Merge tag 'mac80211-next-for-davem-2019-02-22' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4
LT
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
187f1882 20#include <linux/bug.h>
1da177e4 21#include <linux/cache.h>
56b17425 22#include <linux/rbtree.h>
51f3d02b 23#include <linux/socket.h>
c1d1b437 24#include <linux/refcount.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
e6017571 37#include <linux/sched/clock.h>
1bd758eb 38#include <net/flow_dissector.h>
a60e3cc7 39#include <linux/splice.h>
72b31f72 40#include <linux/in6.h>
8b10cab6 41#include <linux/if_packet.h>
f70ea018 42#include <net/flow.h>
1da177e4 43
7a6ae71b
TH
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver,
51 * a driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv4|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is used only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
89 *
90 * CHECKSUM_NONE:
91 *
7a6ae71b 92 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
77cffe23
TH
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 112 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum of because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
78ea85f1
DB
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
b4759dcd
DC
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
134 *
135 * CHECKSUM_PARTIAL:
136 *
6edec0e6
TH
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
78ea85f1 146 *
7a6ae71b
TH
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
149 *
150 * CHECKSUM_PARTIAL:
151 *
7a6ae71b 152 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 153 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, however they should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum-- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 173 *
7a6ae71b 174 * CHECKSUM_NONE:
78ea85f1 175 *
7a6ae71b
TH
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
78ea85f1
DB
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
7a6ae71b
TH
181 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
182 * output.
78ea85f1 183 *
7a6ae71b
TH
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, if should treat as CHECKSUM_NONE being set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
192 * will set set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note the there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215 * are set to refer to the outermost checksum being offload (two offloaded
216 * checksums are possible with UDP encapsulation).
78ea85f1
DB
217 */
218
60476372 219/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
1da177e4 224
77cffe23
TH
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
0bec8c88 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 229#define SKB_WITH_OVERHEAD(X) \
deea84b0 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
87fb4b7b
ED
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
1da177e4 241struct net_device;
716ea3a7 242struct scatterlist;
9c55e01c 243struct pipe_inode_info;
a8f820aa 244struct iov_iter;
fd11a83d 245struct napi_struct;
d58e468b
PP
246struct bpf_prog;
247union bpf_attr;
df5042f4 248struct skb_ext;
1da177e4 249
5f79e0f9 250#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
251struct nf_conntrack {
252 atomic_t use;
1da177e4 253};
5f79e0f9 254#endif
1da177e4 255
34666d46 256#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 257struct nf_bridge_info {
3eaf4025
FW
258 enum {
259 BRNF_PROTO_UNCHANGED,
260 BRNF_PROTO_8021Q,
261 BRNF_PROTO_PPPOE
7fb48c5b 262 } orig_proto:8;
72b1e5e4
FW
263 u8 pkt_otherhost:1;
264 u8 in_prerouting:1;
265 u8 bridged_dnat:1;
411ffb4f 266 __u16 frag_max_size;
bf1ac5ca 267 struct net_device *physindev;
63cdbc06
FW
268
269 /* always valid & non-NULL from FORWARD on, for physdev match */
270 struct net_device *physoutdev;
7fb48c5b 271 union {
72b1e5e4 272 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
273 __be32 ipv4_daddr;
274 struct in6_addr ipv6_daddr;
72b1e5e4
FW
275
276 /* after prerouting + nat detected: store original source
277 * mac since neigh resolution overwrites it, only used while
278 * skb is out in neigh layer.
279 */
280 char neigh_header[8];
72b31f72 281 };
1da177e4
LT
282};
283#endif
284
1da177e4
LT
285struct sk_buff_head {
286 /* These two members must be first. */
287 struct sk_buff *next;
288 struct sk_buff *prev;
289
290 __u32 qlen;
291 spinlock_t lock;
292};
293
294struct sk_buff;
295
9d4dde52
IC
296/* To allow 64K frame to be packed as single skb without frag_list we
297 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
298 * buffers which do not start on a page boundary.
299 *
300 * Since GRO uses frags we allocate at least 16 regardless of page
301 * size.
a715dea3 302 */
9d4dde52 303#if (65536/PAGE_SIZE + 1) < 16
eec00954 304#define MAX_SKB_FRAGS 16UL
a715dea3 305#else
9d4dde52 306#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 307#endif
5f74f82e 308extern int sysctl_max_skb_frags;
1da177e4 309
3953c46c
MRL
310/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
311 * segment using its current segmentation instead.
312 */
313#define GSO_BY_FRAGS 0xFFFF
314
1da177e4
LT
315typedef struct skb_frag_struct skb_frag_t;
316
317struct skb_frag_struct {
a8605c60
IC
318 struct {
319 struct page *p;
320 } page;
cb4dfe56 321#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
322 __u32 page_offset;
323 __u32 size;
cb4dfe56
ED
324#else
325 __u16 page_offset;
326 __u16 size;
327#endif
1da177e4
LT
328};
329
9e903e08
ED
330static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331{
332 return frag->size;
333}
334
335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336{
337 frag->size = size;
338}
339
340static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
341{
342 frag->size += delta;
343}
344
345static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
346{
347 frag->size -= delta;
348}
349
c613c209
WB
350static inline bool skb_frag_must_loop(struct page *p)
351{
352#if defined(CONFIG_HIGHMEM)
353 if (PageHighMem(p))
354 return true;
355#endif
356 return false;
357}
358
359/**
360 * skb_frag_foreach_page - loop over pages in a fragment
361 *
362 * @f: skb frag to operate on
363 * @f_off: offset from start of f->page.p
364 * @f_len: length from f_off to loop over
365 * @p: (temp var) current page
366 * @p_off: (temp var) offset from start of current page,
367 * non-zero only on first page.
368 * @p_len: (temp var) length in current page,
369 * < PAGE_SIZE only on first and last page.
370 * @copied: (temp var) length so far, excluding current p_len.
371 *
372 * A fragment can hold a compound page, in which case per-page
373 * operations, notably kmap_atomic, must be called for each
374 * regular page.
375 */
376#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
377 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
378 p_off = (f_off) & (PAGE_SIZE - 1), \
379 p_len = skb_frag_must_loop(p) ? \
380 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
381 copied = 0; \
382 copied < f_len; \
383 copied += p_len, p++, p_off = 0, \
384 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
385
ac45f602
PO
386#define HAVE_HW_TIME_STAMP
387
388/**
d3a21be8 389 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
390 * @hwtstamp: hardware time stamp transformed into duration
391 * since arbitrary point in time
ac45f602
PO
392 *
393 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 394 * skb->tstamp.
ac45f602
PO
395 *
396 * hwtstamps can only be compared against other hwtstamps from
397 * the same device.
398 *
399 * This structure is attached to packets as part of the
400 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
401 */
402struct skb_shared_hwtstamps {
403 ktime_t hwtstamp;
ac45f602
PO
404};
405
2244d07b
OH
406/* Definitions for tx_flags in struct skb_shared_info */
407enum {
408 /* generate hardware time stamp */
409 SKBTX_HW_TSTAMP = 1 << 0,
410
e7fd2885 411 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
412 SKBTX_SW_TSTAMP = 1 << 1,
413
414 /* device driver is going to provide hardware time stamp */
415 SKBTX_IN_PROGRESS = 1 << 2,
416
a6686f2f 417 /* device driver supports TX zero-copy buffers */
62b1a8ab 418 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
419
420 /* generate wifi status information (where possible) */
62b1a8ab 421 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
422
423 /* This indicates at least one fragment might be overwritten
424 * (as in vmsplice(), sendfile() ...)
425 * If we need to compute a TX checksum, we'll need to copy
426 * all frags to avoid possible bad checksum
427 */
428 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
429
430 /* generate software time stamp when entering packet scheduling */
431 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
432};
433
52267790 434#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 435#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 436 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
437#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
438
a6686f2f
SM
439/*
440 * The callback notifies userspace to release buffers when skb DMA is done in
441 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
442 * The zerocopy_success argument is true if zero copy transmit occurred,
443 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
444 * The ctx field is used to track device context.
445 * The desc field is used to track userspace buffer index.
a6686f2f
SM
446 */
447struct ubuf_info {
e19d6763 448 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
449 union {
450 struct {
451 unsigned long desc;
452 void *ctx;
453 };
454 struct {
455 u32 id;
456 u16 len;
457 u16 zerocopy:1;
458 u32 bytelen;
459 };
460 };
c1d1b437 461 refcount_t refcnt;
a91dbff5
WB
462
463 struct mmpin {
464 struct user_struct *user;
465 unsigned int num_pg;
466 } mmp;
ac45f602
PO
467};
468
52267790
WB
469#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
470
6f89dbce
SV
471int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
472void mm_unaccount_pinned_pages(struct mmpin *mmp);
473
52267790 474struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
475struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
476 struct ubuf_info *uarg);
52267790
WB
477
478static inline void sock_zerocopy_get(struct ubuf_info *uarg)
479{
c1d1b437 480 refcount_inc(&uarg->refcnt);
52267790
WB
481}
482
483void sock_zerocopy_put(struct ubuf_info *uarg);
52900d22 484void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
52267790
WB
485
486void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
487
b5947e5d 488int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
52267790
WB
489int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
490 struct msghdr *msg, int len,
491 struct ubuf_info *uarg);
492
1da177e4
LT
493/* This data is invariant across clones and lives at
494 * the end of the header data, ie. at skb->end.
495 */
496struct skb_shared_info {
de8f3a83
DB
497 __u8 __unused;
498 __u8 meta_len;
499 __u8 nr_frags;
9f42f126 500 __u8 tx_flags;
7967168c
HX
501 unsigned short gso_size;
502 /* Warning: this field is not always filled in (UFO)! */
503 unsigned short gso_segs;
1da177e4 504 struct sk_buff *frag_list;
ac45f602 505 struct skb_shared_hwtstamps hwtstamps;
7f564528 506 unsigned int gso_type;
09c2d251 507 u32 tskey;
ec7d2f2c
ED
508
509 /*
510 * Warning : all fields before dataref are cleared in __alloc_skb()
511 */
512 atomic_t dataref;
513
69e3c75f
JB
514 /* Intermediate layers must ensure that destructor_arg
515 * remains valid until skb destructor */
516 void * destructor_arg;
a6686f2f 517
fed66381
ED
518 /* must be last field, see pskb_expand_head() */
519 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
520};
521
522/* We divide dataref into two halves. The higher 16 bits hold references
523 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
524 * the entire skb->data. A clone of a headerless skb holds the length of
525 * the header in skb->hdr_len.
1da177e4
LT
526 *
527 * All users must obey the rule that the skb->data reference count must be
528 * greater than or equal to the payload reference count.
529 *
530 * Holding a reference to the payload part means that the user does not
531 * care about modifications to the header part of skb->data.
532 */
533#define SKB_DATAREF_SHIFT 16
534#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
535
d179cd12
DM
536
537enum {
c8753d55
VS
538 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
539 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
540 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
541};
542
7967168c
HX
543enum {
544 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
545
546 /* This indicates the skb is from an untrusted source. */
d9d30adf 547 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
548
549 /* This indicates the tcp segment has CWR set. */
d9d30adf 550 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 551
d9d30adf 552 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 553
d9d30adf 554 SKB_GSO_TCPV6 = 1 << 4,
68c33163 555
d9d30adf 556 SKB_GSO_FCOE = 1 << 5,
73136267 557
d9d30adf 558 SKB_GSO_GRE = 1 << 6,
0d89d203 559
d9d30adf 560 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 561
d9d30adf 562 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 563
d9d30adf 564 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 565
d9d30adf 566 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 567
d9d30adf 568 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 569
d9d30adf 570 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 571
d9d30adf 572 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 573
d9d30adf 574 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 575
d9d30adf 576 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
577
578 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
579
580 SKB_GSO_UDP_L4 = 1 << 17,
7967168c
HX
581};
582
2e07fa9c
ACM
583#if BITS_PER_LONG > 32
584#define NET_SKBUFF_DATA_USES_OFFSET 1
585#endif
586
587#ifdef NET_SKBUFF_DATA_USES_OFFSET
588typedef unsigned int sk_buff_data_t;
589#else
590typedef unsigned char *sk_buff_data_t;
591#endif
592
1da177e4
LT
593/**
594 * struct sk_buff - socket buffer
595 * @next: Next buffer in list
596 * @prev: Previous buffer in list
363ec392 597 * @tstamp: Time we arrived/left
56b17425 598 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 599 * @sk: Socket we are owned by
1da177e4 600 * @dev: Device we arrived on/are leaving by
d84e0bd7 601 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 602 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 603 * @sp: the security path, used for xfrm
1da177e4
LT
604 * @len: Length of actual data
605 * @data_len: Data length
606 * @mac_len: Length of link layer header
334a8132 607 * @hdr_len: writable header length of cloned skb
663ead3b
HX
608 * @csum: Checksum (must include start/offset pair)
609 * @csum_start: Offset from skb->head where checksumming should start
610 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 611 * @priority: Packet queueing priority
60ff7467 612 * @ignore_df: allow local fragmentation
1da177e4 613 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 614 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
615 * @nohdr: Payload reference only, must not modify header
616 * @pkt_type: Packet class
c83c2486 617 * @fclone: skbuff clone status
c83c2486 618 * @ipvs_property: skbuff is owned by ipvs
875e8939
IS
619 * @offload_fwd_mark: Packet was L2-forwarded in hardware
620 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 621 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 622 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
623 * @tc_redirected: packet was redirected by a tc action
624 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
625 * @peeked: this packet has been seen already, so stats have been
626 * done for it, don't do them again
ba9dda3a 627 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
628 * @protocol: Packet protocol from driver
629 * @destructor: Destruct function
e2080072 630 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
a9e419dc 631 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 632 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 633 * @skb_iif: ifindex of device we arrived on
1da177e4 634 * @tc_index: Traffic control index
61b905da 635 * @hash: the packet hash
d84e0bd7 636 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 637 * @xmit_more: More SKBs are pending for this queue
8b700862 638 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
df5042f4 639 * @active_extensions: active extensions (skb_ext_id types)
553a5672 640 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 641 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 642 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 643 * ports.
a3b18ddb 644 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
645 * @wifi_acked_valid: wifi_acked was set
646 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 647 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 648 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 649 * @dst_pending_confirm: need to confirm neighbour
a48d189e 650 * @decrypted: Decrypted SKB
06021292 651 * @napi_id: id of the NAPI struct this skb came from
984bc16c 652 * @secmark: security marking
d84e0bd7 653 * @mark: Generic packet mark
86a9bad3 654 * @vlan_proto: vlan encapsulation protocol
6aa895b0 655 * @vlan_tci: vlan tag control information
0d89d203 656 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
657 * @inner_transport_header: Inner transport layer header (encapsulation)
658 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 659 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
660 * @transport_header: Transport layer header
661 * @network_header: Network layer header
662 * @mac_header: Link layer header
663 * @tail: Tail pointer
664 * @end: End pointer
665 * @head: Head of buffer
666 * @data: Data head pointer
667 * @truesize: Buffer size
668 * @users: User count - see {datagram,tcp}.c
df5042f4 669 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
670 */
671
672struct sk_buff {
363ec392 673 union {
56b17425
ED
674 struct {
675 /* These two members must be first. */
676 struct sk_buff *next;
677 struct sk_buff *prev;
678
679 union {
bffa72cf
ED
680 struct net_device *dev;
681 /* Some protocols might use this space to store information,
682 * while device pointer would be NULL.
683 * UDP receive path is one user.
