen);
7965bd4d
JP
2806void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2807int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2808void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 2809unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 2810struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 2811struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 2812int skb_ensure_writable(struct sk_buff *skb, int write_len);
93515d53
JP
2813int skb_vlan_pop(struct sk_buff *skb);
2814int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
20380731 2815
6ce8e9ce
AV
2816static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2817{
21226abb 2818 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
2819}
2820
7eab8d9e
AV
2821static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2822{
e5a4b0bb 2823 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
2824}
2825
2817a336
DB
2826struct skb_checksum_ops {
2827 __wsum (*update)(const void *mem, int len, __wsum wsum);
2828 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2829};
2830
2831__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2832 __wsum csum, const struct skb_checksum_ops *ops);
2833__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2834 __wsum csum);
2835
1e98a0f0
ED
2836static inline void * __must_check
2837__skb_header_pointer(const struct sk_buff *skb, int offset,
2838 int len, void *data, int hlen, void *buffer)
1da177e4 2839{
55820ee2 2840 if (hlen - offset >= len)
690e36e7 2841 return data + offset;
1da177e4 2842
690e36e7
DM
2843 if (!skb ||
2844 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
2845 return NULL;
2846
2847 return buffer;
2848}
2849
1e98a0f0
ED
2850static inline void * __must_check
2851skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
2852{
2853 return __skb_header_pointer(skb, offset, len, skb->data,
2854 skb_headlen(skb), buffer);
2855}
2856
4262e5cc
DB
2857/**
2858 * skb_needs_linearize - check if we need to linearize a given skb
2859 * depending on the given device features.
2860 * @skb: socket buffer to check
2861 * @features: net device features
2862 *
2863 * Returns true if either:
2864 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2865 * 2. skb is fragmented and the device does not support SG.
2866 */
2867static inline bool skb_needs_linearize(struct sk_buff *skb,
2868 netdev_features_t features)
2869{
2870 return skb_is_nonlinear(skb) &&
2871 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2872 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2873}
2874
d626f62b
ACM
2875static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2876 void *to,
2877 const unsigned int len)
2878{
2879 memcpy(to, skb->data, len);
2880}
2881
2882static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2883 const int offset, void *to,
2884 const unsigned int len)
2885{
2886 memcpy(to, skb->data + offset, len);
2887}
2888
27d7ff46
ACM
2889static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2890 const void *from,
2891 const unsigned int len)
2892{
2893 memcpy(skb->data, from, len);
2894}
2895
2896static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2897 const int offset,
2898 const void *from,
2899 const unsigned int len)
2900{
2901 memcpy(skb->data + offset, from, len);
2902}
2903
7965bd4d 2904void skb_init(void);
1da177e4 2905
ac45f602
PO
2906static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2907{
2908 return skb->tstamp;
2909}
2910
a61bbcf2
PM
2911/**
2912 * skb_get_timestamp - get timestamp from a skb
2913 * @skb: skb to get stamp from
2914 * @stamp: pointer to struct timeval to store stamp in
2915 *
2916 * Timestamps are stored in the skb as offsets to a base timestamp.
2917 * This function converts the offset back to a struct timeval and stores
2918 * it in stamp.
2919 */
ac45f602
PO
2920static inline void skb_get_timestamp(const struct sk_buff *skb,
2921 struct timeval *stamp)
a61bbcf2 2922{
b7aa0bf7 2923 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
2924}
2925
ac45f602
PO
2926static inline void skb_get_timestampns(const struct sk_buff *skb,
2927 struct timespec *stamp)
2928{
2929 *stamp = ktime_to_timespec(skb->tstamp);
2930}
2931
b7aa0bf7 2932static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 2933{
b7aa0bf7 2934 skb->tstamp = ktime_get_real();
a61bbcf2
PM
2935}
2936
164891aa
SH
2937static inline ktime_t net_timedelta(ktime_t t)
2938{
2939 return ktime_sub(ktime_get_real(), t);
2940}
2941
b9ce204f
IJ
2942static inline ktime_t net_invalid_timestamp(void)
2943{
2944 return ktime_set(0, 0);
2945}
a61bbcf2 2946
62bccb8c
AD
2947struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2948
c1f19b51
RC
2949#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2950
7965bd4d
JP
2951void skb_clone_tx_timestamp(struct sk_buff *skb);
2952bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
2953
2954#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2955
2956static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2957{
2958}
2959
2960static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2961{
2962 return false;
2963}
2964
2965#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2966
2967/**
2968 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2969 *
da92b194
RC
2970 * PHY drivers may accept clones of transmitted packets for
2971 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
2972 * must call this function to return the skb back to the stack with a
2973 * timestamp.