684 */
685 unsigned long dev_scratch;
56b17425
ED
686 };
687 };
fa0f5273 688 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 689 struct list_head list;
363ec392 690 };
fa0f5273
PO
691
692 union {
693 struct sock *sk;
694 int ip_defrag_offset;
695 };
1da177e4 696
c84d9490 697 union {
bffa72cf 698 ktime_t tstamp;
d3edd06e 699 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 700 };
1da177e4
LT
701 /*
702 * This is the control buffer. It is free to use for every
703 * layer. Please put your private variables there. If you
704 * want to keep them across layers you have to do a skb_clone()
705 * first. This is owned by whoever has the skb queued ATM.
706 */
da3f5cf1 707 char cb[48] __aligned(8);
1da177e4 708
e2080072
ED
709 union {
710 struct {
711 unsigned long _skb_refdst;
712 void (*destructor)(struct sk_buff *skb);
713 };
714 struct list_head tcp_tsorted_anchor;
715 };
716
b1937227 717#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 718 unsigned long _nfct;
da3f5cf1 719#endif
1da177e4 720 unsigned int len,
334a8132
PM
721 data_len;
722 __u16 mac_len,
723 hdr_len;
b1937227
ED
724
725 /* Following fields are _not_ copied in __copy_skb_header()
726 * Note that queue_mapping is here mostly to fill a hole.
727 */
b1937227 728 __u16 queue_mapping;
36bbef52
DB
729
730/* if you move cloned around you also must adapt those constants */
731#ifdef __BIG_ENDIAN_BITFIELD
732#define CLONED_MASK (1 << 7)
733#else
734#define CLONED_MASK 1
735#endif
736#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
737
738 __u8 __cloned_offset[0];
b1937227 739 __u8 cloned:1,
6869c4d8 740 nohdr:1,
b84f4cc9 741 fclone:2,
a59322be 742 peeked:1,
b1937227 743 head_frag:1,
36bbef52 744 xmit_more:1,
8b700862 745 pfmemalloc:1;
df5042f4
FW
746#ifdef CONFIG_SKB_EXTENSIONS
747 __u8 active_extensions;
748#endif
b1937227
ED
749 /* fields enclosed in headers_start/headers_end are copied
750 * using a single memcpy() in __copy_skb_header()
751 */
ebcf34f3 752 /* private: */
b1937227 753 __u32 headers_start[0];
ebcf34f3 754 /* public: */
4031ae6e 755
233577a2
HFS
756/* if you move pkt_type around you also must adapt those constants */
757#ifdef __BIG_ENDIAN_BITFIELD
758#define PKT_TYPE_MAX (7 << 5)
759#else
760#define PKT_TYPE_MAX 7
1da177e4 761#endif
233577a2 762#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 763
233577a2 764 __u8 __pkt_type_offset[0];
b1937227 765 __u8 pkt_type:3;
b1937227 766 __u8 ignore_df:1;
b1937227
ED
767 __u8 nf_trace:1;
768 __u8 ip_summed:2;
3853b584 769 __u8 ooo_okay:1;
8b700862 770
61b905da 771 __u8 l4_hash:1;
a3b18ddb 772 __u8 sw_hash:1;
6e3e939f
JB
773 __u8 wifi_acked_valid:1;
774 __u8 wifi_acked:1;
3bdc0eba 775 __u8 no_fcs:1;
77cffe23 776 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 777 __u8 encapsulation:1;
7e2b10c1 778 __u8 encap_hdr_csum:1;
5d0c2b95 779 __u8 csum_valid:1;
8b700862 780
0c4b2d37
MM
781#ifdef __BIG_ENDIAN_BITFIELD
782#define PKT_VLAN_PRESENT_BIT 7
783#else
784#define PKT_VLAN_PRESENT_BIT 0
785#endif
786#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
787 __u8 __pkt_vlan_present_offset[0];
788 __u8 vlan_present:1;
7e3cead5 789 __u8 csum_complete_sw:1;
b1937227 790 __u8 csum_level:2;
dba00306 791 __u8 csum_not_inet:1;
4ff06203 792 __u8 dst_pending_confirm:1;
b1937227
ED
793#ifdef CONFIG_IPV6_NDISC_NODETYPE
794 __u8 ndisc_nodetype:2;
795#endif
8b700862 796
0c4b2d37 797 __u8 ipvs_property:1;
8bce6d7d 798 __u8 inner_protocol_type:1;
e585f236 799 __u8 remcsum_offload:1;
6bc506b4
IS
800#ifdef CONFIG_NET_SWITCHDEV
801 __u8 offload_fwd_mark:1;
875e8939 802 __u8 offload_l3_fwd_mark:1;
6bc506b4 803#endif
e7246e12
WB
804#ifdef CONFIG_NET_CLS_ACT
805 __u8 tc_skip_classify:1;
8dc07fdb 806 __u8 tc_at_ingress:1;
bc31c905
WB
807 __u8 tc_redirected:1;
808 __u8 tc_from_ingress:1;
e7246e12 809#endif
a48d189e
SB
810#ifdef CONFIG_TLS_DEVICE
811 __u8 decrypted:1;
812#endif
b1937227
ED
813
814#ifdef CONFIG_NET_SCHED
815 __u16 tc_index; /* traffic control index */
b1937227 816#endif
fe55f6d5 817
b1937227
ED
818 union {
819 __wsum csum;
820 struct {
821 __u16 csum_start;
822 __u16 csum_offset;
823 };
824 };
825 __u32 priority;
826 int skb_iif;
827 __u32 hash;
828 __be16 vlan_proto;
829 __u16 vlan_tci;
2bd82484
ED
830#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
831 union {
832 unsigned int napi_id;
833 unsigned int sender_cpu;
834 };
97fc2f08 835#endif
984bc16c 836#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 837 __u32 secmark;
0c4f691f 838#endif
0c4f691f 839
3b885787
NH
840 union {
841 __u32 mark;
16fad69c 842 __u32 reserved_tailroom;
3b885787 843 };
1da177e4 844
8bce6d7d
TH
845 union {
846 __be16 inner_protocol;
847 __u8 inner_ipproto;
848 };
849
1a37e412
SH
850 __u16 inner_transport_header;
851 __u16 inner_network_header;
852 __u16 inner_mac_header;
b1937227
ED
853
854 __be16 protocol;
1a37e412
SH
855 __u16 transport_header;
856 __u16 network_header;
857 __u16 mac_header;
b1937227 858
ebcf34f3 859 /* private: */
b1937227 860 __u32 headers_end[0];
ebcf34f3 861 /* public: */
b1937227 862
1da177e4 863 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 864 sk_buff_data_t tail;
4305b541 865 sk_buff_data_t end;
1da177e4 866 unsigned char *head,
4305b541 867 *data;
27a884dc 868 unsigned int truesize;
63354797 869 refcount_t users;
df5042f4
FW
870
871#ifdef CONFIG_SKB_EXTENSIONS
872 /* only useable after checking ->active_extensions != 0 */
873 struct skb_ext *extensions;
874#endif
1da177e4
LT
875};
876
877#ifdef __KERNEL__
878/*
879 * Handling routines are only of interest to the kernel
880 */
1da177e4 881
c93bdd0e
MG
882#define SKB_ALLOC_FCLONE 0x01
883#define SKB_ALLOC_RX 0x02
fd11a83d 884#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
885
886/* Returns true if the skb was allocated from PFMEMALLOC reserves */
887static inline bool skb_pfmemalloc(const struct sk_buff *skb)
888{
889 return unlikely(skb->pfmemalloc);
890}
891
7fee226a
ED
892/*
893 * skb might have a dst pointer attached, refcounted or not.
894 * _skb_refdst low order bit is set if refcount was _not_ taken
895 */
896#define SKB_DST_NOREF 1UL
897#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
898
a9e419dc 899#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
900/**
901 * skb_dst - returns skb dst_entry
902 * @skb: buffer
903 *
904 * Returns skb dst_entry, regardless of reference taken or not.
905 */
adf30907
ED
906static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
907{
7fee226a
ED
908 /* If refdst was not refcounted, check we still are in a
909 * rcu_read_lock section
910 */
911 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
912 !rcu_read_lock_held() &&
913 !rcu_read_lock_bh_held());
914 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
915}
916
7fee226a
ED
917/**
918 * skb_dst_set - sets skb dst
919 * @skb: buffer
920 * @dst: dst entry
921 *
922 * Sets skb dst, assuming a reference was taken on dst and should
923 * be released by skb_dst_drop()
924 */
adf30907
ED
925static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
926{
7fee226a
ED
927 skb->_skb_refdst = (unsigned long)dst;
928}
929
932bc4d7
JA
930/**
931 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
932 * @skb: buffer
933 * @dst: dst entry
934 *
935 * Sets skb dst, assuming a reference was not taken on dst.
936 * If dst entry is cached, we do not take reference and dst_release
937 * will be avoided by refdst_drop. If dst entry is not cached, we take
938 * reference, so that last dst_release can destroy the dst immediately.
939 */
940static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
941{
dbfc4fb7
HFS
942 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
943 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 944}
7fee226a
ED
945
946/**
25985edc 947 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
948 * @skb: buffer
949 */
950static inline bool skb_dst_is_noref(const struct sk_buff *skb)
951{
952 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
953}
954
511c3f92
ED
955static inline struct rtable *skb_rtable(const struct sk_buff *skb)
956{
adf30907 957 return (struct rtable *)skb_dst(skb);
511c3f92
ED
958}
959
8b10cab6
JHS
960/* For mangling skb->pkt_type from user space side from applications
961 * such as nft, tc, etc, we only allow a conservative subset of
962 * possible pkt_types to be set.
963*/
964static inline bool skb_pkt_type_ok(u32 ptype)
965{
966 return ptype <= PACKET_OTHERHOST;
967}
968
90b602f8
ML
969static inline unsigned int skb_napi_id(const struct sk_buff *skb)
970{
971#ifdef CONFIG_NET_RX_BUSY_POLL
972 return skb->napi_id;
973#else
974 return 0;
975#endif
976}
977
3889a803
PA
978/* decrement the reference count and return true if we can free the skb */
979static inline bool skb_unref(struct sk_buff *skb)
980{
981 if (unlikely(!skb))
982 return false;
63354797 983 if (likely(refcount_read(&skb->users) == 1))
3889a803 984 smp_rmb();
63354797 985 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
986 return false;
987
988 return true;
989}
990
0a463c78 991void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
992void kfree_skb(struct sk_buff *skb);
993void kfree_skb_list(struct sk_buff *segs);
994void skb_tx_error(struct sk_buff *skb);
995void consume_skb(struct sk_buff *skb);
ca2c1418 996void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 997void __kfree_skb(struct sk_buff *skb);
d7e8883c 998extern struct kmem_cache *skbuff_head_cache;
bad43ca8 999
7965bd4d
JP
1000void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1001bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1002 bool *fragstolen, int *delta_truesize);
bad43ca8 1003
7965bd4d
JP
1004struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1005 int node);
2ea2f62c 1006struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1007struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 1008static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1009 gfp_t priority)
d179cd12 1010{
564824b0 1011 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1012}
1013
2e4e4410
ED
1014struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1015 unsigned long data_len,
1016 int max_page_order,
1017 int *errcode,
1018 gfp_t gfp_mask);
1019
d0bf4a9e
ED
1020/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1021struct sk_buff_fclones {
1022 struct sk_buff skb1;
1023
1024 struct sk_buff skb2;
1025
2638595a 1026 refcount_t fclone_ref;
d0bf4a9e
ED
1027};
1028
1029/**
1030 * skb_fclone_busy - check if fclone is busy
293de7de 1031 * @sk: socket
d0bf4a9e
ED
1032 * @skb: buffer
1033 *
bda13fed 1034 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1035 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1036 * so we also check that this didnt happen.
d0bf4a9e 1037 */
39bb5e62
ED
1038static inline bool skb_fclone_busy(const struct sock *sk,
1039 const struct sk_buff *skb)
d0bf4a9e
ED
1040{
1041 const struct sk_buff_fclones *fclones;
1042
1043 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1044
1045 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1046 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1047 fclones->skb2.sk == sk;
d0bf4a9e
ED
1048}
1049
d179cd12 1050static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1051 gfp_t priority)
d179cd12 1052{
c93bdd0e 1053 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1054}
1055
7965bd4d 1056struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1057void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1058int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1059struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1060void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1061struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1062struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1063 gfp_t gfp_mask, bool fclone);
1064static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1065 gfp_t gfp_mask)
1066{
1067 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1068}
7965bd4d
JP
1069
1070int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1071struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1072 unsigned int headroom);
1073struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1074 int newtailroom, gfp_t priority);
48a1df65
JD
1075int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1076 int offset, int len);
1077int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1078 int offset, int len);
7965bd4d 1079int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1080int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1081
1082/**
1083 * skb_pad - zero pad the tail of an skb
1084 * @skb: buffer to pad
1085 * @pad: space to pad
1086 *
1087 * Ensure that a buffer is followed by a padding area that is zero
1088 * filled. Used by network drivers which may DMA or transfer data
1089 * beyond the buffer end onto the wire.
1090 *
1091 * May return error in out of memory cases. The skb is freed on error.
1092 */
1093static inline int skb_pad(struct sk_buff *skb, int pad)
1094{
1095 return __skb_pad(skb, pad, true);
1096}
ead2ceb0 1097#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1098
be12a1fe
HFS
1099int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1100 int offset, size_t size);
1101
d94d9fee 1102struct skb_seq_state {
677e90ed
TG
1103 __u32 lower_offset;
1104 __u32 upper_offset;
1105 __u32 frag_idx;
1106 __u32 stepped_offset;
1107 struct sk_buff *root_skb;
1108 struct sk_buff *cur_skb;
1109 __u8 *frag_data;
1110};
1111
7965bd4d
JP
1112void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1113 unsigned int to, struct skb_seq_state *st);
1114unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1115 struct skb_seq_state *st);
1116void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1117
7965bd4d 1118unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1119 unsigned int to, struct ts_config *config);
3fc7e8a6 1120
09323cc4
TH
1121/*
1122 * Packet hash types specify the type of hash in skb_set_hash.
1123 *
1124 * Hash types refer to the protocol layer addresses which are used to
1125 * construct a packet's hash. The hashes are used to differentiate or identify
1126 * flows of the protocol layer for the hash type. Hash types are either
1127 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1128 *
1129 * Properties of hashes:
1130 *
1131 * 1) Two packets in different flows have different hash values
1132 * 2) Two packets in the same flow should have the same hash value
1133 *
1134 * A hash at a higher layer is considered to be more specific. A driver should
1135 * set the most specific hash possible.
1136 *
1137 * A driver cannot indicate a more specific hash than the layer at which a hash
1138 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1139 *
1140 * A driver may indicate a hash level which is less specific than the
1141 * actual layer the hash was computed on. For instance, a hash computed
1142 * at L4 may be considered an L3 hash. This should only be done if the
1143 * driver can't unambiguously determine that the HW computed the hash at
1144 * the higher layer. Note that the "should" in the second property above
1145 * permits this.