da92b194 2974 *
c1f19b51 2975 * @skb: clone of the the original outgoing packet
7a76a021 2976 * @hwtstamps: hardware time stamps
c1f19b51
RC
2977 *
2978 */
2979void skb_complete_tx_timestamp(struct sk_buff *skb,
2980 struct skb_shared_hwtstamps *hwtstamps);
2981
e7fd2885
WB
2982void __skb_tstamp_tx(struct sk_buff *orig_skb,
2983 struct skb_shared_hwtstamps *hwtstamps,
2984 struct sock *sk, int tstype);
2985
ac45f602
PO
2986/**
2987 * skb_tstamp_tx - queue clone of skb with send time stamps
2988 * @orig_skb: the original outgoing packet
2989 * @hwtstamps: hardware time stamps, may be NULL if not available
2990 *
2991 * If the skb has a socket associated, then this function clones the
2992 * skb (thus sharing the actual data and optional structures), stores
2993 * the optional hardware time stamping information (if non NULL) or
2994 * generates a software time stamp (otherwise), then queues the clone
2995 * to the error queue of the socket. Errors are silently ignored.
2996 */
7965bd4d
JP
2997void skb_tstamp_tx(struct sk_buff *orig_skb,
2998 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 2999
4507a715
RC
3000static inline void sw_tx_timestamp(struct sk_buff *skb)
3001{
2244d07b
OH
3002 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3003 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3004 skb_tstamp_tx(skb, NULL);
3005}
3006
3007/**
3008 * skb_tx_timestamp() - Driver hook for transmit timestamping
3009 *
3010 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3011 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3012 *
73409f3b
DM
3013 * Specifically, one should make absolutely sure that this function is
3014 * called before TX completion of this packet can trigger. Otherwise
3015 * the packet could potentially already be freed.
3016 *
4507a715
RC
3017 * @skb: A socket buffer.
3018 */
3019static inline void skb_tx_timestamp(struct sk_buff *skb)
3020{
c1f19b51 3021 skb_clone_tx_timestamp(skb);
4507a715
RC
3022 sw_tx_timestamp(skb);
3023}
3024
6e3e939f
JB
3025/**
3026 * skb_complete_wifi_ack - deliver skb with wifi status
3027 *
3028 * @skb: the original outgoing packet
3029 * @acked: ack status
3030 *
3031 */
3032void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3033
7965bd4d
JP
3034__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3035__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3036
60476372
HX
3037static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3038{
6edec0e6
TH
3039 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3040 skb->csum_valid ||
3041 (skb->ip_summed == CHECKSUM_PARTIAL &&
3042 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3043}
3044
fb286bb2
HX
3045/**
3046 * skb_checksum_complete - Calculate checksum of an entire packet
3047 * @skb: packet to process
3048 *
3049 * This function calculates the checksum over the entire packet plus
3050 * the value of skb->csum. The latter can be used to supply the
3051 * checksum of a pseudo header as used by TCP/UDP. It returns the
3052 * checksum.
3053 *
3054 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3055 * this function can be used to verify that checksum on received
3056 * packets. In that case the function should return zero if the
3057 * checksum is correct. In particular, this function will return zero
3058 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3059 * hardware has already verified the correctness of the checksum.
3060 */
4381ca3c 3061static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3062{
60476372
HX
3063 return skb_csum_unnecessary(skb) ?
3064 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3065}
3066
77cffe23
TH
3067static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3068{
3069 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3070 if (skb->csum_level == 0)
3071 skb->ip_summed = CHECKSUM_NONE;
3072 else
3073 skb->csum_level--;
3074 }
3075}
3076
3077static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3078{
3079 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3080 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3081 skb->csum_level++;
3082 } else if (skb->ip_summed == CHECKSUM_NONE) {
3083 skb->ip_summed = CHECKSUM_UNNECESSARY;
3084 skb->csum_level = 0;
3085 }
3086}
3087
5a212329
TH
3088static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3089{
3090 /* Mark current checksum as bad (typically called from GRO
3091 * path). In the case that ip_summed is CHECKSUM_NONE
3092 * this must be the first checksum encountered in the packet.
3093 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3094 * checksum after the last one validated. For UDP, a zero
3095 * checksum can not be marked as bad.
3096 */
3097
3098 if (skb->ip_summed == CHECKSUM_NONE ||
3099 skb->ip_summed == CHECKSUM_UNNECESSARY)
3100 skb->csum_bad = 1;
3101}
3102
76ba0aae
TH
3103/* Check if we need to perform checksum complete validation.
3104 *
3105 * Returns true if checksum complete is needed, false otherwise
3106 * (either checksum is unnecessary or zero checksum is allowed).
3107 */
3108static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3109 bool zero_okay,
3110 __sum16 check)
3111{
5d0c2b95
TH
3112 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3113 skb->csum_valid = 1;
77cffe23 3114 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3115 return false;
3116 }
3117
3118 return true;
3119}
3120
3121/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3122 * in checksum_init.
3123 */
3124#define CHECKSUM_BREAK 76
3125
4e18b9ad
TH
3126/* Unset checksum-complete
3127 *
3128 * Unset checksum complete can be done when packet is being modified
3129 * (uncompressed for instance) and checksum-complete value is
3130 * invalidated.
3131 */
3132static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3133{
3134 if (skb->ip_summed == CHECKSUM_COMPLETE)
3135 skb->ip_summed = CHECKSUM_NONE;
3136}
3137
76ba0aae
TH
3138/* Validate (init) checksum based on checksum complete.
3139 *
3140 * Return values:
3141 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3142 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3143 * checksum is stored in skb->csum for use in __skb_checksum_complete
3144 * non-zero: value of invalid checksum
3145 *
3146 */
3147static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3148 bool complete,
3149 __wsum psum)
3150{
3151 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3152 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3153 skb->csum_valid = 1;
76ba0aae
TH
3154 return 0;
3155 }
5a212329
TH
3156 } else if (skb->csum_bad) {
3157 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3158 return (__force __sum16)1;
76ba0aae
TH
3159 }
3160
3161 skb->csum = psum;
3162
5d0c2b95
TH
3163 if (complete || skb->len <= CHECKSUM_BREAK) {
3164 __sum16 csum;
3165
3166 csum = __skb_checksum_complete(skb);
3167 skb->csum_valid = !csum;
3168 return csum;
3169 }
76ba0aae
TH
3170
3171 return 0;
3172}
3173
3174static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3175{
3176 return 0;
3177}
3178
3179/* Perform checksum validate (init). Note that this is a macro since we only
3180 * want to calculate the pseudo header which is an input function if necessary.
3181 * First we try to validate without any computation (checksum unnecessary) and
3182 * then calculate based on checksum complete calling the function to compute
3183 * pseudo header.
3184 *
3185 * Return values:
3186 * 0: checksum is validated or try to in skb_checksum_complete
3187 * non-zero: value of invalid checksum
3188 */
3189#define __skb_checksum_validate(skb, proto, complete, \
3190 zero_okay, check, compute_pseudo) \
3191({ \
3192 __sum16 __ret = 0; \
5d0c2b95 3193 skb->csum_valid = 0; \
76ba0aae
TH
3194 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3195 __ret = __skb_checksum_validate_complete(skb, \
3196 complete, compute_pseudo(skb, proto)); \
3197 __ret; \
3198})
3199
3200#define skb_checksum_init(skb, proto, compute_pseudo) \
3201 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3202
3203#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3204 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3205
3206#define skb_checksum_validate(skb, proto, compute_pseudo) \
3207 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3208
3209#define skb_checksum_validate_zero_check(skb, proto, check, \
3210 compute_pseudo) \
096a4cfa 3211 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3212
3213#define skb_checksum_simple_validate(skb) \
3214 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3215
d96535a1
TH
3216static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3217{
3218 return (skb->ip_summed == CHECKSUM_NONE &&
3219 skb->csum_valid && !skb->csum_bad);
3220}
3221
3222static inline void __skb_checksum_convert(struct sk_buff *skb,
3223 __sum16 check, __wsum pseudo)
3224{
3225 skb->csum = ~pseudo;
3226 skb->ip_summed = CHECKSUM_COMPLETE;
3227}
3228
3229#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3230do { \
3231 if (__skb_checksum_convert_check(skb)) \
3232 __skb_checksum_convert(skb, check, \
3233 compute_pseudo(skb, proto)); \
3234} while (0)
3235
15e2396d
TH
3236static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3237 u16 start, u16 offset)
3238{
3239 skb->ip_summed = CHECKSUM_PARTIAL;
3240 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3241 skb->csum_offset = offset - start;
3242}
3243
dcdc8994
TH
3244/* Update skbuf and packet to reflect the remote checksum offload operation.