1146 */
1147enum pkt_hash_types {
1148 PKT_HASH_TYPE_NONE, /* Undefined type */
1149 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1150 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1151 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1152};
1153
bcc83839 1154static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1155{
bcc83839 1156 skb->hash = 0;
a3b18ddb 1157 skb->sw_hash = 0;
bcc83839
TH
1158 skb->l4_hash = 0;
1159}
1160
1161static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1162{
1163 if (!skb->l4_hash)
1164 skb_clear_hash(skb);
1165}
1166
1167static inline void
1168__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1169{
1170 skb->l4_hash = is_l4;
1171 skb->sw_hash = is_sw;
61b905da 1172 skb->hash = hash;
09323cc4
TH
1173}
1174
bcc83839
TH
1175static inline void
1176skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1177{
1178 /* Used by drivers to set hash from HW */
1179 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1180}
1181
1182static inline void
1183__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1184{
1185 __skb_set_hash(skb, hash, true, is_l4);
1186}
1187
e5276937 1188void __skb_get_hash(struct sk_buff *skb);
b917783c 1189u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1190u32 skb_get_poff(const struct sk_buff *skb);
1191u32 __skb_get_poff(const struct sk_buff *skb, void *data,
72a338bc 1192 const struct flow_keys_basic *keys, int hlen);
e5276937
TH
1193__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1194 void *data, int hlen_proto);
1195
1196static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1197 int thoff, u8 ip_proto)
1198{
1199 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1200}
1201
1202void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1203 const struct flow_dissector_key *key,
1204 unsigned int key_count);
1205
2dfd184a 1206#ifdef CONFIG_NET
d58e468b
PP
1207int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1208 struct bpf_prog *prog);
1209
1210int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
2dfd184a
WB
1211#else
1212static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1213 struct bpf_prog *prog)
1214{
1215 return -EOPNOTSUPP;
1216}
1217
1218static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1219{
1220 return -EOPNOTSUPP;
1221}
1222#endif
d58e468b 1223
c8aa7038
SF
1224struct bpf_flow_keys;
1225bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
1226 const struct sk_buff *skb,
1227 struct flow_dissector *flow_dissector,
1228 struct bpf_flow_keys *flow_keys);
e5276937
TH
1229bool __skb_flow_dissect(const struct sk_buff *skb,
1230 struct flow_dissector *flow_dissector,
1231 void *target_container,
cd79a238
TH
1232 void *data, __be16 proto, int nhoff, int hlen,
1233 unsigned int flags);
e5276937
TH
1234
1235static inline bool skb_flow_dissect(const struct sk_buff *skb,
1236 struct flow_dissector *flow_dissector,
cd79a238 1237 void *target_container, unsigned int flags)
e5276937
TH
1238{
1239 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1240 NULL, 0, 0, 0, flags);
e5276937
TH
1241}
1242
1243static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1244 struct flow_keys *flow,
1245 unsigned int flags)
e5276937
TH
1246{
1247 memset(flow, 0, sizeof(*flow));
1248 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1249 NULL, 0, 0, 0, flags);
e5276937
TH
1250}
1251
72a338bc
PA
1252static inline bool
1253skb_flow_dissect_flow_keys_basic(const struct sk_buff *skb,
1254 struct flow_keys_basic *flow, void *data,
1255 __be16 proto, int nhoff, int hlen,
1256 unsigned int flags)
e5276937
TH
1257{
1258 memset(flow, 0, sizeof(*flow));
72a338bc 1259 return __skb_flow_dissect(skb, &flow_keys_basic_dissector, flow,
cd79a238 1260 data, proto, nhoff, hlen, flags);
e5276937
TH
1261}
1262
62b32379
SH
1263void
1264skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1265 struct flow_dissector *flow_dissector,
1266 void *target_container);
1267
3958afa1 1268static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1269{
a3b18ddb 1270 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1271 __skb_get_hash(skb);
bfb564e7 1272
61b905da 1273 return skb->hash;
bfb564e7
KK
1274}
1275
20a17bf6 1276static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1277{
c6cc1ca7
TH
1278 if (!skb->l4_hash && !skb->sw_hash) {
1279 struct flow_keys keys;
de4c1f8b 1280 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1281
de4c1f8b 1282 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1283 }
f70ea018
TH
1284
1285 return skb->hash;
1286}
1287
50fb7992
TH
1288__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1289
57bdf7f4
TH
1290static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1291{
61b905da 1292 return skb->hash;
57bdf7f4
TH
1293}
1294
3df7a74e
TH
1295static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1296{
61b905da 1297 to->hash = from->hash;
a3b18ddb 1298 to->sw_hash = from->sw_hash;
61b905da 1299 to->l4_hash = from->l4_hash;
3df7a74e
TH
1300};
1301
4305b541
ACM
1302#ifdef NET_SKBUFF_DATA_USES_OFFSET
1303static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1304{
1305 return skb->head + skb->end;
1306}
ec47ea82
AD
1307
1308static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1309{
1310 return skb->end;
1311}
4305b541
ACM
1312#else
1313static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1314{
1315 return skb->end;
1316}
ec47ea82
AD
1317
1318static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1319{
1320 return skb->end - skb->head;
1321}
4305b541
ACM
1322#endif
1323
1da177e4 1324/* Internal */
4305b541 1325#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1326
ac45f602
PO
1327static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1328{
1329 return &skb_shinfo(skb)->hwtstamps;
1330}
1331
52267790
WB
1332static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1333{
1334 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1335
1336 return is_zcopy ? skb_uarg(skb) : NULL;
1337}
1338
52900d22
WB
1339static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1340 bool *have_ref)
52267790
WB
1341{
1342 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1343 if (unlikely(have_ref && *have_ref))
1344 *have_ref = false;
1345 else
1346 sock_zerocopy_get(uarg);
52267790
WB
1347 skb_shinfo(skb)->destructor_arg = uarg;
1348 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1349 }
1350}
1351
5cd8d46e
WB
1352static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1353{
1354 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1355 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1356}
1357
1358static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1359{
1360 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1361}
1362
1363static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1364{
1365 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1366}
1367
52267790
WB
1368/* Release a reference on a zerocopy structure */
1369static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1370{
1371 struct ubuf_info *uarg = skb_zcopy(skb);
1372
1373 if (uarg) {
0a4a060b
WB
1374 if (uarg->callback == sock_zerocopy_callback) {
1375 uarg->zerocopy = uarg->zerocopy && zerocopy;
1376 sock_zerocopy_put(uarg);
5cd8d46e 1377 } else if (!skb_zcopy_is_nouarg(skb)) {
0a4a060b
WB
1378 uarg->callback(uarg, zerocopy);
1379 }
1380
52267790
WB
1381 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1382 }
1383}
1384
1385/* Abort a zerocopy operation and revert zckey on error in send syscall */
1386static inline void skb_zcopy_abort(struct sk_buff *skb)
1387{
1388 struct ubuf_info *uarg = skb_zcopy(skb);
1389
1390 if (uarg) {
52900d22 1391 sock_zerocopy_put_abort(uarg, false);
52267790
WB
1392 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1393 }
1394}
1395
a8305bff
DM
1396static inline void skb_mark_not_on_list(struct sk_buff *skb)
1397{
1398 skb->next = NULL;
1399}
1400
992cba7e
DM
1401static inline void skb_list_del_init(struct sk_buff *skb)
1402{
1403 __list_del_entry(&skb->list);
1404 skb_mark_not_on_list(skb);
1405}
1406
1da177e4
LT
1407/**
1408 * skb_queue_empty - check if a queue is empty
1409 * @list: queue head
1410 *
1411 * Returns true if the queue is empty, false otherwise.
1412 */
1413static inline int skb_queue_empty(const struct sk_buff_head *list)
1414{
fd44b93c 1415 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1416}
1417
fc7ebb21
DM
1418/**
1419 * skb_queue_is_last - check if skb is the last entry in the queue
1420 * @list: queue head
1421 * @skb: buffer
1422 *
1423 * Returns true if @skb is the last buffer on the list.
1424 */
1425static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1426 const struct sk_buff *skb)
1427{
fd44b93c 1428 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1429}
1430
832d11c5
IJ
1431/**
1432 * skb_queue_is_first - check if skb is the first entry in the queue
1433 * @list: queue head
1434 * @skb: buffer
1435 *
1436 * Returns true if @skb is the first buffer on the list.
1437 */
1438static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1439 const struct sk_buff *skb)
1440{
fd44b93c 1441 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1442}
1443
249c8b42
DM
1444/**
1445 * skb_queue_next - return the next packet in the queue
1446 * @list: queue head
1447 * @skb: current buffer
1448 *
1449 * Return the next packet in @list after @skb. It is only valid to
1450 * call this if skb_queue_is_last() evaluates to false.
1451 */
1452static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1453 const struct sk_buff *skb)
1454{
1455 /* This BUG_ON may seem severe, but if we just return then we
1456 * are going to dereference garbage.
1457 */
1458 BUG_ON(skb_queue_is_last(list, skb));
1459 return skb->next;
1460}
1461
832d11c5
IJ
1462/**
1463 * skb_queue_prev - return the prev packet in the queue
1464 * @list: queue head
1465 * @skb: current buffer
1466 *
1467 * Return the prev packet in @list before @skb. It is only valid to
1468 * call this if skb_queue_is_first() evaluates to false.
1469 */
1470static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1471 const struct sk_buff *skb)
1472{
1473 /* This BUG_ON may seem severe, but if we just return then we
1474 * are going to dereference garbage.
1475 */
1476 BUG_ON(skb_queue_is_first(list, skb));
1477 return skb->prev;
1478}
1479
1da177e4
LT
1480/**
1481 * skb_get - reference buffer
1482 * @skb: buffer to reference
1483 *
1484 * Makes another reference to a socket buffer and returns a pointer
1485 * to the buffer.
1486 */
1487static inline struct sk_buff *skb_get(struct sk_buff *skb)
1488{
63354797 1489 refcount_inc(&skb->users);
1da177e4
LT
1490 return skb;
1491}
1492
1493/*
f8821f96 1494 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1495 */
1496
1da177e4
LT
1497/**
1498 * skb_cloned - is the buffer a clone
1499 * @skb: buffer to check
1500 *
1501 * Returns true if the buffer was generated with skb_clone() and is
1502 * one of multiple shared copies of the buffer. Cloned buffers are
1503 * shared data so must not be written to under normal circumstances.
1504 */
1505static inline int skb_cloned(const struct sk_buff *skb)
1506{
1507 return skb->cloned &&
1508 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1509}
1510
14bbd6a5
PS
1511static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1512{
d0164adc 1513 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1514
1515 if (skb_cloned(skb))
1516 return pskb_expand_head(skb, 0, 0, pri);
1517
1518 return 0;
1519}
1520
1da177e4
LT
1521/**
1522 * skb_header_cloned - is the header a clone
1523 * @skb: buffer to check
1524 *
1525 * Returns true if modifying the header part of the buffer requires
1526 * the data to be copied.
1527 */
1528static inline int skb_header_cloned(const struct sk_buff *skb)
1529{
1530 int dataref;
1531
1532 if (!skb->cloned)
1533 return 0;
1534
1535 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1536 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1537 return dataref != 1;
1538}
1539
9580bf2e
ED
1540static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1541{
1542 might_sleep_if(gfpflags_allow_blocking(pri));
1543
1544 if (skb_header_cloned(skb))
1545 return pskb_expand_head(skb, 0, 0, pri);
1546
1547 return 0;
1548}
1549
f4a775d1
ED
1550/**
1551 * __skb_header_release - release reference to header
1552 * @skb: buffer to operate on
f4a775d1
ED
1553 */
1554static inline void __skb_header_release(struct sk_buff *skb)
1555{
1556 skb->nohdr = 1;
1557 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1558}
1559
1560
1da177e4
LT
1561/**
1562 * skb_shared - is the buffer shared
1563 * @skb: buffer to check
1564 *
1565 * Returns true if more than one person has a reference to this
1566 * buffer.
1567 */
1568static inline int skb_shared(const struct sk_buff *skb)
1569{
63354797 1570 return refcount_read(&skb->users) != 1;
1da177e4
LT
1571}
1572
1573/**
1574 * skb_share_check - check if buffer is shared and if so clone it
1575 * @skb: buffer to check
1576 * @pri: priority for memory allocation
1577 *
1578 * If the buffer is shared the buffer is cloned and the old copy
1579 * drops a reference. A new clone with a single reference is returned.
1580 * If the buffer is not shared the original buffer is returned. When
1581 * being called from interrupt status or with spinlocks held pri must
1582 * be GFP_ATOMIC.
1583 *
1584 * NULL is returned on a memory allocation failure.
1585 */
47061bc4 1586static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1587{
d0164adc 1588 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1589 if (skb_shared(skb)) {
1590 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1591
1592 if (likely(nskb))
1593 consume_skb(skb);
1594 else
1595 kfree_skb(skb);
1da177e4
LT
1596 skb = nskb;
1597 }
1598 return skb;
1599}
1600
1601/*
1602 * Copy shared buffers into a new sk_buff. We effectively do COW on
1603 * packets to handle cases where we have a local reader and forward
1604 * and a couple of other messy ones. The normal one is tcpdumping
1605 * a packet thats being forwarded.
1606 */
1607
1608/**
1609 * skb_unshare - make a copy of a shared buffer
1610 * @skb: buffer to check
1611 * @pri: priority for memory allocation
1612 *
1613 * If the socket buffer is a clone then this function creates a new
1614 * copy of the data, drops a reference count on the old copy and returns
1615 * the new copy with the reference count at 1. If the buffer is not a clone
1616 * the original buffer is returned. When called with a spinlock held or
1617 * from interrupt state @pri must be %GFP_ATOMIC
1618 *
1619 * %NULL is returned on a memory allocation failure.
1620 */
e2bf521d 1621static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1622 gfp_t pri)
1da177e4 1623{
d0164adc 1624 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1625 if (skb_cloned(skb)) {
1626 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1627
1628 /* Free our shared copy */
1629 if (likely(nskb))
1630 consume_skb(skb);
1631 else
1632 kfree_skb(skb);
1da177e4
LT
1633 skb = nskb;
1634 }
1635 return skb;
1636}
1637
1638/**
1a5778aa 1639 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1640 * @list_: list to peek at
1641 *
1642 * Peek an &sk_buff. Unlike most other operations you _MUST_
1643 * be careful with this one. A peek leaves the buffer on the
1644 * list and someone else may run off with it. You must hold
1645 * the appropriate locks or have a private queue to do this.
1646 *
1647 * Returns %NULL for an empty list or a pointer to the head element.
1648 * The reference count is not incremented and the reference is therefore
1649 * volatile. Use with caution.
1650 */
05bdd2f1 1651static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1652{
18d07000
ED
1653 struct sk_buff *skb = list_->next;
1654
1655 if (skb == (struct sk_buff *)list_)
1656 skb = NULL;
1657 return skb;
1da177e4
LT
1658}
1659
8b69bd7d
DM
1660/**
1661 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1662 * @list_: list to peek at
1663 *
1664 * Like skb_peek(), but the caller knows that the list is not empty.
1665 */
1666static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1667{
1668 return list_->next;
1669}
1670
da5ef6e5
PE
1671/**
1672 * skb_peek_next - peek skb following the given one from a queue
1673 * @skb: skb to start from
1674 * @list_: list to peek at
1675 *
1676 * Returns %NULL when the end of the list is met or a pointer to the
1677 * next element. The reference count is not incremented and the
1678 * reference is therefore volatile. Use with caution.
1679 */
1680static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1681 const struct sk_buff_head *list_)
1682{
1683 struct sk_buff *next = skb->next;
18d07000 1684
da5ef6e5
PE
1685 if (next == (struct sk_buff *)list_)
1686 next = NULL;
1687 return next;
1688}
1689
1da177e4 1690/**
1a5778aa 1691 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1692 * @list_: list to peek at
1693 *
1694 * Peek an &sk_buff. Unlike most other operations you _MUST_
1695 * be careful with this one. A peek leaves the buffer on the
1696 * list and someone else may run off with it. You must hold
1697 * the appropriate locks or have a private queue to do this.
1698 *
1699 * Returns %NULL for an empty list or a pointer to the tail element.
1700 * The reference count is not incremented and the reference is therefore
1701 * volatile. Use with caution.
1702 */
05bdd2f1 1703static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1704{
18d07000
ED
1705 struct sk_buff *skb = list_->prev;
1706
1707 if (skb == (struct sk_buff *)list_)
1708 skb = NULL;
1709 return skb;
1710
1da177e4
LT
1711}
1712
1713/**
1714 * skb_queue_len - get queue length
1715 * @list_: list to measure
1716 *
1717 * Return the length of an &sk_buff queue.
1718 */
1719static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1720{
1721 return list_->qlen;
1722}
1723
67fed459
DM
1724/**
1725 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1726 * @list: queue to initialize
1727 *
1728 * This initializes only the list and queue length aspects of
1729 * an sk_buff_head object. This allows to initialize the list
1730 * aspects of an sk_buff_head without reinitializing things like
1731 * the spinlock. It can also be used for on-stack sk_buff_head
1732 * objects where the spinlock is known to not be used.
1733 */
1734static inline void __skb_queue_head_init(struct sk_buff_head *list)
1735{
1736 list->prev = list->next = (struct sk_buff *)list;
1737 list->qlen = 0;
1738}
1739
76f10ad0
AV
1740/*
1741 * This function creates a split out lock class for each invocation;
1742 * this is needed for now since a whole lot of users of the skb-queue
1743 * infrastructure in drivers have different locking usage (in hardirq)
1744 * than the networking core (in softirq only). In the long run either the
1745 * network layer or drivers should need annotation to consolidate the
1746 * main types of usage into 3 classes.
1747 */
1da177e4
LT
1748static inline void skb_queue_head_init(struct sk_buff_head *list)
1749{
1750 spin_lock_init(&list->lock);
67fed459 1751 __skb_queue_head_init(list);
1da177e4
LT
1752}
1753
c2ecba71
PE
1754static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1755 struct lock_class_key *class)
1756{
1757 skb_queue_head_init(list);
1758 lockdep_set_class(&list->lock, class);
1759}
1760
1da177e4 1761/*
bf299275 1762 * Insert an sk_buff on a list.
1da177e4
LT
1763 *
1764 * The "__skb_xxxx()" functions are the non-atomic ones that
1765 * can only be called with interrupts disabled.
1766 */
bf299275
GR
1767static inline void __skb_insert(struct sk_buff *newsk,
1768 struct sk_buff *prev, struct sk_buff *next,
1769 struct sk_buff_head *list)
1770{
1771 newsk->next = next;
1772 newsk->prev = prev;
1773 next->prev = prev->next = newsk;
1774 list->qlen++;
1775}
1da177e4 1776
67fed459
DM
1777static inline void __skb_queue_splice(const struct sk_buff_head *list,
1778 struct sk_buff *prev,
1779 struct sk_buff *next)
1780{
1781 struct sk_buff *first = list->next;
1782 struct sk_buff *last = list->prev;
1783
1784 first->prev = prev;
1785 prev->next = first;
1786
1787 last->next = next;
1788 next->prev = last;
1789}
1790
1791/**
1792 * skb_queue_splice - join two skb lists, this is designed for stacks
1793 * @list: the new list to add
1794 * @head: the place to add it in the first list
1795 */
1796static inline void skb_queue_splice(const struct sk_buff_head *list,
1797 struct sk_buff_head *head)
1798{
1799 if (!skb_queue_empty(list)) {
1800 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1801 head->qlen += list->qlen;
67fed459
DM
1802 }
1803}
1804
1805/**
d9619496 1806 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1807 * @list: the new list to add
1808 * @head: the place to add it in the first list
1809 *
1810 * The list at @list is reinitialised
1811 */
1812static inline void skb_queue_splice_init(struct sk_buff_head *list,
1813 struct sk_buff_head *head)
1814{
1815 if (!skb_queue_empty(list)) {
1816 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1817 head->qlen += list->qlen;
67fed459
DM
1818 __skb_queue_head_init(list);
1819 }
1820}
1821
1822/**
1823 * skb_queue_splice_tail - join two skb lists, each list being a queue
1824 * @list: the new list to add
1825 * @head: the place to add it in the first list
1826 */
1827static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1828 struct sk_buff_head *head)
1829{
1830 if (!skb_queue_empty(list)) {
1831 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1832 head->qlen += list->qlen;
67fed459
DM
1833 }
1834}
1835
1836/**
d9619496 1837 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1838 * @list: the new list to add
1839 * @head: the place to add it in the first list
1840 *
1841 * Each of the lists is a queue.
1842 * The list at @list is reinitialised
1843 */
1844static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1845 struct sk_buff_head *head)
1846{
1847 if (!skb_queue_empty(list)) {
1848 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1849 head->qlen += list->qlen;
67fed459
DM
1850 __skb_queue_head_init(list);
1851 }
1852}
1853
1da177e4 1854/**
300ce174 1855 * __skb_queue_after - queue a buffer at the list head
1da177e4 1856 * @list: list to use
300ce174 1857 * @prev: place after this buffer
1da177e4
LT
1858 * @newsk: buffer to queue
1859 *
300ce174 1860 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1861 * and you must therefore hold required locks before calling it.
1862 *
1863 * A buffer cannot be placed on two lists at the same time.
1864 */
300ce174
SH
1865static inline void __skb_queue_after(struct sk_buff_head *list,
1866 struct sk_buff *prev,
1867 struct sk_buff *newsk)
1da177e4 1868{
bf299275 1869 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1870}
1871
7965bd4d
JP
1872void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1873 struct sk_buff_head *list);
7de6c033 1874
f5572855
GR
1875static inline void __skb_queue_before(struct sk_buff_head *list,
1876 struct sk_buff *next,
1877 struct sk_buff *newsk)
1878{
1879 __skb_insert(newsk, next->prev, next, list);
1880}
1881
300ce174
SH
1882/**
1883 * __skb_queue_head - queue a buffer at the list head
1884 * @list: list to use
1885 * @newsk: buffer to queue
1886 *
1887 * Queue a buffer at the start of a list. This function takes no locks
1888 * and you must therefore hold required locks before calling it.
1889 *
1890 * A buffer cannot be placed on two lists at the same time.
1891 */
300ce174
SH
1892static inline void __skb_queue_head(struct sk_buff_head *list,
1893 struct sk_buff *newsk)
1894{
1895 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1896}
4ea7b0cf 1897void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174 1898
1da177e4
LT
1899/**
1900 * __skb_queue_tail - queue a buffer at the list tail
1901 * @list: list to use
1902 * @newsk: buffer to queue
1903 *
1904 * Queue a buffer at the end of a list. This function takes no locks
1905 * and you must therefore hold required locks before calling it.
1906 *
1907 * A buffer cannot be placed on two lists at the same time.
1908 */
1da177e4
LT
1909static inline void __skb_queue_tail(struct sk_buff_head *list,
1910 struct sk_buff *newsk)
1911{
f5572855 1912 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4 1913}
4ea7b0cf 1914void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4 1915
1da177e4
LT
1916/*
1917 * remove sk_buff from list. _Must_ be called atomically, and with
1918 * the list known..
1919 */
7965bd4d 1920void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1921static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1922{
1923 struct sk_buff *next, *prev;
1924
1925 list->qlen--;
1926 next = skb->next;
1927 prev = skb->prev;
1928 skb->next = skb->prev = NULL;
1da177e4
LT
1929 next->prev = prev;
1930 prev->next = next;
1931}
1932
f525c06d
GR
1933/**
1934 * __skb_dequeue - remove from the head of the queue
1935 * @list: list to dequeue from
1936 *
1937 * Remove the head of the list. This function does not take any locks
1938 * so must be used with appropriate locks held only. The head item is
1939 * returned or %NULL if the list is empty.
1940 */
f525c06d
GR
1941static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1942{
1943 struct sk_buff *skb = skb_peek(list);
1944 if (skb)
1945 __skb_unlink(skb, list);
1946 return skb;
1947}
4ea7b0cf 1948struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1da177e4
LT
1949
1950/**
1951 * __skb_dequeue_tail - remove from the tail of the queue
1952 * @list: list to dequeue from
1953 *
1954 * Remove the tail of the list. This function does not take any locks
1955 * so must be used with appropriate locks held only. The tail item is
1956 * returned or %NULL if the list is empty.
1957 */
1da177e4
LT
1958static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1959{
1960 struct sk_buff *skb = skb_peek_tail(list);
1961 if (skb)
1962 __skb_unlink(skb, list);
1963 return skb;
1964}
4ea7b0cf 1965struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1966
1967
bdcc0924 1968static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1969{
1970 return skb->data_len;
1971}
1972
1973static inline unsigned int skb_headlen(const struct sk_buff *skb)
1974{
1975 return skb->len - skb->data_len;
1976}
1977
3ece7826 1978static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1979{
c72d8cda 1980 unsigned int i, len = 0;
1da177e4 1981
c72d8cda 1982 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1983 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1984 return len;
1985}
1986
1987static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1988{
1989 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1990}
1991
131ea667
IC
1992/**
1993 * __skb_fill_page_desc - initialise a paged fragment in an skb
1994 * @skb: buffer containing fragment to be initialised
1995 * @i: paged fragment index to initialise
1996 * @page: the page to use for this fragment
1997 * @off: the offset to the data with @page
1998 * @size: the length of the data
1999 *
2000 * Initialises the @i'th fragment of @skb to point to &size bytes at
2001 * offset @off within @page.
2002 *
2003 * Does not take any additional reference on the fragment.
2004 */
2005static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2006 struct page *page, int off, int size)
1da177e4
LT
2007{
2008 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2009
c48a11c7 2010 /*
2f064f34
MH
2011 * Propagate page pfmemalloc to the skb if we can. The problem is
2012 * that not all callers have unique ownership of the page but rely
2013 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 2014 */
a8605c60 2015 frag->page.p = page;
1da177e4 2016 frag->page_offset = off;
9e903e08 2017 skb_frag_size_set(frag, size);
cca7af38
PE
2018
2019 page = compound_head(page);
2f064f34 2020 if (page_is_pfmemalloc(page))
cca7af38 2021 skb->pfmemalloc = true;
131ea667
IC
2022}
2023
2024/**
2025 * skb_fill_page_desc - initialise a paged fragment in an skb
2026 * @skb: buffer containing fragment to be initialised
2027 * @i: paged fragment index to initialise
2028 * @page: the page to use for this fragment
2029 * @off: the offset to the data with @page
2030 * @size: the length of the data
2031 *
2032 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2033 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2034 * addition updates @skb such that @i is the last fragment.
2035 *
2036 * Does not take any additional reference on the fragment.
2037 */
2038static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2039 struct page *page, int off, int size)
2040{
2041 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
2042 skb_shinfo(skb)->nr_frags = i + 1;
2043}
2044
7965bd4d
JP
2045void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2046 int size, unsigned int truesize);
654bed16 2047
f8e617e1
JW
2048void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2049 unsigned int truesize);
2050
1da177e4 2051#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 2052#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
2053#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2054
27a884dc
ACM
2055#ifdef NET_SKBUFF_DATA_USES_OFFSET
2056static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2057{
2058 return skb->head + skb->tail;
2059}
2060
2061static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2062{
2063 skb->tail = skb->data - skb->head;
2064}
2065
2066static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2067{
2068 skb_reset_tail_pointer(skb);
2069 skb->tail += offset;
2070}
7cc46190 2071
27a884dc
ACM
2072#else /* NET_SKBUFF_DATA_USES_OFFSET */
2073static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2074{
2075 return skb->tail;
2076}
2077
2078static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2079{
2080 skb->tail = skb->data;
2081}
2082
2083static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2084{
2085 skb->tail = skb->data + offset;
2086}
4305b541 2087
27a884dc
ACM
2088#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2089
1da177e4
LT
2090/*
2091 * Add data to an sk_buff
2092 */
4df864c1
JB
2093void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2094void *skb_put(struct sk_buff *skb, unsigned int len);
2095static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2096{
4df864c1 2097 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2098 SKB_LINEAR_ASSERT(skb);
2099 skb->tail += len;
2100 skb->len += len;
2101 return tmp;
2102}
2103
de77b966 2104static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2105{
2106 void *tmp = __skb_put(skb, len);
2107
2108 memset(tmp, 0, len);
2109 return tmp;
2110}
2111
2112static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2113 unsigned int len)
2114{
2115 void *tmp = __skb_put(skb, len);
2116
2117 memcpy(tmp, data, len);
2118 return tmp;
2119}
2120
2121static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2122{
2123 *(u8 *)__skb_put(skb, 1) = val;
2124}
2125
83ad357d 2126static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2127{
83ad357d 2128 void *tmp = skb_put(skb, len);
e45a79da
JB
2129
2130 memset(tmp, 0, len);
2131
2132 return tmp;
2133}
2134
59ae1d12
JB
2135static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2136 unsigned int len)
2137{
2138 void *tmp = skb_put(skb, len);
2139
2140 memcpy(tmp, data, len);
2141
2142 return tmp;
2143}
2144
634fef61
JB
2145static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2146{
2147 *(u8 *)skb_put(skb, 1) = val;
2148}
2149
d58ff351
JB
2150void *skb_push(struct sk_buff *skb, unsigned int len);
2151static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2152{
2153 skb->data -= len;
2154 skb->len += len;
2155 return skb->data;
2156}
2157
af72868b
JB
2158void *skb_pull(struct sk_buff *skb, unsigned int len);
2159static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2160{
2161 skb->len -= len;
2162 BUG_ON(skb->len < skb->data_len);
2163 return skb->data += len;
2164}
2165
af72868b 2166static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2167{
2168 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2169}
2170
af72868b 2171void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2172
af72868b 2173static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2174{
2175 if (len > skb_headlen(skb) &&
987c402a 2176 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2177 return NULL;
2178 skb->len -= len;
2179 return skb->data += len;
2180}
2181
af72868b 2182static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2183{
2184 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2185}
2186
2187static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2188{
2189 if (likely(len <= skb_headlen(skb)))
2190 return 1;
2191 if (unlikely(len > skb->len))
2192 return 0;
987c402a 2193 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2194}
2195
c8c8b127
ED
2196void skb_condense(struct sk_buff *skb);
2197
1da177e4
LT
2198/**
2199 * skb_headroom - bytes at buffer head
2200 * @skb: buffer to check
2201 *
2202 * Return the number of bytes of free space at the head of an &sk_buff.
2203 */
c2636b4d 2204static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2205{
2206 return skb->data - skb->head;
2207}
2208
2209/**
2210 * skb_tailroom - bytes at buffer end
2211 * @skb: buffer to check
2212 *
2213 * Return the number of bytes of free space at the tail of an sk_buff
2214 */
2215static inline int skb_tailroom(const struct sk_buff *skb)
2216{
4305b541 2217 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2218}
2219
a21d4572
ED
2220/**
2221 * skb_availroom - bytes at buffer end
2222 * @skb: buffer to check
2223 *
2224 * Return the number of bytes of free space at the tail of an sk_buff
2225 * allocated by sk_stream_alloc()
2226 */
2227static inline int skb_availroom(const struct sk_buff *skb)
2228{
16fad69c
ED
2229 if (skb_is_nonlinear(skb))
2230 return 0;
2231
2232 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2233}
2234
1da177e4
LT
2235/**
2236 * skb_reserve - adjust headroom
2237 * @skb: buffer to alter
2238 * @len: bytes to move
2239 *
2240 * Increase the headroom of an empty &sk_buff by reducing the tail
2241 * room. This is only allowed for an empty buffer.