3245 * When called, ptr indicates the starting point for skb->csum when
3246 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3247 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3248 */
3249static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3250 int start, int offset, bool nopartial)
dcdc8994
TH
3251{
3252 __wsum delta;
3253
15e2396d
TH
3254 if (!nopartial) {
3255 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3256 return;
3257 }
3258
dcdc8994
TH
3259 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3260 __skb_checksum_complete(skb);
3261 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3262 }
3263
3264 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3265
3266 /* Adjust skb->csum since we changed the packet */
3267 skb->csum = csum_add(skb->csum, delta);
3268}
3269
5f79e0f9 3270#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3271void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3272static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3273{
3274 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3275 nf_conntrack_destroy(nfct);
1da177e4
LT
3276}
3277static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3278{
3279 if (nfct)
3280 atomic_inc(&nfct->use);
3281}
2fc72c7b 3282#endif
34666d46 3283#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3284static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3285{
3286 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3287 kfree(nf_bridge);
3288}
3289static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3290{
3291 if (nf_bridge)
3292 atomic_inc(&nf_bridge->use);
3293}
3294#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3295static inline void nf_reset(struct sk_buff *skb)
3296{
5f79e0f9 3297#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3298 nf_conntrack_put(skb->nfct);
3299 skb->nfct = NULL;
2fc72c7b 3300#endif
34666d46 3301#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3302 nf_bridge_put(skb->nf_bridge);
3303 skb->nf_bridge = NULL;
3304#endif
3305}
3306
124dff01
PM
3307static inline void nf_reset_trace(struct sk_buff *skb)
3308{
478b360a 3309#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3310 skb->nf_trace = 0;
3311#endif
a193a4ab
PM
3312}
3313
edda553c 3314/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3315static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3316 bool copy)
edda553c 3317{
5f79e0f9 3318#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3319 dst->nfct = src->nfct;
3320 nf_conntrack_get(src->nfct);
b1937227
ED
3321 if (copy)
3322 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3323#endif
34666d46 3324#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3325 dst->nf_bridge = src->nf_bridge;
3326 nf_bridge_get(src->nf_bridge);
3327#endif
478b360a 3328#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3329 if (copy)
3330 dst->nf_trace = src->nf_trace;
478b360a 3331#endif
edda553c
YK
3332}
3333
e7ac05f3
YK
3334static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3335{
e7ac05f3 3336#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3337 nf_conntrack_put(dst->nfct);
2fc72c7b 3338#endif
34666d46 3339#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3340 nf_bridge_put(dst->nf_bridge);
3341#endif
b1937227 3342 __nf_copy(dst, src, true);
e7ac05f3
YK
3343}
3344
984bc16c
JM
3345#ifdef CONFIG_NETWORK_SECMARK
3346static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3347{
3348 to->secmark = from->secmark;
3349}
3350
3351static inline void skb_init_secmark(struct sk_buff *skb)
3352{
3353 skb->secmark = 0;
3354}
3355#else
3356static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3357{ }
3358
3359static inline void skb_init_secmark(struct sk_buff *skb)
3360{ }
3361#endif
3362
574f7194
EB
3363static inline bool skb_irq_freeable(const struct sk_buff *skb)
3364{
3365 return !skb->destructor &&
3366#if IS_ENABLED(CONFIG_XFRM)
3367 !skb->sp &&
3368#endif
3369#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3370 !skb->nfct &&
3371#endif
3372 !skb->_skb_refdst &&
3373 !skb_has_frag_list(skb);
3374}
3375
f25f4e44
PWJ
3376static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3377{
f25f4e44 3378 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3379}
3380
9247744e 3381static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3382{
4e3ab47a 3383 return skb->queue_mapping;
4e3ab47a
PE
3384}
3385
f25f4e44
PWJ
3386static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3387{
f25f4e44 3388 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3389}
3390
d5a9e24a
DM
3391static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3392{
3393 skb->queue_mapping = rx_queue + 1;
3394}
3395
9247744e 3396static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3397{
3398 return skb->queue_mapping - 1;
3399}
3400
9247744e 3401static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3402{
a02cec21 3403 return skb->queue_mapping != 0;
d5a9e24a
DM
3404}
3405
def8b4fa
AD
3406static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3407{
0b3d8e08 3408#ifdef CONFIG_XFRM
def8b4fa 3409 return skb->sp;
def8b4fa 3410#else
def8b4fa 3411 return NULL;
def8b4fa 3412#endif
0b3d8e08 3413}
def8b4fa 3414
68c33163
PS
3415/* Keeps track of mac header offset relative to skb->head.