2242 */
8243126c 2243static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2244{
2245 skb->data += len;
2246 skb->tail += len;
2247}
2248
1837b2e2
BP
2249/**
2250 * skb_tailroom_reserve - adjust reserved_tailroom
2251 * @skb: buffer to alter
2252 * @mtu: maximum amount of headlen permitted
2253 * @needed_tailroom: minimum amount of reserved_tailroom
2254 *
2255 * Set reserved_tailroom so that headlen can be as large as possible but
2256 * not larger than mtu and tailroom cannot be smaller than
2257 * needed_tailroom.
2258 * The required headroom should already have been reserved before using
2259 * this function.
2260 */
2261static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2262 unsigned int needed_tailroom)
2263{
2264 SKB_LINEAR_ASSERT(skb);
2265 if (mtu < skb_tailroom(skb) - needed_tailroom)
2266 /* use at most mtu */
2267 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2268 else
2269 /* use up to all available space */
2270 skb->reserved_tailroom = needed_tailroom;
2271}
2272
8bce6d7d
TH
2273#define ENCAP_TYPE_ETHER 0
2274#define ENCAP_TYPE_IPPROTO 1
2275
2276static inline void skb_set_inner_protocol(struct sk_buff *skb,
2277 __be16 protocol)
2278{
2279 skb->inner_protocol = protocol;
2280 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2281}
2282
2283static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2284 __u8 ipproto)
2285{
2286 skb->inner_ipproto = ipproto;
2287 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2288}
2289
6a674e9c
JG
2290static inline void skb_reset_inner_headers(struct sk_buff *skb)
2291{
aefbd2b3 2292 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2293 skb->inner_network_header = skb->network_header;
2294 skb->inner_transport_header = skb->transport_header;
2295}
2296
0b5c9db1
JP
2297static inline void skb_reset_mac_len(struct sk_buff *skb)
2298{
2299 skb->mac_len = skb->network_header - skb->mac_header;
2300}
2301
6a674e9c
JG
2302static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2303 *skb)
2304{
2305 return skb->head + skb->inner_transport_header;
2306}
2307
55dc5a9f
TH
2308static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2309{
2310 return skb_inner_transport_header(skb) - skb->data;
2311}
2312
6a674e9c
JG
2313static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2314{
2315 skb->inner_transport_header = skb->data - skb->head;
2316}
2317
2318static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2319 const int offset)
2320{
2321 skb_reset_inner_transport_header(skb);
2322 skb->inner_transport_header += offset;
2323}
2324
2325static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2326{
2327 return skb->head + skb->inner_network_header;
2328}
2329
2330static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2331{
2332 skb->inner_network_header = skb->data - skb->head;
2333}
2334
2335static inline void skb_set_inner_network_header(struct sk_buff *skb,
2336 const int offset)
2337{
2338 skb_reset_inner_network_header(skb);
2339 skb->inner_network_header += offset;
2340}
2341
aefbd2b3
PS
2342static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2343{
2344 return skb->head + skb->inner_mac_header;
2345}
2346
2347static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2348{
2349 skb->inner_mac_header = skb->data - skb->head;
2350}
2351
2352static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2353 const int offset)
2354{
2355 skb_reset_inner_mac_header(skb);
2356 skb->inner_mac_header += offset;
2357}
fda55eca
ED
2358static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2359{
35d04610 2360 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2361}
2362
9c70220b
ACM
2363static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2364{
2e07fa9c 2365 return skb->head + skb->transport_header;
9c70220b
ACM
2366}
2367
badff6d0
ACM
2368static inline void skb_reset_transport_header(struct sk_buff *skb)
2369{
2e07fa9c 2370 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2371}
2372
967b05f6
ACM
2373static inline void skb_set_transport_header(struct sk_buff *skb,
2374 const int offset)
2375{
2e07fa9c
ACM
2376 skb_reset_transport_header(skb);
2377 skb->transport_header += offset;
ea2ae17d
ACM
2378}
2379
d56f90a7
ACM
2380static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2381{
2e07fa9c 2382 return skb->head + skb->network_header;
d56f90a7
ACM
2383}
2384
c1d2bbe1
ACM
2385static inline void skb_reset_network_header(struct sk_buff *skb)
2386{
2e07fa9c 2387 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2388}
2389
c14d2450
ACM
2390static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2391{
2e07fa9c
ACM
2392 skb_reset_network_header(skb);
2393 skb->network_header += offset;
c14d2450
ACM
2394}
2395
2e07fa9c 2396static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2397{
2e07fa9c 2398 return skb->head + skb->mac_header;
bbe735e4
ACM
2399}
2400
ea6da4fd
AV
2401static inline int skb_mac_offset(const struct sk_buff *skb)
2402{
2403 return skb_mac_header(skb) - skb->data;
2404}
2405
0daf4349
DB
2406static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2407{
2408 return skb->network_header - skb->mac_header;
2409}
2410
2e07fa9c 2411static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2412{
35d04610 2413 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2414}
2415
2416static inline void skb_reset_mac_header(struct sk_buff *skb)
2417{
2418 skb->mac_header = skb->data - skb->head;
2419}
2420
2421static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2422{
2423 skb_reset_mac_header(skb);
2424 skb->mac_header += offset;
2425}
2426
0e3da5bb
TT
2427static inline void skb_pop_mac_header(struct sk_buff *skb)
2428{
2429 skb->mac_header = skb->network_header;
2430}
2431
fbbdb8f0
YX
2432static inline void skb_probe_transport_header(struct sk_buff *skb,
2433 const int offset_hint)
2434{
72a338bc 2435 struct flow_keys_basic keys;
fbbdb8f0
YX
2436
2437 if (skb_transport_header_was_set(skb))
2438 return;
72a338bc 2439
15693fd3 2440 if (skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
42aecaa9 2441 skb_set_transport_header(skb, keys.control.thoff);
d5be7f63 2442 else if (offset_hint >= 0)
fbbdb8f0
YX
2443 skb_set_transport_header(skb, offset_hint);
2444}
2445
03606895
ED
2446static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2447{
2448 if (skb_mac_header_was_set(skb)) {
2449 const unsigned char *old_mac = skb_mac_header(skb);
2450
2451 skb_set_mac_header(skb, -skb->mac_len);
2452 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2453 }
2454}
2455
04fb451e
MM
2456static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2457{
2458 return skb->csum_start - skb_headroom(skb);
2459}
2460
08b64fcc
AD
2461static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2462{
2463 return skb->head + skb->csum_start;
2464}
2465
2e07fa9c
ACM
2466static inline int skb_transport_offset(const struct sk_buff *skb)
2467{
2468 return skb_transport_header(skb) - skb->data;
2469}
2470
2471static inline u32 skb_network_header_len(const struct sk_buff *skb)
2472{
2473 return skb->transport_header - skb->network_header;
2474}
2475
6a674e9c
JG
2476static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2477{
2478 return skb->inner_transport_header - skb->inner_network_header;
2479}
2480
2e07fa9c
ACM
2481static inline int skb_network_offset(const struct sk_buff *skb)
2482{
2483 return skb_network_header(skb) - skb->data;
2484}
48d49d0c 2485
6a674e9c
JG
2486static inline int skb_inner_network_offset(const struct sk_buff *skb)
2487{
2488 return skb_inner_network_header(skb) - skb->data;
2489}
2490
f9599ce1
CG
2491static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2492{
2493 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2494}
2495
1da177e4
LT
2496/*
2497 * CPUs often take a performance hit when accessing unaligned memory
2498 * locations. The actual performance hit varies, it can be small if the
2499 * hardware handles it or large if we have to take an exception and fix it
2500 * in software.
2501 *
2502 * Since an ethernet header is 14 bytes network drivers often end up with
2503 * the IP header at an unaligned offset. The IP header can be aligned by
2504 * shifting the start of the packet by 2 bytes. Drivers should do this
2505 * with:
2506 *
8660c124 2507 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2508 *
2509 * The downside to this alignment of the IP header is that the DMA is now
2510 * unaligned. On some architectures the cost of an unaligned DMA is high
2511 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2512 *
1da177e4
LT
2513 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2514 * to be overridden.
2515 */
2516#ifndef NET_IP_ALIGN
2517#define NET_IP_ALIGN 2
2518#endif
2519
025be81e
AB
2520/*
2521 * The networking layer reserves some headroom in skb data (via
2522 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2523 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2524 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2525 *
2526 * Unfortunately this headroom changes the DMA alignment of the resulting
2527 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2528 * on some architectures. An architecture can override this value,
2529 * perhaps setting it to a cacheline in size (since that will maintain
2530 * cacheline alignment of the DMA). It must be a power of 2.
2531 *
d6301d3d 2532 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2533 * headroom, you should not reduce this.
5933dd2f
ED
2534 *
2535 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2536 * to reduce average number of cache lines per packet.
2537 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2538 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2539 */
2540#ifndef NET_SKB_PAD
5933dd2f 2541#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2542#endif
2543
7965bd4d 2544int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2545
5293efe6 2546static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2547{
5e1abdc3 2548 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 2549 return;
27a884dc
ACM
2550 skb->len = len;
2551 skb_set_tail_pointer(skb, len);
1da177e4
LT
2552}
2553
5293efe6
DB
2554static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2555{
2556 __skb_set_length(skb, len);
2557}
2558
7965bd4d 2559void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2560
2561static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2562{
3cc0e873
HX
2563 if (skb->data_len)
2564 return ___pskb_trim(skb, len);
2565 __skb_trim(skb, len);
2566 return 0;
1da177e4
LT
2567}
2568
2569static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2570{
2571 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2572}
2573
e9fa4f7b
HX
2574/**
2575 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2576 * @skb: buffer to alter
2577 * @len: new length
2578 *
2579 * This is identical to pskb_trim except that the caller knows that
2580 * the skb is not cloned so we should never get an error due to out-
2581 * of-memory.
2582 */
2583static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2584{
2585 int err = pskb_trim(skb, len);
2586 BUG_ON(err);
2587}
2588
5293efe6
DB
2589static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2590{
2591 unsigned int diff = len - skb->len;
2592
2593 if (skb_tailroom(skb) < diff) {
2594 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2595 GFP_ATOMIC);
2596 if (ret)
2597 return ret;
2598 }
2599 __skb_set_length(skb, len);
2600 return 0;
2601}
2602
1da177e4
LT
2603/**
2604 * skb_orphan - orphan a buffer
2605 * @skb: buffer to orphan
2606 *
2607 * If a buffer currently has an owner then we call the owner's
2608 * destructor function and make the @skb unowned. The buffer continues
2609 * to exist but is no longer charged to its former owner.
2610 */
2611static inline void skb_orphan(struct sk_buff *skb)
2612{
c34a7612 2613 if (skb->destructor) {
1da177e4 2614 skb->destructor(skb);
c34a7612
ED
2615 skb->destructor = NULL;
2616 skb->sk = NULL;
376c7311
ED
2617 } else {
2618 BUG_ON(skb->sk);
c34a7612 2619 }
1da177e4
LT
2620}
2621
a353e0ce
MT
2622/**
2623 * skb_orphan_frags - orphan the frags contained in a buffer
2624 * @skb: buffer to orphan frags from
2625 * @gfp_mask: allocation mask for replacement pages
2626 *
2627 * For each frag in the SKB which needs a destructor (i.e. has an
2628 * owner) create a copy of that frag and release the original
2629 * page by calling the destructor.
2630 */
2631static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2632{
1f8b977a
WB
2633 if (likely(!skb_zcopy(skb)))
2634 return 0;
2635 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2636 return 0;
2637 return skb_copy_ubufs(skb, gfp_mask);
2638}
2639
2640/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2641static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2642{
2643 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2644 return 0;
2645 return skb_copy_ubufs(skb, gfp_mask);
2646}
2647
1da177e4
LT
2648/**
2649 * __skb_queue_purge - empty a list
2650 * @list: list to empty
2651 *
2652 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2653 * the list and one reference dropped. This function does not take the
2654 * list lock and the caller must hold the relevant locks to use it.
2655 */
1da177e4
LT
2656static inline void __skb_queue_purge(struct sk_buff_head *list)
2657{
2658 struct sk_buff *skb;
2659 while ((skb = __skb_dequeue(list)) != NULL)
2660 kfree_skb(skb);
2661}
4ea7b0cf 2662void skb_queue_purge(struct sk_buff_head *list);
1da177e4 2663
385114de 2664unsigned int skb_rbtree_purge(struct rb_root *root);
9f5afeae 2665
7965bd4d 2666void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2667
7965bd4d
JP
2668struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2669 gfp_t gfp_mask);
8af27456
CH
2670
2671/**
2672 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2673 * @dev: network device to receive on
2674 * @length: length to allocate
2675 *
2676 * Allocate a new &sk_buff and assign it a usage count of one. The
2677 * buffer has unspecified headroom built in. Users should allocate
2678 * the headroom they think they need without accounting for the
2679 * built in space. The built in space is used for optimisations.
2680 *
2681 * %NULL is returned if there is no free memory. Although this function
2682 * allocates memory it can be called from an interrupt.
2683 */
2684static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2685 unsigned int length)
8af27456
CH
2686{
2687 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2688}
2689
6f532612
ED
2690/* legacy helper around __netdev_alloc_skb() */
2691static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2692 gfp_t gfp_mask)
2693{
2694 return __netdev_alloc_skb(NULL, length, gfp_mask);
2695}
2696
2697/* legacy helper around netdev_alloc_skb() */
2698static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2699{
2700 return netdev_alloc_skb(NULL, length);
2701}
2702
2703
4915a0de
ED
2704static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2705 unsigned int length, gfp_t gfp)
61321bbd 2706{
4915a0de 2707 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2708
2709 if (NET_IP_ALIGN && skb)
2710 skb_reserve(skb, NET_IP_ALIGN);
2711 return skb;
2712}
2713
4915a0de
ED
2714static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2715 unsigned int length)
2716{
2717 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2718}
2719
181edb2b
AD
2720static inline void skb_free_frag(void *addr)
2721{
8c2dd3e4 2722 page_frag_free(addr);
181edb2b
AD
2723}
2724
ffde7328 2725void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2726struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2727 unsigned int length, gfp_t gfp_mask);
2728static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2729 unsigned int length)
2730{
2731 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2732}
795bb1c0
JDB
2733void napi_consume_skb(struct sk_buff *skb, int budget);
2734
2735void __kfree_skb_flush(void);
15fad714 2736void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2737
71dfda58
AD
2738/**
2739 * __dev_alloc_pages - allocate page for network Rx
2740 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2741 * @order: size of the allocation
2742 *
2743 * Allocate a new page.
2744 *
2745 * %NULL is returned if there is no free memory.
2746*/
2747static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2748 unsigned int order)
2749{
2750 /* This piece of code contains several assumptions.
2751 * 1. This is for device Rx, therefor a cold page is preferred.
2752 * 2. The expectation is the user wants a compound page.
2753 * 3. If requesting a order 0 page it will not be compound
2754 * due to the check to see if order has a value in prep_new_page
2755 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2756 * code in gfp_to_alloc_flags that should be enforcing this.
2757 */
453f85d4 2758 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58
AD
2759
2760 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2761}
2762
2763static inline struct page *dev_alloc_pages(unsigned int order)
2764{
95829b3a 2765 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2766}
2767
2768/**
2769 * __dev_alloc_page - allocate a page for network Rx
2770 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2771 *
2772 * Allocate a new page.