3416 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3417 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3418 * tunnel skb it points to outer mac header.
3419 * Keeps track of level of encapsulation of network headers.
3420 */
68c33163 3421struct skb_gso_cb {
3347c960
ED
3422 int mac_offset;
3423 int encap_level;
7e2b10c1 3424 __u16 csum_start;
68c33163
PS
3425};
3426#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3427
3428static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3429{
3430 return (skb_mac_header(inner_skb) - inner_skb->head) -
3431 SKB_GSO_CB(inner_skb)->mac_offset;
3432}
3433
1e2bd517
PS
3434static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3435{
3436 int new_headroom, headroom;
3437 int ret;
3438
3439 headroom = skb_headroom(skb);
3440 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3441 if (ret)
3442 return ret;
3443
3444 new_headroom = skb_headroom(skb);
3445 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3446 return 0;
3447}
3448
7e2b10c1
TH
3449/* Compute the checksum for a gso segment. First compute the checksum value
3450 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3451 * then add in skb->csum (checksum from csum_start to end of packet).
3452 * skb->csum and csum_start are then updated to reflect the checksum of the
3453 * resultant packet starting from the transport header-- the resultant checksum
3454 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3455 * header.
3456 */
3457static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3458{
3459 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
c91d4606
ED
3460 skb_transport_offset(skb);
3461 __wsum partial;
7e2b10c1 3462
c91d4606 3463 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
7e2b10c1
TH
3464 skb->csum = res;
3465 SKB_GSO_CB(skb)->csum_start -= plen;
3466
c91d4606 3467 return csum_fold(partial);
7e2b10c1
TH
3468}
3469
bdcc0924 3470static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3471{
3472 return skb_shinfo(skb)->gso_size;
3473}
3474
36a8f39e 3475/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3476static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3477{
3478 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3479}
3480
7965bd4d 3481void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3482
3483static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3484{
3485 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3486 * wanted then gso_type will be set. */
05bdd2f1
ED
3487 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3488
b78462eb
AD
3489 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3490 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3491 __skb_warn_lro_forwarding(skb);
3492 return true;
3493 }
3494 return false;
3495}
3496
35fc92a9
HX
3497static inline void skb_forward_csum(struct sk_buff *skb)
3498{
3499 /* Unfortunately we don't support this one. Any brave souls? */
3500 if (skb->ip_summed == CHECKSUM_COMPLETE)
3501 skb->ip_summed = CHECKSUM_NONE;
3502}
3503
bc8acf2c
ED
3504/**
3505 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3506 * @skb: skb to check
3507 *
3508 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3509 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3510 * use this helper, to document places where we make this assertion.
3511 */
05bdd2f1 3512static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3513{
3514#ifdef DEBUG
3515 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3516#endif
3517}
3518
f35d9d8a 3519bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3520
ed1f50c3 3521int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3522struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3523 unsigned int transport_len,
3524 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3525
3a7c1ee4
AD
3526/**
3527 * skb_head_is_locked - Determine if the skb->head is locked down
3528 * @skb: skb to check
3529 *
3530 * The head on skbs build around a head frag can be removed if they are
3531 * not cloned. This function returns true if the skb head is locked down
3532 * due to either being allocated via kmalloc, or by being a clone with
3533 * multiple references to the head.
3534 */
3535static inline bool skb_head_is_locked(const struct sk_buff *skb)
3536{
3537 return !skb->head_frag || skb_cloned(skb);
3538}
fe6cc55f
FW
3539
3540/**
3541 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3542 *
3543 * @skb: GSO skb
3544 *
3545 * skb_gso_network_seglen is used to determine the real size of the
3546 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3547 *
3548 * The MAC/L2 header is not accounted for.
3549 */
3550static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3551{
3552 unsigned int hdr_len = skb_transport_header(skb) -
3553 skb_network_header(skb);
3554 return hdr_len + skb_gso_transport_seglen(skb);
3555}
ee122c79 3556
1da177e4
LT
3557#endif /* __KERNEL__ */
3558#endif /* _LINUX_SKBUFF_H */