2773 *
2774 * %NULL is returned if there is no free memory.
2775 */
2776static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2777{
2778 return __dev_alloc_pages(gfp_mask, 0);
2779}
2780
2781static inline struct page *dev_alloc_page(void)
2782{
95829b3a 2783 return dev_alloc_pages(0);
71dfda58
AD
2784}
2785
0614002b
MG
2786/**
2787 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2788 * @page: The page that was allocated from skb_alloc_page
2789 * @skb: The skb that may need pfmemalloc set
2790 */
2791static inline void skb_propagate_pfmemalloc(struct page *page,
2792 struct sk_buff *skb)
2793{
2f064f34 2794 if (page_is_pfmemalloc(page))
0614002b
MG
2795 skb->pfmemalloc = true;
2796}
2797
131ea667 2798/**
e227867f 2799 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2800 * @frag: the paged fragment
2801 *
2802 * Returns the &struct page associated with @frag.
2803 */
2804static inline struct page *skb_frag_page(const skb_frag_t *frag)
2805{
a8605c60 2806 return frag->page.p;
131ea667
IC
2807}
2808
2809/**
2810 * __skb_frag_ref - take an addition reference on a paged fragment.
2811 * @frag: the paged fragment
2812 *
2813 * Takes an additional reference on the paged fragment @frag.
2814 */
2815static inline void __skb_frag_ref(skb_frag_t *frag)
2816{
2817 get_page(skb_frag_page(frag));
2818}
2819
2820/**
2821 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2822 * @skb: the buffer
2823 * @f: the fragment offset.
2824 *
2825 * Takes an additional reference on the @f'th paged fragment of @skb.
2826 */
2827static inline void skb_frag_ref(struct sk_buff *skb, int f)
2828{
2829 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2830}
2831
2832/**
2833 * __skb_frag_unref - release a reference on a paged fragment.
2834 * @frag: the paged fragment
2835 *
2836 * Releases a reference on the paged fragment @frag.
2837 */
2838static inline void __skb_frag_unref(skb_frag_t *frag)
2839{
2840 put_page(skb_frag_page(frag));
2841}
2842
2843/**
2844 * skb_frag_unref - release a reference on a paged fragment of an skb.
2845 * @skb: the buffer
2846 * @f: the fragment offset
2847 *
2848 * Releases a reference on the @f'th paged fragment of @skb.
2849 */
2850static inline void skb_frag_unref(struct sk_buff *skb, int f)
2851{
2852 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2853}
2854
2855/**
2856 * skb_frag_address - gets the address of the data contained in a paged fragment
2857 * @frag: the paged fragment buffer
2858 *
2859 * Returns the address of the data within @frag. The page must already
2860 * be mapped.
2861 */
2862static inline void *skb_frag_address(const skb_frag_t *frag)
2863{
2864 return page_address(skb_frag_page(frag)) + frag->page_offset;
2865}
2866
2867/**
2868 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2869 * @frag: the paged fragment buffer
2870 *
2871 * Returns the address of the data within @frag. Checks that the page
2872 * is mapped and returns %NULL otherwise.
2873 */
2874static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2875{
2876 void *ptr = page_address(skb_frag_page(frag));
2877 if (unlikely(!ptr))
2878 return NULL;
2879
2880 return ptr + frag->page_offset;
2881}
2882
2883/**
2884 * __skb_frag_set_page - sets the page contained in a paged fragment
2885 * @frag: the paged fragment
2886 * @page: the page to set
2887 *
2888 * Sets the fragment @frag to contain @page.
2889 */
2890static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2891{
a8605c60 2892 frag->page.p = page;
131ea667
IC
2893}
2894
2895/**
2896 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2897 * @skb: the buffer
2898 * @f: the fragment offset
2899 * @page: the page to set
2900 *
2901 * Sets the @f'th fragment of @skb to contain @page.
2902 */
2903static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2904 struct page *page)
2905{
2906 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2907}
2908
400dfd3a
ED
2909bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2910
131ea667
IC
2911/**
2912 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2913 * @dev: the device to map the fragment to
131ea667
IC
2914 * @frag: the paged fragment to map
2915 * @offset: the offset within the fragment (starting at the
2916 * fragment's own offset)
2917 * @size: the number of bytes to map
771b00a8 2918 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2919 *
2920 * Maps the page associated with @frag to @device.
2921 */
2922static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2923 const skb_frag_t *frag,
2924 size_t offset, size_t size,
2925 enum dma_data_direction dir)
2926{
2927 return dma_map_page(dev, skb_frag_page(frag),
2928 frag->page_offset + offset, size, dir);
2929}
2930
117632e6
ED
2931static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2932 gfp_t gfp_mask)
2933{
2934 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2935}
2936
bad93e9d
OP
2937
2938static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2939 gfp_t gfp_mask)
2940{
2941 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2942}
2943
2944
334a8132
PM
2945/**
2946 * skb_clone_writable - is the header of a clone writable
2947 * @skb: buffer to check
2948 * @len: length up to which to write
2949 *
2950 * Returns true if modifying the header part of the cloned buffer
2951 * does not requires the data to be copied.
2952 */
05bdd2f1 2953static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2954{
2955 return !skb_header_cloned(skb) &&
2956 skb_headroom(skb) + len <= skb->hdr_len;
2957}
2958
3697649f
DB
2959static inline int skb_try_make_writable(struct sk_buff *skb,
2960 unsigned int write_len)
2961{
2962 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2963 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2964}
2965
d9cc2048
HX
2966static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2967 int cloned)
2968{
2969 int delta = 0;
2970
d9cc2048
HX
2971 if (headroom > skb_headroom(skb))
2972 delta = headroom - skb_headroom(skb);
2973
2974 if (delta || cloned)
2975 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2976 GFP_ATOMIC);
2977 return 0;
2978}
2979
1da177e4
LT
2980/**
2981 * skb_cow - copy header of skb when it is required
2982 * @skb: buffer to cow
2983 * @headroom: needed headroom
2984 *
2985 * If the skb passed lacks sufficient headroom or its data part
2986 * is shared, data is reallocated. If reallocation fails, an error
2987 * is returned and original skb is not changed.
2988 *
2989 * The result is skb with writable area skb->head...skb->tail
2990 * and at least @headroom of space at head.
2991 */
2992static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2993{
d9cc2048
HX
2994 return __skb_cow(skb, headroom, skb_cloned(skb));
2995}
1da177e4 2996
d9cc2048
HX
2997/**
2998 * skb_cow_head - skb_cow but only making the head writable
2999 * @skb: buffer to cow
3000 * @headroom: needed headroom
3001 *
3002 * This function is identical to skb_cow except that we replace the
3003 * skb_cloned check by skb_header_cloned. It should be used when
3004 * you only need to push on some header and do not need to modify
3005 * the data.
3006 */
3007static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3008{
3009 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3010}
3011
3012/**
3013 * skb_padto - pad an skbuff up to a minimal size
3014 * @skb: buffer to pad
3015 * @len: minimal length
3016 *
3017 * Pads up a buffer to ensure the trailing bytes exist and are
3018 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3019 * is untouched. Otherwise it is extended. Returns zero on
3020 * success. The skb is freed on error.
1da177e4 3021 */
5b057c6b 3022static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3023{
3024 unsigned int size = skb->len;
3025 if (likely(size >= len))
5b057c6b 3026 return 0;
987c402a 3027 return skb_pad(skb, len - size);
1da177e4
LT
3028}
3029
9c0c1124 3030/**
4ea7b0cf 3031 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
9c0c1124
AD
3032 * @skb: buffer to pad
3033 * @len: minimal length
cd0a137a 3034 * @free_on_error: free buffer on error
9c0c1124
AD
3035 *
3036 * Pads up a buffer to ensure the trailing bytes exist and are
3037 * blanked. If the buffer already contains sufficient data it
3038 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3039 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3040 */
cd0a137a
FF
3041static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3042 bool free_on_error)
9c0c1124
AD
3043{
3044 unsigned int size = skb->len;
3045
3046 if (unlikely(size < len)) {
3047 len -= size;
cd0a137a 3048 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3049 return -ENOMEM;
3050 __skb_put(skb, len);
3051 }
3052 return 0;
3053}
3054
cd0a137a
FF
3055/**
3056 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3057 * @skb: buffer to pad
3058 * @len: minimal length
3059 *
3060 * Pads up a buffer to ensure the trailing bytes exist and are
3061 * blanked. If the buffer already contains sufficient data it
3062 * is untouched. Otherwise it is extended. Returns zero on
3063 * success. The skb is freed on error.
3064 */
3065static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3066{
3067 return __skb_put_padto(skb, len, true);
3068}
3069
1da177e4 3070static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3071 struct iov_iter *from, int copy)
1da177e4
LT
3072{
3073 const int off = skb->len;
3074
3075 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3076 __wsum csum = 0;
15e6cb46
AV
3077 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3078 &csum, from)) {
1da177e4
LT
3079 skb->csum = csum_block_add(skb->csum, csum, off);
3080 return 0;
3081 }
15e6cb46 3082 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3083 return 0;
3084
3085 __skb_trim(skb, off);
3086 return -EFAULT;
3087}
3088
38ba0a65
ED
3089static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3090 const struct page *page, int off)
1da177e4 3091{
1f8b977a
WB
3092 if (skb_zcopy(skb))
3093 return false;
1da177e4 3094 if (i) {
9e903e08 3095 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3096
ea2ab693 3097 return page == skb_frag_page(frag) &&
9e903e08 3098 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3099 }
38ba0a65 3100 return false;
1da177e4
LT
3101}
3102
364c6bad
HX
3103static inline int __skb_linearize(struct sk_buff *skb)
3104{
3105 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3106}
3107
1da177e4
LT
3108/**
3109 * skb_linearize - convert paged skb to linear one
3110 * @skb: buffer to linarize
1da177e4
LT
3111 *
3112 * If there is no free memory -ENOMEM is returned, otherwise zero
3113 * is returned and the old skb data released.
3114 */
364c6bad
HX
3115static inline int skb_linearize(struct sk_buff *skb)
3116{
3117 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3118}
3119
cef401de
ED
3120/**
3121 * skb_has_shared_frag - can any frag be overwritten
3122 * @skb: buffer to test
3123 *
3124 * Return true if the skb has at least one frag that might be modified
3125 * by an external entity (as in vmsplice()/sendfile())
3126 */
3127static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3128{
c9af6db4
PS
3129 return skb_is_nonlinear(skb) &&
3130 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3131}
3132
364c6bad
HX
3133/**
3134 * skb_linearize_cow - make sure skb is linear and writable
3135 * @skb: buffer to process
3136 *
3137 * If there is no free memory -ENOMEM is returned, otherwise zero
3138 * is returned and the old skb data released.
3139 */
3140static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3141{
364c6bad
HX
3142 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3143 __skb_linearize(skb) : 0;
1da177e4
LT
3144}
3145
479ffccc
DB
3146static __always_inline void
3147__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3148 unsigned int off)
3149{
3150 if (skb->ip_summed == CHECKSUM_COMPLETE)
3151 skb->csum = csum_block_sub(skb->csum,
3152 csum_partial(start, len, 0), off);
3153 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3154 skb_checksum_start_offset(skb) < 0)
3155 skb->ip_summed = CHECKSUM_NONE;
3156}
3157
1da177e4
LT
3158/**
3159 * skb_postpull_rcsum - update checksum for received skb after pull
3160 * @skb: buffer to update
3161 * @start: start of data before pull
3162 * @len: length of data pulled
3163 *
3164 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3165 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3166 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3167 */
1da177e4 3168static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3169 const void *start, unsigned int len)
1da177e4 3170{
479ffccc 3171 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3172}
3173
479ffccc
DB
3174static __always_inline void
3175__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3176 unsigned int off)
3177{
3178 if (skb->ip_summed == CHECKSUM_COMPLETE)
3179 skb->csum = csum_block_add(skb->csum,
3180 csum_partial(start, len, 0), off);
3181}
cbb042f9 3182
479ffccc
DB
3183/**
3184 * skb_postpush_rcsum - update checksum for received skb after push
3185 * @skb: buffer to update
3186 * @start: start of data after push
3187 * @len: length of data pushed
3188 *
3189 * After doing a push on a received packet, you need to call this to
3190 * update the CHECKSUM_COMPLETE checksum.
3191 */
f8ffad69
DB
3192static inline void skb_postpush_rcsum(struct sk_buff *skb,
3193 const void *start, unsigned int len)
3194{
479ffccc 3195 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3196}
3197
af72868b 3198void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3199
82a31b92
WC
3200/**
3201 * skb_push_rcsum - push skb and update receive checksum
3202 * @skb: buffer to update
3203 * @len: length of data pulled
3204 *
3205 * This function performs an skb_push on the packet and updates
3206 * the CHECKSUM_COMPLETE checksum. It should be used on
3207 * receive path processing instead of skb_push unless you know
3208 * that the checksum difference is zero (e.g., a valid IP header)
3209 * or you are setting ip_summed to CHECKSUM_NONE.
3210 */
d58ff351 3211static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3212{
3213 skb_push(skb, len);
3214 skb_postpush_rcsum(skb, skb->data, len);
3215 return skb->data;
3216}
3217
88078d98 3218int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3219/**
3220 * pskb_trim_rcsum - trim received skb and update checksum
3221 * @skb: buffer to trim
3222 * @len: new length
3223 *
3224 * This is exactly the same as pskb_trim except that it ensures the
3225 * checksum of received packets are still valid after the operation.
6c57f045 3226 * It can change skb pointers.
7ce5a27f
DM
3227 */
3228
3229static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3230{
3231 if (likely(len >= skb->len))
3232 return 0;
88078d98 3233 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3234}
3235
5293efe6
DB
3236static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3237{
3238 if (skb->ip_summed == CHECKSUM_COMPLETE)
3239 skb->ip_summed = CHECKSUM_NONE;
3240 __skb_trim(skb, len);
3241 return 0;
3242}
3243
3244static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3245{
3246 if (skb->ip_summed == CHECKSUM_COMPLETE)
3247 skb->ip_summed = CHECKSUM_NONE;
3248 return __skb_grow(skb, len);
3249}
3250
18a4c0ea
ED
3251#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3252#define skb_rb_first(root) rb_to_skb(rb_first(root))
3253#define skb_rb_last(root) rb_to_skb(rb_last(root))
3254#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3255#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3256
1da177e4
LT
3257#define skb_queue_walk(queue, skb) \
3258 for (skb = (queue)->next; \
a1e4891f 3259 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3260 skb = skb->next)
3261
46f8914e
JC
3262#define skb_queue_walk_safe(queue, skb, tmp) \
3263 for (skb = (queue)->next, tmp = skb->next; \
3264 skb != (struct sk_buff *)(queue); \
3265 skb = tmp, tmp = skb->next)
3266
1164f52a 3267#define skb_queue_walk_from(queue, skb) \
a1e4891f 3268 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3269 skb = skb->next)
3270
18a4c0ea
ED
3271#define skb_rbtree_walk(skb, root) \
3272 for (skb = skb_rb_first(root); skb != NULL; \
3273 skb = skb_rb_next(skb))
3274
3275#define skb_rbtree_walk_from(skb) \
3276 for (; skb != NULL; \
3277 skb = skb_rb_next(skb))
3278
3279#define skb_rbtree_walk_from_safe(skb, tmp) \
3280 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3281 skb = tmp)
3282
1164f52a
DM
3283#define skb_queue_walk_from_safe(queue, skb, tmp) \
3284 for (tmp = skb->next; \
3285 skb != (struct sk_buff *)(queue); \
3286 skb = tmp, tmp = skb->next)
3287
300ce174
SH
3288#define skb_queue_reverse_walk(queue, skb) \
3289 for (skb = (queue)->prev; \
a1e4891f 3290 skb != (struct sk_buff *)(queue); \
300ce174
SH
3291 skb = skb->prev)
3292
686a2955
DM
3293#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3294 for (skb = (queue)->prev, tmp = skb->prev; \
3295 skb != (struct sk_buff *)(queue); \
3296 skb = tmp, tmp = skb->prev)
3297
3298#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3299 for (tmp = skb->prev; \
3300 skb != (struct sk_buff *)(queue); \
3301 skb = tmp, tmp = skb->prev)
1da177e4 3302
21dc3301 3303static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3304{
3305 return skb_shinfo(skb)->frag_list != NULL;
3306}
3307
3308static inline void skb_frag_list_init(struct sk_buff *skb)
3309{
3310 skb_shinfo(skb)->frag_list = NULL;
3311}
3312
ee039871
DM
3313#define skb_walk_frags(skb, iter) \
3314 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3315
ea3793ee
RW
3316
3317int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3318 const struct sk_buff *skb);
65101aec
PA
3319struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3320 struct sk_buff_head *queue,
3321 unsigned int flags,
3322 void (*destructor)(struct sock *sk,
3323 struct sk_buff *skb),
3324 int *peeked, int *off, int *err,
3325 struct sk_buff **last);
ea3793ee 3326struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3327 void (*destructor)(struct sock *sk,
3328 struct sk_buff *skb),
ea3793ee
RW
3329 int *peeked, int *off, int *err,
3330 struct sk_buff **last);
7965bd4d 3331struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3332 void (*destructor)(struct sock *sk,
3333 struct sk_buff *skb),
7965bd4d
JP
3334 int *peeked, int *off, int *err);
3335struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3336 int *err);
a11e1d43
LT
3337__poll_t datagram_poll(struct file *file, struct socket *sock,
3338 struct poll_table_struct *wait);
c0371da6
AV
3339int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3340 struct iov_iter *to, int size);
51f3d02b
DM
3341static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3342 struct msghdr *msg, int size)
3343{
e5a4b0bb 3344 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3345}
e5a4b0bb
AV
3346int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3347 struct msghdr *msg);
65d69e25
SG
3348int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3349 struct iov_iter *to, int len,
3350 struct ahash_request *hash);
3a654f97
AV
3351int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3352 struct iov_iter *from, int len);
3a654f97 3353int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3354void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3355void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3356static inline void skb_free_datagram_locked(struct sock *sk,
3357 struct sk_buff *skb)
3358{
3359 __skb_free_datagram_locked(sk, skb, 0);
3360}
7965bd4d 3361int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3362int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3363int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3364__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3365 int len, __wsum csum);
a60e3cc7 3366int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3367 struct pipe_inode_info *pipe, unsigned int len,
25869262 3368 unsigned int flags);
20bf50de
TH
3369int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3370 int len);
7965bd4d 3371void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3372unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3373int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3374 int len, int hlen);
7965bd4d
JP
3375void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3376int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3377void skb_scrub_packet(struct sk_buff *skb, bool xnet);
779b7931 3378bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
2b16f048 3379bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
7965bd4d 3380struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3381struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3382int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3383int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3384int skb_vlan_pop(struct sk_buff *skb);
3385int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3386struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3387 gfp_t gfp);
20380731 3388
6ce8e9ce
AV
3389static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3390{
3073f070 3391 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3392}
3393
7eab8d9e
AV
3394static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3395{
e5a4b0bb 3396 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3397}
3398
2817a336
DB
3399struct skb_checksum_ops {
3400 __wsum (*update)(const void *mem, int len, __wsum wsum);
3401 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3402};
3403
9617813d
DC
3404extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3405
2817a336
DB
3406__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3407 __wsum csum, const struct skb_checksum_ops *ops);
3408__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3409 __wsum csum);
3410
1e98a0f0
ED
3411static inline void * __must_check
3412__skb_header_pointer(const struct sk_buff *skb, int offset,
3413 int len, void *data, int hlen, void *buffer)
1da177e4 3414{
55820ee2 3415 if (hlen - offset >= len)
690e36e7 3416 return data + offset;
1da177e4 3417
690e36e7
DM
3418 if (!skb ||
3419 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3420 return NULL;
3421
3422 return buffer;
3423}
3424
1e98a0f0
ED
3425static inline void * __must_check
3426skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3427{
3428 return __skb_header_pointer(skb, offset, len, skb->data,
3429 skb_headlen(skb), buffer);
3430}
3431
4262e5cc
DB
3432/**
3433 * skb_needs_linearize - check if we need to linearize a given skb
3434 * depending on the given device features.
3435 * @skb: socket buffer to check
3436 * @features: net device features
3437 *
3438 * Returns true if either:
3439 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3440 * 2. skb is fragmented and the device does not support SG.
3441 */
3442static inline bool skb_needs_linearize(struct sk_buff *skb,
3443 netdev_features_t features)
3444{
3445 return skb_is_nonlinear(skb) &&
3446 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3447 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3448}
3449
d626f62b
ACM
3450static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3451 void *to,
3452 const unsigned int len)
3453{
3454 memcpy(to, skb->data, len);
3455}
3456
3457static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3458 const int offset, void *to,
3459 const unsigned int len)
3460{
3461 memcpy(to, skb->data + offset, len);
3462}
3463
27d7ff46
ACM
3464static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3465 const void *from,
3466 const unsigned int len)
3467{
3468 memcpy(skb->data, from, len);
3469}
3470
3471static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3472 const int offset,
3473 const void *from,
3474 const unsigned int len)
3475{
3476 memcpy(skb->data + offset, from, len);
3477}
3478
7965bd4d 3479void skb_init(void);
1da177e4 3480
ac45f602
PO
3481static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3482{
3483 return skb->tstamp;
3484}
3485
a61bbcf2
PM
3486/**
3487 * skb_get_timestamp - get timestamp from a skb
3488 * @skb: skb to get stamp from
13c6ee2a 3489 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
a61bbcf2
PM
3490 *
3491 * Timestamps are stored in the skb as offsets to a base timestamp.
3492 * This function converts the offset back to a struct timeval and stores
3493 * it in stamp.
3494 */
ac45f602 3495static inline void skb_get_timestamp(const struct sk_buff *skb,
13c6ee2a 3496 struct __kernel_old_timeval *stamp)
a61bbcf2 3497{
13c6ee2a 3498 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
a61bbcf2
PM
3499}
3500
887feae3
DD
3501static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3502 struct __kernel_sock_timeval *stamp)
3503{
3504 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3505
3506 stamp->tv_sec = ts.tv_sec;
3507 stamp->tv_usec = ts.tv_nsec / 1000;
3508}
3509
ac45f602
PO
3510static inline void skb_get_timestampns(const struct sk_buff *skb,
3511 struct timespec *stamp)
3512{
3513 *stamp = ktime_to_timespec(skb->tstamp);
3514}
3515
887feae3
DD
3516static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3517 struct __kernel_timespec *stamp)
3518{
3519 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3520
3521 stamp->tv_sec = ts.tv_sec;
3522 stamp->tv_nsec = ts.tv_nsec;
3523}
3524
b7aa0bf7 3525static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3526{
b7aa0bf7 3527 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3528}
3529
164891aa
SH
3530static inline ktime_t net_timedelta(ktime_t t)
3531{
3532 return ktime_sub(ktime_get_real(), t);
3533}
3534
b9ce204f
IJ
3535static inline ktime_t net_invalid_timestamp(void)
3536{
8b0e1953 3537 return 0;
b9ce204f 3538}
a61bbcf2 3539
de8f3a83
DB
3540static inline u8 skb_metadata_len(const struct sk_buff *skb)
3541{
3542 return skb_shinfo(skb)->meta_len;
3543}
3544
3545static inline void *skb_metadata_end(const struct sk_buff *skb)
3546{
3547 return skb_mac_header(skb);
3548}
3549
3550static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3551 const struct sk_buff *skb_b,
3552 u8 meta_len)
3553{
3554 const void *a = skb_metadata_end(skb_a);
3555 const void *b = skb_metadata_end(skb_b);
3556 /* Using more efficient varaiant than plain call to memcmp(). */
3557#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3558 u64 diffs = 0;
3559
3560 switch (meta_len) {
3561#define __it(x, op) (x -= sizeof(u##op))
3562#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3563 case 32: diffs |= __it_diff(a, b, 64);
82385b0d 3564 /* fall through */
de8f3a83 3565 case 24: diffs |= __it_diff(a, b, 64);
82385b0d 3566 /* fall through */
de8f3a83 3567 case 16: diffs |= __it_diff(a, b, 64);
82385b0d 3568 /* fall through */
de8f3a83
DB
3569 case 8: diffs |= __it_diff(a, b, 64);
3570 break;
3571 case 28: diffs |= __it_diff(a, b, 64);
82385b0d 3572 /* fall through */
de8f3a83 3573 case 20: diffs |= __it_diff(a, b, 64);
82385b0d 3574 /* fall through */
de8f3a83 3575 case 12: diffs |= __it_diff(a, b, 64);
82385b0d 3576 /* fall through */
de8f3a83
DB
3577 case 4: diffs |= __it_diff(a, b, 32);
3578 break;
3579 }
3580 return diffs;
3581#else
3582 return memcmp(a - meta_len, b - meta_len, meta_len);
3583#endif
3584}
3585
3586static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3587 const struct sk_buff *skb_b)
3588{
3589 u8 len_a = skb_metadata_len(skb_a);
3590 u8 len_b = skb_metadata_len(skb_b);
3591
3592 if (!(len_a | len_b))
3593 return false;
3594
3595 return len_a != len_b ?
3596 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3597}
3598
3599static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3600{
3601 skb_shinfo(skb)->meta_len = meta_len;
3602}
3603
3604static inline void skb_metadata_clear(struct sk_buff *skb)
3605{
3606 skb_metadata_set(skb, 0);
3607}
3608
62bccb8c
AD
3609struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3610
c1f19b51
RC
3611#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3612
7965bd4d
JP
3613void skb_clone_tx_timestamp(struct sk_buff *skb);
3614bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3615
3616#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3617
3618static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3619{
3620}
3621
3622static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3623{
3624 return false;
3625}
3626
3627#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3628
3629/**
3630 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3631 *
da92b194
RC
3632 * PHY drivers may accept clones of transmitted packets for
3633 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3634 * must call this function to return the skb back to the stack with a
3635 * timestamp.
da92b194 3636 *
c1f19b51 3637 * @skb: clone of the the original outgoing packet
7a76a021 3638 * @hwtstamps: hardware time stamps
c1f19b51
RC
3639 *
3640 */
3641void skb_complete_tx_timestamp(struct sk_buff *skb,
3642 struct skb_shared_hwtstamps *hwtstamps);
3643
e7fd2885
WB
3644void __skb_tstamp_tx(struct sk_buff *orig_skb,
3645 struct skb_shared_hwtstamps *hwtstamps,
3646 struct sock *sk, int tstype);
3647
ac45f602
PO
3648/**
3649 * skb_tstamp_tx - queue clone of skb with send time stamps
3650 * @orig_skb: the original outgoing packet
3651 * @hwtstamps: hardware time stamps, may be NULL if not available
3652 *
3653 * If the skb has a socket associated, then this function clones the
3654 * skb (thus sharing the actual data and optional structures), stores
3655 * the optional hardware time stamping information (if non NULL) or
3656 * generates a software time stamp (otherwise), then queues the clone
3657 * to the error queue of the socket. Errors are silently ignored.
3658 */
7965bd4d
JP
3659void skb_tstamp_tx(struct sk_buff *orig_skb,
3660 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3661
4507a715
RC
3662/**
3663 * skb_tx_timestamp() - Driver hook for transmit timestamping
3664 *
3665 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3666 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3667 *
73409f3b
DM
3668 * Specifically, one should make absolutely sure that this function is
3669 * called before TX completion of this packet can trigger. Otherwise
3670 * the packet could potentially already be freed.
3671 *
4507a715
RC
3672 * @skb: A socket buffer.
3673 */
3674static inline void skb_tx_timestamp(struct sk_buff *skb)
3675{
c1f19b51 3676 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3677 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3678 skb_tstamp_tx(skb, NULL);
4507a715
RC
3679}
3680
6e3e939f
JB
3681/**
3682 * skb_complete_wifi_ack - deliver skb with wifi status
3683 *
3684 * @skb: the original outgoing packet
3685 * @acked: ack status
3686 *
3687 */
3688void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3689
7965bd4d
JP
3690__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3691__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3692
60476372
HX
3693static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3694{
6edec0e6
TH
3695 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3696 skb->csum_valid ||
3697 (skb->ip_summed == CHECKSUM_PARTIAL &&
3698 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3699}
3700
fb286bb2
HX
3701/**
3702 * skb_checksum_complete - Calculate checksum of an entire packet
3703 * @skb: packet to process
3704 *
3705 * This function calculates the checksum over the entire packet plus
3706 * the value of skb->csum. The latter can be used to supply the
3707 * checksum of a pseudo header as used by TCP/UDP. It returns the
3708 * checksum.
3709 *
3710 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3711 * this function can be used to verify that checksum on received
3712 * packets. In that case the function should return zero if the
3713 * checksum is correct. In particular, this function will return zero
3714 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3715 * hardware has already verified the correctness of the checksum.
3716 */
4381ca3c 3717static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3718{
60476372
HX
3719 return skb_csum_unnecessary(skb) ?
3720 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3721}
3722
77cffe23
TH
3723static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3724{
3725 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3726 if (skb->csum_level == 0)
3727 skb->ip_summed = CHECKSUM_NONE;
3728 else
3729 skb->csum_level--;
3730 }
3731}
3732
3733static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3734{
3735 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3736 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3737 skb->csum_level++;
3738 } else if (skb->ip_summed == CHECKSUM_NONE) {
3739 skb->ip_summed = CHECKSUM_UNNECESSARY;
3740 skb->csum_level = 0;
3741 }
3742}
3743
76ba0aae
TH
3744/* Check if we need to perform checksum complete validation.
3745 *
3746 * Returns true if checksum complete is needed, false otherwise
3747 * (either checksum is unnecessary or zero checksum is allowed).
3748 */
3749static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3750 bool zero_okay,
3751 __sum16 check)
3752{
5d0c2b95
TH
3753 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3754 skb->csum_valid = 1;
77cffe23 3755 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3756 return false;
3757 }
3758
3759 return true;
3760}
3761
da279887 3762/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
3763 * in checksum_init.
3764 */
3765#define CHECKSUM_BREAK 76
3766
4e18b9ad
TH
3767/* Unset checksum-complete
3768 *
3769 * Unset checksum complete can be done when packet is being modified
3770 * (uncompressed for instance) and checksum-complete value is
3771 * invalidated.
3772 */
3773static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3774{
3775 if (skb->ip_summed == CHECKSUM_COMPLETE)
3776 skb->ip_summed = CHECKSUM_NONE;
3777}
3778
76ba0aae
TH
3779/* Validate (init) checksum based on checksum complete.
3780 *
3781 * Return values:
3782 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3783 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3784 * checksum is stored in skb->csum for use in __skb_checksum_complete
3785 * non-zero: value of invalid checksum
3786 *
3787 */
3788static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3789 bool complete,
3790 __wsum psum)
3791{
3792 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3793 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3794 skb->csum_valid = 1;
76ba0aae
TH
3795 return 0;
3796 }
3797 }
3798
3799 skb->csum = psum;
3800
5d0c2b95
TH
3801 if (complete || skb->len <= CHECKSUM_BREAK) {
3802 __sum16 csum;
3803
3804 csum = __skb_checksum_complete(skb);
3805 skb->csum_valid = !csum;
3806 return csum;
3807 }
76ba0aae
TH
3808
3809 return 0;
3810}
3811
3812static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3813{
3814 return 0;
3815}
3816
3817/* Perform checksum validate (init). Note that this is a macro since we only
3818 * want to calculate the pseudo header which is an input function if necessary.
3819 * First we try to validate without any computation (checksum unnecessary) and
3820 * then calculate based on checksum complete calling the function to compute
3821 * pseudo header.
3822 *
3823 * Return values:
3824 * 0: checksum is validated or try to in skb_checksum_complete
3825 * non-zero: value of invalid checksum
3826 */
3827#define __skb_checksum_validate(skb, proto, complete, \
3828 zero_okay, check, compute_pseudo) \
3829({ \
3830 __sum16 __ret = 0; \
5d0c2b95 3831 skb->csum_valid = 0; \
76ba0aae
TH
3832 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3833 __ret = __skb_checksum_validate_complete(skb, \
3834 complete, compute_pseudo(skb, proto)); \
3835 __ret; \
3836})
3837
3838#define skb_checksum_init(skb, proto, compute_pseudo) \
3839 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3840
3841#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3842 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3843
3844#define skb_checksum_validate(skb, proto, compute_pseudo) \
3845 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3846
3847#define skb_checksum_validate_zero_check(skb, proto, check, \
3848 compute_pseudo) \
096a4cfa 3849 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3850
3851#define skb_checksum_simple_validate(skb) \
3852 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3853
d96535a1
TH
3854static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3855{
219f1d79 3856 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3857}
3858
3859static inline void __skb_checksum_convert(struct sk_buff *skb,
3860 __sum16 check, __wsum pseudo)
3861{
3862 skb->csum = ~pseudo;
3863 skb->ip_summed = CHECKSUM_COMPLETE;
3864}
3865
3866#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3867do { \
3868 if (__skb_checksum_convert_check(skb)) \
3869 __skb_checksum_convert(skb, check, \
3870 compute_pseudo(skb, proto)); \
3871} while (0)
3872
15e2396d
TH
3873static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3874 u16 start, u16 offset)
3875{
3876 skb->ip_summed = CHECKSUM_PARTIAL;
3877 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3878 skb->csum_offset = offset - start;
3879}
3880
dcdc8994
TH
3881/* Update skbuf and packet to reflect the remote checksum offload operation.
3882 * When called, ptr indicates the starting point for skb->csum when
3883 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3884 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3885 */
3886static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3887 int start, int offset, bool nopartial)
dcdc8994
TH
3888{
3889 __wsum delta;
3890
15e2396d
TH
3891 if (!nopartial) {
3892 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3893 return;
3894 }
3895
dcdc8994
TH
3896 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3897 __skb_checksum_complete(skb);
3898 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3899 }
3900
3901 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3902
3903 /* Adjust skb->csum since we changed the packet */
3904 skb->csum = csum_add(skb->csum, delta);
3905}
3906
cb9c6836
FW
3907static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3908{
3909#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3910 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3911#else
3912 return NULL;
3913#endif
3914}
3915
5f79e0f9 3916#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3917void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3918static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3919{
3920 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3921 nf_conntrack_destroy(nfct);
1da177e4
LT
3922}
3923static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3924{
3925 if (nfct)
3926 atomic_inc(&nfct->use);
3927}
2fc72c7b 3928#endif
df5042f4
FW
3929
3930#ifdef CONFIG_SKB_EXTENSIONS
3931enum skb_ext_id {
3932#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3933 SKB_EXT_BRIDGE_NF,
4165079b
FW
3934#endif
3935#ifdef CONFIG_XFRM
3936 SKB_EXT_SEC_PATH,
df5042f4
FW
3937#endif
3938 SKB_EXT_NUM, /* must be last */
3939};
3940
3941/**
3942 * struct skb_ext - sk_buff extensions
3943 * @refcnt: 1 on allocation, deallocated on 0
3944 * @offset: offset to add to @data to obtain extension address
3945 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
3946 * @data: start of extension data, variable sized
3947 *
3948 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
3949 * to use 'u8' types while allowing up to 2kb worth of extension data.
3950 */
3951struct skb_ext {
3952 refcount_t refcnt;
3953 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
3954 u8 chunks; /* same */
3955 char data[0] __aligned(8);
3956};
3957
3958void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
3959void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
3960void __skb_ext_put(struct skb_ext *ext);
3961
3962static inline void skb_ext_put(struct sk_buff *skb)
3963{
3964 if (skb->active_extensions)
3965 __skb_ext_put(skb->extensions);
3966}
3967
df5042f4
FW
3968static inline void __skb_ext_copy(struct sk_buff *dst,
3969 const struct sk_buff *src)
3970{
3971 dst->active_extensions = src->active_extensions;
3972
3973 if (src->active_extensions) {
3974 struct skb_ext *ext = src->extensions;
3975
3976 refcount_inc(&ext->refcnt);
3977 dst->extensions = ext;
3978 }
3979}
3980
3981static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
3982{
3983 skb_ext_put(dst);
3984 __skb_ext_copy(dst, src);
3985}
3986
3987static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
3988{
3989 return !!ext->offset[i];
3990}
3991
3992static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
3993{
3994 return skb->active_extensions & (1 << id);
3995}
3996
3997static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
3998{
3999 if (skb_ext_exist(skb, id))
4000 __skb_ext_del(skb, id);
4001}
4002
4003static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4004{
4005 if (skb_ext_exist(skb, id)) {
4006 struct skb_ext *ext = skb->extensions;
4007
4008 return (void *)ext + (ext->offset[id] << 3);
4009 }
4010
4011 return NULL;
4012}
4013#else
4014static inline void skb_ext_put(struct sk_buff *skb) {}
df5042f4
FW
4015static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4016static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4017static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4018#endif /* CONFIG_SKB_EXTENSIONS */
4019
a193a4ab
PM
4020static inline void nf_reset(struct sk_buff *skb)
4021{
5f79e0f9 4022#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4023 nf_conntrack_put(skb_nfct(skb));
4024 skb->_nfct = 0;
2fc72c7b 4025#endif
34666d46 4026#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
de8bda1d 4027 skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
a193a4ab
PM
4028#endif
4029}
4030
124dff01
PM
4031static inline void nf_reset_trace(struct sk_buff *skb)
4032{
478b360a 4033#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
4034 skb->nf_trace = 0;
4035#endif
a193a4ab
PM
4036}
4037
2b5ec1a5
YY
4038static inline void ipvs_reset(struct sk_buff *skb)
4039{
4040#if IS_ENABLED(CONFIG_IP_VS)
4041 skb->ipvs_property = 0;
4042#endif
4043}
4044
de8bda1d 4045/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4046static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4047 bool copy)
edda553c 4048{
5f79e0f9 4049#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4050 dst->_nfct = src->_nfct;
4051 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4052#endif
478b360a 4053#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
4054 if (copy)
4055 dst->nf_trace = src->nf_trace;
478b360a 4056#endif
edda553c
YK
4057}
4058
e7ac05f3
YK
4059static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4060{
e7ac05f3 4061#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4062 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4063#endif
b1937227 4064 __nf_copy(dst, src, true);
e7ac05f3
YK
4065}
4066
984bc16c
JM
4067#ifdef CONFIG_NETWORK_SECMARK
4068static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4069{
4070 to->secmark = from->secmark;
4071}
4072
4073static inline void skb_init_secmark(struct sk_buff *skb)
4074{
4075 skb->secmark = 0;
4076}
4077#else
4078static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4079{ }
4080
4081static inline void skb_init_secmark(struct sk_buff *skb)
4082{ }
4083#endif
4084
7af8f4ca
FW
4085static inline int secpath_exists(const struct sk_buff *skb)
4086{
4087#ifdef CONFIG_XFRM
4165079b 4088 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
7af8f4ca
FW
4089#else
4090 return 0;
4091#endif
4092}
4093
574f7194
EB
4094static inline bool skb_irq_freeable(const struct sk_buff *skb)
4095{
4096 return !skb->destructor &&
7af8f4ca 4097 !secpath_exists(skb) &&
cb9c6836 4098 !skb_nfct(skb) &&
574f7194
EB
4099 !skb->_skb_refdst &&
4100 !skb_has_frag_list(skb);
4101}
4102
f25f4e44
PWJ
4103static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4104{
f25f4e44 4105 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4106}
4107
9247744e 4108static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4109{
4e3ab47a 4110 return skb->queue_mapping;
4e3ab47a
PE
4111}
4112
f25f4e44
PWJ
4113static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4114{
f25f4e44 4115 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4116}
4117
d5a9e24a
DM
4118static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4119{
4120 skb->queue_mapping = rx_queue + 1;
4121}
4122
9247744e 4123static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4124{
4125 return skb->queue_mapping - 1;
4126}
4127
9247744e 4128static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4129{
a02cec21 4130 return skb->queue_mapping != 0;
d5a9e24a
DM
4131}
4132
4ff06203
JA
4133static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4134{
4135 skb->dst_pending_confirm = val;
4136}
4137
4138static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4139{
4140 return skb->dst_pending_confirm != 0;
4141}
4142
2294be0f 4143static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4144{
0b3d8e08 4145#ifdef CONFIG_XFRM
4165079b 4146 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
def8b4fa 4147#else
def8b4fa 4148 return NULL;
def8b4fa 4149#endif
0b3d8e08 4150}
def8b4fa 4151
68c33163
PS
4152/* Keeps track of mac header offset relative to skb->head.
4153 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4154 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
4155 * tunnel skb it points to outer mac header.
4156 * Keeps track of level of encapsulation of network headers.
4157 */
68c33163 4158struct skb_gso_cb {
802ab55a
AD
4159 union {
4160 int mac_offset;
4161 int data_offset;
4162 };
3347c960 4163 int encap_level;
76443456 4164 __wsum csum;
7e2b10c1 4165 __u16 csum_start;
68c33163 4166};
9207f9d4
KK
4167#define SKB_SGO_CB_OFFSET 32
4168#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
4169
4170static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4171{
4172 return (skb_mac_header(inner_skb) - inner_skb->head) -
4173 SKB_GSO_CB(inner_skb)->mac_offset;
4174}
4175
1e2bd517
PS
4176static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4177{
4178 int new_headroom, headroom;
4179 int ret;
4180
4181 headroom = skb_headroom(skb);
4182 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4183 if (ret)
4184 return ret;
4185
4186 new_headroom = skb_headroom(skb);
4187 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4188 return 0;
4189}
4190
08b64fcc
AD
4191static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4192{
4193 /* Do not update partial checksums if remote checksum is enabled. */
4194 if (skb->remcsum_offload)
4195 return;
4196
4197 SKB_GSO_CB(skb)->csum = res;
4198 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4199}
4200
7e2b10c1
TH
4201/* Compute the checksum for a gso segment. First compute the checksum value
4202 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4203 * then add in skb->csum (checksum from csum_start to end of packet).
4204 * skb->csum and csum_start are then updated to reflect the checksum of the
4205 * resultant packet starting from the transport header-- the resultant checksum
4206 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4207 * header.
4208 */
4209static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4210{
76443456
AD
4211 unsigned char *csum_start = skb_transport_header(skb);
4212 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4213 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 4214
76443456
AD
4215 SKB_GSO_CB(skb)->csum = res;
4216 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 4217
76443456 4218 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
4219}
4220
bdcc0924 4221static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4222{
4223 return skb_shinfo(skb)->gso_size;
4224}
4225
36a8f39e 4226/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4227static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4228{
4229 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4230}
4231
d02f51cb
DA
4232/* Note: Should be called only if skb_is_gso(skb) is true */
4233static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4234{
4235 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4236}
4237
b90efd22
WB
4238static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4239{
4240 return skb_is_gso(skb) &&
4241 skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4242}
4243
5293efe6
DB
4244static inline void skb_gso_reset(struct sk_buff *skb)
4245{
4246 skb_shinfo(skb)->gso_size = 0;
4247 skb_shinfo(skb)->gso_segs = 0;
4248 skb_shinfo(skb)->gso_type = 0;
4249}
4250
d02f51cb
DA
4251static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4252 u16 increment)
4253{
4254 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4255 return;
4256 shinfo->gso_size += increment;
4257}
4258
4259static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4260 u16 decrement)
4261{
4262 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4263 return;
4264 shinfo->gso_size -= decrement;
4265}
4266
7965bd4d 4267void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4268
4269static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4270{
4271 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4272 * wanted then gso_type will be set. */
05bdd2f1
ED
4273 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4274
b78462eb
AD
4275 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4276 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4277 __skb_warn_lro_forwarding(skb);
4278 return true;
4279 }
4280 return false;
4281}
4282
35fc92a9
HX
4283static inline void skb_forward_csum(struct sk_buff *skb)
4284{
4285 /* Unfortunately we don't support this one. Any brave souls? */
4286 if (skb->ip_summed == CHECKSUM_COMPLETE)
4287 skb->ip_summed = CHECKSUM_NONE;
4288}
4289
bc8acf2c
ED
4290/**
4291 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4292 * @skb: skb to check
4293 *
4294 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4295 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4296 * use this helper, to document places where we make this assertion.
4297 */
05bdd2f1 4298static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
4299{
4300#ifdef DEBUG
4301 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4302#endif
4303}
4304
f35d9d8a 4305bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4306
ed1f50c3 4307int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4308struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4309 unsigned int transport_len,
4310 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4311
3a7c1ee4
AD
4312/**
4313 * skb_head_is_locked - Determine if the skb->head is locked down
4314 * @skb: skb to check
4315 *
4316 * The head on skbs build around a head frag can be removed if they are
4317 * not cloned. This function returns true if the skb head is locked down
4318 * due to either being allocated via kmalloc, or by being a clone with
4319 * multiple references to the head.
4320 */
4321static inline bool skb_head_is_locked(const struct sk_buff *skb)
4322{
4323 return !skb->head_frag || skb_cloned(skb);
4324}
fe6cc55f 4325
179bc67f
EC
4326/* Local Checksum Offload.
4327 * Compute outer checksum based on the assumption that the
4328 * inner checksum will be offloaded later.
e8ae7b00
EC
4329 * See Documentation/networking/checksum-offloads.txt for
4330 * explanation of how this works.
179bc67f
EC
4331 * Fill in outer checksum adjustment (e.g. with sum of outer
4332 * pseudo-header) before calling.
4333 * Also ensure that inner checksum is in linear data area.
4334 */
4335static inline __wsum lco_csum(struct sk_buff *skb)
4336{
9e74a6da
AD
4337 unsigned char *csum_start = skb_checksum_start(skb);
4338 unsigned char *l4_hdr = skb_transport_header(skb);
4339 __wsum partial;
179bc67f
EC
4340
4341 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4342 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4343 skb->csum_offset));
4344
179bc67f 4345 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4346 * adjustment filled in by caller) and return result.
179bc67f 4347 */
9e74a6da 4348 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4349}
4350
1da177e4
LT
4351#endif /* __KERNEL__ */
4352#endif /* _LINUX_SKBUFF_H */